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ABSTRACT 

The sixth-order wave equation which results from a finite temperature expan-
sion of the Vlasov equation is solved globally in a perpendicularly stratified, one-
dimensional slab plasma. The diamagnetic drift and associated anisotropy are 
included in the unperturbed distribution function to ensure a self-adjoint system. 
All x-dependence in the plasma pressure and magnetic field is retained along with 
the electric field parallel to B. Thus, Landau damping of the ion Bernstein wave 
is included as well. Because the wave equation is solved implicitly as a two-point 
boundary value problem, the evanescent short-wavelength Bernstein waves do not 
grow exponentially as in shooting methods. Solutions to the complete sixth-order 
partial differential equation are compared to those from an approximate second-
order equation based on local dispersion theory. Strong variations occur in the 
absorption and in the structure of the wave fields as resonance topology is varied. 
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1. INTRODUCTION 

The recent success of ion cyclotron resonance heating (ICRH) experiments 
around the world has stimulated interest in reliable theoretical models for calculat-
ing global ICRH wave fields and power deposition profiles in tokamak, mirror, and 
stellarator geometries. There are already a number of full-wave two-dimensional 
(2-D) calculations in which global solutions for the ICRH wave fields are found in 
the cold plasma limit [1-5]. In these models, the ion cyclotron resonance is resolved 
by including an ad hoc collision term in the cold plasma conductivity tensor. While 
the total power absorbed is relatively independent of collisions in these models, 
the details of the predicted power deposition profiles are strongly dependent on 
the particular collision model assumed. To correct this deficiency requires a global 
solution to the warm plasma wave equation [6]. Unfortunately, this turns out to 
be a formidable task in two dimensions because of the prohibitively large number 
of mesh points required to resolve the short wavelengths associated with the ion 
Bernstein wave [6]. 

Some insight into finite temperature effects can be obtained from idealized 
one-dimensional (1-D) slab model calculations [7-11] in which the resolution is 
sufficient to follow the Bernstein waves accurately. Chiu and Mau [6] directly 
expand the Vlasov equation to second order in gyroradius. Because they ignore 
all x-dependence except that in the electric field and in the resonant denominator 
u — k g v z — n U , where n = 2, their analysis applies only near the second harmonic 
resonance. They also point out that in order to treat the fundamental cyclotron 
resonance (n = 1), the diamagnetic drift terms due to gradients in pressure and 
magnetic field, which are left out of their work, must be retained in the equilibrium 
distribution function. The authors in Refs [8-10] likewise leave out these diamag-
netic drifts, but they nevertheless apply their calculations to the fundamental ion 
cyclotron resonance and two ion hybrid resonance cases. In Refs [11, 12] some of 
the drift terms have been included. However, Martin and Vaclavik [13] are the 
first authors to include all x-dependence and all of the diamagnetic drift terms 
and associated anisotropy in the unperturbed distribution function. The resulting 
wave equation is a sixth-order partial differential equation (PDE) that is rigorously 
self-adjoint. 

It is this sixth-order equation which is solved in this paper for the global ion 
cyclotron resonant frequency (ICRF) wave field and power absorption. Because the 
equation is solved implicitly as a two-point boundary value problem, the evanescent 
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short-wavelength Bernstein waves do not grow exponentially as in shooting methods. 
Of more current interest than the complete sixth-order solutions are various approx-
imate models which may be extendable to two dimensions. We examine one such 
approximation [14, 15] in which the detailed structure of the Bernstein wave is ne-
glected while the effect of the mode conversion on the fast wave is retained. The 
wave equation is thus reduced from sixth order to second order and is easily solvable 
in two dimensions [16], We study the regions of validity of this model by comparing 
it to 1-D solutions of the full sixth-order PDE. An alternative approximation is also 
studied in which ad hoc damping [10] is used to absorb the Bernstein waves before 
their wa elength becomes prohibitively small. 
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2. WAVE EQUATION 

We consider a perpendicularly stratified, 1-D slab plasma in which the equilib-
rium quantities are functions of x only and the applied steady-state magnetic field 
B0(x) is in the ^-direction. The wave fields E and B are assumed to be small, with 
harmonic dependences in y, z, and t of the form exp[t(fcyt/ + ksz — u)t)\. Then 
from Maxwell's equations, 

_ =• dB . 
V x E = —— = iwB 

dt -

Ho at 
= Jext + - iueoE 

(1) 

(2) 

where denotes the sum over electron and ion species. Taking the curl of (1) and 
using (2) to eliminate B, we have the vector wave equation 
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where J e x t is the antenna current and Je is the plasma current. Following 
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3 ' ( 0 = - 2 [ i + e * ( f l ] 
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In the limit of large argument, Eq. (6) becomes real, with 
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where ko = w/c. The y, and 2 components of Eq. (8) are: 
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3. ENERGY CONSERVATION AND ABSORBED POWER 

The equation for energy conservation (Poynting's theorem) is found by dotting 
E * into the V x B equation in (2), 

E * • V x — + tweol^l2 - E * • V J a = E * • J e x t (10) 
Mo a 

Now we apply the vector identity 

V • B x E * = E * • V x B - B V x E * 

to the left-hand side of (10) and use (1) to eliminate V x E*. This gives 
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or taking the real part and dividing by (—2.0), we have Poynting's theorem: 
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The first term in (11) is the divergence of Poynting's vector S p , where 

The second term in (11) is 1/2 Re(^E* • c a n be written as the sum of 

the power dissipated P a and the divergence of a kinetic energy flux Q , which is 
the energy flux of the wave carried by particle's thermal motion, 

j R e ^ - J ^ = X > 8 + V.<? (12) 

The total energy flux S is the sum of the Poynting flux Sp and Q , 

S ~ S p + Q 

and conservation of energy in (11) takes the form 
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Written out explicitly, Eq. (15) gives 

^Re ^ t ±Re j E>a [ (a£> + r£>) Ex 

d x V " d x + d x ) \ 

+ e : -ff(°) _ r(2) +
 df>[*V 

° * v T * y +
 d x 

. ( a ( 0 ) . t ( 2 ) \ e + M ) e , A 2 ) d E z , 
^ \ a y y ^ T y y J ^ P y * * * ^ P * v Qx ^ ° y * Qx 

(2 ) d E
v 

v v d x ) 

W 1 * * i xz 

d x 

+ (*£> + r£>) E, 

Ex + 
d x 

dE, 
d x y z d x 

+ 
d x 

(16) 

Using Eq. (16), we have checked the conservation of energy [Eq. (11)] in our numer-
ical calculation. We find that except at the antenna where J«xt the two terms 
on the left-hand side of Eq. (11) are to a good approximation equal and opposite 
in sign. Thus, Poynting's theorem is satisfied locally to a high degree of accuracy 
in our numerical solutions. Nevertheless, a problem arises in the definition of the 
kinetic flux Q. A unique determination of Q requires carrying the calculation to 
second order in the perturbing wave field. For a first-order, linear calculation such 
as this one, the choice of Q is not unique. Thus, there are a number of different 
definitions for Q occurring in the literature [6,11,13]. Here we choose Q to ensure 
consistency with the WKB result in the weak damping limit for a single wave. Thus, 
we take 
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where the subscripts H and A denote the Hermitian and anti-Hermitian parts, 
respectively: 
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It is possible to write Q x anrl P„ in Eqs (17) and (19) explicitly, 
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Note that P a depends only on the dissipative part of the conductivity. Thus, in 
the absence of dissipation, the Z functions become real, and the real and imaginary 
parts of the tensor elements in Eq. (21) are identically zero. 
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Now consider Eqs (17) and (19) in the WKB limit, that is, in an infinite uniform 
plasma with B constant and 
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and we can write (23) as 
J x = 

«-, _ . d o d e ~ ( 2 ) d 7 e 1 
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d k x d x d x 2 

— i d o , 
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This agrees with the weak damping WKB result of Bers (Eqs IIA-16,17 in Ref. [18]) 
when K is small and o h is small (weak damping): 

z i d ° A 

2 d k s . 

P ^ ' O H ' i 

Thus, we have shown that Eq. (17) is consistent with the WKB result in the weak 
damping limit for a single wave. But our solutions do not necessarily consist of only 
a single wave. Instead we have, for example, both fast and Bernstein waves with 
reflections of each present simultaneously. Therefore, Eq. (17) is most likely not 
the complete kinetic flux. 
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4. NUMERICAL RESULTS — COMPLETE 
SIXTH-ORDER P D E 

In this section, we present numerical solutions to the full sixth-order PDE given 
by Eqs (8) and (9). Figure 1(a) shows schematically the perpendicularly stratified 
1-D geometry considered. A plasma slab of width 2ap is located between two 
perfectly conducting metal walls at x = ±®m a x . There is edge plasma in the region 
ap < < |armax|. The dashed line represents a current-carrying antenna located 
in the edge plasma at x = x a n t . Figure 1(b) shows the assumed profiles for plasma 
density n(a:), temperatures Te(x) and T \ { x ) , and applied magnetic field B ( x ) . These 
have been chosen to correspond approximately to values along a chord through the 

ORNL-DWG 8 7 - 2 0 4 1 FED 

2.0 - i 3.0 

2.4 

- 0 . 5 0 

1.8 p 
CD 

1.2 

0.6 

-1 0 

FIG. 1. (a) Perpendicularly stratified 1-D geometry for two-point boundary value 
problem, (b) Assumed profiles for plasma density, temperature, and ap-
plied magnetic field. 
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axis of the Advanced Toroidal Facility (ATF) stellarator starting from the low-field 
side, passing through the elliptic plasma, and ending at the opposite low-field side. 
The profiles are approximately parabolic in x . As with slab model calculations in 
tokamaks, the poloidal magnetic field and variations of k\\ and V|| along B are not 
properly modelled. However, the effect of double minor cyclotron resonance layers 
and double mode conversion layers in torsatron geometry can be studied. Central 
plasma parameters and antenna location for the numerical calculations are chosen 
to be typical of the ATF plasma: 

RT = 2.1 m 

Bo = 2 T 

a p ~ 38 cm; i a n t = 40 cm; x m a x = 50 cm 

/ = — ~ 30 MHz 
u> 

n e 0 ~ 4 x 1013 c m " 3 

Te 0 = 2h = Td = 1500 eV 

kg = 13 m " 1 torc>idal = kMRr ~ 

ky =0 

^ = ^ = 0 . 0 5 
n o 

The finite difference grid consists of 2000-5000 mesh points in the region —xm a x < 
x - ^max-

Figure 2 shows the electric field components EX, EY, and EZ for / = 27 MHz. 
Figure 3 shows total energy flux (SX = SPX + QX), power absorbed by electrons 
( P e ) , minority hydrogen (PH)> and majority deuterium (PD) for / = 27, 28.4, and 
30 MHz. Power is incident from the fast wave generated by thr antenna on the right 
and is partially absorbed and partially reflected at the first pair of resonance layers. 
Some power is mode converted at the hybrid layer to an ion Bernstein wave which 
is propagating in the region between the hybrid resonance layers. This is the short-
wavelength mode evident in EX in Fig. 2. At the second pair of resonances, there is 
more absorption, and the Bernstein wave is reflected from the hybrid layer, allowing 
the possibility of a standing wave between the two mode conversion layers. Strongly 
evanescent Bernstein waves in the low-field regions do not grow exponentially as in 
shooting methods [11]. 
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FIG. 2. Real (solid) and imaginary (dashed) parts of (a) EX, (b) EY, and (c) EZ 

for the case of Fig. 1(a). 
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FIG. 3. Total energy flux and power absorbed by electrons (Pe), minority 
hydrogen (PH), and majority deuterium (PD) for (a) / = 27 MHz, (b) / 
= 28.4 MHz, and (c) / = 30.0 MHz. 
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As the frequency is increased to 28.4 MHz and 30 MHz in Fig. 3, the separation 
between resonance regions decreases and the mode conversion layers are eventually 
annihilated at 30 MHz, leaving only the minority cyclotron resonance. The Bern-
stein wave becomes less evident at 28.4 MHz and disappears entirely at 30 MHz. 
The non-positive-definite values for Ps in Fig. 3(a) are due to the incomplete choice 
for Q x in Eq. (17). 

In Fig. 4, we consider a case analogous to that in Figs 2 and 3, but for a 
tokamak-type magnetic field, 

» B p 

1 + x / R t 

to compare the results with more conventional shooting calculations [11]. We show 
reflection, transmission, mode conversion, and absorption coefficients for a B% 
minority hydrogen case in the Princeton Large Torus (PLT) tokamak with uniform 
density and temperature profiles, with 

Ro = 1.3 m 

Bo = 3 T 

Te = T d = TH = 2000 eV = constant 

Tin = 1.50 x 1012 c m - 3 = constant 

np = 2.85 x 1012 c m - 3 = constant 

k z = 1 to 10 m - 1 

k y = 0 
The frequency is chosen such that the minority cyclotron esonance occurs at x — 0: 

/ = 45.75 MHz \ 2 i c f = f]cH = — at x = 0 ) 
\ m H / 

A single fast-wave mode is incident upon the resonance region (x = 0) from either 
the high ( x < 0) or the low (x > 0) magnetic field side. Since the shooting calcula-
tions do not include reflected waves but match onto WKB plane wave solutions at 
the boundaries, we add a strong artificial absorber at the plasma edge (x < 40 cm) 
to make the comparison in Fig. 4. The magnitude of the absorption is chosen so 
that the reflected waves are reduced by about three orders of magnitude. The solu-
tions are then decomposed into incoming and outgoing fast and Bernstein waves to 
obtain the coefficients shown in Fig. 4. 
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FIG. 4. Comparison to shooting calculations for a tokamak magnetic field for 
both (a) low and (b) high field incidence. Solid curves show reflection, 
transmission, mode conversion, and absorption coefficients in PLT for 
the two-point boundary value calculation; dashed curves show results of 
a shooting code [11]. 
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Absorption is shown as the percentage of the incoming power absorbed by each 
species (H, D, e) for low-field incidence and for high-field incidence when kz is 
varied from 1 to 10 m - 1 . Dashed curves show results of the shooting code [11]. 

In Fig. 5 we illustrate the effect of including the reflected waves and the result-
ing cavity resonances for the PLT case of Fig. 4. In Fig. 5, the artificial absorber 
has been removed and replaced with real plasma boundaries, as shown in Fig. 1(a). 
The edge plasma boundary is at ap = ±40 cm, and the conducting wall is at 
Xmax = ±50 cm. The edge plasma density is 1 x 1012 c m - 3 with T e - T \ — 0 eV. 
The antenna is placed in the edge plasma region and at x = 43 cm for low-field 
incidence and at x = —43 cm for high-field incidence. Note that the variations of 
the reflection, transmission, and conversion coefficients are no longer smooth as in 
Fig. 4 but now show strong peaks and valleys at particular values of k g . These peaks 
and valleys are caused by cavity modes in which the reflected Bernstein waves com-
ing back from the wall convert to fast waves, which either add to or subtract from 
the transmitted fast waves. As the reflected ion Bernstein wave disappears at large 
k g due to Landau damping, this interference effect also disappears. At the peaks, 
the values of the transmission and conversion coefficients (as defined in Fig. 4) can 
be greater than 100%. But there are two additional transmission and conversion 
coefficients shown by the dashed curves in Fig. 5 (rtrans and rconv) which are very 
nearly equal and opposite in sign to the standard definitions. These are defined 
using the reflections of the transmitted and converted waves, respectively. Thus, 
the total of all the coefficients is still 100%, as it must be to conserve energy. A 
comparison of Figs 4 and 5 shows the importance of including plasma boundaries 
if meaningful comparisons with experiment are to be made. 
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FIG. 5. Effect of including reflected waves and the resulting cavity modes on the 
result of Fig. 4. 
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5. APPROXIMATE WAVE EQUATION USING LOCAL 
DISPERSION THEORY 

A local dispersion relation can be found by assuming E ( x ) ~ E e x p ( t / c x x ) in 
the wave equation so that d E / d x - + i k x E . In the absence of a driving current, 
Eq. (8) gives 

+ -M J -E+E-JL\?K) + 6 J 

+ i k . ( 7 " » + i l 2 > ) - E + . E - k l 7 m • E = 0 

A nonzero solution for E in Eq. (28) requires 

det — I H r x a. 7 ( 1 ) -U a. 9 a. 

n n — \ n \ J + I e + 6 + f / + fo I e + J 

t + 6 J + « v ' + 6 J + t (-7«y 

L 

d x 

= 0 (29) 

where n = fc/fco. In the plasma, Eq. (29) is sixth order in k x , and in the vacuum it 
is fourth order. Figure 6(a) shows all six roots for = { k x / k o ) 2 as functions of x 

for the case of Fig. 3(b) (28.4 MHz). Figure 6(b) shows only the root corresponding 
to the fast wave travelling in the —x direction. 

As suggested in Refs [14,15], an approximate second-order wave equation to 
t reat only the fast wave can be constructed by replacing E by E exp(ikxx) in just 
the warm plasma terms in Eq. (8). This leads to 
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FIG. 6. (a) All six roots to the local dispersion relation [Eq. (29)] for the case of 
Fig. 2(b) ( / = 28.4 MHz), (b) Only the root corresponding to the fast 
wave travelling in the - x direction. 
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~ ( 0 ) * - * ( 2 ) d 
e + 6 + f + — 

o x 
c + 6 L) 

+ K I» U + s + i e + 6 + 1 
u 

(2)' 

d x 

+ k l M ) E = Jext 
wto 

(30) 

where k x is taken to be the root of the dispersion relation, Eq. (29), corresponding 
to the fast wave [i.e. Fig. (6b)]. The x, y , and z components of Eq. (30) are 

A2>N 
+ 

t T l y B E y 

ko d x 

i r t y d E a 

k o d x 
+ 

+ 

+ 

i n z d E x , [ d & J + 
k o d x | d x 

+ k x 

+ 

(31) 
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6. NUMERICAL RESULTS — APPROXIMATE 
SECOND-ORDER PDE 

In this section, we present numerical solutions of the approximate PDE given by 
Eqs (30) and (31). By comparing to solutions of the complete sixth-order equation 
in Section 4, we can evaluate the usefulness of the approximate equation in the 
more complicated 2-D geometry. 

In Fig. 7 we compare the approximate second-order solution and the complete 
sixth-order solution for the low-field incidence, tokamak calculation in Fig. 4. Th ^ • 

ORNL-DWG 8 7 - 2 0 4 6 FED 

FIG. 7. Comparison between approximate second-order (dashed) and complete 
sixth-order (solid) global coefficients for low-field incidence in PLT. 
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is reasonable agreement for all coefficients except mode conversion, which is obvi-
ously not included in the second-order equation and accounts for the energy decre-
ment in the approximate result. A similar comparison for high-field incidence was 
not possible since the fast wave root to the dispersion relation was not continuous 
for kz < 9 m - 1 . In this case, the fast wave incident from the high-field side connects 
continuously onto the Bernstein wave branch. 

In Fig. 8 we compare profiles for energy flux and power absorbed at kz = 
10 m - 1 for the low-field incidence case in Fig. 7. We see that although the global 
transmission, reflection, and absorption coefficients in Fig. 7 agree fairly well, the 
detailed shapes of the power absorption profiles in Fig. 8 are not very similar. 
Since reflections have been eliminated from this calculation, the differences seen in 
Fig. 8 cannot be due to the presence of reflected waves. The main deficiency in the 
approximate second-order equation is the inability to distinguish between power 
absorbed and power converted to the Bernstein wave. For example, the strong 
peaking in the power absorbed by minority hydrogen, Ph , in Fig. 8(b) occurs at 
i ~ - 5 cm, which is very nearly the location of the mode conversion surface. 
This peaking in Ph is actually the power that is mode converted in the complete 
sixth-order solution of Fig. 8(a). 

In Fig. 9 we compare the exact warm plasma solution of Fig. 2(b) ( / = 
28.4 MHz) with an approximate second-order calculation and with a cold plasma 
calculation from Eq. (8) with Te = 7\ = 0 and ad hoc collisions [1-5] ( f / w = 10~2) 
to broaden the minority cyclotron resonance. The approximate second-order calcu-
lation is significantly better in this case than the cold plasma calculation with ad 
hoc collisions. The agreement here might be expected, since the Bernstein wave is 
not fully developed due to the proximity of the two mode conversion layers, and 
the neglect of details of the Bernstein wave inherent in Eq. (30) is not expected to 
cause a significant problem. On the other hand, in Fig. 10 ( / = 27.5 MHz) the 
Bernstein wave appears to be fully developed and the approximate second-order 
equation gives a noticeably different result from the complete sixth-order equation, 
but it probably still gives a more accurate result than the cold plasma calculation 
with ad hoc collisions. 

Although the discrepancy in Fig. 10 appears large, it can be argued that our 
—• 

neglect of variations of and V|| along B has led to artificially weak damping 
of the Bernstein wave. In experiments, for example, very strong damping of the 
Bernstein wave is observed outside the immediate vicinity of the resonance and mode 
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Comparison between (a) complete and (b) approximate energy flux and 
power deposition profiles in PLT with kz = 10 m - 1 and low-field inci-
dence. 
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conversion layers [19]. Damping of the Bernstein wave can be artificially enhanced 
in our calculation by adding a small real part to the second-order conductivity [10]. 
Thus we add — 6(eow/&2) to the diagonals of the second-order conductivity tensor 
a within the plasma where 6 = 10 - 3 . Repeating the calculations of Fig. 10 now 
shows a strongly damped Bernstein wave in the complete solution but no better 
agreement with the approximate solution. Thus, we conclude that it is not the lack 
of damping of the Bernstein wave which leads to the poor approximate result in 
this case. 
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7. SUMMARY A N D CONCLUSIONS 

We have shown that the complete sixth-order wave equation can be solved 
globally as a two-point boundary value problem in a perpendicularly stratified 1-
D slab plasma. Furthermore, strongly evanescent Bernstein waves in the low-field 
regions do not grow exponentially as in shooting methods. Strong variations in the 
absorption and in the structure of the wave electric fields occur as the resonance 
topology is varied. Inclusion of Vp drifts and the associated anisotropy in the 
equilibrium distribution function results in a self-adjoint system with no physical 
dissipation far from resonance. 

Inclusion of the plasma boundaries leads to reflected waves and associated cavity 
modes that are left out of shooting calculations where WKB plane wave solutions 
are matched at the boundaries. 

An approximate second-order differential equation derived from local dispersion 
theory gives a good approximation to the full solution of the sixth-order system in 
some cases when the Bernstein waves are not dominant. While global reflection, 
transmission, and absorption coefficients agree quite well with the complete solu-
tion, the detailed profiles for power deposition are somewhat different. Adding 
artificial damping in these cases to simulate the experimentally observed strong 
damping, which results from variations in k\\ and vj| along B, does not appear to 
improve the agreement. Future work should include more realistic modelling of the 
radial and poloidal magnetic fields, including variations of fc|| and V|| along B. 
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APPENDIX 

In this appendix we derive the warm plasma conductivity tensor following the 
method of Martin and Vaclavik [13]. The collisionless Boltzmann equation or Vlasov 
equation, 

| + 0 (A.1) 

can be linearized in the presence of a time-dependent perturbation with 

f = F(z,v) + f(x,v,t) 

B = B0[x) + B{x,t) (A.2) 

E = E{x,t) 

where / , B, and E are assumed small with y,zt and t dependences 

f 1 
B 
E 

• oc exp[t [kyy + kzz - ut)) (A.3) 

The unperturbed quantities are assumed to be functions of x only, and Bo is taken 
in the z direction, 

Bo — Bq {x) z 

F = F{x,v) 

Thus, Eq. (A.l) gives (using V x £ = twB) 

(A.4) 

Vx 

and 

dF ( dF dF\ n .. . 

d f f ^ y* ^^ \ 
< w - k ' v ' - k ' " « > f + d l + " " a 7 y ) 

where f1 = eBo[x) / m . Now we transform from vx,vy,ve to v±,<f>,v\\, where <f> is 
the gyroangle, so that 

Vx = V± COS (f> 

vy = v±s'm<f> (A.7) 
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Then 

d<j> x dvy
 y dvx 

E*VS + Eyvy = ^ (E+e-** + E-e<+) 

where E+ = Es + iEy and £?_ = Ex- iEy. Now Eq. (A.5) can be written 

v±_ cos 6 dF OF 
— - = 0 

0 dx d<j> 

To solve this for F, assume the Larmor radius p = vj./f2 is small compared with 
the gradient scale length and proceed iteratively. This gives 

v dF 
F ( z , v ± , v u , + ) = (x,vuv]{) + - f i - a T + 

V * d 

2fl dx 

r l 9 F W 

n dx 
(A.8) 

Likewise Eq. (A.6) can be written as 

-t (u; - kzvz) / + v± 

I f f x ( V x £ ) ] . f (A.9) 
o<p m I t u> 

To simplify the calculation of dF/dv on the right-hand side, we take i ^ 0 ) = 
(x, v) only; i.e. F(°) is isotropic in v. Note, however, tha t the total 

F = F(x, v,vy) is not isotropic; thus, the term v x V x Ei on the right-hand side 
must be included. Now for F = F (x, v, vy), 

dF dF„ dF „ 
= - r r - v + — — y d v d v dvL 

and using Eq. (A.8) this is 

dF_ 
dv 

G + —G' + f ^ l v + [IF' + n n d x \ n j n n d x \ n / J y 

where G = dF^/dv and F' = dF^/dx. Substituting into the right-hand side of 
(A.9) (which we define as A) gives 

dF 
A 

m 
E + ^ v x ( V x 

dv 
= ,4(0) + A ( 0 + ^(2) 
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where the superscript denotes the order with respect to p = t/j. / f l and 

A ( 0 ) = ^ iVT + + ^ - + 

A ( 1 ) = z £ (ti?x [ e - 2 ^ - e 2 ^] + E y [2 - e2<* - e" 2 ^]) 

+ i E y - 3 e ^ - e " 8 * + e 3 , ' * ) j 

. 1 

+ »: 

(A.10) 

Now we Fourier expand / and A in the gyroangle (f> 

oo 
f ( x , v ± , v \ \ , < f > ) = f n (x,t>j.,t>||)em* 

n=—oo 
oo 

= ( ^ i V J L » V | | ) 

n=—oo 

and the linearized Vlasov equation in (A.9) becomes 

oo 
£ e * * { - . ' (u - k z v z + n i l ) / » + ^ ( L V + I T e " * ) / „ } 

n=—oo 

= f ) ( A i * + A & + A ? ) e " + (A.11) 
n=—oo 

where L + = d / d x + and = d / d x - Equating individual coefficients of 
ein<f> g j v e s 

i & n f n + Y ( L + f n - i + L ~ f n + , ) A ™ + A W + (A.X2) 
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where we have defined the "resonant denominator" A n to be 

A n = - (u> - kzvg -f nQ) = kgVg ~ (oj + nfl) (A.13) 

To solve (A.12) assume that p = v±/U is small and proceed iteratively. To lowest 
order in p, neglect the v± terms to obtain 

W = ^ (A.14) 

To first order in p 

f i l ) = ^ [4" - vf (i+fL°2i + £-/£?,)] (A.i5) 

and to second order in p 

W - ~ K > - ^ ( t + / < ! ? . + £ " / « ) ] (A.16) 

Noting that v±G/v = dF^fdv±_ and v\\Gjv = dF^/dv||, we write the zero-order 
solutions explicitly, 

/ £ ? = o 

(o) _ 
7 ± 1 " 2 t m A ± 1 dv± (A.17) 

(o) = - e d F ^ ^ 
0 t'mAo z 

To first order we have 

AD = f d (Ex^iEy dFW\ (ExTiEy dF™\ 
/±2 4m&±2\dx\ A ± 1 at>jL / "V A±x dvL ) 

{Ex T iEy) dF' ] 
+ n d v ± . / 

fU) _ -v±e ( d (Ez d F ^ \ 
2 m A ± 

I J L ( E j l d F ( 0 ) \ + k d F { 0 ) \ E * d F ' \ 
i \ d a ; \ A o dvz ) y \ A 0 dvz J T (I dvz J 

f°l) = i ( [ * • ( £ + £ ) + " £ ) ] S r ) 

n v± [ u \ j 

(A.18) 
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and to second order, 

(2) _ vje d f / 1 1 \ d (Et 0F<°>\ 
J ° 4 tmA 0 A . J d x \ A 0 dvz ) 

, (± L . 1 
^ VAx a . x ) \ a q dvz n */ 

. { ( I 1 \B (Ea dF«»\ 
tfl \ Aj A-Jdx\A0 dve ) 4iAom 

+ 
VAj A - J v a o du* n a u j *J 

tmAoO 

tfle 1 3 / E x T * E y d F { 0 ) \ 

$ i A ± \ m d x \ A ± 2 d x \ A ± i d v j . J 

± k y / E t T i E y d F W \ E x T % E y d F ' 

A±2 \ A±1 dvj. y ^ nA±2 dvx 

+ A, 

+ 

^ ( h ( AT:+ir) ( at; - i ; ) ] ^ r ) 
I t E y ( d F ' 

a0 n 

vje , f 1 g ( E s ^ x E y d F ^ \ , k f T 1 * - t 
8iA±im A±2&c\ Ail / 

T i E y d F W \ i E y d F ' 

A±2 \ A±1 Sujl J nA±2 
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The perturbed current density J is 

Jx ~ e J vsfd3v = l j v ± (e** + «"*) £ fnein*d3v (A.21) 

Jy = e J vyfd3v = J. J v ± ( e * - e " * ) £ fnein+d3v (A.22) 

Jx ~ t f vzfd?v = e f v z £ /»e<n*dat7 (A.23) 
^ n 

Using d3v = v±_ dv± dvz d<f>% the <j> integral picks off the n = terms in Eqs (A.21) 
and (A.22) and the n = 0 terms in Eq. (A.23). This gives 

Jx = ire j ( / i + f-x) dv±dv\\ 

J y = t i r e J v \ ( f x - f - x ) d v ± d v \ \ (A.24) 

Jz = 2»re J vzv±fodvxdv\\ 

Now write these currents explicitly to second order in p = v ± / C l using the solu-
tions in Eqs (A.17)-(A.20). Integrating the dF/dv± terms by parts, we get 
J = J(O) + j ( i ) + J(2), where 

J ? 9 = s r J - E - ^ n 
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J ( 0 = = ! • ! / > 17 J _ 4- fi + _ ^ S 2m J M U A . j A 0 \Ai A - J A0 
dv±dv„ 

j M = 
—tire' 

2m 

+ ( - — ) 
^ \ A I A _ I / A 0 

k„Es 

A 0 

_ 2EZ d F ' 

d v z A0n d v z } dv±dvz 

2iE„ k 
A0n } dv±dv3 

For brevity we omit the lengthy expressions for H 2 \ 
Assuming F ^ to be Maxwellian, 

n 
2 3 exp -

where a = \/2kT/m, we can write the integrals over V|| in Eq. (A.24) in terms of 
the functions P n and P n in Eq. (S); after some tedious algebra, we find the warm 
plasma current density and conductivity tensor given by Eq. (4). Note tha t if one 
ignores all x-dependences except those in E and the resonant denominator, A^a , 
then 4 2 ) and j J 2 ) from Eq. (A.24) reduce to 

ax\2»mn2 J r 1 1 1 \ U 2 A.j A, A _ J dx 

IA_ 2 A2 Ai A _ i J dx / / 

1 
2 a2 

3 
Aj A0J 

d ( i E y ) 

d x 

which is the result of Chiu and Mau [7] for second harmonic heating. As pointed out 
in Ref. [7], the effect of the zero-order drift does not enter in this limit. Thus, the 
present result, Eqs (A.18)-(A.20), includes the second harmonic result of Ref. [7] 
when the appropriate limit is taken. 
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