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ABSTRACT

For this program, Solarex developed a process sequence that could be used in o
manufacturing environment to produce high-cﬂ'icicncy silicon mn‘ccmr‘m(n‘ cells. The culvls
had large gridlines to minimize series resistance losses and a prismatic ?nvcr to minimize
shadowing. The front surface of the c(cll was textured to improve absorption of light and
passivated to reduce front-surface recombination. Two scbznr:ltc ditfusions steps were ‘uscd:
a deep emitter with a light surface concentration and a hcuvy diffusion to reduce
rcmmhinutioﬂ undcr‘ the front contacts. Cell efficiencies as high as 22.25% were

demonstrated at 75 suns and ov2r 21.5% at 150 suns air mass 1.5 ilumination.
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1.1

1.2

INTRODUCTION
Prograrh Objectives

The purpose of this program was to develop a process capable of producing
high-efficiency silicon solar cells for use at 100 to 200 suns concentration. This
process was intended to include techniques expected to improve cell efficiency

and result in a consistent and reliable module-ready end product. '

No specific efficiency target was established. However, the achievement of low
bulk resistivity silicon concentrator cells by researchers at the University of
New South Wales with efficiencies that exceeded 25% established a state-of-
the-art level we attempted to approach on Solarex’s cell production line.

Summary of Accomplishment |

‘S()]dl”bx developed a process sequence which resulted in 1.61 cm? low bulk

resistivity concentrator cells with efficiencies after attachment of prismatic
covers typically in the 20-21% range at 150 suns air mass 1.5.

The highest cftlucncy achieved during this px ogram was 22.25% at 75 suns.

At the conclusion ()t this program, Solarex had developed a cell structure that
had six photolithography steps. and two diffusion steps. Techniques including
surface passivation, patterned surface texturing, and deep emitter diffusions
with low surface dopant concentrations were introduced into a commercial
solar cell manufacturing environment.

Several problems associated with the measurement of the covered cells were
also addressed during this program. Active-area efficiencies bascd on
measurements of gridline coverage were found to be an unrcliuble indication
of cell efficiency after attachment of a prismatic cover. = Active-arca
efficiencies above 25% were measured on Solarex’s cells from this program
at Sandia National Laboratories. However, because uncovered cell short:
circuit-current densities included reflection from gridlines into the cell active-
area, the performance at concentration with a cover was overestimated. I Or
this program, Solarex analyzed losses remltmg from the cell covering
operation and evaluated apparent discrepancies in covered cell performance
based on uncovered active area measurements.



1.3

Approach

We selected a cell design that had a large area gridline coverage fraction to

minimize series resistance losses and a prismatic cover to divert light chat
otherwise would have been reflected from the gridlines, into the active area
of the cell. This approach was a continuation of previous work performed at
Solarex in which heavily metallized concentrator cells with prismatic covers
achieved 18-19% conversion efticiencies at air mass 1.5. The function of a
prismatic cover is illustrated in Figure 1-1 below. ‘

Our efforts focussed on optimizing our process steps to incorporate, as much
as possible, the successful high-efticiency cell fabrication techniques emerging
from university laboratories such as: front surface passivation, deep diffused
layers with low surface dopant concentration, and techniques to preserve and
perhaps even enhance minority carrier lifetimes.

We initially intended that the entire program be model-driven to as great an
extent as possible. As work on the program progressed, however, and as
results from a parallel program to develop a similar device at the University
of New South Wales became available, our emphasis shitted to taking
advantage of previously proven techniques as much as possible.
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Figure 1-1
Solar Cell with Prismatic Cover Attached
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Work on this program was organized into the following tasks:

Task 1: Device Characterization. Basic device and material parameters for
concentrator cells fabricated for previous programs were measured. Special
test samples were also prepared for this purpose. Electrical measurements at
various light levels, quantum efficiency vs. wavelength curves, reflectance
measurements, and spreading resistance profiles for both front and back
junctions were made. '

Task 2: Performance Improvement Modelling. We used the computer
program, PC-1D, to evaluate the effect of critical design parameters such as
bulk resistivity, cell thickness, minority carrier lifetime, dopant profile, and
surface recombination velocities on cell performance at concentration. The
results of the device characterization work were used as inputs to the model
as they became available.

Task 3:  Cell Improvement. Our development effort addressed problems
specific to a cell design having large metal area coverage. Cell structures were
fabricated with maoditications that included: elimination of the diffused region
under gridlines, limiting contact area between metal and diffused area, and
placement of a separate heavily ditfused layer under the gridlines to reduce
recombination. Top surface texturing, passivation, and deep emitter diffusions
with low surface dopant concentrations were included in the cell designs.

Task 4. Covering and Testing. Solarex subcontracted with Entech, Inc. to
design and attach prismatic covers to the cell to enable evaluation ol a
complete device. Predictions of covered cell performance based on one-sun
measurements was not a straightforward process because of reflections of
incident light from the gridlines into the cell active arca. This often resulted
in overestimation of one-sun short-circuit-current densities. Mcasurements of
cells at concentration was performed at Sandia National Laboratories.

Won o o . . ' ' ' e e oo
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PROCESS IMPROVEMENTS

Modelling -

The effects of critical surface and bulk parameters on the performance of the
baseline solar cells at concentration were studied using the computer model,
PC-1D [1]. Since PC-1D is a one-dimensional model, it is not designed to
directly handle effects that may result from the large metallized area
interacting with the cell emitter. However, by assuming that the open-circuit-
voltage is dominated by processes under the metal contacts and that the short-
circuit-current density is dominated by the solar cell active area, the effects of
cell design parameters on overall performance can be estimated,

Figure 2-1, shows the PC-1D simulation of the expected relationship between
open-circuit-voltage and surface recombination velocity. Rcducingy front
surface recombination velocity by two orders of magnitude--from 10° to 10*
cm/sec--will provide an increase of approximately 25 to 30 millivolts in the
solar cell open-circuit-voltage. An additional improvement of front
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SRV to 10° cm/sec would contribute only an additional 3 to 4 millivolts. As a result,
we targeted 104 cm/sec as an initial manutacturing goal which we believed would
provide the most significant improvements'in cell performance. Results are presented
for two values of munority carrier lifetime in the substrate which we believed
bracketed the range of post-processing conditions likely to be encountered in
production. Similar results are shown for short-circuit current in Figure 2-2, and
active-area-efficiency in Figure 2-3.

The role of minority carrier lifetime was studied w:th results’ .shown in I‘lg,uru 2-4 and
2-5. In silicon with 1 ohm-cm bulk resistivity, below a range of roughly 20 to 40
microsecond lifetimes degradation in all parameters is very rapid. Above that range,
incremental improvements are relatively less insignificant.

Recombination at the back surface can play an important role, particularly for thin
cells such as the 100 micrometer baseline cells. Even with a back-surface-field
included in the cell model, short-circuit-current density is strongly effected by
recombination for bulk resistivities less than about 1 ohm-cm. Figure 2-6 shows that
for .2 ohm-cm silicon an increase in current of 2% can occur as back surface
passivation improves the recombination velocity from 1x107cm/sec to 1x10%cm/sec.
The fill factor at' concentration decreases as bulk-resistivity increases as shown in
Figure 2-7, until a bulk-resistivity of near 10 ohm-cm is reached at which point
conductivity modulation begins to offset the lower bulk dopant density.

As has been confirmed by results from university laboratories, [2,3] a wide range of
bu'k resistivities can be used to make high-efficiency concentrator cells. This is
consistent with the modelled results shown in Figure 2-8. The best results are forecast
for the lowest bulk-resistivity provided that required surface properties can be
achieved, that bulk minority-carrier lifetimes can be maintained, and that the
relationship between lifetime and bulk-resistivity follows the default relationship built
into PC-1D.
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PC-iD Simulation of Short-Circuit-Current Density vs
Minority-Carrier Lifetime

According to our modelling studies, active area efficiencies at 150 suns (simulated by
a solar cell with 50% shadowing at 300 suns) above 23% could be achieved by
passivating the front and back surfaces of our baseline cells without reducing the
minority-carrier lifetimes. Using a technique developed by Paul Basore [4] to include
the effects of light trapping, an optimal thickness can be determined for various
degrees of surface passivation. This result is shown in Figure 2-8 which predicts that
active area efficiencies above 25% are possible. ‘
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Device Characterization

A study was performed to identify the fundamental surface and material
properties of our baseline cells to enable us to relate the actual measurements
to the parametric curves obtained from modélling. In particular, we focussed
on specific effects related to large metal contact areas. We developed a
method [5] which used a metallization pattern that formed nine 1 cm? cells on

‘a single substrate with metal coverage ranging from a few percent to nearly

full coverage. ‘ ‘

Reflectance measurements for a set of cells is shown in Figure 2-9; Quantum
efficiency was obtained for each cell, using an automated rotating filter-wheel
apparatus, Figure 2-10 shows the external quantum etficiencies for a set of
metallized cells. Using a linear fit to the reflectance data for the set of cells,
an internal quantum efficiency curve such as shown in Figure 2-11 was
derived. :
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Figure 2-9 ‘
Reflectance vs Wavelength for a Set of Cells
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An in-house model using various values for front-surface recombination
velocity, back-surface recombination velocity, and base diffusion length was fit
to the quantum efficiency data. Parameters derived from this technique and
the results from dark current-voltage curve analysis (generated from multi-light
level measurements) is shown in Tables 2-1, 2-2, 2-3.

TABLE 2-1
Surface Recombination Velocity
at Various Solar Cell Interfaces

n+/titanium (gridline) . 108107 em/second
n+/air 5 x 10% cm/second
n+/TiO, (antireflective coating) | 5 x 10° em/second

10




TABLE 2-2
‘Diffusion Length

Bulk Resistivity | Pre-processing ‘ Completed Cell
A8 ohm-cm 193 micrometers (SPV) 108 micrbmctcrs
‘350hm-cm | e | 143 micrometers
10 ohm-cm E E— | , >482 micrometers
TABLE 2-3

CURRENT DENSITIES

J,»¢ (Unpassivated emitter with AR coating) 5x 10713 AJem?

¢ (Metallized emitter) 2-3 x 1072 AJem?

J,, (Metallized back) | | 6-8 x 107" A/em?
23 Optical Properties

Table 2-4 shows resuits from spectrometer measurements from samples placed
in an integrating sphere. Each of these samples had a dual-layer, TiO,/ALLO;
antireflective coating on the top surface. Random pyramidal etching reduces
the reflectance integrated over the air mass 1.5 spectrum by 5.5% for the
uncovered samples. The cover, with an index of refraction of 1.4, reduces the
overall reflection from the untextured sample but contributes an additional 2%
to the reflectance of the textured sample since it is not covered with an
antireflection coating.  As a result, the reflectance of the textured sample
. covered with an Entech prismatic cover is only 1.4% less than a comiparable
~untextured sample with a cover. Reflectance versus wavelength curves for
~uncovered and covered wafers are shown in Figures 2-12 and 2-13
respectively. ‘

11




" TABLE 2-4

Reflectance of Silicon Wafers
with Dual Layer AR Coating

Silicon

Surface - Uncovered - Covered
Smooth .071 .050 "
Textured .016 . 036

The effect of the back surface topography on the cell’s reflectance is
illustrated in Table 2-5 which shows the results of measurements on silicon
wafer samples with dual antireflective coating layers on the front and
evaporated aluminum on the back. Texturing the front reduces reflection
across the visible spectrum while texturing the back reduces reflection in the
longer wavelengths.

Texturing both sides results in less long wavelength light being coupled out
through the front of the cell than texturing the front side only.

TABLE 2-5

Reflectance of Silicon Wafers with
Dual Antireflective Coating and Evaporated Aluminum on the Back

Estimated Loss .

Front Silicon Back Silicon in AM1.5 Reflectance at

Surface Surface Current from 1000

‘ : Reflection ‘ nanometers

Smooth Smooth . 073 64
Textured Smooth 037 21

Smooth Textured - .065 15
Textured - Textured .050 A5

12




Reflectonce

1 - t ! % %

3

B9 -

2,00

0,78 -

262

\ UNTEXTURED
TEXTURED /7

e T
- -’ﬂh‘_“

+Foee
Htepnirieny N N . N L qen

= t ! f t t 3 i } e st
350 AD3 459 52D 5E@ 6PD 65D MW 78 BAA HEY oy

Wavatangth (nm?

FIGURE 2-12
Reflectance vs Wavelength for
Textured and Untextured Silicon Wafers
without Prismatic Cover

T e e B e et S R e
#0984

0. 38 L‘ UNTEXTURED

TEXTURE

RN

Boan b / ...... .
I Bl SEpSRN ..'_!l':.'.: LA L LA AT £ S B (s Bt T
Lo .

204 - T | } e e e
A58 4P 4B SBB ARB BED GBR 24 75D

g ani
Wavalvoogtls (o)

FIGURE 2-13
Reflectance vs Wavelength for
Textured and Untextured Silicon Wafers
With Prismatic Covers Attached

13

u"‘.‘."”""‘,;,:

s

!

A oo

AN 1S 11aa

ang 1asp e

il



2.4

Surface Passivation

An experiment was performed to evaluate a procedure for growing an
effective passivating oxide. Three different substrates were used: .18 ohm-cm
float zone, .35 ohm-cm float zone, and 10 ohm-cm Czochralski silicon. An
oxide was grown on wafers from each of these resistivity groups in dry oxygen
at 875 degrees Centigrade for 10 minutes. Each group had a 75 ohm/square
phosphorus diffused layer, an aluminum-paste alloyed back, and was covered
with a dual antireflective coating whose performance was to some extent
compromised by the presence of the thermal oxide. A typical space cell
pattern with 32 micrometer wide gridlines on 1 millimeter centers was used.

Experimental groups with the following contacting methods were used:

A) A dot contact which reduced the grid-to- diffused layer contact area from
8% to .006%.

B) A control without a passivating oxide in which the entire gridline was in
contact with the diffused layer.

C) Full contact between the gridline and diffused layer but with a passivating
oxide covering the remaining cell active area.

D) The thin‘oxide grown during a pre-photolithography cleaning step which
was present in Groups A) and B), was not present.

The results are shown in Table 2-6 and 2-7. Open-circuit-voltages were
normalized to account for reduction in short-circuit-current caused by loss of
antireflection coating optimization. The highest open-circuit-voltage, 637
millivolts, was obtained usine the dot contact pattern and .18 ohm-cm silicon.
This is very close to the value of 638 millivolts predicted by Paul Basore [6],
for 200 micrometer, .2 ohm-cm silicon with minority-carrier lifetime of 10
microseconds. The lifistime of the .18 ohm-cm float zone silicon we used was
10.7 microseconds as determined by surface-photovoltage measurements at
Wacker. '

14
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Based on a comparison of Groups B) and C), we concluded that passivation

contributed to improving open-circuit voltages by reducing recombination at
the contact between the gridline and diffused layer. The presence of the
native oxide grown during our wafer cleaning procedure does not dppuxr to
have a statistically significant effect on cell performance

It is mteresting to note that the presence of a passivating oxide (or the process
used to form it) decreased rather than increased the open-circuit-voltages of
cells fabricated from 10 ohm-cm Czochralski silicon substrates, In addition,
comparison of Tables 2-6 and Table 2-7 indicates that open-circuit-voltages of
cells at the high side of the resistivity range studied improved with sintering
while the low-bulk-resistivity cells degraded with sintering.

Although higher open-circuit-voltages are achievable using .18 ohm-cm float-
zone silicon, we believed that the results of this matrix indicated that our
passivating oxide growth technique was effective. Additional fine-tuning of the
oxide growth procedure was performed throughout the program.

Diffused Layer Optimization

In an attempt to approach the open-circuit-voltages achieved at the University
of New South Wales [7] we began to apply the procedure used there of a
high-temperature, 3-hour, alloy step, to our solar cells. Instead of the shallow
(.3 micrometer) junction depth used in our previous cell structures, this step
resulted in emitters over a micron deep. Deep emitters covered with a good
passivating oxide in low bulk resistivity silicon can be expected to reduce
surface recombination.[8] There is also the possibility that gettering occurs
resulting in improved post-processing minority-carrier lifetimes [9].

The first attempts to incorporate this procedure in our cell fabrication
sequence resulted in severely reduced short-wavelength response. It was
necessary to increase the pre-oxidation sheet resistivity in order to achieve the
desired 7S ohm/square diffused layer after oxidation. Solarex’s diffused laycer
produced by phosphine diffusion fell to a far lower sheet resistivity than

- diffused layers with comparable sheet resistivity produced by a solid s surce

dopant at the University of New South Wales. We believe the difference to
be attributable to a higher surface concentration of phosphorous resulting
from phosphine diffusions with a larger amount of electrically inactive
phosphorous that does not contribute to conductivity after the pre-deposition,
but which diffuses into the silicon during the relatively long drive-in.
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Using a modified mixture of gases as suggested by A. Cuevas [10] we were
able to produce a diffused layer with the intended 75 ohms/square shest
resistivity after the long oxidation/gettering step which did not suffer from the
loss of short-wavelength response found in our earlier attempts. The sheet
resistivity following the pre-deposition was 180 ochms/square. ‘

An empirical approach to forming ohmic contacts described in section 2.6
resulted in several problems. In order to establish an ohmic contact that would
not adversely effect fill factor at concentration, it was necessary to use a larger
gridline/diffused layer contact area on the order of at least several percent of
the diffused area. This still allowed a significant contribution to recombination
at the gridline/diffused layer; and efforts to reduce the surface concentration
of the emitter made it more difficult to form an ohmic contact.

This lead to the use of two separate diffusion steps that would permit
optimization of .the emitter and contact areas independently. Since
recombination at passivated current-collecting areas decreases as sheet
resistivity increases and recombination at metallized area decreases as sheet
resistivity decreases [11], this would allow a decoupling of two parts of the
solar cell structure with diametrically opp. sed requirements. This structure
which uses a deep heavily diffused region under metallized areas has been
proposed [12] and developed [13] in previous work.

Spreading resistance measurements of the dopant profiles before and after
oxidation are shown for the emitter region in Figure 2-14 and the metallized
region in Figure 2-15.

Elimination of Shunting Paths

As the process sequence became more complex and as the number of
photolithography steps increased, the opportunities for processing errors also
increased. Despite the great care exercised in maintaining wafer cleanliness
and use of proper handling techniques, a disturbingly large number of cells in
the experimental groups were shorted out.

Observation of shorted cells under reverse bias using infrared imaging
equipment supplied by Innovative Inspections, Inc. of Beverly, Massachusetts,
identified three distinct shunting paths:

. a) Pinhole in the insulating lay€r between the busbar and the substrate.
This is illustrated in Figure 2-16 and was corrected by protecting the
oxide during brief exposures to hydrofluoric acid during post-diffusion
deglazing steps and later by redepositing the oxide layer.

18
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b) Etching of insulating layer at imdge of alighment pattern at the
corner of the cell. :

This is shown in Figure 2-17 and was eliminated by removing the alignment
pattern from usable ce]l positions on the photolithography masks.

¢) inadequate separation between busbar and undiffused p-region
underneath. This mechanism is shown in Figure 2-18. Since the
insulating oxide under the busbar had been used to also define the
diffused region, a corner existed where because of the close proximity
between the busbar and the substrate, the cell was vulnerable to shorts.
This is illustrated in Figure 2-19. It is also possible that tunnelling
occurred. This shunting mechanism was corrected by stripping the
oxide used to define the diffused region and then redepositing an oxide
over the area intended for the busbar that also covered approximately
10 microns of the diffused layer. The revised structure is shown in
cross-section in Figure 2-20. Any penetration of the oxide layer at the

-oxide/silicon interface would then be to the diffused layer rather than

to the substrate. This structure was used beginning with experimert 13
and resulted in a significant reduction in the number of shorted cells.

FIGURE 2-16
Infrared Thermogram Showing Pinhole Short
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FIGURE 2-18
Infrared Thermogram Showing Short Between Busbar and Substrate
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2.7

Summary of Experiments

Throughout this program, groups of silicon wafers were processed to
characterize the fabrication techniques being considered and to optimize
selected critical variables. A balance between avoiding excessive complexity
and obtaining the maximum available information from each group processed
was maintained. As the program progressed, a learning curve occurred result-
ing in progressively greater control over experimental procedures and pro-
cessing steps. Experimental groups typically consisted of 25 to 75, 3-or 4-inch
diameter wafers with a maximum potential of 21 cells per wafer processed.

Controls were run with each experiment. An attempt was made to limit the

number of variables changed. Sometimes, however the variables were

interactive -- such as n+ contact area and diffused layer sheet resistivity --
resulting in a combination of changes occurring at one time.

An overview of each experiment is given below. Key results are presented in
greater detail in section 3.0. '

Baseline _cells. Solarex previously fabricated over 1000 1.58cm? silicon
concentrator cells, as part of DOE contract No. DE-AC05-84ER80126, to be
covered with an Entech prismatic cover and used in an Entech "crossed lens"
point-focus module. These cells had close to 50% front grid metallization
coverage to maximize cell fill factor at the 160 sun design concentration. A
picture-frame type busbar surrounded the periphery of the cell with a
deposited oxide underneath to prevent the diffused layer from forming under
the bus. This oxide resulted in a planar diffused region which prevented
contributions to reverse saturation current from large shadowed junction
areas. The initial cells were processed using .35 ohm-cm float zone silicon
approximately 225 microns thick. However, because of low fill factors
(believed to be the result of large metal area in contact with the unpassivated
silicon surface, thinner (100 micron) 1 chm-cm float zone silicon was used.
This enabled cells with good fill factors to be produced up to 160 suns but
resulted in some loss of generated current because of the reduced silicon bulk
without adequate provision for light-trapping. Cells with prismatic covers
attached were typically in the 18-19% range.

Experiment 01. Samples were prepared for reflectance measurements during
the device characterization phase of the program. These included samples with
pyramidal texturing on front and/or back surfaces with and without evaporated
aluminum. Optical properties of samples were also evaluated with prismatic
covers attached to evaluate the performance of the entire optical package.
Results from these measurements are reported in Section 2.3.
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Experiment 02. Samples were prepared using a mask that generated several
cells on each wafer with gridline widths that spanned a range from less than
1% coverage to over 90%. This was intended to evaluate the specific effects
of the large metal area in contact with the diffused layer. A method was
developed to separate the contributions to surface recombination velocity from
the metallized and non-metallized regions. The results of this study in shown
in Section 2.2. | -

Experiment 03. The first complete concentrator cells for this program were
fabricated with the 75 ohm/square diffused layer not placed under either the
busbars or gridlines. By doing this we attempted to extend the benefit of the
planar junction to under the gridlines. These cells also had random pyramidal,
texturing of both front and back surfaces and were fabricated from 250 micron
thick .18 ohm-cm float zone silicon. Active area efficiencies for these cells

~ were around 20% showing no improvement over the baseline cells. Martin

Green fabricated cells using a similar structure having no diffused layer under
the gridlines and found no benefit [14] because the width of the gridline was
less than a diffusion length.

Experiment 04. A layer of tin oxide was deposited on a diffused silicon wafer
to evaluate the possibility of incorporating a transparent conductive oxide
layer into the cell structure. The intent was to reduce ditfused layer resistance
and would have drawn upon the deposition capabilities of Solarex’s Thin Film
division in Newtown, Pennsylvania. However, titanium-palladium-silver front
contacts evaporated through a shadow mask failed to make ohmic contact to
the coating. As a result, no further work was pursued using transparent
conductive oxides.

Experiment 05. Following an optimization matrix, cells with a thin thermally
grown passivating oxide were fabricated. A pattern of small discontinuous dots
comparable in density to the cells in the optimization trial, were placed under
the gridline. Poor fill factors at 1 sun resulted from inadequate contact of the
metal layer through the thin oxide to the diffused layer.

Experiment 06. Experiment 05 was repeated using larger contact areas
optimized more for good ohmic contact than for optimal open-circuit-voltages.
The result was reasonable fill factors at one sun (approaching .80). However,
the fill factors dropped to unacceptably low levels as the concentration level
reached as little as 50 suns. :
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Experiment 07. Even larger percent contact areas were evaluated. Although
.80 fill factors at 300 suns (to simulate a cell with 50% metallization coverage
at 150 suns) were achieved, the most consistently high fill factors were
achieved on cells with 3% of the 75 ohm/square diffused layer in contact with
the gridline metallization. The contact area, however was nearly two orders of
‘magnitude greater than the "dot" contact used in the optimization study.

Experiment 08. As reports of success at the University of New South Wales

with a 3-hour alloy/oxidation step became available, we decided to incorporate

‘this step into our process to improve open-circuit-voltages and short-circuit
currents. This step deepened the front and back junction and (presumably)
improved the minority carrier lifetime of the bulk silicon by gettering. Our first
attempt on (simpler one-sun) test cells resulted in severe loss of short
wavelength response. This was due to excessive dopant concentration in our
75 ohm/square diffused layer which in addition had a larger component of
inactive phosphorus than a comparable sheet resistivity produced at UNSW
using a solid phosphorus dopant source.

Experiment 09. A new structure was fabricated using separate diffusion steps

for the contact areas and the emitter. Dopant concentrations were adjusted
to produce desired profiles after the high temperature thin oxide growth.
Various contact patterns were evaluated with best results coming from cells
with the entire width of the gridline in contact with a deep diffused region of
the same width., Cells were fabricated using .18 ohm-cm float-zone silicon
supplied by Wacker.

Experiment 10. In an attempt to improve the consistency of the ohmic contact,
experiment 09 was repeated with cells in which only the current collecting
areas were textured. The deep-diffused regions where the gridlines contacted
the silicon were formed on polished silicon strips under the gridlines. This
however, did not provide any noticeable 1mprovement In fact overall cell
performance at one-sun was worse than the previous group because of
inconsistent processing.

Experiment 11. A cell structure with a polished front and textured back was
fabricated. Results from Section 2.3 suggested that with a prismatic cover the
disadvantage of not having a textured front would be minor.

Experiment 12. Experiment 10 was repeated using a matrix of diffusion

profiles and contacting patterns. Best results occurred for cells with the deep

diffused region under the gridline occupying the entire width of the gridline.

Egperiment 13. Experiment 12 was repeated using .35 ohm-cm float-zone
silicon. Based on the results of infrared imaging of cells from previous groups,

1A
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2.8

the insulating layer under the busbars used as a diffusion mask was
redeposited to eliminate shorting that occurred between the front metal and
the base. The best covered cell from this program with an efficiency of 22.25%
at 75 suns came from this group.

Experiment 14. Experiment 13 was repeated using .18 ohm-cm float-zone
silicon and a heavier dopant concentration under the metallized regions.
Improvements in fill factor and open-circuit-voltage were achieved which were
offset by reductions in short-circuit-current density.

Cell Structures

Figures 2-21 through 2-23 show cross-sections of the cell structures used in
experiments 03 through 07 and in experiment 10.

Four variations of the metal/diffused layer contact structure, shown in Figure
2-24, were evaluated in experiments (09, 10, 11, and 12. The best and most
consistent results came from the structure shown in Figure 2-24.

A top view showing the cell gridline pattern used throughout the program is

shown in Figure 2-28. :
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FIGURE 2-23
Solar Cell Cross Section:
Reflective Pyramids on Back
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FIGURE 2-24
Solar Cell Cross Section: Various
Double Diffusion Contacting Methods
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RESULTS

Electrical Measurements

Table 3-1 summarizes the electrical characteristics of cells selected from the

various experimental groups. Efficlencies at concentration measured after
attachment of prismatic covers by Entech, Inc. are compared with expectations
based on active-area efficiency calculatiom.

The cell active area efficiency is given by,

(P

)
max
Cx(.1W/cm?)x(1.62cm?) x (1-PercentCoverage)

n act™

where,
P .. is the maximum power in Watts,
C is the concentration ratio, and

Percent Coverage represents the area of the solar cell inside the
busbars that is shadowed by gridlines.

For cells with 50% gridline coverage, uncovered cells were measured at twice
the concentration level of the covered cell efficlency to be simulated. The
actual concentration level simulated is,

I (C
sc meﬂﬁ)_ x (1-PercentCoverage)

Coimulated™ T. (1sun)
8¢

Efficiencies after attachment of prismatic covers were generally 8.5-13.5%
lower than we expected from the above active area efficicncy calculation.
Cells with active area efficiencies of over 25% dropped to 21-22.25% after
attachment of prismatic covers. Linewidths were measured optically both at
Solarex and at Sandia with reasonable consistency between the two
measurements; data’ for both 1-sun and concentration were obtaired at
Sandia. The relationship between efficiency measurements on covered cells
and expectations based on active area efficiencies is shown in Figure 3-1.
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ACTUAL COVERED EFFICIENGY AT 150X

3.2

D17 .16 021 0.23 0.25
‘ EXPECTED EFFICIENCY

FIGURE 3-1
Covered Cell Efficiencies at Concentration vs. Expectation

Analysls of Covered Cell Losses

To understand the apparent discrepancy between the efficiencies of covered
cells shown in Figure 3-1 and expectations based on active area efficiencies of
uncovered cells, a series of LBIC (Laser Beam Induced Current) scans were
performed by Sandia. Figure 3-2 shows a LBIC scan which traversed the
diagonal of a covered cell (12-5-1) perpendicular to the gridlines. Some
relative loss in generated current occurs as the busbar is approached at either
end resulting in a loss of approximately 5% in potentially available short-
circuit-current, There are also a few downward "spikes" which correlate with
visual defects in the covered cell such as minor cover delaminations and local
misalignments, Patches of reflective arcas that form Moire patterns [15]
between the gridlines and coverslide "prisms" were noticeable in varying
degrees on many of the covered cells. The reflectivity appeared to be a strong
function of the angle of incidence and was frequently noticeable near the
periphery of the cell illuminated area.
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Figure 3-3 shows LBIC results from a scan across the diagonal of a cell (13-
A3-10-3). A prismatic cover was applied and then removed from the portion
of the cell shown on the right-hand side of Figure 3-3. The maximum current
generated from the covered section of the cell Is approximately 2-3% less than
the normalized current generated in the uncovered section, This is the result
of reflection losses from the top surface of the prismatic cover and is
. consistent with the conclusions of section 2.3,
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FIGURE 3-3

LBIC Scan of Cell with Cover Partially Removed

The combined losses from cover defects and reflection from the top surface
of the prismatic cover, however, do not account for the entire discrepancy
between actual covered-cell resuits and expectations. The LBIC scan of
Figures 3-4 and 3-5 show how uncovered cell short-circuit-current densities
were overestimated because of reflection of incident light into the cell active

area, ‘
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FIGURE 34
LBIC Scan of Uncovered Cell
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LBIC Scan of uncovered cell

Figure 3-4 shows a LBIC scan across an uncovered cell (7-D2-7). When the

~ laser beam traverses the gridline there is (almost) no current generated. The

transition to the active region is fairly sharp and occurs over a distance
approximately on the order of the beam width. For this cell, the gridline width
calculated using the distance between points at which 50% of the normalized
light is generated is fairly close to the optically determined linewidth.
However, the opposite is the case in Figure 3-5 in which the scan across the
uncovered cell (B2-5) shows varying amounts of current generation as the
laser beam moves across the gridline. The curve never approaches zero
current generation, apparently the result of light being reflected from the
gridline into the cell active area. As a result, the short circuit current
measured on uncovered cells is deceptively high and leads to an. over-
estimation nf the active area efficiency.
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4.1

4.2

MANUFACTURING TECHNIQUES

Table 4-1 provides a detailed list of steps used for the final cell fabrication

~ groups.

Comparison' with Conventional Cell Fabrication Techniques

The ¢ell fabrication sequence described in the previous section, requires
approximately two weeks for a trained technic¢ian to complete. This is roughly

‘twice the time required to proces: a standard space qualified silicon solar cell

at Solarex. The only non-standard equipment used is a mask aligner.

Several critical requirements, not significant in conventional cell processing,
are important: :

Maintaining accurate alignment of sequential photomasking steps
Controlling 'diffusion conditions with lower dopant concentration to be
compatible with subsequent oxide growth steps

Keeping passivating oxide sufficiently thin so as to not reduce effectiveness of
the antireflective coating

Obtaining heavily doped silicon with relatively long minority carrier lifetimes
Maintaining a higher degree of cleanliness for wafers and process equipment
than is typically required for space cell fabrication

Prismatic Cover Attachment

Although excellent results have been achieved by Entech, Inc. by attaching
prismatic covers to very similar devices fabricated at the University of New
South Wales [16], some additional optimization may be appropriate before the
technique is used in a large-scale production environment.

As stated in section 3.1, we believe that covered cell performance falling short
of expectations to be largely the result of over-optimistic active area efficiency

- measurements. In addition, however, some covering losses--such as local

misalignments, delaminations, and lens shape modifications caused by adhesive
in the grooves -- may be avoidable in the future. The process, as applied to
these experimental cells requires a fairly high degree of personal skill and
experience and might be difficult to control in production. An experimental
technique being studied at Sandia to directly mold covers onto cells covered
with silicone rubber may be a step in the direction of solving that problem.
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TABLE 4-1 |

'CELL FABRICATION SEQUENCE (EXPT 14)

" STEP

COMMENT
ETCH o
ETCH 325 MICRONS, 25% NaOH
CLEAN _ \
TEXTURE MASK |
GROW OXIDE WET 0,, 950 DEG C FOR 3 HRS
PHOTOLITH 1 | |
HF/RESIST REMOVAL OPEN ACTIVE AREA TO BE TEXTURED
KOH ETCH TEXTURING
KOH | 4% SOLUTION WITH IPA, 100°C, 12 MIN.
CLEANING RANDOM PYRAMIDS 10 MICROMETERS HIGH

DEEP DIFFUSION MASK

LIGHT DIFFUSION PATTERNING

950 DEG C IN PHOSPHINE FOR 15 MIN

PHOTOLITH 3 |
HF/RESIST REMOVAL OPEN EMITTER REGION
RCA CLEAN _ |

LIGHT DIFF. 832 DEG C. REDUCED PH3

THIN OXIDE GROWTH
RCA CLEAN
THIN OXIDE

980 DEG C FOR 3 HRS

ALUMINUM ALLOY/HCL

OXIDE PATTERNING
PHOTOLITH 4
HF/RESIST REMOVAL

CLEAN

ALUMINUM PASTE

OPEN AREA FOR OPPOSITION OF BUSBAR
INSULATION

~ Si02 EVAPORATION

PHOTOLITH 5

SiO2 EVAP. 1200 ANGSTROMS
RESIST REMOVAL
METAL MASK :
PHOTOLITH 6 DEFINE GRIDLINE & BUSBAR PATTERN

(3]
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STEP

, TABLE 4-1 (continued)
CELL FABRICATION SEQUENCE (EXPT 14)

TEST

STEP COMMENT

FRONT EVAP 2500 ANGSTROMS Ti, 1600 ANGSTROMS Pd
LIFTOFF._ B

BACK EVAP 2500 ANGSTROMS Ti, 1600 ANGSTROMS Pd

AG 50% COVERAGE, 8-10 MICRONS THICK |

AR Y% WAVELENGTH TiOx, ALO, |

SAW/SINTER

AMLS DIRECT

W
4]
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5.2

CONCLUSIONS

Potential for Manufacturing ngh Efficiency Concentrator

Throughout this program, our capability of producing high-efficiency solar cells
progressed as we incorporated high-efficiency fabrication techmqueﬂ; into the
manufacturing environment at Solarex.

Use of concentrator solar cells designed for use with a prismatic cover clearly
have the advantage eliminating the compromise between shadowing and grid
conductance losses.

We did not come as close as we would have liked (or expected prior to the

results of section 3.2) in closing the gap between the state-of-the-art
established at the University of New South Wales or Stanford and commercial
solar cell production. However we did develop a technique that we believe has
the potential--with some additional optimization -- for producing large
numbers of high-efficiency concentrator cells.

Future Directions

Several areas stand out as possibilities for further work:

Steps could be taken to further improve wafer cleanliness during high
temperature oxidation and diffusion steps. Because equipment was not
available at Solarex to safely introduce 1, 1, 1 Trichloroethane (TCA) into our
quartz tubes, we relied on modified cleaning techniques which perhaps

resulted in less than optimal bulk and surface properties.

It is possible that the process sequence could be simplified to eliminate one
or more of the photolithography steps.
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