

MASTER

COO-4442-2

COMPARATIVE ANALYSIS OF HYDROGEN
FIRE AND EXPLOSION INCIDENTS

Quarterly Report No. 2
for Period December 1, 1977 - February 28, 1978

Robert G. Zalosh
Thomas P Short

Factory Mutual Research Corporation
Factory Mutual System
Norwood, Massachusetts 02062

FMRC J.I. 4A7N0.RG
RC78-T-18

— NOTICE —
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

March 1978

Prepared For
DIVISION OF SAFETY, STANDARDS, AND COMPLIANCE
DIVISION OF OPERATIONAL AND ENVIRONMENTAL SAFETY
UNITED STATES DEPARTMENT OF ENERGY
WASHINGTON, D. C 20545
UNDER CONTRACT NO. EE-77-C-02-4442

8P
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ABSTRACT

Additional hydrogen incident reports compiled during this quarter have increased the size of the computerized data base to a current total of 280 incidents. Listings of 165 incidents that have occurred in industrial and transportation operations since 1968 are presented here. Sample case histories in six different cause categories are provided together with a discussion of common safety problems contributing to these incidents. Some of these problems are inadequate detection measures for hydrogen leaks and fires and ineffective purging with inert gas.

A preliminary comparison of losses due to natural gas fires/explosions and hydrogen incidents indicates that hydrogen explosions have been, on the average, four-to-six times as damaging as natural gas explosion. Some tentative explanations for this result are presented but await confirmation from a more sophisticated statistical analysis.

FACTORY MUTUAL RESEARCH CORPORATION

4A7NO.RG

FOREWORD

This report describes work performed under Department of Energy, Contract No. EE-77-C-02-4442 during the three-month period, December 1, 1977 to February 28, 1977. The overall objectives of the study are: 1) to conduct a comparative evaluation of the safety records of hydrogen and natural gas; 2) to identify hydrogen safety aspects requiring further research or standard/code modification; and 3) to quantitatively assess the relative hazards of alternative modes of hydrogen storage, transport, utilization, and disposal.

In the first quarterly report, available sources of hydrogen and natural gas accident data were described, as well as statistics on hydrogen and natural gas production and use.

In this second quarterly report, a tabulation of hydrogen incidents is discussed in terms of generic types of accidents. A brief comparison of property damage from hydrogen and natural gas incidents is also presented. Future reports will provide a more detailed comparison and analysis of the hydrogen losses.

FACTORY MUTUAL RESEARCH CORPORATION

4A7NO.RG

TABLE OF CONTENTS

<u>Section</u>	<u>Title</u>	<u>Page</u>
ABSTRACT		i
FOREWORD		ii
I	INCIDENT REPORT COMPILATION STATUS	1
II	GENERIC TYPES OF INDUSTRIAL HYDROGEN ACCIDENTS	4
	2.1 Undetected Leak Incidents	5
	2.2 Hydrogen-Oxygen Off-Gas Explosions	7
	2.3 Piping And Vessel Rupture Incidents	8
	2.4 Inadequate Inert Gas Purge Incidents	10
	2.5 Vent And Exhaust System Incidents	11
	2.6 Hydrogen-Chlorine Incidents	11
	2.7 Transportation Incidents	13
III	PRELIMINARY COMPARISON OF HYDROGEN AND NATURAL GAS INCIDENTS	14
REFERENCES		17
APPENDIX A	Tables II and III	19

LIST OF TABLES

<u>No.</u>	<u>Title</u>	<u>Page</u>
I	Hydrogen Loss Reports Compiled And Entered In Computer Data Bank	2
II	Industrial Hydrogen Incidents	21
III	Incidents Involving Hydrogen Transport	31
IV	Hydrogen And Natural Gas Losses For The Period 1971-1976	15

INCIDENT REPORT COMPILATION STATUS

Additional hydrogen accident reports have been collected and report forms completed during the period covered by this Progress Report. Currently, there are 280 report forms completed and entered in the computer data bank. A listing of the sources for these loss reports and the periods covered is given in Table I. Approximately half of the reports have been obtained from the Factory Mutual Loss Files for the period 1966-77.

Besides the sources listed in Table I, many other organizations have reports of hydrogen fires and explosions. Our efforts to obtain additional loss reports from these other organizations have so far been unsuccessful. The reasons are: 1) it is difficult to identify and extract hydrogen reports in a large data bank of losses; and 2) many companies regard their accident/loss reports as confidential information. We have attempted to deal with the confidentiality problem by requesting anonymous reports not containing any proprietary information. Nevertheless, the response has been discouraging.

As an example of the response to our inquiries, consider the results of our survey of industrial hydrogen users. Forty four requests for hydrogen accident data were sent to ammonia and methanol manufacturers, edible oil hydrogenation plants, iron ore reduction plants, and tungsten and molybdenum processors. Only nine replies (20-percent response) have been received so far containing a total of four incident reports.

One problem with the set of reports we have obtained so far (Table I) is that it is difficult to estimate what fraction they represent of the total industrial hydrogen use population. Most of the reports were submitted either voluntarily (API and MCA reports) or for an insurance claim exceeding the deductible value of the policy (FM and OIA reports). It is clear they are only a small, unknown fraction of all the industrial hydrogen incidents. Unless we can somehow estimate the relative size of our sample, it will be impossible to estimate an absolute occurrence frequency for hydrogen incidents. In order to make a meaningful comparison with natural gas incidents, only reports from the same sample population subset can be used. This approach is discussed in Section III of this report.

FACTORY MUTUAL RESEARCH CORPORATION

4A7NO.RG

TABLE I
HYDROGEN LOSS REPORTS COMPILED AND ENTERED IN COMPUTER DATA BANK

<u>Source</u>	<u>Number of Reports</u>	<u>Period Covered</u>
Factory Mutual Loss Files	147	1966 - 77
AEC - Nuclear Regulatory Commission	40	1962-66, 70-76
American Petroleum Institute	31	1973 - 76
Department of Transportation - OHM	25	1971 - 75
British Fire Protection Association	12	1965 - 74
Oil Insurance Association	10	no dates
Miscellaneous*	<u>15</u>	scattered
Total	280	

*Miscellaneous sources include case histories of major petrochemical plant fires and explosions published by the National Fire Protection Association, Manufacturing Chemists Association, the American Institute of Chemical Engineers, and insurance companies. In addition, four reports were received in response to our mail survey.

FACTORY MUTUAL RESEARCH CORPORATION

4A7N0.RG

The 280 reports indicated in Table I do provide enough information to perform an engineering analysis of the causes and effects of hydrogen fires and explosions. A preliminary analysis based on 173 incidents in the period 1968-1977 is presented in Section II. The analysis will be updated in future reports as computerized tabulations of our completed data bank become available.

II

GENERIC TYPES OF INDUSTRIAL HYDROGEN ACCIDENTS

Table II* contains a chronological listing of 145 hydrogen fires and explosions that have occurred in industrial occupancies since 1968. The listing for each incident includes the type of accident, i.e., fire or explosion, and oxidant involved, the type of plant, the ignition source, the extent of damage, and a comment on the cause of the incident. Although the listing is not complete, Table II is a representative sampling of hydrogen accident experience in industrial operations.

The accident data in Table II provide an indication of the relative fire and explosion hazards of hydrogen. Of the 145 incidents in Table II, 84 (58%) were explosions, 53 (37%) were fires, and the remaining 8 (5%) were either combined fire-explosions or unignited releases due to vessel rupture. Similarly, of the 11 incidents in which the damage exceeded \$1 million, 6 (55%) were explosions, 4 (36%) were fires, and one (9%) was a combined fire-explosion. The relative severity of the hydrogen explosion hazard is even more pronounced in terms of injuries. All eight of the multiple injury incidents in Table II were explosions.

The causes of the accidents listed in Table II have been categorized in terms of the reason for the hydrogen release and/or the formation of a flammable mixture. The following seven generic cause categories have been defined:

<u>Category</u>	<u>No. of Incidents</u>
Undetected Leaks	32
Hydrogen-Oxygen Off-Gas Explosions	25
Piping and Pressure Vessel Ruptures	21
Inadequate Inert Gas Purging	12
Vent and Exhaust System Incidents	10
Hydrogen-Chlorine Incidents	10
Other Incidents	<u>35</u>
Total	145

* See Appendix A

The categories: Undetected Leaks, Inadequate Purging, and Hydrogen-Chlorine Incidents have in common the undetected presence of hydrogen (or an oxidant) at a concentration in the flammable regime. The same is true for several of the Vent/Exhaust Incidents and for many "Other Incidents" caused by inadequate ventilation or by an improperly closed or open valve allowing a combustible mixture to form. Altogether, these incidents involving the undetected presence of hydrogen account for more than half of the total number of fires and explosions. Thus, there is a need to develop and/or implement improved hydrogen detection techniques. Further examples of the lack of adequate hydrogen detection are given in the discussion of individual categories.

2.1 UNDETECTED LEAK INCIDENTS

Hydrogen leaks typically originate from valves, flanges, diaphragms, gaskets, and various types of seals and fittings. Usually, the leaks are undetected because of the absence of a continuous hydrogen monitor in the area. When the escaping hydrogen mixes with air or some other oxidant, ignition of the combustible mixture will cause a fire or explosion, depending on the degree of confinement. As an example of hydrogen's propensity to leak without being detected, consider the following synopsis of an explosion at a vegetable oil hydrogenation plant.

Hydrogen was stored at the plant in a 42 1/2-ft (13 m) diameter sphere made of 3/16-in. (4.8 mm) steel. The sphere was partitioned into two hemispheres by a neoprene diaphragm attached around the equator. Hydrogen was stored under the diaphragm while the upper hemisphere contained air. An explosion-proof fan was situated on top of the sphere in order to provide a slight positive pressure on top of the diaphragm.

When the plant was shut down for the Thanksgiving Holiday on November 27, 1974, the fan on top of the hydrogen sphere was also stopped. During plant startup on November 29, a violent explosion occurred in the sphere. The sphere shell was torn into many sections by the explosion and some of the sections were propelled as far as 1,200 ft (366 m). Some of these sections struck flammable liquid storage tanks and cracked the roofs of adjacent buildings. Most of the windows in the surrounding buildings were broken by the blast wave. Fortunately, there were no serious injuries.

A loss investigation indicated that hydrogen had leaked past the diaphragm when the fan was shut down. (The diaphragm had been installed about a year before the explosion as a replacement for another leaky diaphragm.) Ignition of the resulting hydrogen-air mixture was attributed to an electrostatic discharge caused by the motion of the diaphragm when a compressor was started downstream of the sphere. However, another possible ignition source was the "explosion-proof" fan at the top of the sphere. In any event, the explosion could have been avoided either by using an inert gas instead of air across the diaphragm, or by monitoring the hydrogen concentration in the upper hemisphere.

Since a pure hydrogen-air flame is virtually invisible, undetected hydrogen leaks can sometimes lead to undetected or underestimated hydrogen fires. An example of this situation has been reported as Case History No. 7 in the Oil Insurance Association brochure on loss prevention guidelines for Hydro-refining Process Units⁽¹⁾.

The incident occurred at an oil refinery hydrotreater used to desulferize naphtha. A small leak developed in one of the finned tubes of the heater for the naphtha-hydrogen mixture. The leak resulted in a 2-ft long torch flame which was eventually noticed by an employee. Upon discovering the fire, the hydrotreater was shut down by cutting off the flow of naphtha and the flow of fuel to the burners in the heater. The hydrogen flow was maintained in order to cool and sweep the reactor during the shutdown operation.

The torch flame appeared to diminish significantly while only the hydrogen was flowing. However, molten metal dripping from the heater indicated that a much more severe fire was still in progress. The fire was eventually controlled by reducing the hydrogen flow and injecting steam into the heater. Inspection of the damaged heater revealed that the fire had completely melted 12-ft long sections of 32 finned tubes.

The hydrotreater incident illustrates how a hydrogen fire which appears to be "quite small" can actually be only the visible portion of a much larger fire. Observation alone is not a reliable technique for detecting pure hydrogen fires and/or assessing their severity. Potential odorant additives for hydrogen leak detection and illuminants for flame visualization have been suggested⁽²⁾ but the necessary experimental and feasibility studies have not yet been performed.

2.2 HYDROGEN-OXYGEN OFF-GAS EXPLOSIONS

The 25 off-gas explosions listed in Table II refer to incidents involving hydrogen-oxygen mixtures formed in the cooling loop of boiling-water-reactor (BWR) nuclear power plants. The hydrogen and oxygen are generated by the radiolytic decomposition of some of the steam flowing through the reactor. When the steam is condensed, the off-gas is ejected into an off-gas treatment system. Contemporary off-gas treatment usually consists of 1) diluting the stoichiometric hydrogen-oxygen mixture with either steam or air, 2) catalytically recombining the hydrogen and oxygen and removing the resultant moisture, 3) passing the gas through a charcoal bed and/or a delay pipe to reduce the radioactivity level of the noble gases, 4) flowing the gas through a high-efficiency particulate filter to remove radioactive decay products, and 5) venting the gas to the atmosphere through an elevated stack. At some of the older BWR power plants, there are no dilution, recombination, and charcoal adsorber bed components in the off-gas system⁽³⁾.

Explosions have occurred in various components of BWR off-gas systems from the condenser air ejector downstream to the vent stack. Ignition sources have included 1) mechanical sparks from rapidly closing valves, 2) electrostatic discharges in ungrounded particulate filters, 3) sparks from electrical equipment, 4) negligent welding and cutting operations, 5) catalyst particles encountering undiluted mixtures, and 6) lightning strikes near the vent stack. Equipment damage has been minimal in most of the off-gas explosions, probably because the Nuclear Regulatory Commission requires the system upstream of the recombiner to be designed to withstand hydrogen-oxygen explosions.*

Most of the reported injuries in these explosions are due to workers being exposed to radioactive gases released during or before the explosion. Since the gases are usually short-lived radionuclides, contaminated workers have recovered rapidly, i.e., within a day or two. The following narrative is an example of an off-gas explosion involving worker contamination.

*For stoichiometric H_2-O_2 mixtures saturated with water vapor at 100°C, the peak reflected detonation pressure can exceed 30 times the initial pressure⁽⁴⁾.

An explosion in a stack filter house on January 19, 1976⁽⁵⁾ was preceded by anomalously high radiation level readings from a monitor in the vent stack. When two plant employees entered the filter house to check the trouble, they were exposed to a radiation level of 6 mR/hr. Another employee, outfitted with proper protective clothing entered the area a few hours later and observed water on the floor and a mist overhead. He refilled the off-gas loop seals with water and left the filter house. The explosion occurred four hours later.

The off-gas loop seals had been blown because of a back pressure generated by a partially blocked filter in the vent stack. The filter was clogged by water that had bypassed an improperly installed demister. Hydrogen escaping from the blown loop seal accumulated in the filter house and was ignited when a relay activated to isolate the loop seals.

Incidents similar to the filter house explosion have also occurred in other types of industrial plants handling hydrogen. However, the large number of hydrogen explosions in the safety-conscious nuclear power industry is evidence of the need for increased diligence in future industrial uses of hydrogen. Special precautions will be needed in water-splitting hydrogen production and fuel cell plants where stoichiometric proportions of hydrogen and oxygen are situated in close proximity to each other.

2.3 PIPING AND VESSEL RUPTURE INCIDENTS

The 21 piping and vessel rupture incidents listed in Table II were caused by a variety of materials problems including hydrogen embrittlement, stress corrosion, and weld failures. Most of the damage was incurred by ignition of the hydrogen following the rupture. In several cases ignition was due to a furnace flame or some other obvious high temperature source. However, in many other cases, spontaneous autoignitions were reported. An example of at least one spontaneous autoignition is described in the following synopsis of two related pipe rupture incidents at an ammonia plant.

The rupture occurred in a 24-in. (61-cm) synthesis gas line connecting the primary and secondary reformers. The pipe contained hydrogen and carbon monoxide at a pressure of about 400 psi and a temperature of about 930°C. The ruptured section of pipe had a high-temperature alloy steel outer wall, a refractory liner, and a stainless steel interliner. The refractory lining had

been repaired several times before (the latest time was October 1973) because of localized deterioration and hot spots. The repair procedure consisted of cutting a section of pipe, repouring the refractory liner, and patch welding the outer wall.

On January 30, 1974, the 42-in. long welded section of the pipe suddenly blew out. Plant employees heard a rumble and observed a flame above the ruptured pipe. A shower of catalyst pellets from the secondary reformer was also emitted at the rupture site. The hot catalyst ignited several secondary fires in oil deposits in the area.

Before the torch fire at the rupture site could be extinguished, it eroded the refractory lining in the secondary reformer and most of the remaining pipe. Instrumentation in the secondary reformer was damaged as was piping and vessel insulation in the vicinity of the rupture. The expansion loop between the primary and secondary reformers dropped about 1 in. (2.5 cm) and cracks were found in two ells on the loop.

Repairs were completed and the ammonia plant was brought up to production temperature and pressure on February 18. Employees taking readings after startup noticed flame coming from the same synthesis gas line that had just been repaired. When the reformers were shut down and the flame extinguished, a 10-in. (25-cm) crack was discovered in the inside radius of an ell in the expansion loop. The ell had apparently cracked on startup and allowed synthesis gas to escape and autoignite.

The January 30 pipe rupture was caused by weld failure. The February 18 fracture was apparently caused by excess stress on the ell as a result of the 1-in. displacement of the expansion loop during the first incident. One ironic result of these incidents was plant management's retrospective decision to eliminate the fractured synthesis gas expansion loop because it wasn't necessary in the first place.

An important lesson to be derived from the ammonia plant rupture incidents is the need to carefully engineer and test all repairs and modifications to high pressure process equipment. This lesson was reinforced by the devastating cyclohexane vapor cloud explosion at Flixborough, England in 1974. The Flixborough explosion was caused by the rupture of an improperly designed and installed temporary bypass pipe needed while a reactor was being repaired. ⁽⁶⁾

2.4 INADEQUATE INERT GAS PURGE INCIDENTS

It is common practice to purge pipes and vessels with an inert gas before and after using hydrogen in the equipment. However, if the purging rate or duration or extent of mixing is too low, residual pockets of hydrogen or air will remain in the enclosure. This is particularly dangerous when plant operators are lulled into a false sense of security and are unaware that there is a combustible hydrogen-air mixture in the enclosure. Twelve of the hydrogen fire/explosion incidents in Table II resulted from situations of this nature.

A typical hydrogen-air explosion caused by incomplete purging occurred at a coal-fired power plant in 1976. A 500-megawatt, hydrogen-cooled generator is driven by steam turbines at the power station. During maintenance shutdowns, the hydrogen cooling loop in the generator is purged with carbon dioxide. After CO₂ concentrations are measured with a densitometer to verify the complete removal of hydrogen, the generator is purged with air, and the maintenance is performed.

This purging procedure was used prior to the explosion. The CO₂ reading was reported to be 100-percent CO₂ at the top of the generator. The cooling system was then purged with air and a 1/2-in. (1.3-cm) pipe in the cooling loop was cut to install some new instrumentation. When the pipe was cut, pressurized gas was emitted at the opening. Workers assumed the gas was either carbon dioxide or air and proceeded with the new instrument installation. Unfortunately, there was still at least some hydrogen in the pipe and the rest of the cooling loop. When the welder struck an arc, a flame developed at the pipe opening and flashed back into the generator. This caused a low level explosion within the generator shroud. The explosion damaged ventilation baffle plates and auxiliary equipment in the generator so that it was out of service for 26 days.

This incident illustrates how difficult it is to completely purge hydrogen out of a large, complex piece of equipment. Uniform mixing and dilution is unlikely in all of the partially enclosed spaces, crevices, etc. If a hazardous operation such as welding must be performed with an air atmosphere (instead of inert gas) in the equipment, reliable gas concentration measurements should be obtained at several different locations. In the case of the generator, a direct measurement of hydrogen concentration may well have been more reliable than the 100-percent CO₂ reading on the densitometer. Furthermore, the gas composition should have been determined at the welding site as well as the top of the generator.

Another dangerous purging practice that has led to explosion is the isolation of a portion of a closed hydrogen loop in order to reduce the purge time and volume. Complete isolation usually cannot be assured because of hydrogen's propensity to leak.

2.5 VENT AND EXHAUST SYSTEM INCIDENTS

The 10 vent and exhaust system incidents listed in Table II can be divided into two subcategories. In the first subcategory, the vent/exhaust is designed to operate with diluted hydrogen but an inadequate ventilation rate causes the hydrogen concentration to increase above the lower flammable limit. In the second subcategory, air is inadvertently admitted into a pure hydrogen vent and a combustible mixture is formed.

A typical incident in the inadequate ventilation subcategory might be caused by exhaust fan failure or a clogged or frozen exhaust filter. One clogged/frozen exhaust filter incident in a BWR off-gas stack was described previously. Incidents of this nature can be avoided by monitoring the ventilation rate and the hydrogen concentration in the exhaust.

Incidents in the second subcategory arise when 1) there is a backflow or diffusion of air into the vent, or 2) there is some type of seal failure at the vent entrance, or 3) the hydrogen is not adequately dispersed above the vent outlet. Backflow or diffusion of air can be prevented by using check valves, "flapper"-type discs (ref. 7, p. 371) or molecular seals⁽⁸⁾. Inadequate hydrogen dispersal into the atmosphere is a more difficult problem that has occurred with rupture disc activation as well as with vent stacks. There are several incidents of this type listed in Table III* - Transportation Incidents, and several more were previously identified by Ordin in his review of hydrogen incidents in NASA operations⁽⁹⁾. Ignitions are usually attributed to lightning or local electrostatic discharge.

2.6 HYDROGEN-CHLORINE INCIDENTS

Ten of the hydrogen incidents listed in Table II were associated with the electrolytic manufacture of chlorine. The chlorine is generated by the electrolysis of heated brine, i.e., a sodium chloride water solution. Passage of a low-voltage, high electrical current through the electrolysis cell produces chlorine gas at the anode and sodium at the cathode. In a diaphragm type cell,

* See Appendix A

the sodium immediately reacts with water to yield sodium hydroxide and hydrogen at the cathode, which is coated with a porous asbestos diaphragm. In a mercury amalgam type cell, most of the sodium reacts with mercury at the cathode to form amalgam, which is then decomposed under the influence of water to form sodium hydroxide, mercury, and hydrogen⁽¹⁰⁾.

The chlorine outlet of each cell is connected to a chlorine header pipe which leads to coolers and driers or to further chemical process streams. The hydrogen output from the electrolysis cells goes to a hydrogen header which may lead to a compressor, a drier, or a vent depending upon the end use of the hydrogen. Most of the hydrogen-chlorine fires/explosions are due to hydrogen inadvertently entering the chlorine header for a variety of reasons including a local or momentary reversal of cell polarity. As the chlorine is gradually cooled and liquefied, the concentration of hydrogen increases in the vapor mixture. (The lower flammable limit of hydrogen in chlorine is reported to be 4.1 percent⁽¹¹⁾, i.e., approximately the same as it is in air or oxygen.) Thus, most of the ignitions have occurred in the chlorine processing equipment downstream of the electrolysis cells.

Consider the following example of an explosion caused by an increased hydrogen concentration in the chlorine gas stream. Hydrogen and chlorine concentrations at this plant are measured once each shift. On the morning of the explosion, the hydrogen concentration in the chlorine header leaving the cell bank was 0.47 percent. After passing through the chlorine coolers and liquid/gas separators, the hydrogen concentration of the gas streams increased to 2.5-3.2 percent H₂, i.e., 61-78 percent of the lower flammable limit.

About 5 hr after those measurements were made, the d.c. power to the electrolysis cell bank was shut down because of intermittent power supply problems. At that time a low order explosion was heard from the chlorine drier area of the plant. Thirty seconds later, chlorine gas began escaping from the chlorine header pumps, and another explosion occurred in the electrolysis cell room. The first explosion blew off the steel plate cover on the drier by shearing off the 3/8-in. (0.95-cm) bolts on the cover. The second explosion blew off the heads of two electrolysis cells and broke 108 glass connections between the chlorine header and the cell bank. There was considerable damage to other chlorine processing equipment.

A loss investigation indicated that the hydrogen concentration in the chlorine header probably increased when d.c. power to the cells was cut off without completely shutting off the chlorine vacuum pumps. Thus, the vacuum pumps probably drew additional hydrogen into the chlorine header, and increased the hydrogen concentration further downstream where ignition occurred.

Although most of the incidents seem to occur on the chlorine side of the cell bank, at least one analogous incident occurred on the hydrogen side of the cells, at a plant where poorly designed safety interlocks allowed the hydrogen compressor to operate after d.c. power to the cells was automatically shut down. This created a sufficient vacuum in the hydrogen header to draw residual chlorine in from the cell bank. It also broke the water seal on the hydrogen compressor feed, thus allowing air to enter. The hydrogen-chlorine-air mixture exploded in the hydrogen header causing considerable damage to the header and the cell connections.

The electrolytic chlorine manufacturing process is similar in many respects to water electrolysis hydrogen production processes. Perhaps, water electrolysis plant designers will benefit from these experiences and provide more fail-safe plant shutdown procedures.

2.7 TRANSPORTATION INCIDENTS

A separate listing (Table III) of hydrogen incidents during transportation has been prepared because many of those incidents occurred outside of industrial plants. One noticeable difference between the transportation incident compilation and the industrial plant incidents (Table II) is that most of the transportation incidents involve liquid hydrogen, probably because most "merchant hydrogen" is transported in liquid form in cryogenic tank trucks.

Finally, an encouraging aspect of the transportation incident compilation is that 71 percent of the hydrogen releases did not lead to an ignition. Ordin has observed a similar trend in accidental outdoor hydrogen releases during NASA operations⁽⁹⁾. The relatively few ignitions may be due to either a lack of ignition sources or to the rapid dispersal of hydrogen into the atmosphere. In any event, the accident data provide further incentive to transport, transfer and store hydrogen outdoors away from occupied areas.

III

PRELIMINARY COMPARISON OF HYDROGEN AND NATURAL GAS INCIDENTS

Natural gas accident data are being collected to provide a benchmark for interpreting the hydrogen accident data. The comparison is being conducted so as to identify any new safety problems that may arise when hydrogen begins to supplement the dwindling natural gas supply. Since the first supplements/substitutions are anticipated in industrial uses of natural gas, the comparison will emphasize the relative damage reported for incidents in industrial operations.

If the comparison is to be fair and meaningful, the accident data should be restricted to reports from the same sources. The only common source available for both hydrogen and natural gas incidents is the Factory Mutual Loss Files. Therefore, the preliminary comparison presented in Table IV is based on loss reports at FM insured plants during the period 1971-76.

The monetary loss figures in Table IV are original estimates of property damage plus business interruption. In most cases, the property damage was much larger than the business interruption loss. The losses also refer only to the portions of the plant underwritten by Factory Mutual, and in some cases there was additional damage incurred by other underwriters.

The average and median losses listed in Table IV provide an interesting measure of the relative damage produced in hydrogen and natural gas fires and explosions. The average and median losses for hydrogen fires are only slightly higher (14 percent and 22 percent respectively) than the corresponding values for natural gas fires. However, the average and median losses for hydrogen explosions are 5.9 times and 4.0 times, respectively, the corresponding values for natural gas explosions. Thus, hydrogen explosions can be expected, on the average, to produce much more damage than natural gas explosions.

There are at least two possible explanations for the more damaging effects of hydrogen explosions. One explanation is that the overpressures and resulting brisance produced in most hydrogen explosions in industrial operations are greater than those produced in equivalent natural gas explosions. Hord⁽¹²⁾ has reached this conclusion for explosions in a confined environment by comparing the relevant flammability/explosivity properties (burning velocity and

TABLE IV
HYDROGEN AND NATURAL GAS LOSSES FOR THE PERIOD 1971-1976

<u>Gas</u>	<u>Fire/Exp</u>	<u>Number of Losses</u>	<u>Median Loss (\$ Thousand)</u>	<u>Average Loss (\$ Thousand)</u>
Hydrogen	Fire	22	30	124
Hydrogen	Explosions	29*	80	297
Natural Gas [†]	Fire	26**	24.5	109
Natural Gas [†]	Explosion	100	20	50

* Includes three large losses for a total of \$6.67 million

**Includes one large loss for \$1.185 million

[†] The natural gas losses refer only to industrial occupancies and do not include losses at commercial, institutional, and residential properties.

detonable limits) of hydrogen and methane*. This is also the conclusion one would reach by comparing the explosion venting requirements for the two gases in order to avoid structural damage^(13,14).

Another possible explanation for the larger losses incurred by hydrogen explosions is that there may be more valuable equipment, property, etc., at risk in industrial occupancies where hydrogen is used than in the occupancies handling natural gas. The basis for this suspicion is that many hydrogen explosions have occurred in large chemical plants which usually have a larger insured value than most other types of industrial plants. If the insured value of the equipment is high, then an explosion with a small or moderate brisance can produce high property damage and business interruption.

The authors' preliminary evaluation is that the damage differences are due more to the explosive nature of hydrogen than to differences in insured value between chemical plants and other industrial plants. Equipment at chemical plants is usually designed to withstand a more severe environment than in other plants and, consequently, should suffer less physical damage for an explosion of given severity.

Similar explanations can be hypothesized for the other results presented in Table IV. However, before presenting these debatable explanations, it would be helpful to have a more sophisticated statistical comparison of the hydrogen and natural gas losses. This analysis will be conducted in the coming months in the form of a multiple regression analysis of loss severity as a function of fuel type, occupancy category, insured value, and any other pertinent parameter likely to have a significant effect on the reported losses.

*Hord also compared the explosive potential of hydrogen and methane on the basis of theoretical TNT equivalent, which is a measure of the energy potential of an ideal blast wave. On the basis of theoretical TNT equivalent per unit volume or per unit of energy stored, he observes that methane has the greater explosive potential.⁽¹²⁾

REFERENCES

1. Oil Insurance Association, "Hydrorefining Process Units: Loss Causes and Guidelines for Loss Prevention," 1974.
2. Pangborn, J., Scott, M., and Sharer, O., "Technical Prospects for Commercial and Residential Distribution and Utilization of Hydrogen," Int. Journal of Hydrogen Energy, Vol 2, pp 431-475, 1977.
3. Schultz, R.J. and Schmitt, R.C., "Safety Evaluation of BWR Off-Gas Treatment Systems," Proceedings of 13th AEC Air Cleaning Conference, CONF-740807, Vol 1, pp 125-148, 1974.
4. Adler, L.B., Hobaica, E.C. and Luker, J.A., "The Effect of External Factors on the Formation of Detonation in Saturated Knallgas-Steam Mixtures," Combustion and Flame, Vol 3, pp 481-493, 1959.
5. Nuclear Safety, Vol 17, No 3, p 378, 1976.
6. Kletz, T.A., "The Flixborough Cyclohexane Disaster," A.I. Chem. E. Loss Prevention Symposium, Vol 9, pp 106-113, 1976.
7. Chelton, D.B., "Safety on the Use of Liquid Hydrogen," Technology and Uses of Liquid Hydrogen, R.B. Scott, editor, Pergamon Press, 1964.
8. Lapin, A., "Hydrogen Vent Flare Stack Performance," Paper C-5, Advances on Cryogenic Engineering, Vol 12, 1967.
9. Ordin, P.M., "Review of Hydrogen Accidents and Incidents in NASA Operations," NASA TM X-7156S, 1974.
10. "Electrolytic Chlorine Plants," Factory Mutual Loss Prevention Data Sheet 7-34, 1974, (available from Factory Mutual Resource Information Center, Norwood, Mass).
11. Zabetakis, M.G., "Flammability Characteristics of Combustible Gases and Vapors," p 89, Bureau of Mines Bulletin 627, 1965.
12. Hord, J., "Is Hydrogen Safe?," National Bureau of Standards Technical Note 690, 1976.
13. Yao, C., deRis, J., Bajpai, S.N., Buckley, J.L., "Evaluation of Protection from Explosion Overpressure in AEC Gloveboxes," FMRC Report RC69-T-23 (Serial No. 16215.1), 1969.
14. National Fire Protection Association, "Guide for Explosion Venting-1974," NFPA 68, 1974.

APPENDIX A

TABLES II AND III

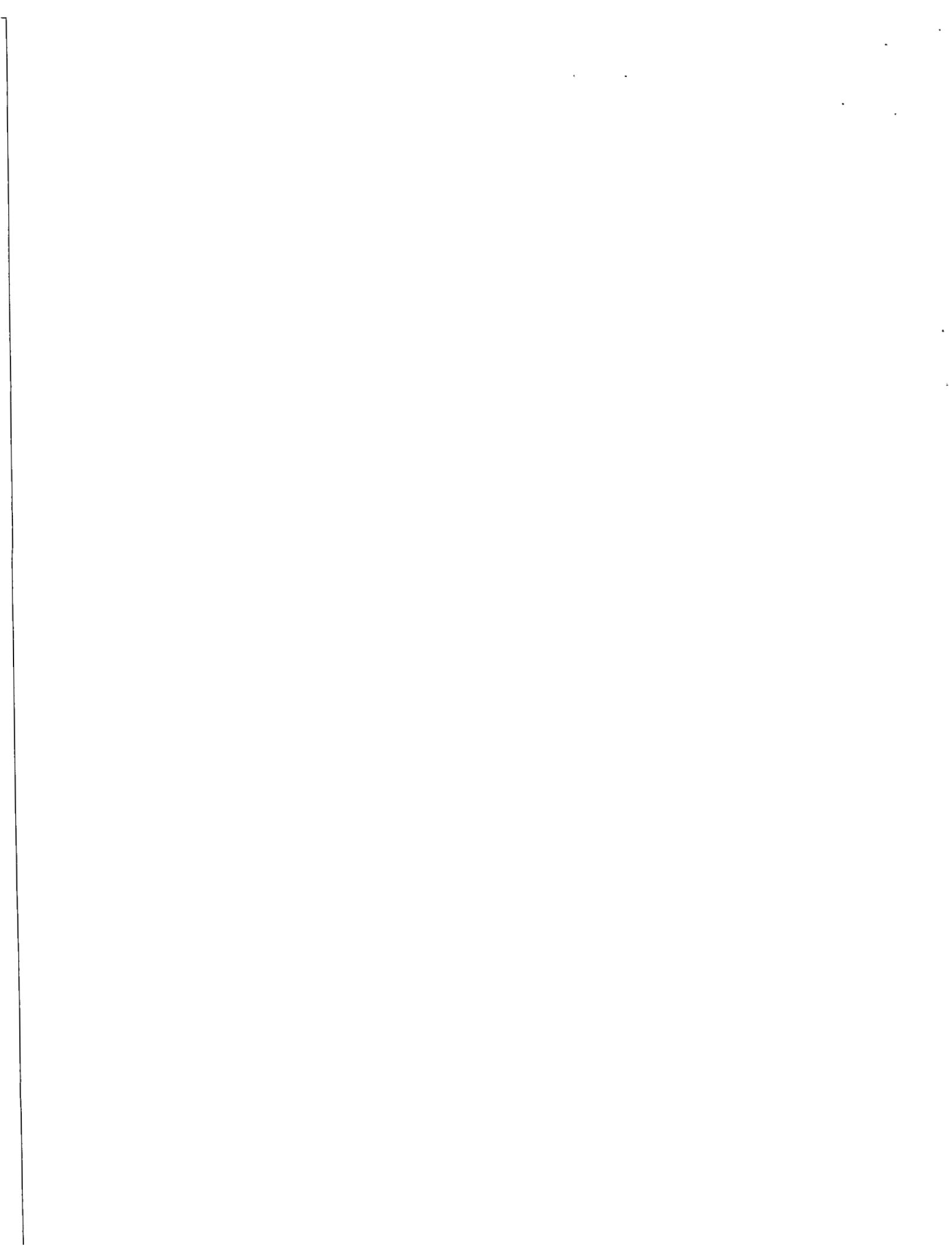


TABLE II
INDUSTRIAL HYDROGEN INCIDENTS

Date	Type of Accident	Mode of Operation	Ignition Source	No. of Injuries	Property Damage (\$1000)	Comments
1-11-68	GH ₂ and air exploded during shutdown of sodium chloride electrolysis system	Electrolysis of sodium chloride	Grounding electrode	0	195	During shutdown feed lines back-filled with H ₂ and air and ignited
1-15-68	Excess GH ₂ * in system resulted in runaway reaction which resulted in vessel rupture and fire	Hydrogenation process-ethylene purification	Spontaneous autoignition	0	5	Reduction of flow of impure ethylene caused vessel rupture by extreme heat permitting air into vessel which spontaneously ignited
1-23-68	Venting Cl ₂ and H ₂ auto-ignited when H ₂ conc. was allowed to exceed 5%; mixture ignited when mixed w/air	Electrolytic chlorine process chlorine and caustic mfg.	Spontaneous autoignition	0	6	H ₂ monitors were out of calibration allowing H ₂ to exceed 5%
1-30-68	An explosion occurred in scrubber tank due to an increase of H ₂ in the entrainment separator	Electronic-silicon crystal growing reactor	Unknown	0	5	Scrubber shutdown w/out exhaust fan shutdown caused increase of H ₂ in entrainment separator
2-7-68	Explosion in special atmosphere annealing furnace due to insufficient purging	Metal processing, annealing of wire	Spontaneous autoignition	0	3.6	Excess GH ₂ resulted from insufficient purge with monogas (96% N ₂ and 4% CO)
2-14-68	GH ₂ fire	H ₂ generation	Pressure switch	0	39	GH ₂ escaped from leaking Bourdon valve
3-14-68	GH ₂ explosion and fire	Chemical plant cryogenic separation of H ₂ feed gas	Static electric discharge	0	1900	Cracks in aluminum welds allowed H ₂ to collect in cold box
8-14-68	Explosion occurred in special atmosphere retorts used to heat treat jet engines	Heat treating of jet engines	Unknown	0	4	Retort was not purged with nitrogen before introducing H ₂
9-13-68	Explosion occurred in furnace used in ore reduction	Tungsten oxide ore refinery	Hot spot on ore	1	7	H ₂ had not been vented completely
9-20-68	Arcing from high capacity generator through H ₂ feed line caused melting of line and fire	Electric power, equipment mfg.	Electrical spark	0	159	Insulation failure in starter coil caused arcing
10-4-68	H ₂ leaked from a valve resulting in a fire; fire melted solder connections which caused H ₂ at 90 psi to release adding to fire	Electronics components mfg - electronic tubes	Unknown	0	5.5	Valves were reportedly closed
10-31-68	GH ₂ leaked into an area containing electrical equipment which resulted in a fire	Zirconium metal mfg	Electrical equipment	0	8	Leakage of GH ₂ was allowed when exhaust system failed (H ₂ released in zirconium mfg)

* GH₂ denotes hydrogen stored and processed in the gaseous state.

TABLE II (Continued)

Date	Type of Accident	Mode of Operation	Ignition Source	No. of Injuries	Property Damage (\$1000)	Comments
1-16-69	Explosion occurred when GH ₂ did not vent properly	Chem plant-sodium chlorate prod	Unknown	0	4	GH ₂ is vented from a vapor space when given off in process; high H ₂ conc. exploded
1-31-69	GH ₂ ignited when contacted air while venting	Chemical plant ammonia mfg	Spontaneous auto-ignited	0	6	GH ₂ product of ammonia mfg
2-14-69	Fire occurred when GH ₂ leaking from synthesis converter ignited	Chemical plant ammonia mfg	Arc from welder	0	175	Draped arc welding handle shifted causing arc which ignited gas
7-13-69	GH ₂ released from leak in reformer tube ignited causing fire	Chemical plant ammonia mfg	Natural gas burners (used as indirect heaters)	0	80	Occurred during a plant shutdown
12-21-69	GH ₂ entered duct and was ignited by scrubber flame resulting in fire	Epitaxial chamber semiconductor plant	Flame from scrubber	0	50	Exhaust fan shutdown caused H ₂ accumulation
4-12-70	GH ₂ entered chlorine header igniting spontaneously causing explosion	Chemical plant chlorine production using mercury amalgam	Spontaneous	0	25	Did not vent properly, H ₂ analyzer provided not used
7-8-70	GH ₂ ignited with explosion resulting	Chemical plant cadmiumsulfate mfg	Unknown	0	5	GH ₂ is released during dissolving process
9-22-70	GH ₂ given off by batteries exploded	Battery mfg	Electrical arc	0	3	Filters of exhaust fan clogged resulting in GH ₂ buildup
11-5-70	A quick H ₂ purge seemed to stabilize hydrogenator but explosion occurred	Chemical plant H ₂ generation	Catalytic reaction or static spark			High pressure situation in bottom of hydrogenator; rupture disc relief valve successfully vented explosion
12-27-70	Air mixed with GH ₂ and exploded	Chemical plant H ₂ generation	Metal spark	0	15	Incorrect water sealing procedures resulted in air entering H ₂ holder and metal spark to develop
12-5-70	Excess GH ₂ entered reactor resulting in a runaway reaction w/explosion	Refinery hydrocracker	Runaway reaction	3	27000	Resulting explosion caused widespread damage to refinery and nearby plants
2-10-71	GH ₂ and super heated naphta ignited resulting in fire	Refinery	Hot process line or static spark	0	12500	Although plant was shut down after ignition much of piping became superheated and ruptured
4-13-71	GH ₂ leak developed in diaphragm with fire resulting	Refining oil to solid oil	Heat of reaction or heat produced by H ₂ traveling through orifice	0	5.5	Vacuum transmitter diaphragm leak w/H ₂ released at 300 psi
4-30-71	GH ₂ leaked in off gas system w/fire resulting	Nuclear power plant	Unknown	0		GH ₂ leak due to faulty gasket ignition occurred at leak; GH ₂ produced in reactor
5-26-71	Excessive GH ₂ in absorber resulted in fire	Chemical plant chlorine mfg	Unknown	0	25	

TABLE II (Continued)

Date	Type of Accident	Mode of Operation	Ignition Source	No. of Injuries	Property Damage (\$1000)	Comments
6-19-71	GH ₂ leaked into furnace and exploded when furnace started	Chemical plant H ₂ and Cl ₂ produced then used to form HCl	Furnace	0	14	H ₂ leaked as a result of loss of water seal or ruptured cell
8-10-71	GH ₂ and nitrogen mixture collected in building and exploded	Heat treatment of metals	Furnace	0	41	Faulty purging procedure allowed furnace gas to be released in building
8-12-71	Radiolytic hydrogen and oxygen exploded	Nuclear power plant; BWR	Static charge	0		Improper grounding of filters on off-gas system resulted in charge
9-14-71	GH ₂ line melted with fire resulting	Electronics; capacitor mfg	Arc from shorted power cables	0	7	Copper dust collected on insulators causing short which resulted in arcing
12-21-71	GH ₂ & N ₂ escaped from compressor shaft and caught fire	Chemical plant ammonia mfg	Spontaneous auto-ignition	1	625	Fire spread to involve lubricating and gas and oil lines feeding fire
1971	GH ₂ exploded when line was cut	Nuclear power plant; BWR	Acetylene torch	0		H ₂ off-gas line cut w/acetylene torch prior to purging; GH ₂ produced in BWR
3-15-72	Radiolytic hydrogen and oxygen exploded	Nuclear power plant; BWR	Recombination of radiolytic hydrogen and oxygen	0		GH ₂ produced in BWR, explosion blew rupture diaphragms
3-20-72	Methane mixed w/GH ₂ and air and exploded	Chemical plant ammonia synthesis	Unknown	0	130	Methane valve was not completely closed allowing methane seepage during shutdown
7-13-72	GH ₂ being vented backed up in system and exploded	Chemical plant production of chlorine water	Unknown	0	90	GH ₂ is liberated in process, was not venting fast enough exceeded LEL
8-8-72	GH ₂ and cracked distillate exploded	Oil refinery	Heater fire box	1	1875	Stainless steel tube ruptured releasing GH ₂ and distillate into fire box exploding
8-27-72	GH ₂ leaked resulting in explosion	Chemical plant	Burner flame in preheater	0	200	Tube in desulphurizing preheater leaked, Damage confined to preheater
8-29-72	GH ₂ leaked with fire resulting	H ₂ production	Dissociator heating elements	0	8	Weld in retort chamber ruptured allowing GH ₂ to escape and cause fire
9-8-72	GH ₂ and air mixture in degassifier exploded	Chemical plant sodium chlorate	Improper grounding or arcing in cell	0	15	Negative pressure drew air into degassifier through vent
10-23-72	Oxygen was allowed to mix w/GH ₂ causing explosion	Chemical plant argon purification	Static discharge	0	140	Leak in the oxygen condenser allowed oxygen to enter argon column mixing w/GH ₂
11-30-72	GH ₂ and naphtha leaked into furnace and exploded	Oil refinery	Flames in furnace	0	500	Furnace coil fractured releasing naphtha and GH ₂ into furnace; fire after explosion spread
1972	GH ₂ explosion	Nuclear power plant; BWR	Electric preheater or catalytic action in recombiner	0		Erroneous steam flow indication resulted in reduction of steam flow allowing detonation

TABLE II (Continued)

Date	Type of Accident	Mode of Operation	Ignition Source	No. of Injuries	Property Damage (\$1000)	Comments
1-16-73	GH ₂ leak resulted in explosion	Rare metals refining	Unknown	0	70	GH ₂ leaked from valve filling boiler room and exploding
2-9-73	Synthesis gas (hydrogen & nitrogen) leaked causing explosion	Chemical plant ammonia mfg	Lightning storm	0	30	Synthesis gas leaked from synthesis gas compressor to cooling tower when explosion occurred
6-8-73	GH ₂ explosion	Chemical plant chlorine mfg	Boiler startup	0	10	Malfunctioning pressure relief valve allowed too much GH ₂ to enter boiler
6-12-73	GH ₂ off-gas explosion	Nuclear power plant; BWR	Lightning	0		A direct strike to off-gas ventilation resulted in explosion
8-1-73	GH ₂ & Cl ₂ mixture exploded	Chemical plant H ₂ , Cl ₂ and caustic soda mfg	Short in cells	0	50	GH ₂ concentration in Cl ₂ piping was allowed to exceed 5%
9-3-73	GH ₂ off-gas explosion	Nuclear power plant; BWR	Unknown	0		Cause unknown, but detonation occurred in off-gas system
9-5-73	GH ₂ & CO leak resulted in explosion	Iron ore reforming	Hot pellets or fire in pan conveyor	0	27.5	Furnace gas (H ₂ & CO) leaking from bottom seal of furnace ignited
9-6-73	GH ₂ leak resulted in fire	Chemical plant ammonia mfg	Spontaneous auto-ignited	0	250	GH ₂ leaked from reformer
9-9-73	GH ₂ off-gas explosion	Nuclear power plant; BWR	Unknown	0		Detonation in off-gas system fractured rupture disc
1973	GH ₂ off-gas explosion	Nuclear power plant; BWR	Lightning	0		Lightning strike caused explosion in off-gas system
1973	GH ₂ off-gas explosion	Nuclear power plant; BWR	Welding arc	2		GH ₂ in filter of off-gas system when welding arc was struck 8' away during shutdown
1973	GH ₂ off-gas explosion	Nuclear power plant; BWR	Lightning	0		A direct lightning strike was observed at the top of the plant ventilation stack
1973	GH ₂ fire	H ₂ generation reforming of naphtha	Reforming furnace	0		Weld on reforming furnace failed and GH ₂ ignited on furnace
1973	GH ₂ fire from leak	Refinery	Autoignited	0		Gasket leak in recycle gas line auto-ignited this caused adjacent line to rupture
1973	GH ₂ fire when tube failed	Refinery	Unknown	0		Fin fan cooler tube pulled away from header releasing GH ₂ at 3000 lb fire occurred when press. was 500 lb
1973	GH ₂ fire when metal failed	Refinery; reforming of naphtha	Autoignited	0		Carbon steel corrosion resulted in release of 500°C GH ₂ from hydrogen reformer
1973	GH ₂ unignited release	Refinery	None	0		Failure in hydrogen compressor unit caused failure of suction and discharge lines

TABLE II (Continued)

Date	Type of Accident	Mode of Operation	Ignition Source	No. of Injuries	Property Damage (\$1000)	Comments
1973	GH ₂ fire	Petro chemical plant	Unknown	0		Expansion joint ruptured during heatup of reactors
1973	GH ₂ explosion due to reaction of water and NaBH ₄	Chemical plant	Autoignited	0		NaBH ₄ and H ₂ O reacted generating GH ₂ and enough pressure and heat for explosion to occur
1973	GH ₂ unignited release	Chemical plant	None	1		Attempt to bleed hydrogenator at 1000 lb resulted in chemist's arm inflated w/GH ₂
1-18-74	GH ₂ fire	Boron filament mfg	Autoignited	0	175	Excessive pressure blew mercury seals allowing release of hot GH ₂
1-22-74	GH ₂ and Cl ₂ explosion	Chemical plant chlorine mfg	Autoignited	0	85	High concentration of GH ₂ in the chlorine cell gas process equipment resulted in an explosion
1-25-74	GH ₂ fire	Electronics plant	Burners	0	35	GH ₂ escaped from a loose fitting at a solenoid valve gas line resulting in fire
1-30-74	GH ₂ explosion due to pipe rupture in synthesis gas line	Ammonia mfg; steam reforming of natural gas	Autoignited	0	2170	Two explosions occurred, the first due to weld failure, the second due to overstress in elbow
2-8-74	GH ₂ explosion	Metal annealing	Furnace ignition	0	75	A faulty relay allowed gas to enter furnace prior to startup; mixture exploded at furnace ignition
4-23-74	GH ₂ , monomethylamine, cyclohexanone fire	Chemical plant cyclohexylamine	Reaction with catalyst	0	30	Reagents leaked around sight glass and ignited in the presence of the catalyst
5-20-74	GH ₂ off-gas explosion	Nuclear power plant	Metal spark from closing valve	0		During startup of reactor w/a new off-gas system a spark from a closing valve initiated an explosion
5-29-74	GH ₂ cylinder unignited release	Refractory mfg	None	0	350	No. 4 oil escaping from piping was ignited; the heat caused pressure buildup and rupture of cylinder
6-14-74	GH ₂ and chlorine fire	Chemical plant chlorine mfg	Autoignited	0	55	GH ₂ and Cl ₂ mix autoignited in an experimental diaphragm cell
7-2-74	GH ₂ fire	Food processing (edible oil and shortenings)	Lightning	0	5	GH ₂ being vented from a relief valve was ignited by lightning
8-6-74	GH ₂ fire	GH ₂ generation by cracking of anhydrous ammonia	Autoignited	0	35	During storage of cylinders at plant one of cylinder's rupture discs ruptured prematurely
8-6-74	GH ₂ fire	Purification of zinc	Unknown	0	10	Fire in the exhaust stack of an acid leaching tank
8-8-74	GH ₂ explosion	Chlorine, caustic soda plant produced electrolytically	Unknown	0	156	A rapid increase in current in amalgam cells provided excess GH ₂ which exploded

TABLE II (Continued)

Date	Type of Accident	Mode of Operation	Ignition Source	No. of Injuries	Property Damage (\$1000)	Comments
9-10-74	GH ₂ and oil fire	Chemical plant ammonia mfg	Hot steam lines	0	710	Seal oil pump failed blowing GH ₂ and oil out which ignited when it came in contact w/steam lines
9-24-74	GH ₂ fire	Metal annealing	Hot air in furnace	0	20	GH ₂ leaked through rubber seal into furnace
9-74	GH ₂ explosion	Refinery	Electrical	0	10-100	Explosion occurred at startup because GH ₂ had leaked into motor enclosure during shutdown
10-22-74	GH ₂ explosion	Chemical plant silicone products	Silane fire	0	125	GH ₂ in fume scrubber and acid tanks was ignited by a silane fire w/explosion resulting
12-2-74	GH ₂ and Cl ₂ mixture explosion	Chemical plant chlorine, sodium hydroxide	Unknown	0	395	Mixture in electrolytic chlorine production equipment exploded
2-20-74	GH ₂ off-gas explosion	Nuclear power plant; BWR	Improper grounding	0		During startup explosion occurred in off-gas system
3-2-74	GH ₂ off-gas explosion	Nuclear power plant; BWR	Improper grounding	0		While unit operating at level of 2232 MWT an explosion occurred in off-gas filter
1974	GH ₂ off-gas explosion	Nuclear power plant; PWR	Sparks from pipe cutting	0		With construction underway in filter building workers accidentally cut GH ₂ pipe
1-75	GH ₂ fire	Refinery naphtha reforming	Fixed flame in driers	0	1-10	Exchanger shell for regeneration gas heater on H ₂ drier ruptured, automatic shutdown failed
3-7-75	GH ₂ explosion	Chemical plant	Unknown	0	1250	Flammable liquid and GH ₂ escaped from a reactor when valve failed to close completely
3-11-75	GH ₂ explosion	Copper production	Flame in monitoring equipment	0	70	GH ₂ leak filled 8'x8'x8' monitoring building. Flame in sulfur dioxide monitor ignited it
3-20-75	GH ₂ explosion	Glass mfg	Hot metal on furnace	0	60	O ₂ valve was left open allowing explosive mix to form in idle furnace which exploded
3-75	GH ₂ fire	Refinery; hydro-cracking	Spontaneous auto-ignition	0	1-10	Flange opened up during H ₂ sweep on hydrocracker
6-30-75	GH ₂ fire	Electronics plant LED mfg	Hot material (phosphide)	0	25	A molten piece of phosphide ignited a H ₂ -air mixture
7-7-75	GH ₂ explosion	Chemical plant HCl	Lance flame	0	10	GH ₂ -air mixture in hydrogen-chlorine reactor was ignited w/explosion resulting

TABLE II (Continued)

Date	Type of Accident	Mode of Operation	Ignition Source	No. of Injuries	Property Damage (\$1000)	Comments	
7-13-75	GH ₂ explosion	Iron ore reduction plant	Static spark	3	200	Plant was shutting down and purging was in progress when trapped GH ₂ and methane exploded	
7-75	GH ₂ fire	Refinery	Failed connecting rod friction	0	10-100	Mechanical failure	
8-17-75	GH ₂ , air and chlorine mixture explosion	Chemical plant sodium chlorate	Static charge	0	175	Insufficient air purge allowed explosive mixture to accumulate in head tank	
8-75	GH ₂ fire	Refinery	Fixed flame in heater	0	100-500	Due to tube rupture in H ₂ heater	
9-19-75	GH ₂ fire	Chemical plant ammonia mfg	Unknown	0	50	GH ₂ escaped from reactor due to faulty gasket	
27	9-29-75	GH ₂ explosion	Chemical plant ammonia mfg	Cutting torch	0	380	Synthesis line was cut prior to purging
	9-75	GH ₂ pressure rupture	Chemical plant ammonia mfg	None	0	1-10	Furnace tube leak caused excessive heat on H ₂ tube causing rupture
	9-75	GH ₂ fire	Refinery-reforming of naphtha	Spontaneous auto-ignition	0	100-500	Flange leak on hydrogen reformer
	10-75	GH ₂ fire	Refinery	Fixed flame in fire box	0	1000	Furnace tube ruptured, unit depressured into fire box
	10-75	GH ₂ fire	Refinery-reforming of naphtha	Spontaneous auto-ignited	0	10-100	Overinsulation of hydroformer unit caused bolt failure at flange leaking GH ₂
	11-5-75	GH ₂ explosion	Nuclear power plant; BWR	Unknown	2		Closed valve resulted in GH ₂ buildup in sump which exploded
	11-5-75	GH ₂ explosion	Heat treating metal annealing	Unknown	0	75	No purging allowed explosive mixture to form in retort
	11-25-75	GH ₂ fire	H ₂ generation by a recharging battery	Electric spark	0	7	GH ₂ from a recharging battery collected in battery compartment; short in battery cable caused spark
	12-14-75	GH ₂ explosion	Filling of H ₂ cylinders	Tramp metal spark	0	55	Cl ₂ tank (railroad car) ruptured and debris broke H ₂ tubing on cylinder bank
	12-17-75	GH ₂ fire	Foundry	Spark in converter	0	9	GH ₂ hose leaked w/H ₂ , collecting in electrical converter
	12-27-75	GH ₂ explosion	Chemical plant sodium chlorate mfg	Static charge	0	350	Insufficient purge allowed mixture of air, GH ₂ and chlorine to collect in cell liquor tanks
	12-29-75	GH ₂ explosion	Lead smelting	Chem reaction	0	290	Water leaked into a drum of Ca chemical reaction released GH ₂ and energy for explosion

TABLE II (Continued)

Date	Type of Accident	Mode of Operation	Ignition Source	No. of Injuries	Property Damage (\$1000)	Comments
12-75	GH ₂ fire	Refinery	Spontaneous auto-ignition	0	10-100	H ₂ leaked from 2 flanges on reactor resulted in fire
1975	GH ₂ explosion	Nuclear power plant	Welding spark	0		GH ₂ collected in vapor space and was ignited by spark from welder
1975	GH ₂ off-gas explosions	Nuclear power plant; BWR	Catalyst pellets	0		Pellets in the recombiner vessels caused 2 explosions before problem was discovered
1975	GH ₂ off-gas explosion	Nuclear power plant; BWR	Unknown	0		Recombiner was being cut into off-gas train when explosion occurred in off-gas system
1-19-76	GH ₂ offgas explosion	Nuclear power plant; BWR	Relay actuation	2		Improperly installed demister caused back pressure to actuate relay which caused explosion of sump
2-17-76	GH ₂ fire	Precious metals recovery	Platinum catalyst	0	147.5	Scrap being acid treated released excessive amounts of GH ₂ which was ignited
2-76	GH ₂ pressure rupture, fire	Petrochemical chem plant	Fixed flame	0	10-100	Lead pipeline failed due to cold
4-7-76	GH ₂ -Cl ₂ explosion	Micro-electric circuit fabrication	Unstable gaseous reaction	0	8.4	Lack of nitrogen purge allowed unstable gases to react and ignite GH ₂
5-3-76	GH ₂ fire	Chemical plant sodium chlorate	Spark from cell plates (electrostatic)	1	7	Lack of nitrogen purge in empty electrolytic chlorate cells allowed H ₂ to accumulate
5-11-76	GH ₂ explosion	Chlorine plant	Sparks from welding	3	200	GH ₂ and air formed an explosive mix in electrolysis cells
6-9-76	GH ₂ explosion	Chemical plant sodium chlorate	Electrostatic spark	7	127	Inadequate nitrogen purge allowed explosive mix (H ₂ air) to form in cells
6-12-76	GH ₂ fire	Power plant	Heat of friction	0	20,000	Mistakes in taking turbine generator off-line resulted in destruction of turbine and release of GH ₂ coolant
7-8-76	GH ₂ fire	Chemical plant chlorine plant	Short in cell	0	69	Power surge affected equipment resulting in an excess of H ₂ in cells

TABLE II (Continued)

Date	Type of Accident	Mode of Operation	Ignition Source	No. of Injuries	Property Damage (\$1000)	Comments
7-27-76	GH ₂ fire	Semiconductor mfg	Motor brush sparks	0	275	Drill bit punctured copper tubing releasing H ₂
7-31-76	GH ₂ explosion	Chemical plant chlorine	High temp. of mfg process	0	75	Excess acid was flowed into chlorine cells, this caused excessive H ₂ liberation
7-76	GH ₂ fire	Refinery	Autoignited; high temp	0	1000-10000	Valve leakage permitted hot vapors to enter vent system when mixed w/air autoignited
10-26-76	GH ₂ explosion	Ammonia plant	Autoignited; high temp	0	3250	H ₂ embrittlement caused weld fracture from which H ₂ leaked
10-29-76	GH ₂ explosion	H ₂ , O ₂ , N ₂ , and Argon prod.	Unknown	0	15	H ₂ line in electrolytic building leaked
12-2-76	GH ₂ explosion	Power plant	Welding sparks	0	150	Inadequate H ₂ purge w/CO ₂ resulted in explosive mixture when CO ₂ was later purged with air
1976	GH ₂ off-gas explosion	Nuclear power plant; BWR	Unknown	0		During steady-state operations explosion occurred in off-gas system
29	GH ₂ off-gas explosion	Nuclear power plant; BWR	Electrostatic spark	0		Explosion occurred in off-gas system; filters were by-passed and another explosion occurred when power was increased again
1976	GH ₂ off-gas explosion	Nuclear power plant; BWR	Unknown	0		Poor training resulted in high H ₂ conc. in system
1976	GH ₂ off-gas explosion	Nuclear power plant; BWR	Unknown	0		W/power at 85% explosion occurred in stack filter house
1976	GH ₂ off-gas explosion	Nuclear power plant; BWR	Unknown	0		Ice blockage of dilution fan caused high H ₂ concentration; explosion demolished filter house
1976	GH ₂ off-gas explosion	Nuclear power plant; BWR	Unknown	0		Recombiner was being cut into off-gas train when explosion occurred
1976	GH ₂ off-gas explosion	Nuclear power plant; BWR	Unknown	3		Manhole to sump was being removed when H ₂ ignited unauthorized wiring change of valve caused H ₂ buildup
1976	GH ₂ explosion	Chemical plant	Arc from switch	0		Piping leak allowed H ₂ to collect in a control panel where LEL was reached

TABLE II (Concluded)

Date	Type of Accident	Mode of Operation	Ignition Source	No. of Injuries	Property Damage (\$1000)	Comments
1-5-77	GH ₂ fire	Methanol plant	High temp spontaneous autoignition	0	700	Synthesis gas line rupture resulted in leak which caused fire
1-27-77	GH ₂ explosion	Caustic chlorine production	Runaway chem reaction	0	1450	Air and chlorine entered H ₂ header mixing with H ₂ to form explosive mixture
3-7-77	GH ₂ fire	Power plant	Arc from generator	0	625	Turbine vibration caused release of H ₂ from generator resulting in fire
3-22-77	GH ₂ fire and explosion	Chemical plant; sodium aluminum hydride	Unknown	0	150	H ₂ leak at pump resulted in fire then explosion
4-7-77	GH ₂ explosion	Chemical plant chlorine	Runaway chem reaction	0	375	H ₂ entered Cl ₂ header and reached proper ratio for reaction
4-16-77	GH ₂ explosion	Metal heat treating	High temp spontaneous autoignition	0	50	H ₂ /air mixture remained in furnace due to poor purge
10-23-77	GH ₂ explosion	Chemical plant ammonia	Unknown	0	225	H ₂ line ruptured admitting H ₂ into distribution pipe where explosion occurred
11-11-77	GH ₂ fire	Electronics-semiconductor mfg	Unknown	0	1	H ₂ exhaust gas from epitaxial reactor ignited in the exhaust duct
12-13-77	GH ₂ off-gas explosions	Nuclear power plant; BWR	Welding arc	1	100	Arc struck H ₂ instrumentation line causing initial explosion, second and more violent explosion occurred during shutdown cause unknown
1977	GH ₂ unignited release	Chemical plant	None	0		H ₂ under pressure was released when Bourdon tube on H ₂ reservoir ruptured

TABLE III
INCIDENTS INVOLVING HYDROGEN TRANSPORT

Date	Location	Type of Accident	Mode of Operation	Ignition Source	No. of Injuries	Property Damage (\$1000)	Comments
9-3-66	Chelmsford G.B.	GH ₂ fire	Transfer at electronics plant	Unknown	0		During transfer of H ₂ from truck to cylinder banks leak and fire developed on delivery hose
1-68	U.S.A.	LH ₂ unignited release	Transfer from tank trailer to storage tank	None	0		During transfer leak developed resulting in an unignited release
8-2-71	N.Y., U.S.A.	LH ₂ unignited release	Tractor tank trailer in transit	None	0	.66	Vacuum on trailer deteriorated causing pressure buildup causing rupture disc to burst
10-4-71	S.C., U.S.A.	GH ₂ fire	Tube trailer in transit	Sparks from metal on pavement	2	70	Trailer overturned w/one of ten tubes igniting. H ₂ in remaining tubes released later
2-21-72	Texas, U.S.A.	GH ₂ fire	Tube trailer in filling area	Tramp metal spark	0	100	Safety slug in vent tubing failed damaging tubing w/H ₂ fire damaging several other trailers
6-18-72	Ariz., U.S.A.	LH ₂ fire	Tractor tank trailer in filling area	Unknown	0	22	H ₂ leak from filling station ignited enveloping trailer and resulting in release of H ₂ from trailer
TC 9-26-72	Fla., U.S.A.	LH ₂ fire	Tractor tank trailer in transit	Tramp metal spark	2	128	Car ran stop sign hitting truck; ruptured gasoline tank, piping, inner and outer H ₂ tanks tractor trailer completely destroyed
6-11-73	Plymouth, G.B.	GH ₂ fire	Lorry w/cylinders in transit	Unknown	0	0	Chain holding cylinders in place on lorry broke; cylinders ruptured with small fire resulting
6-15-73	Pa., U.S.A.	LH ₂ unignited release	Tractor tank trailer in transit	None	0	2.5	Vacuum on trailer was lost resulting in H ₂ release both manually and through bursting of ruptured disc
9-10-73	Calif., U.S.A.	GH ₂ no release or fire	Tractor tank trailer in transit	None	1	15	No release occurred after trailer hit by car because of sturdy construction of trailer
1-6-74	Calif., U.S.A.	LH ₂ unignited release	Tractor tank trailer in transit	None	0	0	Faulty rupture disc failed prematurely releasing 750 cu ft of H ₂
1-7-74	Pa., U.S.A.	LH ₂ unignited release	Tractor tank trailer in transit	None	0	0	Excessive delay in trip resulted in excessive pressure requiring manual venting releasing 2750 cu ft of H ₂
6-23-74	Calif., U.S.A.	LH ₂ unignited release	Tractor tank trailer in transit	None	0	0	Driver failed to lower tank pressure before leaving plant so he had to stop en route and vent 4000 scf
9-25-74	Ariz., U.S.A.	LH ₂ unignited release	Train tank car in transit	None	0	0	Inner tank leaked destroying vacuum in tank car; this caused LH ₂ to revert to GH ₂ resulting in pressure buildup and venting through relief valve

TABLE III(Continued)

Date	Location	Type of Accident	Mode of Operation	Ignition Source	No. of Injuries	Property Damage (\$1000)	Comments
10-5-74	Ala., U.S.A.	LH ₂ unignited release	Tractor tank trailer in transit	None	0	0	Tank was slightly overloaded; this forced driver to vent tank manually releasing 5000 cu ft
10-13-74	Calif., U.S.A.	LH ₂ unignited release	Tractor tank trailer in transit	None	0	0	Unit was returning to plant empty when pressure buildup forced driver to vent manually
10-13-74	Calif., U.S.A.	LH ₂ unignited release	Tractor tank trailer in transit	None	0	0	After LH ₂ transfer from trailer driver failed to wait for pressure stabilization so he had to stop and vent manually on way to plant
12-2-74	Calif., U.S.A.	LH ₂ unignited release	Tractor tank trailer in transit	None	0	0	Vent valve on trailer vibrated open allowing a slight H ₂ discharge
12-4-74	Pa., U.S.A.	LH ₂ unignited release	Tractor tank trailer in transit	None	0	1.7	Unexplained loss of vacuum resulted in release of all H ₂ by manual venting and relief valve
12-23-74	Calif., U.S.A.	LH ₂ unignited release	Tractor tank trailer in transit	None	0	0	Prior to loading the trailer had been purged w/nitrogen for maintenance work after loading driver failed to allow H ₂ to stabilize in warm tank so he had to vent 6000 cu ft
1-6-75	Va., U.S.A.	LH ₂ unignited release	Tractor tank truck	None	0	0	Pressure building valve vibrated open allowing pressure buildup; drivers vented tank's closed valve
1-7-75	Calif., U.S.A.	LH ₂ unignited release	Tractor tank trailer in transit	None	0	0	Pressure buildup resulted in driver venting 6000 cu ft of H ₂ from trailer
1-10-75	Va., U.S.A.	LH ₂ unignited release	Tractor tank trailer	None	0	0	Pressure buildup in tank was manually vented by driver releasing 1000 cu ft
9-21-75	Ala., U.S.A.	LH ₂ unignited release	Tractor tank trailer in transit	None	0	0	Tank was manually vented prematurely on its empty return trip; 9,000 cu ft released
11-5-75	Ohio, U.S.A.	GH ₂ fire	Tractor tube trailer	Static electrical discharge	0	0	Trailer was loaded and parked in the sun; the heat caused a pressure buildup; a frangible disc failed prematurely venting H ₂ which ignited; 13,360 cu ft released
12-31-75	Calif., U.S.A.	GH ₂ fire	Tractor tube trailer	Spontaneous	0	0	Tube trailer was filled and parked in yard when a rupture disc on one of the tubes failed w/escaping H ₂ igniting 9583 cu ft released
3-24-75	Conn., U.S.A.	LH ₂ unignited release	Tractor tank trailer	None	0	0	Tank trailer became detached from tractor due to equipment failure; during LH ₂ transfer to another trailer release of 58,000 cu ft occurred
5-10-75	Alberta, Canada	GH ₂ unignited release	Tractor tube trailer in transit	None	0	0	Tractor trailer went off road on return trip shearing off rear valves and manifolds releasing 2000 cu ft of GH ₂