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PREFACE 

It i s  c l e a r  t h a t  massive q u a n t i t i e s  o f  s o l a r  energy i s  conserved on 

t h i s  p l a n e t  i n  t h e  forms o f  c e l l u l o s e  and hem ice l l u l ose .  It e q u a l l y  obv ious 

t h a t  fundamental unders tand ing  o f  c e l l u l o s e  s t r u c t u r e  and h y d r o l y s i s  o f  c e l l u -  

l o s e  i s  r e q u i r e d  , to u t i l i z e  and produce u s e f u l  p roduc ts .  Research i n  ou r  

l a b o r a t o r y  r e f l e c t s  t h e  need f o r  unders tand ing  o f  t h e  c e l l u l o s e  h y d r o l y s i s  

processes by  enzymes and chemica ls .  At tempts  have been made t o  use m i c r o b i a l  

enzymes t o  hyd ro l yze  c e l l  u l  ose t o  i t s  c o n s t i t u e n t  sugars (e .  g  . , g lucose)  . 
E f f o r t s  have a l s o  been made t o  s t udy  t h e  fundamental problems r e l a t e d  t o  t h e  

m i c r o b i a l  b i o s y n t h e s i s  o f  c e l l u l a s e  and i t s  r e g u l a t i o n  i n  o r d e r  t o  des ign  

methods t o  overcome t h e  r e p r e s s i o n  o f  c e l l  u l ase  b i o s y n t h e s i  s  t o  i nc rease  

enzyme y i  e l  ds. 

The f i n a l  r e p o r t  con ta i ns  t h e  f o l l o w i n g ' s i g n i f i c a n t  c o n t r i b u t i o n  t o  ou.r 

unders tanding o f  t h e  s t r u c t u r e  o f  c e l l u l o s e ;  t h e  k i n e t i c s  o f  c e l l u l o s e  h y d r o l y s i s  

by enzymes, and t h e  r e g u l a t o r y  c o n t r o l  o f  c e l l u l a s e  b i o s y n t h e s i s .  

Four s i g n i f i c a n t  area o f  research  have been pursued: 

A. . P u r i f i c a t i o n  o f  c e l l u l a s e  components by a  s imple,  conven ien t  p u r i -  

f i c a t i o n  p roced i r e ;  
. . 

B. K i n e t i c s  o f  c e l l u l o s e  h y d r o l y s i s  by  p u r i f i e d  c e l l  u l ase  components. 

C. E l u c i d a t i o n  o f  t h e  mo lecu la r  s t r u c t u r e  o f  c e l l  u lose .  

D. E f f e c t  o f  s o l v e n t s  :and a c i d s  on t h e  s t r u c t u r e  and r e a c t i v i t y  o f  

c e l l u l o s e .  

I n  a d d i t i o n ,  we have proposed a mode o f  c e l l u l a s e  b i o s y n t h e s i s  r e g u l a t i o n  

i n  c e l l u l o l y t i c  microorganisms based on t h e  da ta  we have 'ob ta i ned  as w e l l  as 
. . 

t h e  e x i s t i n g  i n f o r m a t i o n  accumulated by o t h e r  r esea rch  l a b o r a t o r i e s .  A d e s c r i p t i o n  

o f  a  novel  c e l  l u l a i e  enzyme, c e l l o h i n s y l t r a n s f e r a s e ,  i s  p resen ted  i n  Sec t i on  V I I I .  
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ABSTRACT 

There a r e  t h r e e  b a s i c  enzymes [e. g., endoglucanase (Cx) ,  exoglucanase 

(C1 ) and c e l  l o b i a s e ]  compris i :ng t h e  m a j o r i t y  o f  e x t r a c e l l  u l a r  c e l  l u l a s e  

enzymes produced b y  t h e  c e l l u l o l y t i c  m y c e l i a l  f u n g i ,  Tr ichoderma r e e s e i ,  and 

o t h e r  c e l l u l o l y t i c  n i ic roorgan isms.  The.enzymes e x h i b i t e d  d i f f e r e n t  mode o f  

a c t i o n s  i n  r e s p e c t  t o  t h e  h y d r o l y s i s  o f  c e l l u l o s e  and c e l ' l u l o s e  d e r i v e d  

o l i g o s a c c h a r i d e s .  I n  comb ina t ion ,  t h e s e  enzymes compl imented each o t h e r  

t o  h y d r o l y z e  c e l l u l o s e  t o  i t s  b a s i c  c o n s t i t u e n t ,  g lucose .  

The k i n e t i c s  o f  c e l l o b i a s e  were deve loped on t h e  b a s i s  o f  a p p l y i n g  t h e  

pseudo-steady s t a t e  assumpt i  on t o  h y d r o l y z e  c e l l  o b i o s e  t o  g lucose.  The r e s u l t s  

i n d i c a t e d  t h a t  c e l l o b i a s e  was s u b j e c t e d  t o  eng-product  i n h i b i t i o n  b y  g lucose .  

The k i n e t i c  model i n g  o f  exog l  ucanase (C1 ) w i t h  r e s p e c t  t o  c e l  l o d e x t r i ~ n s  was 

s t u d i e d .  B o t h  g lucose  and c e l l o b i o s e  were found t o  be i n h i b i t o r s  o f  t h i s  enzyme 

w i t h  c e l  l o b i o s e  b e i n g  a  s t r o n g e r  i n h i  b i t o r  t h a n  g lucose .  S i m i l a r l y ,  'endo- 

g l  ucanase (Cx) i s  s u b j e c t  t o  end-product  i n h i b i t i o n  b y  g l  ucose. 

C r y s t a l l i n i t y  o f  t h e  c e l l u l o s e  a f f e c t s  t h e  r a t e  o f  h y d r o l y s i s  by  c e l l u -  

l a s e s .  Hence, t h e  changes i n  c r y s t a l l i n i t y  o f  c e l l u l o s e  i n  r e l a t i o n  t o  

chemica l  p r e t r e a t m e n t  and .enzyme h y d r o l y s i s  was compared. 

The s t u d y  o f  c e l l u l a s e  b i o s y n t h e s i s  r e s u l t e d  i n  t h e  c o n c l u s i o n  t h a t  exo- 

and endo-glucanases a r e  co- induced w h i l e  c e l l o b i a s e  i s  s y n t h e s i z e d  independent  

o f  t h e  o t h e r  two enzymes. ' The m u l t i p l c i t y  o f  c e l l u l a s e  enzymes a r e  t h e  end 

i 'esul t s  o f  p o u t - t r a n s l a t i o n a l  m o d i f i c a t i o n  . d u r i n g  and/or  a f t e r  t h e  s e c r e t i o n  
. . 

o f  enzymes i n t o  g rowth  env i ronment .  



I. PURIFICATION OF CEL.LULASE 

A. I n t r o d u c t i o n  

Useful  i n f o rma t i on  has been accumulated f o r  t h e  s tudy  o f  enzyme h y d r o l y s i s  

o f  c e l l u l o s e  from v a r i o u s  microorganism sources.  The d e t a i l e d  s t udy  o f  

c e l l u l a s e  f u n c t i o n  r e q u i r e s  s i g n i ' f i c a n t  q u a n t i t i e s  o f  h i g h l y  p u r i f i e d  enzyme. 

A number o f  methods f o r  c e l l u l a s e  p u r i f i c a t i o n  have been pub1 i shed ,  some 

o f  these  p u r i f i c a t i o r ~  methods have been shown t o  y i e l d  enzymes f r e e  from, 

measurable con tamina t ing  enzymes. , Since many c e l l u l a s e  components a c t  i n  

a  compl imenta ry  f ash ion  toward each o t h e r  i n  h y d r o l y z i n g  c e l l  u l ose  , even . a  

t r a c e  con tamina t ion  o f  o t h e r  enzymes cou ld  have s i g n i f i c a n t  e f f e c t s  on c e r t a i n  

f ea tu res  o f  t h e  s p e c i f i c  enzyme a c t i o n .  Wi thou t  a  w e l l  d e f i n e d  techn ique  

f o r  t h e  p u r i f i c a t i o n  o f  i n d i v i d u a l  enzyme components and w i t h o u t  an adequate 

recovery  o f  enzymes, i t  i s  imposs ib l e  t o  assess t h e  p r e c i s e  f u n c t i o n  and 

t h e  a c t u a l  amount o f  a  g i ven  c e l l u l a s e  enzyme component i n  a  c e l l u l a s e  p re -  

p a r a t i o n .  O f ten ,  t h e  i m p u r i t y  o f  supposedly p u r i f i e d  enzymes causes con- 

f u s i o n  as t o  t h e  p r e c i s e  mode o f  a c t i o n  o f  s p e c i f i c  enzymes, t hus  . terms 

such as an ex01 i ke endocel 1  u lase ,  nove l  t y p e  endocel 1  u lase ,  d i  f f e r e n t  random- 

ness o f  endoce l l  u lase ,  e t c .  ,, a re  f l o u r i s h i n g .  
B. 

T r a d i t i o n a l l y ,  t h e  p u r i f i c a t i o n  techn iques  r e p o r t e d  i n  l i t e r a t u r e  i n c l u d e  
. , 

t h e  use o f  ambe r l i t e ' i on -exchange  r e s i n s ,  h y d r o x y l a p a t i t e  chromatography, 

A v i c e l  and c e l l u l o s e '  d e r i v a t i v e  columns, DEAE-Sephardex and o t h e r  i 'on-exchange 

columns, g e l - f i l t r a t i o n  and e l e c t r o p h o r e s i s ,  o r  a  combinat ion o f  t h e  above 
\ 

: ( f o r  rev iews see 1  , Z 2 ) .  Most o f ' t h e  procedures employed t o  p u r i f y  some s p e c i f i c  

c e l l u l a s e  enzymes make use o f  t h e  comb ina t ion  o f  ion-exchange chromatography 

and e x t e n s i v e  i s o e l e c t r i c  f ocus ing  techniques.  These p u r i f i c a t i o n  procedures 



a r e  r a t h e r  i n v o l v e d  and o n l y  v e r y  s m a l l  amounts o f  enzymes can be emp loyed .  

a t  one t i m e .  The a m b e r l i t e  f r a c t i o n a t i o n  t e c h n i q u e s  a r e  i l l - d e f i n e d ,  and 

c r o s s  c o n t a m i n a t i o n  o f  enzymes i s  a lways p r e s e n t .  T h i s  i s  p r o b a b l y  due 

t o  t h e  l a r g e  q u a n t i t i e s  o f  s t a r t i . n g  m a t e r i a l s  employed cause o v e r - l o a d i n g  

o f  t h e  column w i t h  p r o t e i n s ,  t h u s  l e a d i n g  t o  t h e  i n c o m p 1 e t e . s e p a r a t i o n  o f  

enzymes. O the r  f r a c t i o n a t i o n  methods, such as t h e  use o f  h y d r o x y l a p a t i t e  

o r  A v i c e l  columns, a r e  d i f f i c u l t  t o  rep roduce  and t h e  r e c o v e r y  o f  enzymes 

i s  e x t r e m e l y  l o w  due t o  t h e  u n s p e c i f i c  a d s o r p t i o n  o f  p r o t e i n s  b y  t h e  g e l s .  

S e l b y  and M a i t l a n d  ( . 3 ) ,  and Wood (2). , us i ,ng  a  c o m b i n a t i o n  o f  g e l  f i l t r a t i o n  

and ion-exchange chromatography t e c h n i q u e s ,  a c h i e v e d  t h e  s e p a r a t i o n ,  n o t  

o n l y  o f  h i g h  m o l e c u l a r  w e i g h t  enzymes f r o m  l o w  m o l e c u l a r  w e i g h t  enzymes, 

b u t  a l s o  t h e  s e p a r a t i o n  o f  e n d o c e l l u l a s e  f r o m  e x o c e l l u l a s e .  However, t h e  

amounts o f  enzymes w h i c h  c o u l d  b e  a p p l i e d  were v e r y  l i m i t e d ,  and due t o  

t h e  s e n s i t i v i t y  o f  Sephadex t o  a  change o f  s a l t  and pH c o n d i t i o n s ,  i t  was 

d i f f i c u l t  t o  s e p a r a t e  v a r i o u s  c e l l  u l a s e  enzymes s a t i s f a c t o r i l y .  

The t h r e e  m a j o r  enzymes i n  t h e  " c e l l u l a s e  complex" have been i d e n t i -  

f i e d  as : 

(1  ) endo-8-1 ,4 -g l  ucanase o r  B-1,4-gl ucano g l  ucanohydro lase  (.EC. 3.2.1.4)  

o r  commonly known a s  CMCase o r  C x  c e l l  u l a s e .  

(2) exo-@-1,4-.gl ucanase. o r  f3-1,4-gl ucan c e l l o b i o h y d r o l a s e  (-EC. 3.2.1.91 ) 

o r  commonly known as A v i c e l a s e  o r  C c e l l u l a s e .  1  

(3 )  B - 1  ,4-gl u,cosi dase ' (,EC. 3.2.1'.21) . 
For  conven ience,  t h e  names, endoce l  l u l a s e ,  c e l  l o b i o h y d r o l a s e  and c e l  l o b i a s e  

have o f t e n  been used t o  r e f e r  t o  8-1,4- g1 ucan g l  ucanase', B-1 , 4 - c e l l  o b i o h y d r o l  ase 

and B-1,4-gl ucos idase,  r e s p e c t i v e l y .  I n  some .instance:, t h e  name, , e x o c e l l u l a s e  
. . 



i s  a l so  used. Exocel lu lase  could include B-1 ,4-gl ucose hydrolase (gl  uco- 

hydrolase) and cel lobiohydrolase. However, the  existence of gl ucohydrolase 

in the  ce l lu lase  complex i s  questionable, s ince  the contamination of gluco- 

s idase  could contr ibute  t o  the  hydrolysis of ce l lobiose  t o  glucose. 

The modes of act ion of the  th ree  major Xchoderma ce l lu lase  components 

have been studied extensively .  These enzymes, which a c t  both individual l y  

and together t o  break down ce l lu lose  and ce l lodex t r ins ,  appear t o  have a  

complex interdependence which has, t o  da te ,  been only p a r t i a l l y  quanti f i ed .  

Many d i f fe ren t  c e l l u lo s i c  subs t ra tes  as well as modes of act ion have been 

reported fo r  these  enzymes. While cellobiohydrolase produces cel lobiose  

from ce l lu lose  through an end-wise cleavage of ce l lu lose  chains, endoglucanase 

appears t o  ac t  randomly t o  hydrolyze ce l lu lose .  Cellobiase hydrolyzes ce l lo -  

biose and perhaps other  ce l lodextr ins  as well t o  give glucose. The pic ture  

i s  somewhat complicated by the  inhibi t ion of cellobiohydrolase by the  produce 

cellobiose.  While ce l lob iase .  re1 ieves t h i s  inh ib i t ion  by. hydrolysis of 

cel lobiose t o  glucose, cel lobiase i t s e l f  i s  inhibi ted  by the  product glucose. 

B. Sequential Pur i f ica t ion '  of Cell ulases 

The methods of puri fy ing enzymes a re  always tedious and the  recovery 

of enzymes i s  very .low. ' We .:have developed special  procedures t o  purify , . . 

'various ce l l u l a se  componerits~' from young . . cu l tu re  broth of - T .  r e e se i .  The '  

procedures used a re  simple, well-defined, and insure a  maximum recovery 

of three  major enzyme components. 

DEAE-Sepharose and DEAE-cel 1 ul ose were used 'exclusively t o  separate 

ce l l  ulase components by applying 1  i near sa i  t gradients t o  e l u t e  enzymes 

from an ion-exchange column; The sequential e lu t ion of ce l lu lases  made 



i t  p o s s i b l e  t o  ) separa te  c e l l u l a s e s  c l e a n l y  and comp1,etely. The p rocedures  

used t o  p u r i f y  c e l l u l a s e s  b y  Gong e t  a l .  i s  o u t l i n e d  i n  F i g .  1-1.  Crude 

enzyme was ' f i r s t  c o n c e n t r a t e d  b y  l y o p h i l  i z a t i o n  t o  reduce  t h e  volume o f  

t h e  c u l t u r e  f i l t r a t e .  T h i s  was f o l l o w e d  b y  a 75"/,aturation o f  ammorliur~l 

s u l f a t e  t o  p r e c i p i t a t e  p r o t e i n s ,  and t h e  s a l t s  were  removed b y  c o a r s e  Sephadex 

G-25 g e l - f i l t r a t i o n .  The removal  o f  s a l t s  i s  e s s e n t i a l  s i n c e  t h e  t e c h n i q u e  

employed i s  t h e  chromatography o f  t h e  enzymes, e n d o - c e l l u l a s e  and c e l l o b i a s e ,  

under  v e r y  l o w  s a l t  c o n d i t i o n s .  

The enzyme c e l  l o b i a s e  and low-mol e c u l  a r - w e i  g h t  (LMW) endog l  ucanase 

were f i r s t  e l u t e d  f r o m  DEAE-Sepharose column b y  w a t e r .  These f r a c t i o n s  

were t h e n  s u b j e c t e d  t o  DEAE-ce l lu lose column chromatography.  The l i n e a r  

s a l t  e l u t i o n s  r e s u l t e d  i n  t h e  s e p a r a t i o n  o f  c e l l o b i a s e  and LMW endoglucanase.  

The LMW endoglueanase o b t a i n e d  f r o m  DEAE-ce l lu lose chromatography i s  a l m o s t  

pure,  w i t h  o n l y  a t r a c e  o f  con taminan ts  (.Figure 1 -2 ) .  C e l l o b i a s e  can be 

p u r i  f i e d  f u r t h e r  b y  s u b j e c t i n g  i t  a g a i n  t o  DEAE-cel l  u l o s e  chromatography,  

w i t h  enzyme b e i n g  e l u t e d  o u t  o f  t h e  column b y  s a l t  e l u t i o n  a t  l o w  concen- 

t r a t i o n .  

~ i ~ h - m o l  e c u l a r - w e i  g h t  (HMW) endog l  ucanase and c e l l  o b i o h y d r o l a s e  a r e  

r e t a i n e d  on t h e  DEAE-Sepharose a f t e r  t h e  c e l l o b i a s e  and LMW endoglucanase 
. . 

have been e l  u t e d  w i t h  water:. The f r a c t i o n a t i o n  o f  c e l  l o b i o h y d r o l  ase and 

HMW endoglucanase i s  accompl ished b y  s e q u e n t i a l  l i n e a r  s a l t  g r a d i e n t  e l u t i o n  

u s i n g  s n d i  um phosphate f o r  th'e HMW endogl  ucanase ( F i g u r e  1-3)  and sodium 

~ h l  o r i d e  f o r  c e l l  obioh.ydro1ase ( F i g u r e  1-51. 

A t o t a l  o f  f o u r  endoglucanases was o b t a i n e d .  Three f r a c t i o n s  o f  endo- 

g lucanase a c t i v i t y  e l u t e d  between 0-25 mM.sodium phospha-te and one f r a c t i o n  

between 25-50 mM phosphate ( F i g u r e  1-3) .  The f i r s t  enzyme peak has t h e  



m a j o r  endoglucanase a c t i v i t y  and i s  homogeneous as was i n d i c a t e d  f rom SDS- 

g e l  e l e c t r o p h o r e s i s  (see F i g u r e  I - 8 d ) .  The o t h e r  t h r e e  peaks h a v i n g  s i g n i f i -  

c a n t ,  b u t  l ower ,  endoglucanase a c t i v i t y  showed m o l e c u l a r  we igh ts  t h a t  were 

s i m i l a r  t o  t h a t  o f  t h e  f i r s t  peak, as i n d i c a t e d  by chromatography o f  a l l  

f ou r  f r a c t i o n s  on Sephadex 6-75 ( .Figure 1-4) .  The m o l e c u l a r  we igh ts  o b t a i n e d  

f rom t h e  6-75 runs  were a l l  about  52,000. On t h e  b a s i s  o f  these  da ta ,  we. 

concluded t h a t  - T. r e e s e i  possesses o n l y  one m a j o r  endoglucanase (Peak A i n  

F i g u r e  1 -3  and F i g u r e  I - 4 ) ,  w h i l e  t h e  o t h e r  endogl  ucanases (peaks B y  C, D) 

a r e  p o s t - t r a n s l a t i o n a l  m o d i f i c a t i o n  p roduc ts .  

A f t e r  t h e  endoglucanase a c t i v i t y  had been washed form t h e  column, t h e  

c e l l o b i o h y d r o l a s e  f r a c t i o n  was subsequen t l y  recovered.  I n  t h i s  case however, 

sodium c h l o r i d e ,  r a t h e r  than  sodium phosphate, was used t o  p e r f o r m  t h e  l i n e a r  

s a l t  g r a d i e n t  (0-200 mM NaC1). Only  one c e l  l o b i o h y d r o l a s e  a c t i v i t y  peak 

was o b t a i n e d  (see F i g u r e  1-51. Even h i g h e r  s a l t  c o n c e n t r a t i o n s  (above 200 

mM) f a i l e d  t o  wash any o t h e r  enzyme a c t i v i t y  f rom t h e  column. Thus i t  i s  

c l e a r  t h a t  o n l y  one enzyme remains a f t e r  t h e  endoglucanase f r a c t i o n a t i o n  

s tep ,  t h i s  s i n g 1  e  .enzyme b e i n g  c e l  l o b i o h y d r o l a s e .  . . The homogeneity o f  t h i s  
. . 

enzyme i s  a l s o  v e r i f i e d  by.  t h e  SDS-gel p i c t u r e  shown i n  F i g u r e  I - 8 ( g ) .  The 

homog'eneity o f  t h e  enzyme i s  a  i s o  v e r i f l e d  by g e l  f i l t r a t i o n  on Sepharlex 
. . 
. . 

6-100 ( F i g u r e  1-6)  and a1 s o V j n d i c a t e d  b y  SDS-gel e ' l e c t r o p h o r e s i s .  

Gel f i  1  t r a t i o n  . o f  c rude .eel 1 u l a s e  on Sephadex 6-75 gave one c e l  l o b i a s e  ,. 

a  m a j o r  HMW endoglucanase, a  LMW endoglucanase, and one c e l l o b i o h y d r o l a s e  

( F i r  - 7 )  ~ h 6  p l i r i f i e d  enzyme and the,  c rude  enzyme p r o t e i n  was ana lyzed  

by SDS-gel e l e c t r o p h o r e s i s  and r e s u l t e d  i n  t h e  g e l s  shown i n  F i g u r e  1-9. 

The p r o d u c t  s p e c i f i c i t y  o f  p u r i f i e d  c e l l o b i o h y d r o l a s e  and endogl uca- 
. . 

nase a f t e r  i n c u b a t i n g  enzymes w i t h  A v i c e l  was ana lyzed  b y  l i q u i d  chromato- 

graphy. The chrornatograms:are F i g u r e  I - 9 . a n d  1-10. 



For t h e  p u r i f i c a t i o n  o f  l a r g e  q u a n t i t i e s  o f  t h e  c e l  l o b i o h y d r o l  ase, 

a  one-step pu r i . f i ca t i on  techn ique  can be e a s i l y  app l i ed .  The crude c e l l u -  

l a s e  p r e p a r a t i o n  i s  a p p l i e d  t o  a  DEAE-Septiarose column and a l l  t h e  endo- 

c e l l u l a s e  and c e l l o b i a s e  enzyme a r e  removed from t h e  column by washing t h e  . 

column w i  t 'h 0.07 M sodium phosphate.  el lob io 'hydro lase  enzyme then  can 

be e l u t e d  o u t  o f  column by a  p roper  c o n c e n t r a t i o n  o f  a  l i n e a r  s a l t  grad ie 'n t .  

Wi th  t h i s  p u r i f i c a t i o n  techn ique  c e l l u l a s e  p r o t e i n s  can be recovered  w i t h o u t  

apprec i .ab le  1 o s s . o f  enzymes ,s ince  t h e  man ipu la t i ons  o f  p r o t e i n s  a r e  m in ima l .  

More than  a  few hundred m i  11 i grams o f  p h y s i c a l  l y  pure  c e l  l o b i o h y d r o l  ase 

enzymes can be ob ta i ned  by u s i n g  as l i t t l e  as 30 m l  o f  DEAE-Sepharose as 

an ion-exchange, r e s i n .  

Wi th  t h i s  sequen t i a l  p u r i f i c a t i o n  method, i t  i s  p o s s i b l e  t o  measure'  

t h e  amounts o f  va r ious .  c e l l u l a s e  components q u a n t i t a t i v e l y .  Th i s  i s  an 

impo r tan t  achievement which o t h e r  p u r i f i c a t i o n  methods have n o t  been a b l e  

t o  a t t end .  It i s  n o t  known whether t h i s  p u ~ i f i c a t i o n  method can be a p p l i e d  

t o  c e l l u l a s e  enzymes f rom organisms o t h e r  than  - T. reesei . .  However, we have 

used t h i s  method t o  p u r i f y  c e l l u l a s e s  f rom Thermoactinomyces w i t h  e q u a l l y  

s a t i s f a c t o r y  r e s u l t s  (unpub l i shed  o b s e r v a t i o n ) .  
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F i g .  1-5 

F i g .  1-6 

F i g .  1-7. 

F ig .  1-8 

Summary o f  f r a c t i o n a t i o n  and p u r i f i c a t i o n  scheme f o r  c e l  l u l  ases. 

Low mo lecu la r  we igh t  (LMW) endogl ucanase from Sephadex G-75 
column chromatography. 

( -  p r o t e i n  ( r~~easured  a t  AqsO ) 

( x - )  r educ ing  sugar formed f rom CMC 

DEAE Sepharose column chromatography o f  h t j h  mo lecu la r  we igh t  
(HMW) endogl ucanase 

(A)  Peak hav ing  major  endoglucanase a c t i v i t y  
( 0  (C) ,  (D) Peaks hav ing  l owe r  amount o f  endoglucanase 

. . a c t i v i t y . .  

sephadex 6-75 column chromatography o f  HMW endogl ucanase (A ) ,  
( B ) ,  (C) ,  and ( D )  f r a c t i o n s  shown i n  F i g .  1-3. 

( - 0 )  R e l a t i v e  P r o t e i n  Concen t ra t ion  
( X - )  R e l a t i v e  a c t i v i t y  w i t h  r espec t  o f  CMC 

DEAE Sepharose column chromatography o f  c e l l o b i o h y d r o l a s e .  

( - 0  ) Re1 a t i  ve P r o t e i n  Concen t ra t ion  
( - 8 -  R e l a t i v e  a c t i v i t y  w i t h  r espec t  t o  A v i c e l  

Sephades 6-100 ge l  f i l t r a t i o n  o f  c e l  l ob i ohyd ro l ase .  

( -  0  ) p r o t e i n  (A280nm 1 
( -  a c t i v i t y  w i t h  r espec t  t o  a v i c e l .  

Sephadex G-75 column chromato.graphy o f  c rude c e l l  u lases .  

- 0 -  ) p r o t e i n  (Apsonm) 

( X -  ) a c t i v i t y  w i t h  r espec t  t o  CMC (endocjl ucanase) 
' ( - o - )  ' a c t i v i t y  w i t h  r espec t  t o  A v i c e l  ( c e l  l o b i o h y d r o l a s e )  

I n s e t ,  t o p  r i g h t :  
. , ( - 0 )  c e l l o b i a s e  a c t i v i t y  

SDS-gel e l ~ ~ t ~ ~ ~ h o r e s i s  o f  p"ri f i e d  c e l l  u lases  f rom - T. v i r i d e  . 
grown i n  A v i c e l  and l a c t o s e .  

( a )  crude. c e l  l u l  ases ( k v l c e l  as '  yr.uwLh medium) 
( b )  crude c e l  l u l a s e s  (Lac tose  as growth medium) 

. ( c )  p u r i f i e d  LMW endoglucanase ( A v i c e l )  
( d )  p u r i  f i  ed HMW endogl ucanase, ( A v i c e l  ) . 
( e )  p u r i f i e d  HMW endogl ucanase (Lac tose)  

. ( f )  mix . ture  o f  ( d )  and . (e)  , 

( g )  . p u r i f i e d  .eel l o b i o h y d r o l a s c  ( A v i c e l  ) 
( h )  p u r i  f i e d  c e l  l o b i o h y d r o l a s e  (Lac tose)  
( i )  m i x t u r e  o f  ( g )  and (h.) 
. ( j )  p u r i f i e d  c ~ l l o h i a s e  



F i g .  1-9 L i q u i d  chromatogram o f  h y d r o l y s a t e  from a c t i o n  o f  c e l  l o b i o h y d r o l a s e  
on A v i c e l .  

F i g .  1-10 L i q u i d  chromatogram o f  h y d r o l y s a t e  f r o m  a c t i o n  o f  endoglucanase 
on A v i  c e l  . 
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11. HYDROLYSIS OF CELLULOSE BY PURIFIED CELLllLASE COMPONENTS 

A. I n t r o d u c t i o n  

The p r ima ry  f u n c t i o n s  o f  t h e  three'enzymes a r e  descr ibed  a t  f o l l o w s :  

1  ) endogl ucanase (Cx)-randoni s c i s s i o n  o f  c e l l u l o s e  cha ins  y i e l d i n g  

g1 ucose ,, c e l l  o b i  ose,., and c e l l  o t r i  os,e; . . 
. . 

2 )  exogl  ucanase (C1 )-end-wise a t t a c k  on t h e  non-reducing end o f  c e l l  u l ose  

w i t h  c e l l o b i o s e  a s , t h e  p r ima ry  p roduc t ;  and 

3 )  B-gl  ucosidasc ( c e l  1ob iase ) -hyd ro l ys i s  o f  c e l  l o b i o s e  t o  g lucose w i t h  

h i g h  a c t i v i t y .  

A l l  t h r e e  components hydro lyze  s o l u b l e  c e l l o d e x t r i n s  as w e l l  as c e l l u l o s e .  

Both endoglucanase and c e l l o b i a s e  hydro lyze  c e l l o b i o s e  t o  g l ucose . '  However, , 

c e l l o b i a s e  has a  much h i g h e r  a c t i v i t y  w i t h  r espec t  t o  c e l l o b i o s e  than does 

endoglucanase. Ce l l ob iohyd ro lase  a l s o  hydro lyzes  s o l u b l e  c e l l o t r i o s e  and 

c e l l o t e t r a o s e  t o  g i v e  c e l l o b i o s e  and g lucose,  o r  c e l l o b i o s e ,  r e s p e c t i v e l y ,  as 

products .  The s o l u b l e  products ,  c e l l o b i o s e  and glucose, have been r e p o r t e d  t o  
. .  . 

be inh' lbi  t o r s  of the '  c e l l  u l ase  complex and o f  t h e  i n d i  v i d u a l  enzyme components 

endogl ucanase, c e l l  obiohydr61ise, and 6 -g l  ucosidase. ~ u r t h e r m o r e ,  B-gl  ucosidase 

i s  a l s o  i n h i b i t e d  by i t s  subs t ra te ,  c e l l o b i o s e .  Thus, t h e  k i n e t i c s  .o f  c e l l u l a s e  

enzymes can be complex s i n c e  bo th  i n h i b i t i o n  and a c t i v i t y  w i t h  r espec t  t o  m u l t i p l e  

subs t ra tes  must be considered. 



There a r e  severa l  ways i n  which c e l . l u l a s e  k i n e t i c s  can be s tud ies .  A  

c e l l  - f ree  c e l l  u l ase  enzyme p r e p a r a t i o n  can be combined w i t h  c e l l  u l o s e  and t h e  

disappearance o f  s u b s t r a t e  and/or appearance o f  sugars can be measured. 

A l t e r n a t i v e l y ,  t he  endoglucanase, exoglucanase and 8-g lucos idase components 

o f  t h e  c e l l u l a s e  system can be separated and p u r i f i e d  and t h e i r  i n d i v i d u a l  

a c t i v i t i e s  q u a n t i t a t e d  w i t h  r espec t  t o  de f ined  subs t ra tes .  Th i s  .approach i s  

perhaps more d e f i n i t i v e  i n  o b t a i n i n g  a n . i d e a  o f  t h e  mode o f  a c t i o n  and mechanisms 

o f  c e l l  u l  ase enzymes. 

B. C e l l  ob i  ase ( 6 - g l  ucos i  dase) 
. . 

Ce l l ob iase  i s  an enzyme which hydro lyzes  t h e  B -g lucos id i c  1  inkage o f  a  

c e l l o b i o s e  molecule t o  g i v e  two molecules o f  8-D-glucose. T h i s  enzyme, a l s o  

named 6-g lucos idase by v i r t u e  o f  i t s  a c t i o n  on t h e  8 - g l u c o s i d i c  bond, i s  o f  

p r a c t i c a l  impor tance as a  component of  t h e  c e l l u l a s e  system o f  enzymes, a  

system which ca ta l yzes  t h e  sacchar i  f i c a t i o n  o f  c e l l  u lose .  

Due t o  t h e  smal l  amounts o f  c e l l o b i a s e  produced by - T. reese i  t h e  commercial 

eel l u l a s e  enzyme (Enzyme Development Corp., New York, N.Y. L o t ,  No. WR 1432) 

was used t o  o b t a i n  pure c e l l o b i a s e .  

Three d i s t i n c t  . ce l  l o b i a s e  components were p u r i f i e d  f rom a  commercial 

T r i  choderma v i  r i  de c e l l  ul a,s,b p r e p a r a t i o n  by repeated chromatography on DEAE 

c e l l u l o s e  e l u t i n g  by . . a  s a l t  g r a d i e n t  accord ing  t o  t h e  procedures descr ibed  i n  

Sec'ion I. The p u r i f i e d  c e l l o b i a s e  p repa ra t i ons  were eva lua ted  f o r  phys i ca l  

p r o p e r t i e s ,  k i n e t i c s ,  and mechanism. Resu l t s  i nc l ude :  1  ) development o f  one 

s t e p  enzyme p u r i f i c a t i o n  procedure u s i n g  DEAE-cel l u l o s e :  2 )  i s o l a t i o n  o f  t h r e e  

chromatograph ica l l y  d i s t i n c t ,  y e t  k i n e t i c a l l y  s i m i l a r  , c e l  l o b i a s e  f r a c t i o n s  

o f  mo lecu la r  w e i g h t  o f  1. 76,000: 3)  det .erminat ion o f  k i n e t i c s  which shows 

t h a t  c e l  l o b i a s e  hydro lyzes  c e l l  ob iose by noncompet i t i ve  mechani sm and t h a t  t h e  

product ,  g lucose i n h i b i t s  :the cnyzme, and 4 )  deve'lopment o f  an equa t i u r~ ,  'based on 

t h e  mechanism of c e l l o b i a s e . a c t i o n ,  which a c c u r a t e l y  p r e d i c t s  t h e  t ime  course 



o f  c e l l o b i o s e  h y d r o l y s i s  over  an e i g h t f o l d  range o f  s u b s t r a t e  concen t ra t i on  

and convers ions o f  up t o  90%. Based on t h e  da ta  presented i n  t h e  paper, i t  

i s  shown t h a t  p roduc t  i n h i b i t i o n  of  c e l l o b i a s e  s i g n i f i c a n t l y  r e t a r d s  t h e r a t e  

o f  c e l l o b i o s e  h y d r o l y s i s .  

1. K i n e t i c s  

. I n i t i a l  r a t e s  o f  c e l l o b i o s e  h y d r o l y s i s  were measured a t  s u b s t r a t e  concen t ra t i ons  

rang ing  f rom 2  t o  20 mM f o r  a l l  p u r i f i e d  c e l l o b i a s e  f r a c t i o n s .  To check f o r  

p roduc t  i n h i b i t i o n  i n i t i a l . ' r a t e  s t u d i e s  were performed i n  t h e  presence o f  smal l  
. . 

q u a n t i t i e s  ( 5  and 10 mM) cjlucose. 

Peak 1  c e l l o b i a s e  e x h i b i t e d  what appeared t o  be s u b s t r a t e  i n h i b i t i o n  a t  

h i g h e r  (20 mM) c e l l o b i o s e  concen t ra t i on ,  w h i l e  peaks 2  and 3  enzyme showed no 

such e f f e c t  (see F igs.  1 1 - l ( a ) ,  11-2(a) ,  and 11-3(a) ,  "OmM g lucose"  l i n e s ) .  The 

apparent  s u b s t r a t e  i n h i b i t i o n  e f f e c t  f o r  peak 1  i s  anomalous r e l a t i v e  t o  t he  

r e s u l t  ob ta i ned  w i t h  peaks 2  and 3  enzyme and p o s s i b l y  r e f l e c t s  t h e  p r e v i o u s l y  

ment ioned minor  con tamina t ion  o f  peak 1  enzyme. 

When g lucose was added and i n i t i a l  r a t e  s t u d i e s  were repeated f o r  peaks 2  

and 3  enzyme, p a t t e r s  o f  s t r a i g h t  1  i nes  i n t e r s e c t i n g  behind t h e  y a x i s  and above, 

t h e  x a x i s  r e s u l t e d  (F igs .  11-3(a) and 11-2(a)) .  Owing t o  t h e  mino'r con tamina t ion  

o f  peak 1 enzyme, an i n h i b i t i o n  s tudy  f o r  t h i s  f r a c t i g n  w a s n o t  performed. 

Product  I n h i b i t i o n  

The i n t e r s e c t i n g  p a t t e r n s  ob ta ined  f rom t h e  i n i t i a l  r a t e  da ta  i n d i c a t e d  

t h a t  c e l  l o b i a s e  i s  noncompeti t i v e l y  i n h i b i , t e d  by t h e  p roduc t  glucose. 



The observed noncompet i t i ve  p roduc t  i n h i b i t i o n  suggests . t h a t  t h e  r e a c t i o n  

sequence f o r  t h i s  enzyme m igh t  be of t h e  type :  

where E represen ts  f r e e  enzyme, GG represen ts  c e l  l o b i o s e '  ( t h e  s u b s t r a t e ) ,  G 

represen ts  g lucose ( t h e  i n h i b i t o r  and a l s o  t h e  p roduc t ) ,  and E*, E*G, and EG 

rep resen t  t he  enzyme-substrate, enzyme-subs t ra te - inh ib i to r ,  and enzyme- i nh ib i t o r  

complexes, r e s p e c t i v e l y .  

W r i t i n g  o u t  t h e  d i f f e r e n t i a l  equa t ions  f o r  E*, E*G, and EG and a p p l y i n g  

t h e  pseudo-steady-state assuli ipt ion r e s u l t s  i n  t h e  equat ions:  

= 0 = k6(E*G) - k5(E*) (G) - -  d t  

= 0 -  k (EG) - k7  (E)(G) - d t  8 .. ( 6 )  

Equat ions ( 4 ) - ( 6 )  'combined t oge the r  w i t h  eq'. ( 7 ) ,  an equat ion  r e p r e s e n t i n g  

conse rva t i on  o f  enzyme: 

E = E + E* + E*G + EG t o t  ( 7 )  

r e s u l t  i n  an express ion  f o r  E*: 



The r a t e  o f  appearance o f  t h e  p roduc t  g lucose i s  g i ven  by: 

S u b s t i t u t i o n  o f  eq. ( 8 )  i n t o  eq. ( 9 )  g i ves :  

where t h e  cons tan ts  niay be r e d e f i n e d  as: 

I n  eqs. ( 11 ) - (14 ) ,  K i s  t h e  M i c h a e l i s  cons tan t ;  Ki ,l and' Ki a r e  d i s s o c i a t i o n  

cons tan ts  f o r ' t h e  E*G and EG complexes, r e s p e c t i v e l y ;  and V i s  t h e  r e a c t i o n  

v e l o c i t y  a t  s a t u r a t i n g  s u b s t r a t e  concen t ra t i on .  Equat ion  (10 ) ;  expressed i n  

A t  zero i n h i b i t o r  ( i  .e., g lucose, G=0), eq. (15)  reduces t o :  

which i s  t h e  s tandard for111 o f  t h e  Michael is-Flenten equat ion .  The i n v e r t e d  forni  

o f  eq. (15) :  



p r e d i c t s  t h a t  a  Lineweaver-Burk p l o t  o f  t h e  da ta  should be l i n e a r .  Replots  

o f  t h e  s lope  

and i n t e r c e p t  

terms i n  eq. (17) as a  f u n c t i o n  o f  (G)  shou ld  a l s o  be l i n e a r  i f  t h e  proposed 

r e a c t i o n  sequence g i ven  i n  eqs. ( 1 ) - ( 3 )  i s  v a l i d .  By these c r i t e r i a ,  then, 

F i gu res  6-8 i n d i c a t e  t h a t ' t h e  mechanism does f i t  t h e  data.  

S ince  t h e  p l o t s  and r e p l o t s  a r e  l i n e a r ,  va lues o f  t h e  k i n e t i c  constants ,  

K y  Ki ,l ,;and K  can be determined d i r e c t l y  ' from them. The x i n t e r c e p t  o f  t h e  
i ,2 

L ineveaver-Burk p l o t  (F igs .  11-3(a) ,  11-2(a) ,  and 11-1 ( a )  g i ves  - km and t h e  y 

i n t e r c e p t ,  Etot / V .  The x i n t e r c e p t  of  t h e  r e p l o t s  (F igs .  1 1 - l ( b ) ,  2 ( b ) ,  and 3 ( b ) )  

g i v e  - Ki yl and - Ki ,L, r e s p e c t i v e l y .  The k i n e t i c  cons tan ts  may a l s o  be computed 

d i r e c t l y  from a  l i n e a r  leas t -squares  f i t  o f  t h e  data.  The k i n e t i c  cons tan ts  

i n  Table I 1  were ob ta i ned  by a  l i n e a r  leas t -squares  c a l c u l a t a t i o n .  The l i n e s  

shown i n  F igures  6-8 a r e  " b e s t - f i t "  l i n e s  t o  t h e  da ta  by l i n e a r  l e a s t  squares. 

Note t h a t  t h e  r e a c t i o n  v e l o c i t i e s  a r e  shown i n  terms o f  s p e c i f i c  a c t i v i t i e s  

i n  bo th  t h e  t a b l e  and t h e  p l o t s  t o  f a c i l i t a t e  comparison o f  a c t i v i t i e s  o f  t h e  

t h r e e  f r a c t i o n s .  Th i s  i s  e q u i v a l e n t  t o  m u l t i p l y i n g  eq. (17)  through by t h e  

cons tan t  Etot.  

The VIEtot va lues i n    able 11-1, show t h e  s p e c i f i c  a c t i v i t y  o f  t h e  enzyme 

with r espec t  t o  c e l l o b i o s e  t o  be q u i t e  h igh .  Not s u r p r i s i n g l y ,  f lagni tudes o f  

these s p e c i f i c  a c t i v i t i e s  a r e  n o t  d i r e c t l y  comparable t o  t h e  s p e c i f i c  a c t i v i t i e s  

ob ta i ned  w i t h  t h e  a r t i f i c i a l  s u b s t r a t e  p -n i  t rophenyl -8-D-g l  ucos ide\ .  

The t h r e e  c e l l o b i a s e  f r a c t i o n s  have s i m i l a r  a f f i n i t i e s  f o r  c e l  l o b i o s e  as 

shown by t h e  a lmost  e q u i v a l e n t  va lues of  t h e i r  re 'spect i  ve ~ i c h a e l  i s  cons tan ts .  



TABLE 11-1 

SUMMARY OF KINETIC CONSTANTS FOR. PEAKS 1, 2 ,  and 3 

CELLOBIASE FRACTION 

C e l l  o b i a s e  enzyme f r a c t i o n  

K i n e t i c  c o n s t a n t  peak 1 Peak 2 Peak 3 

- V pmol g lucose  
min-mg p r o t e i n  



The k i n e t i c  s i m i l a r i t y  o f  t h e  c e l l o b i a s e  f r a c t i o n s  i s  f u r t h e r  suppor ted by t h e  

s i m i l a r  va lues o f  t h e  i n h i b i t i o n  cons tan ts  o f  peaks 2  and 3 c e l l o b i a s e .  The 

va lues o f  these i n h i  b i t i o n  cons tan ts  i n d i c a t e  t h a t  t he  f r e e  enzyme has about 

t h e  saliie a f f i n i t y  f o r  s u b s t r a t e  as.  i t  does f o r  i n h i b i t o r  ( t h e  p roduc t  i n  t h i s  

case) w h i l e  t h e  enzyme-substrate complex appears t o  have a  lower  a f f i n i t y  f o r  

i n h i b i t o r  than  f r e e  enzyme. 

The niechanis~ii o f  a c t i o n  of  c e l l o b i a s e  on c e l  l o b i o s e  i s  o f  t h e  non-compet i t i ve  

t ype  as i s  shown by t he  i n i t i a l  r a t e  data.    his knowledge a l l ows  d e r i v a t i o n  

,of an i n t e g r a t e d  r a t e  express ion  f r o ~ n  which t h e  t in ie  course o f  t h e  enzyme 

ca ta l yzed  h y d r o l y s i s  o f  c e l l o b i o s e  may be p r e d i c t e d .  Recal l . ing t h a t  v  = dG/dt, 

eq. (15)  may be rearranged t o  g i ve :  

The .concen t ra t i on  o f  subs t ra te ,  (GG), a t  any t ime  may be expressed i n  terms o f  

t h e  i n i t i a l  s u b s t r a t e  concen t ra t i on ,  (GG)o, and t h e  p roduc t  concen t ra t i on ,  G :  

(GG) = (GG), - (G)/2 (19)  

S u b s t i t u t i o n  o f  eq. (19)  i n t o  eq. (18)  and i n t e g r a t i o n  r e s u l t s  i n  

Given va lues of  t h e  k i n e t i c  cons tan ts ,  V,  K, Ki ,1, and Ki ,2 and t h e  i n i t i a l  

s u b s t r a t e  concen t ra t i on ,  (GG)o, t h e  t ime,  t, r e q u i r e d  t o  a t t a i n  a  c e r t a i n  p roduc t  

concen t ra t i on ,  ,G, may be c a l c u l a t e d  f r om eq. ( 20 ) .  . . 

A s tudy  u s i n g  t h e  most a c t i v e  c e l l o b i a s e  f r a c t i o n ,  i .e., peak 2, showed 

eq. (20)  t o  a c c u r a t e l y  p r e d i c t  t h e  t ime  course o f  'cel  l o b i o s e  h y d r o l y s i s  ( F i g .  
8 : 

< .  



11-4).  The exper iment  was c a r r i e d  o u t  a t  pH 4.75, 50°C, and i n i t i a l  s u b s t r a t e  

concen t ra t i ons  of  40, 20,,and 5.25 mM c e l l o b i o s e  w i t h  r e a c t i o n  t imes n o t  

exceeding 60 min. The s h o r t  r e a c t i o n  t ime  avoided compl i c a t i o n s  wi t h  enzyme 

d e a c t i v a t i o n ,  which has p r e v i o u s l y  .been shown t o  be n e g l i g i b l e  over  t h e  i n d i c a t e d  

t ime  span. The p red i c ted .  curves ( s o l i d  l i n e s  i n  F i g .  I I - 4 ) ,  ob ta ined  f rom 

k i n e t i c  para~ l le te rs  fro111 Table 11-1 and t h e  enzylne concen t ra t i ons  i n d i c a t e d  i n  

F i g u r e  11-4, agree w i t h  t h e  exper iment data ( c i r c l e s  i n  F ig .  11-4).  

I f  a l l  t h e  p roduc t  were removed as i t  was formed, t h e r e  would be no 

i n h i b i t i o n .  The t ime  course o f . t h e  r e a c t i o n  f o r  such a  s i t u a t i o n  can be p r e d i c t e d  

us ing  t h e  i n t e g r a t e d  form of eq. (16) ,  shown below: 

V t  = ( G )  - 2K i n  [ I  - 6/2(GG)o] 

Conlputation usin.g eq. (21 ) shows t h a t  t h e  r e a c t i o n ,  would proceed much f a s t e r  i f  

t h e  p roduc t  were-removed as i t  was formed ( i n d i c a t e d  by d o t t e d  l i n e s  i n  F i g .  

The s t r o n g  i n h i b i t o r y  e f f e c t  g lucose e x e r t s  on c e l l o b i a s e  would appear t o  

'be an impo r tan t  f a c t o r  t o  cons ider '  i n  t h e  des ign o f  a  l a r g e  sca le ' p rocess .  

For  example, eq. (20)  can be used t o  c a l c u l a t e  t h e  t ime r e q u i r e d  f o r  a  c e l l o b i o s e  

h y d r o l y s i s ,  whe.re t h e  product ,  g lucose, i s  n o t  removed, t o  go t o  99% complet ion.  

Us ing eq. (21 )  t h e  same c a l c u l a t i o n  can be made assuming t h a t  a l l  t h e  p roduc t  

i s  removed as i t  i s  formed; T h i s  comparison, presented i n  F igu re  11-5, where 

r e a c t i o n  t ime  i s  shown as a  f u n c t i o n  o f  s u b s t r a t e  concen t ra t i on ,  shows a  

s i g n i f i c a n t  d i f f e r e n c e  between t h e  two cases, a  d i f f e r e n c e  which increases 

w i t h  i n c r e a s i n g  s u b s t r a t e  concen t ra t i on .  .. 

The' i n h i b i t i o n  o f  c e l l o b i a s e  by g lucose i s  s t r o n g l y  c o m p e t i t i v e  as shown 

by t h e  va lue  of  Ki ,2 which i s  1.22 mM f o r  peak 2  enzyme and 4.26 mM f o r  peak 

3. I t  has been r e p o r t e d  i n .  t h e  1 i t e r a t u r e  t h a t  c e l l n h i a s e  f rom Trichoderma 

i s  i n h i b i t e d  by t h e . s u b s t r a t e  c e l l o b i o s e .  A l though t h i s  e f f e c t  was n o t  observed 



f o r  peak 2 and 3 c e l l o b i a s e  a t  t h e  s u b s t r a t e  c o n c e n t r a t i o n  (up t o  40 mM) used 

i n  t h i s  s tudy,  i t  i s  p o s s i b l e  subs t ra te '  i n h i b i t i o n  m igh t  be observed a t  h i g h e r  

c e l l o b i o s e  concen t ra t i ons .  However, i n h i b i t i o n  by g lucose and would s t i l l  

predominate i n  v iew o f  t h e  va lue  o f  t h e  s u b s t r a t e  ( c e l l o b i o s e )  i n h i b i t o n  cons tan t  

Ki,5, wh ich i s  r e p o r t e d  t o  be 31.5 k 7 a  va l ue .10  t o  40 t imes g r e a t e r  than t h a t  

o f  Ki ,2 (Note:  The magnitude of t h e  i n h i b i t i o n  e f f e c t  i s  i n v e r s e l y  p r o p o r t i o n a l  

t o  t h e  va lue  o f  t h e  i n h i b i t i o n  cons tan t )  

The most i n t e r e s t i n g  r e s u l t  o f  t h i s  s tudy  i s  t h e  a b i l i t y  t o  p r e d i c t  t h e  
I 

t i n ie  course of c e l l o b i o s e  h y d r o l y s i s  by ce! lob iase ove r  a  range o f  s u b s t r a t e  
. . 

c oncen t ra t i ons  and .convers ions .  The mechanism used t o  d e r i v e  t h e  necessary 

k i n e t i c  equa t ions  i s  based d i r e c t l y  on t h e  r e s u l t s  o f  i n i t i a l  r a t e  s t u d i e s  

and makes no assumptions. I n  t h e  d e r i v a t i o n ,  t h e  o n l y  assumption niade i s  t h a t  

o f  pseudo-steady s t a t e .  On t h i s  bas i s  i t  i s  p o s s i b l e  t o  model t h e  r e a c t i o n  and 

t o  a c c u r a t e l y  p r e d i c t  t h e  t ime  course o f  c e l l o b i o s e  h y d r o l y s i s .  Th i s  i s  t h e  

f i r s t  t ime,  t o  o u r  knowledge, . t h a t  t h e  k i n e t i c s  o f  c e l l o b i a s e  f rom Tr ichoderma 

has been q u a n t i  t a t e d  i n  t h i  s  manner.. 
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NOMENCLATURE 

E f r e e  enzyme 

E* enzyme-substrate con~plex 

EG enzynie-inhi b i  t o r  complex 

E*G enzyme-subst ra te- i  n h i  b i  t o r  conlpl ex 

t o  t 
t o t a l  enzyme p resen t  i n  b o t h  f r e e  and complexed fo rms,  (mg) 

G g l  ucose c o n c e n t r a t i o n  (mW) . 

G G c e l l  obi.ose c o n c e n t r a t i o n  (mM) . 

GGo 
i n i t i a l  c e l  l o b i o s e  concentration(n1M) 

K. Michael  i s  cons tan t  (mM) 

Ki ,I d i s s o c i a t i o n  ( i n h i b i t i o n )  cons tan t  f o r  E*G complex (mM) 

K i , 2 ,  d i s s o c a t i o n  ( i n h i b i t i o n )  cons tan t  f o r  EG complex (mM) 

t t ime,  min 

v  r e a c t i o n  v e l o c i t y ,  pmol g l  ucoselmin 

V r e a c t i o n  v e l o c i t y  a t  s a t u r a t i n g  concen t ra t i on ,  pmole g lucose/min 

C.  G l  ucanohydrolasc [Endpg'l ucan2.s~ o r  C C c l l  u l s s c  (CMCasc)] 
X 

~l ucanohydrol ase from Trichoderma r e e s e i  , hav ing  a mol ecu l  a r  we igh t  

o f  52,000, was eva lua ted  f o r  k i n e t i c  p r o p e r t i e s  w i t h  r espec t  t o  c e l l o b i o s e .  

Resu l t s  froin t h i s . w o r k  i n c l u d e :  1 )  i n i t i a l  r a t e  s t u d i e s  t h a t  show t h a t  

g l  ucanohydrol  ase hydro lyzes  c e l l  ob iose  by a  .&mpeti t i  . . ve rnechani sm and ' t h a t  

t he  p roduc t ,  g l  ucose, i n h i  b i t s  t h e  enzyme; 2 )  low-pressure aqueous 1 i q u i d  

chronlatography t h a t  shows t h a t  formation o f  a r e v e r s i o n  p roduc t ,  c e l l  o t r i o s e ,  



i s  m i n o r  and occu rs  i n  d e t e c t a b l e  amounts o n l y  a t  v e r y  h i g h  (90  mM) c e l l o -  

b i o s e  c o n c e n t r a t i o n s ;  3)  deve. lop~nent o f  an e q u a t i o n  based on t h e  mechanism 

o f  g l  ucanohydro lase  a c t i o n  as de te rm ined  by  i n i t i a l  r a t e  k i n e t i c s ,  w h i c h  

a c c u r a t e l y  p r e d i c t s  t h e  t i m e  c o u r s e  o f  c e l  l o b i  ose h y d r o l y s i s  ; 4) d e r i v a t i o n  

o f  an i n i t i a l  r a t e  e x p r e s s i o n  f o r  t h e  combined a c t i v i t y  o f  c e l l o b i a s e  and 

g l u c a n o h y d r o l a s e  on c e l l o b i o s e :  Based on d a t a  i n  t h i s  paper  i t  i s  shown 

t h a t  t h e  d i f f e r e n c e  i n  i n h i b i t i o n  p a t t e r n s  o f  t h e  two  enzymes c o u l d  be used 

f o r  d e t e r m i n i n g  t h e  c o n t a m i n a t i o n  o f  one enzyme b y  s m a l l  q u a n t i t i e s  o f  t h e  

o t h e r .  

1 .  Optimum pH and Temperature 

The optimum pH was de te rm ined  u s i n g  c e l l o t r i o s e  as a  s u b s t r a t e .  C e l l o -  

t r i o s e  was chosen s i n c e  g l u c a n o h y d r o l a s e  i s  known t o  r e a c t  r a p i d l y  w i t h  

c e l l o t r i o s e  and h i g h e r  01, igosacchar ides  w h i l e  g a v i n g  a  r e l a t i v e l y  l o w  a f f i n i t y  

f o r  c e l l  o b i o s e  . Thus, t h e  optimum pH was o b t a i n e d  f o r  enzyme a c t i v i t y .  

T h i s  i s  a n t i c i p a t e d  t o  r e f l e c t  t h e  c o n d i t i o n  a t  wh ich  t h e  enzyme wou ld  most  

l i k e l y  be used i n  a  p r a c t i c a l  s i t u a t i o n .  The c e l l o t r i o s e  f o r  t h e s e  e x p e r i -  

ments was p r e p a r e d  by. aqueous, p r e p a r a t i v e  s c a l e ,  l o w - p r e s s u r e  chromatography.  

TO measure t h e  optimum . p ~ ,  t h e  enzyme was i n c u b a t e d  a t  40°C i n  a  m i x t u r e  

t h a t  c o n t a i n e d  7 m M . c e l l o t r i o s e  and 2 t o  4  mM sodium ace ta ' t e  b u f f e r .  The 

pH o f  t h e  b u f f e r  ranged  f rom 3 t o  7. E n z y m e ' a c t i v i t y  was computed f r o m  t h e  

i n i t i a l  r a t e  o f  appearance o f  c e l l o b i . o s e  wh ich  was measured b y  LPLC (see 

F i g u r e  I 1-6 f o r  sample chromatograms).  

The o p t i m ~ l m  t e m p e r a t u r e  was de te rm ined  by i n c u b a t i n g  t h e  enzyme.a t  e i t h e r  

40 t o  50°C f o r  v a r i o u s  l e n g t h s  o f  t i .me and t h e n  a s s a y i n g  f o r  r e s i d u a l  a c t i v i t y  

a t  40°C, sagain u s i n g  c e l l o t . r i o s e  as s u b s t r a t e .  
. . 

. . 



The pH p r o f i l e  f o r  g l u c a n o h y d r o l a s e  ( F i g u r e  11-7). shows t h e  optimum 

pH t o  be 4.8. T.he la 'ck o f  r e v e r s i o n  p r o d u c t s  ( F i g u r e  11-6)  i n d i c a t e s  t h a t  

pH has l i t t l e ,  if any, e f f e c t  on t h e  f o r m a t i o n  o f  t h e s e  p r o d u c t s . .  

The optimum t e m p e r a t u r e  f o r  k i n e t i c  s t u d i e s  i s  40°C. As shown i n  

F i g u r e  11-5, t h e  enzyme r a p i d l y  l o s e s  a c t i v i t y  a t  50°C w h i l e  i t  i s  v e r y  

s t a b l e  a t  40°C. A t  50°C t h e  enzyme h a l f - l i f e  was on t h e  o r d e r  o f  1  h r .  

A t  40°C t h e  enzyme a c t i v i t y  was found  t o  be s t a b l e  f o r  a t  l e a s t  one day.  

A l l  k i n e t i c  d a t a  r e p o r t e d  i n  t h i s  paper were o b t a i n e d  f r o m  enzyme assays 

performed a t  40°C. and pH 4.8: 

' 2 .  K i n e t i c s  

.. Us ing  t h e  enzyme assay p rocedure  d e s c r i b e d  above, i n i t i a l  r a t e s  o f  

c e l l o b i o s e  h y d r o l y s i s  were measured a t  s u b s t r a t e  c o n c e n t r a t i o n s  r a n g i n g  

f rom 1  t o  10 mM. I n  a  ' t y p i c a l  assay,  enzyme, sodium a c e t a t e  b u f f e r  (pH 

4 .8 ) ,  'and c e l  l o b i o s e  were combined t o  g i v e  a  t o t a l  volume o f  0.. 7 ml  and 

i n c u b a t e d  a t  40°C f o r  30 t o  90. min .  A t  t h e  end o f  t h e  i n c u b a t i o n  p e r i o d  

t h e  g l u c o s e  formed was measured by  i n j e c t i n g  a  1 0  t o  50 p 1  sample o f  t h e  

m i x t u r e  i n t o  t h e  ~ e c k m a n  g l  ucose analyzei-.  hhen s m a l l  q u a n t i t i e s  o f  g lucose  

were added t o  t h e  i n i t i a l  i n c u b a t i o n  m i x t u r e s ,  i n h i b i t i o n  o f  t h e  c e l l o b i o s e  

h y d r o l y s i s  r e a c t i o n , o c c u r r e d .  Hence, a  s e r i e s  o f  i n i t i a l  r a t e  s t u d i e s  were 

performed where b o t h  i n i t i a l  c e l l o b i o s e  and g l u c o s e  c o n c e n t r a t i o n s  were 

v a r i e d .  

The d a t a ,  c o n s i s t i n g  o f  measured i n i t i a l  r a t e s  o f  g l u c o s e  appearance 

as a  f u n c t i o n  o f  s u b s t r a t e  c o n c e n t r a t i o n ,  were p l o t t e d  i n  t h e  f o r m  o f  i n v e r s e  

r a t e  ve rsus  i n v e r s e  s u b s t r a t e  c o n c e n t r a t i o n . .  The use o f  t h i s  p l o t  t o g e t h e r  

w i t h  t h e  a p p r o p r i a t e  d e r i v a t i o n  o f  M ichae l  i s -Menten k i n e t i c s  a1 l ows  deve lop -  

ment o f  a  k i n e t i c  model o f  enzyme a c t i o n . .  



Data f o r  g l  ucanohydrolase a c t i v i t y  w i t h  r espec t  t o  c e l  l o b i o s e  h y d r o l y s i s  

a re  p l o t t e d  i n '  F i gu re  11-8. The' s t r a i g h t  1  i n e  (open c i r c l e s ,  no g lucose 

added) shown i n  F i gu re  11-8(a) r e s u l t e d .  Th is  l i n e  sin' lply i n d i c a t e s  t h a t  

as s u b s t r a t e  c o n c e n t r a t i o n  inc reases ,  t h e  r a t e  a l s o  i nc reases .  When smal l  

amounts o f  g lucose a re  added and i n i t i a l  r a t e  s t u d i e s  a re  repeated,  t h e  

l i n e s  i n d i c a t e d  by t h e  squares and t r i a n g l e s  r e s u l t .  I n  these  cases, due 

t o  t h e  i n h i b i t o r y . e f f e c t  o f  g lucose,  t h e  r a t e  i s  s ~ n a l l e r , a t  a  g i ven  s u b s t r a t e  

c o n c e n t r a t i o n  when g lucose i s  i n i t i a l l y  added. The r e s u l t i n g  p a t t e r n  o f  

l i n e s ,  g i v i n g  what i s  known' as a    in ewe aver-~urk p l o t ,  i n d i c a t e d  t h a t  t h e  

enzyme i s  p roduc t  i n h i b i t e d  by  a  c o m p e t i t i v e  mechanism. 

The p a t t e r n  o f  l 3nes  i n  F i gu re  11-8 i n t e r s e c t i n g  on t h e  y  a x i s  suggests 

c o m p e t i t i v e  p roduc t  i n h i b i t i o n  f o r  which t h e  Michael-Menten equa t i on  i s  

A . d e t a i l e d  d e r i v a t i o n  i s  g iven  i n  t h e  Appendix. A t  ze ro  i n h i b i t o r  ( i  .e . ,  

g lucose,  G = 0 ) ,  Eq .  ( 1 )  reduces t o  

w h i c h ' i s  t h e  s tandard  form of t h e  Michael is -Menten equa t ion .  

The i n v e r t e d  form o f  Eq., ( 1 ) :  



i s  o f  t h e  form 

. . 

y  - m*x + b  

i - e . ,  t h e  form o f  a  s t r a i g h t  i i n e .  Hence, Eq. ( 4 )  p r e d i c t s  t h a t  a  L ine-  

weaver-Burk p l o t  o f  t h e  data shou ld  be l i n e a r .  A r e p l o t  o f  t h e  s l ope  

as' a  f u n c t i o n  o f  (G) shou ld  a l s o  be l i n e a r  i f  t h e  r e a c t i o n  sequence r e f l e c t s  

co rnp i t i  t i v e  i n h i b i t i o n .  BY t h e s e  c r i t e r i a ;  t hen  ;'Figui-e 11-6 i n d i c a t e s  

. t h a t  th'e mechanism i s '  c o n s i s t e n t  w i t h  t h e  data.  

S ince t h e  p l o t  and r e p l o t  (see F igu re  11-8) a re  l i n e a r ,  va lues  o f  t h e  

k i n e t i c  con'stants K and K i Y p  can be determined d i r e c t l y  f rom them. The x  

i n t e r c e p t  o f  t h e  r e p l o t  g i ves  -KiY2. The x  i n t e r c e p t  o f  t h e  Lineweaver-Burk 

p l o t  g i ves  K  and y  i n t e r c e p t ,  Etot/V. The v a l u e s  o f  these  k i n e t i c  cons tan ts ,  

ob ta i ned  from l i n e s  f i t  t o  t h e  da ta  i n  F i gu re  11-6 by  l i n e a r  , l e a s t  squares,  

a re  summarized i n  Tab le  11-2. Note t h a t  t h e  r e a c t i o n  v e l o c i t y  i s  shown 

i n  terms o f  spe;if ic a c t i v i t y .  Th i s  i s  e q u i v a l e n t  t o  m u l t i p l y i n g  Eq. ( 1 ) '  
. . 

t h rough  b y  t h e  cons tan t  l / E t o t .  

The mechanism o f  a c t i o n  on c e l  l o b i o s e  by g l  ucanohydrolase i s  c o m p e t i t i v e  

as i s  shown b y  t h e  i n i t i a l  r a t e  data.  Thus, i n t e g r a t i o n  o f  t h e  r a t e  express ion  

[Eq. ( 3 ) ]  shou ld  g i v e  an e,quat ion t h a t  w i l l  accura te l -y  p r e d i c t  t h e '  h y d r o l y s i s  

t i m c  course o f  c e l l o b i o s e .  R e c a l l i n g  t.hnt v  = dG/dt. E ~ .  ( 1 )  . . may be r e -  

ar ranged t o  g i v e :  . . 



TABLE 11-2 

SUMMARY OF KINETIC CONSTANTS FOR GLUCANOHYDROLASE 

Constant  Val  ue 
\ 

VIEtot ("01 gl ucose/min*mg p r o t e i n )  0.58 

K(mM c e l  l o b i o s e )  1 .6  

Ki ,2 (mM g l  ucose)  0 .98  



where 

S u b s t i t u t i o n  o f  E q .  ( 6 )  i n t o  Eq .  ( 5 )  and i n t e g r a t i o n  r e s u l t s  i n :  

Given va lues o f  t h e  k i n e t i c  .. . cons tan ts  V ,  K,  and Ki,* and t h e  i n i t i a l  s u b s t r a t e  
. . 

c oncen t ra t i on  (,GG)oy t h e  t i m e  t r e q u i r e d  t o  a t t a i n  a  c e r t a i n  p roduc t  concen- 

t r a t i o n  G may be c a l c u l a t e d  from Eq. ( 7 ) .  
! 

A t ime-course s tudy  a t  two s t a r t i n g  concen t ra t i ons  o f  c e l  l o b i o s e  (5 .85 

and 38.8 mM) showed E q .  (7) t o  a c c u r a t e l y  . p red i c t  t h e  r a t e  o f  h y d r o l y s i s  

o f  c e l l o b i o s e  ( F i g u r e  11-9) .  The exper iment  was c a r r i e d  o u t  a t  pH .4.8, 

40°C, and w i t h  r e a c t i o n  t imes n o t  exceeding 25 hr. The p r e d i c t e d  curves 

( s o l i d  1 i nes  i n  F i gu re  1179),  computed f rom Eq.  ( 7 )  u s i n g  t h e  va lues o f  

k i n e t i c  parameters determined f rom t h e  i n i t i a l  r a t e  s t udy  agree w i t h  t h e  

exper iment  da ta  (squares i n  Fi 'gure 11-9).  

I f  a1 1  t h e  p roduc t  were removed as i t  was formed-, t h e r e  would -be no 

i n h i b i t i o n .  The t i m e  c o u r s e , o f  t h e  r e a c t i o n  f o r  such a  s i t u a t i o n  can be 
. . , . 

p r e d i c t e d  by us i ng  E q .  ( 1 )  where G = 0 and i n t e g r a t i n g :  

V t  = ( G )  - 2  K i n  [I - G/2(GG0)] ( 8 )  

Cmniputation u s i n g  .eq. ( 8 )  sbows t h a t  t h e  r e a c t i o n  would proceed much f a s t e r  

i f  t h e  p roduc t  were re~noved' as i t  was formed ( i n d i c a t e d  by d o t t e d  l i n e s  i n  

The competi ti ve' p a t t e r n  o f  gl ucanohydrolase a c t i o n  (F i g .  11-8) imp1 i es 

t h a t  t h e  n~oncompeti ti ve r e a c t i o n  s t ep :  



i s  a t  most ve ry  sma l l .  Low-pressure l i q u i d  chromatography a n a l y s i s  ( F i g .  11-10) 

of  t he  hyd ro l ysa te  done a t  t h e  end o f  t h e  r u n  shown i n  F igu re  7 (b ) ,  shows no 
* 

d e t e c t a b l e  c e l l o t r o i s e  ( G 3 )  T h i s  i s  f u r t h e r  i n d i c a t i o n  t h a t  t h e  r e a c t i o n  g i ven  

by eq. ( 9 )  i s  smal l  s i n c e  G3 f o rma t i on  would r e q u i r e  t h e  presence o f  t h e  enzyme 

conipl es E*G. 

A t  h i g h  enough c e l l o b i o s e  concen t ra t i ons ,  however, some G i s  formed. 3 

The chromatograms i n  F igu re  11-11 r e s u l t e d  f rom i n c u b a t i o n  o f  g lucanohydro lase 

w i t h  approx i i i ia te ly  90 IIIM c e l l o b i o s e .  A t  t i t i le zero t h e r e  i s  e s s e n t i a l l y  pure 

c e l l o b i o s e  [F i g .  11-11 (a ) ] .  . A f t e r  72 ni in, a srnall  amount o f  G3 i s  formed. 

Th i s  l e v e l  s t ays  a lmost  cons tan t  even a f t e r  19.5 h r  o f  i n c u b a t i o n  [F i g .  11-11 ( c ) ] .  

On a  mole b a i i s ,  G 3  accounts f o r  about 3.5% o f  t h e  c e l l o b i o s e  t h a t  was hydro lyzed.  

.These da ta  i n d i c a t e  t h a t  a t  h i g h  enough s u b s t r a t e  c o n c e n t r a t i ~ n s ~ t h e  

f o r l i ~ a t i o n  o f  an EkG [ o r  EG(GG)] t ype  complex w i l l  occur  and some r e v e r s i o n  

p roduc t ,  i . e . ,  c e l l o t r i o s e ,  w i l l  form. Th i s  r e s u l t  i s  n o t  s u r p r i s i n g  s i nce  i t  

i s  w e l l  known t h a t  a t  h i g h  enough s u b s t r a t e  concen t ra t i ons  most enzymes w i l l  

e x h i b i t  s u b s t r a t e  i n h i b i t i o n .  On a  p r a c t i c a l  note,  however, t h e  c e l l o b i o s e  

concen t ra t i ons  commonly encountered f rom the' h y d r o l y s i s  o f  c e l l  u l  os'e by t h e  

c e l l u l a s e  complex f rom - T. reese i  i n ' o u r  l a b o r a t o r y  have t y p i c a l l y  been 10 mM o r  

l e s s .  Th i s  range corresponds t o  t h e  c o n c e n t r a t i o n  used i n  gene ra t i ng  t h e  

hyd ro l ysa te  f o r  t h e  LPLC chromatogram i n  F i g u r e  11-10. 

These r e s u l t s  show i t  i s  p o s s i b l e  t o  p r e d i c t  t h e  t ime  course of c e l l o b i o s e  

h y d r o l y s i s  by g lucanohydro lase us ing  equat ions de r i ved  by making t h e  pseudo- 

s teady -s ta te  assumption. Again, t h i s  approach i s  d i f f e r e n t  f rom o r d i n a r y  

curve  f i t t i n y  s i r ~ c k  t h e  model as w e l l  as k i n e t i c  parameters were d e r i v e d  f rom 

i n i t i a l  r a t e  data.  T h i s  i n f o r m a t i o n  was then taken t o  p r e d i c t  t h e  t ime  course 

f o r  up t o  90% convers ion  o f  . c e l l o b i o s e .  Th i s  i s  t h e  f i r s t  t ime,  t o  ou r  knowledge, 

t h a t  t heo ry  and exper iment have been combined i n  t h i s  p a r t i c u l a r  manner t o  

q u a n t i t a t e  g l  ucanhydrol  ase a c t i v i t y  w i  t l ~  respec t  t o  ce1 l ob iose .  



Thus, g l  ucan g l  ucanohydro l  ase f r o m  1. r e e s e i  has c e l  l o b i o s e - h y d r o l y z i , n g  --. 
a c t i v i t y .  However, t h i s  a c t i v i t y  i s  one t o  two magni tudes o f  o r d e r  l e s s  t h a n  

t h a t  obs;rved f o r  c e l l o b i a s e .  Thus, i t  appears t h a t  t h e  enzyme component i n  

t h e  c e l l u l a s e  complex o f  T. r e e s e i  h a v i n g  t h e  m a j o r  c e l l o b i o s e - h y d r o l y z i n g  

a c t i v i t y  i s  c e l l o b i a s e .  A l t h o u g h  b o t h  g l u c a n o h y d r o l a s e  and c e l l o b i a s e  a r e  b o t h  

s u b j e c t  t o  g l u c o s e  ( p r o d u c t )  i n h i b i t i o n ,  t h e  mode o f  i n h i b i t i o n  o f  g l u c a n o h y d r o l a s e  

i s  c o m p e t i t i v e ,  w h i l e  t h e  mode o f  c e l l o b i a s e  i n  n o n c o m p e t i t i v e .  

D. CELLOBIOHYDROLASE 

The k i n e t i c s  o f  t h e  h y d r o l y s e s  o f  c e l l o t r i o s e  and o f  c e l l o t e t r a o s e  b.y 
, . 

c e l l o b i o h y d r o l a s e  were s t u d i e d  u s i n g  a  c o n v e n i e n t  i n t e g r a l  t e c h n i q u e .  R e a c t i o n  

mechanisms and mathemat i ca l  models were  p o s t u l a t e d  t o  d e s c r i b e  t h e  r e a c t i o n s ;  

The end-p roduc ts  o f  t h e  r e a c t i o n  were found t o  be i n h i b i t o r y  t o w a r d  h y d r o l y s i s  i n  

a  c o m p e t i t i v e  mode. H y d r o l y s i s  o f  c e l l o t e t r a o s e  produces c e l l o b i o s e  and h y d r o l y s i s  

o f  c e l l o t r i o s e  produces c e l l o b i o s e  and g lucose .  B o t h  sugars  i n h i b i t  t h e  enzyme 

w i t h  c e l l o b i o s e  b e i n g  s t r o n g e r  i n h i b i t o r .  

MODEL DESCRIPTION 

The r e a c t i o n  mechanism.and t h e  r a t e  e q u a t i o n  f o r  t h e  h y d r o l y s i s  o f  

c e l  l o t e t r a o s e ,  G4, 'assuming t h a t  t h e  r e a c t i o n  f o l  1  ows t h e  i r r e v e r s i b l e  M i c h a e l  i s -  

Menten k i n e t i c s  Model and i s  s u b j e c t  ' t o  a  c o m p e t i t i v e  i n h i b i t i o n  b y  i t s  p r o d u c t  

G2 a r e  as t o 1  lows: . .  . 

L E + 2 G 2  
G~ 

+ '' E  ,- EG4 - 



where E = enzyme 

Km = Michael is -Menten cons tan t  

V = kE = meximum r e a c t i o n  r a t e  f o r  g i ven  enzyme c o n c e n t r a t i o n  
m T 

ET = t o t a l  enzyme c o n c e n t r a t i o n  

= c o t ~ l p e t i t i v e  i n h i b i t i o n  cons tan t  assoc ia ted  w i t h ' G 2  

Equat ion ( 1  ) can bc a p l ~ l  i e d  t o  t h e  e n t i r e  t ime  course o f  t h e  h ,yd ro lys is  

data.  By a  s i~ i ip le . l i i aker ia l  ba lance,  G2 = 2 (G4,0 - G ) where G 4 , 0  = i n i t i a l  4 

G concen t ra t i on .  .If V i s ,  h e l d  cons tan t ,  Equat ion ( 1  ) can be rear ranged  4 m . .  

and i n t e g r a t e d  t o  g,ive Eq .  ( 2 ) ,  

De f i n i ng  c, t h e  G4 convers ion,  

and d i v i d i n g  b o t h  s i d e s  o f . E q .  ( 2 )  by c ,  



1  a  s t r a i g h t  
Accord ing t o  Eq. ( 4 ) ,  when t / c  i s  p l o t t e d  a g a i n s t  ; l n  - 1  -c '. 

l i n e  r e s u l t s  w i t h  a  s l ope  and i n t e r c e p t  o f  

. K  
m 2G4 ,O 111 2G4 o K  

s l ope  = - ( 1  + ) o r  s l ope  xET = $1 + 

vm K ~ z  K ~ e  

and 

A f a m i l y  o f  s t r a i g h t  l i n e s  can be ob ta i ned  f rom severa l  s e t s  o f  t i m e  course 

da ta  w i t h  v a r y i n g  i n i t i a l  s u b s t r a t e  concen t ra t i ons ,  G4,-,. A " r e p l o t "  o f  

t h e  s lopes  of  t h e  s t r a i g h t  l i n e s  a g a i n s t  G shou ld  a l s o  y i e l d  a  s t r a i g h t  
490 < 

l i n e  acco rd i ng  t o  Eq.  ( 5 ) .  S i m i l a r l y ,  a  r e p l o t  o f  t h e  i n t e r c e p t s  a g a i n s t  

G4 ,0 should.  y i e l d  ano ther  s t r a i g h t  l i n e ,  accord ing  t o  Eq. ( 6 ) .  From t h e  

-. l i n e a r  p l o t s  and r e p l o t s ,  t h e  k i n e t i c  cons tan ts  Km, Vm, and KG can be 
2  

determined. 

Wi th  s u b s t r a t e  G3, b o t h  G2 and GI w i l l  be t h e  r e a c t i o n  p roduc ts  o f  t he  

c e l l o b i o h y d r o l a s e .  I f  i t  i s  assumed t h a t  bo th  G1 and G2 a r e  c o m p e t i t i v e  

i n h i b i t o r s  and t h a t  t h e r e  i .s no reve rse  r e a c t i o n ,  t h e  r e a c t i o n  mechanism and 

t h e  r a t e  equa t i on  w i l l  be .as f o l l o w s :  



where KG = c o m p e t i t i v e  i n h i b i t i o n  cons tan t  assoc ia ted  w i t h  G1 w i t h  t h e  . 

1 

o t h e r  parameters rema in ing  t h e  same as p r e v i o u s l y  de f i ned .  

By a  m a t e r i a l  balance, G1 = G = G - G3  where G = i n i t i a l  G3 
2  3,O 3  ,o 

concen t ra t i on .  Equa t ion  ( 7 )  can be rear ranged  and i n t e g r a t e d  t o  g i v e  

Eq.  (8) , assuming cons tan t  V. m  

s u b s t i t u t i n g ,  . . . 

i n t o  Eq .  (8 )  and rea r rang ing  

t 1  1 Again, a  p l o t  o f  vs c I n  - y i e l d s  a  s t r a i g h t  l i n e  w i t h  i t s  s l ope  
1  -c 

and i n t e r c e p t  be ing  

K G3 ,o K 
m 

G 
111 G 3 , ~ + - )  o r s l o p e  x E  = - - ( I  +=+----I G3 ,O (11)  s l ope  = - ( 1  + - 

"Ill K ~ l  K ~ 2  K ~ l  K ~ 2  T k  

and 

1 K K  1  K m K 
111 int .err .ept  = - ( 1  = - - m o r  i n t e r c e p t  x E  = - (1  - - - 

T k  K L) (12)  
'm I( (; 

G1 2  



Ecluations (10)  t o  (12)  a re  s i m i l a r  t o  Eqs. ( 4 )  t o  ( 6 )  b u t  i n c l u d e  one illore 

k i n e t i c  parameter,  K From r e p l o t s  o f  t h e  ,s lope and i n t e r c e p t  vs G 
G1 ' ,  3,O' 

1  V and - + - 
Km' m 

can be determined, b u t  n o t  t h e  i n d i v i d u a l  KG and KG . 
K ~ 2  1  ' 2 

I n  o r d e r  t o  determine KG and KG independent l y ,  t h e  f o l l o w i n g  
1  2  .. 

t echn ique  can be used. When'a known c o n c e n t r a t i o n  G o f  g lucose  i s  
1  Y O  

i n c l u d e d  i n  t h e  i n i t i a l  r e a c t i o n  m i x t u r e ,  Eq .  ( 7 . )  becolnes 

When t h i s  equa t i on  i s  i n t e g r a t e d  and combined w i t h  Equa t ion  ( 9 ) ,  

t 1  1  A p l o t  o f  - vs - I n  - g i v e s  a  s t r a i g h t  l i n e  w i t h  i t s  s l ope  !being 
C c  1-c 

K ni s l ope  = - ( 1  + G1 ,0 + G3,0 + -) G3,0 o r  
"Ill , K ~ 2  

t Fronl a  f a m i l y  o f  - vs 1 h . l  p l o t s  w i t h  v a r y i n g  G b u t  cons tan t  G3,0, 
C c  . 1-c 1  30 

a  l i n e a r  r e p l o t  o f  t h e  s lopes a g a i n s t  G can be ob ta ined .  Th i s  r e p l o t ,  
I ( .  1 Y O  
I\ . 

w i t h  'i l;s s lope  be ing  - t o g e t h e r  w i t h  t h e  p rev i ous  r e p l o t  o f  t h e  s l ope  
Kn V .' 

o f  Eq.  (10)  a y a i n s t  G 
3,O 

( i n  t h e  absence of  added g l ucose ) ,  a l l o w s  f o r  t h e  

de te rm ina t i on  o f  KG . 
1 



RESULTS 

Two p r e r e q u i s i t e s  have t o  be met i n  o r d e r  t o  app l y  t h e  method i n v o l v i n g  

a  p l o t  o f  t / c  vs.  ( l / c )  I n  [ 1 / ( 1  - c ) ]  i n  s t u d y i n g  t h e  k i n e t i c s  oc c e l l o b i o h y d r o l a s e :  

t h e  enzyme must be s t a b l e  under t h e  assay c o n d i t i o n s ,  and t h e  reve rse  r e a c t i o n s  

lllust be negl  i g i  b l  e. 

S tab i  1  i t y  

The enzyme was f i r s t  i ncuba ted  a t  50°C i n  a  sodium a c e t a t e  b u f f e r  (pH 

4.8) f o r  v a r i o u s  t ime  pe r i ods  b e f o r e  t h e  i n t r o d u c t i o n  o f  subs t ra tes .  F i gu re .  

11-12 shows t h a t  c e l l o b i o h y d r o l a s e  i s  s t a b l e  f o r  more than  4  h r  o f  p re i ncuba t i on .  

Th is  i s  an i n d i c a t i o n  t h a t  t h e  enzyme i s  s t a b l e  under assay c o n d i t i o n s .  

Reverse React ions 

To determine t h e  p o s s i b l e  presence o f  a  r eve rse  r e a c t i o n ,  a h i g h  c o n c e n t r a t i o n  

o f  G2 (60  mM) was incuba ted  w i t h  t h e  enzyme. Fo l l ow ing  i n c u b a t i o n ,  samples 

were taken and analyzed by  l i q u i d  chromatography. As shown i n  F i gu re  11-13(a)  

t h e r e  were no d e t e c t a b l e  h i  gh-mol ecu la r -we i  gh t  c e l  l o d e x t r i n s  formed. S i m i l a r l y ,  

when t h e  enzyme was incuba ted  w i t h  G a lone ,  o r  w i t h  a  m i x t u r e  o f  G1 and G2, 
1  

no d e t e c t a b l e  r eve rse  r e a c t i o n  p roduc ts  [ ~ i g s .  11-1 3 ( b )  and 11-1 3 ( c ) ]  were 

formed, n o r  was t h e  r e v e r s e . r e a c t i o n  observed when c e l l o t r i o s e  o r  c e l l o t e t r a o s e  

was used as s u b s t r a t e  ( F i g .  11-14).  

K i n e t i c s  

S ince  t h e  two p re requ i s ' i t e s  were b o t h  f u l f i l  1  ed, t h e  method i n v o l v i n g  

t h e  t / c  vs. ( l / c )  I n  [ 1 / ( 1  - c ) ] . p l o t  can be a p p l i e d  t o  s tudy  t h e ' k i n e t i c s  

o f  c e l  l o d e x t r i n  hyd ' r o l ys i s  .by c e l  l ob i ohyd ro l ase .  
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1 .  C e l l o t e t r a o s e  h y d r o l y s i s  

F i g u r e  11-15(a)  shows two s e t s  o f  e x p e r i m e n t a l  t i m e  course  d a t a  f o r  G4 

h y d r o l y s i s .  The p l o t s  o f  t / c  vs .  ( l / c )  I n  [ 1 / ( 1  - c ) ]  do appear t o  be l i n e a r .  

T h i s  suggests  t h a t  t h e  r e a c t i o n  m i g h t  f o l l o w  M i c h a e l i s - M e n t e n . k i n e t i c s  w i t h  

o r  w i t h o u t  c o m p e t i t i v e  i n h i b i t i o n .  From s e v e r a l  a d d i t i o n a l  t i m e  course  . 

exper iments ,  t h e  above-ment ioned r e p l o t s  o f  t h e  s l o p e s  and i n t e r c e p t s  were 

e s t a b l i s h e d  i n  ( F i g u r e s  11-15(b)  and 11-1 5 ( c ) ) ,  w i t h  t h e  1  i n e s  de te rm ined  by  

t h e  l e a s t - s q u a r e s  methods. By m a n i p u l a t i n g  t h e  s t r a i g h t  l i n e  i n  F i g u r e  

11-15(c)  t o  pass t h r o u g h  t h e  o r i g i n  as r e q u i r e d  by eq. ( 6 ) ,  t h e  k i n e t i c  

parameters  k, Km, and KG2 can t h e n  be de te rm ined  by  u s i n g  equs. ( 5 )  and ( 6 ) .  

The r e s u l t s  a r e  l i s t e d  i n  Tab le  11-3. 

2. Cel l o t r i o s e  h y d r o l y s i s  

Time course  d a t a  o f  .G3, h y d r o l . y s i s  a l s o  appear t o  be l i n e a r  on t h e  t / c  

vs. ( l / c )  I n  [ 1 / ( 1  - c ) ]  p l o t  as shown i n  F i g u r e  1.1-16(a)) .  T h i s  i n d i c a t e s  

t h a t  G1 a.nd G2,  t h e  h y d r o l y s i s  p roduc ts ,  b o t h  f u n c t i o n  as c o m p e t i t i v e  i n h i b i t o r s .  

The s l o p e  and i n t e r c e p t  r e p l o t s  shown i n  F i g u r e s  I I & i 1 6 ( b )  and 11 -16(c )  enab les  

k, Kin, and l / K G 1  + l / K G p  t o  be determined.  I n  o r d e r  t o  de te rm ine  K  and 
G 1  

KG2. G3 was i n c u b a t e d  i n  t h e  presence o f  v a r y i n g  amounts o f  e i t h e r  G1 o r  

G2.  The r e p l o t  o f  t h e  s l 'ope ve rsus  G i n  F i g u r e  11-17, t o g e h e r  w i t h  eq. 
1  ,o 

( 1 5 )  made i t  p o s s i b l e  t o  de te rm ine  KG1 and KG2 va lues .  The k i n e t i c  const.ants 

so o b t a i n e d  a r e  a l s o  l i s t e d  i n  T a b l e  11-3. It i s  apparen t  t h a t  t h e  KG2 va lues  

o b t a i n e d  f rom t h e  two s e t s  o f  exerpirnents w i t h  G4 and G3 as t h e  s u b s t r a t e s  a r e  

i n  reasonab le  agreement ( T a b l e  11-3) .  

DISCUSSION 

Since c e l  l o b i o h y d r o l a s e  i s  b o t h  s t a b l e  and. has o n l y  a  n e g l  i g b l e  r e v e r s e  

r e a c t i o n  under t h e  d e s c r i b e d  e x p e r i m e n t a l  c o n d i t i o n s ,  i t  i s  p o s s i b l e .  t o  s t u d y  



TABLE 1 1 - 3  

K I N E T I C  PARAMETERS FOR G3 AND G4 HYDROLYZED BY CELLOBIOHYDROLASE 

k 1 
(mol/min mg p r o t e i n )  (mM) 



enzyme k i n e t i c s  by  u s i n g  t h e  t i m e  course  k i n e t i c  t e c h n i q u e .  Data o b t a i n e d  

by t h i s  method r e f l e c t  t h e  e n t i r e  t i m e  course  r a t h e r  t h a n  j u s t  t h e  i n i t i a l  

s t a g e  o f  t h e  r e a c t i o n s .  The i n i t i a l  r a t e  k i n e t i c s  method i s  u n r e l i a b l e  i n  

.some cases, p r i m a r i l y  because o f  i n h e r e n t  exper imen ta l  u n c e r t a i n t y  and 

i n s t r u m e n t a l  l i m i t a t i o n .  

Us ing  t h e  p r e s e n t  method o f  k i n e t i c  a n a l y s i s ,  we a r e  a b l e  t o  e s t a b i l i s h  

t h a t  b o t h  c e l  l o b i o s e  and g l  ucose a r e  c o m p e t i t i v e  i n h i b i t o r s  o f  c e l  l o b i o h y d r o l a s e .  

The compar ison o f  t h e  enzyme h y d r o l y s i s  o f  c e l l o t e t r a o s e  w i t h  and w i t h o u t  

i n h i b i t i o n  i s  g i v e n  i n  F i g u r e  9. I t c l e a r l y  i n d i c a t e s  t h a t  a  c o n t i n u o u s  

remova l  o f  t h e  h y d r o l y s i s . p ' r o d u c t s  i s  i m p o r t a n t  t o  m a i n t a i n  a  h i g h  r a t e  o f  

t h e  enzyme hydro1 y s i  s. 

I n  t h e  absence o f  p r o d u c t  i n h i b i t i o n ,  t h e  e q u a t i o n  f o r  t h e  h y d r o l y s i s  

o f  G j  o r  G4 would  be [ c f .  eqs. ( 4 )  and ( 1 0 ) ] ,  

Our f i n d i n g  t h a t  g lucose  i s  an i n h i b i t o r  i s  i n  c o n t r a s t  t o  t h e  r e p o r t  by  

H a l l i w e l l  and G r i f f i n  ( 1 )  who c l a i m e d  t h a t  g lucose  was n o t  an i n h i b i t o r  

o f  c e l l o b i o h y d r o l a s e  f rom Tr ichoderma k o n i n g i i .  

L i s t e d  i n  Tab le  I ,  KG1 and KG* i n d i c a t e  t h a t  b o t h  g lucose  and c e l l o b i o s e ,  

t h e  end-product  o f  c e l l u l o s e  h y d r o l y s i s ,  i n h i b i t  c e l l o b i o h y d r o l a s e .  The 

i n h i b i t o r y  e f f e c t  o f  g l u c o s e  on c e l l o b i o h y d r o l a s e ' w o u l d  become i m p o r t a n t  i n  

a  comple te  c e l l u l a s e  enzyme system. The i n h i b i t i o n  b y . c e l l o b i o s e  c o u l d  be 

p a r t i a l l y  r e l i e v e d  b y  t h e  presence o f  c e l l o b i a s e  i n  t h e  enzyme system. 

However, g lucose ,  t h e  p r o d u c t  o f  c e l l o b i a s e ,  c o u l d  i n h i b i t  n o t  o n l y  c e l l o b i a s e ,  

b u t  c e l l o b i o h y d r o l a s e  as w e i l  , wh ich  l o w e r s  t h e . n e t  e f f e c t  o f  t h e  c e l l o b i a s e  

a c t i o n .  Never the less ,  s i n c e  K t h a  a d d i t i o n  o f  c e l l o b i a s e  would  have an 
62 ' 

. enhanc ing e f f e c t  on t h e  o v e r a l l  c e l l  u l o s e  h y d r o l y s i s .  



Equat ions ( 1  ) and (7') can be combined i n t o  t h e  . f o l l o w i n g  genera l  form: 

The i n t e g r a t e d  form o f  eq. (17)  g i ves  t h e  mathemat ica l  d e s c r i p t i o n  o f  t h e  

hyd ro l ys i s  o f  G3 and G4 b y  c e l  l ob i ohyd ro l ase .  When G h y d r o l y s i s  i s  performed 4 

i n  t h e  absence o f  i n i t i a l l y  added GI, t h e  G te rm i n  eq. (17)  s imp l y  
1  

d im in ishes  and t h e  equa t ion  degenerates t o  eq. ( 1 ) .  

Okazaki and Moo-Young. ( 2 )  proposed a  t h e o r e t i c a l  model f o r  t h e  

degrada t ion  o f  c e l l u l o s e  by  assuming a  noncompet i t i ve  end-product i n h i b i t i o n  

w i t h  Km and Vm be ing  independent o f  t h e  cha in  l iength o f  c e l ~ l u l o s e .  I f  t h e  

assumption were c o r r e c t ,  t hen  t h e  complete k i n e t i c s  o f  c e l l u l o s e  h y d r o l y s i s  

by c e l l o b i o h y d r o l a s e  would have been so lved .  U n f o r t u n a t e l y ,  t h i s  i s  n o t  

t h e  case. As shown i n  Table  11-1 and a l s o  r e p o r t e d  by  Wood and McCrae, ( 3 )  

t he  va lues o f  Km and Vm a re  d i r e c t l y  r e l a t e d  t o  t h e  cha in  l e n g t h  o f  c e l l u l o s e .  

The r e s u l t s  i n  t h i s  paper can serve  as a  b a s i s  f o r  s t u d y i n g  t h e  h y d r o l y s i s  

k i n e t i c s  o f  c e l l u l o s e  and c e l l o d e x t r i n s  o f  h i g h  cha in  l eng ths .  

The k i n e t i c s  o f  t h e  hydro lyses  o f  c e l l o d e x t r i n s  o f  h i g h e r  polymers a re  

more compl i ca ted  because o f  t h e  consecu t i ve  r e a c t i o n s  i nvo l ved .  For  i ns tance ,  

t h e  h y d r o l y s i s  o f  G5 i n v o l v e s  t h e  gene ra t i on  o f  G3 p l u s  G2. I n  t u r n ,  G3 

serves as a  s u b s t r a t e  t o  p roduc t  G1 p l u s  G2. There fo re ,  t h e  t / c  vs.  ( l / c )  

I n  [ 1 / ( 1  - c ) ]  p l o t  t e c h n i q t e  i s  n o t  d i r e c t l y  a 'pp l i cab le .  However, w i t h  

t h e  a i d  o f  a  computer and some* i n i t i a l  r a t e  exper iments ,  t h e  Km and Vm 

va lues o f  t h e  h y d r o l y s i s  o f  l o n g  cha in  l e n g t h  c e l l u l o s e  can be ob ta ined .  

The k i n e t i c  parameters determined i n  t h i s  s tudy  a re  a b l e  t o  d e s c r i b e  

G and Gq h y d r o l y s i s  r e a c t i o n s  o f  up t o  80% s u b s t r a t e  convers ions .  An 80% 3 



convers ion  i s  e q u i v a l e n t  t o  a  ( l l c )  I n  [ 1 / ( 1  - c ) ]  v a l u e  o f  2.0.  (See 

F i g s .  11-15 and 11-16). For h i g h e r  convers ions ,  t h e  exper imen ta l  d a t a  

t e n d  t o  d e v i a t e  somewhat f rom t h e  p r e d i c t e d  va lues ,  .as  shown by t h e  t a i l  

p o r t i o n  o f  t h e  s o l i d  c u r v e  i n  F i g u r e  11-18. 
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Fi'g. 11-1. Lineweaver-Burk plot for peak 1 cellobiase. 

Inhibitor 'Concsnlrollon, m M  , 

Fig. 1 1 - 2 . .    lot of kinetic data for peak 3 cellobiase 
(See Fig. 11-3  for. explanation). 



F i g .  11-3. 

. Inhihitar Conccntratlon. rnM 

P l o t  o f  k i n e t i c  data ,  fo ' r  peak 2 c e l l o b i a s e :  
( a )  .. ' Lineweaver-Rurk p l o t  . a t  s e v e r a l  p roduc t  
( i n h i ' b i  t o r )  l e v e l s  ; ( b )  r e p l o t  o f  i n t e r c e p t s  
i n  . ( a )  as a  f u n c t i o n  o f  i n h i b i t o r  c o n c e n t r a t i o n ;  
( c ) '  r e p l o t  o f  s lopes  i n  ( a )  as a  f u n c t i o n  o f  
i n h i b i t o r  c o n c e n t r a t i o n .  





!NITIAI SUBSTRATE CONCENTRATlON,mM 

F i g .  11-5. Cornparison o f  r c ~ c t i o n  t i m c s  r e q u i r e d  f o r  r e a c t i o n s  
t o  go t o  99% c o m p l e t i o n :  ( - ) r e a c t i o n  where 
p r o d u c t  i s  n o t  removed; ( ---- ) r e a c t i o n  w i t h  p r o d u c t  
removed as formed. Data c a l c u l a t e d  f rom eqs. (20) 
and (21 ) and t h e  k i n e t i c  c o n s t a n t s  f o r  peak 2 enzyme. 



F i g .  11-6. LPLC chromatograms o f  c e l l o t r i o s e  h y d r o l y s a t e s  a t  
v a r i o u s  p H ' s .  ( a )  .pH 4; ( b )  pH 4 .5 ;  ( c )  pH 4.8; 
( 4  pH 5. 

F ig .  11-7. PH . p r o f i l e  f o r  g l  ucanohydro lase w i t h  r e s p e c t  t o  
c e l l o t r i o s e .  Temperature i s  40°C. 
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8. .L ineweaver-Burk p l o t  f o r  g l  ucanohydrol  ase w i t h  r e s p e c t  
. t o  c e l l o b i o s e .  . ( a )  (A, )  3.17 mM g lucose;  (P'j) 1.59 

mM g lucose;  ( 0 ) no gllucose added; t e m p e r t u r e  = 40°C; 
( b )  r e p l o t  o f  s lopes .  

TIME, hours 

9. ~1 rne : cou rse  o f  h y d r o l y s i s  o f  c e l  l o b i o s e  b y  g l ucanohydro lase.  
, (- ) Date p r e d i c t e d  by c o m p e t i t i v e  i n h i b i t i o n  model ; 

( - - - - )  p r e d i c t e d  f o r  case o f  no g lucose i n h , i b i t i o n .  ( a )  
GG = 38.13 mM; E = 0.118 mg/ml ; tempera tu re  = 40°C. 
(by  G G o  = 5.85 n lAPt~ = 0.0672 mg/ml ; tempera tu re  = 40°C. 



Glucose 

Fig. 11-10. L P L C  chromatogram o f  cel lobiose  hydrolysate .  

Buf fer  
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Fig. 11-11. Glucanohydrolase ac t ion  a t  very high (90mM) c e l l o b i o s e  
concent ra t ion .  



F i g .  11-12. Thermal s t a b i l i t y  o f  c e l l o b i o h y d r o l a s e  a t  50°C. 
C e l l  o b i o h y d r o l  ase was p r e i n c u b a t e d  a t  50°C f o r  
a  p e r i o d  o f  t i m e  as i n d i c a t e d .  A f t e r  t h e  p r e i n c u b a t i o n  
s u b s t r a t e  was i n t r o d u c e d  ,and i n c u b a t e d  f o r  ano ther  
20 min. H y d r o l y s i s  p r o d u c t  was ana lyzed by LPLC. 
0.79 mM G s u b s t r a t e ;  enzyme = 10.9 l . ~ m / m l ;  t empera tu re  
- 50°C; r g a c t i o n  t i s e  = 20 min.  
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F i g .  11-13. LPLC chromatograms o f  g lucose  a n d . c e l l o b i o s e  i n  t h e  
presence o f  c e l  l o b i o h y d r o l a s e .  Symbols G , g lucose  
G2 c e l  l o b i o s e ;  ET, t o t a l  enzyme c o n c e n t r a l i o n .  
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I' \ Buffer 

g .  11-1 4 .  Chromatograms of  low-pressure 1 Squid chromatuyr.apl~y 
( L P L C )  o f  ce l  l o t r i o s e  and cel  l o t e t r a o s e  hydrolys is  

' ,  by cel  lobiohydrolase.  
. . 



F ig .  11-15. P l o t  o f  k i n e t i c  da ta  o f  c e l l o t e t r a o s e  (G4) h y d r o l y s i s  
by c e l l o b i o h y d r o l a s e :  ( a )  t / c  vs .  ( l / c )  I n  [ l / ( l - c ) ]  
p lo t . ;  ( b )  r e p l o t  o f  s lopes i n  ( a )  as a  f u n c t i o n  o f  
~ e l ' l ~ t e t r a o s e  c o n c e n t r a t i o n  ; ( c )  rep1 o t  o f  i n t e r c e p t s  
i n  ( a )  as a f u n c t i o n  o f  c e l l o t e t r a o s e  c o n c e n t r a t i o n  , 
( G  ) .  Symbols : ET t o t a l  enzyme concen t ra t i on ;  G q S n  - - 
2 . t  mM; ET = 0.024 rng/ml. 



F ig .  11-16. P l o t  o f  k i n e t i c  da ta  o f  c e l l o t r j o s e  (G ) h y d r o l y s i s  
by  c e l l o b i o h y d r o l a s e ;  ( a )  t / c  vs .  ( l / c j  I n  [ 1 / ( 1 - c ) ]  
p l o t ;  ( b )  r e p l o t  o f  s lopes i n  ( a )  as a  f u n c t i o n  o f  
c e l l o t r i o s e  concen t ra t i on ;  ( c )  r e p l o t  o f  i n t e r c e p t s  
i n  ( a )  as a f u n c t i o n  o f  c e l l o t r i o s e  concen t ra t i on .  
Symbols: E t o t a l  enzyme c o n c e n t r a t i o n ;  G , i n i t i a l  

T  c e l l o t r i o s e  concen t ra t i on .  ( a )  ( 0 ) G 2 '9 .5m~ ;  
ET = 0.55 mglml.  ( A )  G j s 0  mM; ET = O.?3 mg/ml/ 



F ig .  11-17. Slope vs.  i n i t i a l  . i n h i b i t o r  r e p l o t  o f  h y d r o l y s i s  o f  
G. by  c e l l o b i o h y d r o l a s e .  ( a )  Rep lo t  o f  s lopes as a  
f d n c t i o n  o f  GI concen t ra t i on ;  ( b )  r e p l o t  o f  s lopes as 
a  f u n c t i o n  o f  G concen t ra t i on .  Symbols: G4 i n i t i a l  
c e l  l o b i o s e  c o n c g n t r a t i o n ;  G i n i t i a l  c e l l o  1" ose 
concen t ra t i on .  3 ,o 

. REACTION TIME, MIN 

F i g  .. 11-18. Comparison o f  G h y d r o l y s i s  by c e l  l o b i o h y d r o l a s e  
where p roduc t  i t  n o t  an i n h i b i t o r  ( - - - ) ;  p r e d i c t e d  
r e a c t i o n  w i t h  p roduc t  i n h i b i t o r  (-) ; and t h e  
ac tua l  exper imenta l  da ta  ( 0 ) .  G4 = 2 .4  mM; ET = 
0.01 8  mg/ml . 



111. THE MODE OF ENZYMATIC HYDROLYSIS OF CELLULOSE 

A. I n t r o d u c t i o n  

The h y d r o l y s i s  o f  c e l l u l o s e  can be e f f e c t i v e l y  ca ta l yzed  bo th  by 

a c i d  and by t he  c e l l u l a s e  enzyme. P o t e n t i a l l y ,  t he  enzymatic c a t a l y s t  

o f f e r s  t h e  advantages of  p roduc t  s p e c i f i c i t y  and energy conserva t ion .  

Th i s  i s  t o  say, t h e  enzymatic r e a c t i o n  can produce a  pure, s o l u b l e  sugar 

w i t h  a  r e l a t i v e l y  low consul~ ip t ion o f  energy. I t  a l s o  does n o t  p o l l u t e  

t h e  environment and t h e r e f o r e  should be a  much p r e f e r r e d  process over  

a c i d  h y d r o 1 y s . i ~ .  But p r e s e n t l y ,  t h e  e f f i c i e n c y  of  t h e  c e l l u l o s i c  enzyme 

i s  ex t reme ly  low so t h a t  t h e  enzynie c o s t  has been p r o h i b i t i v e l y  h i g h .  

To imporve t h e  e f f i c i e n c y ,  i n -dep th  understanding o f  t h e  f u n c t i o n  o f  

t h e  enzyme and t h e  mechanism o f . c e l l u l o s e  degrada t ion  a r e  o f  v i t a l  importance. 

Due t o  many r e c e n t  s t u d i e s  on t h e  mode and k i n e t i c s  o f  t h e  enzymatic 

degradat, ion o f  c e l l u l o s e ,  t h e  phenomena have begun t o  be understood; 

y e t  many con t rove rs i es  remain t o  be reso lved .  On t he  one hand, a  bi-modal 

t ype  o f  degrada t ion  was proposed i n  which t h e  arilorphous reg ions  o f  c e l . l u l o s e  

were f i r s t  degraded l e a v i n g  t h e  c r y s t a l l i n e  reg ions  behind ( 1 ) .  On t he  

o t h e r  hand, a  m i n ~ - ~ h a s i c  degrada t ion  was suggested based on t h e  observed 

s imp le  f i  r s t - o r d e r  k i n e t i c s  o f  t h e  r e a c t i o n  ( 2 ) .  A  comprehensive a n a l y s i s  

o f  t h e  r e l e v a n t  s t u d i e s , i s  a p p r ~ p ~ i a t e  p r i o r  t o  p resen t i ng  new da ta  on t h e  

k i n e t i c s  o f  t h e  .degradat ion.  

I .  Apparent F i  r s t -O rde r  Reac t ion  o f  C e l l  u l  ose Degradat ion.  

The s i m p l e s t  f o rm  o f  k i n e t i c  behav io r  f o r  t h e  enzymatic degrada t ion  o f  

c e l l  u l ose  was r e p o r t e d  b y  Ghose and Da? ( 3 )  : a  pseudo f i  r s t - o r d e r  r e a c t i o n  



f o r  t h e  h y d r o l y s i s  o f  r i c e  h u l l  c e l l u l o s e  by Aspe rg i l us  c e l l u l a s e  was 

proposed. Thus: 

. where k  i s  t h e  r a t e  cons tan t ,  So i s  t h e  i n i t i a l  s u b s t r a t e  concen t ra t i on  

and P i s  t h e  p roduc t  concen t ra t i on .  T h e i r  exper in ienta l  . da ta  f o l l o w e d  

t h e  proposed model ve ry  c l o s e l y  t o  about  60% c o n v e r s i ~ n  .to t h e  sugar 

p roduc t .  Th i s  was done w i t h o u t  i n t r o d u c i n g  any p roduc t  i n h i b i t i o n  f a c t o r .  

Moreover, t h e  t r a d i t i o n a l  we igh t - l oss  curves based on t h e i r  exper imenta' l  

da ta  show s imp le  l i n e a r  p l o t s  e x t r a p o l a t e d  back d i r e c t l y  th rough  t h e  

o r i g i n  ( F i g .  1 ) .  Th i s  behav io r  i s  c h a r a c t e r i s t i c  o f  a  homogeneous- 

r e a c t i o n  as opposed t o  t h e  bimodal r e a c t i o n  o f  a c i d  h y d r o l y s i s  o f  

c e l l  u l ose  ( 4 ) .  F u r t h e r  searches' of  t h e  1  i t e r a t u r e  showed t h a t  t h i s  

phenollienon i s  n o t  l i n i i t e d  t o  Ghose and Das's s tudy a lone.  The observa t ions  

by Shelby ( 2 )  and t h e  e a r l i e r  da ta  by Mandel and Reese ( 5 )  on t h e  

degrada t ion  o f  ' co t t on  c e l l u l o s e  bo th  showed s i m i l a r  r e a c t i o n  k i n e t i c s .  

T h e i r  cor responding we igh t - l oss  curves a r e  i n c l u d e d  i n  F i g u r e  1  . As we 

know, one o f  t h e  impo r tan t  exper imenta l  foundat ions  f o r  t h e  b i - phas i c  

t heo ry - - t he  amorphous and t h e  c r y s t a l l i n e  phases-- is  t h e  change i n  t he  

s l ope  o f  t h e  we igh t - l oss  curve .  I n  t h e  absence o f  such a  change, t h e  

r e a c t i o n  can no' 1  onget- be regarded a s  b i  -phas ic  b u t  must be cons idered 
. . 

t o  be a  mono-phasic r e a c t i o n .  Th i s  becomes even  more &paren t  when we 

cons ide r  t h e  a c t u a l  degrada t ion  p a t t e r n  o f  t h e  long-cha in  molecule.  

D,eterni inat ions o f  cha in  l e n g t h  a f t e r  enzymatic degrada t ion  have 

a?  so produced c o n t r o v e r s i a l  r e s u l t s .  Uy f a r ,  t h e  i i i a j o r i  t y  i n d i c a t e d  a  

,ve ry  low e x t e n t  o f  degradat ion.  Tab le  1  summarizes t h e  r e l e v a n t  exper imenta l  

observa t ions  i n  t h e  l i t e r a t u r e  f o r  n a t i v e  c e l l u l o s e s .  Except f o r  t he  

case o f  t h e  P e n i c i l l u n i  c e l l u l a s e ,  these  da ta  a l l  show q u i t e  c l e a r l y  t h a t  



w i t h  enzyn~a t i c  degrada t ion  c e l l u l o s e  molecules remain e s s e n t i a l l y  i n t a c t .  

N e i t h e r  t h e  cha in  l e n g t h  n o r  t h e  mo lecu la r  we igh t  d i s t r i b u t i o n  has been 

app rec iab l y  a ld te red  by enzyme.   here i s  an average o f  l e s s  than  one c u t  

f o r  every  f i v e  molecules i n  these res idues  ( t h e  e x t e n t  o f  we igh t  l o s s  

ranged f rom 7% t o  48%). Th i s  means t h a t  t h e  r e s i d u a l  molecules a r e  

e s s e n t i a l l y  untouched w h i l e  those a t t acked  by enzyme a r e  t o t a l l y  

d i s i n t e g r a t e d  i n t o  s o l u b l e  sugar. There i s  e s s e n t i a l l y  no cha in  o f  

i ntern ied ia te  l e n g t h  l e f t  behind. Th i s  t ype  of  r e a c t i o n  resen~bles t h e  

a c t i o n  o f  su r f ace  p e e l i n g  whereby t h e  encountered molecules a r e  comple te ly  

hydro lyzed  rega rd less  o f  t he  b i - p h a s i c  s t r u c t u r e - - t h e  amorphous and 

c r y s t a l l i n e  reg ions - -o f  t h e  c e l l u l o s e .  Combining t h i s  p i ece  o f  i n f o r r ~ i a t i o n  

w i t h  t h e  p r e v i o u s l y  c o l l e c t e d  pseudo f j r s t - o r d e r  k i n e t i c s  i n  we igh t - l oss  

exper iments we can conclude t h a t  f o r  c e r t a i n  types o f  n a t i v e  c e l l u l o s e ,  

t h e  rnode o f  enzymatic degrada t ion  appa ren t l y  f o l l o w s  t h e  mechanism o f  a  

mono-phasic f i r s t - o r d e r  r e a c t i o n .  Thus, t h e  mode o f  r e a c t i o n  can be 

w r i t t e n  as: 

where C i s  t he  mo lecu la r  c e l l u i h s e  a t  t h e  o r i g i n a l  cha in  l eng th ,  P i s  

t h e  p roduc t  o f  s o l u b l e  sugar i n c l u d i n g  c e l l o b i o s e  and glucose, and k  i s  

t h e  r a t e  cons tan t  f o r  t h e  d i s i n t e g r a t i o n  o f  t h e  whole molecule.  

2. Mu1 t i-Component Mode o f  C,ell u l ose  H y d r o l y s i s .  

Whi le  t h e  co t t on '  c e l l u l o s e  may behave as a  s imp le  homogeneous s u b s t r a t e  
. . 

f o r  t h e  enzyme, many. i n d u s t r i a l  grade c e l l  u loses  q u i t e  o f t e n  show a  

two-component o r  mu1 t i  -.component t ype  of  r e a c t i o n .  The h y d r o l y s i s  data 

of  Howell and Stuck wi ' th  t h e  Sol ka F loc  c e l l u l o s e  a r e  t y p i c a l  (I+). 

F igu re  2 reproduces t he  weight - l 'oss p l ~ t  o f  these data.  The lower  t h r e e  

curves do show t h e  two-component behav io r  t y p i c a l  o f  t h e  a c i d  h y d r o l y s i s .  



The upper curve  ( i n  s o l i d  c i r c l e s )  i s  a  s t r e t c h i n g  o f  t h e  i n i t i a l  p e r i o d  

o6 h y d r o l y s i s  which ' a l s o  appears t o  be a  s t r a i g h t  l i n e .  Thus, i t  i s  

e v i d e n t  t h a t  bo th  components a r e  f i r s t - o r d e r  b u t  w i t h  d i f f e r e n t  r a t e s  

o f  r e a c t i o n .  Th i s  was p o s t u l a t e d  by Van Dyke as t h e  m u l t i p l e  components 

system f o r  t h e  enzymatic h y d r o l y s i s  of  - c e l  l u l o s e  ( 1  5 ) .  B rand t  and co- 

workers s t u d i e d  t h e  h y d r o l y s i s  o f  m i l l e d  newspr in t .  T h e i r  r e s u l t  gave 

very  s t r o n g  suppor t  t o  Van Dyke 's  model ( 16 ) .  

Suna~ing up t h e  above observa t ions ,  a  genera l  forniula can be w r i t t e n  

f o r  t h e  degrada t ion  o f  c e l l u l o s e :  

where t h e r e  a r e  i c e l l u l o s e  components, each w i t h  i t s  own f i r s t - o r d e r  

r a t e  cons tan t ,  ki. Th i s  can be taken as t h e  t y p i c a l  behav io r  o f  an 

i n d u s t r i a l l y  processed c e l l u l o s e .  For  t h e  s i n l p l es t  case o f  pure  co t t on ,  

i = 1  and t h e  t ime-course equat ion  i s  reduced t o  Eq. 1. 

The above analyses s t i l l  d i d  n o t  cover  al.1 t h e  cases of  c e l l u ~ o s e  

degradat ion.  .For ins tance ,  when Huang's exper imenta l  da ta  (1  7 )  were p l o t t e d  

as a  we igh t - loss  curve, they  f o l l o w e d  n e i t h e r  t h e  s imp le  n o r  t h e  m u l t i p l e  

f i r s t - o r d e r  k i n e t i c s .  S i m i l a r l y ,  some o f  ou r  h y d r o l y t i c  da ta  on c o t t o n  

l i n t e r s  c e l l u l o s e  f o l l o w e d  Van Dyke's k i n e t i c s  (opened c i r c l e s  i n  F i g .  3 ) .  

Bu t  when t h e  c o n d i t i o n  o f  t h e  r e a c t i o n  was changed, t h e  k i n e t i c s  o f  t he  

degrada t ion  a l s o  changed ( s o l  i d  c i r c l e s  i n  F i g .  3 ) .  By mere ly  i n t r o d u c i n g  

a mechanical a g i t a t i o n  t o  t h e  r e a c t i o n ,  b o t h  t h e  r e a c t i o n  r a t e  and t he  

mechanism o f  degrada t ion  wcre appa ren t l y  a l t e r e d .  Such p l ~ t t r ~ u ~ ~ i e r ~ u n  
1 

a t t r a c t e d  ou r  a t t e n t i o n  and prompted a  search f o r  a  l o g i c a l  exp lana t i on .  

From t h e  examples g i ven  above, i t  i s  q u i t e  c l e a r  t h a t  t h e  mechanism 

o f  c e l l u l o s e  degrada t ion  ca ta l yzed  by enzyme can be a  compl i ca ted  phenomenon. 

To exp lo re  t h i s .  r e a c t i o n ,  mare i n f o r m a t i o n  than t h e  convent iona l  sugar 



' ana l ys i s  o r  we igh t - l oss  da ta  measurement i s  needed. To t h i s  end, we 

thought  o f  u s i n g  ge l  pernleat ion chromatography t o  f o l l o w  t h e  degrada t ion  

p a t t e r n  o f  t h e  long-cha in  molecule.  Combining t h i s  i n f o r m a t i o n  w i t h  t h e  

we igh t  l o s s  data,  we hope t h a t  a  more i n -dep th  a n a l y s i s  can be achieved.  

B. Exper imenta l  

The c e l l u l o s e  used i n  t h i s  work was ace ta te  grade c o t t o n  l i n t e r s  

pu lp ,  SR-169, supp l i ed  by Buckeye C e l l u l o s e  Corpora t ion ,  Memphis, TN. 

I t  was ground i n  a  Wi ley M i l l  t o  a  20-mesh p a r t i c a l  s i z e .  

The c e l l  u l  ase' used was .a crude enzyme p r e p a r a t i o n  o f  T r i  choderma 

reese i ,  SP-122, supp l i ed  by Novo Biochem. Ind.,  Inc. ,   r rank lint on, NC]. 

The enzyme ( 5  gm) was d i s s o l v e d  i n  50 ml NaAc b u f f e r  (0.1 M y  pH 4.8). The 

s o l u t i o n  was c e n t r i f u g e d  and decanted t o  remove t h e  i n s o l u b l e  m a t e r i a l .  

The c l e a r  s o l u t i o n  was s t o r e d  i n  t h e  f r e e z e r  (%-10°C) u n t i l  i t  was used. 

2. A n a l y t i c a l  Methods. 

So lub le  Sugar. The amount o f  sugar s o l u b i l i z e d  by enzymatic h y d r o l y s i s  

was determined by t h e  p h e n o l - s u l f u r i c  a c i d  method (18 ) .  The amount was 

conver ted  t o  % sugar y i e l d  by d i v i s i o n  of  t h e  t o t a l  p o t e n t i a l  amount o f  

sugar i n  t h e  ce l l u l ose , samp le .  The % sugar y i e l d  i s  a l s o  c a l l  % we igh t -  

l o s s  i n  t h e  preceeding d iscuss ion .  Accord ing t o  Welseth ( 6 ) ,  t h e  

nieasurement o f  we igh t  - l oss  based on t h e  s o l u b l e  sugar measurement i s  

e s s e n t i a l  l y  i d e n t i c a l  t o  the. a c t u a l  g r a v i n i e t r i c  measurement. 

Mo lecu la r  .Weight D i s t r i b u t i o n .  The mo lecu la r  we igh t  d i s t r i b u t i o n  

(MWD) o f  c e l l u l o s e  was nieasured by ge l  permeat ion chromatography o f  t he  

n i t r a t e d  salnple d i s s o l v e d  i n  t e t r a h y d r o f u r a n  ( 1 9 ) .  'A se t .  of  po l ys t y rene  

columns c o n t a i n i n g  s i x  Shodex columns (perk in-Elmer ,  C i n c i n n a t i ,  OH) 



o f  t h e  e x c l u s i o n  l i m i t s :  5  X l o 7 ,  5  X l o6 ,  5  X l o 5 ,  7 X l o4 ,  5000 

and 1000 mo lecu la r  we igh t  ( 4  A-80M/5, 1  A-802/5 and 1  A-801/5) were used. 

The corresponding . . c a l i b r a t i o n  curve i s  shown i n  F igu re  4 .  

Enzymatic Hyd ro l ys i s .  Tes t  tubes each c o n t a i n i n g  100 mg c e l l u l o s e  

sample, 4.9 m l  o f  NaAc bu f fe r  and 0.1 ml of  crude Trichoderma reese i  

s o l u t i o n  were incuba ted  w i t h  cons tan t  mechanical s t i r r i n g  i n  a  cons tan t  

temperature ba th  (50°C -'- 1°C.) for:  2  t o  48 hours.  The s t i r r i n g  was done 

w i t h  a  12 mm X 9 mm magnet ic b a r  d r i v e n  by a  magnet ic s t i r r e r  a t  

approx imate ly  1000 rpm. A f t e r  t h e  des ignated r e a c t i o n  t ime,  t h e  t e s t  

tube was taken o u t  o f . , t h e  ba th  and c e n t r i f u g e d .  The f i l t r a t e  was analyzed 

f o r  s o l u b l e  sugar.  The s o l i d  r es i due  was washed, f r e e z e - d r i e d  and n i t r a t e d  

' f o r  MWD measurement. 

C.  Resu l ts  and Ana l ys i s  

1. : Change i n  MWD o f  Residual  C e l l  u lose .  

A s e r i e s  o f  GPC e l u t i o n  curves o f  t he  r e s i d u a l  c e l l u l o s e  t h a t  had , 

been hydro lyzed  a r e  shown i n  F igu re  5. The y i e l d  o f  s o l u b l e  sugar 

measured f o r  each sample i s  l i s t e d  i n  Tab le  2 .  

These da ta  show a major  change i n  t h e  MWD r e s u l t i n g  f rom t h e  

mechan ica l l y  a g i t a t e d  enzymatic degrada t ion  o f  c e l l u l o s e .  Most n o t i c e a b l y ,  

a  second peak emerged a t  approx imate ly  150 DP a t  t h e  expense o.f t h e  f i r s t  

and h i g h  DP peak. ~ s , ' t h e  h y d r o l y s i s  progressed,the h i g h  DP p o r t i o n  

decreased and t h e  low DP p o r t i o n  increased.  I n  t h e  l a s t  r e s i d u a l  sample, 

a lmos t  a l l  t h e  o r i g i n a l  molecules were broken t o  l eave  a  s i n g l e  peak 

cen te red  a t  150 DP. To t h e  f i r s t  degree o f  approx imat ion,  t h e  l a t t e r  i s  

ve ry  c l o s e  t o  t h e  LODP of t h e  c o t t o n  l . i n t e r ~ c e l l u l o s e  observed w i t h  a c i d  

h y d r o l y s i s  ( 20 ) .  

Froni t h e '  above change i n  MWD of t h e  r e s i d u a l  c e l l u l o s e ,  i,t appears 

t h a t  a  cons ide rab le  f r a c t i o n  o f  t h e  o r i g i n a l  c e l l u l o s e  molecules a r e  f i r s t  



s p l i t  t o  an i n t e r m e d i a t e  cha in  i n  t h e  process o f  degradat ion,  perhaps by 

t h e  p r e f e r e n t i a l  a t t a c k  a t  t h e  arnorpho'us reg ions  o f  t h e  c e l l u l o s e  f i b e r ,  

which l e f t  t h e  s t r a i g h t - c h a i n  segments i n  t h e  c r y s t a l l i n e  reg ions  untouched. 

The l a t t e r  segments were appa ren t l y  d i s i n t e g r a t e d  a t  a  s lower  r a t e  o r  i n  

a  l a t e r  occasion. I n  t h i s  way, t h e r e  was a  gradual  accumulat ion o f  t h i s  

i n t e r m e d i a t e  sey~r~ent i n  t h e  res idue. '  6 bimodal d i s t r i b u t i o n  o f  mo lecu la r  

we igh ts  t h e r e f o r e  r e s u l t e d .  

2. The cuase o f  Bimodal Degradat ion. 

The p resen t  mode o f  degrada t ion  i s  appa ren t l y  d i f f e r e n t  f rom those 

o f  t h e  convent iona l  enzymatic h y d r o l y s i s  (Table 1 )  i n  which a  c o n s i s t e n t  

c h a i n  l e n g t h  and i n v a r i a n t  MWD of t h e  r e s i d u a l  c e l l u l o s e  were observed. 

E f f o r t s  have been made t o  e x p l a i n  t h e  d i f f e r e n c e s .  The ma jo r  d i f f e r e n c e  

we c o u l d  d e t e c t  was t h a t  a l l  t h e  p r e v i o u s l y  r e p o r t e d  exper iments usedd 

e i t h e r  a  s t a t i o n a r y  i n c u b a t i o n  o r  a  shaker i n c u b a t o r  w h i l e  we used a  

magnet ic s t i r r i n g  b a r  f o r  t h e  a g i t a t i o n .  I n  our  case a  mechanical 

shear ing  f o r c e  i s  exe r ted  d i r e c t l y  i n t o  t h e  c e l l u l o s e  f i b e r  due t o  t h e  

g r i n d i n g  o f  t h e  b a r  a g a i n s t  t h e  g l ass  w a l l  o f  t h e  t e s t  tube. Such 

mechanical f o r c e  i s  appa ren t l y  l a c k i n g  i n  t h e  o t h e r  e x p e r i m e n t s .  To 

t e s t  t h i s  exp lana t i on  we repeated t h e  h y d r o l y s i s  exper iment w i t h  i d e n t i c a l  

c o n d i t i o n s  except  f o r  r e p l a c i n g  t h e  s t i r r i n g  b a r  by a  o s c i l l a t i n g  shaker.  

Sorne r e p r e s e n t a t i v e  GPC ' . e l u t i on  curves f o r  t h e  r e s i d u a l  c e l l  u l  oses a r e  

shown i n  F i g u r e . 6 .  

From t h i s  f i g u r e ,  . we . can see t h a t  t h e r e  i s  e s s e n t i a l l y  no ma jo r  

change i n  t h e  MWD from t h e  o r i g i n a l  c e l l u l o s e .  The. profound bimodal 

d i s t r i b u t i o n  recorded f o r  t h e  mechanical  a g i t a t i o n  i s  n o t  e v i d e n t  .here, 

There i s ,  however, a  s ~ n a l l  s h i f t  of t h e  ma jo r  peak and a  s l i g h t  ex tens ion  

o f  t h e  low DP t a i l ,  suggest ing t h a t  a  ve ry  smal l  f r a c t i o n  o f  t h e  molecule 

may be s p l i t  t o  low DP segments. T h i s  t ype  o f  degrada t ion  agrees very  



well with the reported observation.l isted in Table 1 .  Since the only 

change here i s  the method of agi ta t ion,  i t  i s  logical to  a t t r ibu te  the 

difference to th i s  factor.  Thus, in the conventional incubation, the 

f iber  i s  not subjected to  a shearing force; the mode of degradation i s  

mono-phasic. The mode of degradation under the influence of the mechanical 

shear i s  bimodal. Considering, however, that  any shearing force from a 

magnetic s t i r r e r  can be very small and that  the presence of the enzyme 

i s  essential  for  the degradation, we would cal l  t h i s  technique "mechano- 

enzymatic degradation". 

In th i s  new type of degradation, an appreciable amount of the'chain 

folds or  amorphous regions are exposed to  the enzyme that  otherwise would 

not be available. A schematic picture of how tha t  could be achieved.is 

shown in Figure 7. The chain folds or weak bonds of cellulose are norrnally 

concealed within the f i b r i l l a r  s t ructure (20) despite the s l igh t  dislocations 

between the c rys t a l l i t e s  of cellulose f i b r i l  (21 ) .  When a shear force 

acts on the f i b r i l ,  the. dislocation could be enlarged exposing more chain 

folds.  However, because of the small shearing force and the 'p las t ic iz ing  

action of the water, the enlarged dislocation i s  not permanent. An in s i t u  

mechanical force i s  needed to maintain such exposure. A similar e f fec t  

was p.roposed by Kelsey for  the wet-mil ling of cell.ulose ( 2 2 ) .  

3. ' Kinetic Analysis of Biniodsl Degradation. 

The GPC elution curves in Figure 5 are apparently composed of two major 

components: one a t '  the.origina1 molecular length, C ,  and the other a t  the 

intermediate chain length, I .  These curves were resolved into the corresponding 

components, C and I ,  with the aid of the digi ta l  computer program (23,24). 

The fraction of. each component in the whole sample was calculated (Table 

2 ) .  Kinetic models were developed to f i t  these data. 

Simple Consecutive Reaction. As observed in t h i s  study, the chain 

folds or amorphous regions of cellulose are  preferentially cut. The 



l i n e a r  cha in  segments emerge as t h e  r e a c t i o n  i n te rmed ia te .  Subsequent ly,  

these segments a r e  f u r t h e r  hydro lyzed  t o  produce t he  s o l u b l e  sugars.  

L e t  C r ep resen t  t h e  an~ount o f  n~o lecu les  o f  t h e  o r i  y i n a l  cha in  1  ength;  

L e t  I r ep resen t  t h e  q u a n t i t y  o f  i n t e r l ~ ~ e d i a t e  cha in  segnients, and l e t  

P r ep resen t  t h e  amount o f  so l  ub l  e  sugar. The sirnpl es t  express ion  o f  such 

bimodal degrada t ion  can be w r i t t e n  as a  consecu t i ve  r e a c t i o n :  

where k  and k2 a r e  r a t e  cons tan ts  f o r  t he  s tepwise  r e a c t i o n .  By assuming 1  

apparent  f i r s t - o r d e r .  k i n e t i c s  f o r  each o f  these s teps ,. t h e  f o l  l ow ing  

equat ions can be w r i t t e n :  

where t h e  aniount of  each component i s  expressed as t h e  f r a c t i o n  o f  t o t a l  

p o t e n t i a l  sugar. Co i s  t he  i n i t i a l  q u a n t i t y  o f  t h e  mo lecu la r  c e l l u l o s e ,  

which equa ls  1 i n  the '  p resen t  case. 

By non-1 inear . leas . t  squares curve  f i t t i n g  o f  t h e  exper imenta l  da ta  l i s t e d  

i n  Tab le  2  (25) ,  t h e  r e a c t i o n  cons tan ts ,  k, and k2, were c a l c u l a t e d  t o  be 

0.25 h" and 0.077 h - l ,  r e s p e c t i v e l y .  The sum o f  squares o f  t h e  r e s i d u a l s  

was 76 f o r  t h i s  model: The p r e d i c t e d  curves and t h e  da ta  p o i n t s  a r e  

shown i n  F igu re  8. 

The p r e d i c t e d  curve  C i s  t h c  o n l y  one Lha t  f o l l o w s  t h e  ye1ser;dl 

t r e n d  o f  t h e  da ta  p o i n t s .  The p r e d i c t i o n s  based on t h e  other.components,  

I and P, dev ia ted  app rec iab l y  from t h e  data.  Most n o t i c e a b l y ,  t h e  

t h e o r e t i c a l  y i e l d  of  s o l u b l e  sugar was t o o  low i n  t h e  i n i t i a l  p e r i o d  and 



t o o  h i g h  a f t e r  10 hours of r e a c t i o n .  Th i s  S-shaped t h e o r e t i c a l  cu rve  

i s  c h a r a c t e r i s t i c  o f ' a  s imp le  consecu t i ve  r e a c t i o n ;  The a c t u a l  exper iment,  

however, produced s c l u b l e  sugar much f a s t e r  i n  t h e  i n i t i a l  s tage and 

gradual  l y  '1 eve1 1 ed . o f f  1  a t e r  i n  comparison t o ' . t h e  t h e o r e t i c a l  r e a c t i o n .  

Thus, t h i s  s imp le  model i s  unable t o  desc r i be  t h e  course o f  t h e  r e a c t i o n  

s a t i s f a c t o r i l y .  A second and more s o p h i s t i c a t e d  model should be cons idered.  

Concurrent  Consecut ive React ion.  The second model we t r i e d  i s  a  

combinat ion o f  Eqs. 2 and 4 and assumes t h a t  t h e  s u b s t r a t e  can be d i v i d e d  

i n t o  t w o . f r a c t i o n s  and t h a t  each f r a c t i o n  may proceed a long  i t s  own 

r e a c t i o n  pathway. Thus: 

here  a i s  t h e  f r a c t i o n  o f  c e l l u l o s e  t h a t  undergoes t h e  consecu t i ve  

r e a c t i o n  t o  g i v e  s o l u b l e  sugar, ( 1  - a )  i s  t h e  f r a c t i o n  sub jec ted  t o  

su r f ace  pee l i ng ,  k, k t  and k "  a r e  t h e  r a t e , c o n s t a n t s  o f  t h e  su r f ace  

p e e l i n g  and t h e  s tepwise consecutive,reaction,~respectively. The k i n e t i c  

equat ions based on t h i s  model a r e  w r i t t e n  as f o l l o w s :  



The second express ion  of  Equat ion 8  i s  reduced f o r  Co = 1  and t h e  

c o n c e n t r a t i o n  o f  o t h e r  components a r e  expressed i n  f r a c t i o n s  o f  t o t a l  

sugar. The k i n e t i c  parameters ob ta i ned  by curve  f i t t i n g  a re :  

The da ta  p o i n t s  and t he  p r e d i c t e d  t ime-courses a r e  shown i n  F i g u r e  9. 

The sum o f  squares o f  r e s i d u a l s  f o r  t h i s  model i s  6.2. 

Comparing Figure'  8 .and  F i g u r e  9, we f i n d  t h a t ,  f i r s t  o f  a l l ,  the  

concur ren t  consecu t i ve '  r e a c t i o n  model. i s  a  b e t t e r  f i t  and i s  more 

c o n s i s t e n t  w i t h  t h e  exper imenta l  da ta  than  i s  t h e  s imp le  consecu t i ve  

r e a c t i o n  model. The decrease i n  t h e  va lue  o f  t h e  sum o f  squares o f  

r e s i d u a l s  f rom 76 t o  6.2 i s  a  s i g n i f i c a n t  improvement i n . . t h e  f i t n e s s  

o f  t he  model.. Second, t h i s  model can s a t i s f a c t o r i l y  p r e d i c t  t h e  sugar 

y i e l d  f o r  up t o  24 hours o f  h y d r o l y s i s  and 64% convers ion.  T h i r d ,  

t h e  behav io r  o f  t h e  o t h e r  components, C and I, c l o s e l y  approximate 

t h e  p r e d i c t i o n .  For these reasons, we suggest t h a t  t h e  concu r ren t  

consecu t i ve  r e a c t i o n  represente'd by Eq. 8 can be regarded as t h e  bas i c  

~iiode o f  mo lecu la r  degrada t ion  of  t h e  mechano-enzymatic h y d r o l y s i s  o f  

c e l l  u l  ose. 
, . 

D. D iscuss ion  

1. Quantuni Mode ' o f  Enzymatic Degradat ion. 

An ou t s tand ing  f e a t u r e  can be d e r i v e d  f rom o u t  p resen t  s t u d y : .  t he  

enzyme may no rma l l y  degrade a  p a r t i c u l ' a r  molecule o f  s u b s t r a t e  e n t i r e l y ,  

n o t  i n .  p a r t s  as has been suggested f o r  t h e  a c i d  h y d r o l y s i s .  I n  o t h e r  

words, when cel1,ulose i s  a t t acked  by t h e  enzyme, these long-cha in  

molecules cou ld  p o s s i h l y  he degraded one moleculc  a t  a t ime  w i t h o u t  



preferent ia l  a t tack on any part icula ' r  par t  of the  molecule. And unt i l  

t h i s  molecule i s  t o t a l l y  d is in tegrated 'and removed from the  reaction s i t e ,  

the  enzyme will  not leave the f i r s t  molecule t o  a t tack another. A , 

quantum mode of degradation can be assumed. The experimental evidence 

fo r  t h i s  view i s  the  invar iant  molecular weight measurement previously 

reported (Table 1 )  and found in our current  study (Fig.  6 ) .  

In comparison the mechano-enzymatic reaction i s  s l i g h t l y  complicated 

b u t  not d i f f e r en t .  A f rac t ion of the ce l lu lose  i s  s t i l l  degraded e n t i r e l y ,  

i  . e . ,  the ( 1  - a )  f rac t ion .  The other  f rac t ion i s \ r a p i d l y  cut t o  leave 

the s t ra ight-chain  segments of LODP. B u t ,  from LODP t o  the soluble  sugar 

(cel  lobiose and g lucose) ,  .the t r an s i t i on  could a lso  be quantumized. The 

pr-evailing and pers i s t en t  second peak in Figure 5 lends strong support t o  

t h i s  hypothesis. Many of the e a r l i e r  works on the  e'nzymatic hydrolysis 

of hydrocell ul ose (such as Avicel ) a1 so reported no evidence fo r  reduction 

of chain length in the residual subs t ra te  (7.,13). 

The cause of the quantum mode of degradation can be explained by 

surface peeling. Due t o  the bulky s i z e  of the  enzyme (whose diameter i s  
0 

a t  l e a s t  20 - 30 A )  ( 26 ) ,  these ca ta lys t s  can only penetrate i n to  the 

large  pores of t he  ce l lu lose  and contact  the  cel lu lose  molecule on the  

l a t e r a l  surfaces on the  micro-f ibr i l  . b u t  not in the  spaces between the 

ends of c rys ta l  1  i  t e s  (27.:) .:. Since the  ce l lu lose  molecules a re  aligned in'  
. . . .  . 

paral le l  t o  the  ' l a t e ra l  surface ,  surface peeling would.chop of f  one layer 

of these molecules a t  a  t'i.me. Molecules in 'the i n t e r i o r  a r e  protected from 

the  enzyma,tic act ions and- therefore  a re  i n t a c t  during the surface  react ion.  

2. A comprehensi.ve Picture of the  Enzymatic Hydrolysis of Cellulose. 
. . 

The hydrolysis of ce l lu lose  . . catalyzed by enzyme i s  a  complex react ion.  

Many fac to rs  r e l a t i ng  t o  the subs t ra te  as well as t o  the reaction conditions 



may a f f e c t  t h e  mode o f  degradat ion.  Accord ing t o  t h e  f o l d i n g  cha in  

niodel o f  c e l l u l o s e  ( 2 0 ) ,  t h e r e  a r e  t h r e e  k inds  of  cha ins  i n  t h e  elenlentary 

f i b r i l ,  i . e . ,  t h e  h i g h l y  o rdered  cha in  i n  t h e  c r y s t a l l i n e  reg ions ,  t h e  

l e s s  ordered chains i n  t h e  amorphous regi 'ons and t h e  cha in  f o l d s  a t  t h e  

end o f  c r y s t a l l i t e s .  These a r e  shown i n  F ig .  10-a. Under normal 

h y d r o l y t i c  c o n d i t i o n s ,  t h e  enzyme appears t o  a t t a c k  o n l y  a  smal l  ' f r a c t i o n  

o f  t he  s u b s t r a t e  molecules a t  a  t i m e  and leaves -the o t h e r  f r a c t i o n  

untouched. There seems t o  be no p r e f e r e n t i a l  c u t  on t h e  cha in  ' fo lds 

o r  aliiorphous reg ions .  Thus, t h e  molecules l e f t  a r e  e s s e n t i a l l y  i n t a c t ,  
\ 

as represen ted  by F ig .  10-b. I n  some s p e c i f i c  cases, such as i n  t he  

mechano-enzymatic r e a c t i o n ,  many o f  t h e  cha in  f o l d s  may be p r e f e r e n t i a l l y  

exposed t o  t he  enzyme a n d ' a r e  c u t  f a s t e r  than t h e  l i n e a r  cha ins  t o  

l eave  t h e  s t r a i g h t - c h a i n  segments a t  LODP. I n  t h i s  way, t h e  s o - c a l l e d  

h y d r o c e l l  u l ose  i s  formed 'as t h e  i n t e r m e d i a t e  degrada t ion  p roduc t .  

Meanwhile, t h e r e  a r e  s t i l l  some o f  t h e  whole c e l l u l o s e  molecules l e f t  

i n t a c t  t o  c o - e x i s t  w i t h  t h e  newly formed h y d r o c e l l u l o s e  and, o f  course, 

t h e  f i n a l  degrada t ion  p roduc t  o f  s o l u b l e  sugar (F,ig. 10-c) .  Th i s  exp la i ns  

t h e  bimodal MWDof t h e  r e s i d u a l  c e l l u l o s e  recorded i n  F ig .  5. 

3. A General i zed. K i n e t i c  Model o f  C e l l  u l o s e  Degradat ion. 

Up t o  t h e  present, ,  we have recogn ized  3 b a s i c  t ypes  o f  mo lecu la r  

degrada t ion  o f  c e l l u l o s e .  These a r e  t h e  apparent  f i r s t - o r d e r  r e a c t i o n  o f  
. . 

Ghose and Das, t h e  niu1,tiple-component . f i  r s t - o r d e r  r e a c t i o n  o f  Van Dyke 

and t he  c u r r e n t l y  d e r i v e d  mechano-enzymatic h y d r o l y s i s .  A gene ra l i zed  
. . 

niodel can be cons t ruc ted  t o  cover  a l l ,  t h r e e  types o f  r e a c t i o n ;  



where Ci = c e l l u l o s e  component i, Pi = s o l u b l e  sugar generated f rom 

component i , ( H C )  . = h y d r o c e l l  u l ose  o r  s t r a i g h t  cha in  segments generated 
1 

f rom coniponent i , ai = f r a c t i o n  of  coniponent i t h a t  undergoes t h e  

consecu t i ve  r e a c t i o n ,  ki, k i ,  k!', = r a t e  cons tan ts  o f  component i. Each 
1 

o f  t h e  above mentioned mode o f  degrada t ion  can be represented by a  

s u i t a b l e  assignment o f  i and a ' s .  The corresponding k i n e t i c  equa t ions  

can be produced by i n t r o d u c i n g  t h e , a p p r o p r i a t e  s u b s c r i p t  i i n t o  Eqs. 

9 - l o .  

For pure  c e l l u l o s e  under t h e  norlnal i n c u b a t i o n  c o n d i t i o n s ,  i = 1  

and ai = 0; Eq; 12 i s  reduced t o  Eq. 2 a n d  t h e  k i n e t i c  equat ions a re :  

C = So I - 0 and P  = So - $. T h i s  l a s t  equa t ion  i s  i d e n t i c a l  t o  

Eq. 1  by Ghose and Das. 

For  c e l  l u l o s e  o f  mu1 t i p l e  components and a  s p e c i f i c  r e a c t i o n  c o n d i t i o n ,  

such as mechanical a g i t a t i o n ,  bo th  t h e  i ' s  and a ' s  may vary  depending 

on t h e  i n d i v i d u a l  case. I n  t h e  r e p o r t  immediate ly  f o l l o w i n g ,  we w i l l  

p resen t  t h e  r e s u l t s  o f  t e s t i n g  t h e  a p p l i c a t i o n  o f  Eq.  12 t o  t h e  p a r t i a l l y  

and e x t e n s i v e l y  swo l l en  c e l l u l o s e s ,  which were done i n  c o n j u n c t i o n  w i t h  

t h e  s t u d i e s  o f  t h e  e f f e c t  o f  s o l v e n t  p re t rea tment .  

4. The Role of  Enzynie i n  t h e  Degradat ion Process. 

The above a n a l y s i s  o f  t h e  c e l l u l o s e  degrada t ion  d i d  n o t  cons ide r  
. . 

t h e  r o l e  of  enz.yme i n  t h e  r e a c t i o n .  Obvious ly ,  t h e  actiori o f  t h e  enzyme 

i s  of v i t a l  importance; :o therw ise  t h e r e  w i l l  c e r t a i n l y  be no degrada t ion .  

And y e t  t h e  p resence 'o f  enzyme does n o t  seem.to i n f l u e n c e  t h e  k i n e t i c s  o f  

t h e  r e a c t i o n .  Th i s  s i t u a t i o n  i s  p b s s i b l e  d n l j  i f  t h e  a d s o r p t i o n  o f  enzyme 

i s  much f a s t e r  than t h e  h y d r o l y s i s  r e a c t i o n  and i f  t h e r e  i s  n o t  deso rp t i on  

and re -adso rp t i on  d u r i n g  t h e  course of  h y d r o l y s i s ;  Consu l t i ng  t h e  

l i t e r a t u r e  of t h e  enzymatic r e a c t i o n ,  we found t h a t  these c o n d i t i o n s  a re  

puss i b l y  I I I ~  1; ,by L t ~ e  c e l  l .u l  u s e - c e l l  u l a s e  'system. , Mandel and co-workers 



r e p o r t e d  t h a t  once c e l l u l a s e  was adsorbed, i t  would never be re l eased  

t o  t h e  s o l u t i o n  phase u n t i  1 t h e  c e l l  u l o s e  was' d i s i n t e g r a t e d  (28). Ghose 

and co-workers observed t h a t  t h e  adso rp t i on  cou ld  be complete w i t h i n  t he  

f i r s t  few minutes o f  t h e  r e a c t i o n  ( 2 9 ) .  Castanon and W i l  ke a l s o  suggested 

t h a t  t h e  enzyme once adsorbed remained immob i l i zed  on t h e  subs t ra te - -  

even a f t e r  ex tens i ve  d i g e s t i o n  (30 ) .  A1 1  these i n d i c a t e  t h e  seemingly 

cheniical l y  a c t i v e  b u t  k i n e t i c a l l y  n e u t r a l  r o l e  of t h e  c e l l  u l ase  enzyme. 

We t r u s t ,  t h e r e f o r e ,  t h a t  our  a n a l y s i s  i s  a t  l e a s t  i n  harmony w i t h  these 

observa t ions .  

E. Conclusions 

The mode o f  c e l l u l o s e  degrada t ion  ca ta l yzed  by enzyme seems t o  be 

a  compl i ca ted  system t h a t  depends'on bo th  t h e  s t r u c t u r e  o f  t h e  s u b s t r a t e  

and t h e  c o n d i t i o n  o f  r e a c t i o n .  Under t h e  normal i n c u b a t i o n  c o n d i t i o n s ,  

c e l l u l o s e  i s  degraded as i f  i t  were a  homogeneous subs t ra te ,  and t h e  

r e a c t i o n  f o l l o w s  a  pseudo f i r s t - o r d e r  k i n e t i c s .  Under some unusual 

c i rsumstances, however, t h e  r e a c t i o n  s h i f t s  t o  a  bimodal t ype  o f  

degradat ion.  A p o r t i o n  of  t h e  weak bonds i n  c e l l u l o s e  may be p r e f e r e n t i a l l y  

c u t  t o  g i v e  sollie i n t e r m e d i a t e  cha in  t h a t  r e f l e c t s  t h e  corresponding 

c y r s t a l l i n e  s t r u c t u r e .  The o t h e r  p o r t i o n  can s t i l l  be degraded d i r e c t l y  : 

and comple te ly  t o  s o l u b l e  sugar.  A  concu r ren t  consecu t i ve  r e a c t i o n  model 

i s  proposed f o r  t h i s . t y p e  o f  degrada t ion  and t h e  p r e d i c t e d  k i n e t i c  

behav io r  based on t h i s  model a r e  found t o  f o l l o w  t h e  t r e n d  o f  t h e  exper imenta l  

data q u i t e  s a t i s f a c t o r i l y .  The ex tens ion  o f  t h i s  model t o  e x p l a i n  t he  

va r i ous  modes of c e l l u l o s e  h y d r o l y s i s  i s  discussed. 
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ABSTRACT 

The mode o f  c e l l u l o s e  degrada t ion  was s t u d i e d  by a n a l y s i s  o f  t he  

mo lecu la r  we igh t  d i s t r i b u t i o n  of  t h e  r e s i d u a l .  c e l  l u l o s e s  d u r i n g  enzymatic 

h y d r o l y s i s .  Both t h e  r a t e  and mode of degrada t ion  cou ld  be a l t e r e d  by 

a  mechanical. f o r c e  a c t i n g  on t h e  subs t ra te .  A bimodal degrada t ion  

r e a c t i o n  rep laced  t h e  convent iona l  mono-phasic r e a c t i o n .  The concur ren t  

c,onsecut ive model was d e r i v e d  t o  account f o r  t h e  "mechano-enzymatic" 

degradat ion:  

where C i s  the. n io lecu la r  c e l l u l o s e ,  I i s  t h e  i n t e r m e d i a t e  cha in  o r  

hyd roce l l u l ose ,  P i s  t h e  p roduc t  of  s o l u b l e  sugar, and k, k t ,  and k "  

a r e  t h e  r a t e  cons tan ts .  Th is 'model  p r e d i c t e d  t h e  k i n e t i c  behavior o f  

t h e  reac tan t s ,  C, I and P, q u i t e  s a t i s f a c t o r i l y  f o r  t h e  h y d r o l y s i s  of  

c o t t o n  l i n t e r s  c e l l u l o s e .  The ex tens ion  o f  t h i s  model t o  e x p l a i n  t h e  

va r i ous  modes o f  c e l l u l o s e  h y d r o l y s i s  i s  d iscussed.  



Tab1 e 1.  Mol c c u l  a r  Weight Measurements i n  

Enzymatic H y d r o l y s i s  o f  Cel l u l o s e  

Year Subs t ra te  
Mo lecu la r  Weight (.DP) 

Enzyme Befo re  Hyd. A f t e r  Hyd. Reference 

Cot ton  L i n t e r s  

Co t ton  

Wood Pulp  

Wood Pulp  

Co t t on  

Cot ton  

Sul f i  t e  Pul p  

Cot t o n  

Aspe rg i l  l a s  

T r i  choderma 

Trichoderma 

' P e n i c i l l u m  

T r i  choderma 

Bas id iomycete 

Trichoderma 

Trichoderma 

No change i n  M W D ~  

a  
MWD f o r  Mo lecu la r  Weight D i s t r i b u t i o n .  



Table 2. Sugar Y i e l d  and GPC Curve Resu la t i on  o f  

Enzymatic H y d r o l y s i s  o f  Cot ton L i n t e r s  C e l l  u l ose  

Hydro1 y s i  s  c I 
Time ( h )  P o s i t i o n  % Y i e l d  P o s i t i o n  % Y i e l d  

P  
% Y i e l d  

* 
A l l  p o s i t i o n s  a r e  i n  e l u t i o n  volume, m l .  



T I M E ,  d 

F i g u r e  1.  Weight  Loss cu rves  o f  t h e  S i m p l e s t  Type o f  Enzymat ic  H y d r o l y s i s  
o f  C e l l u l o s e .  



T lME , h  
~ i $ u r e  2.  Weight  Loss Curves o f  Enzymat ic H y d r o l y s i s  o f  t h e  Sol  ka F l o c  C e l l u l n s e  

( I l o w e l l ' s  D a l a ) .  

So = I n i t i a l  s u b s t r a t e  c o n c e n t r a t i o n .  



. F i g u r e  3. Weight  Loss Curves 3 f  Enzymat ic  H y d r o l y s i s  o f  C o t t o n  L i n t e r s  
Cell u l o s e .  





ELUTION VOLUME. 
Figure 5. G P C  Elution Curves f o r  t h e  Cnzymatic l lydrolysis o f  Cotton Lintcr;  

Cell ulose Under Mechanical Action. 

C = Molecular c e l l u l o s e  .I = Hydrocel l u l o s e .  



ELUTION VOLUME, rnl 
Figure 6. GPC Elution Curves for the Enzymatic Hydrolysis o f  Cotton  i inters 

Cellulose Under Normal Incubation. 
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F i g u r e  7. Schemat ic  Deforn ia t iun  c f  C e l l u l o s i c  E lementary  F i b r i l  b y  t h e  A c t i o n  o f  Mechan ica l  G r i n d i n g  



F igu re  8. K i n e t i c  P l o t s  o f  Enzymatic H y d r o l y s i s  o f  Co t ton  L i n t e r s  C e l l u l o s e  
Accord ing t o  t h e  Simp1 e  Consecut ive React ion.  

0 a , a : Exper imenta l  data  p o i n t s  f d r  t h e  mo lecu la r  c e l l  u lose ,  
t h e  i n t e r m e d i a t e  cha in  and t h e  p roduc t  o f  s o l u b l e  sugar r e s p e c t i v e l y .  

C, I ,  P: Mo lecu la r  ce l . l u l ose ,  i n t e r m e d i a t e  cha in  and p roduc t  o f  s o l u b l e  
sugar r e s p e c t i v e l y .  



F i g u r e  9. K i n e t i c  P l o t s  o f  Enzymat ic  H y d r o l y s i s  o f  C o t t o n  L i n t e r s  C e l l u l o s e  A c c o r d i n g  t o  t h e  Concu r ren t  
Sur facL?-pee l  i n g  and Consecu t i ve  R e a c t i o n .  
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Figure 10. Schematic Mode of Enzymatic Breakdown of Cellulose Molecule. 



I V .  H e l i c a l  S t r u c t u r e  and Conformation Ana l ys i s  o f  C e l l u l o s e  

A.  INTRODUCTION 

C e l l u l o s e  and s t a r c h  a r e  two niajor components o f  t he  po lysacchar ide  

f a m i l y .  They ' a l l  be long t o  t h e  po ly-condensat ion p roduc ts  o f  pure  g lucose.  

There i s  no d i f f e r e n c e  between them i n  ternis o f  t h e  chemical composi t ion.  

Bu t  t h e  g l u c o s i d i c  bonds connec t ing  t h e  nionomeric u n i t s  a r e  i n  d i f f e r e n t  

confor l l ia t ions.  N i  t h  i t s  13-gl u c o s i d i c  bonds, c e l l u l o s e  forms p r i m a r i l y  

a  l i n e a r  cha in .  On t h e  o t h e r  hand, s t a r c h  and p a r t i c u l a r l y  aniylose a re  

conformed t o  a h e l i x  s t r u c t u r e  f o r  t h e i r  a - l i nkages .  As a  r e s u l t  o f  t h i s  

s te reo -s t ruc tu ra ' l  d i f f e r e n c e ,  t h e r e  a r e  ample d i v e r s i t y  i n  bothe t h e  

phys i ca l  and t h e  chemical  p r o p e r t i e s  among these two polymers which a r e  

we1 1  -known i n  t h e  carbohydrate chelai s t r y :  

I n  ou r  s tudy  o f  t he  e f f e c t  o f  s o l v e n t  p re t rea tment  o f c e l l u l o s e  f o r  

enzymzt ic h y d r o l y s i s  ( I ) ,  we observed what we thought  was a  t r a n s i t i o n  

o f  t h e  l i n e a r - c h a i n  c e l l u l o s e  molecule i n t o  a  c o i l  s t r u c t u r e  s t r o n g l y  

resenlbl i n g  a  s t a r c h  mo lecu le  ( o r  Inore a c c u r a t e l y  an amyl ose mol ecu l  e )  . 
That  i s ,  when cel lu10,se was itnniersed i n  a  s o l v e n t  such as concent ra ted  

s u l f u r i c  ac i d ,  t h e  s o l i d  substance g r a d u a l l y  swe l l ed  and e v e n t u a l l y  

d i sso l ved .  The c e l l u l o s e  c o u l d  then be recovered by e i t h e r  n e u t r a l i z a t i o n  

o r  s imp le  d i l u t i o n  o f  t h e  a c i d  t o  g i v e  a  h i g h l y  r e a c t i v e  s u b s t r a t e  

r e a d i l y  access ib l e  t o .  c e l l u l a s e  enzyme. Whi le  s t i l l  i n  t t i e  s o l u t i o n ,  

however, we found t h a t  t he  swo l l en  c e l l u l o s e  cou ld  be s t a i n e d  t o  a  deep 

b l u e  c o l o r  by an i o d i n e - i o d i d e  s o l u t i o n .  I n  a d d i t i o n ,  we a l s o  found 

a  f r a c t i o n  o f - ' t h e  regenerated substance cou ld  be hydro lyzed  t o  g lucose 

by an amylase enzyme. , T h e  l a t t e r  i s  supposed t o  degrade o n l y  aniylose, 

n o t  c e l l u l o s e .  These .observa t ions  a r e  r e p o r t e d  i n  t h i s  communication. 
. . 



B. EXPERIMENTAL 

1. M a t e r i a l .  

The c e l l u l o s e  samples used i n  t h i s  work were a  commercial micro-  

c r y s t a l l i n e  c e l l u l o s e ,  Av i ce l  pH-101, supp l i ed  by FMC Corp., P h i l a d e l p h i a ,  

PA, t h e  Whatnian c e l l u l o s e  powder CF-11 and t h e  No. 1  f i  1  t e r  paper, by 

Whatman LTD., England. 

The enzyme used was a  p u r i f i e d  glucoamylase, SP105, supp l i ed  by Novo 

Biocheni ical  I n d u s t r i e s ,  I n c .  , Frank1 i n t o n ,  NC. The enzyme (50 mg) was 

d i s s o l v e d  i n  20 1111 NaAc b u f f e r  (0 .1  M, ptl 4 .8 ) .  The s o l u t i o n  was c e n t r i f u g e d  

and decanted t o  remove, t h e  i n s o l u b l e  m a t e r i a l .  The c l e a r ' s o l u t i o n  was 

s t o r e d  i n  t h e  . f r eeze r '  (% 1 0 " ~ )  u n t i  1  i t  was used. 

2. Sol ven t  Pre t rea tment  

Two gm c e l l u l o s e  was inniersed i n  40 ml s o l v e n t  (H2S04 75% w/w, H3P04 

85% w/w, ZnC12 72%, NaOH 30%, r e s p e c t i v e l y )  a t  room temperature w i t h  

s u f f i c i e n t  a g i t a t i o n .  Twenty minutes p re t rea tment  t ime  was used f o r  

H2S04 and o v e r n i g h t  f o r  t h e  o t h e r  so l ven t s .  The regene ra t i on  was done 

by d i l u t i o n  i n  1  I t  ice-wate r .  The s u b s t r a t e  was then c e n t r i f u g e d ,  decanted 

and washed f r e e  o f  t h e  s o l v e n t  w i t h  wate r  and f r eeze -d r i ed .  Some subs t ra tes  

had been d r i e d  th rough a  d i f f e r e n t  process such as solvent-exchanged t o  

benzene and f reeze-dr ied .  These a r e  marked i n  t h e  Table acco rd ing l y .  

Cadoxen was prepared '  accord ing  t o  t h e  s tandard  procedure ( 2 ) .  

3. I n - s i t u  s t a i n i n g  

A  d rop  o f  t h e  ce~ l1 ,u lose-so lven t  m i x t u r e  was spread over  a . g l a s s  s l i d e .  

To t h i s  was added a  drop o f  1% I - K I  s o l u t i o n  and mixed. The sample was 

then  covered by. a  cove r i ng  g l ass  and observed under an o p t i c a l  microscope 

f o r  t h e  c o l o r  development. I n  t h e  absence o f  t h e  so l ven t ,  a  pure, 

n a t i v e  c e l l u l o s e  was norma l l y  s t a i n e d  t o  .a brown c o l o r  and a  h y d r o c e l l u l o s e  

such as A v i c e l  would n o t  be s t a i n e d  (NS). 



4. Amy1 ase A c t i v i t y  

Tes t  tubes each c o n t a i n i n g  50 mg subs t ra te ,  2.0 ml o f  NaAc b u f f e r  

(0 .1  M y  pH 4.8) and 0.1 ml of  glucoamylase s o l u t i o n  were incuba ted  i n  a  

cons tan t  temperature ba th  (50°C .I 1°C). A f t e r  24 hours, t h e  t e s t  tubes 

were removed and coo led  by v igorous  shak ing i n  an i ce -wate r  bath.  These 

were then  c e n t r i f u g e d .  The c l e a r  s o l u t i o n  was analyzed f o r  g lucose 

con ten t  by  a  Beckman Glucose Analyzer .  

C. RESULTS AND ANALYSIS 

1. I o d i n e  S t a i n i n g  and Glucoamyl ase A c t i v i t y  

The i n - s i t u  i o d i n e  s t a i n i n g  o f  t h e  d i s s o l v e d  c e l l u l o s e  i n  a c i d  

s o l v e n t s  responded ins tan taneous ly .  I ns tead  o f  t h e  brown c o l o r  o f  

c e l l u l o s e  s t a i n i n g ,  an i n t e n s i v e  b l u e  c o l o r  was developed which was 

c h a r a c t e r i s t i c  o f  t h e  s t a r c h  s o l u t i o n  ( 3 ) .  The c e l l u l o s i c  samples were 

then  p r e c i p i t a t e d  and recovered f o r  t h e  glucoamylase a c t i v i t y  t e s t .  

These r e s u l t s  a r e  c o l  l e c t e d  i n  Table 1. 

The t a b l e  shows t h a t  t h e  amylase a c t i v i t y  goes hand-in-hand w i t h  

t h e  b l u e  c o l o r  devleopnient i n  t h e  i n - s i t u  s t a i n i n g  exper iment.  Both t he  
. . 

s o l u b l e  s t a r c h  (SS) and t h e  c e l l u l o s i c  samples 1-5 reac ted  p o s i t i v e l y  t o  

t h e  i n - s i t u  s t a i n i n g .  They were a l s o  d i ges ted  t o  some e x t e n t  a t  l e a s t ,  

by the  g l  ucoalr~yl ase enzyme t o  g i v e  t h e  d e s i r a b l e  p roduc t - -g l  ucose. 

Secondly, sarilples t h a t  'showed a  nega t i ve  response (NS) t o  t h e  i n - s i  t u  

s t a i n i n g  a l s o  gave nega t i ve  amylase a c t i v i t y .  Samples 6-10 be long t o  

t h i s  ca tagory .  I t  should be p o i n t e d  o u t  t h a t  sample 8 was a l s o  d i s s o l v e d  

i n  a  c e l l u l o s e  solvent--Cadoxen. Apparent ly ,  t h e  c o n f i g u r a t i o n  o f  t h e  

d i s s o l v e d  c e l  l u l o s e  i n  t h i s  a1 k a l  i s o l v e n t  (Cadoxen) was a  random c o i  1  

( 4 )  which does n o t  p rov ide  t h e  p roper  s t r u c t u r e  r e q u i r e d  t o  forrrl t h e  

i o d i n e  complex' f o r  t h e  b l u e  c o l o r a t i o n .  T h i r d l y ,  t h e  p o s s i b i l i t y  o f  any 



ce l l  ul ase contamination of our gl ucoamyl ase enzyme i s  ruled out. Sampl es 

6-12 contains a variety of amorphous and crys ta l l ine  celluloses including 

the control sample of Avicel (#I0 of Tab1 e 1 ) , the amorphous cel l  ul ose 

( # 1 2 )  by ball-mil 1 ing of the Avicel , the dissolved and regenerated 

Avicel in Cadoxen (#8) ,  and the mercerized cel l  ulose ( # 6 ) .  A1 1 these 

samples show a negative response to  our amylase system. Therefore, we 

are  qui te  certain that  there i s  neither cel lulase contamination in our 

a111y1 ase syste111 nor starch contallli nation in the cel l  ulose sa111p1 e.  The 

corresponding glucoamylase a c t i v i t i e s  observed for  samples 1-5 are the 

d i rec t  resul ts  of the solvent pretreatment done on the cellulose.  

The blue coloring reaction of the solvated cellulose i s  a strong 

indication of the presence of a t igh t  helical coil ( 2 ) .  The iodine 

molecules are  trapped into the cavity of the polysacchride helix to slow 

an intensive blue color. The positive response in the glucoamylase 

assay fur ther  supports such a spat ia l  structure because enzyme i s  supposed 

to  recognize the substrate by shape. However, the blue coloring s f  

cel lulosic  materials ha'd been observed as f a r  back as the turn of th i s  

century ( 5 ,  6, 7 )  and the term "aniyloid" and even "starch" were named 

for  th i s  type of substances. Presumably i t  was then thought that  a 

conversion of cellulose to  amylose or  starch was achieved. We do not 

think t h i s  was the case and our account of the matter i s  given below. 

2 .  The Conformation Analysis of Cell ulose Molecule 

As i t  i s  well known, the 1 ,  4-B-glucosidic linkage of cellulose i s  

conlposed of two single bonds, C1-0 and 0-C4', connected to  the central 

bridge oxygen atom. In.nat ive,  solid s t a t e  cellulose,  t h i s  linkage i s  

reinforced by a pair of intramolecular hydrogen bonds between the two 

neighboring glucose units (8) .  As a resu l t ,  the niolecule of native cellulose 

i s  Fairly s t i f f ,  forming a relat ively ordered, s t ra ight  chain. However, 



under c o n d i t i o n s  whereby hydrogen bonds a r e  re leased,  t h e  ad jacen t  

g lucose res idues  may r o t a t e  about  t h e i r  bonds t o  t h e  l i n k a g e  oxygen. 

The e m p i r i c a l  energy c a l c u l a t e d  a t  va r i ous  r o t a t i o n s  about t h e  bonds t o  

t h e  1  inkage oxygen may be used t o  d e f i n e  a con fo rmat ion  energy map (8, 

9 ) .  F i g u r e  1  i s  a  map f o r  c e l  l u l o s e  t h a t  has n o t  hydrogen bonds. We 

t r a c e d  t h e  p o t e n t i a l  v a l l e y  i n  t h e  map t o  show t h e  p o s s i b l e  pathways 

connec t ing  t h e  t h e o r e t i c a l l y  p re fe r red  conformat ions o f  c e l l u l o s e  ( i  . e. , 

t h e  energy minima C and L )  . On t o p  of these, we f u r t h e r  i nco rpo ra ted  

i n f o r n i a t i o n  o f  t h e  ~ i i o l ecu l  a r  screw sysmmtr,y accord ing  t o  Rsmakri shan (10)  

The con fo rmat iona l  energy map ( o r  s imp l y  @-$ map) can be regarded 

as a  g r a p h i c a l  p r e s e n t a t i o n  o f  t h e  p o t e n t i a l  energy o f  bond r o t a t i o n  

w i t h  t h e  t o r s i o n  angles @ (Hl-C1-O-C4') and $ (Cl-0-C4'-H4')  as t h e  

coord ina tes .  A h i g h  p o t e n t i a l  va lue  means uns tab le  con fo rmat ion  and v i c e  

versa. From t h e ' f i g u r e ,  we can f i n d  two p o t e n t i a l  minima o f  i n t e r e s t ,  C 

and L, a t  -4.0 and -1.7 Kcal/rnol r e s p e c t i v e l y  ( U  i s  a  r e l a t i v e l y  uns tab le  

fo rm a t  1.2 kc/n io l ) .  The p o t e n t i a l  v a l l e y  (b roke  1  i n e )  connec t ing  these 

two minima has a  peak p o t e n t i a l  o f  3 Kcal/mol which i s  a  very  low p o t e n t i a l  

b a r r i e r  f o r  bond r o t a t i o n .  For  these two s t a b l e  conformat ions,  C and L, 

l i n e  n  = 2 c ross  t h e  former  and n = -6  passess by t h e  l a t t e r .  These 

t e l l  us t h a t  t he  f i r s t  and t h e  normal 8 - l i nkage  (C) i s  a  t w o - f o l d  screw 

and t h e  second and abnormal 8 - l i nkage  i s  a  le f t -handed 6 - f o l d  he1 i x  ( L ) .  

The r i s e  p e r  r es i due  o r  h  v a l u e  ca l ' cu l a ted  f o r  t h e  second con fo rmat ion  
. . 

has a  va lue  o f 2  i. I n  an e a r l i e r  ana l ys i s  ( l l ) ,  t h i s  second s t a b l e  

conformat ion ( L )  was termed t h e  " looped @-bondM o r  "8 " For  3 consecu t i ve  L .  

g l u c o s i d i c  l i n k a g e  a t  . t h i s  conformat ion,  t h e  ~ r ~ o l e c u l e  would make up h a l f  ' 

a  l o o p  and reve rse  t h e  . ' d i r e c t i o n  o f  t h e  chain.  T h i s  was t h e  b a s i s  f o r  

t h e  proposed cha in  f o l d i n g  i n  t h e  c e l l u l o s e  c r y s t a l .  I f  a  s e r i e s  o f  6  

bonds were t o  have t h e  fiL conformat ion, t h i s  s e c t i o n  o f  molecul~e would 



assume a  complete l o o p  of 360": Molecules o f  t h i s  shape would be a  

c l o s e  s t r u c t u r a l  analogue o f  t h e  amylose molecule (12 ) .  On account  o f  

t h e  low p o t e n t i a l  b a r r i e r  a long  t h e  r o t a t i o n  pathway between C and L, we 

suggest t h a t  t h e  t r a n s i t i o n  from t h e  l i n e a r  cha in  t o  t h e  h e l i x  s t r u c t u r e  

i s  p o s s i b l e  th rough t h e  bond r o t a t i o n  o f  t h e  g l u c o s i d i c  l i n kages .  The 

b l u e  c o l o r  development i n  our  i o d i n e  s t a i n i n g  t e s t  i s  an evidence o f  

such a  t r ans fo rma t i on .  

A p i c t u r e  can now be v i s u a l i z e d  t h a t  when c e l l u l o s e ~ i s  d i s s o l v e d  

( o r  niore a c c u r a t e l y  swo l l en )  i n  an a c i d  medium, t h e  molecule may assume 

a  6 - f o l d  h e l i x  con fo rmat ion .  If i o d i n e  i s  added a t  t h i s  t ime, t h e  

l a t t e r  w i l l  be t rapped i n t o  t h e  c a v i t y  of  t h e  newly formed h e l i x  t o  

e x h i b i t  t h e  b l u e  c o l o r .  Chemica l ly  speaking, t h e  h e l i x  i s  s t i l l  t h e  

1,4-@-bond of t h e  c e l l u l o s i c  l i n kage ,  n o t  t h e  a-bonds o f  t h e  s t a r c h  

nlolecule.  But, as f a r  as t h e  s t e r e o - s t r u c t u r e  i s  concerned, t h e  c e l l u l o s i c  

h e l i x  can be i n  many respec ts ,  ve ry  c l o s e l y  resembl ing t h e  amylos ic  

h e l i x .  I n  f a c t ,  i t  i s  so c l o s e  t h a t  i t  i s  indeed perce ived,  a t  l e a s t  i n  

p a r t ,  by t h e  amylase enzyme we used i n  t h e  assay procedure. 

Because t h e  t r a n s i t i o n  between t h e  l i n e a r  and t h e  h e l i x  form o f  

c e l  l u l o s e  i s  ach ieved by r o t a t i o n  about 1  inkage bonds, t h e  t r a n s i t i o n  

shou ld  be r e v e r s i b l e . .  

The p o t e n t i a l  b a r r i e r . ' f o r  t h e  fo rward  r e a c t i o n  i s  7 Kcal./mole,and f o r  

L t~e  rqeverse r e a c t l o n ,  5 Kcal/mole, accord ing  t o  t h e  corresponding p o t e n t i a l  

111ininla. The r-ever-se r e a c t l o n  should be proceeded w i t h  g r e a t e r  ease than 

t h e  f o rwa rd  r e a c t i o n .  We indeed found t h a t  t h i s  i s  t h e  case--the s t a i n i n g  

c a p a b i l i t y  of  t h e  d i s s o l v e d  c e l l u l o s i c  was g r a d u a l l y  reduced th rough t he  



washing steps. i n  ou r  sample recovery  process. Apparent ly ,  t h e  once- 
\*. 

h e l i c a l  s t r u c t u r e  was r o t a t e d  back t o  resume t h e  s t r a i g h t  cha in  con fo rmat ion  

d u r i n g  t h e  regenera t ion .  Even tua l l y ,  we g o t  mos t l y  t h e  pure, normal 

c e l l u l o s e  back i n  t h e  form o f  t h e  h i g h l y  r e a c t i v e ,  c e l l u l o s e - I 1  (13, 14 ) .  

D. DISCUSSION AND CONCLUSION 

From t h e  above ana l ys i s ,  we a r e  a b l e  t o  a t t r i b u t e  t h e  b l u e  c o l o r  

f o rma t i on  o f  t h e  i n - s i t u  i o d i n e  s ta ' i n i ng  as be ing  t he  i n t e r a c t i o n  between 

t h e  i o d i n e  ~ ~ i o l e c u l e  and t h e  h e l i c a l  fo rm o f  c e l l u l o s e .  I n  t h i s  form, 

an i n n e r  l i n i n g  o f  a pure C-H groups i s  r e s u l t e d  t o  p rov ide  t he  hydrophobic 

c o n d i t i o n  f o r  t h e  entrapped i o d i n e  t o  show t h e  c h a r a c t e r i s t i c  b l u e  c o l o r  

( 15 ) .  However, t h e  f o rma t i on  o f  t h e  h e l i c a l  c e l l u l o s e  c o u l d  be .meta-s tab le  

so t h a t  upon t h e  removal o f  t h e  s o l v e n t  t h e  s u b s t r a t e  reassumed the  normal 

form. T h i s  accounts f o r  t h e  very  low glucoamylase a c t i v i t y  we c o u l d  . 

de tec ted  w i t h  t h e  recovered samples. I f  we take  t h e  g lucose y i e l d  as 

an i n d i c a t i o n  of  t h e  amount o f  h e l i c a l  c e l l u l o s e  presented i n  t h e  substrat,e, 

t h e  .best sample i n  Table 1 has a mere 4% (sample # 3 ) .  The r e s t  of t h e  

s u b s t r a t e  i s ,  o f  course, t h e  normal, regenerated c e l l u l o s e .  

Due t o  t h i s  smal l  amount and uns tab le  na tu re  o f  t h e  h e l i c a l  form, 

i t  i s  i m p r a c t i c a l  t o  c h a r a c t e r i z e  t h e  substance. Attempts have been made 

t o  i nc rease  t h e  e x t e n t  o f  convers ion.  One of t h e  p romis ing  means w e . t r i e d  was 

t h e  use o f  t h e  vo1at i ; le a c i d  so lvent - -40% HC1 aq.  i n  t h i s  case--and t h e  

recovery  by t h e  ' d i r e c t .  f r eeze -d ry i ng  o f  t h e  c e l l u l o s e - s o l v e n t  system. 

Subs t ra tes  recovered i n  t h i s  manner showed g iucose y i e l d  o f  about  8% 

i n  t h e  s tandard glucoamylase assay (24 hours i n c u b a t i o n )  and t h e  y i e l d  

was con t i nuous l y  inc reased  up t o  about  20% i n  10 days. The improvement 

i n  convers ion  was s i g n i f i c a n t .  F u r t h e r  SnvestSgatSon 5n t h i s  area should 

be cont inued.  . 



I n  conclus ion,  we propose t h a t  t h e  pret reatment  o f  c e l l u l o s e  w i t h  

a c i d  s o l v e n t  may induce a h e l i c a l  conformat ion f o r  the  macromolecule 

i n  s o l u t i o n .  This  new conformation resembles, i n  many respects,  t h e  

s t r u c t u r e  o f  the  amylose i n  t h e  amylose-iodine complex. I t i s  respons ib le  

f o r  t h e  b l u e  c o l o r  s t a i n i n g  o f  t h e  i o d i n e  s o l u t i o n  and can be p a r t i a l l y  

d iges ted  by a p u r i f i e d  g l  ucoamyl ase enzyme. 
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Table 1.  

Amylase Act iv i ty  and Iodine Staining of Starch 
and Sol vent Pretreated Cell uloses 

Sample Pretreatment Description o r  Post- . Amylase Activi ty Color 
treatment of Sample Gl ucose (mg/dl ) In-s i tu  

Staining 

Sol ubl e Starch el ue 

Blue Wash in H20, F D ~  

Acetone wash, AD b 

sol-. E X C ~ .  F D ~  

Sol. Exch. FD 

Blue 

Bl ue 

Sol. Exch. FD Blue 

Mercerized Avicel 

Mer. & Hyd. Cellulose d 

Wash in H20; FD 

NaOH 

Cadoxen 

Watman Cell ul ose Powder 

Avi cel 

F i l t e r  Paper Brown 

Ball  illi in^^ Amorphous Cell ul ose Dark Brown 

a : Freeze-dried 

b :  Air-dried 

c: Solvent-exchange and freeze-dried i n  benzene 

d :  Mercerized and hydrolyzed f i  1 t e r  paper c e l l  ulose 

e :  Ball-milled 28 hours on Avicel ce l lu lose  

f :  Not stalned 



Figure 1 .  Conformation Energy Map of  Cell u lose  a t  Zero Hydrogen Bonding. 
Sol id  l i n e s :  Poten t ia l  energy contours  (numbers 0 ,  10 ,  50 i n  
u n i t  c f  Kcal/rnole). 
Broken l i n e s :  Poten t ia l  va l l ey  pathways 
Dottec l i n e s :  l i n e  of screw symmetry, 131 : peak p o t e n t i a l  
energy a t  3 Kcal/rnole, e t c .  



H e l i c a l  S t r u c t u r e  and Con fo rmat ion  A n a l y s i s  o f  C e l l u l o s e  

ABSTRACT 

A  h e l i c a l  m o l e c u l a r  s t r u c t u r e  c o u l d  be genera ted  by t h e  t r e a t m e n t  

o f  c e l l u l o s e  w i t h  an a c i d i c  s o l v e n t .  The s t r u c t u r e  adsorbed i o d i n e  t o  

show a  c h a r a c t e r i s t i c  b l u e  c o l o r  and was p a r t i a l l y  d i g e s t i b l e  by g l u c o -  

amylase. From t h e  c o n f o r m a t i o n  energy  a n a l y s i s  o f  t h e  6-g l  u c o s i d i c  

bonds, i t  i s  p o s t u l a t e d  t h a t  t h e  t r a n s a c t i o n  can be r e s u l t e d  f rom t h e  

bond r o t a t i o n s  o f  t h e  P- t o  t h e  P - c o n f o r m a t i o n  o f  t h e  c e l l u l o s e  
L 

mo lecu le .  
' I  . . 



V .  Ef fec t  o f  So lven t  Pret reatment  on t h e  S t r u c t u r e  and R e a c t i v i t y  

o f   el 1  u l  ose. 

A. I n t r o d u c t i o n .  

C e l l u l o s e  i s  ve ry  r e s i s t a n t  t o .enzyma t i c  h y d r o l y s i s  t o  produce 

g lucose.  A p r e t r e a t ~ i i e n t  i s  r e q u i r e d  t o  enhance t h e  r e a c t i v i t y .  To t h i s  

end, we have developed a  s e r i e s  o f  chemical  p re t rea tments  t h a t  use 

e i t h e r  a  bas i c  o r  an a c i d i c  c e l l u l o s e  s o l v e n t  known as t h e  Purdue 

s o l v e n t  process (1, 2, 3 ) .  The e f f e c t  o f  t he  bas ic .so lvent- -cadoxen--  

on t he  c r y s t a l l i n e  s t r u c t u r e  and r e a c t i v i t y  o f  c e l l u l o s e  has been 

r e p o r t e d  elsewhere ( 4 ) .  Th i s  r e p o r t  descr ibes  t h e  use o f  t h e  a c i d  

s o l  vents,  p a r t i c u l a r l y .  phosphor ic  a c i d  and s u l f u r i c  ac i d ,  and t h e  

corresponding enhancement o f  t h e  enzymatic h y d r o l y s i s  o f  c e l l u l o s e .  

Some background i n fo rma t i on  f o r  t h e  s tudy i s  f i r s t  presented. 

1. C r y s t a l l i n e  S t r u c t u r e  o f  Ce l l u l ose .  

C e l l u l o s e  i s  a  l i n e a r ,  long-cha in  molecule.  I n  na tu re ,  i t  i s  a  

q u a s i - c r y s t a l l i n e  f i b e r .  F.igure 1  shows t h e  schematic a l ignment  o f  

t he  c e l  l u l o s e  .niolecu'ie. i n  t he  f i b r o u s  c r y s t a l  - - the  so-cal  l e d  c r y s t a l  1  i t e  

o r  elementary f i b r i l  ( 5 ) .  B a s i c a l l y ,  c e l l u l o s e  molecules a r e  v i s u a l i z e d  

as be ing  f o l d e d  b a c k  and f o r t h  a long  t h e  f i b r i l l a r  d i r e c t i o n  w i t h i n  t h e  

(101) p lane  o f  t he  c r y s t a l  1  i n e  l a t t i c e s .  T h i s  p lane  corresponds t o  t h e  

t a n g e n t i a l  p l ane  of  t h e  f i b e r .  The average f o l d  l e n g t h  I s  assoc ia ted  

w i t h  t h e  s o - c a l l e d  l e v e l i n g - 0 f . f  deyree o f  p o l y m e r i z a t i o n  (LODP) .  Th i s  



makes up t he  bas i c  n io lecu lar  u n i t  o f  t h e . c e l l u l o s e  f i b e r  ( 5 ) .  As much 

as 1000 DP can be accommodated w i t h i n  t h i s  b a s i c  u n i t  ( f r om "a"  t o  "b" 

i n  F ig .  1 ) .  The r e s t  o f  t h e  cha in  exceeding t h e  1000 DP w i l l  e n t e r  i n t o  

another  c r y s t a l l i t e  u n i t  immediate ly  above o r  below, a long  t he  same 

e lementary  f i b r i l .  Accord ing ly ,  t h e r e  a r e  s t r a i g h t  chains and f o l d e d  

cha ins  i n  t h e  molecule,  and t h e r e  a r e  c r y s t a l l i n e  reg ions  and amorphous 

reg ions  a long  t h e  f i b r i l .  The c ross -sec t i ona l  views o f  t h e  c r y s t a l l i t e  

a l s o  show t h e  r e l a t i o n s h i p  o f  t h e  Mayer and Misch u n i t  c e l l s  ( s o l i d  

boxes) i n  t he  f i b r i l  ( 6 ) .  

C e l l u l o s e  i s  a l s o  a polymorphous m a t e r i a l .  I t s  c r y s t a l l i n e  s t r u c t u r e  

may e x i s t  and co-ex i  s t .  i n  a number o f  s tab1 e forms. ~ h e s e  a r e  known as .  

c e l l u l o s e - I ,  -11, -111, -1V and - X  ( 7 ) .  I n  genera l ,  t h e  most impo r tan t  

s t r u c t u r e s  a r e  c e l l u l o s e - I  and -11 ( F i g .  1 ) .  The former  i s  t h e  c r y s t a l l i n e  

form o f  t h e  n a t i v e  c e l l u l o s e ,  which can very  e a s i l y  be conver ted t o  t he  

l a t t e r  form, i .e . ,  t he  regenerated c e l l u l o s e .  Treatments o f  t h e  c e l l u l o s e ,  

such as those t h a t  r e s u l t  i n  i n t r a c r y s t a l l i n e  s w e l l i n g ,  d i s s o l u t i o n ,  

and regenera t ion ,  a r e  s u f f i c i e n t  t o  produce convers ion.  

2. C e l l u l o s e  So lven ts .  

Due t o  t h e  s t r o n g  hydrogen-bonding among t h e  molecules,  c e l l u l o s e  

i s  normal l y  i n s o l u b l e  i n  many common s o l  vcn ts .  Almost d l  1 c e l l  u l  ose 

solvenLs are  a s t r o n g  ac id ,  a s t r o n g  base o r  a reagent  capable o f  fo rming  

a complex wi th .  c e l l u l o s e .  By f a r ,  t h e  s i m p l e s t  and cheapest so l ven t s  

a r e  s t r o n g  ac ids  (concen t ra ted  s u l f u r i c ,  phosphoric.  and h y d r o c h l o r i c  

a c i d ) .  S u l f u r i c  a c i d  t h a t  i s  about 65% by weight ,  phosphor ic  a c i d  t h a t  

i s  about  85% and hyd ro ' ch lo r i c  a c i d  t h a t  i s a b o u t  4 0 h r e  a l l  capable o f  

s w e l l  i n g  and e v e n t u a l l y  d i s s o l v i n g  t h e  ce1 l u l o s e  ( 4 ) .  Hyd roch lo r i c  



a c i d  was exc luded from our  s tudy  because of  i t s  h i g h  v o l a t i l i t y  and 

s t r ong  c o r r o s i v e  power. For  pret reatment ,  c e l l u l o s e  i s  f i r s t  d i s s o l v e d  

i n  t h e  a c i d  f o r  a  se lec ted  p e r i o d  o f  t ime.  I t  can then be r e p r e c i p i t -  

a ted  by d i l u t i o n  and recovered i n  a  r e l a t i v e l y  pure and a c t i v e  form. 

3 .  Enzymatic H y d r o l y s i s  o f  C e l l  u lose .  

Enzymatic h y d r o l y s i s  o f  c e l l u l o s e  i s  a  d e l i c a t e  r e a c t i o n  system. 

B o t h , t h e  spec ies o f  enzyme, t h e  s t a t e  o f  t h e  s u b s t r a t e  and t h e  c o n d i t i o n s  

o f  t he  r e a c t i o n  may p l a y  a  r o l e  i n  t h e  degrada t ion  process o f  t h e  long-  

c h a i n  molecule.  I n  t he  p rev ious  r e p o r t ,  we developed a  comprehensive 

model t o  desc r i be  t h e  v a r i a b l e  mode o f  t h e  k i n e t i c s  f o r  c e l l u l o s e  h y d r o l y s i s  

(8). A bimodal,  concur ren t ,  consecu t i ve  degrada t ion  was proposed: 

whereby Ci = c e l l u l o s e  component i, Pi = s o l u b l e  sugar generated 

f rom component i , (HC) = h y d r o c e l l  u l ose  generated f rom component 

i, a = f r a c t i o n  o f  components i t h a t  undergoes t he  consecu t i ve  i 

r e a c t i o n ,  ki, k l  and k i  r a t e  cons tan ts  o f  component i f o r  t h e  

va r i ous  s teps o f  degrada t ion  as shown. 

Equat ion 1  was d e r i v e d  f o r  t h e  mechan ica l l y  induced enzymatic 

h y d r o l y s i s  o f  c e l l u l o s e .  I t  was extended t o  cover  t he  v a r i a b l e  

mode of c e l l u l o s e  degradat ion.  For ins tance ,  i = 1  and ai = 0 f o r  h y d r o l y s i s  . 
o f  t he  pure, n a t i v e  c e l l u l o s e  under t h e  convent iona l  i n c u b a t i n g  condi t i ,ons.  

The pseudo f i r s t - o r d e r  k i n e t i c s  descr ibed  by Ghose and Das be long t o  t h i s  



case, C ----- P ( 9 ) .  When i # 1  and ai = 0, t h e  mode o f  degrada t ion  

s h i f t s  t o  t h e  mu1 t i -component r e a c t i o n  descr ibed  by Van Dyke ( 1 0 ) .  When 

i = 1  and a,# 0, t h e  mode i s  t h a t  o f  t h e  mechano-enzymatic h y d r o l y s i s .  
L 

We w i l l  use t h i s  model t o  s tudy  t h e  k i n e t i c s ,  and t h e r e f o r e  t he  r e a c t i v i t y ,  

o f  t h e  s o l  ven t -p re t rea ted  c e l l u l o s e .  

4. D i l u t e  Ac id  Hyd ro l ys i s  o f  Ce l l u l ose .  

D i  1 u t e  a c i d  h y d r o l y s i s  o f  c e l l u l o s e  has been s t u d i e d  e x t e n s i v e l y .  

The process can be used e i t h e r  as an a n a l y t i c a l  t o o l  f o r  s t udy ing  t h e  

c r y s t a l l i n e  s t r u c t u r e  o f  c e l l u l o s e  o r  as a  means. f o r  p roduc ing  fermentable 

sugar. Our c u r r e n t  i n t e r e s t  l i e s  i n  t h e  former  f u n c t i o n .  The c e l l u l o s e -  

I c r y s t a l l i n e  s t r u c t u r e  i s  c h a r a c t e r i z e d  by a  h i g h  LODP, and t h a t  o f  

t h e  regenerated c e l l u l o s e  by a  low LODP. These nieasurements a r e  u s u a l l y  

about  100 and 30 DP, r e s p e c t i v e l y ,  as r e a d i l y  d i f f e r e n t i a t e d  by ge l  

permeat ion chromatography (GPC) (4, 11, 12) .  

B. Exper imenta l .  

1. M a t e r i a l  and Pret reatment .  

Ace ta te  grade c o t t o n  l i n t e r s  c e l l u l o s e  (Buckeye C e l l u l o s e  Cor- 

po ra t i on ,  Memphis, TN) was used. A n a l y t i c a l  grade 85% H3P04 and 75% 

H2S04 were used f o r  t h e  s o l v e n t  p re t rea tment  of c e l l u l o s e .  

The p re t rea tment  was c a r r i e d  o u t  as f o l l ows :  Two hundred s i x t y  m l  

o f  t h e  s o l v e n t  was p1,aced i n  a  500-1111 beaker, which was i n  t u r n  p laced  

i n  a  i c e - s a l t  ba th  kep t  around -10°C t o  -15°C. When t h e  temperature 

i n s i d e  t h e  beaker reached O°C, 20 gni of c e l l u l o s e  was added. A s t i r r i n g  

r o d  was used t o  thordu i jh ly  mix  t h e  c e l l u l o s e ,  w i t h  t he  ac id .  A f t e r  t h e  

d e s i r e d  t ime  f o r  swe l l i ng ,  t h e  c e l l u l o s e - a c i d  m i x t u r e  was poured i n t o  a  



l a r g e  amount o f  i ce -wa te r  w i t h  s t r o n g  a g i t a t i o n  t o  m in im ize  degrada t ion .  

A s t i r r i n g  r o d  was then  used t o  break t h e  lumps f o r  a  good m ix i ng ,  . . The 

s o l i d  c e l l u l o s e  was separated by f i . l t e r i n g  and was washed s i x  t imes  w i t h  

i c e  water .  The c e l l  u l ose  was resuspended i n  300 m l  o f  1% Na2C03 s o l u t i o n  

o v e r n i g h t  i n  t h e  r e f r i g e r a t o r .  Washing was then  con t inued  w i t h  d i . s t i l 1  ed 

water  a t  room temperature unt i .1  t h e  pH o f  t h e  wash wate r  was identTca1 

t o  t h a t  o f  t h e  d i s t i l l e d  wa te r .  The wet c e l l u l o s e  was then  f r eeze -d r i ed  

f o r  two days..! The t y p i c a l  p re t r ea tmen t  w i t h  85% H3P04 l a s t e d  2  hours 

o r  18  hours.  The cor respond ing  c e l l u l o s e  m a t e r i a l s  were des igna ted  a t  

PSC ( p a r t i a l l y  swo l l en  . c e l l u l o s e )  and ESC ( e x t e n s i v e l y  swo l l en  c e l l u l o s e ) ,  

r e s p e c t i v e l y .  

P re t rea tment  w i t h  75% H2S04 was s i m i l a r  t o  t h a t  w i t h  H3P04. The 

p re t r ea tmen t  pe r i ods  were 10 minu tes  o r  1  h o w .  The r e s u l t i n g  m a t e r i a l s  

were des igna ted  as S1 and S2, r e s p e c t i v e l y .  

2. Ac i d  H y d r o l y s i s .  

F ive  hundred mg o f  c e l l u l o s e  sample was p laced  i n  75 m l  o f  b o i l i n g  

10% H2S04, i n  a Erlenmeyer f l a s k  and then  b o i l e d  f o r  30 minutes w i t h  

cons tan t  s t i r r i n g .  The r e s i d u e  was f i l t e r e d  and washed i n  a  medium-pore 

s c i n t e r e d  g l ass  funnel ,. which had been oven-d r ied  and weighed. The 

washed r e s i d u e  was t hen  oven-d r ied  i n  t h e  g l ass  f unne l ,  a t  55OC over -  

n i g h t  and t h e  we igh t  was measured. The r e s i d u e  was then  n i t r a t e d  f o r  

t h e  GPC measurements as desc r i bed  p r e v i o u s l y  ( 8 ) .  

3. Enzymatic H y d r o l y s i s .  

The enzymatic h y d r o l y s i s  o f  c e l l u l o s e  was 'per formed acco rd i ng  t o  

t h e  procedure desc r i bed  i n  t h e  p rev ious  r e p o r t  ( 8 ) .  R r i e f l y ,  100 mg 



o f  c e l l u l o s e  was suspended i n  5 m l  o f  0.1 M NaAc b u f f e r  o f  pti 4.8 by 

s t i r r i n g  w i t h  a  magnet ic  s t i r r i n g  ba r .  The h y d r o l y s i s  was c a r r i e d  o u t  

a t  50°C. Novo Trichoderma r e e s e i  c rude enzyme (10% by we igh t  o f  t h e  

s u b s t r a t e )  wa.s used. The we igh t  l o s s  o f  c e l l u l o s e  was determined by 

measur ing t h e  t o t a l  s o l u b l e  sugar w i t h  t h e  p h e n o l - s u l f u r i c  a c i d  method 

(13) .  The r e s i d u a l  c e l l u l o s e  was washed, f r e e z e - d r i e d  and n i t r a t e d  

f o r  GPC measurement ( 8 ) .  

4. GPC Ana l vs i s .  

The mo lecu la r  we igh t  d i s t r i b u t i o n  (F.1WD) o f  t h e  n i t r a t e d  c e l l u l o s e  

samples was measured by GPC u s i n g  t e t r ahyd ro fu ran .  as t h e  e l u t i n g  so l  ven t .  

A  s e r i e s  o f  6 shodex columns (Perk in-Elmer  Co., C i n c i n n a t i ,  OH)  f o r  t h e  

mo lecu la r  we igh t  range 50,000,000 t o  1,000 was used f o r  t h e  f r a c t i o n a t i o n .  

The c a l i b r a t i o n  cu rve  was p resen ted  p r e v i o u s l y  ( '8) .  ' 

To es t ima te  t h e  cha in  l e n g t h ,  a  pead DP was determined f rom t h e  

peak p o s i t i o n  and t h e  c a l i b r a t i o n  curve.  Th i s  va lue  rep resen t s  t h e  

most p robab le  cha in  l e n g t h  o f  t h e  sample (14,15). Other  mo lecu la r  

we igh t  parameters were c a l c u l a t e d  f rom t h e  e l u t i o n  curves, which. gave 

a  measure o f  t h e  MWD o f  p o l y d i s p e r s i  t y  o f  ' the sample. 

C. Resu l t s  and Ana l ys i s .  

1. E f f e c t  o f  P re t rea tment  on Chain Length o f  Ce l l u l ose .  

A s e r i e s  o f  GPC ' e l u t i o n  curves f o r  t h e  s o l v e n t  p r e t r e a t e d  samples 

and t h e  c o n t r o l  a re  shown i n  F i gu re  2;  The MWDs o f  t h e  H3P04-pretreated 

samples were e s s e n t i a l l y  unchanged except  f o r  a  smal l  down -sh i f t  o f  t h e  

peak p o s i t i o n s .  The average cha in  l eng ths  (Tab le  1 )  were o n l y  s l i g h t l y  

reduced. For i ns tance ,  t h e  cha in  l e n g t h w a s  decreased by  o n l y  21% w i t h  



18 hours  o f  H3P04 p re t r ea tmen t  (ESC) ; i t  was decreased by  o n l y  14% w i t h  

2 hours  o f  p re t r ea tmen t  (PSC). Thus, t h e  degrada t ion  assocai  t e d  w i t h  

phosphor ic  a c i d  p re t r ea tmen t  a t  l ow temperature was modera te ly  low 

(16 ) .  

The e l u t i o n  curves o f  t h e  s u l f u r i c  a c i d - p r e t r e a t e d  samples were 

app rec i ab l y  moved t o  t h e  lower  mo lecu la r  we igh t  area.  As determined 

by t h e  peak DP, t h e  cha in  l e n g t h  was decreased by 80% w i t h  t h e  10 minu te  

p re t rea tment  and by 89% w i t h  t h e  1-hour p re t r ea tmen t .  The p o l y d i s p e r s i t y  

va lues were a l s o  a p p r e c i a b l y  increased.  C l e a r l y ,  s u l f u r i c  a c i d  a c t s  n o t  

o n l y  as a  c e l l u l o s e  s o l v e n t  bu t  a l s o  as a  s t r o n g  h y d r o l y z i n g  reagen t  

even a t  t h i s  r e l a t i v e l y  low temperature ( - l o 0  t o  O°C). 

2.  E f f e c t  o f  So l ven t  Pre t rea tment  on LODP. 

When c e l l u l o s e  was hyd ro l yzed  b y  d i l u t e  a c i d  (10% H2S04), t h e  

cha in  f o l d s  o r  amorphous reg ions  o f  c e l l u l o s e  were p r e f e r e n t i a l l y  c u t .  

Th is  g r e a t l y  decreased t h e  cha in  l e n g t h  t o  t h a t  o f  t h e  c r y s t a l l i n e  r eg ions ,  

i . e . ,  LODP. The cor respond ing  GPC e l u t i o n  curves o f  t h e  c e l l u l o s e  samples 

a re  shown i n  F i gu re  3. The mo lecu la r  parameters and t h e  cor respond ing  

we igh t  losses  a re  l i s t e d  i n  Table  2 .  

The e l u t i o n  cu rve  f o r  t h e  d i l u t e  ac i d -hyd ro l yzed  c o t t o n  l i n t e r s  

c e l l u l o s e  (CLC) has a  . s i n g l e  peak a t  about 96 DP, which f a l l s  i n  t h e  

range o f  t h e  t y p i c a l  . c e l l u l o s e - I  c r y s t a l  (12 ) .  A f t e r  s w e l l i n g  was 

produced by  phosphor ic  a c i d  p re t r ea tmen t  f o r  2 hours,  a  second peak 

a t  about 28 DP emerged creat.irly a dual-peak MWD. Wi th  ex tens i ve  s w e l l i n g  

( E S C ) ,  t h e  sample pr,dduced.d s i n g l e  pedk a,L a  new and low va lue  o f  28 

DP, which i s  t y p i c a l  f o r  t h e  regenera ted  c e l l u l o s e  (12,17). 



The e lu t ion  curves f o r  the  s u l f u r i c  acid-pretreated samples a l s o  

show a  d r a s t i c  reduction of LODP t o  a  chain length of about 20 D P .  

The LODP i s  even lower than with the  H3P04 pretreatment. The changes 

in weight loss  during the hydrolysis a l so  follow t h i s  pat tern .  These 

r e su l t s  a re  comparable t o  those reported by Warwicker and Clayton (18) .  

Accompanying the  decrease in L O D P ,  the c ry s t a l l i ne  s t ruc tu re  changed 

from Cell ul ose- I t o  c e l l  ulose- I I (1 9 ) .  

From Table 2 ,  the  polydispers i t ies  a r e  around 1 . 2  t o  1 . 3  fo r  the  

extensively swollen ce l lu lose  and the  s u l f u r i c  acid-pretreated ce l lu loses .  

These values a re  small enough t o  assume tha t  they represent  the  mono- 

dispersed species.  This means these  components may be r e l a t i v e l y  pure 

cel lu lose-I1  c ry s t a l s .  On the  other hand, the  polydispersi ty of t he  

p a r t i a l l y  swollen ce l lu lose  i s  f a i r l y  high a t  2 . 8 ,  and the  G P C  curve 

shows two peaks a t  96 and a t  28 DP. We can reasonably assume t h a t  

t h i s  sample i s  a  mixture of two types of c ry s t a l s ,  namely, the  ce l lu lose - I  

and ce l lu lose - I1  c ry s t a l s .  

3. Enzymatic Hydrolysis of Celluloses. 

The r e s u l t s  of enzymatic hydrolysis of the  solvent-pretreated 

ce l lu loses  a r e  presented in Figures 4 and 5 .  The time courses nf 

soluble sugar production in the phosphoric acid-pretreated samples a r e  

shown in ~ i g u r e  4 .  Those of s u l f u r i c  acid-pretreated samples a r e  shown 

in Figure 5 .  I t  seems t ha t  both solvent  pretreatments enhance the reaction 

apprecSdb1y: t h e  longer the pretreatment time, the  f a s t e r  the  production 

of soluble sugar. Quanti tat ive sacchari f i ca t ion  of ce l lu lose  (>go% con- 

version) in a  reasonable time (8-10 hours) can be accomplished with the  

sol vent pretreatment ( 3 ) .  



A f i g u r e  can be d e r i v e d  f rom each t ime  course cu rve  t o  compare t h e  

r e l a t i v e  r e a c t i v i t y  of these subs t ra tes .  Th i s  i s  t h e  s o - c a l l e d  h a l f -  

l i f e  o r  t h e  t ime  e lapsed f o r  p roduc t i on  of 50% o f  t h e  t o t a l  p o t e n t i a l  

sugars. Thus, t h e  h a l f - l i f e  f o r  t h e  c o t t o n  l i n t e r s  c e l l u l o s e  i s  12 

hours, f o r  PSC i s  2.8 hours,  f o r  ESC i s  1.7 hours,  f o r  S1 i s  2.0 hours,  

and f o r  S2 i s  1.0 hour.  A  s h o r t e r  h a l f - l i f e  corresponds t o  a  h i g h e r  

r e a c t i v i t y  . Conipari ng these f i g u r e s  w i t h  t h e  o t h e r  ~ n o l  ecu l  a r  parameters 

l i s t e d  above we found t h a t  these a r e  rough l y  p r o p o r t i o n a l  t o  t he  

corresponding LODP's. I n  o t h e r  words, c e l l u l o s e  samples w i t h  a  smal l  

LODP have a  s h o r t  h a l f - l i f e  and, v i c e  versa. T h i s  r e l a t i o n s h i p  was 

a l s o  found i n  t h e  a c i d  . hyd ro l ys i s  of t h e  . so l ven t -p re t rea ted  c e l l u l o s e s  

r e p o r t e d  by Bose e t  a1 . ( 4 ) .  I n  f a c t ,  they  suggested t h a t  t h e  r e d u c t i o n  

i n  LODP o f  a  c e l l u l o s e  sample a f t e r  p re t rea tment  may be used as an 

exper in ienta l  measure o f  t h e  e f f i c i e n c y  of  t h e  corresponding p re t rea tment .  

4. K i n e t i c  Ana l ys i s  o f  H3P04-Pretreated Ce l l u l ose .  

I n  a d d i t i o n  t o  t h e  s o l u b l e  sugar p roduc t ion ,  we have measured t he  

t h e  changes i n  t he  mo lecu la r  we igh t  d i s t r i b u t i o n  o f  t he  phosphor ic  

a c i d - p r e t r e a t e d  c e l l u l o s e  d u r i n g  t he  course o f  t h e  enzymatic h y d r o l y s i s  

( F i g u r e  6 ) .  The degrada t ion  was . c l e a r l y  bimodal.  Most . n o t i c a b l e  

i s  a  low DP peak t h a t  :emerged a t  t he  expense o f  t h e  h i g h  DP f r a c t i o n .  

T h i s  t ype  o f  degrada t ion  c l o s e l y  f o l  lows t he  co-ca l  l e d  quantun~ized 

"mechano-enzymatic" degrada t ion  of  t h e  c o t t o n  1  i n t e r s  c e l  l u l o s e  descr ibed  

i n  t h e  p rev ious  r e p o r t  (8). Here we observed t h a t  t h e  cha in  l e n g t h  o f  

t h e  low n io l ecu la r 'we igh t  peak nleasures 36 DP , i n s t e a d  o f  t h e  150 DP 



f o r  t h e  un t rea ted  c e l l u l o s e .  Because t h e  LODP o f  t h e  e x t e n s i v e l y  

swo l len  c e l l u l o s e  has been d r a s t i c a l l y  reduced we can expect t h a t  the 

enzymatic degrada t ion  p roduc t  o f  t h i s  regenerated c r y s t a l l i t e  should 

a l s o  be reduced t o  t h e  low DP range. Th i s  peak a t  36 DP, t he re fo re ,  

corresponds t o  t he  h y d r o c e l l  u l ose  (HC) . i n  Eq. 1. 

Based on t h e  above ana l ys i s ,  we assumed t h a t  t he  k i n e t i c s  o f  t h e  

h y d r o l y s i s  r e a c t i o n  cou ld  be f u l l y  descr ibed  by s e t t i n g  i = '1 i n  Eq. 1. 

The e l u t i o n  curves ' recorded f o r  va r i ous  t imes o f  h y d r o i y s i s  and t h e  s o l u b l e  

sugar da ta  were expected t o  c o n t a i n  s u f f i c i e n t  i n f o r m a t i o n  f o r  t he  

k i n e t i c  ana l ys i s .  The e l u t i o n  curves were t h e r e f o r e  f r a c t i o n a t e d  

accord ing  t o  t h e  procedure e s t a b l i s h e d  p r e v i o u s l y  and t h e  r e s u l t s  a r e  

presented i n  Table 3  (8).  The p l o t s  f o r  t h e  exper imenta l  da ta  and f o r  

t h e  p r e d i c t e d  curves a r e  shown i n  F ig .  7. The k i n e t i c  parameters thus 

ob ta ined  a re :  a  = 0.44, k = 0.72 h - l ,  k '  = 6.6 h", k"  = 0.23 h - l .  

The sum of squares o f  r e s i d u a l s  i s  3.6 f o r  t h e  c u r v e - f i t t i n g  process. 

For  a  t o t a l  o f  18 regress ions  p o i n t s ,  t h e  va lue  i s  r e l a t i v e l y  smal l ,  

i n d i c a t i n g  a  very  good f i t .  

The change i n  MWD o f  t h e  p a r t i a l l y  swo l len  c e l l u l o s e  (PSC) was 

d r a s t i c a l l y  d i f f e r e n t  f rom t h a t  o f  t h e  e x t e n s i v e l y  swo l len  sample 

( F i g .  8) .  I n  t h e  very  e a r l y  s tage o f  h y d r o l y s i s  (30  min ) ,  t h e  MWD 

spread over  a  wide range o f  cha in  l eng ths .  Du r i ng  t h e  n e x t  couple o f  
. . 

hours, a  peak s t a r t e d ' t o  emerge i n  t h e  low DP range a t  about  36 DP. 

A f t e r  pro longed h y d r o l y s i s ,  however, t h i s  low DP peak shrank and g r a d u a l l y  

disappeared. 'Meanwhile, another  peak emerged i n  t h e  i n te rmed ia te  DP 
I 

range, a t  about 150 DP, Even tua l l y ,  t h e  150-DP p o r t i o r l  became t h e  major  

component i n  t h e  r e s i d u a l  c e l l u l o s e .  Dur ing  t h e  e n t i r e  course o f  t h e  

rveaction, t h e  h i g h  DP p o r t i o n  remained b u t  t h e  r e l a t i v e  q u a n t i t y  



decreased with progress of the reaction.  The ana ly t i ca l ly  resolved GPC 

components confirm a  changing pat tern  such as  this  (Tab1 e  4 ) .  

The above degradation scheme ohvi,o.us.ly follows. a  quantumized oy 

disc re te  triple-mode reaction.  The molecular ce l lu lose  i s  cut e i t he r  

t o  an intermediate o'f 36 DP o r  t o  a  chain length of 150 D P ,  and, of 

course, t o  t he  soluble sugar. From the d i l u t e  acid hydrolysis ,  we 

have found t ha t  t h i s  PSC sample i s  composed of a  mixture of  two c ry s t a l s  

(cel l .ulose-I  and -11).  I t  i s  reasonable t o  expect t ha t  they react  

independently in the  hydrolysis. The changing pat terns  of  the  G P C  

r e f l e c t  f a i t h f u l l y  such a  mechanism f o r  the react ion.  

In the k ine t i c  aha lys i s ,  i  = 2 i s  therefore  assigned. This i s  

complimented with the  ' r a t i o  c ,  the  proportion of the  cel lu lose-I1  

component i n  the mixed sample. The k ine t i c  model now takes the  following 

forms : 

where C1 = (1-c)Co and' t2 = cC a r e  the  two types of ce l lu lose .  In 
0 

the curve- f i t t ing  pt'ocess, parameters k l ,  k i  , k i ,  k 2 ,  k ,  k;, and a2 

a re  fixed values obtained from the  previous experiments f o r  the cotton 

l i n t e r s  ce l lu lose  and the extensively swollen ce l lu lose .  We l e t  c  



al f l o a t  in the  l e a s t  square curve f i t t i n g  process; the  values thus 

obtained a re  al = 1.0  and c  = 0.75.  The predicted curves fo r  the  model 

and the data points  a r e  shown in  Figure 9 ,  with a  residual sum of 

squares value of 52.  

The f igure shows t h a t  the theoret ica l  curves follow the general 

trend of the experimental data. The time courses of the  two intermediate 

chain segments a r e  accurately predicted. B u t  the t o t a l  sugar y ie ld  i s  

over-estimated by about 10% a t  the  high extents  of conversion. The 

general f i t  of the regression curve i s  a l so  poorer than in the  case 

of the ESC. Considering t ha t  the  c ry s t a l l i ne  s t a t e s  of the  present PSC 

are  merely a  pa r t i a l  t r an s i t i on  from ce l l  ulose-I t o  ce l l  ulose-11, the  

r e ac t i v i t y  or  r a t e  constants of the components might be appreciably 

d i f f e r en t  from those1 fo r  the t rue  mixture of the  two d i s t i n c t  c ry s t a l s .  

We used the  r a t e  constants f o r  the t rue  mixture in our regression process, 

and t h i s  may have contributed t o  the poorer f i t  of the  model t o  the  experi- 

mental data.  

D .  Discussion 

As a  polymorphous f ibrous c ry s t a l ,  the s t ruc tu re  of ce l lu lose  i s  

associated with the  longitudinal  order in the directi 'on of the  f i be r .  

O n  the  one hand, nat ivc  cc l l u l s s e s  a r e  , in  ce l lu lose - I  form with a  long 

c rys ta l  1  ine order (about 100-200 D P ) .  On the other  hand, cel lu lose-I1  

i s  the c r y s t a l l i n e  modification of ce l lu lose-I  with a  shor t  order (an 

average of 20-40 DP) .  In between, a  number of combinations a re  possible 

depending on the extent' of the  modification. 

In the present study,  samples of nat ive  ce l lu lose  pretreated with 

85% H3P04 or  75% H2S04 show a  lowering in LODP. This indicates  t h a t  the  

solvent pretreatment transformed the  c rys ta l  from the highly ordered 



cel lu lose-I  t o  the cel lu lose-I1  of much lower order.  As a  r e s u l t ,  the  amount 

of ce l lu lose  access ible  t o  enzyme was d r a s t i c a l l y  increased. The mode of 

enzymatic degradation follows t h a t  of the  concurrent consecutive reaction 

and r e f l e c t s  the  crys ta l1  i t e  s t r uc tu r e  of the subs t ra te .  The k ine t i c  models 

and corresponding parameters have been calcula ted f o r  the  acid-pretreated 

and the  control samples of ce l lu lose  (Table 5 ) ( 8 ) .  

According t o  the proposed concurre'nt consecutive reaction ( 8 ) ,  there  

a r e  two simultaneous react ion pathways f o r  the breakdown of the  macromolecule-- 

:the surface-peeli,ng pathway and the  consecutive reaction pathway. The f i r s t  

breaks the subs t ra te  mol ecu'l e  d i r ec t l y  ,and instantaneously i n to  soluble 

sugar. The second cuts t h e  folds  f irst  t o  give an intermediate chain of 

hydrocellulose which r e f l e c t s  the  c r y s t a l l i t e  s t r uc tu r e  o f  the  subs t ra te .  

The reaction then proceeds t o  break these intermediate chains d i r e c t l y ' t o  the 

soluble  sugar. This i s  the  way t h a t  cotton l i n t e r s  ce l lu lose  reacted in the  

so-called "mechano-enzymatic hydrolysis" reported previously ( 8 ) .  

The pretreatment of ce l lu lose  fo r  18 hours with H3P04 converted the  

subs t ra te  (ESC) completely t o  cel lu lose-I  I .  The mode o f  degradation was 

as  follows: a  portion of the  molecules a r e  broken down very quickly by 

surface-peeling;  another portion i s  cut  by the  consecutive reaction pathway 

t o  y i e ld  hydro1 ce l l  ulose of cel lu lose-I1  as the intermediate chain. This 

acid pretreatment increased the  r a t e  constant f o r  the  surface-peeling,  k ,  t o  

nearly four t i ~nes  t h a t  without aretreatment and increased the  r a t e  constants 

of the  consecutive i-eaction, k '  a n d  k", by 12 and .16' times, respect ively .  

With t h i s  pretreatment, g rea te r  than 90% of the  ce l lu lose  can be converted t o  

soluble sugar in a  r e l a t i ve ly  shor t  period of time ( ~8 hours) .  

The pretreatment of ce l lu lose  f o r  2 hours with H3P04 led t o  a ' p a r t i a l  

t r an s i t i on  of t h e  c r y s t a l .  About 75% of the  nat ive  ce l lu lose  may have been 
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conver ted  t o  t h e  regenera ted  form. The mode o f  degrada t ion  now conforms t o  

t h i s  new s t r u c t u r e .  Thus, t h e  n a t i v e  c e l l u l o s e  i s  degraded acco rd i ng  t o  t h e  

pathways f o r  c e l l u l o s e - I ,  w i t h  t h e  excep t i on  t h a t  al = 1  (wh ich  means t h e r e  

i s  no more su r f ace -pee l i ng  because a l l  s u r f a c e  molecu les have p robab l y  been 

conve r t ed  t o  c e l l u l o s e - 1 1 ) .  The regenera ted  c e l l u l o s e  i s  degraded as i f  i t  

were a  pure  c e l l u l o s e - 1 1 - d i s i n t e g r a t i n g  g e n e r a l l y  v e r y  q u i c k l y  t o  produce 

t h e  i n t e r m e d i a t e  segments o f  hyd roce l l u l ose -11 .  I n  t h i s  way, t h e  k i n e t i c s  

o f  t h e  r e a c t i o n  p r i m a r i l y  f o l l o w s  a  compound bimodal r e a c t i o n  scheme ( i  .e., 

Eq .  2 ) .  Meanwhile, due t o  t h e  v e r y  low r e a c t i o n  r a t e  o f  t h e  c e l l u l o s e - I  

segments, sugar p r o d u c t i o n  s tops  w i t h  t h e  exhaus t ion  o f  t h e  c e l l u l o s e - I  I . 
component. Th i s  i s  q u i t e  e v i d e n t  a f t e r  8  hours o f  h y d r o l y s i s :  t h e  o n l y  

s i g n i f i c a n t  components l e f t  und iges ted  a r e  t h e  r e l a t i v e l y  l o n g  cha ins  o f  

t h e  c e l l  u l o s e - I  segments ( F i g .  9 ) .  

The d i f f e r e n c e  i n  t h e  c r y s t a l  1  i t e  l e n g t h s  (LODP) measured a f t e r  enzymat ic 

h y d r o l y s i s  and a f t e r  a c i d  h y d r o l y s i s  i s  n o t i c e a b l e .  The fo rmer  i s  always 

l a r g e r  than  t h e  l a t t e r  ( f o r  n a t i v e  c e l l u l o s e ,  t h i s  i s  150 DP as compared t o  

96 DP; f o r  ce l l u l ose -11 ,  t h i s  i s  36 DP as compared t o  28 DP). Three p l aus i , b l e  

exp lana t i ons  can be g iven .  F i r s t ,  under o u r  exper imenta l  c o n d i t i o n s ,  t h e  

enzyme may c u t  o n l y  t h e  f o l d s  b u t  n o t  t h e  amorphous . r eg ions ,  whereas t h e  a c i d  

may c u t  t h e  f o l d s  as w e l l  as t h e  amorphous reg ions  so t h a t  t h e  a c i d  LODP i s  low.  

Second, a c i d  h y d r o l y s i s  c o u l d  randomly c u t  molecu les o f  t h e  c r y s t a l l i t e  on t h e  

su r f ace  which would produce an extended shou lder  on t h e  low mo lecu la r  we igh t  

s i d e  o f  t h e  e l u t i o n  curve,  and t h e r e f o r e ,  would s h i f t  t h e  p o s i t i o n  o f  t h e  

ma jo r  peak down. T h i r d ,  t h e  enzyme may d i g e s t  t h e  l ow  mo lecu la r  we igh t  

f r a c t i o n  o f  t h e  c r y s t a l 1  i t e  f a s t e r  so t h a t  o n i y  t h e  h i g h  mo lecu la r  we igh t  

f r a c t i o n s  ( 1  50 DP) a r e  1  e f t .  A d d i t i o n a l  exper iments  a r e  r e q u i r e d  t o  ,de te r -  

mine t h e  t r u e  cause. 



Comparing t h e  e f f i c i e n c y  o f  t h e  two s o l v e n t s  used, t h e  s u l f u r i c  a c i d  

i s  a p p a r e n t l y  more power fu l  than  t h e  phosphor ic  ac i d .  The t ime  course and 

h a l f - l i f e  f o r  t h e  18-hour H3P04 p re t r ea tmen t  a r e  s i m i l a r  t o  those  f o r  t h e  

1-hour H SO p re t r ea tmen t .  Those f o r  t h e  Z-hour H3P04 (PSC) p re t rea tment  
2 4 

a re  l e s s  t han  those  f o r  t h e  10-mi.nute HpS04 p re t rea tment .  It shou ld  be 

p o i n t e d  o u t  t h a t  t h e  s u l f u r i c  a c i d  i s  n o t  o n l y  d i s s o l v i n g  c e l l u l o s e  bu t  i s  

a l s o  degrad ing t h e  macromolecule d ~ r  r i h g  t h e  p re t rea tment  pe r i od .  

When t h e  degrada t ion  i:s con t inued  enzyma t i ca l l y ,  t h e  c e l l u l o s e  mo lecu les  

a re  much sma l l e r  a f t e r  s u l f u r i c  a c i d  p re t rea tment  than a f t e r  phosphor ic  a c i d  

p re t r ea tmen t .  

E . CONCLUSION 

The enhancement o f  t h e  enzymat ic  h y d r o l y s i s  o f  c e l l u l o s e  by t h e  s o l v e n t  

p re t r ea tmen t  i s  w e l l  documented. The p re t rea tment  i t s e l f  does n o t  n e c e s s a r i l y  

degrade t h e  c e l l u l o s e  mo lecu le  bu t  t ransforms t h e  c r y s t a l l i n e  s t r u c t u r e  

and reduces t h e  l o n g i t u d i n a l  o r d e r  o f ' t h e  f i b r o u s .  c r y s t a l  which a r e  r e s p o n s i b l e  

f o r  t h e  inc reased  access i  b i  1  i t y .  

The k i n e t i c s  o f  t h e  enzymatic h y d r o l y s i s  o f  t h e  s o l v e n t - p r e t r e a t e d  

c e l  i u l o s e s  f o l l o w s  p r i m a r i  l y  t h e  bimodall, concu r ren t  cons.ecutive r e a c t i o n  

d e r i v e d  f o r  t h e  mechano-enzymatic h y d r o l y s i s .  From t h e  r e s u l t s  o f  t h e  

k i n e t i c  analyses,  we have concluded t h a t  t h e  most r e s i s t i v e  p o r t i o n s  o f  

t h e  s u b s t r a t e  a re  t h e  1  i nea r .  cha ins  assoc ia ted  w i t h  the, l a r g e  c r y s t a l  1  i t e s  

o f  t h e  n a t i v e  c e l l u l o s e .  

As a  s o l v e n t  f o r  t h e  p re t r ea tmen t  o f  c e l l u l o s e ,  s u l f u r i c  a c i d  . is  more 

e f f e c t i v e  than phosphor ic  ac i d .  



F. SUGGESTIONS FOR FUTUBE blORK 

I n  t h e  p resen t  work, we have demonstrated t h a t  t h e  mo lecu la r  degrada t ion  

o f  c e l l u l o s e  c a t a l y z e d  by enzyme can be adequa te ly  desc r i bed  by t h e  b a s i c  

model : 

The exper imenta l  b a s i s  f o r  t h i s  model c o n s i s t s  e n t i r e l y  o f  t h e  a n a l y s i s  

o f  t h e  degrada t ion  p a t t e r n ' . o f  t h e  c e l l u l o s e  molecu le ;  t h e  f u n c t i o n  o f  t h e  

enzyme has n o t  been cons idered.  How t h i s  model can i n c o r p o r a t e  t h e  a c t i o n  

o f  enzyme i s  t h e  n e x t  ques t i on  t o  be answered. 

From what we have l ea rned  i n  t h e  l i t e r a t u r e ,  c e l l u l o s e  i s  a  composi te 

enzyme b a s i c a l l y  c o n t a i n i n g  an e x o - c e l l u l a s e  (cl ) ,  an endo -ce l l u l ase  ( c ~ ) ,  

and a  c e l l o b i a s e  (Cb). The h y d r o l y s i s  p roduc ts  a r e  p r i m a r i l y  c e l  l o b i o s e  

(CB) and, f i n a l l y ,  g lucose ( G ) .  W i th  t h i s  i n f o r m a t i o n ,  we can 1og i ca l . l y  

expand t h e  b a s i c  model t o  accomodate t h e  enzymatic a c t i o n s :  

Here (C -C1 ) r ep resen t s  t h e  s y n e r g i s t i c  a c t i o n  o f  t h e  enzyme components. 
x 

Th i s  model combines t h e  s t r u c t u r a l  f e a t u r e s  o f  t h e  c e l l u l o s e  w i t h  t h e  f u n c t i o n  

o f  t h e  c e l l u l a s e  components t o  d e s c r i b e  t h e  mechanism o f  r e a c t i o n .  Th i s  

model shou ld  be a  s i g n i f i c a n t  s t e p  t o  t h e  i n -dep th  unders tand ing  o f  t h e  

enzymatic r e a c t i o n ,  p rov i ded  i t  can be v e r i  f i e d  exper imenta l  l y .  We, t h e r e -  

f o r e ,  suggest t h a t  f u r t h e r  work be c a r r i e d  o u t  t o  v e r i f y  and r e f i n e  t h i s  model. 
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EFFECT'OF SOLVENT PRETREATMENT ON THE 

STRUCTURE AND REACTIVITY OF CELLULOSE 

ABSTRACT 

The e f f e c t s  o f  s o l v e n t  p re t r ea tmen t  on t h e  mo lecu la r  s t r u c t u r e  and 

t h e  r e a c t i v i t y  o f  c e l l u l o s e  t o  enzymat ic  h y d r o l y s i s  were s t u d i e d  by a c i d  

h y d r o l y s i s  and by k i n e t i c  a n a l y s i s  o f  t h e  degrada t ion  p a t t e r n  o f  t h e  c e l l u -  

l o s e  molecu le .  

When ' t h e  c e l l  u l  ose was . p r e t r e a t e d  ' w i t h  a  s o l  ven t  'and regenerated,  i t s  

c r y s t a l l i n e  s t r u c t u r e  change'd from t h e  n a t i v e  form t o  t h e  c e l l u l o s e - I 1  form, 

which i s  c h a r a c t e r i z e d  by a  l owe r  LODP. The mol 'ecu lar  we igh t  was n o t  appre- 

c i a b l y  a l t e r e d  by t h i s  t r ea tmen t ,  bu t  t h e  r e a c t i v i t y  t o  enzymat ic  h y d r o l y s i s  

was g r e a t l y  enhanced.   he degrada t ion  p a t t e r n  f o l l o w s  a  bimodal concu r ren t  

consecu t i ve  r e a c t i o n ,  which i s  c o n t r o l l e d  by t h e  c r y s t a l l i n e  s t r u c t u r e  o f  

t h e  subs t ra te .  Depending on t t i e  e x t e n t  o f  t h e  p re t r ea tmen t ,  t h e  s u b s t r a t e  

can be a  s i n g l e  component o f  c e l l u l o s e - I 1  o r  a  m i x t u r e  o f  c e l l u l o s e - I  and -11. 

The mode o f  degrada t ion  and t h e  k i n e t i c s  o f  t h e  h y d r o l y s i s  depend on which 

t y p e  o f  s u b s t r a t e  i s  p resen t .  

For p re t rea tment ,  s u l f u r i c  a c i d  i s  a  more e f f i c i e n t  s o l v e n t  than  phosphor ic  

a c i d .  The r e s u l t a n t  LODP can be used t o  measure t h e  e f f i c i e n c y  o f  t h e  p re -  

t r ea tmen t .  



TABLE 1 

TABLE 2 

MOLECULAR WEIGHT PARAMETERS OF SOLVENT PRETREATED CELLULOSE 

1 SAMPLE .- 

I Contro l  
I 
1 

PsC 

I ESC 
i 

S I 

S 2 
1 
-,-.-- 

-- 
MOLECULAR WEIGHT PARAMETERS OF ACID HYDROLYZED CELLULOSES 

......... ............... - - ^." . -.-.-..-....----------.. 

WEIGHTLOSS Dp 1.- _ - 
SAMPLE -.- ....... (U 1 ...... 2 ...... DPn ..... POLY DISPERSITY _ D P 

.... .. - ..... ................. ............. , 

PRETREATMENT 1, 

8 5 3 3 2.5 1 

: 

6 9 24 2.8 , 

27 2 1 1.3 

- - 

..... ....... .- DPw ..- DPn POLY DISPERSITY 

2240 1330 1.7 

SOLVENT - ......... 

--- 

9 6 

96/28 

2 8 

Contro l  

PS C 

ESC 

H3P04 ! 2 h  1850 , 2100 1140 i 1.8 

H3 P04 
i 

18 h 1700 1780 848 2.1 i 

H2S04 10 m 624 213 2.9 

H2S04 1 h  2 30 ,349 161 2.2 

.................................... .- 

. TIME .[...... DPpea k 
--- 

i 

6 

13 

15 
I 

20 1 20 16 1.3 
I 

19 / 21 17 1.2 
b ---- -- --. 

S I 

S 2 

15 

17 



TABLE 3 

RESOLUTION OF GPC COMPONENTS OF THE EXTENSIVELY 

SWOLLEN CELLULOSE HYDROLYZED BY ENZYME 

HYDROLYSIS TIME H C P 
%YIELD ..... %YIELD .. . . . . .  - 

0.5 1 30.3 39 37.6 3 6 24 ; i I 
1 1 ! 29.8 29 1 38.2 42 29 

.i 

2 30.5 13 / 38.9 2 9 5 7 

3 31.7 9 39.2 2 1 70 

4 32.0 5 40.. 0 16 7 8 

6 30 .O 2 40.0 12 8 6 

..................................... ......... ............................. ........................................... 

* 
A l l  p o s i t i o n s  a r e  i n  e l u t i o n  volume, ml.. 

TABLE 4 

RESOLUTION OF GPC COMPONENTS OF THE PARTIALLY 

SWOLLEN CELLULOSE HYDROLYZED BY ENZYME 

* 
A l l  p o s i t i o n s  a r e  i n  e l u t i , o n  volume, m l .  

_ 
NY DROLYSIS 
TIME (h )  

0.5 

1 

2 

4 

8 

16 , . 

_ - - _ _  - - 
C (HC) 1 

. . 
POSITION % Y I E ~  - POSITION %YIELD . . .  POSITION %YIELD %YIELD 

29.2* 3U 1 1 3 3 . 3  15 38.8 31 
I 

29.2 2 5 34.3 1 8  39.5 2 6 

29.0 14 34.7 17 30.4 16 

29.3 11 : 33.4 2 1 38.6 14 5 4 

29.8 4 

30.2 4 .  

35.5 24 

35.5 2 1 

? . 

40.2 6 

40 .O 4 

66 

7 1 

1 ...................... 1... 



TABLE 5 

KINETIC PARAMETERS OF ENZYMATIC HYDROLYSIS OF CELLULOSES 
C-- - .... .................. . . . . . . .  . (. . . . . . . . . . . . . . . . . . . . . . . . . .  .. . . . . . . . .  
I 

_ 
I - 

1 
i . . 

i :.-.. SUBSTRATE ... KINETIC MODEL KINETIC PARAMETERS( 13-I ) ; .............................. - .. -....-- 

i Cotton Linters a I k t  kt" a = 0.51 k  = 0.19 
Cellulose HC k t  = 0.56 

k "  = 0.014 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

k  . . .  

'd  . 
Extensively bP 

''I T 
a = 0.44 k  = 0.72 

Swollen Cellulose a k t  = 6.60 
H C k" = 0.23 

Partially Swollen , (1 - c )C  - 
Cellulose a l  = 1 kl = 0.19 

k i  = 0.56 

ky = 0.014 . 
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F i gu re  1. Schematic C r y s t a l  1  i t e  S t r u c t u r e  o f  C e l l  u l ose  i n  t h e  L o n g i t u d i n a l  (.l e f t  ) 
and Cross-Sect iona l  D i r e c t i o n s  ( r i g h t )  . ' 



Figure 2. 

E S C  

E lu t ion  VoDum e .  m I  
GPC Elution Curves of Cotton Linters Cellulose and Solvent Pretreated 

Celluloses. CLC = Cotton linters cellulose; PSC = Partially swollen 

cellulose by H3Pq4; ESC = Extensively swullsl~ celluluse by H3P04; 

S1 = sulfuric acid pretreated cellulose for 10 min.; 52 = Sulfuric 

acid pretreated cellulose for 1 'hour. 



E l u t i o n  Volume , m'l 

Figure 3 .  G P C  Elution Curves of Hydrolyzed Cotton Linters Cellulose and 

Solvnet Pretreated Cel lu loses .  Sample abbreviations - see  Figure 2 .  



10 
T i m e ,  k 

Figure 4. Times-Courses o f  Enzymatic Hydrolysis of Cotton Linters Celluloses 

and H3P04 Pretreated Cell u l  oses . 



T i m e  , h 
Figure 5. Times-Courses of Enzymatic Hydrolysis of  H2S04 Pretreated Cell uloses.  



~ i u t i o n  V o l u m e .  ml 

Figure 6. GPC Elution Curves of Enzymatic Hydrolysis o f  the Extensively 

Swnl len Cell uloses by H3PO4. C = Molecular cellulose, and HC = 

Hydrocellulose or intermediate chain. 



TIME , h  
F i g u r e  7. K i n e t i c  P l o t s  o f  Enzymat ic H y d r o l y s i s  o f  t h e  E x t e n s i v e l y  Swo l len  

Cell uluses by H3P04 



0.5 h 

Oh'  

Elution V o l u m e ,  ml  
Figure 8. G P C  Elution Curves of Enzymatic Hydrolyzed of the Pa r t i a l l y  Swo l len  

Cellulose by H3POK C = Molecular ce l lu lose ;  H C I  = Hydrocellulose-I 

o r i n f ~ r m e d i a t e  type I ; H C I I  = Hydrocel lu lose-I1  o r  intermediate type  11. 



Figure 9. Kinetic Plots o f  Enzymatic Hydrolysis of the Partially Swollen 

Cell ul ose by H3PO4. 



V I .  CELLULASE BIOSYNTHESIS 

A. OVERVIEW 

U t i l i z a t i o n  o f  c e l l u l a s e  by c e l l u l o l y t i c  organisms i s  a  ve r y  s low 

b i o l o g i c a l  process. Mi:eroorganisms hyd ro l yze  c e l l  u l ose  t o  me tabo l i zab le  

sugars by way o f  p roduc ing  a  comp l i ca ted  c e l l u l a s e  enzyme system. 

E x t r a c e l l u l a r  c e l l u l a s e  syn thes i s  inducers  i n c l u d e  c e l l u l o s e ,  c e l l u l o s e  

d e r i v a t i v e s ,  c e l l o b i o s e ,  sophorose and l ac tose .  

The response o f  funga l  c e l l s  t o  d i f f e r e n t  inducers  v a r i e s  depending 

upon t h e  c o n c e n t r a t i o n  and t y p e  o f  i nducers .  I t  i s  a' lso i n f l u e n c e d  by 

o t h e r  e n v i r ~ n r ~ l e r i t a l  f a c t o r s  such as pH o f  t h e  medium. The syn th i l s i s  o f  

c e l l  u l ase  f o l l o w i n g  i n d u c t i o n  can be i ,nh i  b i t e d  by t h e  presence o f  g lucose 

o r  some o t h e r  sugars i n  t h e  growth medium. There fo re ,  t h e  syn thes i s  o f  

c e l l u l a s e  by  microorganisms i s  r e g u l a t e d  by  t h e  i n d u c t i o n - r e p r e s s i o n  

mechanism. The b a s i c  mechanism o f  r e g u l a t i o n  o f  c e l l u l a s e  syn thes i s  i s  

s i m i l a r  t o  known i n d u c i b l e  enzyme systems. The inducers  r e a c t  w i t h  r ep resso r  

p r o t e i n s  i n s i d e  t h e  c e l l s  caus ing  t h e  derepress ion  o f  c e l l u l a s e  syn thes i s .  

The known c e l l u l a s e  syn thes i s  inducers  have dual  f u n c t i o n s .  They can 

serve as carbon source f o r  c e l l  growth and t h e y  can a l s o  se rve  as inducers  

o f  c e l l u l a s e  syn thes i s .  ' I d e a l l y ,  t h e  r o l e  o f  an i nduce r  shou ld  be l i m i t e d  

t o  t h e  ",Lurrl on" o f  enzyme- syn thes i s .  Inducers  shou ld  n o t  be hyd ro l yzab le  

n o r  should  t h e y  undergo chemical  m o d i f i c a t i o n  once i n s i d e  t h e  c e l l s .  

There fo re ,  t h e  s o - c a l l  ed " g r a t u i t o u s  i nduce rs "  .woul'd. be i d e a l  f o r  s t u d y i n g  

t h e  i n d u c t i o n  o f  c e l l u l a s e  syn thes i s .  U n f o r t ~ l n a t e l y  n o - s u c h  inducers  have 

been found. I n  some cases sophorose behaves.a lmost  l i k e  a  " g r a t u i t o u s  ' 

inducers . "  



Evidence i n d i c a t e s  t h a t  c e l l u l a s e s  produced by c e l l u l o l y t i c  organisms 

a re  syn thes ized  e i t h e r  i n  t h e  cytoplaism o r  on t h e  endoplasmic r e t i c u l u m .  

Thus, t h e  newly syn thes ized  c e l l u l a s e s  a r e  ce l l -bound .  However, t h e  

m a j o r i t y  o f  f unga l  c e l l u l a s e s  a re  e x t r a c e l l u l a r .  S ince t h e  t r a n s l a t i o n s  

occur red  i n s i d e  t h e  c e l l s ,  t h e  s e c r e t i o n  o f  enzymes must be r e g u l a t e d  by 

e i t h e r  an u n s p e c i f i c  r e l e a s i n g  mechanism o r  by a s p e c i f i c  a c t i v e  r e l e a s i n g  

mechanism. U n f o r t u n a t e l y ,  no s t u d i e s  ,concern ing t h e  a c t i  ve r e1  eas ing  o f  

fungal  c e l l u l a s e  have been pub l i shed .  The e f f i c i e n c y  o f  t h e  t r a n s p o r t  and 

u t i l i z a t i o n  o f  " p o t e n t i a l "  i nducers  by organisms i s  c o n t r o l  l e d  by t h e  a b i l i t y  

o f  microorganisms t o  develop a  t r a n s p o r t i n g  enzyme system and/or t h e  

g lycos idase  enzymes. The t r a n s p o r t  system and membrane g lucos idase  r e g u l a t e  

t h e  amounts o f  i nduce rs  e n t e r i n g  t h e  c e l l s ,  w h i l e  t h e  i n t r a c e l l u l a r  

g lucos idase  r e g u l a t e s  t h e  amounts o f  " a c t i v e "  inducers .  The a c t i v i t y  o f  

i n d u c t i o n  c o u l d  be determined by t h e  a f f i n i t y  o f  i nduce r - r ep resso r  t h a t  i s ,  

p r o t e i n  b i nd ing ,  w h i l e  t h e  a c t u a l  a c t i v i t y  o f  t r a n s c r i p t i o n  and t r a n s l a t i o n  

a re  r e g u l a t e d  by " c a t a b o l i t e  r ep ress i on "  and t h e  h a l f - l i f e  o f  m-RNA. The 

a c t i v i t y  o f  i n t r a c e l l u l a r  g lucos idase  c o u l d  be i n f l u e n c e d  by  t h e  amount o f  

i n t r a c e l l u l a r  g lucose and perhaps by  t h e  g lucose  o x i d a t i o n  p roduc t ,  

g l  uconolactone. There fo re ,  t h e  r e g u l a t i o n  o f  c e l l  u l  ase syn thes i s  appears 

t o  be c o n t r o l l e d  by a  comp l i ca ted  mechanism; 

S ince c e l l u l a s e  produ'ced by organisms i s  a  m i x t u r e  o f  enzymes, i t  i s  

n o t  known whether d i  f f e r e n t  c e l l  u l  ases appear i n  t h e  growth medi um sequen t i  a1 l y .  

Hagerdal e t .  a l .  ( 1 )  r e p o r t e d  t h a t  a l l  t h r e e  c e l l u l a s e s  produced by 

Thermoactinomyces appeared i n  t h e  g rowth  medium s imu l taneous ly .  Fagerstam 

and Pe t te rsson  ( 2 )  ana lyzed c e l l u l a s e  produced by - T. r eese i  us i ng  t h e  

immunoelectrophoresis techn ique  and r e p o r t e d  t h a t  t h e r e  i s  no sequen t i a l  

appearance o f  va r i ous  c e l l u l a s e s .  Lobanok e t .  a l .  ( 3 )  s t u d y i n g  t h e  syn thes i s  



o f  c e l l u l a s e  i n  - T. r e e s e i ,  observed t h a t  c e l l o b i o h y d r o l a s e  appeared i n  t h e  

growth medium b e f o r e  endoce l l u l ase .  However, s i n c e  c e l l o b i o h y d r o l a s e  i s  

t h e  ma jo r  p r o t e i n  i n  young c u l t u r e  b r o t h  o f  - T. r e e s e i ,  i t  i s  d i f f i c u l t  t o  

d e t e c t  sma l l  amounts o f  endoce l l u l ase  when u s i n g  t h e  d i s c - e l e c t r o p h o r e t i c  

technique.  We observed t h a t  b o t h  c e l l o b i o t l y d r o l a s e  and endoce l l u l ase  a re  

produced by  - T. r e e s e i  s imu l t aneous l y  and independent o f  t h e  c u l t u r e  age. 

F u r t h e r  i n v e s t i g a t i o n  o f  c o n t r o l  mechanisms o f  c e l l u l a s e  b i osyn thes i s  

by c e l l u l o l y t i c  orgamisms would be n o t  o n l y  h e l p f u l  i n  unders tand ing  t h e  

r e g u l a t i o n  o f  c e l l u l a s e  b i osyn thes i s ,  b u t  a l s o  h e l p f u l  i n  p i n p o i n t i n g  t h e  

obs tac l e  i n  t h e  development o f  an e f f i c i e n t  way t o  enhance c e l l u l a s e  

p roduc t i on  and e v e n t b a l l y  t o  overcome t h e  obs tac l e .  

B. BIOSYNTHESIS OF CELLULASE BY - T. REESEI  

Based on t h e  sequen t i a l  e l u t i o n  methods we a r e  a b l e  n o t  o n l y  t o  c l e a n l y  

f r a c t i o n a t e  t h e  t h r e e  c e l l u l a s e  components; b u t  t o  do t h e  f r a c t i o n a t i o n  

w i t h  ve r y  l i t t l e  l o s s  o f  enzyme. The t o t a l  r ecove ry  o f  ma jo r  enzyme 

component's, summarized i n  Table  VI-1 i s  cons ide rab l y  h i g h e r  than  those  

r e p o r t e d  p r e v i o u s l y  by o t h e r  researchers .  Tab1 e  VI-1 a l s o  g i ves  t h e  mo lecu la r  

we igh ts  o f  t h e  t h r e e  enzyme components. 

Cel l o b i o h y d r o l a s e  i s  t h e  ma jo r  c e l l  u l ase  component produced by - T, 

r eese i  and comprised ove r  35% o f  t h e  h i g h  molecular,  we igh t  s o l u b l e  p r o t e i n s  

produced by fungus (Tab1:e VI-1 ). T o t a l  endogl ucanase (6-25 f r a c t i o n s )  was 

l e s s  t han  13% or t o ' l d l  h i g h  mo lecu la r  we igh t  s o l u b l e  p r o t e i n  and c e l l o b i a s e  

was p resen t  i n  o n l y  t r d c e  aslounts. The r e l a t i v e l y  l a r g e  amount o f  

c e l l o b i o h y d r o l a s e  i n  c r u d e ~ c e l l u l a s e  o f  - T. r e e s e i  i s  c o n s i s t e n t  w i t h  t h e  



. . 

. . . . 
Table VI-1. Su~lm~ary of Cel lu lase  ' ~ e c o v c r ~  ' . . 

.--- 
. . 

Fractions Total Proteins .% :of protein$ , Molecular 
( m d  . Recovered . " Weightt 

. . . . 
* :  

- - 

Culture f i l t r a t e  1404 100" . -. 

After Sephadex G-25 Desal t i  fig 868 61.8" 
. . 

. .  . 
Cel lobiase 2 , 6  :O.le** 76,000 

LMW Endoglucanase 

HMW Endoglucanase 

Cel lobiohydrolase 

* Based on t o t a l  soluble protein . . 

** Based on homogeneous protein 

t Estimated from ~ ~ ~ - ~ o l ~ a c r ~ l  amide gel e lec t rophores is  using proteins 
of known molecular weight a s  markers. . - 

. . 



resul ts  of Berghem e t .  a l . ,  ( 4 ) .  Cellobiohydrolase also makes u p  the . 
majority of cel lulase enzyme in commercial cellulase preparation (obtained 

from Enzyme Development Corp., N Y ,  N Y ) .  

The cellobiase ac t iv i ty  in culture f i l t r a t e s  of - T .  reesei was small 

re lat ive to  tha t  of cellobiohydrolase and endoglucanase. The possibi l i ty  

that  cellobiase of - T. reesei i s  e i ther  an intracel lular  or membrane-bound 

enzyme was indicated by experiments in which cellobiose or  other carbon 

sources were used as the substrate for culture growth. While cellobiose 

can be taken u p  rapidly by the fungus, very l i t t l e  cellulase ac t iv i ty  

could be detected in the f i l t r a t e  (see Table VI-2-cellobiose as carbon 

source). Furthermore, the-. appearance of cel lobiase' did not para1 le l  the 

appearance of cellulase ac t iv i ty .  1,ncreasing culture incubation time did,  

however, resul t  in increasing cellobiase ac t iv i ty  in the f i l t r a t e .  This 

data suggested that  a t  leas t  some of the cellobiase present in the f i l t r a t e  

 night have been an in t race l lu lar  cellobiase which was, perhaps, .released 

when some of the ce l l s  underwent autolysis.  The existance of in t race l lu lar  

and/or membrane-bound cellobiase has been reported for  Sporotrichum 

pulverulentum ( 5 )  and Ne'urospore crassa ( 6 ) .  Thus, i t  would not be unrea- 

sonable to  suggest that  other microorganisms might also have in t race l lu lar  

cel lobiase. 

Prel iminary data showing the cel lobiase hydrolyzing ac t iv i ty  is: found . 

inside the c e l l s ,  as well as outside, for - T.  reesei i s  shown in Table 

VI-3. Cells, when separated from the culture f i l t r a t e  and broken up  'by 

grinding and soni f ica t ion ,  showed signif icant  release o f  cel lqhiase ac t iv i ty .  

This phenomenon was observed not only when cellobiose was used as a carbon 

source during culturc growth, b u t  also when other carbon sources such as 



Table VI-2. Growth and Cellulase Production of T.  ~ e e s e i  - 

Carbon ~ rowth ( ' )  % ~ ~ l l 6 b i a s e ( ' )  % ~ e l l u l a s e ( ~ )  
Source Dry weight, CJ) Activity , .. Activity 

(TOO ml c u l 5 r e  
-- - . . .- -- - - 

Cell ul ose 0.6 . '100'  , . ,;, . 103 

Lactose 0.69 92 8 1 

Glucose 0.63 
' 2 . .  (1 ( t r a c e )  

Galactose 0.65 3 . . <1 ( t r a c e )  

Cellobiose 0.67 5 i l  ( t r a c e )  

Glycerol 1 .03 4 (1 ( t r a c e )  

Xyl ose ~1 ( t r a c e )  

Lactose and glycerol 1.01 11 3 

Lactose and glucose 0.76 ' 26 2 1 

---- - 

( a )  - T .  v i r ide  were grown, in 1% carbon source a t  28OC fo r  4 days. 

( b) One ml of cu l tu re  f i l t r a t e  were incubated with 0.'5% subs t ra te  a t  

50°C f o r  2 hrs.  Activi ty fro111 ce l lu lose  as carbon source served as 
. . 

the control (100%). 



Table VI-3 

Cel lobiase  ~ c t i v i  t i e s ( a )  of - T. reesei  Hpmogenate ( b )  . . 

Carbon .Source Low S a l t  Honlogenate ~ i g h  SaJ t Homogen a t e  

Cell u l  ose 

Cellobiose 

Glucose 

Glycerol 

Xyl ose 

( a )  mg glucose produced per ml of reaction mixture a f t e r  incubation . a t  

50°C f o r  3 hr. 

( b )  Mycelia from 200 m l  of cu l tu re  were disrupted by .grinding and son i f i -  
ca t ion.  Soluble proteins were extracted by 2- ml of 50 mM sodium 
ace ta te  buffer ,  pH 5.8. After buffer ex t rac t ion ,  the remaining so l i d s  

were fu r t he r  extracted by high-sal t  buffer (500 mM NaCl i n  50 mM 

sodium ace ta te ,  pH 5 .8) .  



c e l l  u lose ,  g lucose,  g l y c e r o l  , o r  x y l  ose were.  employed. A1 though these  

r e s u l t s  c l e a r l y  show t h e  ex i s t ence  o f  an i n t r a c e l l u l a r  c e l l o b i a s e ,  t h e  

ques t i on  o f  whether o r  n o t  t h e  i n t r a c e l l u l a r  and e x t r a c e l l u l a r  c e l l o b i a s e  

, i s  t h e  sanle ~ i i u s t  s t i l l  be answered. These r e s u l t s  can a l s o  be used t o  

e x p l a i n  why c e l l o b i o s e  i s  n o t  a  good c e l l u l a s e  inducer .  S ince  t h e  ~ e l l o b i o s e  

can be hydro lyzed  t o  g lucose and u t i l  i z e d  i n t r a c e l l  u l a r l y  by t h e  fungus, 

t h e  fungus i s  n o t  f o r c e d  t o  produce copious q u a n t i t i e s  o f  e x t r a c e l l u l a r  

enzyme i n  o r d e r  t o  have an assured food  source. 

Whi le c e l l o b i o s e  i s  a  poor inducer ,  l a c t o s e ,  t h e  m i l k  sugar ,  i s  a  good 

i nduce r  o f  c e l l u l a s e  b i o s y n t h e s i s .  Lactose- inducer  fungus produces a  

c e l l u l a s e  complex which i s '  i d e n ' t i c a l  t o  those  c e l  l u l a s e s  induced b y  c e l  l u l o s e  

( f o r  SDS g e l s  see F igu re  1-8 b, e, h, i ) .  

These r e s u l t s ,  taken  t o g e t h e r  w i t h  t h e  da ta  descr ibed  i n d i c a t e  t h a t  

T. r e e s e i  produces one ma jo r  endoglucanase and one c e l l o b i o h y d r o l a s e .  - 

Ce l l ob i ase -hyd ro l yz i ng  enzymes a r e  p robab ly  l o c a t e d  i n t r a c e l l u l a r l y  as w e l l  

as e x t r a c e l l  u l a r l y .  

C. THE MULTIPLICITY OF CELLULASES 

The m u l t i p l i c i t y  o f  c e l l u l a s e s  i s  o f  fundamental i n t e r e s t  because o f  

i t s  i m p l i c a t i o n s  on t h e  bas i c  unders tand ing  o f  c e l l u l o s e  h y d r o l y s i s  as w e l l  

as t h e  r e g u l a t i o n  o f  c e l l u l a s e  b i o s y n t h e s i s .  " 

It appears t h a t  f o r  t h e  much s t u d i e d  - T. r e e s e i  m u l t i p l i c i t y  i s  a  " f a c t  
. . 

o f  l i f e . "  Some o'f t h e  p h y s i c a l  c h a r a c t e r i s t i c s  o f  m u l t i p l e  component c e l l u l a s e  

enzymes f a r  t .h i  s microorgami r,n have Lseeii e l u c l  dated. i n  Brown's l a b o r a t o r y  

a t  V i r g i n i a  P o l y t . ~ c h n i c  1 n s t i  t u t c .  Orown and co-workers p u r i f i e d  t h r e e  

c e l l o b i o h y d r o l a s e s  f rom a  commercial c e l l u l a s e  p repa ra t i on .  They found 

these enzymes t o  be g l y c o p r o t e i n s  o f  s i m i l a r  mo lecu la r  we igh t  w i t h  t h e  



l a r g e s t  enzyme ( c e l l o b i o h y d r o l a s e  " C " )  p redomina t ing  (4 ,  7 )  Shoemaker and 

Brown (8 )  r e p o r t e d  f o u r  e l e c t n o p h o r e t i c a l l y  d i s t i n c t  endoglucanases hav ing  

mo1:ecular we igh ts  r ang ing  f rom 37,200 t o  52,000. I n  a d d i t i o n ,  Berghem, e t .  

a l . ,  ( 4 )  have found two ma jo r  endoglucanases (one hav ing  a  h i g h  mo lecu la r  

we igh t  and t h e  o t h e r  a  low mo lecu la r  we igh t )  and severa l  m inor  ones f o r  

T. r eese i  . Okada ( 9 )  has r e p o r t e d  t h r e e  endoglucanases o f  d i f f e r i n g  mo lecu la r  - 

weigh t  and randomness o f  a c t i o n  toward h y d r b l y s i s  o f  c e l l u l o s e .  

Based on t h e  work done i n  our  l a b o r a t o r y ,  we b e l i e v e  t h a t  mu1 t i p l e  

enzymes o f  t h e  same t y p e  a r e  d e r i v e d  f rom t h e  same enzyme and p o t e n t i a l l y  

a r i s e  from p a r t i a l  p r o t e o l y s i s  o f  such an enzyme. I n  p rev i ous  s t u d i e s ,  we 

have p u r i f i e d  t h r e e  d i s t i n c t  c e l  l ob i ases  f rom - T. r e e s e i  which a r e  chromato- 

g r a p h i c a l l y  d i s t i n c t  y e t '  k i n e t i c a l l y  . s i m i l a r .  

I n ' a  s i m i l a r  con tex t ,  Nakayama e t .  a l . ,  ( l o ) ,  r e p o r t e d  t h a t  l i m i t  

p r o t e o l y s i s  o f  c e l l u l a s e s  caused changes i n  enzyme c h a r a c t e r i s t i c s  and 

c r e a t e d  m u l t i p l i c i t y  o f  enzymes. There fo re ,  i t  seems t o  us t h a t  i f  p r o t e o l y t i c  

enzymes p l a y  an impo r tan t  r o l e  i n  caus ing  m u l t i p l i c i t y  o f  c e l l u l a s e s ,  i t  

shou ld  be p o s s i b l e  t o  grow t h e  cu1. tur .e~ i n  such a  way t h a t  p r o t e o l y t i c  

enzyme p roduc t i on  would be l i m i t e d .  There fo re ,  we analyzed endoglucanase 

a c t i v i t y  o f  c u l t u r e s  o f  v a r i o u s  ages a f t e r  f r a c t i o n a t i o n  o f  t h e  endoglucanase 

components on DEAE-cell [~loscl chromatography. The i.esu1.t~ a r e  shown i n  

F i gu re  VI-1. 

There i s  one sharp,  d i s t i n c t  peak o f  endoglucanase a c t i v i t y  f rom 

young f e rmen ta t i on  b r o t h .  I n  comparison, t h e  ten -day-o ld  c u l t u r e  e x h i b i t e d  

a d d i t i o n a l  endoglucanase peaks, w h i l e  i n  t h e  . fou r teen-day-o ld  c u l t u r e  f o u r  
. . 

d i f f e r e n t  endogl ucanase a c t i v i t y  peaks were observed. The a c t i v i t y  peaks 

of  enzyme ob ta i ned  f rom o l d e r  c u l t u r e s  a r e ' . s i m i l a r  t o  those  obtairred f rom 



o l d e r  c u l t u r e s  a re  s i m i l a r  t o  t hose  ob ta i ned  f rom commercial c e l l u l a s e  - 
p r epa ra t i ons  as shown i n  F i gu re  VI-1.  S i m i l a r  r e s u l t s  have been observed 

by Na kayama ( 1  1  ) . 

Th is  data,  t o g e t h e r  w i t h  t h e  obse rva t i on  o f  p r o l i f i c  p ro tease  a c t i v i t y  

i n  crude commercial c u l l u l a s e  p repa ra t i ons  t h a t  a re  p robab l y  ob ta i ned  from 

o l d e r  c u l t u r e s ,  has l e d  us txo specu la te  t h a t  t h e  m u l t i p l e  enzyme pea'ks i n  

t h e  o l d e r  c u l t u r e s  cou ld  have r e s u l  t e d  from pro tease  m o d i f i c a t i o n  o f  one 

pa ren t  endoglucanase. Th i s  prompted us t o  d i s c o n t i n u e  t h e  use o f  commercial 

c e l l u l a s e  p repa ra t i on ;  

D. PROTEOLYSIS OF CELLULASES 

The p r o t e o l y s i  s  o f  c e l  l u l a s e s  has been p r e v i o u s l y  i n v e s t i g a t e d .  Nakayama 

e t .  a l .  , (10 )  found t h a t  m i l d  p r o t e o l y s i s  o f  endoglucanase f rom - T. r eese i  

by  a  p ro tease  prepared f rom t h e  same fungus r e s u l t e d  i n  c e l l  u l ase  enzymes 

which s t i l l  possessed c e l l u l o l y t i c  a c t i v i t y .  E a r l i e r ,  E r i k s s o n ' a n d  

Pe t t e r son  (12 )  i n v e s t i g a t e d  t h e  e f f e c t  o f  va r i ous  p r o t e o l y t i c  enzymes on 

t h e  c e l l u l a s e  a c t i v i t i e s  on P e n c i l l i u i n  notatum. They found t h a t  d i f f e r e n t  

proteases a f f e c t e d  enzyme a c t i v i t i e s  t o  d i f f e r e n t  .degrees. 

I t  had been r e p o r t e d  t h a t  - T. r e e s e i  sec re ted  p ro tease  i n t o  c u l t u r e  

media d u r i n g  c e l l u l a s e  p roduc t i on .  We have found t h a t  i n  young c u l t u r e  

F i l t r a t e s  o f  - T. r e e s e i ,  t h e  p ro tease  a c t i v i t y  i s  ve r y  low, b u t  t h a t  t h i s  

a c t i v i t y  inc reases  w. i th i n c r e a s i n g  c u l t u r e  age. S i m i l a r l y ,  f o r  c rude 

commercial c e l  l u l a s e  p repa ra t i ons ,  which a r e  harves ted  f rom o l d e r  c u l t u r e s  , 

we have de tec ted  s i q n i f i c a n t .  amounts o f  p ro tease  d c l ; i v l t y  b y  Azoco l l  assay 

methods. 

I t  i s  a l s o  i n s t r u c t i v e  t o  cons ide r  some r e s u l t s  which have been r e p o r t e d  

f o r  o t h e r  enzymes w i t h  r espec t  t o  p a r t i a l  p r o t e o l y s i s .  P a r t i a l  p r o t e o l y s i s  



of  enzymes has been i m p l i c a t e d  i n  p o s t - t r a n s l a t i o n a l  m o d i f i c a t i o n  o f  bo th  

e x t r a -  and i n t r a c e l l  u l a r  enzymes. For example, RNA polymerase (an i n t r a c e l  l u l a r  

enzyme) f rom spores o f  B a c i l l u s  s u b t i l  i s  has been found t o  be d i f f e r e n t  

f rom RNA polymerase o f  v e g e t a t i  ve c e l l  s.  The d i  f f e r e n c e  i s  due t o  t h e  

p a r t i a l  p r o t e o l y s i s  o f  t h e  subun i t s  o f  RNA polymerase from t h e  spore s tage.  

Because o f  t h i s ,  t h e  temp la te  s p e c i f i c i t y  o f  t h e  spore enzyme i s  d i f f e r e n t  

f rom t h e  enzyme o f  t h e  v e g e t a t i v e  c e l l s  . (13).  I t was l a t e r  found t h a t  t h i s  

p r o t e o l y s i s  c o u l d  be prevented by c a r e f u l  man ipu la t i on  o f  enzyme e x t r a c t s  

d u r i n g  enzyme i s o l a t i o n  by f i r s t  removing p ro tease  (14 ) .  Another example 

i s  t h e  p r o t e o l y t i c  m o d i f i c a t i o n  o f  an e x t r a c e l l  u l a r  enzyme, s t a p h y l o k i  nase 

(15).  It was found t h a t  among t h e  t h r e e  isozymes o f  s taphy lok inase ,  two 

enzyme components a re  derived s e q u e n t i a l l y  f rom one enzyme by m i l d  t r y p s i n  

d i g e s t i o n .  Thus, a  t o t a l  o f  t h r e e  enzymes r e s u l t e d  hav ing  d i f f e r e n t  i s o l e c t r i c  

p o i n t s  and d i f f e r e n t  mo lecu la r  we igh ts .  The two enzymes d e r i v e d  f rom t h e  

d i g e s t i o n  were i d e n t i c a l  t o  those  ob ta i ned  f rom t h e  c u l t u r e  f i l t r a t e .  

E.  CO- INDUCTION OF CELLULASE 

Several  l i n e s  o f  ev idence suggest t h a t  b o t h  e n d o c e l l u l a s e . a r e  co- induced 

by  c e l l u l a s e  i n d u c e r s .  We have found t h a t  t h e  r a t i o  o f  b o t h  c e l l u l a s e s  

remained t h e  same w i t h  e i t h e r  c e l l u l o s e  o r  l a c t o s e  as t h e  inducer .  Mutants 

Lhat were h i g h  i n  c e l l u l a s e  p roduc t i ons  produced h i g h  amounts o f  b o t h  

c e l l u l a s e s  (16, 17 ) .  The s imul taneous i n d u c t i o n  and rep ress i on  o f  bo th  

c e l l u l a s e s  suggests a  coo rd i na ted  r e g u l a t o r y  mechanism analogous t o  t h a t  

desc r i bed  f o r  t h e  8 -ga lac tos idase  enzyme system i n  E. - -  c o l i .  The c e l l o b i o s e  

h y d r o l y z i n g  enzyme may he reg111 a t e d  by a d i  f f e r e n t  r e y u l  a t o r y  mechanism. 

Resu l t s  f rom t h e  s tudy  o f  c e l l u l a s e - l e s s  mutants o f  Trichoderma by 

Nevala inen and Palva (18)  suggest t h a t  t h e  s imul taneous l o s s  o f  a c t i v i t i e s  



o f  bo th  endo- and exo -ce l l u l ases  c o u l d  be due t o  a  d e f e c t  i n  t h e  enzyme 

secret ion 'mechanism even though t h e  s e c r e t i o n  o f  o t h e r  enzymes has n o t  

been a f f ec ted .  Steward and 'Leatherwood (19)  suggest t h a t  t h e  e x t r a c e l l  u l  a r  

c e l l u l a s e  i s  c o n t r o l l e d  by a  d i f f e r e n t  gene s i t e  f rom ce l l - bound  c e l l u l a s e ,  

s i n c e  ce l l - bound  enzyme i s  l e s s  s e n s i t i v e  t o  changes o f  c u l t u r e  c o n d i t i o n s .  

However, t h e  d i  f f e r e n t  s e n s i t i v i t y  i n  response t o  c u l t u r e  c o n d i t i o n s  cou ld  . 

be a t t r i b u t e d  t o  t h e i r  e f f e c t  on t h e  s p e c i f i c  r e l e a s i n g  mechanisms. 

Some g e n e t i c  da ta  a re  needed b e f o r e  any conc lus i on  can be made, however, 

a t  p resen t ,  i t  appears t h a t  b o t h  c e l l u l a s e s  a r e  c o n t r o l l e d  b y  t h e  same 

r e g u l a t o r y  mechanism w h i l e  c e l l o b i o s e  h y d r o l y z i n g  enzyme i s  r e g u l a t e d  

independent l y  o f  t h e  c e l l u l a s e  genes. 

F. CATABOLITE REPRESSION . 

Enzyme syn thes i s  i s  repressed  by t h e  presence o f  g lucose and o t h e r  

r e a d i l y  m e t a b o l i z a b l e  sugars i n  t h e  growth medium. Th i s  phenomenon, known 

as c a t a b o l i t e  r ep ress i on ,  . i s  s i m i l a r  t o  t h e  i n d u c t i o n - r e p r e s s i o n  e f f e c t  o f  

o t h e r  i nduce r  enzyme systems r e s p o n s i b l e  f o r  t h e  r e g u l a t i o n  o f  i n d u c i b l e  

enzyme syn thes i s .  The s t r u c t u r a l  gene express ion  i s  repressed b y  t h e  

accumulat ion o f  c a t a b o l i t e s .  The r e p r e s s i o n  o f  genes can be derepressed by 

t h e  inducers  which i n t e r a c t  w i t h  t h e  r ep resso r  p r o t e i n .  The c a t a b o l i t e  

r ep ress i on  by g lucose i s  known as "g lucose  e f f e c t .  " Glucose appears t o  

repress  t h e  syn thes i s  o f  bo th  endoce l l u l ase  and e x o c e l l u l a s e  i n  t h e  presence 

o f  c e l l u l o s e  and o t h e r  inducers .  Th is  i n d i c a t e s  t h a t  t h e  presence o f  an 

i nduce r  i s  n o t  s u f f i c i e n t  f o r  c e l l u l a s e  syn thes i s .  The i n d u c i b i l i t y  o f  

c e l l o b i o s e ,  sophorose o f  l a c t o s e  depends on t h e  conccnt i -a t ion o F inducers  

i n  t h e  medium as w e l l  as t h e  a b i l i t y  o f  c e l l s  t o  develop t r a n s p o r t  systems. 

I n d u c i b i l i t y  i s  a l s o  i n f l u e n c e d  by  t h e  amount o f  g lucos idases on t h e  c e l l  



membrane o r  i n  cy top lasm.  When t h e  amount o f  endogenous g lucos idases i s  

h igh ,  t h e  h y d r o l y s i s  o f  p o t e n t i a l  i nducers  occurs ,  r e s u l t i n g  i n  t h e  accumulat ion 

o f  h i g h  l e v e l s  o f  g lucose,  and thus  t h e  r e p r e s s i o n  o f  c e l l u l a s e  syn thes i s  

occurs.  

Repression o f  c e l l u l a s e  syn thes i s  i n  Trichoderma i s  most p ro found  

when g l  ucose i s  p resen t .  Mandel s  (20) r e p o r t e d  t h a t  c e l l  u l  ase syn thes i s  

cou ld  be i n h i b i t e d  when exogenous g lucose was added t o  t h e  growth medium 

i n  t h e  presence o f  an i nducer .  C e l l u l a s e  p roduc t i on  resumed a f t e r  g lucose 

had been consumed o r  a f t e r  t r a n s f e r r i n g  t h e  c e l l s  f rom a  g lucose medium t o  

a  medium w i t h  inducer .  N is izawa e t .  a1 . , ( 2 )  s t u d i e d  t h e  i n d u c t i o n  o f  

c e l l u l a s e  by sophorose and r e p o r t e d  t h a t  t h e  i n h i b i t i o n  o f  c e l l u l a s e  

i n d u c t i o n  was d i r e c t l y  r e l a t e d  t o  t h e  c o n c e n t r a t i o n  o f  g lucose. The s i m i l a r  

e f f e c t  o f  g lucose i n h i b i t i o n  o f  c e l l u l a s e  syn thes i s  has a l s o  been repo r t ed  

i n  many o t h e r  microorganisms. 

The p r e c i s e  mechanism by  which g lucose i n h i b i t s  c e l l  u l ase  s y n t h e s i s  

i s  n o t  known. It c o u l d  lower  t h e  l e v e l  o f  c y c l i c  AMP thus  l o w e r i n g  t h e  

t r a n s c r i p t i o n  a c t i v i t y  o f  c e l l u l a s e  genes. However, N is izawa e t .  a l ; ,  

(21, 22 )  i n d i c a t e d  t h a t  g lucose i n h i b i t e d  c e l  l u l a s e  syn thes i s  by  a f f e c t i n g  

t h e  t r a n s l a t i o n  o f  c e l l u l a s e  m-RNA. 
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Figure VI-1. DEAE-cell ulose chromatography of endoglucanases from 1. reesei  

enzymes from ( -0-)  Relative protein concentration (.-8-) r e l a t i ve  

a c t i v i t y  with respect  t o  CMC. ( a )  6-day old cu l t u r e ,  ( b )  10- 

day-01 d cu l tu re ,  ( c )  14-day-old cu l t u r e ,  and ( d )  commercial 

preparation.  



' V I  I. PROPOSED MODEL FOR THE REGULATION OF CELLULASE BIOSYNTHESIS 

Based on t h e  da ta  we ob ta ined  and o t h e r  p e t i n e n t  i n f o rma t i on ,  we 

propose a niode f o r  t he  r e g u l a t i o n  o f  c e l l u l a s e  b i osyn thes i s .  

A u n i f i e d  model f o r  t h e  r e g u l a t i o n  o f  c e l l u l a s e  syn thes i s  i s  d i f f i c u l t  

t o  c o n s t r u c t  due t o  t h e  wide d i v e r s i t y  o f  responses o f  organisms t o  

va r i ous  inducers  and growth env i  ronments . However, g i  ven t h e  known 

mechanism of i nduc t i on - rep ress ion  i t  i s  p o s s i b l e  t o  p r o j e c t  f rom t h e  

p e r t i n e n t  data,  and t o  p o s t u l a t e  a  s p e c i f i c  model f o r  t h e  r e g u l a t i o n  of 

c e l l  u l ase  b i osyn thes i s .  The proposed mechanisms o f  r e g u l a t i o n  must t ake  

i n t o  account t h e  in lportance o f  g lucos idase  i n  t h e  r e g u l a t i o n  o f  g lucose 

and a l s o  o f  c e l l o b i o s e  l e v e l s  w i t h i n  t h e  c e l l s .  The g lucos idase  cou ld  

be membrane bound o r  i n t r a c e l l u l a r  o r  both.  The g lucos idase  cou ld  be 

c o n s t i t u t i v e  o r  adap t i ve  o r  both.  The g lucos idase  c o u l d  represen t  a  

wide spectrum o f  enzymes each possessing d i f f e r e n t  s u b s t r a t e  s p e c i f i c i t i e s ,  

so t h a t  one s p e c i f i c  g lucos idase  c o u l d  have h i g h  a c t i v i t y  towards h y d r o l y s i s  

o f  c e l l o b i o s e  b u t  low a c t i v i t y  toward sophorose o r  v i c e  versa. 

Several  d i f f e r e n t  models f o r  t h e  r e g u l a t i o n  o f  c e l l u l a s e  syn thes i s  

cou ld  be drawn f rom t h e  known da ta  d iscussed i n t  t h i s  rev iew.  However, 

t h e  main fea tu res  o f  a l l  p o s s i b l e  models would have t o  be s i m i l a r .  Hence 

t h e  model presented i n  F igu re  V I I - 1 ,  would a1 Tow f o r  severa l  p o s s i b l e  

v a r i a t i o n s  as t h e  c o n d i t i o n s  war ran t .  

A d e s c r i p t i o n  o f  t h e  proposed r e g u l a t i o n  model i s  a f o l l o w s  (see 

F i g u r e  VI-1: 

(1 ) Cel l o b i o s e  and g lucose rep resen t  t h e  1 i m i  t e d  c e l  l u l o l y t i  c  p roduc ts  

o f  t h e  "basal  c e l l u l a s e "  h y d r o l y z i n g  c e l l u l a s e .  Ce l l ob iose  

serves as a carbon source as w e l l  as a " p o t e n t i a l "  i t i d ~ c e r .  



( 2 )  A c t i v e  t r a n s p o r t  o f  c e l  l o b i o s e  across t h e  c e l l  membrane i s  

ach ieved by t h e  development o f  an adap t i ve  t r a n s p o r t  enzyme 

system (14) .  C o n s t i t u t i v e  g lucos idase  cou ld  be p resen t  as a  

membrane bound enzyme, which would hydro lyze  p a r t  o f  c e l l o b i o s e  

t o  glucose. Adapt i ve  g lucos idase  cou ld  a l s o  be formed i n  . 

response t o  t h e  presence o f  c e l l o b i o s e  o r  o t h e r  inducers  such 
' 

as sophorose o r  l a c t o s e  i n  t h e  growth medium. 

(3 )  A f t e r  c e l  l o b i o s e  en te r s  t h e  c e l  I s ,  t h e  i n t r a c e l  l u l a r  c e l  l o b i o s e ,  

cou ld  become t h e  " a c t i v e "  inducer  and r e a c t  w i t h  t h e  rep resso r  

p r o t e i n  t o  render  t h e  repressor  i n a c t i v e  and thus  i n d u c t i o n  

occurs.  O r  t h e  " p o t e n t i a l  i nducer "  cou ld  be hydro lyzed  by 

i n t r a c e l l u l a r  g lucos idase  r e s u l t i n g  i n  t h e  accumulat ion o f  

glucose and t h e  rep ress ion  o f  c e l l u l a s e  syn thes is .  

( 4 )  The a f f i n i t y  o f  t h e  " a c t i v e  inducer "  f o r  t h e  rep resso r  p r o t e i n  

determines t h e  e f f i c i e n c y  o f  i n d u c t i o n .  

( 5 )  I n d u c t i o n  o f  c e l l u l a s e  syn thes is  occurs when t h e  repressor  

p r o t e i n  has been i n a c t i v a t e d  by t h e  " a c t i v e  inducer "  and 

t r a n s c r i p t i o n  and t r a n s l a t i o n  f o l l ow .  The a c t u a l  amounts o f  

exoceld u l ase  and endocel l u l a s e  a r e  c o n t r o l  l e d  by t he  a c t i v i t y  

o f  t r a n s l a t i o n  (.ill t h i s  model, we a r e  assuming t h a t  t h e  express ion  

of  b o t h  c e l l u l a s e  genes i s  c o n t r o l l e d  by t h e  same r e g u l a t o r ) .  

(6 )  The newly syn thes ized  c e l  l u i a s e ,  i n  response t o  i n d u c t i o n ,  cou ld  

remain membrane bound. The r e 1  eas ing o f  c e l l  u l  ases across t h e  

c e l l  membrane. i s  r e g u l a t e d  b.y a  s p e c i f i c  r e l e a s i n g  ~lleehar~isrn, 

p o s s i b l y  a  s p e c i f i c  i n t r a c e l l  u l  a r  a c i d  protease.  (Low pH 

enhances c e l l u l a s e  re l ease  and h i g h  pH i n h i b i t s  i t  ( 3 2 ) ) .  



( 7 )  Newly re1  eased e x t r a c e l l  u l  a r  c e l l  u l  ase hydro lyzes  c e l l  u l  ose t o  

g lucose and c e l  l ob iose .  The amount o f  e x t r a c e l  l u l a r  c e l l  u l ase  

re l eased  a f f e c t s  of  t h e  amounts o f  g lucose and c e l l o b i o s e  

produced. G l  ucose and c e l l  ob iose,  i n  t u r n ,  suppor t  c e l l  growth 

and a r e  a l s o  i n v o l v e d  i n  t h e  i n d u c t i o n  and repress ion .  

(8 )  I n t r a c e l l  u l a r  g lucos idase  hydro lyzes  p a r t  o f  i n t r a c e l  l u l a r  

c e l  l o b i o s e  t o  glucose. . 

( 9 )  High l e v e l s  o f  i n t r a c e l l u l a r  g lucose i n h i b i t  i n t r a c e l l u l a r  

g l  ucosidase a c t i v i t y .  

(10) . C e r t a i n  organisms such as Sporot r ichum possess t h e  c a p a c i t y  

t o  produce adap t i ve  g lucose ox idase i n  response t o  t h e  

accumulat ion o f  g lucose i n s i d e  t h e  c e l l .  Glucose ox idase 

o x i d i z e s  g lucose t o  g l u c o n i c  a c i d  and g luconolactone.  

( 1  1  ) G l  uconolactone i n h i b i t s  g lucos idase  a c t i v i t y  thus l owe r i ng  t h e  

a c t i v i t y  o f  g l  ucosidase which i n  t u r n  lowers c e l l  u l ase  syn thes i s  

repress ion .  

(12)  I n t r a c e l l  u l a r  g lucose concen t ra t i on  i n f l u e n c e s  c e l  l u l a s e  

syn thes i s  by a rep ress ion  mechanism. 

T h i s  proposed r e g u l a t i o n  model a1 lows f o r  f l e x i b i l  i ty  i n  e x p l a i n i n g  

t h e  d i f f e r e n t  responses of organisms t o  d i f f e r e r ~ l ;  inducers.  I t  a l s o  

p rov ides  an exp lana t i on  o f  t h e  va r i ous  responses which organisms e x h i b i t  

towards va r i ous  concen t ra t i ons  o f  inducers  and towards glucose repress ion .  

A l l  t h e  known inducers  o f  c e l l u l a s e  syn thes i s  can be u t i l i z e d  by t h e  

organisms as carbon sources. The cont inuous c e l l  u l  ase p roduc t i on  i s  

, i r ~ f l  uehced by t h e  cont inuous supply  o f  a c t i v e  inducers-. Th i s  i n d i c a t e s  

t h a t  t he  a f f i n i t y  o f  inducer - repressor  i s  r e v e r s i b l e ,  and i t  a l s o  i n d i c a t e s  

t h a t  t h e  rep resso r  gene con t i nuous l y  produces rep resso r  p r o t e i n s .  I n  o r d e r  



t o  ma in ta in  t he  cont inuous produc t ion  o f  c e l l u l a s e s  i t  i s  impor tan t  t o  

use a  non-u t i  1 i z a b l  e  inducer  ( g r a t u i t o u s  inducer )  which has a  h i g h  a f f i  n i  t y  

toward the  repressor  p r o t e i n .  
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V I I I .  CELLOBIOSYLTRANSFERASE FROM TRICHODERMA REESEI ,  A NEW ENZYME 

A. Abstract 

An independent enzyme e n t i t y  possessing cel lobiosyl t ransferase  a c t i v i t y  
' 

was found t o  be present in cu l tu re  f i l t r a t e  of 'Trictioderma reese i .  Cello- 

b iosyl t ransferase  mediates the  formation of higher oligomer cel lodextr ins  

from ce l l o t r i o se  and ce l lo te t raose  by t rans fe r r ing  cellobiosyl  un i t s  t o  

the subs t ra te  and product acceptors.  Therefore, the  mode of act ion of ce l lo -  

b iosyl t ransferase  i s  d i f f e r en t .  from tha t  of cellobiohydrolase. 



B. Resu l t s  and D iscuss ion  

Many g lucos idases  possess y l ~ ~ c u s y l  t r a n s f e r a s e  a c  t ' i g  i t:.~ a!; pa.r t  of 

t h e i r  i n n a t e ,  reverss i  b l e  enzymatic r e a c t i o n s  ( 5  ,I 2 ) .  -Product;s o f  these 

r e v e r s i b l e  r e a c t i o n s  a r e  known as r e v e r s i o n  p roduc t s .  Orle cc?l l u l a s e  enzyne, 

1,4-fi-D-glucanase, has been shown t o  n o t  o n l y  possess h y d r o ' l y t i c  a c t i v i t y  

toward c e l l  u lose ,  b u t  a1 so t r a n s g l u c o s , y l ~ t i o n  a c t i v i t y  t o  c a t a l y z e  t h e  

f o r i l i a t i on  of 01 i g o c e l  l o d e x t r i  ns by t r a n s f e r  o f  g l u c o s y l  11n.i t s  t o  s u b s t r a t e  

accep to rs  (9-1 1,13).  Crook and Stone ( 2 )  r e p o r t e d  t h a t  c ) l . i goy  l u cos ides  can 

be fomied from c e l l o b i o s e  by a  c u l t u r e  f i 1  t r a t e  o f  -. Myrotheciur!~.  - Whitaker  ( 1 4 ) ,  

conc luded t h a t  t h i s  t r a n s f e r  r e a c t i o n  a c t i v i t y  i n  Myrothec jum c u l t u r e  

f i l t r a t e  i s  i n d i c a t i v e  o f  t h e  presence o f  a c e l l i ~ l a s e  cnzylltc. S i m i l a r l y ,  

Okada and Nisizawa (11)  and Okada (10 )  observed i1 c e ' l l u l a s e  enzyme, 1,4-B-D- 

glucanase, from - T. v i r i d e  which was a b l e  t o  c a t a l y z e  t he  "condensat ion"  o f  c e l l o -  

b i o s e  t o  c e l  l o t e t r a o s e .  This  "(:ondensation r e a c t i o n "  occ:~~rvcxl  o n l y  when h i g h  

concen t ra t i ons  o f  c e l l o b i o s e  was used as s u b s t r a t e .  Us ing h i g h  p ressure  
' 

1. iqui  d  chronlatographic a n a l y s i s  , Shoemaket- and Brown (13)  were a b l e  t o  observe 

t h e  fo rmat ion  o f  01 i g o c e l  l o d e x t r i  ns f rom c e l  l o t e t r 4 a s e  i n  t h e  r e v e r s i o n  

r e a c t i o n  c a t a l y z e d  by 1  $4-6-D-glucanase f rom - T. ? i r r i d e .  Never the less,  t h e  

e x i s t e n c e  of c e l l o b i o s y l  t ransfer-ase act i .v i ' ty  was n o t  r e p o r t e d .  T h i s  culsrtu- 

n i c a t i o n  demonstrates t h a t  an indepet ider~t  enzyme e n t i  t y ,  c e l  l o b i o s y l  t r a n s f e r a s e ,  

was p resen t  i n  t h e  c u l t u r e  f i l t r a t e  o f  - T.  -..-- r e e s e i .  

The techniques used f o r  t h e  p r e p a r a t i o n  o f  c rude  e x t r a c e l  l u l a r  c e l  l u l a s e  
> 

f rom - T.. r eese i  QM 9414 were i d e n t i c a l  t o  those desc r i bed  p r e v i o u s l y  ( 3 ) .  

The procedures used f o r  t h e  p r e p a r a t i o n  o f  p a r t i a l l y  p u r i f i e d  and p u r i f i e d  

c e l  l o b i o h y d r o l a s e  from crude c e l  l u l s e  were s i m i l a r  t o  thosc  r e p o r t e d  e a r l  i e r  

( 3 , 6 ) .  The concen t ra ted  crude c e l  l u l a s e  erlzynie p r e p a r a t i o n  was a p p l i e d  t o  a  



DEAE-Sepharose column (Pharniacia, 1.5 x 25 cnr), and ce l lob iohydro lase was 

e l u t e d  from the  column using a  l i n e a r  s a l t  g rad ien t  o f  sodium c h l o r i d e  i n  

the  bresence o f  0.07M sodiunr phosphate, ,311 6,8 ( 3 ) .  The p r o t e i n  f r a c t i o n s  

con ta in ing  c e l  lob iohydro lase a c t i v i t y  .were pooled, concentrated and the sal  t s  

removed by ge l  -f i 1 t r a t i o n  w i t h  a  Sephadex G -  25 c o l  ulnn ( 1  .5 x 90 cm) . The 

p a r t i a l  l y  p u r i f i e d  ce l lob iohydro lase was f u r t h e r  p u r i f i e d  by Sephadex 6-100 

column chromatography. 

The c e l l o t r i o s e  and c e l l o t e t r a o s e  were prepared from Whatman CF-11 
- .  

c e l l u l o s e .  An ac id -hyd ro l ys i s  procedure described by Nk~cbner e t  a1 ( 7 )  

was used w i t h  some modi f i ca t ions  as descr ibed e a r l  i e r  ( 6 ) .  Enzyme hyd ro l ys i s  

was c a r r i e d  ou t  a t  50°C i n  0.05M sodium aceta te  b u f f e r  (pH 4.8) .  A t  var ious  

t ime in te rva l s ,  sarlrples were taken and t r a n s f e r r e d  t o  an i c e  bath t o  quench 
. . 

the r e a c t i o n .  The enzymatic r e a c t i o n  progression was aon i  t o red  by ana lyz ing  

the reac t i ons  aqueous s o l u t i o n  w i t h  a  h igh  performance l i q u i d  chromatograph 

(HPLC) as descr ibed by Ladisch, e t  a1 (8 ) .  Cel1obiohydrolas.e a c t i v i t y  was 

determined by methods p rev ious l y  described ( 3 ) .  

 el lobiose,  the so le  hyd ro l ys i s  product ,  i s  re leased when c e l  l o b i o -  

hydrolase ac ts  on the  non-reducing end o f  a  c e l l u l o s e  polytlier (1,4). I n  

incubat ion  of the  p u r i f i e d  ce l lob iohydro lase w i t h  c e l l o t r i o s e ,  bo th  c e l l o b i o s e  

and glucose were produced. For up t o  14 hours of incubat. ion, no reversion 

" products were detected (F ig .  1  ) .  Ne i the r  were they detected when c e l  l o t e t r a o s e  

was used a's the subs t ra te ,  on l y  c e l l o b i o s e  was produced (F ig .  2 ) .  Contamination 

of the  c e l l o t r i o s e  was thought t o  be the  cause o f  s~ t i a l l  amounts o f  glucose 

appearing a f t e r  50 ni.in o f  incubat ion  i n  an otherwise p u r i f e d  c e l l o t e t r a o s e  

prepara t ion .  These r e s u l t s  i l l u s t r a t e  the  f a c t  t h a t  ce l lob iohydro lase i s  n o t  

ab le  t o  mediate the product ion  o f  h igher  01 igonler c e l l  odex t r i ns  from e i  t h e r  

c e l  l o t r i o s e  o r  c e i  l o t e t r a o s e .  

-When the  p a r t i a l l y  p u r i f l e d  cel lob ioh.ydro lase was ir icubated w i t h  c e l l o -  , 

t r i o s e  o r  c e l l o t e t r a o s e ,  a  d i f f e r e n t  mode of a c t i o n  was displa,yed, The 



p a r t i a l l y  pur i f ied  cellobiohydrolase reacted with c e l l o t r i o s e  t o  produce not 

only cel lobiose  and glucose,  a s  did the pur i f ied  cellobiohydrolase,  but 

cel lopentose a s  well (Fig.  3b) .  After the reaction was allowed t o  proceed 

fu r t he r ,  ce l lo te t raose  and a  sl~iall amount of cellohexose could a l s o  be 

detected ' (Fig.  3c , d ) .  The observations suggest t h a t  .the p a r t i a l l y  purifed 

cellobiohydrolase preparation contains an addit ional  enzyme which mediates 

the production of higher oligomer cel lodextr i  ns by t rans fe r r ing  th'e ce l lo -  

biosyl un i t s  to  the subst ra te  and product acceptor-s. Therefore, the products 

from 'the i n i t i a l  reaction of the 'par t ia l  ly  purifed cellobiohydrolase and 

cel l o t r i o se  a r e  glucose, cel  lobiose ,  cel l o t r i o s e ,  cel l o t e t r aose ,  cel lopentose,  

and cellohexose. As the  react ion p r ' o c e e d s  , . a l l ' o l' t h c s e  01 igcidextrins 

a r e  slowly converted t o  glucbse and cel lobiose  (Fig .  3e ) .  S i n ~ i l a r  t rans-  

ce l lobiosyla t ion r e su l t s  were obtained using ce l lo te t raose  as  the subs t ra te .  

After the  i n i t i a l  incubation period cel lobiose  and a  srnall amount of cellohexose 

were produced (Fig.  4b). Sampl ings a t  90 ~nin  of incubation showed t h a t  small 

amounts of c e l l o t r i o s e  and glucose had been produced, probably due t o  the 
. . 

contamination of the 'cel l o t r i o se .  The increase i n  cel l o t r i o se  concentration 

a f t e r  3 hours of incubation could be due t o  the t rans fe r  of cel lobiosyl  un i t s  

t o  glucose by cellobiosyl  t r ans fe rase  ( F i g . 4 ~  , d )  . Therefore, the products of 

the i n i t i a l  react ion of ce l l sb iosy l t rans fe rase  with ce l l o t e t r aose  a r e  glucose, 

ce l lobiose ,  c e l l o t r i o s e ,  c e l l o t e t r aose ,  cel lopentose,  and cell.ohexose. Here. 

again, the ol~igocel lodextr ins  a r e  slowly converted to  mostly cel lobiose a'nd 

some glucose a s  the' react ion proceeds ( F i g .  4e) .  This appearance of ol.igo- 

ce l lodextr ins  from c e l l o t r i o s e  o r  cel  lo te t raose  c l ea r l y  indicates  t h a t  an 

enzyme f r ac t i on  belonging t o  the cellobiosyltrans 'ferase i s  present  in the pa r t i a l l y  

pur i f i ed  cel lobiohydrolase preparation and t h i s  enzyliie i s  d i f f e r e n t  from the 

general ly  recognized ce l l  ~ ~ i o h y d r o l a s e  enzyli~es . 
' 



A d i s t i n c t  d i f f e r e n c e  between c e l  l o b i o s y l  t r a n s f e r a s e  and g l  ucosy l  t r a n s -  

fe rase  i s  i n  t h e  mode o f  a c t i o n  demonstrated. GI ucosy l  t ran'sferases a r e  

commonly assoc ia ted  w i t h  1,4-8-D-glucanases and t r a n s f e r  o n l y  g l ucosy l  u n i t s  

t o  s u b s t r a t e  acceptors ,  w h i l e  c e l  l o b i o s y l  t r a n s f e r a s e s  t r a n s f e r  c e l l  o b i o s y l  

u n i t s  t o  s u b s t r a t e  and p roduc t  accep to rs .  Another  d i f f e r e n c e  between them 

i n  t h e  i n a b i l i t y  o f  c e l l o b i o s y l t r a n s f e r a s e  t o  med ia te  t h e  f o rma t i on  o f  h i ghe r  

o l igomer  c e l l o d e x t r i n s  from e i t h e r  c e l l o b i o s e  ( F i g .  5 )  o r  a  m i x t u r e  o f  c e l l o -  

b i ose  and g lucose ( F i g .  6 ) .  I t  was r e p o r t e d  e a r l i e r  ( 1 0 , l l )  t h a t  a  c e l l u -  

l a s e  enzyme, 1,4-B-D-glucanase from - T. v i r i d e ,  was a b l e  t o  c a t a l y z e  t h e  

"condensat ion r e a c t i o n "  o f  c e l l o b i o s e  t o  c e l l o t e t r a o s e  i n  a d d i t i o n  t o  c a t a l y z i n g  

t h e  h y d r o l y s i s  o f  c e l  l o b i o s e  t o  g l  ucose. 

The r e s u l t s  i n d i c a t e  t h a t  an independent enzyme e n t i t y  i s  p resen t  i n  

t h e  p a r t i a l l y  p u r i f i e d  c e l l o b i o h y d r o l a s e  p repa ra t i on .  Th i s  i s  t h e  enzyme 

r e s p o n s i b l e  f o r  t h e  c e l l o b i o s y l t r a n s f e r a s e  a c t i v i t y  we observed. A l though  

t h e  enzyme p r e p a r a t i o n  used i n  t h i s  s tudy  was o n l y  p a r t i a l l y  pure,  we b e l i e v e  

t h e  r e s u l t s  a r e  v a l i d .  The e x i s t e n c e  o f  a  c e l l o b i o s y l t r a n s f e r a s e  i n d i c a t e s  

t h a t  - T. r e e s e i  i s  a b l e  t o  conserve t h e  c e l l u l o l y s i s  p roduc t ,  c e l l o b i o s e ,  t o  

produce h i ghe r  o l i gomer  c e l l o d e x t r i n s .  The b i o l o g i c a l  s i g n i f i c a n c e  o f  t h i s  

enzyme i s  no t  y e t  known. 
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F I G U R E  CAPTIONS 

Figure  1. Chron~atograms o f  h igh  performance l i q u i d  chromatorjraphy (HPLc) 
o f  c e l  l o t r i o s e '  hyd ro l ys i s  bjt p u r i f i e d  c e l  lobiphydrolase,,  
The r e a c t i o n  m ix tu re  contained 1 0 . 9  !~g/nrl' of enzyme and 0.58mM 
o f  subs t ra te .  Symbols: GI . glucose; G ce l  loh iose;  
G3y ce.1 lot r iose.  2 ' 

F igure  2. chroma tograms4 o f  h igh  performance 1  i q u i d  chromatography o f  
c e l  l o t e t r a o s e  hyd ro l ys i s  by p u r i  f i ,ed cel , lob iohydrolase.  The 
r e a c t i o n  m ix tu re  conta ined 10. 9.11~~/1111 oT enzynle and 0.63mM o f  
subs t ra te .  Synibol s: 6 , glucose; G2. ce l l ob iose ;  

G3 ' c e l  l o t r i o s e ;  G 4 ,  c e i  l o te t raose .  
I 

Figure  3. Chromatograms o f  h igh  performance 1  i q u i  d  chromatography o f  
c e l  l o t r i o s e  hyd ro l ys i s  by p a r t i a l  p u r i f i e d  ce l  lob iohydro lase.  
The r e a c t i o n  m' ixture contained 24 I I~J/ I I I~ o f  enzyrrie and 25mM o f .  
subs t ra te .  Symbols : G , glucose; G2 ,  c e l  lob iose;  
G3 c e l  l o t r i o s e ;  G ~ ,  cellotcit.raose; G ~ ,  ce l  I opcntosc; G6, c e l  lohexose. 

F igure  4 .  Chromatograms o f  h igh  performance 1 i q u i d  chro~r~a tography o f  
ce l l . o te t raose  hyd ro l ys i s  by p a r t i a l  p u r i f i e d  c e l  lob iohydro lase.  The 
r e a c t i o n  m ix tu re  conta ined 24 \ ~ g / m l  of enzynle and 3.2mM of 
subs t ra te .  Symbols: G , ,glucose; G c e l  lob iose;  
G3, c e l  l o t r i o s e ;  Gq, c e l l o t e t r a o s e ;  2;. c e l  lopentose; G6, c e l  lohexose 

F igure  5.. HPLC chromatograms o f  h igh  concent ra t ion  o f  c e l  l ob iose  i n  .the 
presence o f  p a r t i a l  p u r i f i e d  c e l  lob iohydro l  ase. The r e a c t i o n  
m i x t u r e  conta ined 24 ug/ml o f  enzyme and 48mM of c e l l o b i o s e  (G2). 

F igure  6. HPLC chromatograms o f  glucose.dnd c e l l o b i o s e  i n  the  presence o f  
p a r t i a l  p u r i f i e d  ce l lob iohydro lase.  The r e a c t i o n  m ix tu re  conta ined 
24 l ~ g / m l  of enzyme 0.5mM o f  glucose (GI.) and 2n1M o f  c e l l o b i o s e  (G2). 
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