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ABSTRACT

The thermal conductivity and other properties cementitious grouts have been investigated in
order to determine suitability of these materials for grouting vertical boreholes used with geothermal
heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and
superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts
were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal
expansion, exotherm, durability and environmental impact. This paper summarizes the results for

_selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction

in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding
were achieved.

INTRODUCTION

Key to the successful widespread use of geothermal heat pumps (GHPs) is reduction of
installation costs. One way of tackling this is to decrease drilling costs by reducing the required bore
length. This, in turn, can be achieved by increasing the thermal conductivity of grout used to seal the
annulus between the borehole and heat exchanger loop. The grout provides a heat transfer medium
between the U-loop and surrounding formation, controls groundwater movement and prevents
contamination of water supply.

Properly designed and mixed cementitious grouts have potential for use as GHP grouts and
may prove superior in thermal properties, long term performance and overall economics than
bentonite grouts in current use. Cementitious grouts are relatively inexpensive, safe and easy to work
with, comprising readily available materials and have a long history of use in geotechnical and civil
engineering applications. The simplest cementitious grout consists of cement and water proportioned
and mixed to give a fluid consistency. As will be discussed throughout this paper, this type of neat
cement grout is not suitable for GHP applications due to lower thermal conductivity, higher shrinkage
and other disadvantages when compared with cementitious grouts that contain a filler such as sand.

This project involves characterization of cement-silica sand grouts for thermal conductivity
and other properties pertinent to backfilling vertical boreholes for GHPs. Cost analysis and
calculations of the reduction in heat exchanger length that can theoretically be achieved with such
grouts are being performed by the University. of Alabama. Experimental work focuses on
optimization of grout formulations in order to improve thermal conductivity while meeting
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requirements for rmxmg and pumping with conventional equipment, permeability, shrinkage, bonding
to U-loop, durability, ease of handling, and economics. This paper describes some of the major
results to date. Further details of the research can be found in the FY 97 Progress Report (Allan,
1997).

EXPERIMENTAL
Materials

The grouts delineated as having potentially suitable characteristics for GHP applications
consist of Type I cement (ASTM C 150), silica sand, water and superplasticizer. Work in FY 97 also
examined sulphate resistant cements (Types II and V) and the use of fly ash (FA) and ground
granulated blast furnace slag (BFS) as partial replacement for Type I cement in some of the grout
formulations. These supplementary cementing materials are recognized for their ability to enhance
durability in adverse environments (e.g., aggressive groundwater), reduce heat of hydration and
reduce cost. The fly ash conformed to ASTM C 618 Class F. This is a low calcium fly ash produced
from combustion of bituminous coal. The blast furnace slag was ASTM C 989 Grade 100.

The superplasticizer (SP) used was a sulfonated naphthalene type with a solids content of 42%
by mass and was supplied by Master Builders (Rheobuild 1000). This chemical admixture functions
as a dispersant and increases grout fluidity. Thus, superplasticizer allowed the water content of the
grout to be reduced while maintaining pumpability. The aim was to keep the water/cementitious
material ratio (w/c) as low as possible in order to improve thermal properties, reduce permeability,
and increase durability.

Silica sand was chosen as a particulate filler to increase thermal conductivity of the
cementitious grouts. This decision was based on previous data that showed the efficacy of sand for
improving thermal properties (Allan and Kavanaugh, 1998), ready availability, low cost, compatibility
with grout mixing and placement equipment and ease of use. Different gradations of sand were
evaluated in FY 97. Of these, sand conforming to the gradation suggested by ACI Committee 304
(Grading 1) gave the best combined performance. This sand is recommended for preplaced
aggregate grouting and the gradation is given in Table 1. The ratio of sand to cementitious material
(s/c) by mass for grouts discussed in this paper was varied from 2.0 to 2.5. Comparisons were made
with neat cement grouts (i.e., no sand added).

A small proportion of Wyoming bentonite was added to some of the cementitious grouts to
reduce bleeding, promote full-volume set, and improve sand carrying capacity (i.e., reduce settling).
However, use of bentonite was later discontinued in order to simplify the grout mix. An air entraining
agent (Master Builders MB-VR) was added to one of the grout mixes used for freeze-thaw tests.

The cementitious grouts were intended to be mixable and pumpable with conventional
grouting equipment. The mix proportions of some of the neat cement (Mixes 1 to 3) and cement-
sand grouts covered in this paper are given in Table 2. The terms w/c, s/c and SP/c refer to
water/cementitious materials ratio by mass, sand/cementitious material ratio by mass and
superplasticizer dosage in ml’kg cementitious material, respectively. Mix 5 has a s/c value
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corresponding to two 100 Ib bags of sand added for one 94 Ib bag of cement. This ratio was chosen
for ease of field mixing. Mixes 7 and 8 contain blast furnace slag and fly ash at a cement replacement
level of 40%, respectively.

Table 1. Gradation of sand conforming to ACI Committee 304, Grading 1.

Sieve No. (Size, pm) ‘Percentage Passing (%)

8 (3350) 100

16 (1180) 95-100

30 (595) 55-80

50 (297) 30-55

100 (149) 10-30

200 (75) 0-10

Table 2. Mix Proportions of Selected Grouts
Mix No, wic s/c SP/c (ml/kg)

1 0.4 0 20
2 0.6 0
3 0.8 0
4 0.5 2 20
5 0.55 2.13 15
6 0.6 2.5 10

7 (40% BFS) 0.6 2.5 10

8 (40% FA) 0.6 2.5 10
9 0.75 2 0

Thermal Conductivity Measurements

The cementitious grouts were cast as blocks 75 mm x 125 mm x 25 mm. Three specimens
per batch were cast. The blocks were sealed to prevent evaporation, demoulded after 24 hours and
placed in a water bath to cure. The hardened grouts were tested for thermal conductivity at an age
of 14 days. The grouts were then dried in an oven at 40°C over a period of seven days, allowed to -
cool, and re-tested to determine the effect of loss of moisture.

Thermal conductivity was measured using a Shotherm QTM-D2 Thermal Conductivity Meter.
This meter uses the hot wire method to calculate the thermal conductivity, A. The hot wire test is a
transient method and therefore overcomes the problem of moisture migration and subsequent




decrease in thermal conductivity that would occur with a steady state method. Further details of the
test method are available in the FY 97 Progress Report (Allan, 1997). Three measurements per
specimen were made.

Permeability

The water permeability (hydraulic conductivity) of the grouts under saturated conditions was
measured in a flexible wall triaxial cell permeameter on cylindrical specimens. The experimental set
up followed that given in ASTM D 5084-90. Two series of permeability tests have been performed
to date. The first series was on bulk grouts. The second series was on an annulus of grout cast
around an axial length of 25.4 mm (1 in.) ID. 33.0 mm OD (1.3 in.) HDPE Driscopipe® 5300 (Phillips
66). Since the permeameter was originally set up for 76 mm diameter cylinders, it was not possible
to place two lengths of pipe in the specimens. All specimens were insulated for 24 hours after casting
so that thermal effects similar to those which may occur in a borehole were simulated. Specimens
were demoulded after 24 hours and cured for 28 days in a water bath. The ends of the pipe were
plugged before conducting permeability tests so that water would flow either through the grout or
between the grout-pipe interface. This indicated how permeability of the grout-pipe system may be
influenced by grout shrinkage. The tests were conducted at room temperature. Three specimens per
batch were tested. '

Bond Strength

The relative bond strength of selected grouts to HDPE was measured by push out tests. An
annulus of grout was cast around an axial length of 25 4 mm ID (1 in.), 33.0 mm OD (1.3 in.) HDPE
Driscopipe® 5300 (Phillips 66). Mixes 1, 6, 7, and 8 were tested. The specimens were placed in a
Geotest compression tester with modified platens so that the pipe could be pushed out. Movement
of the pipe was monitored with a dial gauge and LVDT. The load required to push the pipe out 1
mm (0.04 in.) was recorded. Bond strength was calculated as the load divided by the surface area
of the embedded pipe. Six specimens per grout batch were tested.

Temperature versus Time

Concerns have been expressed about the elevated temperatures generated during cement
hydration and how this may affect bonding between the cementitious grout and U-loop. Thermal
expansion and contraction of the U-loop would occur as the grout temperature increases and
subsequently decreases. In order to investigate this issue, the temperature versus time was monitored
for simulated boreholes. Tubes were grouted to determine temperature-time profiles and also check
for grout pumpability and uniformity of grouting. The tests involved grouting 102 mm inner diameter
6 m long insulated Schedule 40 PVC tubes that contained an axial length of 25.4 mm (1 in) ID (33.0
mm/1.3 in. OD) HDPE Driscopipe® 5300. The insulation was 25 mm thick fibreglass.
Thermocouples were embedded in the grout and temperature versus time was monitored with a data
logger. One of the tubes was filled with Mix 6 and the other with Mix 7 (slag-modified). The grouts
were mixed in a ChemGrout CG-550P paddle mixer and pumped with a piston pump. The
temperatures at the grout set time and at the peak of the exotherm were measured. The grouted
tubes were later sectioned to examine the microstructure of the grout/pipe interface and the
uniformity of grouting throughout the length of the tube.




Linear Shrinkage

The procedure used to measure linear shrinkage of the grouts is described in ASTM C 490-
93a. Grout was cast as beams with of dimensions 50 mm x 50 mm x 286 mm (2 in. x 2 in. x 11.25
in.) and the gauge length between embedded studs was 254 mm (10 in.). Four specimens per type
of grout were cast. The beams were covered with polyethylene to prevent evaporation and plastic
shrinkage cracking. After 24 hours the beams were demoulded and measured for length. Following
the initial measurement the beams were stored in polyethylene bags so that moisture content was held
constant. Change in length was measured using a comparator and monitored for up to 91 days. Neat
cement grouts and cement-sand grouts were compared.

Linear Coefficient of Thermal Expansion

The linear coefficient of thermal expansion of Mix 6 was measured as described in ASTM C
531-85. The same moulds and grout preparation procedure for linear shrinkage tests were used.
Four beams were cast and maintained in a polyethylene bag after demoulding. The linear coefficient
of thermal expansion (CTE) tests commenced when the beams were 91 days old. The length of the
beams was measured at temperatures of 21 and 50°C and CTE calculated.

Bleeding

Bleeding of cementitious materials occurs when a layer of water forms at the surface of the
~ freshly placed material due to segregation of solids. The amount and rate of bleeding are controlled
by mix proportions, ingredients and type of mixing. Bleeding of selected grouts was measured
following the procedure given in ASTM C 940-89. The effect of bentonite on grout bleed for one
of the mixes was included in the study. An 800 ml quantity of freshly mixed grout was poured into
1000 m! glass volumetric cylinder and covered. The heights of grout and any bleed water were
monitored up to 3 hours.

Sulphate Resistance

The resistance of selected grouts to attack of sodium sulphate was investigated. Cementitious
materials are susceptible to degradation by sulphate ions unless precautions are taken and this is a
concern if the GHP grouts are exposed to soil or groundwater with a high soluble sulphate
concentration. Specifically, precautions must be taken if the soluble sulphate content of soil exceeds
0.1% or, in the case of water exposure, 150 ppm in water (Kosmatka et al,, 1991). Cylinders 76 mm
diameter and 150 mm long were cast for the sulphate exposure tests. The grouts were
superplasticized and had s/c =2.0 and w/c = 0.5 (Mixes 6, 7 and 8). Type I cement based grout was
compared with that prepared with Types II (moderate) and V (sulphate resistant) cements.

The cylinders were cured for 28 days in a water bath. Following this, the ends of the
specimens were dipped in molten wax and the specimens were placed in a bath of 50 g/l (0.35 M)
Na,S0,. The purpose of wax coating the ends of the specimens was to promote radial diffusion of
sulphate ions. The Na,SO, solution was replaced on a monthly basis to ensure maintenance of the
SO,* concentration. The pH was not controlled. The specimens were visually inspected for
degradation every two weeks.




Environmental Impact

Environmental impact of the grouts in terms of water quality was determined. Leaching of
fresh and hardened grout constituents in water was examined for Mixes 6, 7 and 8. The experimental
arrangement consisted of a 2 kg layer of washed and dried 20-30 Standard Ottawa sand (ASTM C
190), a S kg layer of grout, another 2 kg layer of washed and dried 20-30 Standard Ottawa sand, and
a 2 kg layer of deionized water all confined within a polyethylene lined vessel. The top layer of sand
and the deionized water were placed immediately after the grout. Hence, the impact of the grout in
the unhardened state was included. The arrangement is based on a set up described by Widmann
(1996). The first change of water was at 7 hours after placing the grout and other materials.
Subsequently, water was changed at intervals of 1, 7, 14, 21 and 28 days. The pH of the water was
measured. Samples for heavy metal analysis were first acidified to a pH <2 with nitric acid to prevent
precipitation. Analysis was performed using inductively coupled plasma-mass spectroscopy (VG
Elemental Plasma Quad).

Freeze-Thaw Durability

The resistance of cementitious grouts to freeze-thaw cycles was measured following ASTM
C 666. Mix 5, with and without and an air entraining agent, was cast as beams, cured for 28 days in
a water bath and subjected to 300 rapid freeze-thaw cycles. The ultrasonic pulse velocity (ASTM C
597) after cycling was measured to determined changes in grout properties.

RESULTS AND DISCUSSION
Thermal Conductivity

The thermal conductivities in saturated and dry conditions of selected different neat cement
and cement-sand grouts are compared in Figure 1. The mix numbers are those given in Table 2. The
error bars indicate the standard deviation. (1 W/m.K = 0.578 Btw/hr.ft.°F).

The figure shows that thermal conductivity of neat cement grouts increases with decreasing
w/c. When the amount of water in the original mix exceeds that required for hydration of cement the
excess can be evaporated, thus leaving pores in the hardened grout. High w/c grouts will have
greater porosity and lower thermal conductivity than low w/c grouts. The neat cement grout with w/c
=0.8 (Mix 3) showed a significant decrease in mean thermal conductivity of 43.2% on oven drying.
Comparison with the superplasticized grout with w/c = 0.4 (Mix 1) demonstrated that the percentage
decrease in thermal conductivity on drying was reduced to 18.7% by lowering w/c.




< 2.80

£ Wet

S 240{ o Dry s ° ¢

2 2,00 - o ° P

>

S 1.60 {

'g ¢}

S 1201

£ 080 { ° *

= o

a1 S —
1 2 3 4 5 6 7 8 9

Grout Mix
Figure 1. Thermal conductivity of different grouts.

Addition of sand increases the thermal conductivity substantially. The retention of
conductivity under drying conditions is also improved and this is beneficial when heat is rejected into
the borehole or in arid environments. Loss of conductivity for the cement-sand grouts with w/c =
0.5 to 0.6 and s/c = 2 to 2.5 ranged from 8.1 to 11.5%. Mix 9 (w/c =0.75, s/c = 2) underwent a
decrease in thermal conductivity of 31%. Therefore, this grout, while having a reasonable
conductivity in the saturated state, would not perform well if moisture is lost. Selected grouts that
had been oven dried were re-saturated and the thermal conductivity was re-measured. It was found
that the thermal conductivity returned to its original value. Therefore, the decrease in conductivity
on drying of the cement-sand grouts is reversible. L

The results can be compared with those for bentonite-based grouts. High solids bentonite
grouts that are in current use for backfilling boreholes have thermal conductivities ranging from 0.65
to 0.90 W/mXK (Remund and Lund, 1993). Thermally enhanced bentonite has an increased
conductivity of 1.46 W/m K due to addition of quartzite sand (Remund and Lund, 1993). These
values refer to the moist state and significant decreases in conductivity for bentonite grouts occur on
drying (Allan and Kavanaugh, 1998). Although not measured, the thermal conductivity of bentonites
is probably restored on re-saturation. Heat transfer studies by Braud (1991) and Braud and
McNamara (1989) have shown that neat cement grout performs similarly to high solids bentonite
grouts. This is in agreement with the relatively low thermal conductivity of the neat cement grouts
tested in this work.

Permeability

The results of bulk versus bonded permeabilities are compared graphically in Figures 2 and
3. The permeability data in Figure 2 demonstrate that increasing w/c from 0.4 (Mix 1) to 0.8 (Mix
2) causes an order of magnitude increase in neat cement grout permeability. A dramatic increase in
permeability for the grout-pipe specimens is observed for the high w/c of 0.8. This is attributed to




a higher permeability pathway at the pipe interface which was confirmed by microstructure studies.
For the cement-sand grouts in Figure 3, the value of w/c also controls permeability of the bulk grouts.
Fly ash and blast furnace slag have slight effects on permeability. The results show that addition of
sand to the grout decreases the permeability of the grout-pipe interface as compared to the neat
cement grouts. The permeability of grout-pipe specimens for Mixes 5 and 9 have not been measured.
Despite the increase in permeability associated with imperfect bonding, the values are below 107
cm/s, which is the recommended value for GHP grouts (Eckhart, 1991).

The permeameter is currently undergoing modification to accept 102 mm diameter specimens
that will contain two lengths of HDPE pipe. This will give a better representation of the permeability
of a grouted borehole. The effect of thermal cycling on the bond permeability will be investigated.
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Bond Strength

The results of the bond strength tests are presented in Figure 4. The average and standard
deviation for six specimens are given. Relatively high shrinkage of superplasticized neat cement
results in very low bond strength. Neat cement grout will also have a higher exotherm than a cement-
sand grout and this will result in greater expansion of embedded HDPE pipe during curing. The bond
strengths for Mixes 6 and 7 were virtually the same, despite the lower exotherm of the slag-modified
grout. The fly ash-modified grout (Mix 8) had a significantly lower bond strength and this is
attributed to higher shrinkage
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Figure 4. Bond strengths for neat cement and cement-sand grouts.
Temperature versus Time

Temperature versus time data was obtained for the grout cast in the insulated 6 m x 102 mm
PVC tubes. The ambient temperature during the tests was 17°C. The peak temperature was 51.2°C
for Mix 6 and this occurred at an elapsed time of 12 hours and 20 minutes. The set time of this grout
was 8 hours and the corresponding temperature at this time was 32°C. For the slag-modified grout
(Mix 7) the peak temperature was 36.7°C at 17 hours and 46 minutes after completion of grouting.
The set time was 9 hours at which time the temperature was 25.3°C.

The circumferential coefficient of thermal expansion for the HDPE pipe used is 1.1 x 10*/°C.
This can be used to calculate the expansion of the pipe at the set time of the grout. Subsequent
cooling of the grout could possibly contribute to imperfect bonding at the grout/pipe interface. The
change in circumference of the pipe at 32°C is 0.176 mm and the diameter change is 0.056 mm. For
the slag-modified grout, the circumference and diameter changes at the set time are 0.095 and 0.03
mm, respectively. The assumption that the pipe and grout are at the same temperature is a
simplification. Hence, the calculated expansions represent maximums for the studied system.
Thermal expansion of the grout has been neglected in the calculations.
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Expansion of the HDPE after the grout has set will be confined. The actual amount of
expansion that may occur after setting is the focus of further investigation in FY 98 in order to
determine how bonding may be improved.

Linear Shrinkage

The initial and 91 day shrinkage data for the grouts are summarized in Table 3. The % length
changes are averages for the four beams tested for each grout mix.

Table 3. Shrinkage data for neat cement and cement-sand grouts

Grout Mix Initial Length Change (%) 91 Day Length Change (%)
1 -0.216 -0.343
2 -0.163 -0.278
3 -0.505 | -0.591
5 -0.220 -0.275
6 -0.202 -0.263
7 -0.234 -0.265
8 -0.237 -0.257

The resuits for the unsuperplasticized neat cement grouts (Mixes 2 and 3) show the expected
result that high shrinkage is associated with high w/c. This is another reason why it is important to
minimize w/c and avoid neat cement grouts for GHP applications. The superplasticized grout with
w/c = 0.4 (Mix 1) had higher shrinkage than Mix 2 (w/c = 0.6, no superplasticizer). This indicates
that high dosages of superplasticizer are also detrimental to shrinkage resistance.

Incorporation of sand in the grout mix reduces shrinkage. Comparison between Mixes 5 and
6 shows that the grout with higher sand content (Mix 6) has lower shrinkage despite the higher w/c
(0.6 versus 0.55). The lower shrinkage is also associated with lower superplasticizer dosage.. The
impact of reducing the superplasticizer dosage of Mix 5 on shrinkage and pumpability is being
studied. Current research is also investigating the shrinkage of grouts exposed to drying conditions.
For Mix 5 the drying shrinkage after six weeks in air was 0.445%.

Table 3 also shows that the early shrinkage of grouts with s/c = 2.5 and w/c = 0.6 is increased
by addition of blast furnace slag (Mix 7) or fly ash (Mix 8). However, by 91 days the values of
shrinkage are similar for this series of grouts.

Microstructure of Grout/Pipe Interface
Specimens used in the permeability tests were sectioned and viewed under an optical

microscope at 50 x magnification to examine the integrity of the grout bond to HDPE. In addition,
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the 6 m x 102 mm tubes were sectioned for analysis. For the 76 mm diameter permeability specimens
it was found that those grouts without sand had the greatest gaps at the grout-pipe interface. Mix
1 had a gap 0of 0.02 to 0.4 mm. Such gaps would increase contact resistance and be detrimental to
overall heat transfer. Addition of sand to the grouts was found to improve the bond integrity and this
concurs with the permeability and bond strength results. Mix 6 exhibited regions where grout was
intimately bonded to the pipe. Some discontinuous gaps 0.02 mm wide were observed. Similar
observations were made for the sanded slag-modified grout (Mix 7). Hence, reduction of the
exotherm by addition of slag to the mix did not improve bonding. This is attributed to the higher
early shrinkage of the slag-modified grout which counterbalances the benefit of decreasing
temperature and subsequent expansion of embedded HDPE pipe. The sanded fly-ash modified grout
(Mix 8) had a continuous gap at the interface around 0.02 to 0.2 mm wide, in addition to some voids.

The sections cut from the 102 mm diameter insulated tubes grouted with Mixes 6 and 7
showed gaps 0.06 to 0.075 mm wide at the interface, which is greater than that observed on the
smaller permeability test specimens. The increased gap width is probably due the higher exotherm
experienced in the tubes than in the 76 mm diameter cylinders. ‘ '

Linear Coefficient of Thermal Expansion
The average linear coefficient of thermal expansion for cement-sand grout with w/c = 0.6, s/c
=2.5 and SP/c = 10 ml’kg (Mix 108) was 1.65 x 10-%/°C (9.17 x 10%/°F). The grout CTE value can

be compared with Driscopipe® which has a linear CTE of 1.2 x 10%°F (2.2 x 10%°C) and a
circumferential CTE of 0.6 x 10*/°F (1.1 x 10%/°C).

Bleeding
The results of the bleed tests on grouts are presented in Table 4. These grouts were prepared
in a Hobart mixer. Different results may be obtained with other mixers. The effect of superplasticizer

dosage on bleeding for Mix 3 is included.

Table 4. Bleed Test Results

Time (hr) % Bleed
Mix 5 (SP/c | Mix 5 (SP/c Mix 6 Mix 7 Mix 8
=15mlkg) | =12 mlkg)
0.5 0.12 012 0.25 1.24 0.99
I 0.37 0.25 0.50 1.86 1.23
1.5 0.50 0.25 0.62 2.48 ©1.85
2 0.62 0.37 0.62 2.61 1.97
25 0.62 0.37 0.62 2.73 2.10
3 0.62 0.37 0.62 2.73 2.10
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The cement-sand grouts tested were subject to bleeding when mixed in the low shear Hobart
mixer unless bentonite was added at an appropriate level. Use of a more efficient high shear mixer
would permit reduction of w/c, superplasticizer dosage and bleeding. As shown, reduction of
superplasticizer dosage reduces bleeding. If excessive bleeding of cementitious grouts occurs, the
problem can be solved by manipulation of the mix proportions, addition of bentonite or use of a better
mixer.

Sulphate Resistance

The cylinders exposed to a sodium sulphate solution were examined periodically for
indications of cracking. Mix 6 exhibited surface cracking after four months of exposure. The
deterioration progressively worsened. Up to six months the other grouts (Type II cement, Type V
cement, Mixes 7 and 8) did not show any visible deterioration. This is in agreement with predicted
response and further details on sulphate attack can be found in Neville (1996). It is recommended
that measures be taken to prevent sulphate attack of GHP grouts in areas where soils or groundwater
have high soluble sulphate content such as reducing w/c, use of sulphate resistant cements or partial
replacement of Type I cement with slag or fly ash. '

Environmental Impact

The environmental impact of Mixes 6, 7 and 8 was measured in terms of changes in the
chemistry of exposed water. The complete results for pH and concentrations of specific metals in
deionized water in contact with the grouts in both the fresh and hardened states are reported
elsewhere (Allan, 1997). It was determined that the leachability of elements from the grouts was
below the EPA drinking water levels. The pH of the water increased due to leaching of Ca(OH), and
this behaviour stabilized with time. Inclusion of slag or fly ash in the grout decreased the alkalinity
of the water.

Freeze-Thaw Durability

Mix 5 without the air entraining agent exhibited slight surface scaling at the competition of
the freeze-thaw tests. Aur entrained grout did not undergo any visual degradation. The average
decrease in ultrasonic pulse velocity of Mix 5 was 7.5%, whereas the air entrained version maintained
the same pulse velocity. However, the air entrained grout had a significantly lower thermal
conductivity of 1.553 W/m.K due to the introduced air void system which improves freeze-thaw
resistance.

Bore Length Design and Grout Costs

The required bore length depends in part on the thermal conductivity of the backfill grout.
Bore length calculations for different grout thermal conductivities, formation geologies and building
load have been conducted by senior Mechanical Engineering students at the University of Alabama
under the direction of Prof. S. Kavanaugh. Use of cement-sand grouts can significantly reduce the
required bore length and thus reduce installation costs. Further details of the findings are provided
in the FY 97 Annual Report. The estimated cost of Mix 5 is $0.626/gallon based on prices of
~ $5.15/94 Ib bag of cement, $3.00/100 Ib bag of sand and $5.25/gallon of superplasticizer. Sand prices
of $6.60/100 Ib bag have also been quoted for small orders. This increases the grout cost estimate
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to $1.00/gallon. Reduction of the superplasticizer dosage through use of a high shear mixer may be
possible and this would decrease the grout cost. This is being explored in current research. In
addition, the costs associated with prepackaging the dry ingredients are being investigated.

Grout Mixing

The relative merits of low shear paddle versus high shear colloidal grout mixers have been
discussed by Houlsby (1990), Domone and Jefferis (1994) and Widmann (1996). Paddle mixers are
less expensive than colloidal mixers, but also less effective and require greater mixing time. Discharge
from the mixing tank to the pump hopper is by gravity and, hence, is slower. The improved sand
carrying capacity, decreased water requirement, reduced bleeding and greater flowability of grouts
mixed colloidal mixers has been documented previously. Colloidal mixers improve wetting of the
cement and sand particles and prevent segregation.

Mixer studies in this work confirmed that a colloidal mixer would be preferred for GHP
cement-sand grouts. However, the grouts can also be mixed in a paddle mixer if necessary and if a
relatively high w/c is used. Irrespective of the mixer used, it is recommended that trial mixes be
performed and water or superplasticizer adjusted so that suitable pumpability is achieved. Variations
in sand gradations from the sand used in this work will also require trial mixes to determine
appropriate w/c. Any changes in mix proportions should be documented. It is cautioned that
excessive water or superplasticizer beyond that required will be detrimental to properties of the grout
such as bleeding, shrinkage, permeability, thermal conductivity, and durability. Therefore, the
amounts of water and superplasticizer required for a grout batch be measured accurately.

Colloidal mixers are usually used in conjunction with a larger capacity agitator in which the
grout is stored and agitated until use. This is necessary to keep the particles in suspension, and, in
the case of thixotropic grouts, keep the grout mobile and fluid. A colloidal mixer-agitator plant is
more expensive than a single paddle mixer. The advantages of the plant include shorter mixing time,
more rapid discharge, superior mixing, and resultant grout properties. Colloidal mixers are available
in a range of capacities (typically 60-127 gallons), including trailer mounted units. Centrifugal pumps
or propeller type mixers should not be used for mixing cement-sand grouts since mixing will be
unsatisfactory. Concrete ready mix trucks are also inappropriate for mixing of any type of grout.

The procedure for mixing the cement-sand grouts in either a paddle or colloidal mixer is as
follows (e.g., Houlsby, 1990):

1. Place required measured quantity of water in mixer.

2. Place required measured quantity of liquid superplasticizer in mixer.

3. Start mixer.

4. Place required measured quantity of fly ash or blast furnace slag in mixer if used.
5. Place required measured quantity of cement in mixer.

6. Place required measured quantity of sand in mixer.

7. Miix grout for specified time. :
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Quality Control

Fresh cement-sand grout can be checked to determine that it meets specifications by
performing appropriate quality control tests. These are measurement of specific gravity (ASTM D
854) and flow time (ASTM C 939). Documentation of these properties for each grout batch is sound
practice.

FY 98 Activities

In FY 98 it is planned to conduct two field demonstrations of a grout based on Mix 5 in
collaboration with Oklahoma State University and Sandia National Laboratories. In-situ thermal
conductivity measurements will be performed and compared with laboratory data. Heat pump
performance will be monitored over heating and cooling seasons. The field demonstration will enable
quantitative comparison of the selected cement-sand grout with conventional grouts under actual
working conditions. Further studies of permeability and bonding of cementitious grouts to U-tube
are in progress, including analysis of the effect thermal cycling. Shrinkage tests are being continued
for different mix proportions and the properties of commercially available grouts that contain
expansive agents are being measured. Collaboration with the University of Alabama to measure
thermal resistance per unit length for different grouts in an experimental rig is ongoing.

CONCLUSIONS

Superplasticized cement-silica sand grouts have thermal conductivities in the range of 2.161
to 2.531 W/m.X (1.249 to 1.463 Btu/hr f.°F) for sand/cement ratios by mass of 2 to 2.5. Cement-
sand grouts have significantly higher thermal conductivity than neat cement or bentonite grouts and
retain conductive properties under drying conditions. The grouts have permeabilities of the order
of 10" cmv/s and improved bonding characteristics to HDPE U-loop over neat cements. The increase
in thermal conductivity is predicted to decrease required bore length, and therefore reduce drilling
and materials costs associated with installation of vertically oriented heat exchangers for geothermal
heat pumps. The grouts can be mixed in a paddle mixer, although a high shear colloidal mixer would
be preferred and could allow reduction of water/cement ratio and superplasticizer dosage.
forthcoming field trials will provide information on the in-situ performance of the cement-sand grouts.
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