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ABSTRACT

The sixth-order wave equation which results from a finite temperature expan-
sion of the Vlasov equation is solved globally in a perpendicularly stratified, one-
dimensional slab plasma. The diamagnetic drift and associated anisotropy are
included in the unperturbed distribution function to ensure a self-adjoint system.
All z-dependence in the plasma pressure and magnetic field is retained along with
the electric field parallel to B. Thus, Landau damping of the ion Bernstein wave
is included as well. Because the wave equation is solved implicitly as a two-point
boundary value problem, the evanescent short-wavelength Bernstein waves do not
grow exponentially as in shooting methods. Solutions to the complete sixth-order
partial differential equation are compared to those from an approximate second-
order equation based on local dispersion theory. Strong variations occur in the
absorption and in the structure of the wave fields as resonance topology is varied.
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1. INTRODUCTION

The recent success of ion cyclotron resonance heating (ICRH) experiments
around the world has stimulated interest in reliable theoretical models for calculat-
ing global ICRH wave fields and power deposition profiles in tokamak, mirror, and
stellarator geometries, There are already a number of full-wave two-dimensional
(2-D) calculations in which global solutions for the ICRH wave fields are found in
the cold plasma limit [1-5]. In these models, the ion cyclotron resonance is resolved
by including an ad hoc collision term in the cold plasma conductivity tensor. While
the total power absorbed is relatively independent of collisions in these models,
the details of the predicted power deposition profiles are strongly dependent on
the particular collision model assumed. To correct this deficiency requires a global
solution to the warm plasma wave equation {6]. Unfortunately, this turns out to
be a formidable task in two dimensions because of the prohibitively large number
of mesh points required to resolve the short wavelengths associated with the ion
Bernstein wave [6].

Some insight into finite temperature effects can be obtained from idealized
one-dimensional (1-D) slab model caiculations [7-11] in which the resolution is
sufficient to follow the Bernstein waves accurately. Chiu and Mau [6] directly
expand the Vlasov equation to second order in gyroradius. Because they ignore
all z-dependence except that in the electric field and in the resonant denominator
w — kzv; — n{l, where n = 2, their analysis applies only near the second harmonic
resonance. They also point out that in order to treat the fundamental cyclotron
resonance (n = 1), the diamagnetic drift terms due to gradients in pressure and
magnetic field, which are left out of their work, must be retained in the equilibrium
distribution function. The authors in Refs [8-10] likewise leave out these diamag-
netic drifts, but they nevertheless apply their calculations to the fundamental ion
cyclotron resonance and two ion hybrid resonance cases. In Refs [11, 12] some of
the drift terms have been included. However, Martin and Vaclavik [13] are the
first authors to include all z-dependence and all of the diamagnetic drift terms
and associated anisotropy in the unperturbed distribution function. The resuiting
wave equation is a sixth-order partial differential equation (PDE) that is rigorously
self-adjoint.

It is this sixth-order equation which is solved in this paper for the global ion
cyclotron resonant frequency (ICRF) wave field and power absorption. Because the

equation is solved implicitly as a two-point boundary value problem, the evanescent
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short-wavelength Bernstein waves do not grow exponentially as in shooting methods.
Of more current interest than the complete sixth-order solutions are various approx-
imate models which may be extendable to two dimensions. We examine one such
approximation |14, 15] in which the detailed structure of the Bernstein wave is ne-
glected while the effect of the mode conversion on the fast wave is retained. The
wave equation is thus reduced from sixth order to second order and is easily solvable
in two dimensions [16]. We study the regions of validity of this model by comparing
it to 1-D solutions of the full sixth-order PDE. An alternative approximation is also
studied in which ad hoc damping [10] is used to absorb the Bernstein waves before
their wa elength becomes prohibitively small.



2. WAVE EQUATION

We consider a perpendicularly stratified, 1-D slab plasma in which the equilib-
rium quantities are functions of = only and the applied steady-state magnetic field
Bo(z) is in the 3-direction. The wave fields E and B are assumed to be small, with
harmonic dependences in y, 2, and ¢ of the form exp(i(kyy + k:z — wt)]. Then
from Maxwell’s equations,

- 3B . .

VxE= _3{": wB (1)
E <3 66 E - - R -
VXE=J+—(—8—°t—l=Jext+¥J,—zweoE (2)

where ), denotes the sum over electron and jon species. Taking the curl of (1) and
using (2) to eliminate B, we have the vector wave equation

2
- w* = . - . -
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where Joy: is the antenna current and 3. J, it the plasma current. Following
Ref. [13], J, is found in the Appendix to be
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The superscripts denote order with respect to the ion Larmor radius expansion.
The functions ﬁn and P, are

~ w? w — nfl
p,=--L z( )
" lkzla kz|e
2~
Pn. = %‘Pn

where « is the thermal speed \/2kT/m, Q = eB/m, w;‘: = ne?/eom, and 7 is the
plasma dispersion function as defined by Fried and Conte [17],
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In the limit of large argument, Eq. (6) becomes real, with
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3. ENERGY CONSERVATION AND ABSORBED POWER

The equation for energy conservation (Poynting’s theorem) is found by dotting
E* into the V x B equation in (2),

-

BV x #E +iweo| B2 = B* -3 F, = B* - Fus (10)
0 8

Now we apply the vector identity
V- BxE*=E*VxB-B-VxE*
to the left-hand side of (10) and use (1) to eliminate V x E*. This gives

-—V.{E* :_ L) -E*. =F"-J
ro ( X B) + tw (EolE' o ) ;Ja E ext

or taking the real part and dividing by (—2.0), we have Poynting’s theorem:
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The second term in (11) is 1/2 Re(E"‘ DI .7,) and can be written as the sum of
the power dissipated ), P, and the divergence of a kinetic energy flux Q, which is

the energy flux of the wave carried by particle’s thermal motion,
1 = - -
‘Z'RG(E*'EJ.«:)=ZP3+V-Q (12)
a 8
The total energy flux S is the sum of the Poynting flux §p and é,
§=5,+4Q

and conservation of energy in (11) takes the form
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adjoint”. If we define

- =0) (1) (@) 9 [=(1) (2)
Op=0, +p, +7, +5;{0, + P,

L
’ 0 pg‘;,) m(:l.)
- (1) —(2) (1) (2]
gQ = [oa + P, ] +[0, t+p, JL= ﬂ:(:zy) 0 09-)
U
ol —ol¥ o

then Eq. (14) can be written more concisely as

1 -ct - _ 1 —01_ — =
5Re(E -z;.f,) —EO:ERe{E N
<+ ~ OE . 8 [(-@dE
t. . — t. =2 ==
+E'-0q 8a:+E (o, az)}

oz
) an
B Z. Fot oz

(15)




11
Written out explicitly, Eq. (15) gives
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Using Eq. (16), we have checked the conservation of energy [Eq. (11)] in our numer-
ical calculation. We find that except at the antenna where j.xt # 0, the two terms
on the left-hand side of Eq. (11) are to a good approximation equal and cpposite

+(of) +182) By + p{VE, + p

in sign. Thus, Poynting’s theorem is satisfied locally to a high degree of accuracy
in our numerical solutions. Nevertheless, a problem arises in the definition of the
kinetic flux Q. A unique determination of Q requires carrying the calculation to
second order in the perturbing wave field. For a first-order, linear calculation such
as this one, the choice of Q is not unique. Thus, there are a number of different
definitions for Q cccurring in the literature [6,11,13]. Here we choose C-é to ensure
consistency with the WK B result in the weak damping limit for a single wave. Thus,
we take

1 - ~ ._.(z) E ;
= = t. it .
Z; 2 Re{E ~ E+E "8z } (17)
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where the subscripts H and A denote the Hermitian and anti-Hermitian parts,

respectively:
1
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It is possible to write @, and P, in Eqgs (17) and (19) explicitly,
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Note that P, depends only on the dissipative part of the conductivity. Thus, in
the absence of dissipation, the Z functions become real, and the real and imaginary
parts of the tensor elements in Eq. (21) are identically zero.
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Now consider Eqs (17) and (19) in the WKB limit, that is, in an infinite uniform
plasma with B constant and

E(z) = e(Z)e'k==

a_E. — (ikz5+ _a_e)eik,::

oz oz (22)
Kk 22 | o OF B\ 4.
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and Egs (4). (17), and (19) give, respectively,
J. = [(‘3‘°’ + ik, 5" —k:‘&“z’> B+ (‘&‘(” +2ik,3"2’> 3
=(2) O°F| 4.
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~1p [at H(l) k. ;_.(2) e ot @ O (23)
Qz—LEee- —2— tikzo, |-E+E ‘32
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€ dxz Oz oz
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- 0 L o d -y
then
LA P



16

and we can write (23) as

jz [4—» - .a‘; aE ‘—'(2) 625] eikxz

B AR PR
10 4 [-i004] . 4 =@ 0¢
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In the weakly damped limit when (z) is given by

E(z) = ge K=
o€ B (26)
(—9—1:' =-—-KZ¢
then 5z
L d -~ 2
Re{é’f-aff)-é%} = ~-K Re{é’*-a;)-f} =0

oo o¢ o
=t . H . = _ il s 2l
Re{e [ ) ok, ] ——6:1:} K Re{s [ zakz}A e} 0

and (25) reduces to

-1 90 -
Q.= %Re{é’t~[7'- a‘;:]-E—Ké't-a(;)-E}
1' (27)
P, = ERe{gt op-€-K2et '&'g)-€+K é"f-2k,‘&'g) -€(2)}

This agrees with the weak damping WKB result of Bers (Egs IIA-16,17 in Ref. [18])
when K is small and o g is small (weak damping):

1 —i 8¢
_la.|Zt90a) -
Q=3° [2 ahj ¢

P=%?-FH-E

Thus, we have shown that Eq. (17) is consistent with the WKB result in the weak
dami)ing limit for a single wave. But our solutions do not necessarily consist of only
a single wave. Instead we have, for example, both fast and Bernstein waves with
reflections of each present simultaneously. Therefore, Eq. (17) is most likely not

the complete kinetic flux.
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4. NUMERICAL RESULTS — COMPLETE
SIXTH-ORDER PDE

In this section, we present numerical solutions to the full sixth-order PDE given
by Eqs (8) and (9). Figure 1(a) shows schematically the perpendicularly stratified
1-D geometry considered. A plasma slab of width 2a, is located between two
perfectly conducting metal walls at £ = +Zmax. There is edge plasma in the region
@p < |z| < |Tmax|- The dashed line represents a current-carrying antenna located
in the edge plasma at £ = z,,¢. Figure 1(b) shows the assumed profiles for plasma
density n(z), temperatures T(z) and Ti(z), and applied magnetic field B(z). These
have been chosen to correspond approximately to values along a chord through the

ORNL-DWG 87-2041 FED
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FIG. 1. (a) Perpendicularly stratified 1-D geometry for two-point boundary value
problem. (b) Assumed profiles for plasma density, temperature, and ap-
plied magnetic field.
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axis of the Advanced Toroidal Facility (ATF) stellarator starting from the low-field
side, passing through the elliptic plasma, and ending at the opposite low-field side.
The profiles are approximately parabolic in z. As with slab model calculations in
tokamaks, the poloidal magnetic field and variations of k) and v along B are not
properly modelled. However, the effect of double minor cyclotron resonance layers
and double mode conversion layers in torsatron geometry can be studied. Central
plasma parameters and antenna location for the numerical calculations are chosen
to be typicai of the ATF plasma:

Rr=21m

By=2T

ap = 38 cm; Typy = 40 €m; Tmayx = 50 cm
= 2%- ~ 30 MHz

Nlgo ~ 4 X 10’3 ¢m™3

Teo = T§ = T = 1500 eV

k; =13 m~! (ntoroidal = kyRp ~ 27)

ky =0
n="H _005
np

The finite difference grid consists of 2000-5000 mesh points in the region ~zax <
z £ Tmax-

Figure 2 shows the electric field components E;, E,, and E; for f = 27 MHz.
Figure 3 shows total energy flux (Sz = Spz + Q;), power absorbed by electrons
(Pe), minority hydrogen (Py), and majority deuterium (Pp) for f = 27, 28.4, and
30 MHz. Power is incident from the fast wave generated by thr antenna on the right
and is partially absorbed and partially reflected at the first pair of resonance layers.
Some power is mode converted at the hybrid layer to an ion Bernstein wave which
is propagating in the region between the hybrid resonance layers. This is the short-
wavelength mode evident in F; in Fig. 2. At the second pair of resonances, there is
more absorption, and the Bernstein wave is reflected from the hybrid layer, allowing
the possibility of a standing wave between the two mode conversion layers. Strongly
evanescent Bernstein waves in the low-field regions do not grow exponentially as in
shooting methods {11].
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As the frequency is increased to 28.4 MHz and 30 MHz in Fig. 3, the separation
between resonance regions decreases and the mode conversion layers are eventually
annihilated at 30 MHz, leaving only the minority cyclotron resonance. The Bern-
stein wave becomes less evident at 28.4 MHz and disappears entirely at 30 MHz.
The non-positive-definite values for P, in Fig. 3(a) are due to the incomplete choice
for Q. in Eq. (17).

In Fig. 4, we consider a case analogous to that in Figs 2 and 3, but for a

tokamak-type magnetic field,
By

1+ z/Ry

to compare the results with more conventional shooting calculations (11]. We show

B =

reflection, transmission, mode conversion, and absorption coefficients for a 5%
minority hydrogen case in the Princeton Large Torus (PLT) tokamak with uniform
density and temperature profiles, with

Ro=13m

By=3T

Te = Tp = Ty = 2000 eV = constant
ng = 1.50 X 10'2 ¢cm ™2 = constant
np = 2.85 x 102 ¢cm ™2 = constant
k:=1to10 m™!

ky =0

The frequency is chosen such that the minority cyclotron esonance occurs at £ = 0:

f = 45.75 MHz (27rf =y = -C—B—O at r= 0)
my

A single fast-wave mode is incident upon the resonance region (z = 0) from either
the high (z < 0) or the low (z > 0) magnetic field side. Since the shooting calcula-
tions do not include reflected waves but match onto WKB plane wave solutions at
the boundaries, we add a strong artificial absorber at the plasma edge (z < 40 cm)
to make the comparison in Fig. 4. The magnitude of the absorption is chosen so
that the reflected waves are reduced by about three orders of magnitude. The solu-
tions are then decomposed into incoming and outgoing fast and Bernstein waves to

obtain the coefficients shown in Fig. 4.
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Absorption is shown as the percentage of the incoming power absorbed by each
species (H, D, e) for low-field incidence and for high-field incidence when k, is
varied from 1 to 10 m~!. Dashed curves show results of the shooting code [11].

In Fig. 5 we illustrate the effect of including the reflected waves and the result-
ing cavity resonances for the PLT case of Fig. 4. In Fig. 5, the artificial absorber
has been removed and replaced with real plasma boundaries, as shown in Fig. 1(a).
The edge plasma boundary is at ¢, = +40 cm, and the conducting wall is at
Tmax = 50 cm. The edge plasma density is 1 x 10'? ¢cm~2 with T, = T} =0 eV.
The antenna is placed in the edge plasma region and at r = 43 cm for low-field
incidence and at £ = —43 c¢m for high-field incidence. Note that the variations of
the reflection, transmission, and conversion coefficients are no longer smooth as in
Fig. 4 but now show strong peaks and valleys at particular values of k.. These peaks
and valleys are caused by cavity modes in which the reflected Bernstein waves com-
ing back from the wall convert to fast waves, which either add to or subtract from
the transmitted fast waves. As the reflected ion Bernstein wave disappears at large
k. due to Landau damping, this interference effect also disappears. At the peaks,
the values of the transmission and conversion coefficients (as defined in Fig. 4) can
be greater than 100%. But there are two additional transmission and conversion
coefficients shown by the dashed curves in Fig. 5 (rtrans and rconv) which are very
nearly equal and opposite in sign to the standard definitions. These are defined
using the reflections of the transmitted and converted waves, respectively. Thus,
the total of all the coefficients is still 100%, as it must be to conserve energy. A
comparison of Figs 4 and 5 shows the importance of including plasma boundaries
if meaningful comparisons with experiment are to be made.
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5. APPROXIMATE WAVE EQUATION USING LGUGCAL
DISPERSION THEORY

A local dispersion relation can be found by assuming E(z) ~ E exp(ikzz) in
the wave equation so that 8!73‘/ dxr — ik,,E". In the absence of a driving current,
Eq. (8) gives

- (1) (2 -
(n E)n—||2E+(()+6 + ¢ )E
— H(z) — — — ""(2)
+ ik, ( ™13 ) .E+E-f—(e“)+6 )
U 9z L

«—(2)
+ ik, ( W% ) R A
L 0

E-k3e® . E=0
(28)

T

A nonzero solution for E in Eq. (28) requires

— (l) —(2 — H(z)
det[nn—|n|21+( 4% +g()) ( W% )
L

)
3z
o) | 5O i (2
+k([m | #efe02 5] 2 )
or
+ k2 (—‘2(2))] =0 (29)

where 7@ = k/ko. In the plasma, Eq. (29) is sixth order in k., and in the vacuum it
is fourth order. Figure 6(a) shows all six roots for n3 = (k./ko)? as functions of =
for the case of Fig. 3(b) (28.4 MHz). Figure 6(b) shows only the root corresponding
to the fast wave travelling in the —Z direction.

As suggested in Refs 14,15, an approximate second-order wave equation to
treat only the fast wave can be constructed by replacing E by E exp(tk,z) in just
the warm plasma terms in Eq. (8). This leads to
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-k—g(VxVxE) {( +6 45 45T+ .
—(2)

) e ) (@)
+k,('[ R ] +i[ M % ] 42 )
U L Iz

+ k2 (—’2(2))} = (30)

where k; is taken to be the root of the dispersion relation, Eq. (29), corresponding
to the fast wave [i.e. Fig. (6b)]. The %, §, and £ components of Eq. (30) are

(2) :
[(61(;(;)_*_5.(2) . _n)m(zae,,)wz( E;zz))]Ez_'_n_u@_v

o ko oz

2)
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6. NUMERICAL RESULTS — APPROXIMATE
SECOND-ORDER PDE

In this section, we present numerical solutions of the approximate PDE given by
Egs (30) and (31). By comparing to solutions of the complete sixth-order equation
in Section 4, we can evaluate the usefulness of the approximate equation in the
more complicated 2-D geometry.

In Fig. 7 we compare the approximate second-order solution and the complete
sixth-order solution for the low-field incidence, tokamak calculation in Fig. 4. Th .. -

ORNL-DWG 87-2046 FED
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FIG. 7. Comparison between approximate second-order (dashed) and complete
sixth-order (solid) global coefficients for low-field incidence in PLT.
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is reasonable agreement for all coefficients except mode conversion, which is obvi-
ously not included in the second-order equation and accounts for the energy decre-
ment in the approximate result, A similar comparison for high-field incidence was
not possible since the fast wave root to the dispersion relation was not continuous
for k; S 9 m~1. In this case, the fast wave incident from the high-field side connects
continuously onto the Bernstein wave branch.

In Fig. 8 we compare profiles for energy flux and power absorbed at k, =
10 m~! for the low-field incidence case in Fig. 7. We see that although the global
transmission, reflection, and absorption coefficients in Fig. 7 agree fairly well, the
detailed shapes of the power absorption profiles in Fig. 8 are not very similar.
Since reflections have been eliminated from this calculation, the differences seen in
Fig. 8 cannot be due to the presence of reflected waves. The main deficiency in the
approximate second-order equation is the inability to distinguish between power
absorbed and power converted to the Bernstein wave. For example, the strong
peaking in the power absorbed by minority hydrogen, Py, in Fig. 8(b) occurs at
z =~ —b cm, which is very nearly the location of the mode conversion surface.
This peaking in Py is actually the power that is mode converted in the complete
sixth-order solution of Fig. 8(a).

In Fig. 9 we compare the exact warm plasma solution of Fig. 2(b) (f =
28.4 MHz) with an approximate second-order calculation and with a cold plasma
calculation from Eq. (8) with T, = T} = 0 and ad hoc collisions [1-5] (v/w = 10~2)
to broaden the minority cyclotron resonance. The approximate second-order calcu-
lation is significantly better in this case than the cold plasma calculation with ad
hoc collisions. The agreement here might be expected, since the Bernstein wave is
not fully developed due to the proximity of the two mode conversion layers, and
the neglect of details of the Bernstein wave inherent in Eq. (30) is not expected to
cause a significant problem. On the other hand, in Fig. 10 (f = 27.5 MHz) the
Bernstein wave appears to be fully developed and the approximate second-order
equation gives a noticeably different result from the complete sixth-order equation,
but it probably still gives a more accurate result than the cold plasma calculation
with ad hoc collisions. '

Although the discrepancy in Fig. 10 appears large, it can be argued that our
neglect of variations of k) and v along B has led to artificially weak damping
of the Bernstein wave. In experiments, for example, very strong damping of the

Bernstein wave is observed outside the immediate vicinity of the resonance and mode



29

ORNL-DWG 87-2047 FED

(a) "\ "l‘ \|\
o — >
[
s S
Z 2
%) - a
~Pe
-41.34 N | I l 1 -0.55
.34 T l,‘.I I | 10.6
(6) ‘:
< 7
3 ~
3 2
=, | o
n
SX
-4.34 I -1.18
-045 010 ~-0.05 9] 0.05 0.10

x(m)

FIG. 8. Comparison between (a) complete and (b) approximate energy flux and
power deposition profiles in PLT with k, = 10 m~! and low-field inci-
dence.



EXACT WARM
Te=T;=1500 eV
Pobs=0.114 W/m?2

APPROX. WARM
5/5)& *ikx,fast
Te=T;=1500 eV
Pabs = 0-115 W/m?

COLD PLASMA
v/w=1.0 x10~2

Te= T| =0eV
Paps =0.081 W/m?2

FIG. 9.

Sy (x103 W/m?2) Sy (X103 W/m?)

Sy (x103 W/m?)

30

ORNL-DWG 87-2048 FED

13.9 T - . 1.26
(a) i
, i -
n i £
a ¢ ~
B P : ] =
P " o
12.6 1 1 ( Pe -0.44
4.8 T T 1.53
(5)
B E -
3
L i — E
i .
- .: ' 4
-12.7 1 1P ! -047
8.4 T T T3 1.18
(c) "
'e Yy
: 3
) ~
n Wi - z
; a
' .:PH
B 7 Py n
-9.0 1 L Fe | -0.13
-0.5 -0.3 -04 of 03 05
x(m)

Comparison of exact warm, approximate warm, and cold plasma calcula-
tions for the ATF case in Fig. 2(b) (f = 28.4 MHz and k, = 13.0 m™!).



31

ORNL-DWG 87-2049 FED

35.5 l . 0.37
(a) )
EXACT WARM € i -
Te=T; 1500 eV - § 4§
Pabs=3.56 x10°2 w/m? X / a
@ B P, !PR'-. ]
-3.9 ! ! 1 -0.04
38.4 0.92
APPROX. WARM “& —~
\ n
alax-'ikx’fos, -n; _ §
Te=T;=1500 eV 2 e
Pabs = 3.77 x1072 W/m?2 ‘m; _
-4.2 -0.40
39.2 T 0.47
(¢)
n i
COLD PLASMA & -
v/w =1.0 x10™2 s | 1l §
n —
Te= T)=0 eV .o; Q.
Pabs =3.92x10°2 w/m2 ~ i P _
® il il
AN NNl N
-4.3 ' L fe. -0.05
-05 -03 -04 O1 03 05
x (m)

FIG. 10. Comparison of exact warm, approximate warm, and cold plasma calcula-
tions for ATF with f = 27.5 MHz and k, = 13.0 m™!.



32

conversion layers [19]. Damping of the Bernstein wave can be artificially enhanced
in our calculation by adding a small real part to the second-order conductivity [10].
Thus we add —6{eow/%2) to the diagonals of the second-order conductivity tensor
@ within the plasma where § = 10~3. Repeating the calculations of Fig. 10 now
shows a strongly damped Bernstein wave in the complete solution but no better
agreement with the approximate solution. Thus, we conclude that it is not the lack
of damping of the Bernstein wave which leads to the poor approximate result in

this case.
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7. SUMMARY AND CONCLUSIONS

We have shown that the complete sixth-order wave equation can be solved
globally as a two-point boundary value problem in a perpendicularly stratified 1-
D slab plasma. Furthermore, strongly evanescent Bernstein waves in the low-field
regions do not grow exponentially as in shooting methods. Strong variations in the
absorption and in the structure of the wave electric fields occur as the resonance
topology is varied. Inclusion of Vp drifts and the associated anisotropy in the
equilibrium distribution function results in a self-adjoint system with no physical
dissipation far from resonance.

Inclusion of the plasma boundaries leads to reflected waves and associated cavity
modes that are left out of shooting calculations where WKB plane wave solutions
are matched at the boundaries.

An approximate second-order differential equation derived from local dispersion
theory gives a good approximation to the full solution of the sixth-order system in
some cases when the Bernstein waves are not dominant. While global reflection,
transmission, and absorption coeff icients agree quite well with the complete solu-
tion, the detailed profiles for power deposition are somewhat different. Adding
artificial damping in these cases to simulate the experimentally observed strong
damping, which results from variations in k) and v) along E, does not appear to
improve the agreement. Future work should include more realistic modelling of the
radial and poloidal magnetic fields, including variations of k|| and v|| along B.
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APPENDIX

In this appendix we derive the warm plasma conductivity tensor following the
method of Martin and Vaclavik [13]. The collisionless Boltzmann equation or Vlasov
equation, . 3

8f L .~ e /= . =\ Of
E-t-+v-Vf+-r;;(E+va)--51—_;—-0 (A.1)
can be linearized in the presence of a time-dependent perturbation with

J=F(Z0)+ f(Z0,t)
B = By (%) + B (3,t) (A.2)
E = E(,1)

where f, 5, and E are assumed small with Y, 2, and ¢t dependences

f
B } o explt (kyy + kzz — wt)) (A.3)
E .

The unperturbed quantities are assumed to be functions of z only, and Eo is taken

in the 2 direction,
Bo = Bo (Z) 2

(A4)
F = F (z,7)
Thus, Eq. (A.1) gives (using V x E = iwB)
oF oF oF
sz:--i-n (vyéz;—vzavy) =0 (A.S)
and
. of af af
—1 (w — kavz — kyvy) f + e + N (vy 3. ¥ av,,)
e (= . 1 = oF

where Q) = eBo () /m. Now we transform from v,,vy,v. to v1,6,v), where ¢ is

the gjrroangle, so that
Vz = U] COS QP

vy = v sin¢ (A.7)

Vaz == ‘U"
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Then

9 _,90 _,9
a¢“""av,, "”av,

Ezv: + Eyvy = % (E+c—’.¢ + E..e“’)
where E, = E,; +iE, and E_ = E, — iE,. Now Eq. (A.5) can be written
vy cospdF OF

— = =0

0 0z 09¢

To solve this for F', assume the Larmor radius p = v, /1 is small compared with
the gradient scale length and proceed iteratively. This gives

F(z,v1,v),¢) = F() (z,vi,v) + y_agi : v—gg— [hl- 85‘;‘))] (A.8)
Likewise Eq. (A.6) can be written as
—i(w = kove) f + %— [(gf + kyf) "+ (gi uf) c"’"]
- %:i’f E+-vx VxE)] 22 (A9)

To simplify the calculation of 8F/37 on the right-hand side, we take FO) =
F©) (z,v) only; i.e. F(©) is isotropic in #. Note, however, that the total
F = F (z,v,vy) is not isotropic; thus, the term & x V x E; on the right-hand side
must be included. Now for F = F (z,v,v,),

oF OF, OF,

_.___

ov Bv + E;y

and using Eq. (A.8) this is

aF v 3 (G 1 y 8 (F'\1
G !IGI !I bl I il ~
FTi [ T (n)] +[nF 29z (n)J”
where G = dF(% /v and F' = 3F(?)/3z. Substituting into the right-hand side of
(A.9) (which we define as A) gives

oF

As—’—e[E+ LN (VxE‘)] c== = A 4 A 4 4
m w ov
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where the superscript denotes the order with respect to p = v, /01 and

= o (5 Bele™+ ] iy [ - ) + B}

— ’ . . . «
A = — {3(‘2’5 (iE,, [e—z-.¢ _ ez-.¢] +E, [2 — o2t _ e"‘*"])

+%'"—vl— (Esz [e=™¢ - ‘4’]) %E,, ( k;”’)}
02 (3 (5) e

+1E, (3e“i¢ — 3e' — g3 e3i¢)]

(G (- 1)

g (D))

Fl

+ ae [vzk,,E, + %J-'- (' + e™'%) (k E. + zaE”)]}

ox

(A.10)

Now we Fourier expand f and A in the gyroangle ¢

f(z,v1,v,8) = Z fr(z,01,0)) e

n=-—o00
A(:t: V1, 4: Z Apn (:c,v_L,v|| e
n—=-—-00
and the linearized Vlasov equation in (A.9) becomes

o0

) '"¢{-—z (W — kyvg +n0) fo + 2= L (L*e' + L) 1, }

n=—oo

= Y (A© + AW 4 4P gins (A.11)

where L* = 8/0z + k, and L~ = 8/3z — k,. Equating individual coefficients of
e'"? gives

. v -
iBnfut 5 (L fmt + L7 farr) = AL + 40 + 4D (A.12)
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where we have defined the “resonant denominator” A, to be

To solve (A.12) assume that p = v /0 is small and proceed iteratively. To lowest
order in p, neglect the v, terms to obtain

0 = ?—i‘? (A.14)
To first order in p
(1) [A(U (L+f‘°’1 +L- f,‘f_’,_),)] (A.15)
and to second order in p
10 = 2 [A9 - 25 (L + 17r8) )| (A.16)

Noting that v, G/v = 8F(®/dv, and v Gfv = 8F(°)/6v", we write the zero-order
solutions explicitly, '

Q

8=

(0) bt aF(°) .

fai T 2imAy; Ov) (B F1Ey) (A.17)
© _ —e aF0O

o - ion a‘v"

To first order we have

Fl) - _vLe {a (E,q:iE,, aF(°>) i (E,:FiE,, aF<°))
AmA -3 y

2 a4mAgo | 02 At vy Ay dvy
(E: FiEy) oF’
0 av_L

1) ~v,e (8 (E, 8F© E, 9F©@ E, 8
fil = — | — + ky = F =
2mAy, |9z \Ag v, Ao au, N
' 1 F (A.18)

v
(1 __ —tiefd 11 _ JF(©)
0= 4on{6:c ([E’(A y Ay +iB, vy
B, (OF _F'[. k.,
—22—6— (5;:'*'2'”—;[1— ” ])

1 1 1 1 \]18F©®
k E.| ——— B — 4+ — )| =
¥ y([ z(A—l Al)-H y<A—1 +A1)] ovy )}

)
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and to second order,
(2) _ vie d (/1 N 1 \ 8 (E, aF\®
0 4zon aa: A A_l oz Ao sz
1

N 1 k, aF© 1 aF'\E
A_;/J\Ao 3v, 0 v, ) #

_vie _1__ 1 \ 8 (E; 9F©
4iAom Y| \A;, A_;/3z\A, dv,

G k_yaF(o)_laF’E}
Ay A1) \Ao 9v, Nov, /)
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e [vi 8 (LAF\  kwv. .,
ionﬂ{ 4 Oz (ﬂ Ov, e F B (A.19)
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The perturbed current density J is
J, = e/v,fdsi;‘ = %/ vy (' + %) Z fne"td3v (A.21)
n
- e 't i 3 —

Jy=e / vy fd35 = o /vl (e*® - e~*%) ; fne'"?d3% (A.22)
Jy = e/v,fdafi = e/ U‘Z fne'™td3y (A.23)

n

Using d®% = vy dv, dv, d¢, the ¢ integral picks off the n = F1 terms in Eqs (A.21)
and (A.22) and the n = 0 terms in Eq, (A.23). This gives

J, = we/vi (f1 + [-1) dvidy)
Jy = i?l'c/ 0_2,_ (fl - f_l) dtu_dt)” (A.24)
Jg = 2me / v,v_Lfova_dv"

Now write these currents explicitly to second order in p = v, /1 using the solu-
tions in Egs (A.17)-(A.20). Integrating the 8F/dv, terms by parts, we get
J = JO© 4+ J) 4 J() where

2
Jio) - e vy [(_1__ + __1__) E, - (._1_ - _l__) iE,] FOdy, dv,

i—m_ Al A_l Al A-—l
2 1 1 . 1 1
10 =5 o[ (a - 5) e (8 5 2] P Osoat

—2me? [ v,v, FO)
im Ao 80"

J,(O) = Erdv ) dy)



aF®©)  2E, oF'
v, Aofldv,

1 1\ E 1 iE,
1) E: _1 Fm))
[(A—1+A1) o+ ( -1 Al) Ao]

1 1\ E 1 1 \:E
ol )8 (o )
Vi\Aa_, A,/) Ao Ay Ay A

ZtEyk,v,

For brevity we omit the lengthy expressions for J2,
Assuming F©) to be Maxwellian,

' 2 2
0 _ N (YLt
gl |2

where a = /2kT/m, we can write the integrals over vj in Eq. (A.24) in terms of
the functions P, and P, in Eq. (5); after some tedious algebra, we find the warm
plasma current density and conductivity tensor given by Eq. (4). Note that if one
ignores all z-dependences except those in E and the resonant denominator, Aga,
then J{*) and Jsz) from Eq. (A.24) reduce to

-
J(2)=_a__{ me /vidv_l_dv||F(°)([-1—-+—!———i—L OE,

} dv, dv,

= oz | 2imN?2 A_z Al A._l oz
2 2 19(:Ey)
+ [A_z 1 A._l] oz )}
e [ me? 1 2 2 198E
(2) - . O} _— = £ 2 z
T = 5z {2 m/"ld”*d”"F ( A, AT B ALlez

1 3 3 A(iE,)
t [A_, LY N v Ao] 9z )}
which is the result of Chiu and Mau [7] for second harmonic heating. As pointed out
in Ref. [7], the effect of the zero-order drift does not enter in this limit. Thus, the

present result, Eqs (A.18)—(A.20), includes the second harmonic result of Ref. [7]
when the appropriate limit is taken.
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