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Application of ultrasonic guided waves to the characterization

of texture in metal sheets of cubic and hexagonal crystallites
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Texture (preferred grain orientation) of polycrystalline metal sheéts is
an important material property which influences the process of making
products such as aluminum cans and automobile and aircraft components.
Traditionally, the texture is determined by X-ray or neutron diffraction
techniques which are often destructive and tim'e-‘consuming in nature. Over
the last decade, ultrasonics has been found to provide an alternative way to
characterize texture nondestructively and quickly. This dissertation makes
an in-depth study of the fundamental physical principles of ultrasonic
characterization of texture in metal sheets of cubic and hexagonal
crystallites. The fundation is laid by investigations of wave propagation in
anisotropic plates. This is then used to evaluate the accuaracy of previously
developed, conventional ultrasonic techniques for texture characterization.
Through these studies, improvement of the conventional techniques has been
made and new ultrasonic techniques have been proposed and applied to some
Al samples. This dissertation also presénts the extension of these techniques
to characterization of the texture of hexagonal polycrystallites such as Ti and
Zr. Discussions of ultrasonic velocity measurement methods and errors are

also included.
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GENERAL INTRODUCTION

Texture, or preferred orientation of grains, is the conseqyuencev of
nonrandom orientation of the crystallites of polycrystalline aggregates. This
nonrandom orientation is developed during manufacturing and fabricating
processes such as annealing, rolling and drawing. Virtually all
polycrystalline materials have some degrees of texture, and this texture
| introduces anisotropy in the physical and mechanical properties of the
material, It is often very important to know the texture when making
products like aluminum cans, automobile and aircraft components.

Traditionally, texture is determined by X-ray or neutron diffraction
methods. The textures measured by these methods are local textures, and
these methods are generally destructive in nature and often very time-
consuming. In its most common implementation, the X~ray measurement
senses only a near surface texture, Neutron measurements sense bulk
textures, but can only be performed at specialized facilities.

Recent advances in ultrasonics have made it possible to determine
texture nondestructively and quickly on bulk samples. This discortation
analyzes the accuracy of thoée tecnniques and lays the foundation for
correcting for various systematic errors. Until now, most of the research in
ultrasonic characterization of texture has been concentrated on polycrystals
of cubic crystallites such as Al, Cu, and Fe. This dissertation also extends
the ultrasonic techniques to polycrystals of hexagonal crystallites.

The determination of the texture of a thick piece of material is typically
very simple once the relations between the elastic constants and the texture
parameters are established. Hence, most of the recent studies appearing in
the literature deal with characterization of texture in plates or sheets. This is
because the ultrasonic waves propagating in plates are much more

complicated when compared to the bulk waves, and those complications



must be taken into account in quantitative texture characterization. This
dissertation also places emphasis on texture characterization in a plate
geometry, and includes the most rigorous discussion of many of the wave
propagation features that have appeared to date. Some discussions may be
equally applied to oth'er geometries.

Literature Review |
Texture is mathematically described by the crystallite orientation
distribution function (CODF), W (&, v, 9), according to Roe {1, 2],

Lo ] l
W(E,.,\U,(‘)) = Z z 2 Wlnglmn(&) e-imy g-ind (D

{=0 m=-l n=-|
where & = cos6, and v, 0, and ¢ are Euler angles specifying the orientation of

a crystallite with respect to the sample reference frame, Z; ,,,,(8) is the
generalization of the associated Legendre functions. The dimensionless
coefficients W;,,,, are called "orientation distribution coefficients (ODCs)".
The CODF W(&,y, ¢) is, in eséence, a statistical distribution function of the
single crystals within the polycrystalline aggregates. Once the W, are
obtained, W(§, v, ¢) is fully determined.

In addition to the notation described above (Roe's notation), there are
other notations available in the literature [3, 4] that are also used to describe
the CODF and the ODCs. Detailed information on the similarities and
differences among these different descriptions of texture can be found in
Refs. 1-4, In this dissertation, only Roe's notation will be employed.

Although the complete speciﬁcation of texture requires knowledge of all
W, mn for /20, in practice, W, ,,, are often determined for / up to 20 or 30
from X-ray or neutron diffraction measurements. Ultrasonic techniques, on
the other hand, can only determine W, ,, for ! < 4 [5]. Within this limit,
there are only three independent and nonzero ODCs for cubic crystallites,
 Wyo0» Wago, and Wyyo. For hexagonal materials, there are two extra ODCs,
Woooand Wogy. Typical values of these ODCs are on the order of 103 to 102,



- The presence of texture in a polycrystalline material gives rise to weak
anisotropy which can be described in terms of the ODCs. This weak
anisotropy can be sensed through precise ultrasonic measurements. The
foundation of application of ultrasonic techniques to the characterization of
texture in polycrystalline aggregates lies in the relations between the elastic
constants of the aggregates, which can be inferred from ultrasonic velocity
measurements, and the ODCs. For the cubic crystallites, these relations
were recently discussed in detail by Sayers [6] and Hirao et al. [7]. The
development of these relations involves an averaging procedure that takes
into account the anisotropy within the single crystals, Depending on the
details of the averaging procedure, three different averaging methods can be
obtained: the Voigt, Reuss, and Hill averaging methods [6~8]. The |
commonly used one in texture analysis is the Hill averaging method [9]. For
the hexagonal crystallites, the relations between the ODCs and the elastic
constants have been established by Sayers [10,11], Li and Thompson [12] and
Li et al. [13].

Once the relations between the ODCs and the elastic constants are
developed, texture of thick materials can be readily determined ultrasonically
[6]. Texture in plates or sheets, however, is much more difficult to determine
because the stress free boundary conditions at the plate surfaces cause the
wave propagation t. be dispersive. There have been many studies in this
area [14~20], Basically, there are two conventional ultrasonic techniques,
one uses the SH; mode and the other uses the long wavelength limit of the S,
mode, where SHj and S; refer to the fundamental horizontally polarized
shear and symmetric Lamb modes of the sheet or plate respectively. The SH,
mode technique alone cannot determine all three Wy,,o while the dispersion
of the Sy mode must be treated carefully in order to reliably predict ODCs.
Recently, a new technique using Lamé mode properties has been proposed.

This technique has certain advantages over the conventional techniques



[21,22]. However, more work needs to be done before it can be applied widely.

There have been many publications which compare nondestructive
ultrasonic techniques and X-ray or neutron diffraction measurements
[20,23~26]. In general, the predictions for W goand Wy, from ultrasonic
techniques are in good agreement with the results from diffraction
techniques. In some cases, the ultrasonic estimates for Wy, correlate well
with diffraction results while in other cases, particularly on Al alloys, they
do not. I

One important application of texture characterization is'in the
formability analysis of steel sheets. The correlation between texture
parameters and formability parameters has been realized for some years
[27,28]. The underlying physical principles have been studied and discussed
by Stickels and Mould [29] and Davis et al. [30]. Studies in which ultrasonic
texture characterization is used in formability analysis can be found in the
literature [31~33], | |

Up until recently, there have been no ultrasonic applications in the
characterization of texture in hexagonal crystallites. Due to the increased
interests and needs in aerospace and nuclear industries [34,35], the
ultrasonic techniques for cubic materials have been extended to the
hexagonal materials [36]. These techniques alone, however, do not provide
sufficient equations to determine all five ODCs; new or different techniques
must be employed or developed [37,38]. Recent studies in this area have
shown some promise in the ultrasonic determination of texture using higher

order plate modes [38].

Objectives of This Study
The commonly used configuration of ultrasonic characterization of
texture utilizes the velocities of the long wavelength limit of the Sy plate mode.
The theory underlying this technique is, strictly speaking, valid only for
plates of zero thickness (infinitely thin). Under this theory, the propagating
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wave is nondispersive ‘and the velocities of a textured plate or sheet cam be
easily measured, However, true plates are never infinitely thin. The waves
propagating in a plate of finite thickness are plate modes, and these plate
modes, including the S, mode, are virtually alv}ays dispersive, To determine
texture using the Sy mode, the diépefsion must be considered. One of the
objectives of this study is to develop, analyze, and understand the exact
dispersion relations for wave propagation in anisotropic plates. These
dispersion relations are the foundations for the rest of this study. Another
objective of thia study is to use these dispersion relations to evaluate two
available approximate methods that make the dispersion corrections on the
measured S, velocities so that the dispersion corrected velocities can be used
in the equations that were developed for the nondispersive long wavelength
limit of the Sy mode.

In the ultrasonic measurement of texture, the waves are always
applied in the form of pulses. The propagation of pulses of a dispersive wave
is significantly different from that of a nondispersive wave. T'wo objectives of
this study are to develop a pulse propagation model that is suitable for the
ultrasonic characterization of texture and to use this model to estimate the
measurement errors involved in the velocity measurement where the
dispersive S, waves are treated as nondispersive waves.

~ In the estimation of one of the three texture parameters, Wyqo, there is
sometimes a disagreement between ultrasonically predicted W ooand the
independent neutron diffraction measurement. This disagreement is
partially due to the limitation of the conventional Sy mode technique.
Developing a different ultrasonic technique to predict W4, and evaluating
this technique experimentally are additional objectives of this study.

As the demand for nondestructive characterization of texture in Ti and
Zr (hexagonal crystallites) increases in aerospace and nuclear industries, it
is natural to develop ultrasonic techniques to measure texture of

polycrystalline aggregates of hexagonal crystals. One of the objectives is to



extend the available techniques developed for the cubic materials to the
hexagonal materials. These technique are, however, not sufficient for the
hexagohal materials since two more texture parameters need to be
determined. Another objective of fhis study is, therefore, to develop other
techniques so that all five W, for [ up to 4 can be determined. |

N - Explanation of Dissertation Format
| This dissertation follows the guidelines for the alternate dissertation
format specified in the Graduate College Thesis Manual at Iowa State
University. The dissertation consists of, in addition to the general
intréduction at the beginning of the dissertation, eight parts, a general
. summary, a reference list, acknowledgements, and an appendix.
The eight parts describe the work completed during the Ph. D.
 program. Each part is an independent entity that either has been or will be
submitted for publication. Part I presents a set of relations between the
elastic constants and texture pararﬁeters for polycrystalline materials of
hexagonal crystallites. These relations‘ are the key to the ultrasonic
characterization of texture in hexagonal polycrystalline materials. This part
has been published in the Journal of Applied Physics [13]. Part II contains a
paper which ihvestigates the characteristics of elastic wave propagation in
anisotropic plates. This is the fundamental physics of ultrasonic
determination of material anisotropy (including texture) in plate structures.
This part has also been published in the Journal of the Acoustical Society of |
America [39]. Part III studies two pulse propagation models for dispersive
waves. It provides a tool for the analysis to be presented in Part V. This part
is to be submitted to the Journal of the Acoustical Society of America. Part
IV discusses one aspect of the effects of dispersion on texture determination
using one of the conventional ultrasonic techniques. It makes a theoretical
evaluation of the conventional Sp mode technique using the formulae and

results presented in Part II. This part has been submitted to the Journal of



the Acoustical Society of America. Part V uses one of the models evaluated
in Part III to model and analyze the measurement aspect of the effects of
dispersidn on the texture determination. This p‘ar"t is to be submitted to the
IEEE Transactions on Ultrasonics, Ferroelectricity, and Frequency Control.
Part VI contains the principles of a newly proposed ultrasonic technique for
texture determination. This part“has been published in the Review of
Progress in Quantitative Nondestructive Evaluation, Vol. 8B (40). Part VII
concentrates on hexagonal crystallites, with emphasis on the newly proposed
technigue. Included are theories and experimental results obtained on two
samples of hexagonal crystallltes This part has been submitted for
pubhcatlo*l in Nondestructive Characterization of Materials, Vol. 4 [33]. Part’
- VIII reports and compares experimental results for the texture
.measurement on ten Al plates. This part is to be published in the Review of
Progress in Quantitative Nondestructive Evaluation, Vol. 10.

This dissertation concludes with a summary, é list of references cited,
acknowledgemerits, and an appendix that describes a useful signal
processing method to deterraine ultrasonic velocity or wave number
information for the dispersive Sy waves. This method has been implemented
in an ultrasonic texture/stress measurement system that has just been built
at Jowa State University, and the method has been found to produce highly

accurate results [41,42].
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RELATIONS BETWE N KLASTIC CONSTANTS Cij AND

TEXTURE PARAMETERS FOR HEXAGONAL MATERIALS



ABSTRACT

Ultrasonic techniques have recently been applied to the texture

characterization in polycryvstalline aggregates of hexagonal crystals, The

basis of this application lies in the relations between the elastic constants C,j
of the aggregates, which can be inferred from ultrasonic wave velocity
measurements, and the orientation distribution coefficients. This
communication presents such relations for aggregates which possess
orthotropic material symmetry and hexagonal erystal symmetry for Voigt,

Reuss, and Hill averaging mcethods in a unified and concise representation.



CINTRODUCTION

“Phere has been increasing interest in characterization of texture in
hexagonal materials in recent yum'é (1,2]. Texture, or preferred orientation
of grains, is often quantitatively described by the orientation distribution
coefficients (ODCs) or Wy in Roe's notation [3,4]. These are, in essence,
the coefficients of an oxpuhsion of the erystallite orientation distribution
function in terms of a scries ol generalized spherical harmonics. Now,
ultrasonic techniques are being applied to texture measurement of
hexagonal materials because of their nondestructive nature [5,6], The
foundation of application of ultrasonic techniques to the determination of

texture in polycrystalline aggregates of hexagonal crystals lies in the

relations between the elastic constants C, of the aggregates, which can be
inferred from velocity measurements , and the ODCs, This note presents
such relations for aggregates which possess orthotropic material symmetry

and hexagonal crystal symmetry,

0 g Co ! T
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DEVELOPMENT OF THE RELATIONS

In general, the elastic constants é,, and the elastic compliances éi] of
textured materials can be formally expressed as

Cji=Cj + ACy, - (1)

Sy = 8] + A8y o ®©
where Cf,’ and Si‘]) are elastic constants and compliances bf the cofresponding
isotropic (texture-free) polycrystalline vaggregates satisfying the C{1—C9o=2Cy44

and 8?1—8?25%824 isotroﬁy conditions, ACj and AS) are the differences due to
the presence of texture; they are functions of Wimp for 0 < £ < 4. For
aggregates of hexagonal crystallites, Waqg, Wa20, W400, W420, and W44q are
the only five independent members of these ODCs which are nonzero.

The explicit relations described by Eqgs. (1) and (2) depend on the
averaging procedures. Voigt, Reuss, and Hill averaging methods are the

three commonly employed in texture studies owing to their simplicity. The

relations between the elastic constants él] and Wimn for the Voigt averaging

method were developed by Sayers [7], These relations, although explicit in
principle, rely on the equations given in the appendix of the paper by Smith

and Dahlen [8]. We also independently developed the (—3” - Wimn relations
using the method described by Morris [9]. A comparison with the results by
Sayers reveals that Sayers' expressions can be further simplified to ours if a
print error in the expression for ¥;7;;1in the appendix of Smith and Dahlen's
paper is correctedl. To many users of these relations, this error might not

be obvious, and further errors might be introduced as a consequence of

TThe correct expression for Y111118

W
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applying these relations. One of the primary purposes of this
communication is to correct that error by explicitly presenting the resulting

relations in a form believed to be particularly convenient,

The relations between elastic compliances éll and Wjmn for the Reuss
averaging method were also derived and published by Sayers [10], following
the procedures outlined by Morris [9]. Practically speaking, ultrasonic
velocities are more easily expressed in terms of elastic stiffnesses rather than
elastic compliances; and the Hill averaging method, which is the arithmetic
mean of the Voigt and Reuss averaging methods?, is found to give the most

acceptable accuracy among the three. For this reason, it is often more
convenient to invert the é;] -- Wimn relations in Eq. (2) for the Reuss

averaging method to the (—3” -« Wimn relations, This can be mathematically

described as

C=8"1=("+a8) " =18%(1+8° a8, (3)
In the application of ultrasonics to texture characterization, the anisotropy of

the polycrystalline aggregates is sometimes small. Under this weak

anisotropy assumption, ||8°1AS | << 1.0. Therefore, the inversion process
in Eq. (3) can be carried out analytically, arriving at expressions that
resemble Eq. (1) in form. Similar work was done for the cubic materials by
Hirao et al. [12]. At the end of this note, a comparison table will be given to

show the results of the analytical inversion for a given set of Wimn.

In the following, explicit expressions for both Cvmm and CReyss are
summarized in a unified and concise representation where the contributions

of Wamo and W4mo can be readily observed:

2Hill [11] did not explicitly propose such an averaging method for
aggregates of hexagonal crystallites. The definition for Hill's averaging
method here is a natural extension from that for aggregates of cubic

crystallites, which was proposed by Hill.



Cri=CYy+dn? [ 4A 0, + BB,
Cop = CY\ + dn? | A 0y + B3l
Cag=CY, +dn?| 4A [0y + Byl
Cog = C)y + 47: [ 24,0, + B3,
Cr3=CY, + 4n“ | 2A,00 + B3]
Cig=CYy+ 4n® | 2A,00 + By
Cag=Cliy+4n2 [ Ay oy + BB,
Cog = Cyy +4n® | Ay oy + BYs|
Cog = Cly +dn 1 Ay oy + Bl

; 1 —
with y = -)—1(—- v ]O \N')OO -2V 15 \V‘)"O)

g = -él—- (N 10 \N‘AU() + 2V 1‘3 V. mo

(132 .ii.' ]() “/20()

and [51 = 1()‘) 13\'2 Wm,, - F). W 120 + )V i) \VHO)
BQ = —lbg ( 3\/‘72. W‘lUO + 4 \/’B. \V‘.‘z() + 2\/‘% \V(M())

B3 = 1()“ V2 W0,
By = 10, ) Woigo + V5 Wiy

Bs = 1_01-," (V2 2 Wigo = v W)
Be = T(")E (2 Wygy = 2935 W)

(4)

(4b)

where (J,i and (,,' are averaging method dependent; Ay, Ag, Ag, and B, which

are elastic anisotropy constants, are also averaging method dependent. For

the Voigt averaging method



b : :
Cly = g {8y degy ey 8eyy)

1 ‘
2= T Cepp + Bepg + cyy + 8oy = degy)

Q

1
S = "() (7(.‘“ ‘5(,1«) + )C 3‘“4(“| IZC“

Al”al“‘i(‘ll degy = ¢y~ 2044 (4e)
Ay =ay=c "‘7012 ey + ey — degy
Ag=aly==Bcyy+ Tepy + 20 - ey + 6oy
B=aj=cy) +cyy - 2oy - dey,
and for the Reuss averaging method
30 =S) + S ) IESY = SECSy) + 287,
Ciy =8y /18] = S &) + 287y

Cia=1/8i4

0 = Tl- (Byy + 38y + Iy + 28,) (4d)
Sty = -1-% (S + B8+ sy + 88y = s4y)
Sy = % (781 = D8yg + 280y = 485+ 35,y)

Al =-4 Cgi dl - 14 CUQ C:;t cl()
.Az =4 CXﬁ 112 +14 CY Y 04 4 ul()
- 1()2
Ar]—- —'4 (J"‘ [$ fi
B=-4C} a)
g . [N}
80 =81y + 81~ Sy - Sy (4d)
g P . .
ay =48y = 38y 8y - gy
ag =81y =~ 7815+ 835 + B8 13 ~ 844

8?}——5‘1“+7812+2HH‘4\”F =544

7
P - ) P U
84 = 8y + 899 = 2814 - 8y

where ¢jj and sjj are elastic constants and compliances of single hexagonal



crystals and are related by

Uy 1 , it e
— s —— Syg =~

Co Cyy— 012 (]

‘ 2
s13= - C1g/ Co s s44= 1/ ¢qq Co = Cgy (Cyp + Cyp) — 2073 .

Once the Cvo,’gt and Creuss are determined, Criy = ( é\}nigt + CRouss /2 can be
readily calculated. Notice that, regardless of averaging methods, the relation
A | +Ao+A3=0 always exists. In addition, there are the following relations for
o and By |

o+ 02+ g =0,

Br+Pa+PBa+20PB4+Ps+Per=0,

B1+Ps + o = Pz + Pua + Po = B3+ 24 + B = 0.

Table I lists the clastic isotropy and anisotropy constants for Voigt,
Reuss, and Hill averaging methods {or three common hexagonal materials,

The single crystal elastic constants of these materials used in the

computations are from [13]. Table [I lists the elastic constants Cj for a given
set of Wimn of a Ti plate sample. The rolling history and chemical
composition of this Ti sample are unkown since it was purchased directly

from a local vender, The Wy, of this sample were obtained from neutron
diffraction [14]. In this table, Cy and éRx are the elastic constants Ci]
computed from Eqs. (4), (—JR,;, are the elastic constants éii obtained by
numerically inverting S,, C”l and C‘”,_, are the mean values of Cy - CRI and
Cy - (_}R2 vespectively. One can sce that (—j[\:l and CRz are reasonably close;
consequently, so are (»‘3“l and CH!‘

One of the distinguished advantages for the representations in Kqgs. (4)

is the apparent resemblance to the C; - Wy, velations for the cubic




materials which were published in [12]) and applied widely. In particular

realizing Wopo=Wauo=0 for cubic muaterials, we can obtain the Cij - Wimn

relations for the cubic matevials by multiplying 3 in Eqs. (4b) by 3/2, The

factor 3/2 is the consequence of lower order symmetry for cubic erystallites.
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Table I.  Elastic isotropy and anisotropy constants (in GPa)

Mat'l -method (Y, Y, Cliy Al Ay Ay B
. Voigt 16393 7553 4420 6200 -14500 207.00  23.00
Ti Hill 16286 76.07 4340 -61.80 -141.81 20361  16.69

Reuss 16178  76.60 1259  -61.60 -138.61 20021 10.38

| Voigt 14568 7216 3676  -B5.¢
Zr Hill 14518 7228 3645 49,
| Reuss 144.68 7239  36.14 -2

Voigt 13481 4159 1661 34540 100.70 -446.10 -31.60
Zn o Hill 12068 3877 1095 417.33 1746 43479 -76.66
Reuss 10655 3581 3531 48925 -65.78 -42347 -121.73

...............................................................................................................

Table II. Elastic constants (.:T” for a given set of Wymp (in GPa)
(Wago= 0.014328, Waog = -0.004532, W 40= 0.003117,
Wyq0=-0.003411, and W, ;= 0.002361)

Cy 16080 16355 16846 7126 7456 8027 4744 44.18 4047
Cgr, 15834 16135 16612 7246 7588 8123 4567 4279 3909
Cr, 16871 16181 16658 7220 7564 8109 4591 4279 39.35
Cu, 15957 16245 167.29 7186 7522 8075 4655 4348 39.78
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PART II.

INFLUENCE OF ANISOTROPY ON THE DISPERSION

CHPARACTERISTICS OF GUIDED ULTRASONIC PLATE MODES
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ABSTRACT

Dispersion curves are developed for elastic wave propagation in an
anisotropic plate of monoclinic or higher symmetry. Emphasis is placed on -
analytic expressions for various features. Generalization of the isotropic
Rayleigh-Lamb dispersion relations are derived for the cases of a) |
propagation along a material symmetry axis and b) propagation in a genefal
direction. Examination of the high frequency limit of the lowest symmetric
and antisymmetric mode dispersion curves yields expressions for the half
space surface or Rayleigh wave velocity. It is shown that thé diépersion
curves for these modes can exhibit multiple crossings in approaching this
limit, and an analytic solution is presented for the constant crossing interval
that occurs for propagation along symmetry directions. The‘ analytic results
are illustrated by extensive numerical calculations for a variety of degrees of
anisotropy with emphasis placed on the relationship between the slowness
curves governing partial wave propagation and various features of the

dispersion curves.



INTRODUCTION

In recent years, interest in elastic wave ‘propagation in anisotropic
media has been growing rapidly. Historically, most of the work has been
concerned with plahe ‘wav‘es‘ in unbounded media [1]; relatively little
attention has been given to elastic wave propagation in,anisotrobic plates.
This is an important gap, for in the study of polycrystalline metals or

composite materials, plate structures with various degrees of macroscopic
anisotropy are often encountered. Understanding of wave propagation
becomes very critical in the nondestructive evéluation of these plates or in the
analysis of their dynamic vibrations. Similar problems are found to have
relevance in seismélogy. This paper is intended to explore in detail a number
of features of elastic Wave propagation in anisotropic plates that are
‘substantially dif‘fere‘ht from the corresponding behavior in isotropic plates.
Primary emphasis is placed on the case of plates with macroscopic
orthotropic symmetry, although other cases are also considered. Extensive
use is made of both the development of analytic f'ofmulae for special cases
and the use of numerical examples to illustrate the richness of behavior
possible,

Although investigations of wave propagation in free isotropic plates
were first reported in 1917 [2] and followed by extensive investigations [3~5],
the pionéering work on propagation of elastic waves in free anisotropic plates
was conducted and published more than 50 years later by Solie and Auld [6].
In their paper, a general formalism for computing dispersion relations for
plates of arbitrary symmetry was derived. Using an interactive program,
which carried out all the computational steps numerically, dispersion curves
were computed for wave propagation in a (001) cut cubic Cu plate at angles of
0, 5, 30, 40, and 45 degrees from the [100] direction. These dispersion curves

demonstrated the great differences between the anisotropic and isotropic
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cases. Many of the features were interpreted in terms of the dispersion that
would be exhibited by uncoupled SV and L. modes, a concept which had first
been introduced by Mindlin for the isotropic case [7). The uncoupled mode
behavior was found in turn to be strongly influenced by the slowness curves
‘for plane waves propagating in unbounded media. Other observations of
Solie and Auld included the coupling of SH waves with quasi-L and quasi-SV
waves for mode propagation in nonsymmetry directions. For mode
propagation along symmetry axes, it was observed that a solution consisting
of disturbances bound to the two surfaces of the plate existed as the high
frequency asymptotic limit of the lowest symmetric Syand antisymmetric A,
modes. The wave speed in this limit could either be less (Rayleigh wave) or
greater (pseudo-surface wave) than that of an SH wave propagating in the
same direction, the latter being a case ekplored in detail by Lim and Farnell
[8] in their study of acoustic surface waves, Solie and Auld also noted the
oscillatory fashion in which the 8; and A, modes approached this limit in
certain cases, in contrast to their monotonically decreasing separation in the
isotropic case. The oscillations were attributed to the concavity of the quasi-
shear slowness curves in the direction of propagation. New results |
presented in this paper show other possible causes which produce similar
phenomena,

In the last few years, an ‘increased‘intereSt in the problem of guided
wave propagation in anisotropic plates has developed. Kosevich and Syrkin
derived analytical dispersion relations for hexagonal plates of special
orientations and studied some particular features of these dispersion curves
[9]. Markus et al. analyzed wave propagation in an orthotropic plate with
concentration on wave propagation in symmetry directions [10]. They also
noticed that Sy and A, dispersion curves sometimes approach their
asympﬁotic limit in an oscillatory manner. A spectrum of related works have
also been reported in the literature [11~18]. At a recent conference, Nayfeh

and Chimenti [19] presented studies of wave propagation in anisotropic
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plates with monoclinic ‘s‘ymmetry. including analytical expressions for
dispersion equations, At the same time, the present authors (20] presented
| dispersion relations for orthotropic plates. The computations differed in
detail (coordinate system cither ﬁ*ansformed'to the propagation direction or
‘aligned with material symmetry axes) and motivation (characterization of
composites as opposed to texﬁured metal polycrystals), but as would be
expected, equivalent expressions t‘of the dispersioh curves were obtained.

In this paper, we report in detail and expand on our results [20],
including their extension to monoclinic symmetry as motivated by the work
of Nayfeh and Chimenti [19]. In addition to the dispersion equations,
analytical expressions are presented for the associated features of the
oscillations of the S, and A, modes. These analytical results are supported by
detailed numerical studies of the dispersion curves of several materials
having different degrees of anisotropy. To provide physical motivation, these
have been chosen to correspond to coppér polycrystals with different degrees
of preferred grain orientati{m. Following the observations of Solie and Auld
[6], extensive use is made of plane wave slowness surfaces to interpret the

data. The paper concludes with a short summary of the results.



METHOD OFF SOLUTION

The most frequently used method for analysis of wave propagation in
an anisotropic medium is based on the "superposition of partial waves",
wherein the final displacement solution is obtained through summation of
plane wave solutions having common sinusoidal variations in the direction
of propagation, The procedure for this method, which has been used in
much of the prior work cited in the previous section, is outlined in the
remainder of this section, The detailed mathematics of equation derivations
can be found in Appendix A,

Consider a homogenecous free plate possessing a symmetry plane
which is parallel to its surfaces. In other words, the material is assumed to
have at least monoclinic symmetry with the symmetry plane lying in the
plane of che plate. If the plate normal direction is labeled as x; and a
Cartesian coordinate system is chosen as shown in Fig. 1, then the wave
displacement field must satisfy the governing equations for an elastic,
homogeneous, anisotropic, and nonpiczoelectric medium:

pu; = Cij Uy O (i k]=1,2,3), ()

provided that body forces are negligible. In Eqs. (1), Cjjk) are the elastic
constants, u; are the components of the particle displacement vector and p is
the material density. The usual summation over all repeated indices is
implied,

For a harmonic disturbance of frequency o, the displacement field for a
plane wave solution with no attenuation is of form

0= Un; 5] expli(wt-k;x))| (2)

for wave propagation in an arbitrary direction. In Eq. (2), ¢j is a unit vector

along the "j" axis, nje; is the particle displacement vector (not necessarily o

unit vector) and k is the wave propagation vector. U is the displacement
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amplitude and nj is the direction cosine of the displacement when nyepis a
unit vector,

A. Mode Propagation In an Arbitrary Divection
Substituting Eq. (2) into Eqs. (1) and employing the abbreviated notation
for elastic constants leads to the Christoffel cquations,
(A A Al [y
Alp Ayy Agg| {ngp =0 (3)
,A 3 Ay A:m, My

where Ajj are functions of ky, ky, and ky and @ given in Appendix A, The
solutions for plate modes may then be cxpressed as the superposition of all
partial plane wave solutions of Eqs. (3) sharing common values of w, ky, and
kg, One may view the possible values of ky as the eigenvalues of Kqs, (3),

which may be obtained by setting the determinant of the coefficient matrix to
2 ‘ Al 1 Al + Al
be zero. The resulting algebraic equation for kj is of cubic form in terms of

2 2 ( . , . .
ki, kg and w?, It is this very character that makes analytical expressions
presented later possible. This is in general not true for triclinic materials

which do not have any symmetry planes, Lot us define the roots for ky as

i«,/?n ) -t\/?z , and -JIL\/;;} for later reference. The eigenvectors for Eqgs. (3) can
then be obtained in terms of these roots, The eigenvectors are partial wave
displacement vectors, and for each eigenvalue of kg, there exists one
eigenvector which is uniquely determined to within a scalar multiplier.

For wave propagation in a free plate, the wave displacement field must
satisfy the stress free boundary conditions: i.e.,

013 = Ogg = Ogg =0 @ xy=+b/2 (4)

where b is the thickness of the plate,
From Hooke's law, the total stress field can be expressed in terms of the
partial wave displacement amplitudes U

p» P=1~6, which are scalar
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multipliors for the cigenvoctors of the partial waves, Forcing thoe total strosy
flold to satisfy Fq. (4) leads to six Hnoar cquations with a 6x6 coofliciont
matrix for Uy,

For nontrivial solutions, the detorminant of tho coofficient matrix for
U, must vanish, Because the plate material possesses n symmoetry plane
normal to the x, direction, the solutions can always be separatod into
gymmetric and antisymmotric types., By setting Uy=tUy, Ug=2Uy, and Ug=2U,
us needed to achieve these symmetrios, the six lincar equations for U, can be
reduced to a pair of three equations in Uy, Uy und Uy, The condition for a
nontrivial solution is then that the determinant of the coefficient matrix of
the vector { Uy, Uy, Ugl' vanishes, This leads to an analytical generalization

of the Rayleigh-Lamb dispersion equations for the anisotropic case:

) ok ¥

1’1[ tan(m%ﬂ“+ PQ{ tun('\/‘ﬁ;% )J l+ P;_;[ tan(,\/ﬁgg)]“m 0 (B
where P, =P (Ry, Ry, Ry), Py =P (Ry, Rg, Ry), Py =P (Rg, Ry, Ry), and
R; =r; (b/m)% The detailed definition of the function P is provided in Kq. (A.6) of
Appendix A,

Because of the existence of discontinuities in tangent functions, Kqgs, (6)
are not ideal for computation. To avoid these digcontinuities in
computations, it is advantageous to use the following expressions,

P‘llegCn + PQSQC:;C'I + PgS:;ClCZ =0, (untisymmetric) (6)

1)1018283 + PZCQSBSl + ])3(,1’:'18182 = (), (Symmetric) (7)

where §; = Sin(ﬁ{:—g-) and C,

Once a root to Eq. (6) or (7) is found, the stress fields and displacement

i

cos( Ri,—}).

fields can be computed easily. Note that Egs. (6) and (7) are ¢ither real or
]
purcly imaginary equations. They are continuous except at a few isolated

singularity points,
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B. Modo Propagation in a Symmetry Direction

When the plate possesses additional symmetry, o.g., orthotropice, cubic
or trangversely isotropic, one can take advantage of some stmplifications in
the definitions of the Ajj in Fgs, (3) due to the vanishing or interrelationship
of some of the olastic constants, Moreover, when the wave propagates in a
direction coinclding with a symmetry plane, further simplifications occur
which doserve some gpecial attention, In particular, partial waves whose
polarizations lie in the plane containing the propagation direction and the
plate normal (sagittal plane) become decoupled from the orthogonally
polarized SH (horizontally polarized shear) waves, For small anisotropy, the
partial waves polarized in tho sagittal plane can be identified as quasi-L and
quasi-SV (vertically polarized shear) waves,

Although the analysis procedure is the same as outlined in the
previous section, the final dispersion cquations are in similar but simpler
forms. Suppose the plate hag at least orthotropic symmetry, and that x-x,
and xg-x4 are the additional two symmetry planes, Then when propagating
in the x, or x, direction, SH modes are decoupled from Rayleigh-Lamb
modes, the latter being polarized in the sagittal plane,

There are two extra symmetry axes for cubic symmetry matorials, In
these situations, it will be advantageous to muke elastic constant
transformation first, then use equations presented in this section rather than
those developed in the previous section, These results will not be explicitly

presented in this paper,

LGtia\'/-r—[ correspond to the eigenvalues for SH waves, Then, the

dispersion equations for Rayleigh-Lamb waves are
—  \ 1 -\ )
Q [mn(./ RQEJJ - Q‘z[.mn(.\/l—{:,g)J =0 (8)

(+ for antisymmetric solutions and - for symmetric solutions),
where Q) = Q (Ry, Ry), Qg = Q (Ry, Ry) and the function Q is defined at the end
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of Appendix A, The associated computational forms are

Q1SyCy = QuSyCqy =0 (antisymmetric) (9)
Q1CuSy ~ QuCySy =0 | (symmetric) (10)

where Sj and C; are defined in the previous section, KBgs. (8) can be furthor

expressed as

n : ‘
[ Bl - LI]. L At o
tan(./R“zJ Qq Y + antisymmetric
— o (11)
tan(./ R"‘?) -l - symmetri¢

This form resombles, and for an isotropic medium reduces to, the well

known Rayleigh-Lamb wave dispersion equations.

C. Surface Wave Determination |

The numerical studies that follow in the next section illustrate a
number of interesting similarities and differences in the isotropic and
anisotropic cases. Two of these have led to additional analytical studies.
Appendix B considers in detail solutions that are bound near surfaces in the
limit b «->e0, As noted by Solie and Auld (6], these must be closely related to
the surface waves studied by Lim and Farnell [8]. The general conclusion is
an analytic expression for the surface wave velocity: P+PytPy=0, where the
rule for the selection of the + sign is given in Appendix B, For propagation
along a symmetry direction, a simple expression for the Rayleigh wave
velocity or the pseudo surface wave velocity can also be obtained which is

equivalent to the result from Royer and Dieulesaint | 16].

D. Crossing of Sy and Ay Modes for Propagation in Symmetry Directions
In the isotropic case, the lowest order symmetric and antisymmetric
Lamb wave dispersion curves asymptotically approach one another in the
high frequency limit, with the slope being the Rayleigh wave velocity, In
anisotropic media, the modes may exhibit multiple crossings as they

approach the surface wave limit, Appendix C shows that when the Rayleigh
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wave solution oceurs under tho conditions for which Ry und Ry are complex
conjugates, the 8, und A, modoes will have multiple crogsings with the
velocity of crossing points being the Rayleigh wave velocity, Also proved in

Appondix C is that the spacing of these crossings is a constant, with the

crossings occurring at k = n{‘- Ve(Z) |, n=1,2,... ,where g(Z) is defined in Eq.
]

(C.6),



NUMERICAL RESULTS

The equations of the last section have heen used to numerically study a
number of the features of the dispersion curves of anisotropic, free plates, As
a basis of comparigon, the well known behavior of guided modes in an
igsotropic medium is briefly reviewed, Throughout this section, the
dispersion curve plots will be given in terms of the dimensionless wave

b . h ) ' - . '
vector, ~k, and frequency ——====. Here k is defined to be the magnitude of
n l SOl Cunlp g
6ol

. 72 . .
the in-plane wave vector, k=4/ ki + ky ; the slowness curve plots will be given

o ‘ k [/ Cu Ky [ Cug
in dimensionless slownesses = ry and V5 In all plots, Vi, Vaw,

and Vpgw stand for Rayleigh wave, surface wave, and pseudo surface wave
velocities respectively, Vi and Vg ave used to describe propagation in
symmetry directions with the term pscudo surface wave used to denote the
case in which the velocity is greater than that of the lowest SH mode. Vg is

used to describe propagation in nonsymmetry directions,

A. lsotropic Plates

Fig. 2a presents the dispersion curves for an isotropic polycrystalline
plate of copper, characterized by elastic constants given in Table I, The SH
partial waves, whk ch are decoupled from the SV and L partial waves because
of the isotropy, combine to form SH guided modes. The SV and L partial
waves, which are coupled, combine to form Lamb guided modes, The SH and
[lamb modes can be further subdivided into symmetric and antisymmetric
modes, depending on the symmetry of the displacement field with respect to
the mid-plane of the plate. In this paper, the Lamb modes will be identified
as follows: Sy, Sy,..for the symmetric modes and Ay, A,,...for the

antisymmetric modes. . The enumeration starts with the lowest o for a fixed
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k. The SH modes can also be subdivided according to their symmetry, and we

will introduce the notation HSy, HS,...for the symmetric modoes and HA|,

HAy,. . for the antisymmoetri: modes. In this convention, the index "0" is only
used for a mode which propagates at all ('x‘o.que_ncies, i,e., has no cutoff
frequency. Hence there is no mode designated HA,,

The partial waves making up the guided mode solutions must satisfy
the Christoffel equations, whose solutions are graphically illustrated by the
slowness surfaces, shown in Fig. 2b, For this case of isotropy, the slowness
surfaces take the form of gspheres (distorted into ellipses in the figure by the
choice of different scales for the ordinate and abscissa) and are indicated by
solid lines. Only two slowness curves are shown, since the behaviors of the
SH and SV partial waves are identical in isotropic solids. In addition to the
solid slowness surfaces, Iig, 2b includes a pair of dashed hyperbole. These
represent the magnitude of the purely imaginary component of k, that is
found when (w/k) < V where V is the velocity of the corresponding wave type
(compressional or shear), '

The importance of the partial wave solutions in determining the
behavior of the dispersion curves was first noted by Mindlin (7] and reviewed
by Meeker and Meitzler 3] and Auld [5]. At this point, it is worth recalling a
few simple aspects of those discussions, Consider the case in which o is
fixed and k increases from zero, The value of kg will generally decrease from
a finite real value to zero and will then increase with a purely imaginary
value. This sequence corresponds to the partial plane wave propagating in a
direction which rotates frem the xy axis to the xy axis, followed by the
development of an inhomogeneous (evanescent) partial wave solution in
which the fields decay exponentially along the x4 axis. As this change in
character of the partial wave solution from propagating to inhomogeneous
has important consequences on the dispersion curves, Figs, 2a and 2b have
been divided into three regions, As the boundaries are defined by particular

values of k/m, they appear as vertical lines on the slowness plots and as lines
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emanating from the origin with different slopes on the dispersion. curves.

In region 1, all partial waves are freely propagating. In region 2, the L
waves become inhom‘ogéneous with an exponentially decay in the thickhess
direction. In region 3, both L. and S solutions are inhomogencous.

Four classes‘of}' special behavior, intimately related to the different wave
propagation characteristics in these regions, are found for the isotropic
media. These special behaviors are discussed in the following paragraphs.
The changes induced by anisotropy will then be the topic of the remainder of

the paper.

Three Mode Crossing Points in Region 1

In region 1, a series of points are f'dund at which three modes, a’
symmetric Lamb, an antisymmetric Lamb, ard a horizontally polarized
shear mode, rﬁutually intel*seét. The realson for these triple crossings may be
understobd from a review of Lamb wave phenomena by Meeker and Meitzler
[3], who made heavy use of an earlier analysis by Mindlin [7]. While seeking
analytical guidance for the construction of dispersion curves, Mindlin
considered the behavior of longitudinal and vertically polarized shear partial -
waves under the assumption that they were not coupled at the stress free
surfaces. The result was a set of hyperbolic dispérsion curves characterized
by ordering parameters p (lon‘gitudinal) and q (shear). Mindlin observed
that, if these hypothetical dispersion curves crossed for both p and q even or
both p and q odd, then the true dispersion curves wbuld pass through the
same point. It is a trivial extension to note that, since the dispersion curves
of SH modes are the same as those for uncoupled SV modes, three modes will

cross at each intersection.

Two Mode Crossings at Region 1-2 Boundary
Along the boundary between regions 1 and 2, avk =V}, the modes S, and

HS, always cross. The reason for this crossing is as follows. Consider first
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the S, mode. In general, it will be the sum of two partial longitudinal waves
inclined at angles isin*l'\/ 1~-(kVL/co)2 with respect to the mode propagation

direction and two partial shear waves inclined at angles iSin'_l‘\/ 1-(kVg/w)",

The relative amplitudes of these partial waves are determined by first
forming a synimetric combination of the two sets of partial waves and then
requiring that o35=0,5=0 at x;;:ib/‘Z. When the S, mode crosses the boundary
line w/k =V, then the.symmetric L ‘sol‘ution is simply u, = exp [i (ot-wx/V)].
Since this has no associated o3 component of stress, the condition that ¢,3=0
at x3=1b/2 must be satisfied entirely by the symmetric combination of shear
waves. Simple analysis shows that this leads to the condition sin (kgb/2) =0,
equivalent to the dispersion curve for the HS,, modes. Hence the crossing at

the S, and HS, modes on the boundary line.

Mode Tangency in Region 2

The decoupled L modes do not occur in region 2. Hence none of the
three mode crossings are expected. However, it is found that the Lamb
modes are tangent to the SH modes when they cross the line w/k=V2Vg at the
points k=(n/b)p, p = 1, ‘2, ... The tangencies of the modes (S,;, HA,,;; n=0,1,...)
are interleaved betwean the tangencies of the modes (A, HS,; n=1,2,...).. At
these points, known as Lamé points, the partial mode decompositions of both
the Lamb and SH modes reduce to a pair of shear waves propagating at +450
with respect to the plate normal. The displacements are, of course,
orthogonal. In particular, the Lamé modes contain no longitudinal partial
waves. At each intersection point, the modes exhibit the common group
velocity Vg/v2.
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Asymptotic Limit in Region 3 |

Only two modes are found in re'g”ion 3. The Ay mode lies in this region
for all frequencies while the S; mode passes into this region. Because both
partial waves are inhomogeneous in region 3, the modés take the form of
symmetric and antisymmetric combinations of solutions localized near the
plate surface. The Syand Ay mode dispersion curves do not cross each other.
Instead, w/k asymptotically a‘pproabhes the Ralei.gh velocity, Vy, for each.
The displacement fields approach symmetric or ahtisymmetric combinations

of Rayleigh waves on the two plate surfaces in this high frequency limit.

B. Anisotropic Plates

- In order to better understand the effects of anisotropy on these and
other features of guided wéve propagation, we have computed the dispersion
curves and corresponding slowness surfaces for a variety of materials and
propagation directions, The materials chosen for study were modeled as
copper polycrystals. The elastic constants used, as shown in Table I, were
computed based on a procedure in which Hill's averaging scheme [21] is
combined with an analytical representation of the effect of preferred grain
orientation (texture) [22,23]. The latter is parametized by a set of orientation
distribution coefficients (ODC's) [24,25], whose values are given in Table II.
The ODC's were not selected because of the likelihood of finding these
particular orientations in commonly encountered materials, but rather to
illustrate various interesting influences of anisotropy on plate wave behavior.
Even more dramatic effects would be expected for such strongly anisotropic
‘materials as fiber reinforced composites. Here "ISO" refers to the previously
discussed isotropic example, "WA" is an example with relatively weak |
anisotropy, and "SA", "SB", and "SC" are three examples with relatively
strong anisotropy. The case of "AL" coh*esponding to a single crystal of
aluminum rather than polycrystalline copper, was added to illustrate weak

anisotropy with cubic symmetry.
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Table III lists the numerical examples and the associated figures to be
discussed in the f‘oilowing subsections. In cach figure, the dispersion curves
shown in part a) is accompanied by slowness curves in part b). The latter
prbvide important information needed to interpret the former, as has already

“been seen for the isotropic case,

Propagation Along a Symmetry Direction

" For propagation along a symmétry axis (8 = 0%0r 900 in orthotropic
plates; 6 = 0°, 45% or 90% in cubic plates), the guided modes decouple in a
fashion that is similar to the isotropic plate response. Again, Lamb mode
~ solutions are polarized in the sagittal plane and SH mode solutions are
polarized in the plane of the plate perpendicular to the propagation direction.
Each of these can be subdivided into symmetric and antisymmetric modes
using the previously introduced notations,

As can be seen from the slowness curves, shown in part b of each figure
for prOpag_ation along a symmetry direction (Figs. 3, 4, 5, 7, 10, 11, 13, 14, and
16), the SH partial waves have a behavior that is quite similar to that found in
the isotropic case, with the slowness surfaces becoming ellipses rather than
circles. The slowness curve in the inhomogeneous wave region is again a
hyperbola. The dispersion curves w(k) formed for the SH plate modes,
obtained through the superposition of these SH partial waves, are also

hyperbole, asymptoticélly approaching the velocity of a plane shear wave,

m for = 0%or 90° and «/(C11“C12)/QD for 9 = 450 in the "AL" case, as
frequency increases.

The other four partial waves do not generally have polarizations which
are purely parallel or purely perpendicular to the propagation direction. For
modest degrees of anisotropy, they can be identified as quasi-longitudinal
(QL) or quasi-shear vertical (QSV) waves. We have found that the QL and
QSV slowness curves can be divided into three classes of behavior which

produce significantly different dispersion curves. These behaviors are
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influenced by the following underlying unalytic behavior. As noted before,

solution of the Christoffel equations leads to a cubic equation with real

coefficients for‘ké. Along symmetry directions, the solution for kg is either

purely real or purely imaginary for SH partial waves. After removing that

response, kg for the QL and QSV partial waves is governed by a quadratic

equation with real coefficients. It follows from the quadratic theorem that

the solutions for k% must be both real or a complex cohjugate pair, After
evaluating the square root, k, can have a pair of real values (RR), a real and
a purely imaginary value (RI), a pair of imaginary values (II), or a pair of
complex conjugate values (CC).

We have found that for a fixed w, the sequence through which the pair
of roots passes as k increases falls in three classes of response, and that each
class of slowness response produces quite different dispersion curves. The
class I response is a distortion of the isotropic case (Figs. 14 and 16). As k
increases, the solutions for ky pass through the sequence RR-RI-II as first
the QL and then the QSV solutions become inhomogeneous, In class 11
response, the pair of imaginary solutions meet. The sequence then becomes
RR-RI-II-CC (Figs. 3. 4, 5, 7, and 13), with the imaginary portion of the
complex pair of roots emanating from the II intersection and the real part
growing from the abscissa in a Fas}ﬁon that has the qualitative appearance of
a hyperbola. Class III responses occurs when the real part of the kg solution
for the QSV partial wave is a multivalued function of k, as often occurs in
strongly anisotropic media (Figs. 10 and 11). This forces the initial portion of
the sequence to be RR-RI-RR, with the ‘inhonloge‘neous extension of the QL
partial wave slowness (purely imaginary ) returning to the axis to merge
with the QSV paftial wave slowness. Under such conditions, we have found
that the full sequence is RR-RI-RR-CC. In distinction to Class II, the real

portion of the complex conjugate pair emanates for the‘turning point on the
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QT slowness while the imaginary part grows from the abscissa in a fashion
that again has the qualitative appearance of a hyperbola.‘

The numerical examples illustrate the influence of each of these
slowness responses on the guided mode dispersion curves, For each case
studied, the slowness curves are divided into regions according to the
character of solutions for kg/w. When the corresponding behavior for the SH
wave is excluded, one finds 3 distinct regions in class I and 4 regions in
classes IT and III responses. The boundaries between these regions are
indicated on the dispersion curves by lines of the appropriate slope. Note
that, when SH waves are included in the slowness and dispersion curves,
extra regions may appear depending on the details of anisotropy. The total
numbers of regions for the examples presented here are listed in Table IV.
For orthotropic plates, there are generally four regions in class I response
and five regions in class II and III responses. Due to the smallness of the II
region in Fig. 3, the boundary lines for this region become extremely close on
the figure. Also note that, for propagation in symmetry directions, the
boundary lines for the SH waves are always identical to the HS; mode
dispersion curves. To avoid overlaying of the lines {or the boundaries and
HSy modes and display both of them clearly, we plotted the HS), modes for the
range of kb/t=1~5 and the boundary lines of SH waves for the range of
kb/n=5~8. o

~In all cases, regions 1 and 2 have a similar character to that exhibited
in isotropic media. However, examination of the dispersion curves show that
the three mode crossing points in region 1, the two mode crossing points on
the region 1-2 boundary, and the mode tangencies in region 2 no longer
occur. This is not surprising since the analytical arguments that were
previously presented supporting the existence of these special points
depended in detail on the isotropy of the material. As in the isotropic case,
crossings of the S, and A, modes are generally not observed in region 2. As

noted by Solie and Auld [6], this would appear to be the anisotropic
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generalization of Mindlin's arguments {7]. 1f one wrote the anisotropic
géneralization of the dispersion curves for decoupled QL and QSV partial
waves it would be found that the crossings of the decoupled dispersion curves
correspond to those of the S, and A, modes. However, all these must occur
in region 1 where the QL partial waves are f{reely propagating, One exception
associated with the multivalued regions of the QSV partial waves, will be
discussed later. In distinction to the tangency of the isotropic case, the SH
modes generally cross the Lamb modes in region 2,

Class I response is observed in both weakly and strongly anisotropic
materials (Figs. 14 and 16). As in the isotropic case, there are no crossings of
the S, and A, modes beyond region 1. The 8, and A, modes asymptotically
approach one another in the high f‘requehcy limit, each consistihg of
combinations of surface wave solutions on the two plate surfaces. The
velocity in this surface wave limit may be either gfeater (Fig. 16) or less (Fig.
14) than the lowest SH modes. The strong influence of the slowness curves is
particularly noticeable in Fig. 14. Note the near vertical segment of the QL
slowness curve, which implies that partial waves will have group velocities
nearly parallel to the x; axis and of magnitude close to the reciprocal of the
projected intercept of the slowness curve with the abscissa [6]. Recalling that
the group velocity of a guided mode is given by V,, = dw/dk the tendency of the
S, and A, modes to be tangent to the line dividing regions 1 and 2 is |
consistent with the notion that the Lamb mode group velocities are also close
to this value,

Class III response is only observed in some strongly anisotropic
materials (Figs. 10 and 11). The multivalued QSV slowness curves and
associated complexities lead to dramatic changes in the dispersion curves.
In contrast to the class I response, crossings between the S, and A,, modes
appear in many regions. Note in particular the behavior of the Syand Ay
modes, which cross one another at multiple points as k increases. As shown

in Appendix C, these crossings all fall on a line passing through the origin
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and having a slope equal to the Rayleigh or pseudo-surface wave velocity,
Furthermore, they are equally spaced with the interval given in that
appendix. This intertwining of the modes is u congequence of the complex
conjugate relationship between the solutions for kg Intertwining of other
modes is also observed. [t qualitatively appears that the degree of
intertwining is related to the extent of the multivalued region of the QSV
mode slowness,

Solie and Auld [6] noted that the intertwining of the Sy and A,
dispersion curves was related to the multivalued QSV slowness curve. We
have found a second condition that produces this same consequence, The
class II response corresponds to the sequence RR-RI-11-CC, (Figs. 3, 4, 6, 7,
and 13), which is generally found in materials with weak anisotropy but
possibly with strong anisotropy (Fig, 13). ffig. 13 is a special case which can
be viewed as having the Il region in class 11 or the second RR region in class
III shrunk to zero. As in class I, but distinct from class 111, crossings of the
S, and the A, modes in class [ generally do not occur beyond region 1. A
qualitative examination of the printed figures might suggest that the S, and
the Ay modes asymptotically approach one another at high frequencies.
However, examination of the numerical data, as well as the analysis
presented in Appendix C, shows that they cross at equally spaced intervals in
all the cases presented except Fig. 5. This exception is discussed below.

These observations lead to a generalized interpretation of the Sy and Ay
mode crossing phenomenon, Solie and Auld noted that multivalued QSV
slowness curves produce crossing, as confirmed by our class I1I results.
Observation of the same phenomena in class 11 suggests that a more general
cause is responsible, Examination of the analysis in Appendix C suggests
that the controlling factor is the existence of a pair of complex conjugate roots
for kg when k is equal to the Rayleigh wave vector. This is confirmed by
referring to the above figures, on which the Rayleigh or pseudo-surface wive

vector has also been marked. With the exception of Fig, 5, the Rayleigh or



pseudo-surface wave vecior falls in the CC reglon of the slowness for all
members of Classes 11 and I} hence, the Sy and Ag mode crossings are
expected, This interpretation is consistent with the alternate explanation of
Solie and Auld in which the oscillatory behuavior was associated with a finite
real part of the transverse purtial wave vector,

A generalization of this observation appears to govern other mode
crossings, It was reported above that extensive 8, and A, mode crossing
were found in class 111, Comparison of the dispersion and slowness regions
reveals that these only occur in regions in which both the QL and QSV partial
wave solution for k4 have real components (Iigs, 10 and 11). In fact, all the
figures presented support the generalization that S, and A, mode crossings
are only found in regions in which both the QL. and QSV slowness have real
parts, This statement can be validated by analyzing Fqs, (11) as folluws,

In order for 8, and A, to cross, the following equation must be satisfied:
. 2f wy _ 2 n ‘
tan (.\/RQ?)— tan (,\/ R”-‘E] (12)

In the RR region where both Ry and Ry are positive, the solutions to Eq, (12)

are ./RQ +af Rg =20, where n is an integer; thus, there are infinitely many

crossings in the RR region, In the RI region where either Ry or Ry is

negative (say R2 < 0); then tlnn(,v/‘['{‘—ag—) = itunh(.\/ | Rz| -g-) Plugging this
expression into Eq. (12) leads to the conclusion that no c¢rossing can be found
in the RI region. In the II region where both Ry and Rg are negative, Eq. (12)

can be rewritten as

(tanh(ﬁj%} Lanh(.\/—l.lmg—»( tunh(.\/ IR, | -g—)k tanh(,,/ | Ry | -’;—)J =0,

Except the root Ry=Rg4, which is the boundary lines of the Il and the CC
regions, no meaningful solution exists for the above equation; hence S and A
~

do not cross in the Il region. The crossing phenomenon in the CC region, as

mentioned before, is discussed in details in Appendix C,
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L isotropic modia and many cases of unlsotropy, tho Rayleigh velocity
{8 logs than tho lowest 8H veloclty, which ig approachoed by ovher modos.
Howover, the Rayleigh velocity can be greator than that of the slowest SH
waves, in which case the Rayleigh waves are known as pseudo surface
waves, This phenomenon has been observed for both strongly and weankly
anisotropic »lates in all three clugses (Mgs, 4, 11, 13, and 16),

Table IV summarizes the characteristics of the oxamples discussed
above,

.Jﬂ el 4 ‘.

When considering propagntion in a general divection, pure SH
solutions do not generally exist, None of the partial waves have pure
polarizations (parallel or perpendicular to the propagation direction) and all
are coupled by the boundary conditions, If one imagines propagation at an
angle slightly removed from a symmetry axis, the 8, and HS,, become
coupled to form a sot of symmetric modes while the A, and HA,, modes
become coupled to form a set of antisymmetric modes, When the anisotropy
is small or propagation is near o symmotry direction, the plate modes can be
identified as having quasi-SH or Lamb chavacter, In other cases, This
identification is often not possible,

The slowness plots can again be characterized according to the
sequence of roots, with strong implications on the form of dispersion curves,
However, now the behavior of all three roots must be considered in the
analysis, In class NI, the general form of the isotropic response is followed
with the sequence RRR-RRI-RII-111, Here, the prefix N has been added to
the previous classification to indicate propagation along a nonsymmaetry
airection. In one deviation, two of the imaginary segments will intercept,
leading to class NII, which has region sequence RRR-RRI-RII-TIT-ICC, In
another deviation (class NIII) multivalued slowness surfaces enter,

Numerous possible subsequences can oceur which will not be enumerated in
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dotail, 'The numerical results presented illustrate some, but not all, of the
possible cases,

The class NI response (Mg, 167 is aguin a variant of the isotropic
behavior. However, there are now only two sots of modoes, the symmoetric 8,
modes can bo thought of ag the combination of quasi-8, and Quasi-HS,; modes
while the antisymmetric A,; modes can be thought of ag the combination of
quasi-A,, and quasi-HA,, modes. Along symmetry directions, the S, and HS,
modes were decoupled (as were the A, and HA ) and could cross, This is not
o for propagution in nonsymmetry divections, and a number of cases of
mode repulsion are observed, Near these repulsions, a mode may change
rapidly from quasi-Lamb to quasi-SH character or vice versa, The quasi-
transverse slowness curves, which crossed at 0% are now coupled and hence
repel. Thus the partial wave polarvization rapidly changes in this region,

Class NII behavior is exhibitod in Fig. 6 for the case of propagation at
db6%in weakly anisotropic material WA, ‘The response is ossentially the same
as that observed in Figs, 5 and 7, with the addition of certain mode repulsions
and rapid changes in polarization as discussed above, The mode repulsions
in [Mig. 6 are not obvious due to the weak anisotropy, but close examinations of
numerical datn unquestionably confirmed all the repulsgions at all the
seemingly crossing points for modes of same symmetry,

A wide variety of phenomuena can be observed in class NIII, as
illustrated by Figs, 8, 9, and 12, Figs, 8 and 9 present results at 309 and 60" for
strongly anisotropic material SA. These arve characterized by a multivalued
region of tha inner quasi-transverse mode, g, 8 shows a case where the
surface wave velocity is nbout the same as that of the SH plane wave solution.
In this case, the surface wave is of SH type because the wave motion has
large SH component, When this oceurs, o solution known as the quasi
surface wave (V qw), where the wave motion has a large component in the
saggital plane, often exists in the RCC vegion [8]. A close examination of Fig,

8a confirms this conclusion. 1Mz 12 presents results at 20V in strongly



anigotropic materiul 8B, Hovre both inner and outer quasi-transverse curves
are multivalued,

Because the coupling of the three partinl waves in cach plate mode
makes it impossible to differentiate SH and Lamb modes, mode crossings
may be found throughout the dispersion curves in the goneral propagation
direction in any of these classes, As [or propagation along symmetry
directions, gpecial features depending on isotropy no longer exist, The
surface wave golution is always found in a region in which all voots have an
imaginary component, In class NI, the Ay and 8y modes asymptotically
approach this limit. In the class NI vesponse shown in Fig, 6, the surface
wave solution fell in a region with purely imaging 8o’ tfons for kq and no
mode crossing wayg observed, [n clags NI response, mode crossings are
observed as the surface wave limit is approached, which is in a region with
[CC roots, However, the interval between crossings is not equal, and
crossings do not fall on a straight line.

Because of these unn}ﬂoxﬂios‘UNpHcM,ﬁnwnLﬂue for surface wave
velocity computations have not been obtained, However, the implicit analytic
formulae given in Appendix B are still valid and the solution for the surface
wave can be found in the 1CC region, Although sometimes difficult to see,
particularly for strong anisotropy, the surluce wave velocity is still the
asymptotic limit of the Ayand S, modes,

Table V lists the characteristies of the examples discussed in this

section,



[V, CONCLUSIONS

Wo have developed o set of dispersion equations for olagtic wave
propagation in a general monoclinie free plate, These equations are
consistent with and, when the anisotropy vanishes, reducible to the well
known Rayleigh-Lamb dispersion equations, As a by-product, we have also
derived equations for the computation of the surfuce wave speed, Through
somo representative numerical examples having differont degrees of
anigotropy, we have demonstrated the deviation of dispersion behavior for
general orthotropic free plates from the isotropic one, We have predicted
that, for wave propagating in u symmetry divection, Sy and Ay will cross cach
other infinitely many times if the Rayleigh wave occurs in the all-complex-
eigenvalue rogion. FFurthermore, we have proved that, for wave propagating
in a symmetry direction, when Sy and A cross each other, the crossing
points are equally spaced, and the phase velocities of all crossing points are
identical to that of the Ravleigh wave. Needless to say, the digpersion
relations for anisolropic plates ure significantly more complicated than those
for isotropic plates, Further study is inevitable to fully comprehend the

nature of the wave propagation,
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AL 1080 1080 1080 620 620 620 283 283 283
ISO 2007 2007 200.7 1061 106.1 106.1 473 473 473
WA 2000 1971 1983 1088 10569 107.1 5601 47.1 483
SA 182.1 1677 1749 1262 1118 1191 921 535 676
SB 2103 2313 1700 1110 1320 70.7 582 1094 242
SC 2843 2287 2453 1116 66.1 726 447 285 329

................................................................................................................

Case W00 W20 W0
WA ‘ 0.002 0.0015 0.001
SA 0.025 0.01 0.0156
SB 0.031 -0.010 -0.018
SC -0.020 0.010 -0.015

Table III. Numerical Examples And Associated Figures

Case ISO AL AL WA WA WA SA SA SA SB SB SB SC SC SC
Dir. all 00 480 (0 450 900 300 GO0 900 09 200 90° 09 600 90v



51

Table IV. Characteristics of Examples for
Propagation in Symmetry Directions
" Number of " Region Surface  Spand A First
Figure Regions Class Sequence® Wave Type Crossing CrossingD

----------------------------------------------------------------------------------------------------------------

2 3 1 RR-RI-IT "R N 0o
3 4 II  RR-RI-II-CC R Y 3.2745
4 5 I  RR-RI-II-CC  PSW Y 44512
5 5 II  RR-RI-II-CC R N o0
7 5 IT RR-RI-II-CC R Y 5.9917
10 5 III RR-RI-RR-CC R Y 1.2493
11 5 III RR-RI-RR-CC  PSW Y 1.2054
13¢ 4 I1 RR-RI-CC PSW Y 2.6450
14 4 I RR-RI-II R N 00
16 4 I RR-RI-II PSW N oo

.............................................................................................................

aExcluding SH modes.
b The value of the dimensionless wave number bk/r at the first mode

crossing point of the Sy and Ay modes; i.e., Vg(Z) in Eq. (C.6).
€ Degenerate case.

Table V. Characteristics of Examples for
Propagation in Nonsymmetry Directions

--------------------------------------------------------------------------------------------------------------

Number of Region Surface
Figure Regions Class Sequence Wave Region
6 5 NII RRR-RRI-RII-III-ICC I1I
8 5 NIII RRR-RRI-RRR-RCC-ICC ICC
9 5 NIII RRR-RRI-RRR-RCC-ICC ICC
12 7 NIII RRR-RRI-RRR-RCC-RRR-RCC-ICC ICC
15 4

NI RRR-RRI-RII-III IT1

----------------------------------------------------------------------------------------------------------------



APPENDIX A: DERIVATION OF DISPERSION EQUATIONS

For a material of monoclinic symmetry with symmetry plane parallel to
X1-Xy plane (see Fig, 1), there are in general 13 nonzero elastic constants in
the elastic tensor [26]. If we make the (ollowing definitions,

oy = Ciy coso + 2C g sina cosot + Cgg sin®o

tge = Cgg cos’a + 2Cyg sinat cosat + Coy sina

ogg = Cgs cos’a + 2C45 sina cosa + Cyy sin“o

o3 = (Cyy + Cgg) sina + (Cy5 + Cyg) cosor (A1)

ttyg = (Cyg5 + Cyg) sina + (Cyg + Cgg) cosar

a9 = Cyg cos’o + (Cig + Cyg) sina cosot + Cyg sino
_ 9 .
K=(Ek\)2 ; W=(l—)JB-m—) Kg= (Eks)z
no n/ Cu N S
where k is the wave number in the propagation direction and « is the angle of
propagation direction with respect to x; direction, then the elements of

Christoffel matrix in Eqs. (3) can be expressed as

9 2
Ay = (o K+ CggKyg — CggW) ( %) v Agg = 0p3 4/ KKj (%) -
2 2
g = (0K + Culy - CeW) [ B ] A =0y /KK (E). A2)
; L2 2
A33 = (0.33K + CBSK3 - CGBW) [\ %J , AI‘Z = (0.121{ + C45K3) ( %) ,
By setting the determinant of Christoffel matrix to zero, we have an equation
of cubic form for K3in terms of K and W which can be easily solved. By
defining the roots for K3 as (Ky), =R, the eigenvector (or displacement vector)
for each partial wave can be obtained through the first two equations of Eqgs.
(3) as



n, i«/KR,.Nx(R‘.)l | for pe1
ny =1 £ /KR,N(R,) p=1,3,5; r=42 for p=3 (A.3)
n3 p,p+l 1 NZ(RI‘) ‘ 3 fOX’ p"—:5

where N,(R) = (0t;5K + Cy5R)0gg — (K + CyqR — CoW) 015

Ny(R) = ((XIQK + C‘mR)(Xm - (U'llK + C55R - GGGW) Oyg

N,(R)=(0ty K+ C5R-Cos W0t it C g s R—Cigs W)—(0t 1 K+C,sR)?
and the first and second subscripts on the left side of Eqgs. (A.3) correspond to,
respectively, the upper and lower signs on the right side of the equations.

The stress field, based on Hooke's law oy = Cjjy uy can be obtained as

n ;
{oig)ppr1 = Uy piy fitRy) e"'ﬁq'ﬁ“” expli(wt—k x;—~kyxp)| (A.4)

where f;(R,) = VKG(R,), fy(Ry) = VKGy(R,) , and f3(R,) = £4/R,Ga(R,)

G1(R) = Cs5RN(R) + C45RN(R) + (Cy5 sina + Cyg coso)N,(R)

Gz(R) = C45RNX(R) + C44RN),(R,) + (044 sinaQ + C45 COSG)NZ(Rf)

G3(R) = K(Czcos0+Cygsina)N (R)+K(Cyogsinot+Cageosa) Ny (R)+Cg3N,(R).
The relation between r and p is the same as that in Egs. (A.3). The total |

. 6
stress field is then (0ig)rowal = Lp=1(Cig)p,
By imposing the stress free boundary conditions (Eq. (4)) and separating

the symmetric and antisymmetric solutions, we have, for antisymmetric

solutions, ‘
VRG(Rp C; VKG(Ry) C, VKGR Cy | (U,
VKGy(R)) C; VKGy(Ry) Cy VKGy(R3) Cy | { Uyl =0 (A.5)

4/ R'IGS(RI) Sl af RQGS(RQ) SQ 4/ Rg Gg(Rg) SB U3

where S; and C; are as defined in Egs. (9) and (10). Symmetric solutions can
be obtained by making C; <--> S; substitutions to Eqgs. (A.5). For nontrivial
solutions, the determinant of the coefficient matrix must vanish. This leads

to Egs. (6) and (7), which can be more concisely expressed as Eqgs. (5) with the



definition of P as, ‘
P(X,Y,2) = VX G3(X)G(Y) Gyp(Z) = G(Z) Gy(Y)] " (A.6)

If the plate material possesses another symmetry plane which is
perpendicular to the plate surfaces, then when wave propagates in a
direction parallel to this plane, SH waves are decoupled from L and SV
waves, which means the displacement vectors due to SH waves are
perpendicular to those of 1. and SV waves. If the added symmetry plane is
aligned with xi-x3 plane, then significant simplifications can be made on the
dispersion equations. In such a case, C;g=Cye=C36=Css=0 and Eqs. (A.2)
become ™y = Cn y Olog = CGG y Olgn = 055 y Oyg = Cl'B + CIS y Ryg = Qlgg = 0, and the

roots for Kgcan be solved explicitly as
Cos .
(Kg)1 =R, = —-é—“—’(K—W) | (SH waves) (A.7)
44

~btaf b%-dac

and (K3)2|3 = R2’3 = o

(Land SV waves) (A.8)

Where a= 033055
b = (C3C33-2C 3Cs5-C 13K — Cgg(CyytCss)W
c= CHCSSKZ - (Cll+C55)CG(;KW + C‘és\WZ

B C
For isotropic media, Egs. (A.8) give Ry 3=-K+ 4w,
C1.Cyy

From the boundary conditions for SH waves, we can readily get the
dispersion equations for the SH waves as (for both antisymmetric and

symmetric modes):

: C,
sin(n./Rl ] =0 or W=K4+Hp? (n—integer) (A.9)

o |
For quasi-I, and quasi-SV waves, on the other hand, the eigenvectors can
be obtained from the first equation of Eqs. (3). After applying boundary
conditions 013=033=0 @ x3=tb/2 and separating symmetric and antisymmetric

solutions, the dispersion equations become Egs. (8) with



)

QXY = VT (A X+Ay) (B,Y-By)
Ay =CyyCrs, Ay = KIC, | Cyy=C 5(Cy+Cypdl = CyCueW (A.10)
B1=C13 ) B‘Z:CGGW—'CHK'
One can also use the third equation of Eqs. (3) to get the eigenvectors, The
resulting dispersion relations, given by Markus et al, [10], are equivalent but

in cliff_'erent form,
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APPENDIX B: SURFACE WAVE SPEED DETERMINATION

B.1. ‘Wave Propagates in An Arbitrary Direction of A Monoclinic Material

In order to have a surface wave, the R; must be either negative (so the
square roots are pure imaginary) or éomplex numbers; this ensures that the
" superposition of partial waves has the property of "exponential decay”. There

are two cases; 1) Ry, Ry, and Ry are all negative; and 2) Ry is negative and
* .
Ry=Rg are complex conjugates.

+1 , . ,
For case 1, as b—weo, [tan( R,% )] - *i, so, we have from Eqgs. (5):

Py +Pg+Py=0 (B.1)

For case 2, b—oo, [Lun(./R,%—)J“—a +iand if Ro=a+id, Ry=a-id, (d>0) then

_ el *1
[tan( RQ%)} —+i and [Lun(./Rg-g-)] — +i thus, Eqs. (5) become

Py+Py-Py=0 (B.2)
Although Eqs. (B.1) and (B.2) are functions of K and W, the surface wave

velocity can be obtained by solving for the ratio W/K; then [)Vﬁ\v, with Vgw

being the surface wave velocity, equals CygW/K,

B.2 Wave Propagates in Principal Direction (Say X; Direction)

Similar to the situation described in B.1, we have two cases: 1) Ry and Ry

are all negative; and 2) RQ:R; are complex conjugates. Equations (8) become
~ for case 1
Qu Q=0 ( ]

)

‘ (B.3)
+ for case 2

Equations (B.3) can be further simplifies to

AgZP+ Ay 7P+ A 7+ Ay=0 (for both cases) (B.4)
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=1

where Z=pVi, B=0C Cu=Cly, Ap=CaB? A = -BECyChe+B)
AZ = C:NJ‘C[;G(C;];;“G[l)-}-znl. and A;] = (‘);3;](055‘"0;;3)~
Equation (B.4) reduces to the well known Rayleigh wave squation for

isotropic media,
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APPENDIX C. MULTIPLE CROSSINGS O §; AND A, MODIES
FOR WAVE PROPAGATION IN SYMMETRY DIRECTIONS

[l . . P |
When Rayleigh waves oceur in the region Ry=Ry, Sy and Ap modes ave
found crossing cach other with the crossing points equally spacoed, This can

be shown analytically,
1 ' . * ' . ' P '
The region boundary line of the Ry=Ry region is dictated by b%4ac=0 in
Eqs. (A.8). The vanishing of thig discriminant gives another quadratic
equation for Z(y::pVB,
a2+ b2+ ¢ =0 (C.D
2
where a; = (Cqq~Cgg)”,
~ 9
bl = 2.{ /qﬁlb 941 C“ l'(wﬁf,ﬂ'( 1! i((”'m }'C-H)]-f'((j55‘F(j:1:3)((j13—(3“033)} )
= (Cly=C ) Capll 4Ca5(C y+C g+ CTy=C 1 Cuyl
Thus, if Zo > Z, where Z is caleulable from Eq. (B.4), then the Rayleigh wave
will occur in the complex region [{L,,:H:;.

When Sp and Ap cross, the crossing points must satisfy both dispersion

equations, i.e.,

Qltzm(,\/—li;%) Q.;tan( {3 J:() (C.2)
and Qﬂun(,\/ﬁ.%)—taun(,\/l—{;%):o (C.3)

o ' . - -y ¥ -n )

Since in the region Ry=R,, tzm(.‘/l 27 ) = un(.\/ Ry ] both of the above
dispersion equations become Q1 +Qu=0. This is 1donL1(:al to Kqs. (B.3) case 2,
the Rayleigh wave speed computation equation, Thus, the Apand Sy crossing

points fall on the Rayleigh wave line.

Furthermore, the solution to Lzm(,/ Rgg«) = —tan( "/ R;,-g-)can be found as

ARy + /Ry = 2n (C.4)
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where n is an integer, This can be simplified to
—n vl
Y4ac - b = 4an” (C.5)
where a, b, and ¢ are defined in Fgs. (A.8),

Since we know ot the crossing points the velocity is the Rayleigh wave

4 | ~ 2 r
veloeity, Eq. (C.5) can be rewritten as Grecall CogW/IK=pV j=2):

K= g(Z) n® oor k= n% V(7)) n=1,2,.. (C.6)

A Cap

where g(Z)= ~ ‘

aa

For a particular material, gt7) is a constant, therefove the crossings on

dispersion curve plot will be equally spaced.
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Fig. 1. Coordinates of plate
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PULSE PROPAGATION ANALYSIS OF DISPERSIVE WAVES
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ABSTRACT

In most applications of dispersive waves, waves are applied in the form
of pulses. [t is well known that when a propagating wave is dispersive, a
pulse changes its shape and spreads out as it propagates, Two analytical
models are available in the literature that analyze the pulse propagation of
dispersive waves, One was introduced by Thompson and Elsley and the other
by Terina and Garrett and McCumber. The two models were proposed.in
studies of different types of dispersive waves, Both models were developed for
Gaussian shaped pulses, one in time and one in space. This paper makes a
further study of these two models and discusses their common
characteristics and differences. Additional analytical solutions for various
features associated with the pulse propagation and distortion are derived and
presented. Some of these characteristics can be used to make interpretation
of signals easy in time domain. 'T'o evaluate how these models perform,
experiments with ultrasonic dispersive waves were conducted, The
dispersive waves employved in this paper ure plate (Lamb) waves,
Comparisons are made of the experimental waveforms with the .predicti(ms
by the two models. It is found that, at least in this study, the pulse |
propagation model proposcd by Thompson and Elsley is more appropriate
than the other one. Quantitative comparisons for various aspects of pulse
propagation are also made between the experimental results and the
~simulations based on the model by Thompson and Elsley. The advantages
and disadvantages of the two models are also discussed, The paper
concentrates on Gaussian shaped pulses with a brief discussion for non-

(Gaussian shaped pulses.
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INTRODUCTION

Since in most applications of dispersive waves, waves are applied in the
form of pulses, successful applications of dispersive waves require a clear
understanding of the characteristics of pulsé propagation. When a
propagating wave is dispersive, a pulse of this wave chahges its shape and
spreads out as it propagates. Generally speaking, when the propagating
wave is dispersive, the pulse propagation is complicated in two aspects.
First, the phase velocity and group velocity are different, hence the individual
‘cycles travel at a different speed than the wave packet. Secondly, a pulse
contains many frequency components and these frequency components
propagate at different phase and group velocities, some fast and some slow,
leading to an increase in the pulse width,

There have been several published articles in the literature in which
pulse propagation of dispeveive waves is studied and modeled. Most of these
articles are related to the electromagnetic (optical) pulses, although the
principles are applicable to general dispersive waves. In late '60s and early
708, Terina [1,2] and Garrett and McCumber (3] independently developed
analytical solutions for Gaussian shaped pulses propagating in media with
absorption and dispersion, In their pupers, the propagation of pulses that
have a Gaussian shaped envelope in time was modeled and numerical
analysis was performed to evaluate the accuracy of the model. For the
convenience of discussion in this puper, we call this model "the time model”
for the reason that the model was developed for pulses having Gaussian
envelopes in time. The time model was not experimentally evaluated until
about ten years later when Chu and Wong [4] reported some experimental
confirmation of the conclusion drawn by Garrett and McCumber regarding
the pulse peak propagation velocity. This confirmation, however, was

argued by Katz and Alfano [5] shortly by pointing out that the experimental
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resolution of their measurement does not warrant the proof. A review article

with many references published by Puri and Birman [6] discussed the model

by Garrett and McCumber and the application of the model. |

At about the same time that the time model was introduced, Thompson
and Elsley [7] proposed another model which approximates the pulse
propagation of dispersive ultrasonic waves. In their report, Thompson and
Elsley analyzed the propagation of pulses that have a spatial Gaussian
shaped envelope. We will call this model "space model” since this model is
for pulses of Gaussian shapes in space. Again, ‘only theoretical analysis was
presented in their report, no experimental evaluation of the validity of the
" model was supplied.

~As the application ol dispersive wuaves increases, better understanding
and modeling of dispersive wave propagution becomes essential, In this
paper, we will make a further study of the two pulse propagation models and
discuss the similaritics and differences. We will also develop some
additional analytical solutions for various features associated with the pulse
propagation and distortion. [For the purposes of clarity and completeness,
this paper will present the two models in a parallel fashion. Comparisons
will be made as the models being presented. Concentration will be placed on
the propagation of Gaussian shapced pulses, both in time and in space,
although non-Gaussian shaped pulses will also be briefly discussed.

To evaluate the pulse propagation models, experiments using
ultrasonic dispersive waves were conducted on a 2.2 mm thick Al plate.
Waveforms of different types of dispersive plate modes (Lamb waves) using
two different types of transducers were obtained and compared to the
predictions by the two pulse propagation models, Quantitative comparisons
for various aspects of pulse ]jl'()])z‘lg‘ut.ion were also made between the
experimental waveforms and the simulated ones for the space model.
Through the waveform examples, it is shown how the pulse propagation

model can be used to determine some of the important dispersien

e 1 ' ' Wt " m

e
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characteristics of dispersive waves, At the end of this paper, discussions will
be made for the possible applications of this model.

Before we proceed, it is necessary to clarify the notation for propagating
waves. In the ultrasonics community, a wave propagating in the positive
direction is generally represented by citwt-ko) Thig i different from
eJ(0t-kx) which is the one sometimes used in optics community. To be

consistent, el(@t-k%) will be used through out this paper,
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PULSE PROPACATION MODIELS AND ANALYSIS

A. Pulse Propagation Models
A propagating pulse , which congains many frequency components,
! /
can be expressed by either of tv]w‘i"‘.,}!x.}/w.fir'x;;‘ Fourier integrals:

[R5

Ug(t,X) = =

ﬂ;lw Agtk) expl itk dk ‘ (la)
n

o

or

Ultx) = In Ay explpcmr ko] do (1b)

where u (t,x) and u(tx are the displacement fields, x is the propagation
distance, k is the wave number or spatial frequency, w is the angular
frequency, Ay ki and Am are functions relating to the bandwidth of the
spatial frequency k and temporal lrequencey o respectively, Kquation (la) was
proposed by Thompson and Flsley which corresponds to the space model and
Kq. (1b) was used in most of the studies cited in the previous section which
corresponds to the time nuﬁlvk The subsenpts Cand s in kgs. (la) and (1b)
indicate this correspondence.

For dizpersive wave propacation, the angular requeney m s related to
the spatial frequency k by a dispersion relation governing the wave
pruphguti(m; e Foko=00 This relation is typically nonlinear, often implicit
and multivalued tmultiple modes). 1f we assume that only one mode of
propagation is present, then the dispersion relation Fiw,k)=0 can be expanded
at (wg k), where o, and k ave the conteal angular and spatial f‘roquencfw:'s
and (wg, k) is the point of opepation of the propagating wave packet on the
dispersion curve, as Tavlor sevies:

wk) =y + (knk())tl{(flk:k” + | (k-k? Q-iz‘;(glk:k“ A (2a)

2 dk
or
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k(@) = ko + (@-00) L]y, +Lc-00)? ;‘;‘ffg'm o (2b)
where dca)/clk|k=,k0 =V, = oy and dzw/dk2|k=k0 = wy are the slope (group velocity)
and the curvature for the w=w(k) plot at the point of operation and
dl(/dcolo):wo = 1/V, =ky and dzk/dmzlmw0 = kg are the slope (inverse of group
velocity) and the curvature for the k=k(w) plot. ko and w; are related by
wp=-V3 k.

Substituting Eq. (2) into Eq. (1) and dropping off the higher order terms,
Eq. (1) can be written as

oo

‘ us(t,x) = ;17? ej((ool-kux)f

Ag(k) exp{jl(k-ko)(Vgt-x) + %w}; (k-ko)?t]) dk (3a)
or

00

ut(t,x)=317~€6i(‘°°“k°")j A (o) exp{j[(a)-(o())(t~x/\/g)-%k'(') (w-wp)2x]} dw .  (3b)

For arbitrary functions Ag(k) and Ay(w), numerical computation is
usually required to evaluate the integrals in Eq. (3). When A k) and Ai(w)
are Gaussian funct’ ns, however, integrations in Eq. (3) can be carried out

analytically, leading to useful physical insights.

Let

As(k) = 0sBexpl- %Bf(k-ko)zl (4a)
and

Alw) = aBexpl- BY(@-w)?) (4b)

where a4 and o are normalization coefficients and By and By are half widths
of initial Gaussian pulses in space and in time respectively (because, as will
be seen, those are what they represent physically).

With the Gaussian functions defined in Eq. (4), analytical solutions to
Eq. (3) have been obtained as:

ug(t,x) = Ug(t,x) exp{jloot-kox+Argg(t,x)]) (ba)
or



a(tx) = U,x) expl il oot-kps-Arg (L] (bh)
where
. L \/ Il'v\‘ 3 .
Ug(t,x) =~ w“”u expl- - (, ¥ -~-)~~; : (6a)
Grcah' T 2B
] -X \/v 2 '
Uit = e e ! ! W (6b)
Y2 (l+1]) 2B+
Vt-x)2T, | , .
Argg(t,x) = —i-ﬂl:ln“ T, - (-‘;_).”1“ (Ta)
- 2B+t
' (-x/V 0t s
Arg(tx) = i"'l:m" T VYT (7h)

bl Al
- - 2B T
“ " 3 " )
with te=w/Bs and 1i=kn/B;.
Equations (5~7) describe two pulse propagation solutions with many
interesting features. These features are listed below with more quantitative
analysis and discussions to be presented in the rest of this section:

(1) At t=0, 1,=0, U, (0x) = V(,f expl - "«;-‘} and Arg,(0,x)=0, This means
i It

that the pulse envelope predicted by the space model has a Gaussian shape
and there is rio extra phase shift in the exponent which implies the zero-
crossings of individual cycles within the pulse are separated by an equal
distance 2n/k in space. However, at t=0, 1,20, U,(0,x), the pulse shape
predicted by the time model, is symmetrie but not Gaussian in space. And
because of Arg (0,x)=0, the zero-crossings of individual cycles are no longer
equally separated in space, though the spatial period variation is still

symmetric about the center of the pulse,

(2) At x=0, 1,=0, U,(1,0) = \/(:i‘;t expl- "(l; ) and Arg,(1,00=0. This meansg
- =1
that the pulse envelope predicted by the time model has a Gaussian shape
and there is no extra phase shift in the exponent, implying a constant period
2n/wg in time within the pulse envelope. However, at x=0, t,#0, U(t,0), the
pulse shape predicted by the space model, is symmetric but not Gaussian in

time. The periods within the pulse envelope are no longer constant due to

i " . TN
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Arg,(t,0)20, even though the period variation is symmetric about the conter of
the pulse.

(3) As the pulse propaguates, at any fixed time t, the space model
predicts that the pulse remains as a Caussian shape in space, The peak of
the envelope moves at the group velocity in space x(penk)=Vit. The peak
envelope amplitude decreases as the propagating time increases, varying as

/4

(1+tH ", This loss of amplitude is accompanied by a pulse spreading with

Y On the other hand, the

the spatial pulse length being proportional to (1+1%)
time model predicts, at any fixed time t, the pulse in space is not Gaussian; i
becomes asymmetric and the envelope amplitude decreases with both the
asymmetry and the loss of pulse envelope amplitude directly related to (1+t.
The peak of the pulse envelope in this case moves at a slightly different speed
from the group velocity because of the slow varying function (l+rf)IM in the
denominator in Eq. (6b). Similar to the space model, the pulse spreads out in
space as it propagates, [7or both models, the concurrence of decrease in
amplitude and increase in width is consistent with conservation of encrgy
within the pulse.

(4) At any fixed propagation distance x, the space model shows that the
pulse becomes distorted (skewed) and stretched in time, T'he pulse envelope
is not symmetric with respect to the pulse center and the peak of the pulse
decreases as the propagation distance increases. The rate of skewing und
stretching is closely associated with the value of t,. The pulse peak travels at
a speed a little different from the group velocity, The difference is also related
to t,. With the time model, however, 1, has nothing Lo do with time -- it is a
constant when the propagation distance is lixed. Thus as the propagation
distance increases, the pulse retains a Gaussian shape in time though the
pulse amplitude decrcases and the pulse width increases,

(6) At any positive fixed time, t > 0, the zero crossings of individual
cycles within the pulse as predicted hy the space model are no longer equally

spaced at 2n/ky due to the extra phase shifts described by Eq. (7a). In
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particular, the quadratic dependence of the second term on V t-x (which is
the varying term within the pulse envelope in space) causes the the pulse in
space to have a symmetric phase shill with respect to the pulse center. The
wavelengths of Lthe pulse, therefore, inerease or decrease within the pulse
depending on the sign of w,. T'he prediction of the wavelength variation by
the time model, however, is a little different from the space model due to the
fact that 1, is a variable in space, Of the two terms in Eq. (7b), the first one is

generally a slow varying function within the pulse envelope comparing to the

second one, Within the second term of g, (7h), -4 is a smooth function
(1415 '
(

having no zeros henee the dominant part is still the quadratic component,
This means that the spatial periods of the eyveles within the pulse as prodicted
by the time model have a similar variation pattern; i.e,, the increase or
decrease of the wavelengths in space is controlled by the sign of k.

(6) When viewed as a function of time for a (ixed propagation distance,
the space model predicts that, due to the presence of tin both terms of g,
(740, the phase shilt introduced by Arpg(Cxris not symmetric with respect to
the pulse center and the zero crossings within the pulse are never equally
separated in time. The situation here is very much like the one desceribed in
(5) for the time model with a fixed time, Likewise, the time model now
predicts a outcome for the period variation in time that is similar to what
described in the previous paragraph for the wavelength by the space model
for a fixed distance; i.e., the extra phase shift Arg (t,x) is symmetric with
respect to the pulse center and the periods increase ov decrease in |
accordance with the sign of k.

(7) The phenomena of pulse spreading, skewing and frequency
modulation (variation of periods or wavelengths) are all controlled by ) or k,
None of these occurs when my, or k=0,

(8) The Fourier transforms of the time signal for a fixed distance are

different for the two pulse models, As implied by the assumed function in Kq.
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(4b), the magnitude of the Fourier transform of u(t,x) is always a Gaussian,
On the other hand, the magnitude of the Fourier transform of u,(l,x) is not a
Gaussian, In fact, its shapa depends on the digpersion function k=k(w); i.e.,
[Fs(l=Ag(k(N/V (w1, where Agk) is given by g, (da), For both models, and
regardless of the functions in Alw), the envelopes of Fourier transforms are
identical for any propagation distance, even though thore may be significant
changes in pulse envelopes in time domain,

(9) When comparing the two pulse propagation models, one finds that
the behavior of the time model in space is similar to that of the space model in
time and the predictions of the time model in time is also similar to those of
the space model in space, This is, of course, due to the similarity in the set
up equations (Kqs, (1a) and (th) and the assumed Gaussian functions in Kq.
(4).

B, Change of Periods within the Wave Packet

Typically o pulse signal is displaved in time domain on a oscilloscope
for a fixed propagation distance x. Because of the extre torm Arvg(t,x) in the
exponential term in b, (), the periods of the eveles within a wave packet for
a digpersive wave vary from one location to another, I a particular zevo-
crossing corresponds to

ot - Kox + Argg(Lx) = 2nm + O (for the space model) (Ra)
or

mpt - KpX - Arg(tx) = 2nm + (for the time model! (8b)
where f'is an arbitrary phase factor, at a fixed propagation distance x =x,, the
period as measured from two consecutive zero-crossings At=t,-t, can be
expressed ag

oAt [Argg (X)) - Argg X ] =21 (9)
where the plug sign corresponds to the subseript s for the space model and
th» minus sign corresponds to the subseript t for the time model, The

thooretical period which corresponds to the central frequency of the pulse is
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D=2n/wy,
Because
ATBgl2, X0 - Al (h%0) AT L) (10)
L Ot ' a
g, (9) can be approximately rewritten us
| OATE LX)
on N

and the change of period At within the pulse envelope; ie., dA/dL can be
obtained as
| AL, (L)
QAL - 4 Do o (12)
de oy | dATR, (g '
Twe ot |

In other words, dAUdt ha s stane sign as «)3:\|‘g.u.xn>/f’)13 for the time
model and opposite sign as ()3,-\x§:.‘(l,\u)/«)l“’ for the space model,

To see the physical meanigs of s, o b and 0120 elearly, we nieed to
know dArg/ot and ()jx\tg/dl: for the two models. For the time model, Avg(t,x,)
is a second order polytrmial in ( since tis a constant for x=xi, Therefore
the sign (){II)J«‘\I'L’M(“J i the opposite as k,, which teads to o deerease for the
periods from the leading cdge of the pulse to the trailing edge for a positive K
and a increase for a negative ko This also means that, for a positive group
velocity Vi, when ayg»0, the high lrequency components of the pulse are at the
leading edge of the pulse and when my=0, the low frequency components are
at the leading cdge.

For the space model, the exact expressions for the two derivatives are
complicated because of the dependence of t, on t, but generally unnecessary.
The characteristics of these derivatives can be found by analyzing U (t,x) and
Arg Lx)in Kqs, (6) and (7).

M

Frown g, (6a), we sce that, because ( ety ™ s a slow varying function
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pulse envelope, b varies from 3 Lo zero and baek to 3; b becomes soro ab t=x/V

: - (
U,(tx) | for b=
4 mux 21};,( |-b~t£)

near (not at) the peak of pulse envelope, In this vegion, Arg(t,x) changes from
Arg(t,x)] = %tun“' Ty 3 = - 31 L0 Aty o] = Lian! 1, and back to

Args(t,x)lR ~ - 31y, with subscripts [, C, and R indicating left side, central, and
right side of the pulse envelope, Because of this variation pattern for Argy(t,x)
within the pulse envelope, é)lf\l'g\/i)l"',»() when t,<0 and ()zAl'gs/E)l‘%() whoen t,>0.
Thus, when >0, dAt/di=0, the periods within the pulse increase from the
leading edge to the Lrailing edge, and vice versa, Naturally, this
approximated analysis should not be applied when the propagation distance

: A
is close to zero where (1+1d)

is not a slow varying function at all,

Note that the period variations predicted by the space model within the
pulse envelope has the same trend as the thoso predicted by the time model,
although there is a slight different in dvt.nils. in the dependerico on the wy,
This conclusion, of course, is under the condition that group velocity V is
positive, which is often the cuse for ultrasonic dispersive waves; this may not
always be true, however, for electromagnetic or optical waves,

The physical implication of this feature is that wy can be qualitatively
determined as greater or less than zevo divectly from o waveform, This is
depicted in Tuble I, The experimental results to be presented later will verify

this phenomenon,

C. T'wo Toportant Time Locations
There are two important time locations within a pulse which are of
interest, irst one is thoe time t, of the pulse peak location, For the time

model where 1, is constant for a fixed distance, the peak of the pulse envelope
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fravels at the group veloeity V, und the peak occurs at t=x/V,
For the space model whore v, is o variable fn time, the peak of tho pulse

envelope does not move at the group velocity in time; the peak does not oceur

at t=x/Vy due to the dependence of the coefficiont in front of tho exponential

function on time in Eq. (6o, In fact, by rewriting U,x) as

Ug(tx) = ¢ £ (4%, where ¢ = V(j“ is tho constant coefticiont, (0 = (1+td) \
In
e (Vyl=x)*
and f3(4,%) = expl- 52 one finds that the peak of the pulse envelope
2RE(1ed)
occurs when dU(tx)/00 = ()
. ‘ . ) “ W\ |

or lg(t.x)(“-“-‘) + MR A, (13

dt N

Since for t > 0, dfydt < 0, (> 0, und £, 0, Lo satisly g, (13), oot must boe
greater than zero, This leads to the conclusion ty< /Yy, regardless of the
sign of oy,
In (act, further nmthonmt\(' U analysis shows thot
s

Sy >
vV, "7V, >
¥ k l,p ( (”“ )

|
BV, |

9

; " 7

wy | : . ; ' | (”u o

and if | Vol << 1, as sometimoes is the ease, (= S 1L . Thus
(n vV, ‘ "oyl B vy

the velocity ()1 the pulse peak is greater than the trae group velocity,

The second important time location within a wave packet is the time ty,
where the measured period A equals the period D of center frequeney f,
I'rom Eq., (11), one sees that At = Dy, when dArg/ot = 0,

For the time model, this occurs when t = &/V,, = 1y, In other words, the
period of the cycle at the peak of the pulse envelope has the period
corresponding Lo the center frequency of the pulse, Por the space model, this

is not true. As discussed before, dArg/or = 0 occurs near t = x/V,, In this

e
vicinity, dArg/ot can be approximated as
OArg) oy ViV ot
ot 2BE (14T B+
Setting this expression Lo zevo leads Loy = x/V,

(14)
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~ D. Phase Velocity Variation within the Wave Packet
Because of the term Arg(t,x), all zero-crossings within a wave packet do

not travel at the same speed. 'If we define V ,, as the zero-crossing velocity or

“the velocity which would be measured through a small distance change; 1. e.
Vom = dx/dt, then, throug‘h a total derivative of Eq. (8), one gets,
+ DATg(1,x)/0t .

© Vpm = dx  B0TC Arg (Lol ‘ (15a)
b ko - QArg,(t,x)/0x 4 ‘ ‘
x _ - JdATg(t,x)/dt
ko + dArg (1,x)/dx : ‘
It is conceivable that the modifying terms dArg/dt and dArg/dx are in

joR

=

(15b)

or Vpm=

general small comparing to w, and kb respectively., Therefore Eq. (15) can'be
‘approximated to |

me=m I i_l__aArgs‘l([’x) t«LaAFg;‘[(t,X)
~ kg o) ot ko ox
where the plus sign corresponds to the space model and the minus sign

(16)

corresponds to the time model.
 Recall that 1, is a function of time and 1, is a function of distance only,
we have ‘
aArgs(t,X) Vg[ - X aAFQl(t,x) t- X/Vg
5 = — T and “a = - -
o oX Bi(l+1d) t B2 (1 + 1)
Since within the wave packet, tan'!t and t/(1+19 are slowly varying functions

W an

comparing to (Vgt-x)Q,‘aArgs(t,x)/{)t and JArg,(1,x)/dx can be expressed as

y (1) A ‘ v (1) - X/Vy '
aArgést(t,x) - blt (7 Vi and aAré,;(l.x) - 7t x/ : Y}L (18)
(1 +18) 7 Br(l+1) '8
Then Eq. (16) becomes -
V, (Vyt-x)
Vo=Vl +(1--& L. 2222 t-) (19a)
T Ve kel + )
V, V- X) ‘
and Vpm=Vy[1-(1- o8y L Y0 l) (19b)
Vo ko B2 (1 + 1) Vi

where V is the phase velocity as determined from wyk, (center phase

velocity). And the velocity change, dV,,/dt, within the wave packet becomes:

Ve Ty
b LR VIRVE [ U LI (20a)
PV ko B2 (1 + 1Y
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N A R VA0
dt Vo ko g1+t

Because t/(1+1?) is monotonic, dV,,/dt is a monctonic function too. Whether

(20b)

V,m increases or decreases monotonically depends on the sign of (n);‘) or k, as
well as the sign of (V-V,). Note that because of the relation (n'('):-V%k{,, Egs.
(19) and (20) give consistent predictions for both the time and the space
models, unless, of course, thé group velocity is negative or infinity.

For the space model, at t = t¢ = XV, ATE(LX)/dt = (o'(',/lng(Ht%)I and -
JArg(t,x)/0x=0. At t=tp > XV, JArg(1,x)/0t = ) and dArg(t.x)/0x is related to (u‘(‘,
by the first equétion of Eq. (17). Using Eq. (15a), one concludes that at b‘oth te
and tp, Vi >V, when wy > 6 and Vom €V, when wy < 0.

~ For the time model, at t = tp= Lp = X/Vy, OATg(t,x)/dx = ky/12B2(14+19)] and
oArg(t,x)/0t=0. From Eq. (13b), one finds that, assuming positive group
velocity, Vi, >V, when ky< Oorw,>0and me <V, when ky > 0 or wy < 0.

The V,, and V relation within the wave packet is summarized in

Table II for the space model.

K. General Comments

The features presented and discussed so far are for the Gaussian ‘
shaped pulses. Depending on the model chosen, the predicted outcomes in
different aspects can be similar or different. Both models predict a
monotonic change in the period variation and measured phase velocity
variation within the pulse envelope. The two models however, disagree on
the pulse envelope shape variation in time and frequency domain as well as
~in space. Experiments to be presented in the next section will be used to
evaluate the pertormance of the two models.

Real pulses are never Gaussians. Many of them are not even
symmetric. There will be incvitably errors involved if one uses the twe pulse

models without discretion. Fortunately, many pulses in real application are
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close to Gaussians at the beginning of propagation. If one imagines a non-
'Gaussian pulse as having many Gaussian components (similar to
expressing a periodic function as a sum of many sinusoidal functions), the
pulse may be expressed as a series of Gaussians, hopefully a convergent one.
For a fast convergent series, one may conceive the first Géussian term will
provide a good approximation to the non-Gaussian pulse. In this case, some
trends for the features discussed for the Gaussian should still be valid, and
the pulse models should be able to provide some reasonable guidance. The
bad news is that it is often mathematically impossible or impractical to
determine the expansion coefficicnts associated with the Gaussian series,
As one may have already noticed, the models presented here have not
attenuation or absorption factors included. If one wishes to include these
factors in the models, the integrals in Fa. (3) may not be solvable analytically
except for some special forms. Through out this paper, we recognize the

existence of these factors but assume they are negligible in the analysis,
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EXPERIMENTS

To evaluate the pulse propagation models presented in section 11,
experiments using ultrasonic dispersive waves have been performed. The
experiments were all done on a 2.2 mm (0.0873") thick Al plate. This plate is
-~ smooth on both surfaces with no significant thickness and property
inhomogeneity. Pulses of dispersive plate waves were applied to the Al plate.
Some experiments were done using EMATSs (clectro-magnetic acoustic
transducers), others using conventional PZT transducers. For the
experiments using KEMATSs, the S, and the SH, plate modes were excited. The
spatial periods of the Spand the SH|; EMATSs are 5.1 mm and 5.4 mm -
respectively, The operating frequencies for the two plate modes were about
0.8~0.9 MHz. For the experiments using PZT transducers, the Sy and the A,
modes were applied. The PZT transducers are 1 inch diameter Panametrics
broadband transducers with center frequency of 1 MHz, In the PZT
experiments, pulses were transmitted into the Al sample through local
water couplings at appropriate angles. [n both EMAT and PZT experiments,
pu]ses were launched by a transmitter and picked up by a receiver, which
~was separated from the transmitter by distances of 100 mm to 200 mm. The
Spand the SH; modes were chosen in the EMAT experiments because they
have opposite signs for w, at the operation points, providing an ideal model
evaluation environment. For the same reason, the Sgand the A} modes were
chosen in the PZT experiments.

A detailed texture study of the plate was first performed by ultrasonic
techniques [8,9]. The texture parameters have been found to be W 6.0x103,
W40=8.6x104, and \2\/44(;_-5.6'><10‘4 (8,10, and 11]. The elastic constants
(stiffnesses) corresponding to this sct of texture parameters in Al are listed in -
Table I11 {12]. It was found that the anisotropy introduced by the presence of

texture has significant influence on the dispersion characteristics of the Al

I
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plate, particularly in the region near the Lamé point where ouf EMATSg
operated. This can be seen from Fig, 1 which shows dispersion curves for the
- wave propagating in the rolling direction of the Al sheet [13], In Fig. 1, two
experimentally determined dispersion curves of the Syand the SH; modes are
plotted along with their theoretical dispersion curves which ‘us‘ed the elastic
constants given in Table I1I. The apparent good agreement between the
experimental and the theoretical results in Fig. 1 indicates a proper
inclusion of anisotropic (or texture) effects. Note that the two modes do not
touch each other tangentially at bk/n, the Lamé point where the two modes
would have if the Al plate were isotropit [14, 15]. For the convenience of
discussion later on the waveforms acquired using PZT transducers, a wider
spectrum of dispersion curves of Lamb modes (excluding SH modes) are also
given here in Fig. 2 for the propagation in the rolling direction. Incidentally,
all the propagations discussed hereafter are for the propagation in the rolling
direction, unless otherwise specified. |

Figures 3~6 are the experimental waveforms for the Spand the SH,
modes as obtained from the EMAT  xperiments. Figures 3 and 4 are the
experimental Sy mode waveforms ‘ur transducer separation distances of 110
mm and 165 mm respectively, Figures 5 and 6 are responses of the SH; mode
with separations of 120 mm and 220 mm. They were acquired after an
average of 500 repetitions. The instrument settings for Figs. 3 and 4 were
identical, so were the settings for Figs. 5 and 6. However, the settings for
Figs. 3 and 4 are necessarily different from those for Figs. 5 and 6 due to the
tuning requirement for the KMAT system. This is primarily because the
exciting signal is a narrow-banded toneburst and the EMATSs have a narrow-
banded filter characteristics. The toneburst usually has about 4~6 cycles and
the EMATSs have a two and half spatial periods in winding. The pulses
excited in the Al plate have envelopes that are close to triangles which may be
considered as approximations of Gaussians. These pulses should be

symmetric initially both in time and in space. Table IV lists parameters of



the Sy and the SH, waves at the points of operation. In Table IV, K = bk/n, W
= 2bf/Vy, W'=V/V,, and W" = nV,w/b, where b is the plate total thickness and
V. is the bulk shear wave velocity of the corresponding isotropic media; these
quantities are, respectively, dimensionless wave number, dimensionless
frequency, dimensionless group velocity, and dimensionless curvature for
w=w(k). ‘

From the S, waveforms in Figs. 3 and 4, one sees that the pulse width
has increased significantly and at the same time the pulse magnitude
decreased noticeably for the pmpug‘ution distance of 110 mm to 165 mm.,
Similar comments can be made for the SH, waveforms in Figs. 5 and 6 where
pulse broadening is accompanied by « veduction in amplitude. This pulse
broadening phenomenon is well known and predicted by both of the pulse
models presented in the previous section. A close look of the waveforms in
Figs. 3~6 reveals another feature: all the pulses shown have some degrees of
asymmetry. This feature was predicted by the space model but not the time
model. In particular, the waveform in Fig. 4 has more asymmetry than that
in Fig. 3; so does Fig. 6 than [Fig. 5. In other words, the degree of asymmetry
develops as the propagation distance increases. This is consistent with the
prediction by the space model. The lact that the space model successfully
predicts the development of the asymmetry of the pulses is an indication that
the space model may be a better model than the time model.

Recall that both pulse models predict that there will be a period r
variation for the individual cveles within the pulse envelope and the variation
pattern, period increase or decrease {vom the leading edge to the trailing
edge, depends on the sign of w, or k,,. A careful examination of the
waveforms in Figs. 3 and 6, where a peak ol a cycle near the center of the
pulse is aligned with onc of the background grids in each figure (see the
pointers), proves that indeed theve is a clear period variation within the
pulses. In Fig. 4, one can count exactly nine cycles within two vertical :

divisions to the left of the pointer grid while two divisions to the right of the
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pointer more than nine (close to nine and half) cycles can be realized. This
means that the higher frequency components move slower than the lower
ones and the period variation within the pulse envelope is decrease from the
leading edge to the trailing edge, which indicates wy < 0 or ky > 0 at the point

of pulse operation. This conclusion is in agreement with the shape of the S,

~dispersion curve in Fig, 1, Similarly, in Fig. 6, one finds a little more than

nine and half cycles within two divisions to the left of the pointer and about
exactly nine cycles within the same number of divisions to the right of the
pointer. This implies that higher frequency components travel faster and the
pulse is operated at the point where w, > 0 or ky < 0. This is also readily
confirmed by the concavity of the SH, dispersion curve in Fig. 1.

One should not try to make any quantitative comparison between the Sy
waveforms and the SH, waveforms, The major problem of doing so is due to
the fact the transducers used to obtain these two sets of waveforms were not
identical and the instrument settings were not the same. This translates
into different pulse width parameters B, Quantitative comparisons of these
waveforms and period variations will be made in section IV along with some
simulation results.

Now let us study the wavelorms produced by using the conventional
PZT transducers. Figures 7 and 8 show the pulses of the Sy mode and Figs. 9
and 10 show the pulses of the A| mode. The center frequencies of the pulses
are 0.82 MHz for the S mode and 1.0 MHz for the A; mode. The propagation
distances for Figs, 7 and 9 are about 150 mm. The exact propagation
distances are unclear due to certain measurement difficulty, but the distance
shifts from Figs, 7 to 8 and from Figs. 9 Lo 10 are both 100 mm, All these
waveforms were obtained using the same pair of transducers except the
angles of pulse incidence arve different.

Unlike the pulses by IKMATs, the pulses produced by PZT transducers

are generally broadbanded; i.c., the pulse width (parameter B) is small,



typically corresponding to 1-3 eveles in time, At the time pulses enter the Al
plate at an angle, the pulses are likely to be asymmetric. The extend of initial
asymmetry of the pulses depends ‘on many factors such as the transducer
design, the electrical pulses applied on the piczoelectric disk in the
transducer, the aperture of the transducer, the angle at which the pulses are
launched, and the diffraction of the pulses in the water before they enter the
plate. In this study, we neglect the asymmetry and assume the initial pulses
are good approximations of Gaussians.

From the Sy waveforms in Figs. 7 and 8, one sces clearly the
distinguished asymmetry and broadening of the pulse envelopes. The rate of
the develvopment of the asymmetry and the broadening is apparently faster
than that for the EMAT experiments, even though the operation point of
these waveforms is close to the one in the EMAT experiments, This
phenomenon is again consistent with the predictions by the space model (not
with the time model) in that the rate of pulse broadening and skewing is
closely associated with the initial pulse width: the smaller the initial pulse
width, the faster the pulse spreads and skews (because of larger t,). The fast
pulse spreading and skewing plu_‘hmm"non an also be observed in the Ay
waveforms in Figs. 9 and 10, The envelope of these experimental waveforms
show, once again, that the space model performs better than the time model,
at least for the waveforms obtained in this study.

To see how the periods vary within the pulses of the PZT waveforms, we
have obtained two additional waveforms, Figs, 11 and 12, These two
waveforms, one for the S, mode and the other for the A mode, were
similarly obtained as those of IMigs. 7 and 9 except that small shifts in space
(transducer separation distances) were purposely made to align a peak of a
cycle in each waveform to the background grids to help observe the period
variation within the pulses. From Figs. 11 and 12, one sees clearly that the
period decreases with time for the S, mode and increases for the A} mode,

indicating that my, < 0 or ky » 0 for the Sy mode and oy > 0 or k;y, < 0 for the A,
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mode. As a matter of fact, this (cature can sometimes be used to identify the
mode, This is especially helpful when the dispersion curves of two modes are
close. Such situations are not uncommon when making measurements with
Lamb modes. Dispersion curves of these modes frequently approach and
repel each other, When this occurs, the two dispersion curves in that vicinity

have opposite signs for w;, (see g, 1),
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SIMULATIONS

As discussed before in the previous section, the space model performs
more realistically than the time model. In this section, a more quantitative
comparison will be made between the experimental results and the
simulated results based on the space model.

Using the parameters listed in Table 1V, simulated waveforms have
been generated for both the Spand the SH, modes. Figures 13 and 14 are the
simulated waveforms (or the Sy mode with the pulse width parameter B being
16.0 mm and Figs. 156 and 16 are the simulated waveforms for the SHy mode
with B being 10.0 mm, The two pulse width values were selected by trial-and-
error to have the best visual fits between Figs, 4 and 13 for the Sy mode and
between Figs. 6 and 15 for the SH | mode.

Comparisons between the cxperimental wavelorms (Figs, 3~6) and the
simulated waveforms (Figs, 13~16) illustrate some common characteristic
features. Overall, the shapes of the simulated waveforms are in very good
agreement with the experimental ones, The space model reproduces very
well both the pulse spreading and the pulse skewing phenomena, even
though the pulses in the experiments cannot be true Gaussians, One may
notice the disagreement in magnitudes hetween the experimental and the
simulated wa' eforms, This disagreement is due to the attenuation and
absorption factors not included in the pulse propagation model, One may
also notice the time delay differences between the experimental and the
simulated waveforms, The reason for this is that, for the simulated
waveforms, the time starts at the center of a wave packet before it propagates.
For the experimental waveforms, the time starts when the oscilloscope is
trigged, which is at the beginning of a pulse; the time differences here
roughly correspond to the half width of pulses in time,

Quantitative comparisons of the period variations within the pulses
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have also been made between the experimental and the simulated
waveforms. The period variation comparison for the Sy mode is shown in
Fig. 17. The experimental wavelorm were obtained for a travel distance of
166 mm. The time measurement crror is about £1 ns and the noise induced
error is about +5 ns in the central region of the pulse. In producing the
experimental part of Fig. 17, the times of all the zero-crossings within the
experimental waveforms were fivst recorded. The periods corresponding to
consecutive two zero-crossings were then computed from the recorded times,
There were about 40 cycles within the experimental waveform, of which
about 30 cycles gave stable lime values, The theoretical part of Fig, 17 was
produced based on the pulse propagation model (the space model) with a
computation rounding ervor of £1 ns. Figure 18 is the period variation
comparison for the SHy; mode. The procedure for obtaining the data in Fig. 18
is the same as for the 8 mode except that the waveform was for a
propagation distance of 200 mm. The experimental waveform for the SH
“mode was generally less noise contaminated.

The comparisons in Figs. 17 and 18 show a reasonable agreement
overall, The period change pattern predicted by the space model have been
clearly confirmed--higher frequency components move slower when " <9
and faster when " > 0. The disagreement in details between the experiment
and the theory in Figs, 17 and 18 can be accounted for by the following
reasons. First of all, the experimental pulses are not Gaussian; there are
many Gaussian components if one (ries to expand the pulses in terms of a
series of Gaussians. When we approximate the non-Gaussians with only
one Gaussian component, the model should be valid for the first order
approximation; i.c., showing up the trend. Indeed, the period variations
from both the experimental and the simulated waveforms have the same
trend. Secondly, there ave experimental errors involved. EMATSs are
inductive in nature [ 16], the crrors or noises associated with KMAT signals

are generally larger than those of conventional PZT transducers. The error
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for the Sg mode for a specilic zero-crossing is about £5 ns at the central region
and about £10 ns at the half width when a repeatability test is conducted, The
error forthe SH; mode is a little less, about 3 ns at the central region and £5
“ns at the half width, This is attributable to Lhe structure of EMATSs and will
not be elaborated heve, The thivd error source is the inaccuracy of the pulse
width parameter B, Recall that this parameter was chosen through trial-
and-error to have the best visual fit. It is unlikely that the found values ave
exact. The inaccuracy of parameter B alters the slope of the theoretical data.
It should not‘}unvever,intfoduce10jalirrog1dariﬁes.

Of the three error sources mentioned above, the first one is believed to be
the dominant, followed by the socond one. Of course, the disagreement
between the experiment and the theory may also be due to the pulse
propagation model itself, since the development of the space model involves
‘severalapproxhnatknw& However, it is our belief that these approximations
do not significantly contribute to the disagreement shown in Figs, 17 and 18,

Recall that we have developed a rvelation for dV ,,/dt in Eqgs. (20) and
concluded that the change of phase velocity within a pulse is monotonic
(increase or decrease). To sce how the space model performs in this aspect,
time changes for all the zero-crossings within a pulse were vecorded when a
small distance change were made. The change in distance for the Sy mode :
was positive 2.6 mm (0.103") at 1656 mm and the change for the SH; mode was
2.8 mm (0.109") at 200 mm. The local phase velocities (= Ax/At) within a pulse
were then calculated from the time changes and the distance changes. The
experimental data are plotted in Fig, 19 {or the Sy mode and Fig. 20 for the
SH, mode, along with the results from the simulations,  Although the
comparisons are not excellent, the trends in phase velocity change within the -
pulse are the same for both the cxperimental and the simulated data. The
disagreerment is due to the crror sources discussed in the previous

paragraph.

"
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CONCLUSIONS AND APPLICATIONS

Two models for pulse propugation of dispersive waves have been studied
“in this paper. Analytical solutions (or some features associated with pulse
propagation have been developed and discussed. The two models predict
differently on the envelope shape of pulse propagation but similarly on the
period variation within the pulse bnvolopu lixperiments using various
ultrasonic dispersive waves have been conducted to evaluate these two
models. It has been tound that the space model originally pr()pdsed by
Thompson and Elgley gives more x‘O:\IiétiC outcomes than the time model.
Quantitative comparison has also been done between the experimental

~waveforms and the simulated wavelorms using the space model. Good
agreement has been observed between the experimental and the simulated
results. Certain minor disagreement is believed to be associated with the
experimental errors as well as the non-Gaussian shaped pulses used in the
experiments. In short, we have fhund that the sbmce model works
satisfactorily.

There are many possible applications of the pulse models. An obvious
one is the determination of the concavity of the dispersion curve from shifts
in local periods. Using the space model, one can also estimate or calculate
the rate of pulse spreading and skewing when making or evaluating
experimental and system design. ‘I'he space model has been used to provide
an error estimation model for phase velocity measurement based on tracking
a zero-crossing as the transducer s‘(,wpm'ntlion distance changes [17}. In
addition, pulse models can provide a convenient tool to simulate pulse

propagation withou! going through complicated Fourier transform analysis.
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Table 1. Relations between o, and other relevant

quantities for the space model

Arg(t,x) AArg/ol ,)“,\rg/,’f)[‘] Dy- Al dAdt

> () /\\ t \ ! < () () = <) > ()
( N |

<) L } { / t > () <) =>>>0 <)

Table 11 Relation between V, and V,, within

wave packet for the space model

Wy, > 0 wy <0
Vg>\|, Vg<\p Vg>vp Vg<Vp
t<te Vp m > vp v pm < Vp me < vp me s vp
=t me > vp v pm = vp Vp m < Vp vp m < vp
— 7 s V -
t=tp Vp m > vp \ pm v P Vp m < vp Vp m < Vp
t>tp Vp m < vp Vv pm = vp Vv pm > vp vp m < Vp

B R e T T kT L o ro ey P



S, 51 1232 0867

...........................................................................................................

Cy 11168 11177 111256 6028 6047 5995 2637  26.66 26.02

..........................................................................................................

Mode 1)() k ( [(. U)(‘) \V U.)‘“ “’ ' (l')‘('] W "

mm mm’ ! mm/ps mm /s

.........................................................................................................

HIT3 1294 2828 0.899  -4.097 -1.847
SH; 54 1164 0819 5789 1297 1985 0631 1029 0.464

............................................................................................................
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PART 1V,

EFFECTS OF DISPERSION ON THE INFERENCE OF METAL
TEXTURE FROM Sy PLATE MODE MEASUREMENTS

PART I. EVALUATION O DISPERSION CORRECTION METHODS
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ADSTRACT

Ultrasonic Sy waves (fundamental symmetrie Lamb modes) are
commonly used in nondestructive characterization of texture (preferred
grain orientation) and lormability in moetal sheets and plates, In a typical
experimental set up, the velocitios of the Sy waves are measured ag a function
of wave propagation angle with respect (o the volling direction of the plate.
waever, the Sy waves are known to be dispersive, and that dispersion must
be considered in ovder to isolate the small, texture induced shifts in the S,
wave velocity. Curvently, there are two approximate dispersion correction
methods, one proposed by Thompson et al, and the other introduced by Hirao
and Fukuoka. In this paper, these two methods will be evaluated using an
exact theory for wave pl'()pﬂ;:dti(ﬂ’x in orthotropic plates. Through the
evaluation, the limits of the current testure measurement techniques are
established. It is found that when plate thickness to wavelength ratio is less
than 0.15, both Thompson's and Hirno's methods work satisfactorily, When
the thickness to wavelength ratio exceeds 0.3, neither Thompson's nor
Hirao's dispersion correction method provides adequate corrections for the
current texture megsurement techniques, \Within the range of 0.15-0.3,
Thompson's method is recornmended for weakly anisotropic sheets and
plates and Hirao's method may be move appropriate for some strongly

anisotropic cases.
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INTRODUCTION

Texture is the non-random oricntation of crystallites in a
polycrystalline aggregate, often induced by manufacturing processes such us
rolling and drawing. Knowledge of texture information is particularly
important in making formubility predictions. For materials made of cubic
crystallites, such as Al (fee), Cu (fee), and Fe (bee), texture is characterized
by a set of dimensionless parameters W, . called orientation distribution
coefficients (ODCs), The detailed definition of these coefficients can be found
in Refs. 1 and 2. The most important ODCs in formability analysis are W,
Wiao, and W lor cubic polycerestals, Physically, Wgoand W relate to the
tendency of a metal sheet to form two and four cars respectively upon deep
drawing., W, relates to overall capacity to withstand deep drawing [3].
Traditionally, these ODCs e obtained through X-ray or neutron diffraction
techniques. Typical values of these ODCs are on the order of 103,

In recent years, ultrasonic waves have been utilized to provide a
nondestructive estimation of the texture of cubic polyerystals (4-6]. The
texture generally induces a weak clastic anisotropy which can be sensed by
measurements of the velocity of waves propagating in different directions,
When the sample is in the form ol a sheet or plate, the waves take the form of
guided modes with two types lﬁcing commonly used in texture
characterization, the zeroth order hovizontally polarized shear waves (SH)
and the fundamental symmetric Lamb waves (Sy). This paper deals with the
lattex' ones only. S, waves are known to be dispersive, having frequency
dependent propagation velocities, Because the texture induced velocity shifts
are small, the digpersion cffects must be considered if accurate estimation of
texture is to be achieved.

There ure two aspects Lo the influence of dispersion of the Sy waves on’

the velocity measurements, IMest, both the phase velocity and the group



velocity are frequency dependent. 'I'wo dispersion correction methods have
been proposed by Thompson ot al, [7] and Hivao and Fukuoka [8] to remove
the frequency dependency, [n this puper, these two digpersion correction
methods will be evaluated assuming perfect measurements of phase velocity,
Another aspect of digporsion is the pulse distortion phenomenon; i, o pulse
of a dispersive wave changes its shape and spreads out ag it propagates, Pat
I1 of this paper discusses the influence ol the pulsge distortion on the accuracy
of phase velocity measurenoents,

Several years ago, I'hompson et al, [9] and Lee ot al, [10] developed a
theory which relates the aforementioned ODC's of textured sheets to the 8,
wave speeds in three dilferent divections (09, 469 and 909 with respect to the
rolling direction, This theory assumes the ratio of sheet thickness to
wavelength to be small, In this limit, the velocity of the Sy wave in a specific
poopagation direction usvimptotically approaches a constant value, V), , and
dispersion can be ignored, Upon comparvison of experimental predictions of
the ODCs based on this theory with the results from independent X-ray or
neutron diffraction techniques, satisfactory agreement was found for Wy,
and W40, but not for W, In those measurements, the ratio of thickness to
wavelength was about 0.1, Recently, Thompson et al, | 7] modified the theory
and included dispersion correction in the caleulation of the ODCs, In the
modified theory, the dispersion correction is made on the basig of dispersion
curves of the Sy waves in the corresponding isotropic materials, 1t is
assumed that the ratio V /Vy,, is not altered significantly by the presence of
texture (weak anisotropy), where V, is the ultrasonic phase velocity
measured at a specific frequency and Vy,, is the long wavelength limit of the
Sy wave phase velocity, Hivio and Fukaoka [8] have proposed another
method which takes dispersion effects into account by making a Taylor series
expansion of the dispersion cuarves of the S, mode propagating in weakly
orthotropic media. In the expansion, only the first order dispersion effects

are retained,
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The basts of owr evaluation of the approximate dispersion correction
methods s the exact theoretical cquations vecently developed for wave
propagation {n plates with orthotvopic symmetry [11-14], The equations
which express the dependence of wave propaguation velocity upon texture
parameters ure very complex and a simple technique has not been developod
to compute the ODCs from given wave velocitios on the busis of these exact
oquations, These equations, however, can serve as an exact reference
solution, In this paper, we will use the exaet solution for the 8 wave
propagation in orthotropic plates to simulate u:\'pui'inmntm data and then uso
those data to test the aectracy of the two approximute dispersion correction
methods. |

One semantic difticulty should be resolved before proceeding, In the
metallurgical community, the tarms "sheot” and "plate” have connotations
of different thicknesses, with the former appropriate to thicknesses on the
order of a millimeter to which the ultrasonic approach hag been most
extensively applicd. In the ultrasonic literature, the term "plate” is
generally used to deseribe a solid medinom having parallel surfaces,
independent of thickness. In the remainder of this paper, the latter
convention will be emploved. However, in considering metallurgical

applications, the "sheets” should be understood to be included,
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GENERAL THEORY I'OR WAV PROPAGATION
IN ORTHOTROPIC FREEE PLATTS

The authors of the present paper (11 12] and Nayleh and Chimenti
[13,14] have recently developed and reported the analytical dispersion
equations for wave propagution in orthotropic or monoclinie free plates, For
dotailed derivation and discussions, the readers ave encouragod to refor to
these roferences, Here only the cquations nocessary to make this paper solf-
contained will be presented,

Jonsider the coordinate system shown in Fig, 1, Let us {irst make the

following dimensionless definitions:

Al Al ] :
K, = K cos’u, Ky= Ksinfu,  K=| %k) .
w=L2 (L) k=l s
((I(| R oK

where b is the plate thickness, pis the density, Cj; are the elastic constants of
plate material, a is the wave propagation angle with respect to the rolling
direction, k is the wave vector in the propagation divection, w is the angular
frequency of the propagating wave, and rj are the eigenvalues of the
associated Christoffel equations for plane wave propagation,

For a general elastic, homogencous orthotropic free plate whose
rolling, transverse, and normal divections coincide with the X, Xy, and Xy
axes, as shown in [Fig. 1, the dispersion cquation for the Sy wave propagating
at 00 is

- i

(),[tun(,if-.\/l w)J (‘)3[ tn ( =/ R, )] = () (1)
where Q) = Q(R,,Ry), Q)= QIR R,
and QUX, Y) = VY (C X = C) K+ O WO Css Y

Al 1 ‘3 ’ ) Al
+ ((‘H( 1t -( \ W §5 ( l’-)l\ - ("U( (‘(‘Wl

and Rg, Ry are roots of the following equation for Ky



11)(‘

L)

(€K 4 Ciek g CogW K 1 C R = C W)
- ((‘l y + (1%%)-- '\' \K By [)
The dispersion equation for the S, wave propagating at 469

(genoralized Ruyluiuh-lmmb WOV vquutmn in orthotropic mudm):
|

Py {lun( .\/-IT ]l !l\l\ ”[4 w ll.m R‘)}.~:() (2)

where Pi= P (R} R R P PIRGRGR)) Pi= PIRGRRG),
PXYZ) = RO K N0+ Co KNG+ CN (KO

TIYNGQOY) + NJOYTZN 20 4 NAZIT = TYNGY) 4+ N FIZN(Z) + N AT
NG (XD = (O + Cupd (C)a b Cud Ko = 104 Csgd (C K+ CaaKg o CuX o= CoW),
NG(X) = (Cy + Csg) (Cpy+ CodKy = (Cay b O 10K+ CopKy + CssX = CogW),
NAX) = (CupKy o+ CoaKa o C X = Crg WHC K+ CrpKa o+ CgeX = Crg W)

~ (s + O K Ky

and R; are solutions to a cubic cquation arising (rom the Christoffel
equations [11,12],

The dispersion equation for the S wave propagating at 90V hag the
same form as 8¢, (1) eseept that the following changes must be made: Cp-->
Cog Cry=> Cyyy Cpr->Crand CgeenCy

In the absence of anisotropy, Fgs, (1) and (2) simplify to the well known
Rayleigh-Lamb wave equation in isotropic media,

For an ovthotropic matervinl, theve ave in general nine independerdt,
elastic constants Cij. When the plate is made of cubic erystallitos, these
elastic constants are not all independent, They are velated to the elastic
constants of single crystallites und texture parameters, The relations,
published by Hirao et al, [16], arc as follows:

Cyp o= A2+ 12V 3NW -V TOZD Wy HTO/W 0]
C'ZZ = K""ZH + ( le‘-’j‘Cﬂ:/.,’S )l W 100 }'(2\(‘T-(T/})\V’l3()’!'(V76/3)W./M“] \

Cyy= A20 4+ (3 27 U(/h)\\ 1
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Cg = B~ VT 3O - T W )

Cyg=H = l(w/?vrr"‘/.*ﬁ)(\\",,.,, ST ) (1)
Crp = W+ VT 3OO -y TOW )

Cayz= A= (LY T e 35O 1+ TTW o) |

Cpy= A= VT39OV =0 STEW ) |

Cra= A4 T39O gy TOW )

where A and |t are Lamé constunts for the corvesponding isotropie (texture
free) material und ¢ is a mensure of the elasti @ anisotropy of the individual
erystallites, Thoe isotropic Lamdé constants and the anisotropy constant can bo
obtainoed from single crystal elastic constants ¢y via different averaging
methods, Voigt, Hill and Reuss averaging moethods are commonly used in
toxture study owning to their simplicity, The Lumé constants for these
averaging methods are given in Refl, 15 as

(A0 = ¢ =200/80 Uy = 0y e /S,

()\.'l-le)[{ = 3(\' |"\|_|"\/.<' )/l(*\ll ‘3\|))(\||"l5/5)|‘

1 | v
Hg = (sqtds/S) T 200y = 1210y + (210k 172, (b
3
Hip = (Hy HHRI20 ey = e a=2e g, o= =S,

ey = (L‘v + R )2, N = SII'"‘RI‘?'"“S“/?‘ !

where sjj are elastic compliances (or single crystallites,

From Fgs. (1-(4), with a given set of ODCy, solutions for {requency w
can be computed for cach wave number k. [Mgure 2 shows an isotropic
dispersion curve for the 8, wave in an uluminum plate, References 11 and 12
include somo examples of similar dispersion curve plots with wider rangoes
of k and w for different orthotropic materials, ‘The phase velocities, defined
as w/k, can then be caleulated for difforent frequencies casily,

When propugating in the 0V and 900 directions, S, waves may be

described as a superposition of plane Jongitudinal partinl waves (1) and



vertically polarized shewre partial waves (8SVhonlyy thoy are decouploed from
the horizontally polavized shemr pavtial waves (SHD, On the other hand, at 469
anglo, all 1, 8V, and SH pavtinl waves ave coupled together to form the 8,
waves, Because of this, the dispersion equation for the Sy wave propagating
at the 460 angloe {9 signilicantly more complicated, us can be seen in Kq. (2),
Although the dispersion relations given by s, (1) and (2) can be used
to compute uwltrasonic wuve spoeds from given texture parameters, the
inverse problem cannot be solved analytically, Therefore, the community has
developed approximute procedures to oblain testure parameters from
experimental data, I the following section, we will use the oxact digpersion
relations to evaluate the acctracy of the two dispersion correction methods

which are currently in application,
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APPROXIMATE THEORIES FOR DISPERSION CORRECTIONS

Thompson et al, [9) and [ee ol al, | 10] applied the theory of wave
propagation to texture characterization of cubic polyerystalline nggregates in
plates with infinitesimal thickness, Under that assumption, the propagating
wavoe ig not dispersive und the relation between its speed and the elastic
constants of the plate [10] is (after dropping highor order toexture and the
stress related terms): |

PV ()= O 1 £ 00 cos2um2 O U-cosdo) (5)

CrtCag l [ iy ] -

where C, =( - T Cp=Cry

. Gl 3] s
o= (Cll-"(:'gj)[*—y-:—-—:—"] /(v“
) ~ Uy o
(Cucay et
; et . v Uy . ",
B= { I ( B ] - "'—;7““‘1/3 = ( rmJ'/(-'l‘
. - - l‘ i .
To first order in anisotropy, the velocity is then given by [9):
A ‘/‘] |» . .« A
o i By
Vi (o) ':L ~L ) e == CON -~ ---—L (1-cosda) (6)
i) P 1 4 4(‘1

To express the velocity in terms of ODCs tusing Kgs. (3) and (4)), after certain
approximations involving moving the Wy, terms in Cgyin denominators to
numerators by means ol first order Taylor approximation, Hq, (5) can be

reduced to:

pVia) =[ l—'—-]lr—‘;l;i
l“' .

L
4 \/..‘";( lﬂ'ii JW peos 204 2 35W, eosal "

where L= [+2m, PP = | and ¢ is an anisotropy constant also defined in Eqgs. (4).

Similar approximation to lig, (6) leads (o
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Vo = af (1=PYLOLp + ..;% PLAL DY) Wi‘[ 3»+3.:l+‘x,:;’;Jwv,“,‘,

~/3] 1»..3_:1 JW ageos 202 35 W eosda (8)

From Eq. (7) or (8), linear combinations of velocities measured for a=0"46",
and 90° can then be taken to obtain the values of Wyp0, Wygoand W

Since no plate is infinitesimally thick, wave propagation in a plate is
always dispevsive. Although this offect is small for thin plates, so is the
effect of texture. Thus the experimental data must be corrected for
dispersion if quantitative values of the texture paramoters are to be obtained.

The Sy waves used in texture studies are generally weakly dispersive,
with a typical measurement frequency ol 500 KHz and plate thickness of a
few millimeters, In order to reduce the error introduced by the dispersion,
Thompson et al. [T) suggested a simple dispersion correction approach.
Starting from the measured phase velocity V, the data were corrected to
estimate the long wavelength limit of that velocity, V), by assuming the
atio Vi/Vyi, to be the same in the weakly anisotropic plate as it would be in
an isotropic plate of the sume thickness. The corrected velocities (long
wavelength limits) were then used in g, (7) or (8). In our experimental
work, the dispersion correction normally amounts to less than 10% of the
measured velocities, and the dispersion correction method described above
was intuitively believed to be reasonable. This correction improved the
accuracy of estimates of the ODCs, particularly on W, as expected.
However, no rigorou: evaluation of the range of accuracy of this approach
was made,

Hirao and FFukuoka [8] have proposed another dispersion correction
method. They have developed a dispersion equation for wave propagation in
orthotropic plates under a perturbation frrame which neglects the
involvement of SH partial waves {or wave propagation in nonsymmetry

directicns. The dispersion cquation has a form which resembles Eq. (1) and
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reduces to it when the wave pfopagatioh direction is in a symmetry direction.
To devélop an explicit relation between ODCs and wave speeds in different
propagation directions, they then made a Taylor series expansion at zero
frequency and included one higher order term to approximate dispersion
effects at low frequencies. After dropping higher order terms in W, ., the
‘equation for the square of the velocity is! |

Vi () = Vg (1=A) + 2e/p)l (s + dgAIW g5

+ (89 + dyAIW 49 cos(2a0) + $4W 40 cos(da)] (9)

After a further approximation, the final equation is

PR

VS“((I') = V() \/( !_1\) "f (C/pV())[(\() f‘ (l()A)\V‘1("’()
+ (5 + Ay AW ga0 cos(2a) + 54 Wy cos(da)] : (10)

where §,=(2V22/35)(3 + LOAA+/(A4200)°], 5,2 (BVS2/3S)(3A+20)/(A4+2),
s4=4n° N5, and dg=(16V2rpVo(3A+2p)/1350A+2p)] , dy=—16V5 1 pV{/3SA, with

V= VAR p A+ 240 being the isotropic velocity at kb=0 and
A:iK/(?w’.’u)lz(kb/ﬁ)z/'.? describing the dispersion. For either of these
expressions, solution for the W, . in terms of the velocities at 0° 45°% and 90V
is straightforward. |
Since Eq. (9) was derived via a Taylor expansion in wave vector, it is
- expected to be valid (or provide good appfa‘_)ximation) for small kb, This is
confirmed by comparing Eqs. (7) and (9), which reveals that they are identical -
for plates of zero thickness. The approximation made in the derivation of Eq.
(10) involved a second Taylor series, in the small variables W, to
el‘iminate the squares in velocities, an approximatioh similar to that made in
going from Eq. (5) to Eq. (6) or from Eq. (7) to Eq. (8). Thus, Kq. (10) reduces to
Eq. (8), but not Eq. (9), for zero thickness. However, Eqs. (7)-(10) are identical
in the absence of anisotropy (texture free) in the 10ng‘wave1ength limit. The

effects of this further approximation will be discussed in the next section.

" 1This equation was not published in Ref. 8, but is an intermediate

step.
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For the convenience of discussion'later on, we shall call the Thompson's
dispersion correction method applied to Egs. (7) and (8) and the Hirao's
dispersion correction method using Eqs. (9) and (10) as Thompson's-A,
Thompson's-B, Hirao's-A, and Hirao's-B schemes respectively. ‘
In summary, Thompson's schemes neglect the small deviation of the S,
dispersion curves of textured plates from that of the isotropic ones and
Hirao's schemes use a parabolic approximation to the anisotropic dispersion
curves to replace the exact ones that are not suitable for the estimation of

texture parameters.



EVALUATION OF DISPERSION CORRECTION SCHEMES

To evaluate the performance of the dispersion correction schemes
mentioned above, we calculated the Sy wave speeds for four selected groups of
ODCs as a function of plate thickness to wavelength ratio using the exact
dispersion relations presented carlier. These speeds were then used as input
to the dispersion correction schemes to get estimates of the ODCs. The first
step can be considered as a forward problem while the second step is an
inverse problem. The initial values for the ODCs are listed in Table [. The
values of the ODCs chosen here for the simulations are realistic
representations of values encountered in textured plates. Groups [ and 11
correspond to relatively strong' textures and Groups 11 and IV correspond to
relatively weak textures. Simulations have been run for the three commonly
used cubicmaterhls, Al, Cu, and Ke. The densities and the single crystal
elastic constants for the three materials are given in Table II. For all the
simulation runs, the Hill averaging method was employed because it is
known to be more accurate than cither the Voigt or Reuss averaging method,
which respectively provides upper or lower bounds to the isotropic moduli.
The isotropic and anisotropic elastic constants and Poisson ratios for the
polycrystalline materials are listed in Table 111 for the Hill averaging
method. For the purpose of this paper, we neglect any errors in the Hill
approximation. Note that the anisotropy constant to isotropic shear modulus
ratio ¢/m in Table 111 for Cu or Fe is about 4 to 5 times larger than that for Al
Since the anisotropy of a polycrystal aggregate arises from the anisotropy
within the single crystals und W, are the only orientation description
parameters of the aggregate,the same set of W, represents different
degrees of anisotropy for different materials, For the four groups of ODCs we
used in our study, Groups 1 and [l for Cu and Fe exhibit the strongest

anisotropy. All the rest are more weakly anisotropic, even though Groups [
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and II for Al have same texture values as for the strongly anisotropic Cu and
Fe cases. A fceling‘ of the strength ol the anisotropy for the four sets of ODCs
in the,sinm.lation an be obtained from the elastic constants given in Table
[v.

[

Figures 3-6 show the results from the inversion step. Here the values of
the ODCs that would be predicted on the basis of different dispersion
correctidn schemes are plotted as functions of plate thickness to wavelength
ratio or b/D, where D denotes the wavelength, Please note the scales for the
ordinates are different (or the predictions of cach of the three ODCs. For the
current texture measwrement configuration [16,17], the wavelength of the S
waves is about 10 mm; the range 0-0.5 fur b/D represents a plate thickness of
0-56 mm, |

In addition to the four curves representing the predictions from
Thompson's and Hirao's schemes described in the previous section, there
are three horizontal straight lines in cach figure, identifying the value of the
ODCs assumed in the (orward caleulations and the target error bounds (to be
discussed shortly). To =ce how dispersion correction schemes influence the
prediction of ODCs, the results caleulated directly from Eq, (7) without any
dispersion corrections are also included in igs, 3-5. These results are
represented by an extra dash-dotted curve in the Wyooand ‘W figures of
Figs. 3-5. In the W, figures of IFigs. 3-5, this extra curve is not plotted; it
would fall on top of the curve representing the response from the Hirao's-A
scheme which uses Eq. (91, A comparison between Eq. (7) and Eq. (9) shows
that in Hirao's-A scheme, dispersion correction plays no role in the
prediction of W o; therelore, the responses lor Wy, using Egs. (7) and (9) are
identical.

Consider first the performance of the predictions of Wy4q (figures (c), (),
(i), and (1) of Figs. 3-5). IFor the wenkly anisotropic cases (figures (¢), (), (i),
and (1) of Fig. 3, and figures (1) and (1) of Figs. 4 and 5), the performances of

Thompson's schemes are practically equivalent, and Hirao's-B scheme is
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found to be better than Hirao's-A scheme, providing wider range of' rel. 1ble
predictions. When the anisotropy becomes étmng (figures (¢) and (f) of Figs.
4 and‘.E), both Thompson's-13 and Hirao's-3 schemes may produce predictions
of Wy,o with relatively Im'gé crrors for small thickness to wavelength ratio.
This is especially true {or Thompson's-13 scheme, although it may sometimes
give good predictions at some large thickness to wavelength ratio, This error
is the consequence of the approximations made in going from Eq. (5) to Kq. (8)
and from Eq. (9) to Eq. (10), which suggests that Eqgs. (8) and (10) are not
favorable for such cases. Over the range of thickness to wavelength ratio
plotted, Thompson's-A scheme has a longer flat region and is generally
better than Hirao's-A scheme [or the cases studied. In fact, in the region b/D
= 0-0.25, the errvors associated with the prediction by Thompson's-A scheme
are very small. Since in Hirao's schemes Wy is not corrected for dispersion,
when compared to Thompson's schemes, one finds that improvement can be
made with the inclusion of the dispersion effect, although this effect is not as
strong as that for Wygo. (Sce discussions on Wygg.)

Now consider the performance of the predictions of Wyyy. As can be
seen in figures (b), (e), (h), and (k) of IFigs. 3-5, Thompson's and Hirao's
schemes influence the prediction of W, in opposite directions in all the
cases studied, although the amount of influence are about the same in the
range of b/D = 0-0.25. Except [or the strongly anisotropic cases, Hirao's-B
scheme generally gives better predictions than Thompson's schemes and
Hirao's-A scheme. Similar to the predictions of Wy, Thompson's-B and
Hirao's-B schemes may give unacceptable ervors to the prediction of Wygg
when the anisotropy of the plate gets strong. However, when compared to the
predictions without dispersion correction, one {inds that neither 'I‘hompson's
nor Hirao's schemes are as good as the uncorvected predictions for all the
cases studied. This clearly indicates that dispersion correction is really not.
necessary for Wy,,. As a matter of fact, the curves representing the

redictions of Wy, without dispersion correction in general have a very flat
190 | g



region for b/D = 0-0.256. These results are not fully understood. It can be
argued that, since W s is known to be aomeasure of in-plane anisotropy,
having little to do with the plate thickness which strongly influences the
dispersion characteristics, no correction is needed. However, this same
argument would apply to prediciions of Wy, Since Hirao's-A scheme,
corresponding to no correction, gives the poorest results for Wy, further
factors must be involved.

The situation is somewhat different for the prediction of Wyoo, which is
rather sensitive to the way in which correction is made for dispersion, A
glance of figures (a), (d), (g1, and (j) of Iigs. 3-5 reveals that both Hirao's and
Thompson's schemes improve the estimation of Wy significantly, Noting
the compressed scale of these plots we sce that the ervors are considerably
greater than in the predictions o' W ju, and W0, Hirao's-A and Hirao's-B
schemes generally exhibit similar performance, with the former being
somewhat more accurate, Thompson's schemes also exhibit similar
performance, particularly when the anisotropy is not strong, Depending on
the sign of W,o, Thompson's and Hirao's schemes may affect the prediction
of Wygoin either same or opposite direction. For weakly anisotropic textured
plates, Thompson's schemes generally predict Wygo with smaller errors.
When the anisotropy becomes stronger, Hivao's schemes can be superior
than Thompson's schemes. This fact is due to the nature of the
approximations made in the Thompson's and Hirao's schemes. For Hirao's
schemes, the accuracy of the prediction is closely related to the value of b/D; it
is relatively insensitive to the degree of anisotropy, The performance of
Thompson's schemes, on the other hand, depend on the smallness of the
difference between the isolvopic and anisotropic dispersion curves. For most
of rolling and anncaling textures, particularly on Al plates, where the
anisotropy is not very strong, this difference is indeed small, In this case,
Thompson's schemes may be more appropriate for b/D > 0.15.. The greater

sensitivity of the predictions of W, lo the details of the dispersion correction



occurs because Wy depends on the absolute, rather than relative valuos of
measured velocities 7],

To see how Thompson's and Hirao's schemes correct for the dispersion
quantitatively, we sct up the following target ervor bounds for each group:
| SW ol ~ 0.001, 18W 4ol and 18W I~ 0.0006, These ervor bounds are
chosen from a practical point of vicw, as they vepresent the experimentally
observed differences between ultrasonic and diffraction (X-l'ﬁ‘y or neutron)
predictions of the ODCs [7]. Table V shows the acceptable limits of thickness
to wavelength vatio for Thompson's-A und Hirao's-A schemes as well as
from the uncorrected cquation il one wishes to stay within these bounds for
the cases studied. It gives a guide line for the validity range of the current
experimental configuration and dispersion correction schemes, For most
metal sheets of interest in texture and formability prediction, the plate
thickness is less thun 2.6 m, T'his thickness is about the limit of the
present techniques il the wavelength is around the typical 10 mm value,
From Table V, it is readily scen that, for the prediction of W gy, Hirao's-A
scheme is not favorable for Al when the plate thickness to wavelength ratio is
larger than 0.17. With the vxeeption ol Group 11 in Cu and Fe, Thompson's
scheme provides a wider range of valid dispersion corrections for W, Both
Thompson's-A and Hirao's-A scheme, however, significantly improve the
prediction of Wyge. On the other hand, the valid ranges for both Thompson's-
A and Hirao's-A schemes {or the prediction of W ygare narrower than that
from the equation without dispersion correction, It also can be seen from
Table V that the valid vange of b/D (or Thompson's-A scheme for the
prediction of W ,gis from 0 up to about 0.35-0.4. The corresponding range for
Hirao's-A scheme (cquivalent Lo no correction) is 0,.23-0.3,

From Figs, 3-5, one cannol [ail to sce that even when the plate thickness
approaches zero, where the dispersion corvections are zero for all schemes,
the results from the inverse process do not give the right answers, This is

not surprising. The crrors for Thompson's-A and Hirao's-A schemes are



due to the approximations made when developing gy, (6), (7), and (9), ‘These
errors, however, arve in general tolorable us they are woll within the target
error bounds. "T'hese crrors wre given in Table VI for all groups, For
Thompson's-B and Hirwo's--B schemes, the errors in predictions of Wyggand
Waqoat zero thickness for Cu and Ife can be lurge, exceeding the target ervor
bounds, Table VII lists the crrors [rom these two schemes, A compuarison of
the values in Table VI to those in Table VI clearly indicates that, with few
exceptions, Thompson's-A and Hirao's-A schemes arve better than

Thompson's-B und Hirao's-I3 schemes (or thin plates,



CONCLUSIONS

We have evaluated the two available dispersion correction methods
using numervical simulations to estimate the range of validity of cach
correction schemo. In general, both Thompson's-A and Hirno's-A  schomosg
work well for plutes with thickness to wavelength ratio less than 0,16,
Thompson's-B and Hirao's-B schemes also lead Lo satistactory results in this
reglon, except for problems at small thickness to wavelength ratios of highly
textured plates of Fe and Cu, Depending on the details of texture, proference
may be given Lo a particular scheme, For thickness to wavelength ratios
larger than 0,16, cach technigue bogins to breakdown, Thompson's schomes
usually have a greater range of validity for W0 for weakly anisotropic
materials while Hirao's schemes may be superior in the prediction when the
materials anisotropy is strong, None of these scheomes, however, provides
adequate corrections for Wyowhen the ratio exceeds 0,3, Therefore, one
should be very cautious when applving the current experiment configuration
to plates that give thickness to waveleng! h ratio larger than 0.3, For the
prediction of Wy, the use of neither Thompson's schemes nor Hirao's
schemes is encouraged as they all veduce the valid range for the prediction,
For Wy40, Thompson's-A and Hirao's-A schemes are practically equivalent
for plates with thickness to wavelength vatio less thun 0.2, When this ratio
exceeds 0.2, Thompson's-A scheme is recommended,  In either case, the
dispersion correction cfleets wre not as dominant as for Wy, Finally,
Thompson's-B and Hirao's-B schemes should be avoided when the plate
anisotropy is very strong, due Lo the relative large ervors at small thickness to

wavelength ratio.
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Tuble I Initial ODCs for computor simulations

------------------------------------------- B TR T L L T T e

Ciroup | Coroup 1 GCroup [l Group 1V
W 100 0,01 0.01 0006 0,006
W a0 0,006 0,005 0.008 0,003
Wi 0,0075 0,007 -0,004 -0.004

..............................................................................................................

............................................................................................................

................................................................................................................

Al 108.0 (2.0 8. 2.71
Cu 1690 220 8.3 8.9
e 2290 1310 [-1-4.0) 7.8

................................................................................................................

Table TIT. Tsotropic and anisotropic elastic constants and Poisson ratios
of polyerystalline materials using the Hill averaging method

............................................................................................................

Li=A+2u =) 1= ¢ ¢/ v
(GPa (GiPao (P (GPa)
Al 112.06 H9.97 26.06 -10.77 -0.41 0.3486
Cu 200.73 106,13 A7.30 -97.68 -2.07 0.3459
e 272.65 112,17 80.24 -132.08 -1.65 0.2916

...............................................................................................................
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Table VI. Ervors for zevo thickness plates ( x 0.01)
(For Thompson's-A and Hirao's-A schemes)

..............................................................................................................

Group 1 0.009 0.050 0.050 0.006 0,029 0.029 0.003 0.012 0.010
Group I 0.019 0.054 0.054 0.007 0.033 0.034 0.003 0.017 0.013
Group III 0.002 0.012 0.012 0.002 0.009 0.008 0.001 0.005 0.006
Group 1V 0.001 0.011 0.012 0.002 0.010 0.009 0.001 0.007 0.005

..............................................................................................................

Table VII. Errors for zero thickness plates ( x 0.01)
(For Thompson's-B3 and Hivao's--B schemes)

Group I 0.014 0.087 0.081 0,007 0.035 0.030 0.003 0.017 0.011
Group II 0.015 0.108 0.095 0.016 0.089 0.074 0.013 0.072 0.050
Group III 0.001 0,022 0.020 0.005 0.021 0.018 0.003 0.016 0.013
Group IV 0.001 0.024 0,021 0.002 0,012 0.010 0.001 0.002 0.000

............................................................................................................
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Fig. 2. Isotropic dispersion curve for the S; mode in aluminum
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PART V.

EFFECTS OF DISPERSION ON THE INFERENCE OF
METAL TEXTURE IFROM S, PLATE MODE MEASUREMENTS
PART I INFLUENCE OI' PULSE DISTORTION

ON VELOCITY MEASUREMENTS
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ABSTRACT

Metal texture (preferred grain ovientution) can be studied by
measurements of the anisotropy of the propagation speeds of guided clastic
modes in rolled sheets or plates, [n the most common experimental
configuration, the phase velocity of the fundamental symmetrie Lamb wave
g inferred from measurcmoents of (he times of waveform zero-crossings as a
function of propagution distance and angle. This paper analyzes the effects
of digpersion on the accuracy of that technique, Using a general pulse
distortion model to analyze the propagation of Gaussian shaped pulses,
computer simulations of the effects of o vaviety of experimental parameters
are studied. 1t is concluded that pulse distortion does not introduce an

intolerable error in a typical experimental configuration,



INTRODUCTION

Measurements of the anisobropy of the velocitios of ultrasonic guidod
modes are presently being utilized to study the texture (preforred grain
orientation) in polyerystulline metal plates [1,2], ‘T'his information is of
considerable interest to the manufacturing community, since it influences
the ability of sheots or plates to be formed into complex shapes (3,4, The
guided mode which has been used most estensively is the S, or fundamental
symmetric Lamb mode 5], At long wave length limit, the velocity of this
mode approaches a constant which can be interpreted in terms of texture
parameters [1,2], Howcever, at any [inite measurement frequency, some
digpersion existys whose effects must be taken into aecount in the
interpretation of experimental data. Assuming that the experimental
technique precisely measures the phase velocity, part 1 of this paper
evaluates two recently proposed techniques for extrapolating to the long
wavelength asymplote ol the velocity [6], T this second part of the paper, the
effects of dispersion on a commaonly employed technigque for estimating the
phase velocity are discussed,

A technique that is commonly used in the measurement of phase
velocities of elastic waves is the vero-crossing shift technique. A pulsed
waveform is first excited by o bransmitting bransducer. One then measures
the time delay (usually with o time interval counter) of a specific zero-
crossing of the received wavetorm for a number of different separation
distances between transmitting and receiving transducers, The phase
velocity Vi is then computed as the slope of the distance-delay plot, For
nondispersive waves, such an approach is quite rigorous, For dispersive
waves, however, things are morve complicated be ause of pulse distortion,
First of all, because the group velocity Vi with which the envelope

propagates, and the phase velocity Vi, o with which the zero-crossings
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propagate, are unequal; the position ol w solected zevo-crossing may move out
of the pulse envelope when the change of transduceer separation {s largo,
This Hmits the range of distances ol which data can be obtained and honeo
the accuracy of the phuase velocity mensurement, Scecondly, thoe pulse has
many {requency components, und cach frequeney travels al a differont phase
velocity, The behavior of o particulur zevo crossing may not be characteristic
of the phase velocity at a single frequency,

In the applications of the zevo-crossing shifl technigue to the
characterization of texture of metal plates, the texture induced anigotropy of
plates is gencerally quite small, being on the order of a poreent, To obtain good
estimations of the texture prrameters, the accuraey ol the phuase velocity
measurement must be high, The commonly used transducers in texture
characterization ave clectro-magnetic acoustic transducers (IKMATw) [ 7]
which launch and pick up nirvawband tonebursts, At a typical frequencey of
500 KHz in plates ol millimeter thickness, the dispersion of the 8, mode is
also on the order of a fow percent [2]0 Hlonee carefut attention to its effects is
required in order to isolate the texture effeets,

To understand and assess the offects of pulse distortion on zero-
crossing phage velocity measurements, we will first present a general pulse
distortion model and use it to analyze the propagation of a Gaussian shaped
pulse, Simulations of the behavior of wave forms similar to those employed
in texture measurement will then be made using the model as a basis |
Then, the accuracy ol both absolute and relative velocity measurements
using the zero-crossing technique will be analyzed and discussed based on

computer simulations, Ifinally, « shovt summary concludes this paper,
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THIORY AND MODIGLL

To investigate the pulse distortion phenomenon, o model introduced by
Thompson and Flsley (8] und further unalyzed by 14 ad Thompson [9] s
applied hero, For detailed study of this model, the reador ts encouraged to
refor to Refl 9, Herve, only the information velovant to this study ts included,

Lot us agsume that only a single mode of propagation is present, 'I'hen

a propagating wave may be described by the form

1 - il "\
u(t,x) = o7 Al o g (1)

“where A(k) 18 a function defineing the spatial froquencies oxcited by the
transducer, and the ungulin fregneney wis related to k by a dispersion
relation,

The dispersion velation can be simplificd by making a l'aylor expansion
at k=kgy

, [ Y
= wlke) -+ k) kel =0 Oy k)™ - (2)

“~

whaere (kgy, mg) is the point of operation (conter wave number and frequency)

\ cdaw . d*w
and w'(kg) =V, = ?l-l?lk”k“ and w'ky) = —— B k-
dk

For an arbitrary Atk), numerical integration is usually required to
evaluate u(t,x), When Atk) is o Guussian function, howoever, integration can
be carried out analytically, leading to uscelul physical insight,

.ot

Alk) =B upr -——.l~(I<~‘I<(.)'“'l$")‘1 (3)
) f

Substituting this expression into g, (D and careyving out the integration,
leads to the relation

ull,x) = UL Texpljlont-ox Aol (d4n)
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A x) '
N [)‘ __..__.__) l ;‘,‘ GMLQ ;
with [U (0] = =il (4h)

YO (14

1 L (Ve "1
and - Arg (L) = =tan 't -—& — (4¢)
E 2B k)

whore ©= "k, t/B%

There wre many interesting fentures one e deduce from Kgs, (4),
These featares are discussad in defails in Rof! 9. Brielly, when ok is not
zero, the pulse spreads out as it propagates and the extrn term Arg(t,%) in the
oxponent introduces an exten phase shilt, which can bo cquivalently
congidered as o frequency modulation, such that lineay relation between t
and x no longer exists, ‘1o stady ol this pulse propagation model in Ref. 9
has shown that the model agrees woll with experimental measuremonts
such as those used in the charactorization of texture,

Since the zevo-crossing measuremont technique relies on the linearity
of the t--x relation, ignorancee ol dispersion offeets may lead to erroncous
estimation of phase velocity, In next section, we will investigate in-depth the
offeets the extra phase shifting (eequencey modulation) has on the reliability

of velocity measurement from (he zero-crossing technique,
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SIMULATION

The model presented in the above section is applicable to a genoral
dispersion, Noxt, this model will be specialized to study quantitatively the
influence of dispersion induced phase shifls on zero-crossing measuremoents
of the velocity of the Sy Lamb mode. We will use the experimental
configuration at our luboratory {2) us a simulation basis, Since texture
characterization is perfermed in the low lrequency region, the dispersion of
the Sy mode is relatively weulk 2],

To perform the computer simulation, the functions wikg), w'tky), and
w'(kg) must be obtained first, One approach would invelve numerically
solving the Rayleigh-Lamb disporsion cquation [5] and evaluating the
derivatives numoerically, ‘T'he computations requived could be very extensive,
In an alternative approach, numerical studies in this section are based on a
polynomial expression which closely approximates the corresponding
isotropic dispersive cquation, Tt is then possible to evaluate the derivatives
analytically,

The approximate dispersion velation o be used here is

W= 2K AY, T]T =K = KO 04 K (1K) (5)
v

b
It

o
jop

t

b ¢ . y ‘ . . , .
where W=-—-T’,’—, Ke=k, vis the Poisson's vatio ol the plate material, b is the
|
plate thickness, and Vi is the transverse plane wave velocity,
Equation (5) was developed by forcing o (ifth degree polynomial

satislying the following boundary conditions:

W=0, W= dWAK = 3T 0) , Wi W™ al K=0
W=v2, W 12 al =1,

These are conditions that all 8 modoe isotropic dispersion equations satisfy,

The performance of this approximation for isotropic aluminum is
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fHlugtratod in Figs, 1. 1L can boe scen that in the range K=0~1, the
approximation does a very good job for Woand WY and is reasonable for W,
ospocially in the ranpe K=0-~00 within which the error study in next section
concentrates, Similar agrocments woere obscerved (or isotropic copper and
steel, With the approsimate dispersion equution, dw/dk and d%u/dk? can bo
casily obtained, i.c., Vi=dardk=V dW/AK and o= d*a/dk® = (b1 Vi dSW/AKE

Figures 2 und 3 show some oxperimental wave forms as well as
simulated wave forms, The wave forms in Figs, 2 are oblained using two S,
mode BMATs with o peviod of 5.0 mm excited at arpund 850 KHz on a 2.2 mm
thick Al plate. The Sy mode responses shown are for separations of
approximutely 150 mm and 250 nmun between the Lransmitting ungI receiving
EMATs and the plate is weakly anisotvopic, The simulated wave forms ave
obtained from Eys. (4) and I5q. (5), The parameters used avey thickness b=2,2
mm; Poisson's ratio v=0.3:16; plane shear wave velocity Vi=3,16 mm/us; wave
length or EMA'T periood D=5.1 nun; and initial pulse width B=14.0 mm,
Again, propagation distances of 150 mm and 260 mm are considered, These
waves are not from cwrrent texture experiment; they have been selected to
show the chavacteristios of dispersive waves, As will be shown later, the S
wave under investigution is less dispersive and the pulse distortion is loss
severe,

Comparison of Figs, 2 and 3 illustrates a number of common features,
In each case, the high frequency components have moved to the trailing edge
of the pulse (w"<0) and the pulse width increases substantially as the pulse
propagates from 150 mm Lo 250 mm. Here the model reproduces the
dominant features ol the experiment. FPuvther, the shapes of simulated wave
forms are in good agreemoent with those of experimentally obtained wave
forms, even though the experimental wave (orms are not Gaussian shuped.
Note that the delay times (or the experimental wave forms ave longer than
those of simulated wave [orms, although the relotive difforence in time delay

for Figs, 2 and 3 arc identical, This is because the oscilloscope's trigger tinage



is not the time at which the center of pulses enter the plate. A close
examination of Figs. 2 und 3 reveals that the envelope peak locations for
x=250 mm are slightlv different. This discrepancy is oviginated from two
sources. First, the Al plate posscesses (exture: it is weakly anisotropic. This
weak anisotropy alters the dispersion characteristics of the plate leading to a
slight deviation in group veloaity from the isolropic model that our
simulation is based on. Sccondly, the EMA'T separation distances for the
experimental wave forms are not precise; a measurement errvor of 2 mm is
possible since they were not exactly measured. It has been found that the
second error source contributes more than the first one in this specific case.
O‘ne‘may also note that the relative magnitudes for simulated and |
experimental wave forms are dilferent, which is due to the frequency
dependent attenuation effects not included in the pulse propagation model.
More detailed and quantitative comparisons of éxperimental and simulated
waveforms can be found in Ref. 9.

Using Eqs. (4) and (51, computer simulations were made to determine
the detailed effects of dispersion on phase shift and velocity measurements,
Let us define the relative dispersion induced error ‘as (Vin-Vp)/Vp, where Vi,
“is the velocity as measured by the zero-crossing technique and Vy is the true
phase velocity. In addition to the plate thickness, this error is determined by
the following variables: x, the transducer separation distances; D, the EMAT
period; v, the Poisson's vatio; and B3, the pulse width at the beginning of
propagation.

Figures 4~7 are simulations of the relative error when one tracks the
zero- crossing initially having zevo excess phase (o=wmgt-kx+Arg(t,x)=0 in Eq.
(4a)) at x=0. This cycle is illi(i:l“_'\’ at the center of the packet but moves
towards the leading edge as the pulze propagates since Vp is less than Vp for
the Sy mode. In (a) of Figs, 17, relative crrors are plotted vs, thickness b of
the plate. In (h) of Figs. 1-7, ‘l'("illi\'(’ amplitudes (A-Ay /Ay of the envelope

magnitude at the time of the measured ziro-crossing are plotted. Thus Ay 1s
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the magm’tude usually in volts) of the signal om'u]()pe at the measured zero-
crossing time, and Ay is the magnitude of the maximum signal (pet ak
voltage) or envelope magnitude at the time of t=x/Vy. Keep in mind that the
relative amplitude plots give an indication regarding whether the zero- '
crossing is in the pulse envelope,

~In practice, the sclected zero-crossing is the one which stays near the
envelope peak over the propagation distances utilized, This may not be the
cycle with zero excess phase at (he beginning of propagation. This difference
will be discugsed more fully in the next section. In experiments, when (Ag-
AmJ/Ag exceeds 0.3, the measured time delay is uslm]ly not reliable because
of poor signal to noise ratio..

Table [ shows the fixed and varied parameters which are used in Figs.
4~7. The ﬁxad values sclected here for \nnul(m()n are based on the get-up at
our laboratory. Figure 8 is a typical experimentally obtained wave form of the
Spmode for a separation of 260 mm between (ransmitting and receiving
EMATS. Figure 9 is the simulated wave form using the fixed parameters as
those of Figs. 4 and a sepavation of 250 mm. It is clear that the shapes of
Figs. 8 and 9 are vemarkably similar, indicating that the performance of the
simulations is reliable.

From Figs. 4, one sces that the erroris generally less than 1x1079 for b <
2 mm. For thicker plates, the dispersion effects become stronger and the
errors increase rapidly after o flat region. As the separation of transducers
becomes laiger, the flat vegion of small ¢rrer becomes shorter. Notice that,
however, when the crror begins (o increase rapidly, the corresponding zero-
crossing also begins to move out of the pulse envelope. From Figs. 5, one sees
how pulse width influences the velative crror. The narrower the pulse
width, the smaller the plate thickness must be to avoid introduction of large
error in the measurement process, igures 6 display the effects of Poisson's
ratio on the measurement crror, [ is seen that Poisson's ratio has a very

limited influence on the cvror curves, even though the range of Poisson's
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ratio in the {igures covers a wide range of engineering materials, Figures 7
show the effects of another parameter D, the KMA'T's period on the
measuiement crror. [t is demonstrated that the period of EMATSs (hence the
central wave number k) has w very important role in the pulse distortion.
This of course can be intorprotod lrom the S, dispersion curve, For small kob
or b/D, the dispersion is not severe. As kyb increases (due to decrease in D),

the dispersion becomes strong, thus introducing more error,
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ERROR ESTINATION IFOR ABSOLUTE AND
RELATIVE VELOCITY MEASUREMENTS

There are busi ally Lwo velocity measurement procedures which are
used in texture characterization: absolute and relative velocity
measurements (2], In the absolute velocity measurement, the separation
distance between the transmitting and receiving transducers is varied,
typically over a distance of 10 ¢m. ‘T'he time arrival of a selected zero-crossing
is recorded, usually through a counter, as a function of separation distance.
The absolute velocity is then computed, through linear regression, as the
slope of the distance-time velation, In the velative velocity measurement, the
transmitter and receiver are held apart by a rigid frame; the change in time

of a specific zero-crossing is vecorded as a function of propagation direction.
The relative velocity or AV/V is then determined from At/t, with t being the

average arrival time of the zero-crossing and V the average wave speed. For
plates of cubic polyerystallites, W o, W up and W, are dimensionless texturc
parameters which can be determined ultrasonically [ 1, 2], These three
parameters are called orientation distribution coefficients (ODCs) whose
definition and physical meanings can be found in Refs, 10~12, Generally
speaking, W yoand W, are most accurately determined through relative
measurement of the Sy wave velocities while W, requires absolute velocity
measurement [2]. The values of these ODCs are typically in the order of 1073,
To obtain estimates of ODCs within tolerance and to be consistent with the
experiment accuracy, we choose targel error bounds for the absolute and
relative velocity measurements (1o be delined shortly) to be 2x10° and 1x108
for plates of thickness less than 4 mm. A detailed errvor propagation study
can be found in {2]. Bricflv, the 2x107* absolute velocity measurement error
contributes about 1x10™, 0.3x 10", tnd 0.3x 10" crrors in Wygo for Al, Cu, and

2N - ‘ ' ‘ § "
Fe textured plates. The 1x107 crror in velative velocity measurement leads to
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errors of 4x10™, lxl_.O“', and 1x107in W ,pand 6x107, 1.5x10°, and 15510 in
W40 for Al, Cu, and IFe materials vespectively, These errors are compatible
to or less than the overall accuracy of the ultrasonic technique as inferved .
from comparisons to nceutron or X-ray diffraction measurements.

To ascertain how much crvor is introduced if' the velocity is determined
by the‘slope of the time-distance plot for zero-crossings, we plotted the
absolute velocity measurement error (V-Vy)/Vyy vs, thickness in Fig. 10(a),
where Vi is the velocity obtained through lincar regression of time delay and
transducer separation distance. ach velocity ig computed from simulated
wave forms at eleven sepmrations (200-300 mm in steps of 10 mm). In Fig,
10(b), the average relative amplitude, which is defined as the mean of relative
amplitudes at the eleven separations, are also included. The parameters
used here are D=10.0 mm, v=0.315, and 13=20.0 mm. There are ten curves in
Figs. 10, corresponding to tracking the times of ten zero-crossings. The ten
zero-crossings have phasce o=2nr (n=0~9) at x=0 and t=0. As mentioned
before, the zero-crossing sclected for time measurement, which is usually
the one that stays nearest to the envelope peak over the selected range of
propagation distances, does not necessarily have zervo initial phase (9=0). If
one uses the average velative amplitude as o diseriminant, one can see that
for plates of thickness less than 1.5 mm, the zero-crossing with zero initial
phase (n=0) is most likely to be selected for the time measurement; for plates
of thickness b=1.5~2.0 mm, the zero-crossing with phase ¢=2n (n=1) is most
likely to be selected, etc.

To illustrate how much crvor is produced when the zero-crossing is
selected in accordance with the above criteria, we plotted only the parts of
Figs. 10 that would have been sclected in IMigs, 11 with different vertical
scales. Figure 11(a) shows only the error curve for the zero-crossings with
minimum ave *u‘ge relative amaplitudes which is plotted in Fig, 11(b). It can
be readily seen from [Fig. 110 that the velocity errvor is generally bounded

within £ 2.0x10™ the acceptable crror for the absolute velocity measurement.
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Note the error fluctuates when thickness goes over 2 mm, which indicates
that the exact error may be difllicult to predict for thicker plates, These
fluctuations occur when the optimum value of n chunges.

Now consider the error (rom the relative velocity measurement, Due to
the presence of texture, which introduces weak anisotropy in plates, the
dispersion characteristics of tlie S, waves propagating at different directions
with respect to the volling divecetion arve slightly different. Here the change in
dispersion characteristics is modeled by the change of Poisson's ratio in Eq.
(5) for the purpose of simplicity. This modeling is justifiable from the results
in Part [ of this paper [6]. Figure 1200 shows the rvelative velocity
measurement errvor plotted against plate thickness, where the relative
velocity measurement ervor is defined as (0, -/t -(6-tolty, which is zero
for the zero thickness plate. The parameters used in the simulation are D=10
mm, B=20 mm, x=300 mm, uuz().I%‘-lS.‘m'\d 1,=0.300. The two Poisson's ratios
are chosen to represent fairly strong testure (corresponding to AVy/Vy, of 0.03
at long wave length limit. Here GGGy by by and L, ave,
respectively, the measured time for vy, the measured time for vg, the average
of ty; and t, . the time from the true phase velocity for vy, the time from the
true phase velocity for vy, and the average ol G,y and tyy . Figure 12(b) gives
the associated average relative amplitude, being the mean of the relative
amplitudes for the two dilferent Poisson's ratios. The ten curves in Figs. 12,
as those in Figs. 10, vepresent the ervors for the ten zero-crossings having
initial phase ¢=2nn (n=0~9) at x=0 and =0,

Again, similar to the crvor analvsis for the absolute velocity
measurement in Figs. 11, the parts of IMigs, 12 that correspond to minimum
average relative amplitude are plotted in IMigs. 13, Figure 13(a) clearly shows
that the errors for the velative velocity measurement are very small and well

within the £1x10™ bound.



CONCELUSION

A model for pulse propagation in a dispersive media has been utilized
to study the cffects of pulse distortion and phase shift on the phase velocity as
determined by the zero-crossing meastrement technique,  Assumptions
employed in the velocity ('()Ill])lllélli()‘nﬂ include a Gaussian spatial o.nvelopé
and an analytic approximation to the Sy mode dispersion curve with a Taylor
series expansion aboutl the operating point. Simulations have been made on
the pulse distortion and phase shift effects as they would oceur in a typical
system for monitoring metal texture und the consequent errvors in velocily
measurements have been assessed. TUis found that the influence of
dispersion on the zero-crossing measurement technigue does not induce
gevere discrepancy in cither absolute or relative measurements of the velocity
of the 8y mode for the selected configuration when Lhu plate thickness is less
than 4 mm; thus, tracking zero-crossings is judged to be an appropriate
experimental techrique. However, lor a different experimental
configuration such as when [SMATs with a shorter period are used, this

conclusion may not be valid,



16O
ACKNOWLEDGEENENT

Ames Laboratory is operated for the U, S, Depurtment of Energy by the
Iowa State University under contract No, W-7405-ng-82, This work was
supported by the Director for [ncrgy Rescarch, Office of Basic Energy

Sciences,



10

RIS REENCES

R. B, Thompson, 8. S, Lee, and J, 18, Smith, "Relative Anisotropies of
Plane Waves and Cuided Modes in Thin Orthorhombic Plates;
Implication for Texture Characterization,” Ultrasonices 26 (1987 133-

37,

R. B. Thompson, J. I, Smith, S, S, Lee, and G, C, Johnson, "A
Comparison of Ultrasonic und N-ray determinations of Texture in Thin
Cu and Al plates.” MU Trans, 200 (198O 243147,

A. V. Clark, Jr., R C, Reno, R B Thompson, J, B Smith, G, V.,
Blessing, R, J. Ficlds, P, P, Delsanto, and R. B, Mignogna, "Texture
Monitoring in Aluminum Allovs: A Comparison of Ultrasonic and
Neutron Diffraction Measurement,” Ultrasonics 26 (1988): 189-97,

A, V. Clark, Jr., ¢t al. "Ultrasonic Measurement of Sheet Steel Texture
and Formability: Comparison With Neutron Diffraction and
Mechanical Measurements.” T'o be published in Research in
Nondestructive [Svaluation. :

T. R, Mecker and A, H. Meitzler, "Guided Wave Propagation in
Elongated Cylinders and Plates.” In Physical Acoustics. Bd. W. P,
Mason. New York: Academic, 1965, 112-119,

Y. Liand R, B, Thompson. “ElTeets of Dispersion on the Inference of
Metal Texture [rom S, Plate Mode Measurements: Part I Fvaluation of
Digpersion Correction Schemes,” Submitted to Journal of Acoustical
Society of America,

R. B, Thompson. "Physical Principles of Measurement with KMAT
Transducers.” In Physical_Acoustics, Vol, XIX, Ed. W. PP, Mason,
New York: Academic Press, 1990, 157-200),

R. B, Thompson and R, K. Elsley, "A 'rototype EMAT System for
Inspection of Steam Generator Tubing,” Electrie Power Research
Institute, Palo Alto, California, Rept, S101-1, EPRI NP-2836, 1983,

Y. Li and K. B, Thompson. "Pulse Propagation Analysis of Dispersive
Waves.,” To he submitted (o J. Acoust, Soe, A,



10.

11,

137

R.-J, Roe, "Description of Crestallite Ovientation in Polyerystalline
Matevials, [, Goneral Solution to Pole Figure Inversion,” J. Appl..
Phys, 36 (1966); 2024-31,

Ri-J, Roe. "Inversion of Pole FMigures for Materials Having Cubic
Crystal Symmetry.” JoAppl, Phys, 37 (1966): 206972,

G. J. Davies, D, J, Goodwill, und J. S, Kallend, "llastic and Plastic
Anisotropy in Sheets of Cubie Metals,” NMet, Trans, 3 (1972 1627-31,
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Mg Stmm) Bltmm) v Dimm)
4 vary 20,0 (.36 10.0
5 1560.0 vary 0,346 10.0
6 150.0 20,0 vary 10.0
7 150.0 20.0) 0346 vary
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APSTRACT

Tochniques for infervineg texture ovicntation distribution coefficionts
((H)Us)hmn1vMuMleurththnMnunwndlhuﬂ%mntu;nﬂnmzwlshmnw
and Sy undamontal svinmeteie Lamby coded modes of plates are woll
known. For plates of cabie ervstallites, AW and W can be determined
from relative vaiations of velocrty as o function of angle, However, the
remaining independent coctfiont, AW, requires an absolute measurement.,
Farthermore, the predicted vadue depends evitically on theoretical estinutes
of average polvervstdline clastic constants. This paper discusses an
alternative procedure to determne W o whieh makes use of special
properties of hivher order oo ded wocee Nttention s focused on a special
point at whieh the Spand SECofie oedor hovrzontally polarized shear
dispersion curves are tanee: Cinceotopne mateviads, T is shown that the
pn%vnm;d}uﬂmﬂwnn’hwu*-|N~phuw~uiuwu'mmwnvmuwanwlﬁsswwhd
position and that the degree of dioperaon carves are overlay or separation
provides w quantitative measnre of AW Foothermore, the result does not
requirve precise, indeperaden Lo oo e plete thickness: The results
are supported by hoth aopertea b dheor s od evaet solution for wave

provagation i asotrapie ol

"
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INTRODUCTTION

The uce of ultrasonic velovity mensurenments o determine the texture
(proferved grain oricutation) ol metal plates has been the subjeet of
congidorable recont interest. The foundation for these procodures lies in the
mathematicul deseription of textuwre, in which the erystallite orientation
distribution function (CODIY i oxpanded as u sevies of spherical harmonies,

In the notation of Roce [, 2], the expansion of the CODE takes the form

gy / II
WE ) = 2., X >_.‘ WAt 5 eotmie g ne (h)

(=0 m=-/ n=-{
whore 0, ¢, and y are Buler angles deseribing the ovientation of a particular

erystallite with vespeet to the sample axes, Z=cos 0, the 7 ave the

[ mn
Genceralized Legendree furetions, and AW, ave the ovigntation distribution
coefficients (ODCs0 A sinnlae relation has boen developed by Bunge [3],
using the expansion coellicient €7 Knowledge of either set of ODCYs fully
specifies the CODEF, and henee the texture,

Ultrasonic measurements of texture e based on the fuct that
preferred grain ovientations produce an anisolropy in the ultragonie wave
speed. Theorctical models have been developed velating the ODC's to the
anisotropic clastic constant=, ', and ultimately to wave speeds, Because of
the fourth rank nature of the clastic constants, only the ODC's of order [ < 4
influence these wave speeds. For the case of cubie erystallites, the only
nonvanishing, independent coctlicients are Wiy, Wyueand W,

One of the most promising schomes fov measurement of the ODC's has
been based on measuvemoents of the velocitios of guided modes propagating in
the plane of the plate, as shown schematically in Figure 1, In a promising
configuration, u-e ts nuude of the anwular variation of the velocities of the SH,
and Sy modes [4]. Migure 2 presents the dispersion curves and deformation

profiles of these modes for an izotropic plate, It should be noted that the long
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wavolength limit of the Sy mode velocity is required, which rigorously ontails
correction for dispersion, Howevor theso corroctions are small as loug as tho
wavelength is large with respoct to tho plate thickness, By moasuring thoe
velocitios at 0°, 46° and 90° with respoct to the rolling direction, it has boen
shown that all three ODC's can be deduced from 8, mode data, while W,
and W ,pcan be deduced from SHy mode data [4, 5], For cither mode, relative
measurements of the angular dependence of velocities can be used to prodict
Wasoand Wy, However absolute velocity measurements are required to
predict Wypo. This fundamental consoquence of the fuct that the basis
function having the coefficient Wygovaries only with the polar angle 6, as cun
be seen from Kq, (1), When the polar axis is chosen normal to the plate, thig
eontribution is independont of rotations of ¢rystallites in tho plane of tho
plate, Consequently, no information regarding Wy can be obtained from
angular variations of a particular mode velocity in the plane of the plate, The

formulae for predicting W, {ollow [4]:

Wioo = %ﬁéa [PVE&1,0°) + pVEi,(46°) - 2044 (2)
Wig0 = e B2 (pVE(0°) + 2pVE(46%)

32r2 J+8(cf2/u“)+8( e )? 1(*“

+ PVE(90°) - 40T [1-(eu/et )] (3)

Y

Here, CYy, CPy and Ciy are moduli of an isotropic polyerystallite, C*is a
measure of the elastic anisotropy, p is the density, and the phase velocities
are shown as a function of angle with respect to the rolling direction,
Comparison of ODC's obtained by ultrasonics to those obtained by X-ray and
neutron diffraction have shown good agreement for the cases of Wyy,and
W40, a8 illustrated in Fig. 3a [5, 6], Note that scatter of W valuces is on the
order of 10-%, However, similar comparisons for W oo have shown a much
more erratic behavior (Ifig. 3b). It hag been found that for both steel and
copper, the agreement between ultrasonic measurements are excellent for
the Symode with the SHy mode valued being consistently lowoer. However, for

the aluminum samples, there are serious differences between the ultrasonic

I

"

gy
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and diffraction prodiction@ of Wy, The fact that the "ange of the abscissa
and ordinate is an order of mm'mtu(lo greater than that in Fig, 3a makcs this
dlsagreement even more severe, r\thoLwh not fully understood, this greater
apparent difficulty in predicting W op in aluminum may arise from the bmall
value of the elastic anisotropy; G, which makes the predictions particularly‘
sensitive to errors. Sources of these errors may include the greater difficulty
of absolute (as compared to relative) velocity me 1summents, possible errors
in estimates of the isotropic polycrystal moduli (including alloying and
‘second phasé effects), and the need for dispersion correction for the Sy mode

“which becomes more severe as plate thickness increases [6].
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IMPROVED TECHNIQUE

Ideally, one would like to infer W, g from relative measurements.

" However, as noted above, measurements of the variation of velocities in the
plane of the plate can not be used Lo determine Wy, which is the coefficient -
of a basis function-which only varies with polar angle. One must then seek a
different experihwntal configuration in which a wave parameter is varied in
a cross-section of the plate. This can be accomplished by taking advantage of
the properties of higher order Lamb modes. Since these can be viewed as the
superposition of partial waves vellecting between the plate surfaces (7, 8], and
since the angle of these partial waves with respect to the normal depends
upon the point of operation on the dispersion curves, measurement of various
features of the dispersion can be usced to study the angular dependence of
wave velocities in the cross-scetion of the plute. One such scheme based on
‘the dispersio‘n of SH modes has been demonstrated by Smith et al. [9] and
Armstrong et al. [10]. However, that technigue generally depends on a
precise knowledge of the plute thickness. Although such knowledge is easily
-obtained in the laboratory, it may not be as accessible in production
environments, Hence, alternate procedures are needed.

One technique which appears particularly attractive makes use of the
properties of guided Lamé modes, opomtin;{ at the point at which the
isotropic 8y mode and SH | mode dispersion curves are tangential, as shown
in Fig. 2. Both modes consist of shear waves propagating at 45° with respect
to the plate normal. However, the partial waves in the SH| mode are
polarized parallel to the plane of the plate, while those in the Sy mode are
‘polarized in the sagittal planc. Because of this 90° polarization rotation, one
would expect their relative velocities to depend on W~1()0- IFurthermore, since
the partial waves propagate through the same path at the same angle, one

would expect measurement of their relative velocities to be insensitive to
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small uncertainties in the plate thickness. Thus we expect the presence of
Wyoo to split the tangency of the SH, and S, modes at the Lamé point,

producing either a mode crossing or o mode separation depending on sign.
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NUMERICAL BVALUATION

In order to evaluate this expectation, un exact theéory has been used to
calculate the dispersion curves of Lamb waves in an anisotropic plate [11].
Fig. 4 presents dispersion‘cur\"os for waves propagating along the rolling
direction of a plate. In cach case, one of the ODC's (W00, Wygoor Wyo has
been varied between £0.005 with the other Lwo held constant at 0.001, and the
Hill averaging scheme \"zm‘onu)lo_,\'ucl. As cexnected, introduction of texture
causes the tangency to be broken, with cither mode splitting or crossing
occurring depending on the sign ol \W. "T'he coefficients Wygpand Waypare
seen to have an influence of compzu‘ul)‘lb magnitude, somewhat greater than
that of Woq.
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INVIEERSION

Having established the sensitivity of this special feature of the
dispersion curves, it is necessury to secek an inversion algorithm that will
allow the three ODC's to be separately determined from experimental data.
Fig. 5 presents the strategy. Let (w,. k,) define the point of Lamé mode
propagation in the isotropic medium. When anisotropy is introduced, the
dispersion curves will be shifted. Define

Ak = Aksjy, - Ak, | | | (3)
to be the relative shift in wave vector at the frequency @y From perturbation
theory, one can compute Ak(0), Where 015 the angle of propagation with
respect to the rolling direction. FExplicitly ex amining the results at §=0°, 45°
and 90°, one obtains a sct of lincar equations in the ODC's which can be

solved with the rowlt

Wao0 = — 72 5 -» \k(O7) + '_\k(.()()“‘)+/\k('»1v5°')] - (4a)
40 n= (‘ml\(l ‘
Wiygo = -7\/_ i | LAK(9O ) - AK(O ) (4b)
8 n- C”l\() ‘
(8] .
Wyq0 = jf” =44, ;r AREO™ 4+ AK90™) - &\]{(‘:’-15:’)I (4¢)

24 Td(‘“k()
where Ci4 is the shear modulus.

The stability of this inversion scheme has been numerically evaluated
by using the exact theory to caleulate \k and then inverting to obtain the
ODC's by Eqgs. (4). To test the sensitivity Lo small fluctuations in moduli,
Hill's averaging procedure wus used to compute the isotropic moduli in the
exact calculation of dispersion and the Voigt, Hill and Reuss procedures
were each used in the data inversion. The material was assumed to be
polycrystalline copper, having W, =W u&=W, = 1x10°%, Table I presents the

results of the inversion.
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CONCLUSIONS

Previously pr().posod techniques have shown the ability to determine
Wyooand Wy o from the angular dependence of the velocities of SHyand Sy
guided elastic modes of plntos.‘ Those prbcodm*es require absolute velocities
for the prediction of Wy, and difficultics have been encountered under
conditions of weak anisotropy (aluminum) or thick plates. An improved
technique has been proposed based on the texture induced splitting of the
tangency of the §yand SH, Lamdé modes. Numerical calculations and
perturbation theory have been used to verify the procedure. Experimental
evaluations are in progress, utilizing BMATS to excite these special modes
[12].
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Table I. Test of inversion («<10°H

.......................................................................

Voiut Hill Reuss
W00 112 L.02 0.91
W0 1.33 121 1.08
W40 1,13 1.03 0.91

......................................................................

Fig. 1. Angular variation of ultrasonic velocity
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PART VII.

DETERMINATION OF TEXTURE IN PLATES OF
HCP METALS ZIRCONIUM AND TITANIUM BY

ULTRASOUND AND NEUTRON DIFFRACTION
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ABSTRACT

The demand for nondestructive charvacterization of texture in
hexagonal close packed (hep) materials has been increasing répidly in the
last few years. The texture of polycrystalline materials is typically described
by coefficients, W, ,,,, ‘by Roe's notations, of a harmonic expansion of the
'crystallim orientation distribution function (CODF). Recently, we described
ultrasonic techniques for the determination of texture in hep metal sheets.
In principle five coelficients may be inferred ultrasonically but techniques
conventionally applied to cubic materials do not yield all five in hep
materials. This paper presents experimental results in which higher order
modes are include ! to determine all five coofficients for plates of zirconium
and titanium. Values of W, ,,,, determined by ultrasonics and neutron
diffraction will be compared and crrors associated with the ultrasonic

method will be discussed.
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INTRODUCTION

“The demand for nondestructive characterization of texture in
hexagonal close packed (hepr muaterials hus been inereasing rapidly in the
last few years, particularly in acrospace and nuclear industries for quality
control purposes. Texture study has traditionally been done by X-fay or
neutron diffraction techniques. These diffraction techniques are generally
slow or destructive. Recent advances in ultrasonics have shown that texture
can also be determined by fast and nondestructive ultrasonic techniques
[1,2,3]. An ultrasonic texture measurement instrument is currently being
built at Towa State University which can caleulate texture parameters of
cubic polycrys.(:allitos in a few seconds 4], ;

The texture of a polycrystalline material is generally described by a set
of orientation distribution cocflicients (ODCs) or W, ,,, in Roe's notation. The
detailed definitions of these coellicients can be found in Refs, 5 and 6. In
principle, only W, ., for/ up to L can be inferved ultrasonically. For
materials of cubic polverystallites; there are only three nonzero and
independent coefficients: W, W, and W ,. [For materials of hexagonal
polycrystallites, there arve two extra independent coefficients: Wyggand Wy,

Until recently, most of the study in ultrasonic characterization of
texture has been concentrated on polycrystals of cubic crystallites. In the
determination of texture in plates of cubic matervials, long wave length limit
of Sp Lamb waves and SH, waves are vencrally used and the velocities are
measured for propagation divections ol 0, 45" and 90 with respect to the
rolling direction [1,2,3]. These conventional techniques are sufficient and
have been proved to be successiul for cubic polycerystallites, Typically,
EMATSs (electro-magnetic acoustic transducers) are used in texture study
because their couplant (ree operation enhances the potential for industrial

applications.

»



ULTRASONIC TINCHNIQUES AND SAMPLES

The key to the extension ol the conventional Ledhniqucs to texture
characterization in hexagonal maturials is the relations between the elastic
constants and the texture paramcters W, ... These relations have been
established and published recently in Ref. 7. Once we have the relations, the
following equations, describing the information provided by the conventional
ultrasonic techniques, can be obtained:
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where Ay, Ay, Ay and B are clastic anisolropy constants and C}) are isotropic
elastic constants of the materials. These constants are related to the elastic
constants of single crystals (7] and they are averaging method dependent,
The elastic constants for Voigt, Hill, and Reuss averaging method and
material densities of Ti and 7Zr are listed in Table . Throughout this paper,
we will use the Hill averaging method, unless otherwise specified.

In Egs. (1), one sces clearly that Wygoand Wygoare coupled in the first
and the third equations and W, and Wy, are coupled in the fourth equation.

These couplings are due o the nonzero terms Wygoand Wyyin the hexagonal
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class, W ois still uncoupled, cmnpuiulﬂo divectly from the second or the fifth
equations,

Obviously, the conventional techniques cannot solve for all five Ws,
New ultrasonic techniques need to be developed. The one techhique that we
are going to discuss in Lhis‘pupm" utilizes SH; modes. The dispers‘ion
equations for SH waves are:

Propagating at O degrees: CHW = CuK +Cyy. ‘
Propagating at 45 degrees: ()W = "»Il-((“ 1-2C1H+CIK +-%<(C(14+C55) (2)
Propagating at 90 degrees: )W = O K +Css
where K=(£k)2 1s the square of dimensionless wave number with b being the
plate thickness,and \\’:(3‘\}:';)3 is the square of dimensionless frequency with
| .
Vi=/Chy/p being the normalization shear wave velocity,

Note that all three cquations in [gs. (2) arve linear equations. The slopes
of the solutions for 0” and 90 propagation are identical, indicating a constant
separation distance betwoeen the two solutions, and the intercept of 45°
propagation solution is exactly hall way between the other two. Using the
relations in Ref. 7, Kgs. (27 can be expressed in terms of ODCs,

There are two mea: wrement methods that ave used in our texture
study: zero-crossing method for determining p]m“s@ velocity and Fourier-
phase method for obtaining wave vectors, Rach method can be further
subdivided into two measurcment schemes: absolute and relative
measurements.

In the zero-crossing absolute velocity measurement, one changes the
transducer separation distance and keeps track of the time delays of a
specific zero crossing within the wavelorm. In the zero-crossing relative
measurement, one fixes transducer separation distance but changes the
wave propagation direction and keeps track of the time delays of a specific
zero crossing within the waveform. The phase veloceity is associated with the

shifts of the arvival time with anvle or distance,
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In the Fourier-phase absolute measuvement, one takes waveforms at
two different transducer separation distances and uses the deconvolution
technique to obtain the wave number information, In the Fourier-phase
relative measurcment, once takes wavelorms at different propagation
directions for a fixed transducer separation distance and uses the
deconvolution technique to obtain the information on the change of wave
numbers,

When using the zevo-crogsing method, one generally measures the
propagation velocity of o nondispersive or weakly dispersive wave, When
using the Fourier-phase method, one can mea-ure cither the propagation
velocity or the wave number of o wave which can be either nondispersive or
strongly dispersive. In real applications, the Fourier-phase method is
favorable because it can be casily automated,

We used two samples in owr study, The (irst one is a 1,86 mm thick
titanium sample and the sccond one is a 0.89 mm thick zrconium plate,
Both samples were purchasced at a local vender, These samples are of
commercial purity although it is unclear if second phase exists in either of
these samples. \We did notice some apparent thickness variations within the

zirconium sample.
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ONPERINIIONTAL DA'TA

Five gets of neutron pole figures have been obtained for the Ti and the Zr
samples. W, ,, for{up to 10 have been compuled based on these pole
figures, The (1010) and (0D02) pole ligures are shown in Figs, 1 and 2 and the
Wimn for 2 up to 4 for the (wo samples are given in Table 11 The errors in
Table I1 correspond Lo the last two digits of W, .

The measured ultrasonic data (o1 the two samplus are given in Table
IIT and Table 1V, In these tables, the zero-crossing measurements are a
combination of absolute meazurements at 0" and relative measurements at
other angles. The relative measurements in these tables arve giveh with
respect to the rolling divection (0", Ilach entry in these two tables is the mean
value averaged from three repetitions of independent measurements,  For
the Ti sample, measurements were made using Sy SHy and SH| modes.
The values for the Sy, and SH,, modes are velocities and the values for the
SH{ modes are wave numbers, \We were not successful in obtaining useful
SH; waveforms for the Zr plate henee the values in Table 1V are all velocities,
The errvors for the absolute velocity measurements ave about 0,006 mm/ms
for Sp);, and £0.003 mm/ts for SH, The ervors for the relative
measurements are about an order of magnitude smaller, The measurement
errors for the dimensiontess wave numbers are about 0,003 in Table 111,

Theoretically, when the plate is orthotropic, the velocities or wave
numbers for propagation in 15" and 130" divections arve identical, ‘The entries
in the 45” and 135" columns arve cenorallv very elose and can be considered to
be the same if the measwrement crvor is (aken into account, Further, SH,
velocities for propagation in 0" and 90" directions should also be the same for

orthotropic media. This is affirmed by the data in Tables 11T and 1V,
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FORWARD CONMPARISONS
4

Uging the Wy, obtained fvom neatron diffraction, we can caleulate the
elastic constants from the relations given in Rel, 7. Then dispersion curves
for wave propagating in the two samples can be generated uging the
gonoeralized Rayleigh-Lamb cquation. of anisotropic plates [8,9], On the other
hand, using Fourier phase absolute measurement method, experimental
dispersion curves can be reconstructed, The comparison of the theoretical
digpersion curves and the ultrasonically veconstructed dispersion curves are
shown in Fig, 3 for the T sample for wave propagation in the rolling
direction. In Fig, 3 the continuous curves are the theoretical curves and the
curves with crosses are experimental dispersion curves, There are four
experimental disporsion curves: low wave number 8y mode, high wave
number Sy mode, SHy mode, and SH, mode, tn this paper, the information
pertaining to the high wave number S, mode will not be discussed.

denerally good agrecment can be observed from Itig, 3 between the
theoretical and cxperimoental dispersion curves, There is, however, one
acute problem associated with the Fourier phase method: an ambiguity of a
multiple of 2p in determining the velative phase of the two signals being
deconvolved., When using Pourvier phase method, the phase computation
involves an inverse tangent function. The returned value of the inversion is
always within the -n to ©range while the true phase does not have such a
limit, In other words, the true phase is the computed phase plus/minus 2nm,
Physically, this corresponds to an noevele misalignment in time domain, To
choose the correct value n, we have utilized an algorithm that will be
discussed elsewhere because ol the page Hmitation here,

To make sure that we have selected the right multiple, we have plotted
the experimental dispersion corves with a positive and a negative offset of 2p

-\

phase in Fig, 4. T'he compurizon between the theoretical and experimental
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curves shows beyond doubt that woe have chosen the right multiple in ou
fitting, Fig. 4 also demonstiates that il we do not have the prior knowledge of
neutron diffraction results, it can be very difficult to identily the correct
multiple of 2p {or velatively strongly disporsive waves,

Table V gives o data analysis and comparison example, In this case,
the conventional Sy, velocity data wre used to obtain a linear combination of
Wogpand W o using the fowrth equation in lqs. (1), The equation at the
beginning of the table expresses o simplified velation between Wyggand Wy
and ultrasonic velocitios, The coolficionts 3% and Ci% given at the bottom of
the table are constunts computed based on the fowdh equation in Eqs. (1) and
the elastic isotropy and anisotropy constants listed in Table 1. The values of
thege coefficients are for the HHll averaeine moethod while the bounds of the
values correspond to the Voigl and the Reuss averaging methods, On the left
hand side of Table 1V, the values are computed based on neutron diftraction
data and the crrors corvespond to the standard deviation in Wypgand W g,
On the right hand side of Table TV, results caleulated from ultrasonic
velocity measurements are listed along with the standard deviations based on
the three repetitions of the experiment for cach of the different measurement
methods,

IFrom Table V, one can scee that there is o good agreement between
ultrasonic data and nceutvon dilfiraction vesults for the T sample, but the
comparison for the Zr plate is not so good, even though consistent results are
obtained from dilferent ultrasonic technigues and measurement methods.
We do not have o good explanation for this discrepancey at this stage.

Table VI is another dota analvsis example, In this example,
information of the SHy mode mensurements is used to obtain another linear
combination of Wo,gand WL, Here only the analysis for the 11 sample is
presented since we did not got relinble wavelorms for the Zr because of the
nonuniform thickness of the plate, The analysis in this table is presented in

the same fashion as in ‘I'able V. except that the squares of dimensionless
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wave numbers, rather than velocitios, are used on the ultrasound side. The
zero-crosging moeasurcmoents are missing from this table beeause the SHy
waves are strongly dispersive and the zero-crossing measurement method is
unsuitable for such «w situation, Again, o very good agreement between

diffraction and ultrasonic data can he observed,



INVERSION AND CONCLUSIONS

We have calculated the predictions of Wy ., based on ultrasonic data for
different combinations of techniquos and measurement methods discussed
in this paper. Comparisons of neutron diffraction data to the best and the
worst estimates by ultrascund are given in Table VII, For the Ti sample,
except for W40, the best estimates by ultrasound are in very good agreement
with those by neutron diffraction. We currently do not have a good
explanation on why the estimate of W,oo by ultrasound is so much different
from neutron data, The worst estimates for the Ti are sometimes
conside rably off from the neutron results except for Wyyoand Wygo where the
differences are relatively small, For the Zr sample, Wggoand Wy, remain
coupled since reliable ultrasonic data were unavailable for the SH,, For other
ODC(Cs, the best estimates are very close to the neutron estimates. On the
other hand, the worst estimate for W,y 18 again far off from the neutron data,
even the sign has changed. |

In conclusion, we have shown that ultrasonic techniques can be used to
characterize texture in plates of hexagonal polycrystallites. The
distinguishing aspect of texture characterization in hexagonal materials is
the coupling of Wyyq with Wyygand Wygowith Wyoo. Conventional ultrasonic
techniques that have been used for texture determination of cubic
polycrystals cannot alone determine all five ODCs for hexagonal materials;
therefore other ultrasonic technique or techn'ques must be used or developed.
This paper addresses one of the techniques we are using: the SH; mode
technique. Other techniques may also be used [10]. When using the SH;
mode technique, along with the conventional techniques, all five W| ,,, forl
up to 4 can be determined., The results presented in this paper has shown a

promising future of ultrasonic determination of texture, but more work
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noeds to be done on the issue of ambiguity of multiple of 2r before
transferring the technology to industry,



NCENOWLEDGIENHENT

Ames Laboratory ix operated fore the US, Department of Energy by the
fowa State University under contract Noo AW 7406-ng-82, T'his work was
supported by the Divector for ncrey Rescareh, Ollice of Basie Bnergy

Sciences.



10.

- 212

REFERENCES

R. B. Thompson, S. S. Lee, and J. F. Smith. "Relative Anisotropies of
Plane Waves and Guided Modes in Thin Orthorhombic Plates:
[mplication for Texture Characterization." Ultrasorics 25 (1987): 133-
37.

R. B. Thompson, J. F. Smith, S. S. Lee, and G. C. Johnson. "A
Comparison of Ultrasonic and X- ray Determmatlons of Texture in Thin
Cu and Al Plates." Met.Trans, 20A (1989) 2431-2447,

Y. Li, J. F. Smith, and R. B. Thompson. "Characterization of Textures
in Plates by Ultrasonic Plate Wave Velocities." In Nondestructive
Characterization of Materials. Voi. 3. Eds. P. Holler, V. Hauk, G.
Dobmann, C. Ruud, and R. Green. New York: Spnnger Verlag, 1989.
312-19,

E. P. Papadakis, et al. An Automatic Instrument For The mtrasonxc
Measurement Of T'exture." In Nondestructive Characterization of

Materials. Vol. 4. Eds. C. Ruud and R. Green. New York: Plenum
Press, in press.

R.-J. Roe. "Description of Crystallite Orientation in Polycrystalline
Materials. III. General Solution to Pole Figure Inversion." J. Appl.
Phys, 36 (1965): 2024-31.

R.-J. Roe. "Inversion of Pole Figures for Materials Having Cubic
Crystal Symmetry." J, Appl, Phys, 37 (1966): 2069-72.

Y. Li and R. B. Thompson. "Relations between Elastic Constants C
and ODCs for Hexagonal Materials.” 4. Appl. Phys, 67 (1990): 2663-65.

Y. Li and R. B. I‘hompson. "Propagation of Guided Elastic Waves in
Orthotropic Piales." In Review of Progress in Quantitative

Nondestructive Evaluation. Vol. 8A. Eds. D. O. Thompson andD
Chimenti. New York Plenum Press, 1989. 189-96.

Y. Li and R. B. Thompson. "Influence of Anisotropy on the Dispersion
Characteristics of Guided Ultrasonic Plate Modes." J, Acoust. Soc,
Am, 87 (1990): 1911-31.

Y. Li, R. B. Thompson, and S. . Lee. U]trasonic Measurement of -
Texture of Cubic and Hexagonal Materials." In Review of Progress in
Quantitative Non ivn Evaluation. Vol. 9B. Eds. D. O. Thompson
and D. E. Chimenti. New York: Plenum Press, 1990. 1781-88.




213

Table 1. Elastic isotropy and anisotropy constants

in GPa and densities in g/cm?

Mat'l method C%, Cia A, Ay Ag B p
Voigt 16393 7553 44.20 -62.00 -145.00‘ 207.00 23.00
Ti Hill 16286 76.07 4340 -61.80 -141.81 20361 16.69 4.510
: Reuss 161.78 76.60 4259 -61.60 -138.61 200.21 10.38
Voigt 14568 72.16 36.76 -55.80 -6.60 62.40 42.40
Zr Hill 14518 7228 3645 4905 -522 54.27 38.99 6.505
‘ Reuss 144.68 36.14 4230 35.59

72.39

-3.85 46.14

Table II. ODCs calculated from neutron pole figures

0.01709 (59)

- -0.00545 (17)

0.00574 (24)

-0.00687 (20)

0.00217 (06)

0.01300 (40)

-0.00575 (34)

0.00088 (18)

-0.00497 (06)
-0.00236 (16)
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Table I1I. Mecasured ultrasonic velocitios and wave numbers for the Ti

Measurement method mode

funit) 0 45° 90° 135°

Abs
+

Zero- S',Jl;m

_crossing  Rel SH,,

S(llim

SH;

ADs
Fourier- —

‘%“hm
phase

\q}'{‘]

S}ll

Rel

SH,

H.3236 53778 54506 5.3830

20640 29582 29523 29611

H.3191 53791 54646 5.3846

29511 5 929510 29572

0.6367  0.6757 0.7011 0.6796

0.0000 -0,0655 -0.1508 -0.0741

0.0000  -0.0070 0.0008 -0.0072

0.0000 -0.0410 -0.0685 -0.0405

Cm/us )

fmm/is)

tmm/pes)

Crmds) 2.957

thl'm
CHLn s

Cmam‘us)

(hlm)
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Table IV. Measured ultrasonic velocitios for the Zr

Measurement meLhOd mode 0” 45° 90° 135°

zero-  Abs Sy, (mm/us) L0941 40805 4.0987 40811

+ e et et e et s = oo ik 1t = 20 e o St R reees AP P e PP St TS 40 S et S i st & S

crossing  Rel SHy,  tmm/zus) 23309 23594 23309 2.3605

Sunm tmm/us) 10862 4.0648 4.0901 4.0579

A DS e e

Fourier- SH,  tmim/is) 20286 23684 23239 23560

phase Sun Cmus s 00000 00143 -0.0073 0.0155
I{Lll ot strmin shrmm v o te s e 4 e miene o e s s i oo oo ot e e i+ e e, s . et

SHy  tmm/us) 0.0000  -0.0309 0.0015 -0.0305



Table V. Data analysis (or Woo, and W o, using Sqe. modes
R ) 10 & S0lim

Clo Wogo  + Gl W, = pl\Viwoy - V(0]
GATE2 40,1875 (zero-crossing)

Ti:  6.6375 +0.2573 70763 ‘*() 2577 (Fourier phase absolute)
73273 H0.0863  (Fourier phase relative)
02452 +0.1191 (zero-crossing)

Zr:  0.8586 $0.2070 0.2071 40,1846 (Fourier phase absolute)

0.3871 +0.3022 (IFourier phase relative)

Based on neutron ultrasound  (measurement method)
. ! <
Ti: NSO O =217, 180
TyR \ 4448
Zr: =001 0 Ol =523.4" )

Table VI. Data analysis for W, and W, using SH, modes

CHiW220 + O W420 = [Kvor - K]
Ti:  0.0922 £0.0024 0.0861 +0.0036 (Fourier phase absolute)

r
0.0923 00243 (Fourier phase relative)

Based on neutron ultrasound  tmeasurement method)

: B 3 . N “ 2 9
Ti: W= YO0 0 (r=-2.59 “) ‘)]g



Table VII. Comparisons of neutron dilfvaction data to

the best and the worst estimates by ultrasonic techniques

— e b

\vff('()
Neutron | 001704
Th Best 001716
Worst 000672
Neutron 001300
yAS Boest 0.01092
Worst 001000

e A e e gt b e o s s ks et s

Wiaa Wiao W0
0.005674 -0,00687 0.00217
0.02787 -0.00646 0.00231
001263 0.00415  -0.00696
0.00088 -0.00497 0.00236
{00060 # 0.002:39
-0.0003220 # 0.00410



21N

vy (0002) ¥ (10-10)
AN TITAMIUM SHEETY AN HIANIUM SHEET
AMES LAPORATORY AMES LADORAIORY
0! R n o R

—~.
RN DI

CENTRE IS N CENTRE IS N

TOMTOUR HTERVALL 0.500 mrd CONTOUR INTERVAL: 0.500  mrd

g, 1o Pole fivures for the T samples

(0002) x  (10-10)

X
N ZIRCONIUM SHEET . ZIRCONIUM SHEET
AMES LABORATORY AMES LABORATORY

CENTRE IS N CENTRE IS N
CONTOUR INTERVAL: 0,200  mvd CONTOUM INTERVAL: 0,200 mrd

Mg, 20 Pole figures (or the Zr sample

" RN f ' ' . o . I e [ 1 ! non



.

b 1 t v o . e - .
] S PPN PPPRE
1 Gt e

e .

| d J{Vg—r‘f"

b ",‘ wisd
1.2 A”MA;’;" )

T . o .
[ PAPIOLE PP o v \
e
0.8} ;r ..//
vof / /,,
(0.4 / e
bAr /’ + 2o
// ,./’}
0.2} // e
e
//
()L/ J * = L n " n
0 0.2 0.4 0.6 0.8 | 12 1.4
bk

n
Fig. 3. Some dispersion curves lor the Ti sample

1.8

1.6

0.8

0.6

0.4

A

i

Mg, L

0.4

0.6

08

Ambiguity of multiple of 2r




220

PART VLT

USE O LAME MODIEI PROPER TS INTHIEE DITERMINATION

OFTENTURE PARAMETHRS ON AL PLATES



Vi)

ADSTHRACT

We have recently propo-<ed an ulceasonie teehnique whieh utilizos
Lamd mode propertios to charetorize texture of cubie and hexagonal
polycrydtalline aggregates, 1 is known that whoen a plate is isolropice, there
is always a point where S and S modes touel each othor tangentiadly at
k=n/b, When the plate is anizotropic, S, and SHmodes may cross over or
gplit at the Lamdé point, The amount of eross-over and splitting is found to be
gonsitive to the weak anisotropy induced by the toxture in the metal sheets,
In this paper, we will report the experiniental results on ten Al plates, We
will compare the estimations of texture parameters Wimn obtained using the
Lamé mode technique and the conventional ultrasonic techniques. We will
also compare owr ultrasonic predictions to those obtained independently (rom
neutron and X-ray diffraction techniques, The advantages and
disadvantages of the Lame mode teehnique and vrrors associated with the

meastrement will also be disceussed,
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INTRODUCTTON

Texture (proforred grain oricntation characterization of polyerystalling
aggrogates has Lraditionalls beens done by N-ray o noutron diffraction
techniques, These technigques are vencorally stow and destruetive, Advances
in ultrasonics over the Tast decade have made it possible to determine testure
of cuble polycrystalline aggmepates quickly and pondestructively [143] 1L is
known that all polycrystalline matervials have some degrees of texture ar i,
when texture is present, the matevials are anisetiopic, usually weakly
orthotropic for rolled plates or sheets, The principle of ultrasonic
characterization of testure is (o infer texture by sensing and determining tho
material anisotropy,

The mathematical deserption of testure was developed over 20 years
ago by Roe [1LA] and Buange 161 Texture s quantitatively deseribed by the
orientation distvibution coelficient=tODCxror AV, i Roe's notations,
These ODCs are dimensionless parameters, Theoretically, diffraction
techniques can determine AV, for £ up toinfinity, though in practice
W nn is determined fov £ up (o no move than 20 o 320, In prineiple, only
Wi for b ap to 4 can bhe determined ultrasonieally, TUis vory fortunate that
these Wy, tre often the most important testure parumeters for formability
study for cubic motal= 78] For these mnterials, there are only three
independent and nonzero W, Tor D ap to 1y these are W Wne, and W,
Typical values of these \Vy e onc the ovder of 108, These W, are
related to deep drawability and coring in the manufacturing process [8],

The key to the ultrasonice detormination of toxture is tho sot of relations
between the testure prramcter- A and the elastic constants Cypof the
material, For vollod plates o <heet- ol cubre cevstallites, these relations are
lincar and can be expresaod o« o)

(‘U“(““l‘(m\‘ (’\HH\‘\ b (i U\:.“ (1)

| o
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where CF and CY aee isotropie Clastie constants nnd an anisotropy measure,
and o, ave constant coolficients T g o, ¢ and ¢ enn be caleulated
from the elastic constants of single crvstals ¢ viacdifferent avernging
methods, The values ol e, O and ¢ for AL Cuy and Fe are tabulated in
Tuble I The values for ¢ and ¢ in the table e obtained by the Hill
avoraging moethod with the bounds corresponding to the Voigt and Rouss
averaging results,

The conventionad techniques [or texture determination on rolled plates
or sheets ure the long wavelength S, csvnometrie Lamb) and the SHy (shear
horizontal) plate mode technigues tsee Figs by Using these techniques, one
rncasures phase velocitios ol these two modes at 0, 16, and 90 degrees with
respect to the rolling divection. The vquations which culeulate Wyggand Wy,
from the S;or the SHymode velocities can be found in Refs, 2 and 10, These
ecquations use the anpular vaviation in veloeity, Vo, henee do not require
absolute velocity measurements, The cquations for the valeulation of Wy

are given below:

Woan = 3982 N 0m e py g o 20| (2)
Yo
R Y ) .
\N_“)() = ‘ sy } ‘p\ (:h(()") + 2‘1 \,QH(‘-‘N')
U I R T R TN T
FpVE 0T - T T ey ) (:3)

where pis the density of the material,

The conventional techniques work satisfactovily overall except (or the
determination of Wypon Al plates, whose prediction is often found to be
inconsistent with independent diffraction measurements, This discrepancy
i8 believed to be caused primavily by the following reasons, (o) The nceuracy
of the prediction of W, relies on the avcurate measurement of phase
velocities in all three different divections, The typical measurement error in
velocity is about 0,006 mm ms for manual absolute measurement, This
may be improved to Y0000 1 mes or bettor for automated measurement, (h
Kxistence of sccond phase or alloving elements in Al samples alters the

isotropic clastic moduli. “The inluence of second phase material or alloying
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elements 18 sl unclear, Up to a0 ol ditTorence inisotropie moduli for the
alloyed nluminum can be found tnthe literaturee, A paper presented recently
hag shown thut for pure Al plates, the ulbrasonie predictions and X-ray
diffraction results are reusonably consiztent (11, Table 11 shows how each of
these two rensons contributes to the crvors in the prediction of Wgo. From
thig table one can seo clearly why Al is pacticularly vulnerable to the errors
and uncertainty in the measuwrement and calealation,

The objective of this paper is to explore o develop a different ultrasonic
method that does not rely on very precise absolute mensmroments or precise

knowledge of the isolropic elastic moduli and density to predict Wgg.
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THEORY OF LAME MODE TECHNIQUE

We have recently proposcd an ultrasonie technique which utilizes
Lamé mode properties to charactervize toxture of cubic and hosagonal
polyerystalline aggregates [ 11,1210 10 is known that, when a plate is isotropic,
there is always o Lumdé point where disporsion curves of the Sy and the SH,
modes touch ench other tangentinlly al the waveveetor k=a/b (see Fig, 1),
where b is the plate thickness. At this point, both modes have the
dimensionless frequency 2bI7V = v, the phase velocity V= V2V and the
group velocity V= VA2 where Vis the plane shear wave velocity, «/(‘,"/p
The Sy Lamb mode at the Lamd point has only vertically polarized
shear wave components (the longitudinal wave component is absent); the
wave bounces back and fourth from the two surlaces at 45 degree angles, The
SHy mode has only hovizontally polarized shear wave components, also
propagating at 45" with respecet to the plate surfaces,

When the plate is anisotropic. Lame modes do not exist any more,
Instead, the Spand the SHy modes oy erass over or split in the vicinity of the
Lamé point. ‘T'he amoant of cross-over and splitting, which is sensitive to the
weak anisotropy induced by the texture in the metal sheets, is related to the
texture parameters by:

.\k:‘;ffz(!}‘f»(zs\fz' W B S W eos 20000V IS jeos o) (4)
..) A
RN 44

where Aksk(SH -k(Sg, KeSH pand esg e te wave numbers of the SHy and
the Sg modes of the anisotropic materials at the Lamé frequency (f=V,A2D),
k=1/b is the wave number ot the Lame point, and o is the wave propagation
angle. By measuving Ak at 0, 15, and 90 degree divections, estimates of all

three Ws can be made based on this< cquation.
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SANMPLES AND KXPERIMENT

~ We have used ten Al sheets in this study. All the samples are about
0.1" (2.5 mm) thick. One ol these scunples is a pure Al sample (99.99%) and
all of the others are alloys with different heat treatments and rolling
histories. Neutron diffraction measurements have been made on six
samples and results of five samples have bheen reported [13]0 X-ray diffraction
has also been done on the pure Al scunple on the top and the bottom surfaces
as well as in the middle plane |11 O all the samples, none of them are fully
flat -- local curvature exists irvegulariy on all the plates.

The experiments hive been done using KMATs, The Lamé mode
transducers have 5.1 mm period for the %(, mode and 5.4 mm for the SH;
mode. These enable the waves to be excited close Lo the Lamé point. For
comparison purpose, we have also made n'mnsurohuznts using the
conventional S, technique.

The measurement method used in this study is the Fourier-phase
method. Becausce both the S and the S modes ave strongly dispersive near
the Lamé point, the commonly used zero-crossing velocity measurement
method 1s not suitable. Using the Fourvier-phase method, one takes
waveforms at two different transducer separation distances and uses
deconvolution technique to obtain the wave number information or phase
velocity information. The tyvpical change of separation distance is about 100
mm in this study. For cach measurement, there are three repetitions and

the averaged value is used in the linal computation.



RESULTS AND DISCUSSIONS

Using the Fouricr-phuse measurement method, we can construct
dispersion.curves {rom the experiments, Because the ultrasonic pulses are
bandlimited, the constructed (lis.pm'si(m curves are also bandlimited. Figure
2 shows the experimentally constructed dispersion curves and the dispersion
curves generated theoretically based on the ODCs obtained from the
conventional ultrasonic technigue (the fong wavelength Sy mode). These
dispersion curves are for one set ol measurements only. They are obtained
for wave propagation in the volling direction on one specific sample. One can
see from this figure that the dispersion curves from experiments are in very
good agreement with the theoretical ones, indicating a mathematical
consistency in the computations. ”

~ Unfortunately, the ultrasonic results ave different from the neutron
diffraction results. To sce this, we enlarged the portion of Fig. 2 near the
Lamé po{nt. Figure 3 shows the zoomed-in portion with two added curves.
The two additional curves are the S, and the SH dispersion curves produced
using the ODCs from the neutvon dillvaction analysis, One sees clearly from
this figure that the Sy and the SHy inode dispersion curves from the
ultrasonic techniques cross over near the Lamé point while those from
neutron diffraction split there. 'he reason {or this is that the values for W00
are significantly different between ultrasound and neutron diffraction. As
will be seen later, of the six samples for which we have neutron diffraction
data, all exhibit such kind of disagreement., |

When using the Fourier-phase method, there exists an ambiguity of a
multiple of 2r in the phase computation. Figure 4 shows how much of shift
in the dispersion curves may ocenr if o plus/minus 2n phase error is
introduced in the dispersion curve construction process. We have paid very
careful attention to this problem and convinceed ourselves that we have

selected correct multiples of 2 in our study.,



Figures 5~7 show the compurisons between the ODC values inferred
from ultrasonic techniques (hoth the conventional Sp and the Lamé mode
techniques) and neutron diffraction. Six sets of data for cach of the six
samples on which neutron measurements were made are shown in each of
the figures. Separate symbols are used (o denote the correlations between the
‘conventional Sy and the Lamé mode ultrasonic measurements and the
neutron diffraction with the straight lines being the loci of perfect agreement.,
Figure 5 is the comparison for Wogand Fig, 61s the comparison for W4,

Agreements are generally to within £1- 107! with two exceptions. This is the
| order of accuracy obtained in previous studies | 101, Considering the
nonsmooth surfaces on all (he samples, the correlations in Figs. 5 and 6 are
satisfactory. Figure 7, howoever, shows very poor agreement between the
ultrasonic and ncutron predictions of W, \We do not understand this major
disagreemént at this stage. ‘

~ We have also made a comparizon for the two different ultrasonic
techniques. Figure 8 shows how the Lamdé mode results on W oo compare to
those obtained by the conventional S, technique. Relatively good agreement
can be observed in this {Tgure,

Despite the poor agreement hetween the ultrasonic and neutron
diffraction predictions of \V y,0n the alloys, reasonably gond agreement was
obtained on the pure Al sample, which was studied by X-ray rather than
neutron diffraction. This sheot was studied before with the conventional S
technique using the zero-crossing moethod and the comparison between the
results from ultrasound and X-rav was lound satisfactory [11]. Figure 9
shows, in addition to the results (rom the previous study, the comparison of
X-ray results with the Lamd mode and the Symode results from the current
study. One can sce from (his figure that W ps estimated from both the Lamé
mode and the S, mode methods fall within the range given by X-ray results
on the surfaces and mid-plane. The extimates for Wyyand Wy pare not bad

either, even though they e not alwayvs within the X-ray limits,
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SUNNMALY AND CONCLUSION

We have shown in this paper that the Tame mode pr~opel‘ties can be
utilized to determine texture in plates (sheets) of cubic ;’3U]ymvystalline
aggregates, In Dl"inciplo, this method has the advantage of requiring relative
rather than ;1bh‘Oluto measwrements in the dotermination of Wioo and being
not sensitive Lo the measurcimont vrror or the error in isotropic moduli. |
Experimental results on the pure Al samples have shown that estimates by
the Lam¢é mode technique are in vood agreement with estimates by the X-ray
diffraction method. On the othey nine alloy samples, we have found that the
results from the conventionul (eehnigques are consistent with those from the
Lamé mode technique, Howewver, for the six samples on which we have

‘neutron diffraction data, ultrasonic results fop W oo are signiﬁcantly
different from those ohtained by (he dilfraction method. Further work is

needed to understand this disagpeement.
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Table I, Elastic constants of cubic materials tin GPa)

................................................................................................................

¢ Cro Cry ¢y s 'y o
Al 108.0 02,0 283 1202 600801 26,040, 1 -10.8:+0.2
Cu 169.0 1220 76030 200797 106149 47.3:47.3 98,7449
Fe 229.0 B30 LD s o [ 120447 80,2472 -132.1£0.9

R L L L L L L T Ry

Table I, rror in determimation of Wy, by the
conventional ultrasonic technigues

................................................................................................................

error source error mode Al Cu IFe
Velocity 0.0056 mmius S, 0.00:1 0.0014 0.0009
Velocity 0,005 mm‘us S 0.001 0,0003 0.0002
[sotropic moduh b S 0.015 0.003 0,004
Isotropic moduli 1 = 00015 0.0003 (,0003
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GENERAL SUMMARY AND CONCLUSIONS

In Part I of this dissertation, relations between elastic constants and
texture parameters for hexagonal crystallites have been developed., These
relations are the bridge between texture and anisotropy. Ultrasonic
measurements determine the material anisotropy which implies texture
through these relations. The relations are relatively simple: the elastic
constants are linear functions of igotropic moduli and texture parameters
(W mn for ! up to 4). With these relations, ultrasonic characterization of
texture of polycrystalline aggregates of hexagonal crystallites becomes
possible.

In Part II, the influence of the material anisotropy on the dispersion
characteristics of guided plate waves has been investigated and discussed.
This part provides a theoretical foundation for wave propagation analysis in
anisotropic plates. Included are analytical expressions for dispersion
equations along with a few analytical solutions for some dispersion
characteristics. Through some numerical examples with different degrees
of anisotropy, many interesting features associated with wave propagation in
anisotropic plates have been explored. The analytical equations presented in
this part have been frequently used in the rest of the dissertation.

In Part III, two pulse propagation models for dispersive waves have
been analyzed. Using these models, some important dispersion
characteristics can be obtained without going through complicated Fourier
analysis. Comparisons have been made between the predictions by‘l;he
models and the experimental waveforms obtained using several plate modes
with the EMATSs and the conventional piezoelectric transducers. It is found
that one of the two models is favorable in our study and this model is used in
Part V as a tool in the analysis.

In Parts IV and V, the effects of dispersion on the texture
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H characterization have been studied. Thesé effects had long been suspected to
play importaht roles in texture measurements but were not studied |
quantitatively. With the development of the analytical equations and models
in Parts II and I1I, it is now possible to make in-depth investigations.

Part IV has shown how to obtain long wavelength limits of the S, wave
from the finite wavelength measurements. Two available approximate
methods have been evaluated for some representative texture. Through the
evaluation process, the importance of dispersion correction has been
demonstréteu and the limit of the conventional Sy mode technique has been
established. The dispersion studied in this part is under the assumption that
the phase velocities of the finite wavelength S; mode are correctly measured.

Part V has studied the influence of dispersiori on a popular but
approximate measurement technique. It analyzes one of the commonly -
employed velocity measurement methods: the zéro-crossing measurement
method in which the phase velocity of a propagating Wave is calculated from
the variation of the time‘delay of a zerp-crossing of a particular cycle within a
pulse as the transducer separation distance changes. This method is
rigorously correct only for nondispersive waves. By using one of the pulse
propagation models presented in Part I, it has been shown that the
measurement errors, which are introduced by treéting the weakly dispersive
‘waves as nondispersive waves, do not really influence significantly the
accuracy of the estimates of ODCs, providing that the plate thickness is less
than 4 mm and a linear regression approach is used in the velocity
calculations.

Part VI has introduced the newly proposed Lamé mode technique.

This technique utilizes the unique features of a special point, the Lamé point,
on the dispersion curves of the SH, and Sy modes. In particular, texture free
plates always have such a point, at which the dispersion curves of the two
modes touch each other tangentially. When texture is present, the

dispersion curves split or cross over in the vicinity of the Lamé point. The
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amount of this splitting or cross over is related to the texture parameters,
and a quantitative relation has been developed using the perturbation
method. Numerical evaluation of the accuracy of the perturbation formula
has also been carried out and the results of the evaluation are satisfactory.

Part VII has extended the conventional ultrasonic techniques to the
texture ‘chafécterization of hexagonal materials. It also includes the theory
and applications of a newly proposed SH, mode technique. The texture of two
hexagonal samples has been measured using both the nondestructive
ultrasonic method and the destructive neutron diffraction method. Values of
the ODCs from these two methods have been compared and encouraging
results have been demonstrated.  However, some disagreements still exist
between the predictions by the ultrasonic and neutron diffraction
measurements, |

~ Part VIII has reported experimental results on ten Al samples using
the conventional Sy mode technique and the Lamé mode technique proposed
in Part VI. Although the théory presented in Part VI indicates that the
Lamé mode technique predictions of the ODCs should be better than the
conventional ones, it has been found that the results from the Lamé mode
technique do not have a good correlation with the neutron diffraction results
for Wygo for the Al alloys. They are, Liowever, consistent with the results of
the conventional techniques. In spite of this discrepancy, relative good
agreements on the ODCs have been found for the results from the ultrasonic
measurements and the X-ray diffraction measurements on a pure Al
sample. This point has not been clearly understood. Further work is needed
before this technique can be widely used.

Although the work presented in this dissertation was motivated by the
“ultrasonic characterization of texture of polycrystalline aggregates of cubic
and hexagonal crystallites, many of the equations, analysis, and discussions
can be readily applied to characterization of other materials such as texture,

elastic anisotropy and moduli of composite materials. The dispersion
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equations and Rayleigh wave velocity calculations presented in Part II can be
employed in the study of wave propagatiOn in many anisotropic plates. The
pulse propagation models analyzed in Part III are applicable to any types of
dispersion, not just limited to that of textured plate waves. The analysis
method presevnted in Part V can be similarly adopted to any zero-crossing

- velocity measurement system when dealing with pulses of dispersive waves.
The principles and methods of using orientation distribution function to
‘computé the effective elastic constants of the aggregates of anisctropic
crystallites can also be used in multi-phased materials, including
composites. |

In addition to the work included in this dissertation, there are still
‘many interesting problems left unsolved in the area of ultrasonic
characterization of texture. These problems can generally be divided into
three categories: (a) texture description and formability analysis; (b)
ultrasonic techniques and measurement methods; and (c¢) the relations
between texture parameters and elastic constants, |

In the first category, there is an urgent need for quantitative studies on
the influence of alloying elements or second phase materials within the
polycrystalline aggregates on the determination of the texture of the
aggregates, since most of industrial materials are not pure or single phased.
In adc\lkition, more works are needed to understand the relations between
texturé parameters (an elastic property) and the formability (a plastic
property) of cubic and hexagonal polycrystalline aggregates.

In the second category, better understanding and applications of the
Lamé mode technique are important. Application of this technique to other
cubic and hexagonal materials may also be of interest to see if similar
discrepancy as shown in Part VIII remains. Other ultrasonic techniques
may also need to be developed, particularly for the hexagonal materials. In
the area of signal processing of dispersive waves, a solution is needed to

determine the correct multiple of 2x in the phase deconvolution computation.
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The relations between elastic constants and texture parameters
established in some literature and in this dissértation are approximate ones.
The approximations are made to make the development of analytical
relations possible. These relations are correct to the first order of
approximation. It may be the time to develop and evaluate some
sophisticated methods such as the energy method [3] through numerical |
analysis to improve the existing relations. ‘ \

It would certainly be of future interest to apply the methodology
developed for the texture characterization of polycrystalline aggregates to

composite materials as they become more and more important these days.
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APPENDIX, CALCULATION OF L.ONG WAVELENGTH
LIMIT OF THE Sy MODE USING FOURIER PHASE METHOD

A time signal detected as an ultrasonic pulse arrives at a specific
location can be expressed as

f(t)::f A(w) expljwt-kx)] dw (A1)

where A(w) is a function related to the bandwidth of the signal, and k, the
wave number, 1s a function of frequency w for dispersive waves.

The Fourier transform of this signal is then

F(@) = Aw) oxp [-j ki®)x] = M(w) oxp [jd(w)] (A.2)
where M(w) and ®(w) are the magnitude and phase of the Fourier transform
respectively, and A(w) need not be a real function,

If two signals are obtained at two different locations x| and x, with
respect to a common time frame, then the division of the Fourier transforms
of these two signals becomes

Ffw) _ Adw) exp [+ k(w)xg] _ Mgw) exp [jdy(w)]

Ffw)  Ayw) exp [ k(wxid  Myw) exp [jd(w)]
Thus, the phase difference, Ad(w)=®yw)-d(w) of the Fourier transforms of
the two signals is

AD(w) = -k(w) (x9-x1) or AD(w) = -k(w) Ax . (A4)

(A.3)

Often the two signals are not recorded with respect to the same time frame
(the trigger delays are different), In this case, Eq. (A.4) can be modified as
AD(w) = w At - k(w) Ax (A.5)
where At=tqt,, t; and t are trigger delays of signals at x, and x, respectivoly.
When estimating the phase difference A® from experimental data,
there is always an ambiguity of a multiple of 2r. In other words, the true
phase difference is the computed phase difference, A®,(w), plus 2nx, where n

is an integer. Thus Eq. (A.5) can be rewritten as
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AD() + 201 = 0 At « k(w) Ax (A.6)

[or signals generated by an BMA'' system, n can ofton he detormined
from the raw received data, When tho EMA'T systom is tuned for maximum
officioncy, the waves oxcitod by the EMATs have a poriod that is very closo to
the EMAT period Dj {.e., the wave number'at the peak froquency f,, which
corresponds to the frequency of peak power spectrum, should be closo to 2r/D,
Using this principle, one can determine n as the nearest integor to the
quantity an, where

an = fpoakAt - AX/D « ADo(fponk)/2m, (A7)

Once the n is determined, the dispersion curve in the operation area

can be obtained as

Ax
The resolution of the power spectrum Af is governed by the sampling

frequency f, and number of sampling points Ni Af=f/N. Typical sampling
froquency and sampling points in our study are 10 MHz and 1024 points.
Thus Af=0,01 MHz, Often a bettor resolution is required to compute the ..
To do this, a parabola is fitted to the three points that have the highost
magnitudes, fyaq 18 then the frequency where the maximum of the parabola
oceurs,

To find the wave number kyqq =k(f, ), AD(E

'
determined first. This is achieved by fitting a second order polynomial to

sonk ) Needs to be

A® () using the magnitude of the averaged power spectrum as the
weighting function, Ad(f,,,k) can be readily obtained once the polynomial
equation is established, This Ad(f,,,) should be used in liq. (A.7) to
determine the quantity an and the nearest integer n, Then kg can be
calculated using Eq. (A.8).

Occasionally, due to the filtering offects of various electronic
components, which pulls the peak power spectrum away from the point 27/D,
the integer n determined from Eq, (A.7) is still off by one. In other words, if

wo denote the integer obtained from [q. (A.7) as ng, the true n can be ny+1, ny,
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or ng-1. The kp,, culeulated from g, (A.8) thon have throo possibilities,
denotod us k,, ko, and k.. 'This ambiguity can be rosolved by using the
following method. |

Most textured materials are woakly anisotropic. Bocuuse of this, the
dispersion characteristics of a textured plate or sheet are close to that of an
isotropic one, Using the approximate isotropic dispersion relation given in
Eq. (6) of Part V, frequencies corresponding to k, ko, and k. can be computod
a8 f,.fo and f.. Comparing these froquencies to f,,, obtained earlier, and
under the assumption that the textured response should be close to the
isotropic response, one of the three should be very close to fi,,,. The correct
choice of n should be the one corresponding to this frequency,

After the value n is selected, k bocomes known and the phase velocity of
the peak frequency i8 V , =2pfeuk/Kpeak - Dispersion correction can now be
performed using the Thompson's method described in Part 1V and the ratio
Viim Vg, can be determined for lczk}muk. The long wavelength limit of the S

mode becomes V)i = Vi (Viim Vg

poak’









