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ABSTRACT

Volume | of this report presents a framework for the inclusion of the
impact of common cause failures in risk and reliability evaluations.
Common cause failures are defined as that subset of dependent failures
for which causes are not explicitly included in the logic model as basic
events. The emphasis here is on providing procedures for a practical,
systematic approach that can be used to perform and clearly document the
analysis.

The framework comprises four major stages:

1. System Logic Model Development. The basic system
failure logic is modeled in terms of basic events that
represent component status.

2. Ildentification of Common Cause Component Groups. The
principal object is to identity, using quantitative and
qualitative screening, the groups of components that
are felt to have significant potential for common cause
failures.

3. Common Cause Modeling and Data Analysis. Common cause
basic events are defined for inclusion in the logic
model, to represent the residual dependent failures and
probability models are constructed for each new basic
event. At this stage, the logic model is extended from
a component state basis to a component group impact
basis. Historical data on multiple failure events are
analyzed and the parameters of the probability models
for common cause basic events estimated.

4. System Quantification and Interpretation of Results.
The results are integrated into the system and sequence
analyses and the results are analyzed.

The framework and the methods discussed for performing the different
stages of the analysis integrate insights obtained from engineering
assessments of the system and the historical evidence from multiple
failure events into a systematic, reproducible, and defensible analysis.

The present volume contains a series of appendices that provide
additional'background and methodological detail on several important
topics discussed in Volume 1.
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GLOSSARY OF TERMS AND DEFINITIONS

In order to better communicate the procedures and guidance presented in
this report, it is necessary and useful to summarize in one place the
definitions of terms used frequently in dependent events analyses. More
in-depth definitions of some of these terms are provided at appropriate
points of the report, as needed, to provide a clear description of the
methodology. Concise definitions are presented below.

1. Component. A component is an element of plant hardware
designed to provide a particular function. Its boundaries
depend on the level of detail chosen in the analysis. The
hierarchy of the level of detail of modeling a plant in risk
and reliability analysis flows from plant, to system, to
subsystem, to component, then to cause (see definition
below). For system modeling purposes, a component is at the
lowest level of detail in the representation of plant
hardware in the models. Events that represent causes of one
or more component states in a system logic model
(e.g., fault tree) are found at the level of detail below
the component.

2. Component State. Component state defines the component
status in regard to the function that it is intended to
provide. In this context, the following two general
categories of component states are defined (the same states
apply to higher levels of plant hardware, such as system):

a. Available. The component is available if it is capable
of performing its function according to a specified
success criterion. (Not to be confused with
availability, which is defined below.)

b. Unavailable. The component is unable to perform its
intended function according to a stated success
criterion. It is important to note that the success
criterion defined by the analyst to enable him to
distinguish between available and unavailable states is
not unique. This is because there are cases of several
functions and operating modes for a given component,
each with a different success criterion. Also, a given
event in one plant may be classified differently than a
similar component in another plant with different
success criteria. Therefore, the specification and
documentation of the success criteria and the
reconciliation of potential mismatches between the data
base and systems models become important tasks of the
systems analyst.

Xiii



Two subsets of unavailable states are failure and
functionally unavailable. Note that "unavailable"
should not be confused with "unavailability," which is
defined below.

(1) Failure. The component is not capable of
performing its specified operation according to a
success criterion. In order to restore the
component to a state in which it is capable of
operation, some kind of repair or replacement
action is necessary. Additionally, the event may
also be considered a failure when a component
performs its function when not required or performs
its function as required, but does not stop
operating once meeting its success criteria.

The latter is equivalent to saying that stopping
when required is part of the success criterion.
Therefore, failure encompasses functioning when not
required, as well as not functioning when required.

(2) Functionally unavailable. The component is capable
of operation, but the function normally provided by
the component is unavailable due to lack of proper
input, lack of support function from a source
outside the component (i.e., motive power,
actuation signal), maintenance, testing, or the
improper interference of a person.

Sometimes, although a given success criterion has been
met and the component has performed its function
according to the success criterion, some abnormalities
are observed that indicate that the component is not in
its perfect or nominal condition. Although a component
in such a state may not be regarded as unavailable,
there may exist the potential of the component becoming
unavailable with time, other changing conditions, or
more demanding operational modes. Events involving
these potentially unavailable states provide valuable
information about causes and mechanisms of propagation
of failures and thus should not be ignored. The concept
of potentially unavailable states also serves a
practical need to enable the consistent classification
of "grey area" cases and difficult-to-classify
situations. The following component state category is
defined for this situation.

Potentially Unavailable. The component is capable of
performing its function according to a success
criterion, but an incipient or degraded condition, as
defined below, exists.

(1) Degraded. The component is in such a state that
it exhibits reduced performance but insufficient
degradation to declare the component unavailable
according to the specified success criterion.
Examples of degraded states are relief valves
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opening prematurely outside the technical
specification limits but within a safety margin and
pumps producing less than 100% flow but within a
stated performance margin.

(2) Incipient. The component is in a condition that,
if left unremedied, could ultimately lead to a
degraded or unavailable state. An example is the
case of an operating charging pump that is observed
to have excessive lube oil leakage. If left
uncorrected, the Ilube oil could reach a critical
level and result in severe damage to the pump.

A key to distinguishing between degraded and incipient
conditions is the knowledge that an incipient condition
has not progressed to the point of a noticeable
reduction in actual performance, as is the case with a
degraded condition.

It is important to recognize that potentially
unavailable is not synonymous with hypothetical.

Both incipient and degraded conditions are indicative of
observed, real component states that, without corrective
action, would likely lead to unavailable component
states.

Although the above potentially unavailable states are
often used in event report classification in support of
parameter estimation, system models (e.g., fault trees)
generally do not model states other than success or
unavailable. Therefore, how potential states are
"mapped" into two state models is an important subject
of this procedures guide.

Cause. A cause is simply an explanation for why a component
became unavailable or is potentially unavailable. In
complete, traditional system logic models, the cause level
is the most detailed level of analysis and is almost always
implicit in the quantification model, being located below
the component level. With every cause, there exists a
mechanism fully or partially responsible for the state of a
component when an event includes a single component state;
the cause of the component state is referred to loosely as a
root cause. In more complex events involving two or more
component states, a particular component state or set of
component states can result from either a root cause or can
be caused by the state of another component; i.e., component
cause.

Event. An event is the occurrence of a component state or a
group of component states.
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Independent Event. An independent event is an event in
which a component state occurs, causally unrelated to any
other component state. Two events, A and B, are independent
if and only if P(A and B) = P(A) « P(B).

Dependent Event. If an event is not independent, it is
defined as a dependent event. Two events, A and B, are
dependent only if

P(A and B) = P(A) *+ P(BJA) = P(B) P(AB) t P(A) *+ P(B)

Common Cause Event. It is not the purpose of this report to
resolve, once and for all, the issues associated with
attempts to provide a clear and unambiguous definition of
the term "common cause event." The only way to treat these
issues is to adopt a cause-effect event classification
system, such as that described in detail in Reference 2-4
and summarized in Appendix A. Here, we define what common
cause events mean to the systems analyst. In the context of
system modeling, common cause events are a subset of
dependent events in which two or more component fault states
exist at the same time, or in a short time interval, and are
a direct result of a shared cause. It is also implied that
the shared cause is not another component state because such
cascading of component states is normally due to a
functional coupling mechanism. Such functional dependencies
are normally modeled explicitly in systems models without
the need for special common cause event models. The special
models that have been developed to model common cause
events, such as the beta factor, binomial failure rate,
multiple Greek letter, basic parameter, common load, and
other models, all apply to root-caused events branching into
impact multiple components, but are generally not applied to
component-caused events. A more focused definition of
common cause events is presented in Section 2.

Root Cause. Ideally, the cause of an event can be traced to
an event that occurred at some distinct but possibly unknown
point in time. These causal events are known as "root
cause." There are four general types of root causes.

a. Hardware. Isolated random equipment failures due to
causes inherent in the affected component.

b. Human. Errors during plant operations (dynamic
interaction with the plant), errors during equipment
testing or maintenance, and errors during design,
manufacturing, and construction.

c. Environmental. Events that are external to the

equipment but internal to the plant that result in
environmental stresses being applied to the equipment.
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d. External. Events that initiate external to the plant
that result in abnormal environmental stresses being
applied to the equipment.

9. Coupling Mechanism. A coupling mechanism is a way to
explain how a root cause propagates to involve multiple
equipment items; e.g., components. The three broad
categories of coupling mechanisms are functional, spatial,
and human.

a. Functional Couplings

(1) Connected equipment. Encompasses plant design
involving shared equipment, common input, and loop
dependencies plus situations in which the same
equipment provides multiple functions.

(2) Nonconnected equipment. Encompasses interrelated
success criteria, such as the relationship between
a standby system and the system it is supporting.
More subtle forms of nonconnected equipment
couplings are environmental conductors, such as
heating, ventilation, and air conditioning systems.

b. Spatial Couplings

(1) Spatial proximity. Refers to equipment found
within a common room, fire barriers, flood
barriers, or missile barriers.

(2) Linked equipment. Equipment in different locations
that, although not functionally related, is
similarly affected by an extreme environmental
condition possibly due to the breach of a barrier.

c. Human Couplings. Refers to activities, such as design,
manufacturing, construction, installation, quality
control, plant management, station operating procedures,
emergency procedures, maintenance, testing and
inspection procedures, and implementation, etc.

10. Unavailability. The probability (relative frequency) that a
system or component occupies the unavailable state at a
point in time. In applied risk and reliability evaluations,
this point in time is when a randomly occurring initiating
event or system or component challenge occurs. Availability
is the complement of unavailability.

11. Unreliability. The probability (relative frequency) that a
system or component fails (in regard to specified success
criteria) during a specified time interval. This time
interval is often referred to as the "mission time."”
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12.

13.

14.

15.

16.

Shock. A concept used in some common cause models, such as
the BFR model, to explain how component states other than
intrinsic, random, independent failures occur. A shock is
an event that occurs at a random point in time and acts on
the system; i.e., all the components in the system
simultaneously. There are two kinds of shocks distinguished
by the potential impact of the shock event, as defined below.

a. Lethal Shock. A lethal shock is a shock in which all
the components in a system are failed, with certainty,
any time the shock occurs.

b. Nonlethal Shock. A nonlethal shock is a shock that has
some independent chance that each component in the
system fails as a result of the shock. The range of
possible outcomes (each having a different probability
of occurrence) of a nonlethal shock range from no
component failures to all the components failed.

Common Cause Component Group. A group of usually similar
components that are considered to have a high potential of
failing due to the same cause.

Common Cause Basic Event. An event involving common cause
failure of a specific subset of components within a common
cause component group.

Impact Vector. An assessment of the impact an event would
have on a common cause component group. The impact is
usually measured as the number of failed components out of a
set of similar components in the common cause component

group.

Defensive Strategy. A set of operational, maintenance, and
design measures taken to diminish the frequency and/or the
consequences of common cause failures. Common cause design
review, surveillance testing, and redundancy are, therefore,
examples of tactics contributing to a defensive strategy.
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INTRODUCTION

This is the second volume of a two-volume report on Procedures for Treating
Common Cause Failures in Safety and Reliability Studies developed under the
joint sponsorship of the Electric Power Research Institute and the U. S. Nuclear
Regulatory Commission.

The overall objectives of this work are to:

1. Provide a procedural framework for system-level common cause
analysis for use in applied risk and reliability evaluations by
and for the nuclear industry.

2. Provide a comprehensive and integrated systems analysis framework
for common cause events analysis that includes a proper balance
between qualitative and quantitative aspects.

3. Provide guidance and analysis techniques to circumvent some of the
practical problems facing the common cause events analyst.

4. Account for advances that have been made in the state of the art
in common causes and thereby serve to update previously published
PRA procedures guides.

5. Identify important interfaces between the various tasks, including
qualitative analysis, systems modeling, event classification,
parameter estimation, and quantitative analysis tasks.

6. Provide the flexibility of choice among alternative systems
modeling approaches and techniques for parameter estimation and
data handling when alternatives exist and when the superior choice
cannot be easily determined.

7. Solicit a sufficiently broad base of input to achieve a consensus
on the principles of common cause failure analysis to the extent
possible within the constraints of schedule and budget.

Volume |, entitled "Procedural Framework and Examples," presents a framework and
a set of procedures for the analysis of system-level common cause failures in
risk and reliability studies. This procedure irvvolves four major stages, each
of which contains a number of steps, as outlined in Figure 1 and explained in
detail in Section 3 of Volume |I.

The present volume contains a series o* appendices that provide additional
background and methodological detail on several important topics discussed in
Volume 1. Each appendix is self-contained and addresses one specific issue



Stage 1 - System Logic Model Development
Steps
System Familiarization

Problem Definition
Logic Model Development

-_— A =
wh =

Stage 2 - Screening of Common-Cause
Component Groups'

Steps

2.1 Qualitative Screening
2.2 Quantitative Screening

Stage 3 - Common Cause Modeling
Steps

3.1 Definition of Common Cause
Basic Events

3.2 Selection of Probability
Models for Common Cause
Basic Events

3.3 Data Classification and
Screening

3.4 Parameter Estimation
3.4.1 - Point
3.4.2 - Uncertainty

Stage 4 - System Quantification and
Interpretation of Results

Steps
4.1 Quantification

4.2 Sensitivity Analysis
4.3 Reporting

Figure 1. Stages and Steps of a Procedural
Framework for Common Cause Analysis



Appendix A describes a classification system that has been used to classify and
analyze failure reports and to extract information in support of step 3.3 (Data
Classification and Screening) of the procedure. This scheme should be regarded
as state-of-the-art development and some evolution and refinement is ongoing.

Appendix B is a more detailed presentation of the so-called Generic Cause
Approach to the qualitative screening of common cause scenarios and determination
of those components within the system that need to be considered for more
detailed modeling from the point of view of common cause failures.

Appendix C describes the various parametric common cause failure models and the
estimators for their parameters. It discusses key assumptions behind the models
and the estimators and the implication of those assumptions. The material in
this appendix supplements the presentation, in Volume |, of steps 3.2 (Selection
of Probability Models), and 3.4 (Parameter Estimation - Point Estimate) of the
procedure.

Appendix D establishes the relationships among data bases of systems of identical
components having different levels of redundancy. It obtains the relationships
among model parameters that stem from the data base relationships and provides
guidance for interpretation of data from systems of different size and for the
assignment of impact vectors; i.e., for mapping up and mapping down impact
vectors. The material in this appendix supplements a summary presentation in
Volume 1, step 3.3 (Data Classification and Screening).

Appendix E presents statistical uncertainty distributions for the model
parameters in support of step 3.4 (Parameter Estimation). It also derives mean
value estimators for the various parameters.

Appendix F provides additional guidance on dealing with practical difficulties in
implementing the fault tree expansion approach discussed in step 3.1 (Definition
of Common Cause Basic Events).

Appendix G discusses consideration of recovery actions in common cause failure
analysis in support of stages 2 and 4 of the procedure.

Finally, Appendix H discusses the pitfalls of using generic common cause failure
probabilities for plant-specific analyses.



APPENDIX A

A DATA CLASSIFICATION SYSTEM

This appendix briefly describes a classification system that can be used to
classify and categorize event reports to extract information for the study of
dependent events and, in particular, for the context of this report, to identify
candidate common cause events for further analysis. The classification system
described below is essentially the system developed in a project sponsored by
EPRI (Reference A-l) and applied to a large number of failure events in a
companion project (Reference A-2). In the following presentation of the
classification system, it is assumed that the reader is familiar with the basic
concepts and definitions presented in Section 2 of this report. While this
scheme has been, and will continue to be used as the current state-of-the-art,
it is not necessarily definitive, and other more comprehensive schemes may be
developed to more explicitly present information, particularly on root causes,
coupling mechanisms, and failures of defenses.

A.l COMPONENT STATES AND FAULT MODES
A.1.1  Component State Space

Various states that a component can occupy with regard to its intended function
and according to a given success criterion are presented in Figure A-l. The
first tier reflects the principle that all component states can be categorized
based on whether the component was available to perform its function according
to the specified success criterion. The second tier breakdown of the available
category shows that even though a component may be capable of fulfilling its
function, an incipient or degraded condition could exist in that component or in
a'component directly impacting it. The available states, therefore, are
categorized as either "nominal” (i.e., "good") or "potentially unavailable."

The final breakdown in Figure A-l is the distinction between "failed" and
"functionally unavailable" states in the case of unavailable states, and
"potentially failed"” and "potentially functionally unavailable" in the case of
potentially unavailable states. This figure also shows the symbols provided for
each of the above component states. The application of event classification
will be oiscussed later. Brief descriptions of the component states used are
listed below:

. Functionally Unavailable State ( Fvl ). The component is capable
of operating, but the function normally provided by the component
is unavailable for one of the following reasons:

--Loss of Input. This refers to loss of motive power, command
signal, water source, cooling water, air, etc.

A-1



COMPONENT

STATES
AVAILABLE UNAVAILABLE
POTENTIALLY
UNAVAILABLE
NOMINAL POTENTIALLY POTENTIALLY FAILED FUNCTIONALLY
FAILED FUNCTIONALLY UNAVAILABLE

UNAVAILABLE

Figure A-lI. Component States Used in Classification System



--Preventive Maintenance and Calibration. The component has been
removed from service to perform a preventive maintenance
activity (including modifications) or calibration check, thereby
rendering the component incapable of performing its function.

--Testing. Some form of diagnostic test is being performed on the
component that necessitates the component's isolation from the
system, resulting in its inability to fulfill its function.

. Failed State ( Ex] ). The component is not capable of performing
its function, or it functions when not required. In order to
restore the component to operability, some kind of repair or
replacement action is necessary. In cases where a component
becomes damaged and needs to be repaired and the cause of the
damage is the failure of another component or system on which the
damaged component is functionally dependent, the damaged component
is classified as failed. An example of this case is overheating
of a component due to HVAC system failure.

. Potentially Functionally Unavailable State ( fx] ). An incipient
or degraded condition exists, generally for a component on which
the component of interest is dependent so that, if left
unremedied, it could result in failure of the first component.
The component of interest would then become functionally
unavaiTable.

. Potentially Failed State ( EI )+ A condition exists either in

the component of interest or in a component impacting the
component of interest that, if left unremedied, could render the
component failed. This category of states includes:

--Degraded. The component is in such a state that it exhibits
reduced performance that, potentially, if left uncorrected,
could result in failure.

— Incipient. The component is in a condition (i.e., exhibiting
a small oil leak, loose piece of equipment, or wear) for which
performance has not been interfered with, yet if the condition
is left unremedied, it could potentially render the component
failed.

. Nominal State ( ca ). The component is capable of performing its
function according to a success criterion, and no incipient or
degraded condition exists.

A.1.2 Fault Modes

The fault modes of a component are its characteristic symptoms of not being able
to perform its function. They describe the manner in which component states
occur. The term "fault" modes is used in favor of the more frequently used
"failure" modes because such modes can be ascribed to component states other thar
the "failed" state. In fact, all states except the nominal state can be ascribec
fault modes. The assignment of an unavailable component state signifies that its
success criteria were in some way violated. However, the fault mode describes
the manner in which the success criteria were violated. The distinction between



fault modes can be important for equipment (e.g., valves) that can operate in
more than one way (e.g., open/close), depending on system requirements. This
distinction also enables users of classified data to extract only those portions
of the unavailable state statistics that are applicable to the specific problem.

In general, fault modes vary from one component type to another. However,
several generic modes can be defined that describe to a large extent the most
frequently observed fault modes for a large number of components. A generic list
of fault modes is provided in Tables A-la and A-lb. For example, the mode
"transfers open" (TO) applies to both reactor trip breakers and relief valves,
and "fails to start" is applicable to diesel generators, as well as pumps.

Depending on the level of detail desired and the availability of information, one
may choose to define more specific fault modes. For instance, a valve may fail
to open automatically although it is still operational manually. In this case,
the fault mode can be specified as "fails to open automatically (FOA)," instead
of a more general mode of "fails to open (FO)." It is important to note that FO
applies to the case in which the valve fails to open both automatically and
manually as well as the case in which, due to lack of information, no distinction
can be made. In a situation in which the component state is classified as
potential, the corresponding fault mode is also labeled potential. The mode code
for this situation is formed by using the letter "P" in conjunction with the code
for the actual mode; e.g., PFO for "potentially fails to open."

A.2 CAUSE CATEGORIES

The discussion in this section is presented as. an example. Additional work on a
hierarchy of root causes is in progess.

The causes, which are the mechanism(s) directly responsible for the state of a
component, fall into eight broad classes, as presented below. Each class has
also been subdivided to provide a means of recording more detailed information on
the cause(s) when such information is available.

. Other Component. The cause of the state of the component under
consideration is the state of another component.

. Design, Manufacturing, and Construction Inadequacy. This category
of causes encompasses actions and decisions during design or
manufacturing or installation of components both before and after
the plant is operational.

. Procedures Inadequacy (ambiguous, incomplete, or erroneous). This
category refers to ambiguity, incompleteness, or error in
procedures for operation and maintenance of equipment.

. Human Actions, Plant Staff Error. Represents causes related to
errors of omission and commission on the part of plant staff, such
as failure to follow a correct procedure.

. Maintenance and Test. The cause of component state is a scheduled
or nonscheduled maintenance activity or a test and inspection.



Table A-la

SOME GENERIC FAULT MODES - COMPONENT FAILS TO TRANSFER

Code

FO

FC

FS

FT

Code

FR

TO

TC

SS

ST

FROM INITIAL STATE TO DESIRED STATE

Fault Mode

Fails To Open
Fails To Close
Fails To Start

Fails To Stop

Initial State

Closed
Open
Stopped

Operating

Table A-lb

Desired State

Open
Closed
Operating

Stopped

SOME GENERIC FAULT MODES - COMPONENT TRANSFERS
FROM INITIAL STATE TO UNDESIRED STATE

Fault Mode

Fails To Run
Transfers Open
Transfers Closed
Spuriously Starts
Spuriously Stops

Leaking

Initial State

Operating
Closed
Open
Stopped
Operating

Nonleaking

Undesired State

Stopped
Open
Closed
Operating
Stopped

Leaking



. Abnormal Environmental Stress. This category includes all causes
related to a harsh environment that is not within the component's
specified design criteria.

. Internal. The component state is due to malfunctioning of
something internal to the component as a result of normal wearout
or other intrinsic failure. It includes the influence of the

ambient environment of the component.
. Unknown. The cause of the component state cannot be identified.

Table A-2 provides a list of subcategories for the above cause categories along
with the corresponding symbolic codes which will be used later in cause-effect
logic diagrams. In the case for which the immediate cause of the state of a
component is the state of another component, the cause codes are basically the
component state codes ( = ). For noncomponent causes (root cause), the code is
a circle ((J) ) with one or two letters representing the cause category or
subcategory. The use of cause codes in the context of event classification will
be explained later in this section. The following paragraphs provide additional
guidelines for handling cases in which various cause categories may seem to
overlap.

The key for distinction betweendlembient environmental stress (ij)" and
"abnormal environmental stress (E)" is the design limits for thenormal

operating environment and the expected variations of that environment. Any

stress higher than—such expected limits should be considered abnormal and should
be classified as (Y); otherwise, the stress should be classified as ambient.

Examples are:

. Boron. Ambient stress for boron injection tank inlet/outlet
valves.
. Salt-Induced Corrosion. Ambient stress for some service water

system components at coastal sites.

. Extremely High or Low Room Temperatures. Abnormal stress for
diesel generators.

. Water. Abnormal stress for compressed air system.

Any of the following environmental stresses could be considered ambient or
abnormal depending on the component and the degree of stress compared to the
design basis: vibration, moisture/humidity, boron, fatigue, sand/salt, or
salt-induced corrosion.

The distinction between utilizing "unknown, “u)" and "wearout or other intrinsic

failure, UC)" is sometimes governed by the language of the report. As an
example, irit is stated that a motor operator had loose screws, this could be
attributed to (1) a human error due to insufficiently tightening the screws,
(2) a severe environmental stress (e.g., vibration), (3) an ambient
environmental stress (e.g., vibration), or (4) an intrinsic nature of the
component to have its threads worn with time leading to loosening. Therefore,
if it is not explicitly stated that an intrinsic condition caused the component

state and a variety of causes could easily be hypothesized, the cause is
designated as unknown, Tuj.

It is important to realize that most component states resulting from an ambient
environmental condition are ultimately due to a human oversight; in particular,
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Table A-2

CAUSE CODES

Sheet 1 of 2
1 State of a Component®
Design, Manufacturing, and Construction Inadequacy
©  Pplant Definition Requirements Inadequacy
© Design Error or Inadequacy
Manufacturing Error or Inadequacy
© cCconstruction Error or Inadequacy
fox) Other (explain)
®  proce ures Inadequacy (ambiguous, incomplete, or erroneous)
S  pefective Operational Procedure
© Dpefective Maintenance Procedure
© pefective Calibration/Test Procedure
S Oother (explain)
©  Huma Act+'m"'ns, Plant Staff
© f.ailure To Follow Procedures
© Misdiagnosis (followed wrong procedure)
< Accidental Action
S Other (explain)
Maintenance

©  scheduled Preventive Maintenance (including
surveillance tests and calibration)

©  Forced Maintenance (repair of a known failure)

*Refer to Figure A-l for component-caused symbols.



Table A-2 (continued)

Environmental Stress

>
o
=)
S
3
D

Electromagnetic Interference
Moisture (spray, flood, etc.)

Fire

Temperature (abnormally high or low)
Radioactive Radiation (irradiation)
Chemical Reactions

Vibration Loads

Impact Loads

Human-Caused External Event

CIRICICICICICNCIE)

Acts of Nature

Internal (internal to component, piece-part ambient
environmental stress)

Internal to Component, Piece-Part

©

© Ambient Environmental Stress

@ Unknown

Sheet 2 of 2



in not applying or incorrectly applying defenses against the failure
mechanisms. Examples are:

. Loose Screws Occurring due to Vibration. The use of a sealing
compound, washers, or locking wire could prevent this.

. Moisture Shorting Motor Wires. A watertight design could prevent
this.

. Boron Crystallization on Valve Stems. Proper maintenance and/or
operating procedures could prevent this.

. Fatigue Failures and Salt-Induced Corrosion. Use of materials
capable of withstanding the environment or operating conditions
could prevent this.

There are a few exceptions against which the ambient environment cannot really
be defended, such as when breaker contacts become dirty due to the dust in the
air. Short of continuously cleaning them (an impractical idea), the component
can be made subject to routine preventive maintenance, which may or may not
prevent dirt from interfering with contact operation.

In general, the ambient environmental designator (IE) is used when there is
inadequate information provided to discern what root human cause allowed the
ambient environment to impact the component, resulting in its state. This
leaves some room for varied interpretations of these events, either as a human
error or an internal failure.

Finally, the maintenance cause code for "repair of a known failure, (MF)," is
used only when no information is provided regarding the cause of the component's
failed state. Otherwise, the appropriate cause code from Table 2-2 is used.

A.3 CAUSE-EFFECT LOGIC DIAGRAM

The symbols introduced earlier to represent the basic elements of an event
(namely, causes and component states) can now be used to graphically represent
event scenarios. This is achieved by showing the cause and effect relationship
between various causes and component states involved in an event in a
cause-effect logic diagram. The following is an example:

Translated into words, the above diagram means that a human error caused
component 1 to fail, which in turn led to components 2 and 3 becoming
functionally unavailable.



In general, the progression of an event is reconstructed from left to right and
the cause-effect logic diagram always begins with one or more circles
representing one or more root causes, and should always end with boxes
representing the resulting component states. Links (i.e., solid lines
connecting any two elements) represent the coupling mechanisms between those
elements in such a way that the element to the left is the cause of the element
to the right.

If a cause impacts several components, the situation is represented by multiple
lines connecting the corresponding cause code with every resulting component
state. On the other hand, there are situations where more than one cause can be
identified as being involved in creating a given component state. For instance,
there may be a case in which a given component state is the result of several
causes acting together. Similarly, there are situations for which several
causes can be identified based on the available information but a subgroup of
those causes is sufficient to cause the event. In order to represent these
situations, a logic operator is introduced that graphically shows what
configuration of the identified causes has resulted in the state of the
component being considered. This logic operator is called a "node" and is
represented by a circle, which is placed between the cause and the effect
symbols. An example is the following:

The cause node, 2/2 , with the inscribed 2/2 logic means that there are two
causes and that both are required to cause the component state. This situation
corresponds with the "AND" gate used in reliability logic diagrams.

As another example, consider the following:

In this case, 1/2 indicates that two causes are present and either one of them
is capable of causing the component state. This situation corresponds with the
"OR" gate used in reliability logic diagrams.

A.4 EVENT CATEGORIES

The event categories are based on the structure of the cause-effect logic
diagram. Although the number of different cause-effect logic configurations
that can be postulated is large, a reasonable number of event categories can be
defined by keying on some general features of these logic configurations.
Before discussing such event categories, it is helpful to define some general
features of a cause-effect logic diagram useful to key on to establish event
categories.

One feature of importance in event categorization is whether there is any
branching in the structure of the cause-effect logic diagram. Branching occurs
when two or more components states directly result from a cause, either a root
cause or a component state that constitutes a cause. A branched event is any
event with at least one such propagation of a cause to directly result in two or
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more component states. All other events are called linear events. The names of
these categories reflect the structures of the corresponding cause-effect logic
diagrams, as indicated in the examples illustrated below:

LINEAR EVENT BRANCHED
STRUCTURES EVENT STRUCTURES

Another characteristic feature of the cause-effect logic diagram useful
categorization is the event substructure known as the unit. A unit of a
cause-effect logic diagram is any portion of the diagram consisting of a cause
and all the component states that directly result from that cause. Just as

events can be categorized as linear or branched, there are also linear and
branched units, as indicated in the following.

in event

[
BRANCHED UNITS

LINEAR UNITS

As an example, consider an event having the following logic structure and
consisting of the four indicated units.



The event is classified as a branched event because it includes a branched unit,
Unit 2. This event also includes three linear units: Units 1, 3, and 4.

The above definitions provide a basis for describing the particular hierarchy
used in this study to categorize the possible cause-effect logic configurations,
which are illustrated in Figure A-2. Events are first categorized into linear
events, which have only linear units, and branched events, which have at least
one branched unit. The linear event category is further subdivided into
single-unit (LS) and multiple-unit (LM) categories. Linear, multiple-unit
events are sometimes described in the literature as "cascade events."

As indicated in Figure A-2, branched events are first broken down into separate
categories based on whether there is a single-branched unit or multiple-branched
units within the event logic structure. The single-branched unit category and
the multiple-branched unit category can have, in addition to the branched units,
any number of linear units. A final breakdown of the branched categories is
afforded by distinguishing between two types of causes associated with the
branched unit or units. There are root-caused (BSR) and component-caused (BSC)
categories for single-branched units and component-caused (BMC) and mixed-caused
(BMM) categories for multiple-branched unit events. It was not necessary to
subdivide the linear categories in this manner because of the properties already
built into the system. All single-unit linear events have a single root cause
and a single component state. All multiple-unit linear events have one
component state resulting from a root cause and all subsequent component states
are component caused.

As a result of the above breakdown, six event categories are defined in terms of
the general characteristics of the cause-effect logic diagrams. Although

many additional categories can be defined (for example, by keying on the number
of linear units combined with branched units), the set defined in Figure A-2 is
the extent of breakdown provided in the statistical analysis of data in

Section 3. No particular advantage to defining further categories could be
identified.

1he relationship between dependent events and the cause-effect logic structure
categories defined above is depicted in Table A-3. As seen in this table, logic
structure category, LS, corresponds and is synonymous with what have been
described earlier as independent events. This is because events in category LS
include and wholly contain all events having one and only one component state.
All remaining logic structure categories (i.e., LM, BSR, BSC, BMC, and BMM) have
at least two component states that are interdependent (i.e., "connected within
the same cause-effect logic diagram") and are therefore dependent events.

Having defined dependent and independent events in terms of the six basic logic
diagram event categories, it is convenient to identify the subset of these logic
diagrams which represent the common cause failure events as defined in

Section 2. The definition given there was that common cause events are that
subset of the more general class of dependent events whose causes are not
normally explicitly modeled as basic events in the system logic models.
Component-caused events, whether they be linear or branched, should always be
modeled explicitly in the system model if the model is to be an accurate
representation of the system, but root-caused branched events may not be. Logic
models are generally described down to the component state level but not the
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Figure A-2. Hierarchy of Event Categories



1454

Event
Type

Independent

Dependent

Table A-3

RELATIONSHIP BETWEEN DEPENDENT EVENTS AND LOGIC DIAGRAM EVENT CATEGORIES

Characterl!stic

One Actual or
Potential Component

State
Linear
Two or More
Interdependent
Actual or Potential
Component States
Branched

Event Classification System Categories

Name
Single Unit
Multiple Units
Root-
Caused
Single
Unit
Component-
Caused
Component-
Caused
Multiple
Units
Mixed

Causes

Code

LS

LM

BSR

BSC

BMC

BMM

Typical Cause-Effect
Logic

OO0 -0O

OC<:

o-0ON



failure cause, except in the analysis of particular causes, such as fires and
floods, where the causes of failure may also be dealt with explicitly. Thus,
the common cause events that are to be used to obtain qualitative and
quantitative information on common cause failures as defined in this report are
to be found among the root-caused branched events only.

A5

A-L.

A-2.

REFERENCES

Los Alamos Technical Associates, Inc., "A Study of Common-Cause Failures,
Phase 2: A Comprehensive Classification System for Component Fault
Analysis," EPRI hP-3&37, June 1985.

Fleming, K. N., and A. Mosleh, "Classification and Analysis of Reactor
Operating Experience Involving Dependent Events," Pickard, Lowe and
Garrick, Inc., EPRI NP-3967, prepared for Electric Power Research
Institute, June 1985.



APPENDIX B

THE GENERIC CAUSE APPROACH TO THE QUALITATIVE SCREENING

A detailed engineering analysis of CCFs must consider the root causes of
component failures and the degree of dependence among component failures with
regard to each root cause. A plant-specific CCF analysis should, in addition,
evaluate the plant defense strategies designed to protect against equipment
failures and human errors that lead to equipment unavailability. When a CCF
analysis is performed on a nuclear power plant, it is not feasible, due to the
complexity of the analysis problem, to analyze in detail every possible CCF
scenario; i.e., every root cause event and the group of components that could
all fail as a result of the occurrence of that event. However, there is an
analysis method, the generic cause approach to common cause failure analysis,
that allows the analyst to identify, through a series of six screening tasks,
CCF scenarios that contribute most to system unavailability.

This method begins with the identification of a wide range of postulated causes
of CCF events, events that each involve a particular group of components; e.g.,
a group of components that would all be affected by a common design error or a
group of components that would all be susceptible to a fire in a certain
location. The following tasks permit the analyst to separate potentially
important cause/component group combinations from unimportant combinations based
on qualitative arguments as early in the analysis as such judgments are
possible. As the analysis progresses, more information is collected and the
cause/component group combinations that survived the previous screening tasks
are then analyzed in greater detail. The result of the screening is a list of
CCF scenarios the analyst feels confident--due to the wide range of postulated
causes of CCF events and the carefully selected screening arguments--represents
the failures that contribute most to system unavailability.

Figure B-l summarizes the six tasks involved in a system analysis using the
generic cause approach. Specifically, the six screening tasks an analyst can
use to identify the most important CCF scenarios of a plant are:

. Task 1. Identify important root causes of common failures and
define the groups of components that are susceptible to each root
cause of failure.

Review the FMEA for the system of interest, the plant operating
experience, the operating experience of similar plants, and
previous CCF studies to identify important root causes of failures
for the system being analyzed. All of the causes of failure
underlying the reported events should be identified for the
plant-specific CCF analysis. These failure causes usually fall
into a few general categories, such as those defined by Edwards
and Watson (Reference B-I).
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Key Inputs
Task |
System Information
System FMEA
Operating Experience Root Cause/Component
Previous CCF Studies Group Identification

Task 2

Preliminary Screening

Task 3

Screening of Combinations
That Do Not Result in
Sufficient Equipment
Failures To Fail the
System

Task 4

Harsh Environment
Screening

Task 5

Minimal Cutset
Determination

Task 6

Detailed Screening

e Major Contributors
* Qualitative Insights

Comments

Eliminate combinations
that are not relevant
or not significant.

Eliminate combinations
that do not result in
sufficient equipment
failures to fail the
system.

Eliminate combinations
for which no credible
source exists for
generating the harsh
environment of interest.

Identify MCSs affected
by each root cause.

Eliminate combinations
that are not credible
or not relevant.

Figure B-lI. Overview of the Generic Cause Approach
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The identification of root causes of failure is based mostly, but
not solely, on operational experience data. This raises the issue
of completeness. The data may not reflect all the possible root
causes of failure to which the system equipment could be
vulnerable. In particular, low frequency events with potentially
high consequences may not be reflected in the data. Furthermore,
the quality of the data is an important consideration.
Insufficient investigation and documentation of failure events
make it difficult or impossible to determine some causes of
failure.

The problems are particularly evident when the plant being
analyzed is at the design stage. WNevertheless, the wealth of data
from all sources, such as from failure reports or design studies,
does allow a comprehensive, if not complete, list of root causes
to be developed.

After important generic failure causes have been identified,
determine groups of components that are susceptible to the causes
of failure. There are at least three types of these root
cause/component group combinations that must be identified for the
CCF analysis: (1) root causes that primarily affect similar
equipment, (2) root causes that affect equipment operated
according to the same procedures, and (3) root causes that affect
equipment in the same location.

Type 1 - Root Causes that Affect Similar Equipment. Similar
components are usually affected by the same installation,
maintenance, and testing procedures and by common design and
manufacturing processes. These commonalities allow for
multiple failures due to systematically repeated human
errors. Therefore, for these causes of CCFs, the component
groups of interest are groups of similar components.

To identify all similar equipment in the system, examine
P&IDs, the FSAR, and other relevant system documentation and
interview utility personnel. Each group of similar
components will be considered a combination of potential
interest.

Type 2 - Root Causes that Affect Equipment Operated According
to the Same Procedures. Components that are all affected by
the same emergency or normal operating procedures should also
be considered a component group of potential interest because
these components could all fail due to a common operator
error. Unlike the first type of component group just
defined, the component groups defined by common emergency or
normal operating procedures may involve dissimilar components.

For the proper identification of the group of components
operated according to the same procedures, first identify all
plant emergency and normal operating procedures that affect
each component in the system of interest. Then, identify
those components that are all affected by a particular
procedure and do this for every procedure being considered in
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the analysis. Each group of components affected by a
specific procedure will be considered a component group of
potential interest.

Very often the analyst will find that these root causes are
also more likely to affect similar equipment; thus, a portion
of this type of root cause may be considered a subset of the
first type--root causes that affect similar eouipment. It is
still convenient, however, to consider these procedure-
related root causes as a separate type for analysis purposes.

The benefit of considering this type separately is that a
detailed analysis of emergency and normal operating
procedures permits a closer scrutiny of the utility's
testing, maintenance, and operational activities. This in
turn allows closer examination of the procedure-related root
causes of failure.

Type 3 - Root Causes that Affect Equipment in the Same
Location. CCFs can also be attributable to harsh
environments; i.e., adverse environmental conditions caused
by fire, flood, moisture, etc. Most causes of harsh
environments generate an adverse environment only within a
limited area. The spread of the'adverse conditions is
mitigated or stopped by barriers, such as walls and fire
doors, within the plant. Therefore, for environmental causes
of CCFs, the component groups of interest are the components
that are all susceptible to a specific harsh environment and
in the same location with respect to the harsh environment;
i.e., not separated from the source of the harsh environment
by barriers.

For the proper identification of the groups of components of
interest for specific harsh environments, first locate the
system components of interest identified in the PRA fault
trees. [Exact locations are not necessary at this point in
the analysis; it is only necessary to identify the room (or
rooms) containing each component.] This part of this task
can usually be accomplished without a plant visit. Then,
identify barriers to each harsh environment. (This part of
this task may require a plant visit since barriers to one
environmental agent may not be barriers to another.) Safety
analysis reports, since they describe fire barriers and flood
zones within plants, can be used for a preliminary
identification of barriers to some harsh environments; a more
reliable identification can be accomplished through the plant
Vvisit to obtain detailed barrier descriptions for analyzing
each environment of interest.

Next, use component and barrier locations to develop domains
(areas within a plant that are bounded by barriers to a

particular harsh environment) for the harsh environments of
interest. A group of components of interest for a specific



harsh environment will consist of the components that are
susceptible to the harsh environment and in the domain of
that harsh environment.

There are two categories of harsh environments: (1) harsh
environments caused by energetic events (fires, floods,
earthquakes, explosions, missiles, etc.) and (2) harsh
environments caused by nonenergetic events or extremes of
normal environmental conditions (contamination, vibration,
moisture, corrosion, high temperature, etc.). An in-depth
analysis of nonenergetic harsh environments has shown that
these events almost invariably affect similar components
(Reference B-2). This is due, in part, to the fact that most
of these events are often caused by human errors in design,
installation, and maintenance activities, etc. For example,
most moisture-related CCF events involve a designer's failure
to specify properly qualified equipment during the design
stage or an operator's failure to properly seal the equipment
following maintenance. Since an operational environment of
high temperature and high relative humidity is common in
several locations (e.g., pump rooms) of some plants, these
design and maintenance errors frequently result in multiple
component failures. These are human error-related failures
that involve mostly similar equipment.

Although most nonenergetic harsh environments are caused by
human errors, as just described, there are some instances
when nonenergetic harsh environments can be caused by
abnormal occurrences that affect equipment in the same
location; e.g., equipment damage due to moisture and heat
from a defective valve in close proximity to the equipment.
Plant operational experience suggests that these nonenergetic
events also result in the failure of similar equipment only.
This observation is, however, based on sparse data. This
lack of data indicates this type of event is less frequent
than the other type of nonenergetic harsh environment, the
type caused by human errors.

Analyzing CCFs caused by these two types of nonenergetic
harsh environments as CCFs of similar equipment is more
efficient than analyzing these failures of equipment in the
same location. That is, the analysis of these events as
failures that involve similar equipment will save the CCF
analyst time because domains of susceptibility will not have
to be established and analyzed for these nonenergetic events
as is the case with the events caused by energetic harsh
environments. Also, the CCF analyst will not have to search
for all credible sources of noneaergetic harsh environments
in a subsequent task of the analysis (Task 4). The search
for credible sources of nonenergetic harsh environments and
the analysis of their impacts on the system components (e.g.,
accounting for barriers to harsh environments) can be
performed later in Task 6 when the MCSs have been determined
and the analyst is dealing with a smaller number of
potentially important component groups.



It is important to consider the susceptibility of the
component piece-parts to the harsh environments of interest
when analyzing component susceptibilities to those
environments. Basic events in the system fault trees often
represent the sum of the failures of the component
piece-parts. For example, basic events representing pump and
valve failures may also include cable faults, a circuit
breaker failure, a circuit breaker control circuit failure,
junction box faults, and other failures. Similar piece-parts
belonging to dissimilar components could be susceptible to
CCFs caused by harsh environments.

Task 2. Screen the root cause and component group combinations
initially defined for analysis and eliminate from the analysis
those component groups that can be determined to be not relevant
or not a significant contributor to system unavailability.

The number of root cause and component group combinations
postulated in Task 1 for the system of interest is necessarily
large to ensure a comprehensive analysis. In this second task,
some of these combinations can be eliminated from the analysis
based on simple observations about the system and the nature of
the root causes of failures. For example, suppose a CCF analysis
was being conducted on a two-train emergency feedwater system with
a common intake line from the condensate storage tank. In Task 1,
three type A check valves (two valves in the system discharge
lines and one valve in the common intake line) are identified as a
group of similar components due to the fact that they are all
identical valves maintained in the same way. In this second task,
the CCF of the two type A check valves in the discharge lines of
the pump would be considered relatively unimportant because the
common intake line also contains a type A check valve, maintained
in a similar way, whose single failure could cause system

failure. Therefore, the CCF of the check valves in the discharge
line can be screened as irrelevant to further analysis because any
postulated cause of these valve failures could also be a cause of
failure of the valve in the common intake line and this failure
has already been considered a system failure in the system fault
tree. (The CCF of the check valves in the discharge line would be
relatively unimportant regardless of the failure probability of
the check valves and the correlation among failures of type A
check valves in redundant trains.) This type of screening is
based on the logic of the system model.

Other root cause and component group combinations for the system
of interest could also be eliminated from the analysis at this
time for other reasons, such as a very low probability of
occurrence of the root cause event compared with the system
failure probability from "normal” hardware and operator failures;
e.g., an explosion in certain areas of the plant. This implies a
screening on probability grounds. While it can be argued that
this is quantitative screening, the implication here is that the
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screening can be performed without a detailed probabilistic
analysis, relying on the use of a relative assessment of
probability instead.

Task 3. Screen the root cause and component group combinations
and eliminate from further analysis those combinations that do not
result in sufficient equipment failures to fail the system.

Several root cause and component group combinations do not result
in sufficient equipment failures to fail the system (barring any
additional failures). For example, consider a motor design
deficiency that results in failure of two motor-driven pumps in an
emergency feedwater system. This combination will not result
(barring any additional failures) in EFW system unavailability if
the system consists of two full capacity turbine-driven pumps in
addition to the two motor-driven pumps. Similarly, a break in the
steam supply line to one of the turbine-driven pumps has only a
limited impact on system unavailability if the motor-driven pumps
are in a different location from the steam supply line (and thus
cannot fail due to the adverse high temperature environment
generated from the line break).

For some systems, the combinations that cannot by themselves cause
system unavailability may not have to be analyzed in detail and
can be screened in this task if it is clear, without having to
perform a detailed quantitative assessment, that the additional
failures necessary to cause system failure are sufficiently
unlikely. Although this may be possible when analyzing a simple
system, these combinations can be important in an accident
sequence analysis because of their potential impact on other
systems involved in the accident sequence. NUREG/CR-4837 (to be
published soon) will describe the generic cause approach tailored
to an accident sequence analysis. Screening as performed here
does require an implicit assumption about relative probabilities
of events and thus is not strictly qualitative. Quantitative
screening as described in Section 3.2.2 may be of value here.

In any case, the group of components that can by themselves cause
system failure must be retained for further analysis. When no
groups are identified that can cause system failure, the analyst
should retain for further analysis other groups that, in
combination with independent failures and/or other CCFs, can cause
system failure.

This task can be performed with the aid of a computer program
designed to test system fault trees to see if the top event can
occur as a result of the occurrence of a group of basic events.

A number of computer programs [e.g., COMCAN IIl (Reference B-3),
SETS (Reference B-4), and WAMCOM (Reference B-5)] can be used to
test the system fault trees in this step. These programs will
"turn on" the appropriate basic events to see if the top event can
occur as a result of the occurrence of the group of basic events.



Task 4. Screen each harsh environment-related combination to
determine if there is a root cause event that can trigger the
scenario.

This task is only applicable to harsh environment-related root
causes. Each harsh environment-related combination represents a
harsh environment (e.g., high temperature) and a domain; e.g., the
area within the plant that is bounded by barriers to the harsh
environment. In addition, since each combination has survived the
screening in Task 3, it is now known that the occurrence of the
harsh environment within that domain can disable the system of
interest; e.g., it is known that the system fails if a high
temperature condition in that domain causes all susceptible system
equipment to fail. Thus, a search for credible sources of the
harsh environments of interest is warranted.

This task requires a substantial amount of plant-specific
information. A visit to the plant to accomplish this task is
recommended. Use the information obtained from this visit and
information from plant documents to identify possible sources of
harsh environments for each domain associated with the scenarios
identified in Task 3. For each harsh environment considered,
determine if there are credible sources for generating the harsh
environment identified for the respective domain. If there are no
sources for the harsh environment/domain of interest, then
eliminate the scenario from further analysis at this point.
Involve specialists in the analysis of some causes of harsh
environments (e.g., fires) to verify the adequacy of barriers to
the harsh environment and to help determine if there are credible
sources for generating the harsh environment identified for the
respective domain.

Task 5. Determine the component minimal cutsets that are involved
in each root cause and component group combination retained for
analysis.

Each combination that survived the previous screening tasks
represents a root cause of failure and the group of affected
components. In addition, it is known that the occurrence of the
root cause can disable all affected components and contribute
significantly to system failure; e.g., high temperature in a
certain domain can cause sufficient system equipment failures to
result in loss of the high pressure injection system. In this
task, determine the minimal cutsets associated with each
combination; e.g., high temperature causes HPIS failure by failing
the lube oil system in all HPIS pumps, or by failing all HPIS pump
motors, and so on.

The input required for this task are the system fault trees and
the list of potential root cause and component group combinations
that passed the previous screening tasks.



Several computer programs, such as COMCAN 111 (Reference B-3),
SETS (Reference B-4), and WAMCOM (Reference B-5), are available
for determining MCSs for CCF scenarios.

Task 6. Screen the scenarios that have been retained for analysis
and eliminate scenarios that are not credible or not relevant by
considering details of the relationships between the root causes
of failure and the component failures in the MCSs.

This task identifies unimportant scenarios retained from Task 5
and eliminates them from further consideration by considering
details of the relationships between the root causes of failure
and the component failures in the MCSs. This screening task is
effective for eliminating installation, maintenance, testing, and
operator error scenarios and scenarios caused by harsh
environments.

The input required for performing this task are the lists of root
causes of failures and MCSs identified in step 5; copies of the
plant procedures that have an effect on these scenarios;
information on testing, maintenance, and scheduling activities;
and, for harsh environment scenarios, additional information from
a plant visit.

The following is a description of some criteria that can be used
to screen scenarios involving errors in the installation,
maintenance, testing, or operation of components and scenarios
involving harsh environments. These criteria are only examples of
how engineering insights can be applied to the screening of
scenarios. For any given case, there may be other powerful
screening criteria. In all analyses, the screening criteria must
be carefully applied to ensure no important scenarios are
eliminated from the analysis. -

In the screening of installation, maintenance, testing, and
operating error scenarios, determine if there are any plausible
errors in performing the task that could result in component
unavailability. If there are none, the scenario may be
discarded. For example, if a procedure does not call for removing
a component from service, there is little chance that the
component will be left in a disabled state at the end of the task.

Look at the plant testing and maintenance schedules to determine
if a specific testing or maintenance-related scenario is
credible. For example, consider an MCS involving three pumps. A
common preventive maintenance task is to be performed at 1-month
intervals on each of the three pumps. The plant maintenance
schedule calls for this maintenance to be staggered among the
three pumps; that is, pump 2 is to be serviced 1 month after
pump 1, and pump 3 is to be serviced 2 months after pump 1. A
functional test of the pumps is also to be performed monthly, and
it too is to be staggered among the three pumps. Each pump is to
be tested 1 month after its preventive maintenance. Therefore, an
error that occurs during the maintenance of pump 1 will probably
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be discovered and corrected before the same error can fail pump 3
and possibly even pump 2. Thus, the MCS will likely never occur
due to errors in this maintenance task, and the scenario may be
eliminated from the analysis. In general, it is only necessary to
consider MCSs whose basic events are all affected by the same
procedure within one testing interval.

Also, screen out scenarios in which different personnel perform a
task on multiple components in an MCS. The systematic repetition
of task-related errors is highly dependent on the interpretation
of the working procedure and on the effects of stress, fatigue,
and personnel abilities. These factors can vary considerably
among individuals.

Finally, for analyzing scenarios involving harsh environments, a
plant visit is required for making a detailed survey to determine
the spatial relationships of components, sources of harsh
environments, and barriers to the harsh environments of interest.
The plant visit may determine some scenarios incredible in light
of these details.

For example, in Task 1, an analyst may discover several
penetrations with unsealed conduits connecting equipment in
different locations. Moisture in one location (e.g., at an upper
floor) could propagate through the conduits and cause the
components connected to these conduits in the other locations
(e.g., at a lower floor) to fail. Since operating experience
indicates several component failures due to moisture propagating
through conduits, the analyst postulates in Task 1 that moisture
could cause CCFs of components in these locations. In Task 6, the
MCSs for this scenario are all known. A detailed analysis of the
locations may reveal that the unsealed conduits do not connect
equipment in the same MCS to a common source of moisture. Thus,
the scenario can be screened out. Note that the analysis of
locations in this task is more detailed than in previous tasks
because the MCSs are now known, and the analyst can investigate
the specific equipment of interest. In addition, the number of
scenarios to be investigated in detail has been reduced to a
smaller, more manageable number.

The result of performing the six screening tasks just described is a list of the
CCF scenarios the analyst feels confident represents the failures that
contribute most to system unavailability and plant risk. These CCF scenarios
have been identified through a detailed engineering analysis and, therefore, are
valuable intermediate results of a CCF analysis. In addition, they are valuable
input to a quantitative analysis of CCF contributions to system unavailability
and plant risk.
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APPENDIX C

PARAMETRIC MODfl S AND THEIR ESTIMATES

C.l INTRODUCTION

This appendix provides a more detailed description of the various parametric
models presented in Section 3 of Volume 1, develops a set of estimators for
their parameters, and describes the implication of the assumptions made in
oeveloping the estimators. The estimators presented here are point estimators.
Appendix E discusses the representation of the statistical uncertainty in the
values of these estimates. The models presented in the following are described
by showing how each model is used to calculate the probability of occurrence of
the various "basic events." It is therefore helpful to review the definition of
common cause basic events and other key concepts prior to the discussion of the
models.

Definition of Common Cause Basic Events

In the context of the procedures of this report and as described in

Section 3.3.1, Volume |, a common cause basic event is defined as "an event
representing multiple failures of (usually similar) components due to a shared
cause."

Thus, in modeling a system of three components A, B, and C as in Section 3.3.1,
in addition to the basic events Aj, Bj, and Cj representing unavailability
or failure of one and only one component, it is necessary to consider the common

cause basic events CAB> CBC AABC* When def'ined in this way, events are
clearly interpreted as specifying the impact of the underlying causes of
failure. In the same way that the single component basic events represent the

sum of contributions from many causes, so do the common cause basic events.

When constructing system models, not taking common cause failures into account,
the basic events representing unavailability of different components are
regarded as independent. The question arises whether, since the common cause
basic events form a partition of the failure space of the components, these
basic events can be defined as being independent. To investigate this further
it is necessary to decompose the events into the contributions from root causes.

Define

A = EEAst + i ACH]) (C.1)
! \

where AJ” is a truly independent failure of component A as a result of

cause i, and Aci”® is a failure of component A and only A as a result of

the occurrence of a common cause trigger j. In this context, the common cause
trigger implies the occurrence of some root cause of failure and also a coupling
mechanism.



Similarly, define

CAB  “~CAB (C2) (i) (C.2)

where CAB(cz2)™M1" is a failure of components A and B from the occurrence of a

common cause, which resulted in the two failures only.

If the events CAB. Al» etc., are regarded as being independent, the
following cutset expansions result:

= = AIG) + Z=ZAL  Z G>
Al ’ BI Cl
+ = AC|(|) ¢ = B_]A + Z AC|(|) ¢ = BC|(j’ (C.3)
i j i J
* i (j:
Fre * Dec "AB(CZ)(I) ‘ E 'BC(C2) €4)

Looking at the cutsets more closely it can be seen that among them there exist
cutsets of the type

(k) . Dl(k)

A (k) - B (k
MC1() BC1()

(k) (k)

r r
tAB(C2) °BC(C2)
The first of these is logically correct given that the causes indicated by a
subscript | are independent. Then the two failures may by chance occur
simultaneously. However, when the failures result from a common cause, cutsets
such as Aal™) < Bal”™) would be indistinguishable from CaAB(C2)/~=> and should

be classified as the latter. Similarly, CAB(C2)™ * CBc(C2) k" would be
indistinguishable from CABc(c3) k ¢« Thus, when the common cause failures are
introduced at the impact level, the basic events can now no longer be regarded
as truly independent, and this may cause logical inconsistencies with the system
model.

A convenient approach to properly model common cause failures events is to

define the events Aj, CaB. CAC and BABC tO be mutually exclusive, since they
partition the failure space of A according to the explicit impact on other

components in the common cause group.

Such a definition implies that cutsets of the type CaB * ”~Ac are

identically zero. This definition has particular implications for the analysis
of event data in that events in which three components fail, must be identified
as one or another of the combinations Aj CBc AJ Bl CJ, CABC and the other
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permutations but excluding C*g ¢« Cgo This, and the observation made earlier about
indistinguishability, guarantees mutual exclusivity of the partition of the
failure space of each component. It shoulo be noted that in this report the

Aj, BJ, and Cj are still regarded as independent events even though

the common cause contribution to these events, the Agj U)in Equation (C.l),

can lead to some cutsets at the cause level, which have the same problem
concerning indistinguishability as the multiple component cutsets discussed
previously. The contribution of the latter is considered'to be insignificant.

Symmetry Assumption

Once the basic events are defined, a simplifying assumption is made to reduce
the number of probabilities that need to be estimated. According to this
assumption, the probabilities of similar basic events involving similar types of
components are the same. For example, if A, B, and C are identical components,
then

P(Aj) = P(Bj) = P(Cj)) = Qj
P(CAB) PACAC* = PACBCA = A2
P(CABC) = A3 (C.5)

Note that, with the symmetry assumption, the probability of failure of any given
basic event involving similar components depends only on the number and not on
the specific components in that basic event. This number is indicated as a
subscript to the letter Q used to represent the probabilities of basic events.
Therefore, Q=z, for example, is the probability of basic events involving
failure of two and only two components due to a shared cause.

It should be mentioned at this point that, as will be seen shortly, the
probability of the basic event, changes with "m," the total number of
components in the common cause component group.* Therefore, the general
representation of the probabilities of basic events is the following

Q1™ = probability of a basic event involving k specific components

(1 < k < m) in a common cause component group of size m (C.6)
and, in general,
Qm) ~ Qw o/ m (C.7)
The above discussion provides the necessary background for the following

presentation of the various parametric models for calculating the probabilities
of basic events.

*See glossary in front of this volume for the definition of common cause
component group.

C-3



C.t PARAMETRIC MODELS

The objective of all the parametric models described in this report is to
develop the probability of the basic events based on a set of parameters.
Numerous parametric models have been proposed over the past decade, and some
have been widely used in risk and reliability analyses. The models presented in
this appendix and also in Section 3, Volume |, cover a wide range of such
mooels. The main characteristics of these models are summarized in Table C-I.

Table C-lI also provides a categorization of these models based on how each of
the basic event probabilities is estimated. The two major categories are:

e Shock Models
« Nonshock Models

The "shock models" recognize two failure mechanisms: (1) failures due to random
independent causes of single component failures and (2) failures of one or more
components due to common cause "shocks" that impact the system at a certain
frequency. The shock models, therefore, develop the frequency of the second
type of failure as the product of the frequency of shocks and the conditional
probability of failure of components, given the occurrence of shocks.

The nonshock models estimate basic event probabilities without postulating a
model for the underlying failure mechanisms. The basic parameter model is used
to estimate the basic event probabilities directly. The other models discussed
here, namely, the beta factor, MGL, and alpha factor models, are
reparameterizations of the basic parameter model. They are used whenever common
cause failure probabilities are estimated by using estimates of the ratios of
multiple component failure rates or probabilities to total failure rates or
probabilities from one source of data, and, independently a total failure rate
or probability from another source. For example, plant-specific data may be
used to estimate a total failure probability but, as there is insufficient data
to estimate multiple failure probabilities, a generic source like Nuclear Power
Experience (Reference C-l) may be used to estimate ratios of multiple to simple
component failure events. It should be noted that parameter estimators for all
these models estimators for the parameters are dependent on the assumptions made
about success data.

Basic Parameter Model

The basic parameter model (Reference C-2) refers to the straightforward
definition of the probabilities of the basic events as given by Equation (C.6).
Depending on the system modeling requirements, Qk~'s can be defined as
demand-based (frequency of failures per demand) or time-based (rate of failures
per unit time). The latter can be defined both for the standby failure rates as
well as for the rate of failures during operation.

In terms of the basic specific parameters defined in Equation (C.6), the total
failure probability, Qt, of a component in a common cause group of
m components is



TABLE C-I

Table C-I

KEY CHARACTERISTICS OF THE P"RAMETRIC MODELS

ESTIMATION GENERAL FORM FOR MULTIPLE
APPROACH MODEL MODEL PARAMETERS* COMPONENT FAILURE FREQUENCY*
DIRECT BASIC PARAMETER Q, Q,...Q Qk = Qk k-1,2...m
"Pm BETA FACTOR 0.0 (1-0)0, k-1
=( 0 m) k) 1
1 0Q k=m
co cr
<
MULTIPLE GREEK LETTERS Qt.0.7. s,... ‘ (T PiVI-Pk + 1)Q

(rvAl1-1 7
5 m- | PARAMETERS
e} e ”
% pi “1-p2%0.A3-7....pm+ r°<
5
2 ALPHA FACTOR Qf“r-2....am =< Xa k=1..m

K /m-K a 1
VK-W 1
at = S
1 k=1 K
8 AQj+pd-p)ii—1 k-i
BINOMIAL FAILURE RATE Qj, M.P, w

Qk =S MPk (1 -p I" " k kA 1,m
/ipm +w k=m

8-~

*REFER TO THE TEXT FOR DEFINITION OF VARIOUS PARAMETERS
*FORMULAS ARE PRESENTED FOR THE BASIC EVENTS IN A COMMON CAUSE COMPONENT GROUP OF SIZE m
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where the binomial term

m-N\ = (m-1)!
k-1 " (m-k)! (k-D! (C.9)

represents the number of different ways that a specified component can fail with
(k-1) other components in a group of m similar components. In this formulation,
the events Qj(m) are mutually exclusive for all k, j. If the

events were not defined as being mutually exclusive, but independent.

Equation (C.8) is still valid under the rare event approximation.
Beta Factor Model

The beta factor model (Reference C-3) is a single parameter model; that is, it
uses one parameter in addition to the total component failure probability to
calculate the common cause failure probabilities. It was the first model to be
applied to common cause events in applied risk and reliability analysis. This
model assumes that a constant fraction (3) of the component failure rate can
be associated with common cause events shared by other components in that
group. Another assumption is that whenever a common cause event occurs, all
components within the common cause component group are assumed to fail.
Therefore, for a group of m components, all Q*"'s defined in Equation (C.6) are
zero except Qi and Qm. The last two quantities are written as (dropping the
superscript m)

Ql (1-3) Qt
n=$ O (C.10)

This implies that

Note that Qt, the total failure probability of one component, is given as

Qt = QI + Qm (C.12)
which is the special case of Equation (C.8) when Q2 = Q3 = = Qm-1 = 0-

Therefore, using the beta factor model, the frequencies of various basic events
in a common cause group of m components are
(1-3) Qt k=l
Qk 0 2 <k <m (C.13)
3Qt k=m

As can be seen, the beta factor model requires an estimate of the total failure
rate of the components, which is generally available from generic data sources,
and a corresponding estimate for the beta factor. As will be shown later in
this appendix, the estimators of beta do not explicitly depend on system or
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component success data, which are not generally available. Also, estimates of
the beta parameter for widely different types of components do not appear to
vary appreciably. These two observations and the simplicity of the model are
the main reasons for its wide use in risk and reliability studies.

It should be noted that relaxing the requirement for data on demands or time in
operation (success data) requires making specific assumptions concerning the
interpretation of data. This and several related issues regarding the
assumptions behind the various models and the implications of the assumptions
are discussed later in this appendix. The questions about interpretation of
data and its impact on the form of estimators led to the development of a single
parameter model known as the C-factor model (Reference C-4), which is different
from the beta-factor model only in the way the data are used to estimate the
single parameter of the model.

Although historical data collected from the operation of nuclear power plants
indicate that common cause events do not always fail all redundant components,
experience from using this simple model reveals that, in some cases, it gives
reasonably accurate (only slightly conservative) results for redundancy levels
up to about three or four. However, beyond such redundancy levels, this model
generally yields results that are conservative. When interest centers around
specific contributions from third or higher order trains, more general
parametric models are recommended.

Multiple Greek Letter Model

The MGL model (Reference C-5) is the most general of a number of recent
extensions of the beta-factor model. The MGL model was the one used most
frequently in the International Common Cause Failure Reliability Benchmark
Exercise (Reference C-6). In this model, other parameters in addition to the
beta factor are introduced to account more explicitly for higher order
redunoancies and to allow for different probabilities of failures of subgroups
of the common cause component group.

The MGL parameters consist of the total component failure probabilty, Qt,

which includes the effects of all independent and common cause contributions to
that component failure, and a set of failure fractions, which are used to
quantify the conditional probabilities of all the possible ways a common cause
failure of a component can be shared with other components in the same group,
given component failure has occurred. For a group of m redundant components and
for each given failure mode, m different parameters are defined. For example,
the first four parameters of the MGL model are, as before

Qt = total failure probability of each component due to all independent
and common cause events.
plus
3 = conditional probability that the cause of a component failure will

be shared by one or more additional components, given that a specific
component has failed.



Y = conditional probability that the cause of a component failure that
is shared by one or more components will be shared by two or more
additional components, given that two specific components have failed.

6 = conditional probability that the cause of a component failure that
is shared by two or more components will be shared by three or more
additional components, given that three specific components have
failed.

The general equation that expresses the probability of k specific component
failures due to common cause, Q<, in terms of the MGL parameters, is
consistent with the above definitions. The MGL parameters are defined in terms
of the basic parameter model parameters for a group of three similar components
as:

Qt = + 2 Q2(3) + Q3(3) (C.14)
20 (3 0 3
3) 3) I 93( )
3 v o3+ +Q, N
0,(3)
(3) Q- (C.15)
2Q2(™M + Q3(3) ’
4 and higher order terms are identically zero.
For a group of four similar components, the MGL parameters are:
Bt - B %3t 3™ 1 (C.16)
3Q2(4) + 3Q3(4) + Q44)
2(4a)
Q/4' + 3Q “4) +3Q “4) + Q "4
3Q3(4) + g4(4)
©3Q9(4) + 3Q 4) + Q “4)
J4) - C45 (C.17)

3Q3(4) + Q44)

It is important to note that the integer coefficients in the above definitions
are a function of m, the number of components in the common cause group.
Therefore, it is generally inappropriate to use MGL parameters that were



quantified for an m unit group in an / unit group, m * The same
comment applies to the other similar multiparameter methods.

The following equations express the probability of multiple component failures
due to common cause, Q<, in terms of the MGL parameters for a three-component
common cause group.

x = (1-3) Qt

02 =03 (1Y) Ot

®W=v3at (C.18)

For a four-component group, the equations are:

Q= (1-3) Qt

Q2 =4 B {1.Y) Qt

Q3 (i.6) gt

04 = 3v5 (Ot (C.19)

The generalization of this is given by

(C.20)

where

Alpha-Factor Model

As explained in Appendix E, rigorous estimators for the beta factor and the MGL
model parameters are fairly difficult to obtain, although approximate methods
have been developed and used in practice (Reference C-7). A rigorous approach
to estimating beta factors is presented in Reference C-8 by introducing an
intermediate event-based parameter, which is much easier to estimate from
observed data. Reference C-9 uses the multiparameter generalizations of
event-based parameters directly to estimate the common cause basic event
probabilities. This multiparameter common cause model is called the alpha
factor model.



Alpha factor parameters are estimated from system failure data. The MCL
parameters are estimated from component failures. This difference and its
implications are described more fully in Appendix E.

The alpha factor model defines common cause failure probabilities from a set of
failure frequency ratios and the total component failure frequency, Qf In
terms of the basic event probabilities, the alpha factor parameters are defined

as

(m)
a, (C.21)

whereym/Q|< is the frequency of events involving k component failures in a
common cause group of m components, and the denominator is the sum of such
frequencies. In other words,

ak = ratio of the probability of failure events involving any
k components over the total probability of all failure events in
a group of m components.

For example, for a group of three similar components we have

a 3 3Q1(3)
1
30 3) 3Q23) N Q§3)
(3)
. N©)
3
a3(3) (C.22)
and ot(3) + ot(3) as expected.

Using Equations (C.21) and (C.8), we can see that the basic event probabilities
can be written as a function of and the alpha factors as follows:
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where

EE kalm (C.24)
z k=l K

To see how Equation (C.23) is obtainted from Equations (C.s8) and (C.21), note
that Equation (C.21) can also be written as

By summing both sides over k we get

where we have used Equations (C.s) and (C.24). By using the above equation in

Equation (C.21) and solving for we get Equation (C.23).

The parameters of the a-factor and the MGL models are related through a set of
simple relations. For example, for a common cause component group of
size three, the MGL parameters are

2az + 3at
N+ 202 * 3a3

3a3
Y= 000 4 j (C.25)

Similarly, the alpha factor model parameters for the same group are written as

al = 3(1-8)
= 4 8(1-v)
L C
as = 8Y (C.26)

Binomial Failure Rate Model

The BFR model (Reference C-10) considers two types of failures. The first
represents independent component failures; the second type is caused by shocks
that can result in failure of any number of components in the system. According
to this model, there are two types of shocks: lethal and nonlethal. When a



nonlethal shock occurs, each component within the common cause component group
is assumed to have a constant and independent probability of failure. The name
of this model arises from the fact that, for a group of components, the
distribution of the number of failed components resulting from each nonlethal
shock occurrence follows a binomial distribution. The BFR model is, therefore,
more restrictive because of these assumptions than all other multiparameter
models presented here. When originally presented and applied, the model only
included this nonlethal shock. Because of its structure, the model tended to
underestimate the probabilities of failure of higher order groups of components
in a highly redundant system; therefore, the concept of lethal shock was
includeo. This version of the model is the one recommended.

When a lethal shock occurs, all components are assumed to fail with a
conditional probability of unity. Application of the BFR model with lethal
shocks requires the use of the following set of parameters:

Ql = independent failure frequency for each component.

y = frequency of occurrence of nonlethal shocks.

p = conditional probability of failure of each component, given a
nonlethal shock.

w = frequency of occurrence of lethal shocks.

Thus, the frequency of basic events involving k specific components is given as

{QJ' + yp(I-pym-1 k=l
y(p)k (I-p)m_k 2 £ k <m
ypm + w k=m (C.27)

It should be noted that the basic formulation of the BFR model was introduced in
terms of the rate of occurrence of failures in time, such as failure of
components to continue running while in operation. Here, consistent with our
presentation of other models, the BFR parameters are presented in terms of
general frequencies that can apply to both failures in time and to failure on
demand for standby components.

C.3 ESTIMATORS FOR MODEL PARAMETERS
C.3.1 Incompleteness in Data, Modeling Assumptions, and Parameter Estimates

In order to estimate a parameter value, it is necessary to find an expression
that relates to measurable quantitites that can be obtained from data. This
expression is called an estimator. Before deriving a general set of estimators
for the models discussed in Section C.2, it is important to recognize the
relationship between adopting specific modeling assumptions and the derivation
of parameter estimates. Two types of modeling assumptions will be discussed;
the first is that associated with the choice of a reliability model for basic
events. The second is associated with a response to the incompleteness in the
data, with respect to success data.
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In the approach to system modeling, certain basic events have been defined.
Consider those basic events, either of independent failures or multiple
(dependent) failures that represent the failure to start of a stanoby

component. Two models are commonly used for such events (Reference C-IlI). The
first assumes a constant failure probability on demand. In h demands, the
probabilities of i failures, (i = 0, 1, ..., N), are binomially distributed and
a maximum likelihood estimator of the probability of failure, given n failures
were observed in h demands, is n/N. The second model assumes a constant failure
rate, X$, while in standby. If it is assumed that the component is replaced
when failed, a maximum likelihood estimator of Xs is given by n/T where n is
the number of failures observed in a total time T on standby. (Mote this
failure rate should not be confused with the failure rate of a standby component
to run once it has started.) In this model, if it is assumed that the time
between tests is Tj, then the probability of failure on a randomly occurring
real demand is Xs Tj/2, assuming XST is small, since on average the demand would
occur halfway between tests.

Note that the time between tests does not however enter the expression for the
estimator of Xs. Therefore, the estimator is the same whatever the value of

Tj. The reason can be seen in Figure C-I, which represents the pointwise
probability of a basic event with two values of the time between tests, Ty and
Ty/2. At the end of each test interval, the probability that a failure

occurred in that interval is Xs Ty and Xs Ty/E, respectively. The expected
number of failures, n, in a total time T therefore is Xs Ty X T/Ty and

X$ Ty/2 X 2T/Ty, respectively. Since the failure rate is assumed constant, then
in the rare event approximation the number of failures is directly proportional
to the total time of observation. The expected numbers of failures are equal
since, while in the second case, the probability of a failure having occurred
before the test is halved, there are twice as many opportunities to reveal a
failure. This is clear since, in this model, the test does not cause failures,
but merely reveals if they have occurred. However, the unavailability on a real
demand is given by X$ Ty/§ and Xs Ty/4, respectively, showing, in this model of
failures, the advantage of reducing the time between tests. The significance of
the distinction between the two basic event models, the failure on demand and
the failure rate models, in the context of common cause modeling and the role of
testing strategies will be further discussed below.

Test Interval is T

3T/2 2T 5
Test Interval if T/2

Figure C-l. Pointwise Unavailability as a Function of Time for
Two Different Test Intervals
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Having identified two models for common cause basic events, consider the
estimation of the basic event probabilities in these two models. First,
consider the probability of failure on demand model. The maximum likelihood
estimators are of the form n”/N”, where n* is the number of occurrences of
the event, “k components fail,” and is the number of demands on

k components, or the number of opportunities that the cause that resulted in
k components failing had a chance of being revealed. For the beta factor,
defined as in Equation (C.Il), it is clear that to derive an estimator it is

necessary to have at least a measure of the ratio of Nm to This can be
seen to be true of the other models, such as the MGL and alpha factor models,
where the ratios to Nj are also needed. The importance of this

observation can be seen by considering the data.

Suppose the data for the common cause failure estimation has been established by
the procedure discussed in Section 3, an interpretation and reinterpretation of
event data for plant-specific conditions. This data base consists of numbers of
events with 1, 2, up to m failures. But it does not provide the success data;
i.e., how many times was it possible for such failures to be revealed? This
information is generally not recorded in compilations of event data.
Nevertheless, there are good rules of thumb for estimating the numbers of
demands on the component population, based on technical specifications related
to surveillance testing. If it is assumed that the majority of demands are from
surveillance tests, which is usually the case for the major standby component,
such as pumps, valves, and diesel generators, then it is relatively
straightforward to estimate the number of demands on single components,
especially if the technical specifications specify that, for instance, each pump
must be tested once a month. Of course, there are other demands on components
from interfacing maintenance, real demands, etc., which must be accounted for.
In common cause analysis however this evaluation may be circumvented to some
extent, by fixing the number of demands to provide a single failure probability,
which agrees with an estimate from another source, such as plant-specific data,
as discussed in Section 3 of Volume 1.

Technical specifications do not, however, specify how to perform tests.
Consequently, the exact number and method of component test in each test episode
may not be known. Also, since success data are not normally recorded and
reported in the generic sources of data, the particular way components are
tested in each plant in the generic population is usually unknown to the data
analyst although the plant procedures may be quite clear. We will now show how
the assumption the data analyst has to make regarding testing schemes affect the
estimators.

As an example, consider two testing strategies; nonstaggered testing where all
trains are tested simultaneously, in each test episode, and staggered testing
where different trains are tested at different test episodes. We will derive
estimators for a beta factor for a two-train system assuming both testing
strategies.

Estimate 1: Nonstaggered Testing
In this case, if the number of single comoonent demands is N*, the number of
failures of one component n?, and of 2, n?, then the single component

failure probability is

Ql = ni/Ni (C.26)
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There are clearly N2 = N 1/2 demands on the group of two components, which is
the number of test episodes. Thus

Q2 = n2/N2
= 2n2/N1 (C.29)
and
3 = 2n2/(ni + 2n2) (C.30)

which is the result found in, for instance, NUREG/CR-2300 (Reference C-II).
Estimate 2: Staggered Testing

Suppose in this testing strategy it is known that there are, in a certain
period, a number, NQ, of testing episodes. A testing episode is defined as
follows. At each episode, one component is tested. IT it succeeds, no more is
done until the next scheduled testing episode that may be a week, 2 weeks or a
month later. If however the component tested fails, the other is tested
immediately. If the second fails, a multiple failure is revealed. If it does
not fail, the failure is confirmed as a single component failure. In this
strategy, therefore, the number of tests against the multiple failure is
precisely NQ, the number of testing episodes. However, the number of tests
performed on individual components, N is slightly higher and given by

Nl = NQ + nj + " (C.31)

where ni is the number of independent component failures, and nz the number
of multiple failure events. The additional n* + n2 demands arise from the
necessity to test the second component, given the first has failed. Without
testing the second, it is not known how to partition the observed failures of
the first component between ni and n=. Thus, there are nj + n2 failures

of the first component leading to ni + o2 extra tests on the second.

Therefore, in this regime

ND + ni + n2 (C.32)
and
"2
~2 N (C.33)
D
The beta factor is approximately (since Na >> ni + n2)
n
0 =--—---- g—--- (C.34)

nl + n2

Note that when these two different, reasonable assumptions regarding the unknown
testing strategies at the plants that form the basis for the common cause data
base are made, the two estimates of the common cause failure probability differ

C-15



by a factor of approximately 2. This shows that making assumptions regarding
the testing strategies adopted directly affects the estimates. Such assumptions
are usually necessary because of incompleteness of the success data in the data
base.

Now consider the standby failure rate model. We will again investigate the
difference between the estimates of common cause failure probability and beta

factors for different testing strategies. It was shown earlier that the test
interval did not affect the estimator of the standby failure rate. Again,
consider the two-train system. If the number of failures are ni and n2 as

before, the standby failure rate for event Qi is

(), N
Xs " 7T {C.35)
where | is the calendar time on standby; that is, each component has been on

standby for T.

For event Qz, the time that both components have been on standby as a group is
T, thus

@ - n (C.36)

This is independent of the assumption of staggered versus nonstaggered testing
at the plants in the data base, since, as discussed previously, increased
testing against the common cause (as would be obtained by staggered testing)
lowers the probability of failure by common cause per demand, but increases the
number of opportunities to observe failure by the same fraction in a
compensating way. However, the testing scheme at the plant being analyzed is of
interest as seen below. The time between tests of each component is Tij.

Estimate 1: Nonstaggered Testing (at the plant being analyzed)

V! or nh T.JJ4T (C.37)
and
@
A2 = \V4i or nz2 TT/2T (C.38)
and
8 = 2n2/(n1 + 2n2) :c.39)

as before in Equation (C.30).

Estimate 2: Staggered Testing (at the plant being analyzed)

A = Xs(1) V2 or  nx TT/AT (C.40)
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but now
=x T \/4 or Tj/AT (C.41)

since the effective time between tests for a common cause failure is halved, as
the successful test of the first component indicates the common cause failure
has not occurred.

In this case
3 = (C.42)

as in Equation (C.34).

It should be noticed that while both the standby failure rate and demand models
above produce similar estimation of the beta factor for the cases of staggered
and nonstaggered testing, respectively, the differences between the two testing
regimes arise in different ways in the two models. In the probability on demand
model, the testing assumption has to be made for the plants in the data base.

In the failure rate model, no such assumption has to be made. However, the
apparent advantage of not having to make this assumption in this case is bought
at the expense of assuming the standby failure rate model applies.

In summary, adopting the probability of failure on demand model introduces into
the estimation process the need to resolve an uncertainty with respect to how
the data was collected at the group of plants that constitute the data base.
Adopting the standy failure rate model introduces no such uncertainty; the
impact of the testing scheme is at the level of the plant being analyzed. Thus,
when performing a common cause analysis, it is important to be clear what
assumptions are being made and what effects these assumptions have.

C.3.2 Some Estimators for Parameters of the Common Cause Models

There are several possible estimators that can be used even if no modeling
uncertainties, as discussed before, exist. Estimators presented in this section
are the maximum likelihood estimators and are presented here for their
simplicity. However, the mean values obtained from probability distribution
characterizing uncertainty in the estimated values are more appropriate for
point value quantification of system unavailability. These mean values are
presented in the context of developing statistical uncertainty distributions for
the various parameters in Appendix E.

The estimators of this section are also based on assuming a particular component
and system testing scheme. More specifically, it is assumed that, for the
plants in the data base, in each test or actual demand, the entire system (or
common cause component group) and all possible combinations of multiple
components are challenged. This corresponds to the nonstaggered testing

scheme. However, if this assumption is changed.(e.g., if a staggered testing
scheme is assumed), the form of the estimators will also change, resulting in
numerically different values for the parameters. The estimators presented in
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this section are the more conservative, given a fixed Q* A consistent set of
estimators, based on alternative strategies, has not yet been evaluated, but
some discussion is given in Section C.4.

Istimators for Basic Parameters

The maximum likelihood estimator for (. is given as

(C.43)

where

n< number of events involving k components in a failed state

and

number of demands on any k component, in the common cause group.

If it is assumed that each time the system is operated, all of the m components
in the group are demanded, and this number of demands is Nq, then

\ - r) 9% (C .44)

The binomial terms flj1) represents the number of groups of k components that

can be formed from m components. We, therefore, have

Thus, Equation (C.45) assumes that the data are collected from a set of Na
system demands for which the state of all m components in the common cause group
is checked. It is simply the ratio of the number of basic events involving

k components, divided by the total number of times that various combinations of
k components are challenged in Na system demands. This is represented by the
binomial term in the denominator of Equation (C.45). Similar estimators can be
developed for rate of failure per unit time by replacing Na with T, the total
system operating time.

Replacing in Equation (C.s8) with the corresponding estimator yields the
following estimator for the total failure frequency for a specific component

. m

0t =rly E kn (C.46)
D k=1

Estimator for the B-Factor Model Parameter

Although the s-factor was originally developed for a system of two redundant

components and the estimators that are often presented in the literature also

assume that the data are collected from two-unit systems, a generalized
s-factor estimator can be defined for a system of m redundant components.
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Such an estimator is based on the following general definition of the s-factor
(identical to the way it is defined in the more general MGL model).

N ) (m-1)i g
"At (m-K)! (k-1)! kK (C.47)
Using the estimator of QJ<, given by Equation (C.45), and Q" given by
Equation (C.48), in the above equation results in the following estimator
for s.
£ kn
A k=2 K
8 m (C.48)
kn.
k=l K
For a two-unit system (m=2), the above estimator reduces to the familiar
estimator of the s-factor,
2n..
VA (C.49)

Note that the estimator for s is developed from maximum likelihood estimators
of Qk's. An alternative estimator can be developed directly from the
distribution of the beta factor based on its definition in Equation (C.47).
(See Appendix E.)

Estimators for the MGL Parameters

In the following, we develop estimators for the first three parameters of the
MGL model for a system of m components. Estimators for the higher order
parameters can be developed in a similar fashion. Based on the definition of
the MGL parameters,

eV (m-ﬁﬂ'1zk-1) A (C.50)
(C.51)
6 I~ ra m kDt K (C.52)
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Therefore, by using Equations (C.45) and (C.46) in the above, we obtain the
following estimators.

m
E knk

A k=2 K
m (C.53)
E knk
k=l
m

_E kn

£ =JSz (C.54)
&, ko
m

A knk

A k=4 K

6= (C.55)
&, knf

For instance, for a three-unit system (m=3), we have
A 2n2 + 3n3
A oonl + M2 + M3 (C.56)
Similarly,
o _ 3n3
Y 2n2 + 3n3 (C.57)

As can be seen from the above estimators, the MGL parameters are essentially the
ratios of the number of component failures in various basic events. For
instance, in Equation (C.54), the numerator (303) is the total number of
components failed in common cause basic events that fail three components

(n3). This is in contrast with the estimates of the a-factor model, which

are in terms of the ratio of events rather than component states. This is seen
in the following.

Estimators for the ot-Factor Model Parameters
An estimator for each of the a-factor parameters (o”) can be based on its

definition as the fraction of total failure events that involve k component
failures due to common cause. Therefore, for a system of m redundant components,

, (C.58)
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It is shown in Appendix E that o”'s correspond to the maximum likelihood
estimate of the distribution of

Estimators for the BFR Model

The main parameters of the model are Qi, y, w, and p. To develop
estimators for these parameters, several other quantities are defined as

= rate of nonlethal shocks that cause at least one component

failure.

m
nt = 53 nk (C.59)
r k=l K

where, as before, n* is the number of basic events involving k components.

n_ = the number of occurrences of lethal shocks.

the number of individual component failures, not counting
failures due to lethal and nonlethal shocks.

nj

The maximum likelihood estimators for the four parameters Qi, X-., w,
and p, as presented in Appendix E, are

Vi zmﬁ (C.60)
D
A n
x&1 <r (C.61)
D
;8\ _ "L
bt N (C.62)
and p is the solution of the following equation:-
A A m Ny
s =p- m (C.63)
(1-p)
where
A m
S E k'Y (C.64)
k=1 k
Based on the above estimators, an estimator for y can be obtained from the
following equation:
Xt = y[l-(I-p)m] (C.65)
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which is based on the definition of Xt as the rate of nonlethal shocks that
cause at least one component failure. Therefore,
A

(C.66)

Table 3-6, Volume |, summarizes the point estimators for the various model
parameters.

C.4 THE EFFECT OF TESTING SCHEMES ON ESTIMATORS

As explained before, estimators presented here (and in Table 3-6, Volume 1)
assume that periodic tests or actual demands on systems challenge all components
of the system. This assumption is explicit in some models (e.g., basic
parameter) and implicit in others; e.g., MGL and alpha factor.

For example, in the estimator for in the basic parameter model, the number
of times a group of k components is challenged (N%) is derived from the number
of test episodes, NqQ, using the following relation:

(C.67)

This means that all such combinations are assumed to be challenged in each
episode.

Note that Na in this case is the same as NJJ, the number of tests of each of
the redundant trains (components) as specified by plant technical specifications:

As shown earlier for the case of a two component group, the assumption of a
staggered testing scheme results in different values of Nk. The value depends
on the response to the failure observed. Suppose, for the sake of argument as
was assumed previously, that, given a failure is observed in the single
component tested in a particular test episode, all the other components are
tested immediately, then N* can be evaluated in terms of the number of test
episodes NQ' as follows. (Note that in this case the number of test episodes
is denoted as Nal. This is done to avoid an equivalence being made with the
number of test episodes of the nonstaggered testing case. In fact, for the same
technical specification or frequency of testing of a component, the value of
Na in any given calendar time period would be related to N7zs by

Na = m N7zs, since in each of the test episodes for nonstaggered testing all
components in the group are tested at a test episode whereas unless there is a
failure, in the staggered case only one is tested in a test episode.)

Each successful test results in demonstrating that forfk-ijgroups of

k components there was no common cause failure. In addition, each time the
component failed the test, all other components are tested and this leads to
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tests on any group of k components*. Neglecting the second order effects

arising from the complication that if k+1 components are failed this modifies
the number of feasible tests on k components; the number of demands on a group
of k components can be expressed as

bl n ", ",
w0 -E ) s ") 4)
- i ¢ TS (k-
: o, |) T8 (k-1) (C.68)
The number of single component demands is given by
NQ' + nj « (m-1) (C.69)

With the above estimates of N< for different testing schemes, the following
estimators for the probability of basic events involving k components are
derived:

For nonstaggered testing scheme, using Equation (C.67),

n NS n-
(C.70)
TS
For staggered testing scheme, using Equation (C.es),
S
Q (C.71)
Therefore QkS < because
S
Q4 (€ .72)
NS
Q

In light of the above difference, we can now see that estimates of beta-factor,
for example, are different depending on what testing scheme is assumed. To show
this we recall that for a two component system

Q
(C.73)

*In this example, it is assumed that we are estimating Q% and not
specifically a common cause failure probability. If we were identifying
combinations of multiple and independent failures such as Qi - at each
testing episode, this term would be (©). However, since the nj are
collectively usually much smaller than ne1, this subtle distinction will make
little difference.
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Therefore

(C.74)
and
(C.75)
thus
§ (C.76)

where we assumed, as it is true in most cases, that Q2 << Qi»
The staggered-based estimator is approximately a factor of 2 smaller.
The estimator presented by Equation (C.74) is similar in form to the estimator

of a single parameter model called the C-factor model (Reference C-4). In this
respect, the C-factor is another estimator of the B-factor under the

assumptions leading to Equation (C.74). It should be mentioned, however, that
the C-factor method was developed to try to use the LER summary data to provide
estimates of common cause failure probabilities. It essentially involved an

interpretation of data on historical events based on an assessment of root
cause. The potential of each observed root cause for being a cause of multiple
failures at the plant in question was judged on engineering grounds, taking into
account such aspects as plant design, maintenance philosophy, etc. The
estimator (the C-factor) was the fraction of observed root causes of failure
that either did, or were judged to have the potential to, result in multiple
failure. The spectrum of root causes used comes from both single and multiple
failure events. Since it is the occurrence of the root cause that is important
and the common cause root causes are assumed to result in this model in totally
coupled failures, the multiple failure events, if applicable, are only counted
once (not multiplied by the number of components failed).
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APPENDIX D

ACCOUNTING FOR COMMON CAUSE GROUP SIZE DIFFERENCES IN COMMON CAUSE
PARAMETER ESTIMATION; i.e., HOW TO MAP IMPACT VECTORS

D.l INTRODUCTION

One of the key elements of the procedures presented in this report is the
recognition of the necessity, when reviewing data from several plants, to take
account of the differences between those plants and the particular plant to be
modeled in order to produce a plant-specific evaluation of common cause
potential.

There are two types of differences between systems of interest in data
classification: qualitative and quantitative. The former refers to physical
differences in characteristics, component type operating conditions,
environments, etc. The latter deals with the sizes of the common cause
component group in terms of the different number of components present. The
purpose of this appendix is to establish relationships among the data bases
associated with groups having different numbers of components; i.e., different
levels of redundancy. These relationships are intended to help combine the data
bases in support of parameter estimation. In particular, the insights derived
should provide useful guidance on how to account in parameter estimation for
differences in size between the system being analyzed and those that generated
the data.

The objectives of this appendix are to:

. Establish relationships between data bases of systems* of
identical components having different levels of redundancy.

t Provide guidance for interpretation of data from systems of
different size from the one for which the analysis is being
performed and for the assignment of impact vectors for the system
of interest; in this report this is referred to as mapping up and
mapping down impact vectors.

D.2 DEFINIMION OF BASIC EVENTS

As an example, consider a system* (common cause component group) of four
identical redundant components. In this four-train system, a number of
different types of events can be defined in term's of a particular

*In this context, system can be thought of as meaning "common cause component
group."
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combination of components that fail. The total number of different basic events
of this type that can be defined for a system of four components is given as:

These 15 different basic events include 4 events in which 1 and only 1 component
is impacted, s that impact 2, 4 that impact 3, and 1 that impacts all

4 components. In this scheme, each event is uniquely defined by a particular
combination of components that fail. Note that all the causes that impact one
specific combination of components are counted as one basic event. The specific
causes are not identified a priori.

Note also that when data are collected (e.g., reports are filed to note problems
identified during a system test) there is usually at most one "event" identified
in each event report. On rare occasions, there may be two or more concurrent
independent events covered in the report. The event classification system used
in Reference D-l accounts for this by drawing two or more separate cause-effect
logic diagrams to cover the separate events. One of the problems facing the
data analyst is the need to distinguish between a single event impacting a set
of components and the coincidence of multiple independent events impacting the
same set of components, however, experience has shown the latter category to be
much less frequent than the former.

The first question we address is: given a set of data from a four-train
redundant system (common cause component group consisting of four identical
components), what would the data look like for an otherwise identical system
having either three, two, or one identical components; i.e., how does the level
of redundancy or population of components impact the characteristics of the data
in the limit of a very large number of demands in operating experience when the
same set of causes are "acting" on the system?

Models of common cause events, such as the beta factor, BFR, MGL, and basic
parameter models, all recognize the potential for two broad categories of event
causes: independent events resulting in single component failures, and common
cause events resulting in multiple component failures. In view of this general
distinction, when one assumes that the occurrences of the causes of the common
cause events are independent of the number of components present, it follows
that the same cause may have different impacts depending on the number of
components present. As a trivial example, any of the causes impacting two or
more specific components in a system with two or more components could only
impact one component when only one component is challenged.

The above point is illustrated quite visibly in Table D-I. In the left column
are listed the 15 different basic events that could occur in a system of

4 components denoted as A, B, C, and D. Each basic event characterizes the
occurrence of any cause that fails a specific set of components. Any event that
could occur in a four-train system is covered by these possibilities. In the
next three columns in Table D-l, each of the four-train basic events is
evaluated in terms of the impact each event would have if only three, two, or
one specific components were present. As the transition is made between any two
adjacent columns, it is seen that any basic event in a j train system would
either fail the same number of components or one less component if the same
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Table D-l

IMPACT OF FOUR-TRAIN “INDEPENDENT" AND COMMON CAUSE EVENTS
ON THREE, TWO, AND ONE-TRAIN SYSTEMS

Sheet 1 of ?
Basic Events in . Impact on Impact on Imoact on
Evsent Four-Train System 2?§Eat5¥ietnt Three-Train System  Two-Train System  One-Train System
y (A, B, C, D) Y (A, B, O* (A, B)* m*
A) A A A
BV 4) = B B None
Independent Ql
. C None None
D ) None None None
AB AB AB A
AC | AC A A
Common
Cause AD “4)* A A A
Impacting 02
Two BC BC R None
Components BD |
B R None
CD C None None

*Impact expressed in terms of the specific set of components failed by each basic event.
**Applies to each basic event within the braces.



Table D-lI (continued)
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Sheet 2 of 2
Event Basic Events in Basic Event Impact on Impact on Impact on
T Four-Train System Probabidit Three-Train System  Two-Train System  One-Train System
ype (A, B, C, D) robabiiity (A, B, O* (A, B)* (A)*
ABC 7 ABC AR A
Common /
Cause ABD ') (4)** AB AB A
Impacting 03
Three ACD 1 AC A A
Components )
BCD / BC B hone
(4)
Common ABCD 04 ABC AB A
Cause
Impacting
Four
Components

*Impact expressed in terms of the specific set of components failed by each basic event.
**Applies to each basic event within the braces.



basic event were postulated to occur in a j - 1 train system. In the case or
the independent events, which are covered by the basic events Aj, Bj, Cj,

and Dj, the above observation is simply a reflection of the fact that the
frequency of independent failures is the sum of the independent component
failure rates. However, for common cause events, the situation is more
complicated. Some of the common cause events take on a characteristic of the
independent events in mapping downward--they impact a single component. Such
events, which might be termed "latent common cause events," may appear to be
independent events, but if more components were present, they could reveal their
true character as common cause events. This may help to explain the observation
that was made in Reference D-I that more than 50% of the data that was collected
on events involving single component effects were due to external causes (e.g.,
design errors, operator errors, etc.) that on other occasions produced multiple
component effects. It is generally believed that most of the data in

Reference D-l came from low redundancy systems; i.e., two redundant components
per system.

At this point we introduce the symmetry assumption that is incorporated into all
the CCF models (3, MGL, BFR, and basic parameter). This assumption states

that the probability of each basic event is independent of the specific
combination of components affected; it is only dependent on the number of
components failed.

These probabilities are the parameters of the basic parameter model that, for
the four-train system, include:

Parameter* Applicable Basic Events
a4 Aj, Bj, Cj, Dj
a2(4) CAB, CAC, CAD, CBC, CBD, CCO
«3a CABC, CABD, CACD, CBCD
Q CABCD

*The parameter defines the probability of each (not the total)
of the indicated applicable events.

If a four-train system is challenged N times and it is assumed that a challenge
results in all four trains being challenged, and if N is large, the average
number of events involving a cause impacting j components, Mj, is given by:
[4) Q4N
D.I
(5 ; (D.1)
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In other words, in N system challenges there are n] N challenges of
combinations of j components and is the probability that each of
those challenges results in j-specific component failures. Evaluating
Equation (D.l) for the parameters in a four-train model yields

(4) . 4q @y, M2(4) = 6Qe(d)). AT NS4 MA@) = @)y (o

The total data base generated by N demands on the four-train system is given by

Event Data Vector = M2(4), M3(4), M4(4)J (D.3)

To simplify the subsequent development, we introduce a set of system or
component group failure rates that correspond with each of the components of the

event data vector

M (4)
qQ (» =_J__

n
N
N
w
~

(D.4)

where qgj = frequency of events that occur within the four-train system
resulting in j component failures (events per system demand)

The qj™4" can be regarded as system failure rates and should not be

confused with component failure rates. These rates provide a means of
describing a data base that is normalized against the number of system demands.

Returning to Table D-l we can establish what the four-train data would look like
in three, two, and one-train systems in terms of the basic event probabilities
for the four-train system that on the assumption that these probabilities are in
fact independent of system size, and that the system demand is equivalent to a
demand on all components. On comparison of the first two columns of Table D-l,
the following relationships are easily established:

(3) _ 2 4) _ 1 (4
= J ql

n @ L@ n(4) L3, (4)

Qi " 3Q + 3Q2 4 ql )

.
+ 2 Q2
) - :453(4) + 3Qs3 ) . 12 q2(4) + 20’1 a3 )

(3) 63(4) +QZP (4) .- 41 q'?i ) +q'2‘_ “) (D.5)

These and the remaining relationships among the data bases are summarized in
Table D-2. Each column of Table D-2 shows how the four-train events are
distributed in smaller sized systems. The total number of basic events is
conserved in each column; however, the number of events having no impact grows,
moving from left to right. These latter events are essentially unobservable
since data are only available when failures occui—the available data on cause
events that do not produce at least one component failure are sketchy, at best.



NUMBER OF TRAINS FAILED PER EVENT

Table D-2

AVERAGE RATE OF OCCURRENCE* OF BASIC EVENTS IN SYSTEMS AS A FUNCTION OF
SYSTEM SIZE AND THE NUMBER OF TRAINS FAILED PER EVENT

NUMBER OF IDENTICAL REDUNDANT TRAINS OR COMPONENTS

3 2 1

*RATES ARE GIVEN IN UNITS OF EVENTS PER SYSTEM DEMAND



D.3 MAPPING DOWN IMPACT VECTORS

The relationships in Table D-2 can be used to calculate impact vectors of
classified events in a system of three, two, or one component, given an impact
vector in any system with more components up to four. This is true because of
the specific properties of the data bases indicated in Table D-2. The key
property is that, when moving from left to right to simulate downward mapping of
data, the events are distributed in a predictable way. Take, for instance, the
term ni'~', which represents the system failure rate of single component
failures in four-train systems. Now we ask the question: if one of these same
events were postulated to occur in a three-train system, what is the probability
that a single component failure would occur? Using the information in Table D-2

(4)
Prob U4) - 1(3)} = ———v .4 = .75 (D.s)
4Q, 4 -

This probability and all the other downward mapping probabilities are
independent of the underlying failure rate parameters; they are only dependent
on the sizes of the systems being mapped! A complete set of formulas for
mapping down data from systems having four, three, or two components to any
identical system having fewer components is presented in Table D-3. The
application of these formulas to binary impact vectors (i.e., impact vectors
whose entries are either zero or one) is illustrated in Table D-4 for mapping
down data from four or three-train systems. This provides the basis for the
formulas presented in Section 3 for downward mapping of impact vectors. Note
that, because these formulas depend on Equation D.2, they are dependent on the
assumption made about the sampling scheme that produced the data. (See Appendix
C for a fuller discussion.)

The probability of impact of zero components is carried through these tables
(D-2, D-3, and D-4) for bookkeeping purposes--to show how the event impact
probability is conserved. Also, the accounting of the Pa term of the impact
vector reveals important factors that must be taken into account in parameter
estimation. In combining data from systems having different sizes, only the
impact vector terms associated with one or more component failures are
"observable;" i.e., have the potential for showing up in an event report.
However, in the process of synthesizing statistics from the generic data base, a
picture of what the data base would look like if it came from a collection of
systems with the same size, conserving the probability of impacting zero
components is extremely important. Take, for example, mapping set No. 4 in
Table D-4, which covers the case of mapping single component failure events in
four-train systems to systems having fewer components. Carrying through the

Pa terms shows in this case how the frequency of single component failures in
the system is proportional to the number of components present. Hence, half of
the P]/4) events would not occur in a two-train system. This factor must

be reflected in parameter estimation to account for differences in system size
among the systems in the data base in relation to the size of the system being
analyzed. To illustrate this point numerically, suppose that data from systems
having four, three, and two components were being used to assess a two-component
system. Further, suppose that the number of single component failures observed
in these systems was 40, 30, and 20, respectively. Without consideration of the
zero impact effect, the data analyst would be led to interpret this data as

40 + 30 + 20 = 90 instances of single component, failures for use in parameter

D-8



Table D-3

FORMULAS FOR MAPPING DOWN EVENT IMPACT VECTORS

SIZE OF SYSTEM MAPPING TO (NUMBER OF IDENTICAL TRAINS)

3 2 1
P <31 -1 p HI #+p <41* P <=2= rp @ .1 p @ P m.2p 4H+1p @+ 11 @
; *
a4 i 0 0 2 6 2 o a 2 2 4 3
p (3>-3 (A4 -+ “@ p C(=Z=_1p <4 2 a+ 1 @ P mmm_ig>» (@) 1 e 3 4,
1 4 1 2 2 1 - | 3 2 2 3 1 a 1 2 2 a 3
4
P =3=-r & 3 A p <2=..1p >+ BP @ .p @® + P
S
2 2 5 4 3 2 s 2 2 3 + Ha 4
p <3> “ “®
= 3 =~ 4
o
['4
w
g P @®=p 3 . 1 (&) pNfi1 * pNi31t + — P,13° + — P,<3)
T 0 0 +3 0 0 3 1 32
o
g P @ -2p @ +1 p 3 p U, Xp A+=2p A+p
s 3 1 3 3 2 1 3 1 32 3
w
-
(Y P CZ5.-EP (3 +p 3
b == 3
('S
o
w
N
”n
p (> p . 1 p @
PO o + 2 1
P ma=—_up (2 (&)
2 1 2 1 2

*THE TERM P~41 IS INCLUDED FOR COMPLETENESS. BUT IN PRACTICE. ANY EVIDENCE THAT MIGHT EXIST ABOUT
CAUSES THAT IMPACT NO COMPONENTS IN A FOUR-TRAIN SYSTEM WOULD BE "UNOBSERVABLE."
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Table D-4

MAPPING DOWN BINARY IMPACT VECTORS FROM FOUR-TRAIN AND THREE-TRAIN SYSTEM DATA

IMPACT VECTOR- IMPACT VECTOR
SYSTEM SYSTEM
po p! p2 p3 P4 po P1 P2 p3
MAPPING OF EVENT 1 MAPPING OF EVENT 6

ORIGINAL FOUR-TRAIN SYSTEM 0 0 0 [1} 1.00 ORIGINAL THREE-TRAIN SYSTEM 0 0 0 100
IDENTICAL THREE-TRAIN SYSTEM 0 [1} 0 100 —-** IDENTICAL TWO-TRAIN SYSTEM 0 0 1.00 —
IDENTICAL TWO-TRAIN SYSTEM 0 0 100 — — IDENTICAL ONE-TRAIN SYSTEM [1} 100 — —
IDENTICAL ONE-TRAIN SYSTEM [1} 1.00 — — -

MAPPING OF EVENT 7
MAPPING OF EVENT 2

ORIGINAL THREE-TRAIN SYSTEM 0 0 100 0
ORIGINAL FOUR-TRAIN SYSTEM 0 0 0 TOO 0 IDENTICAL TWO-TRAIN SYSTEM 0 .67 33 —
IDENTICAL THREE-TRAIN SYSTEM 0 0 75 .25 — IDENTICAL ONE-TRAIN SYSTEM .33 .67 — —
IDENTICAL TWO-TRAIN SYSTEM 0 .50 .50 — —
IDENTICAL ONE-TRAIN SYSTEM .25 .75 — — — MAPPING OF EVENT 8
MAPPING OF EVENT 3 ORIGINAL THREE-TRAIN SYSTEM 0 1.00 0 0
IDENTICAL TWO-TRAIN SYSTEM .33 .67 0 —
ORIGINAL FOUR-TRAIN SYSTEM 0 0 100 0 0 IDENTICAL ONE-TRAIN SYSTEM .67 .33 — —
IDENTICAL THREE-TRAIN SYSTEM 0 .50 .50 0 —
IDENTICAL TWO-TRAIN SYSTEM A7 .67 A7 — — MAPPING OF EVENT 9
IDENTICAL ONE-TRAIN SYSTEM .50 .50 — - —
ORIGINAL THREE-TRAIN SYSTEM 100 0 0 0
MAPPING OF EVENT 4 IDENTICAL TWO-TRAIN SYSTEM 100 0 0 —
IDENTICAL ONE-TRAIN SYSTEM 100 0 — —
ORIGINAL FOUR-TRAIN SYSTEM 0 100 0 0 0
IDENTICAL THREE-TRAIN SYSTEM .25 .75 0 0 —
IDENTICAL TWO-TRAIN SYSTEM .50 .50 0 — —
IDENTICAL ONE-TRAIN SYSTEM 75 .25 — — —
MAPPING OF EVENT 5
ORIGINAL FOUR-TRAIN SYSTEM T00 0 0 0 0
IDENTICAL THREE-TRAIN SYSTEM TOO 0 0 0 —
IDENTICAL TWO-TRAIN SYSTEM T0O0O 0 0 — —
IDENTICAL ONE-TRAIN SYSTEM 1.00 0 — — —

*FOR EACH EVENT, THE "ORIGINAL" IMPACT VECTOR IS ASSUMED TO BE AVAILABLE FROM AN EVENT REPORT TAKEN FROM A GIVEN
SIZE SYSTEM THEN. WITHIN THE SAME BOX, DIFFERENT EXAMPLES OF NEW IMPACT VECTORS FOR ANALYZED SYSTEMS OF A SMALLER
SIZE THAN (BUT OTHERWISE IDENTICAL TO) THE "ORIGINAL" SYSTEM ARE GIVEN.

*(—) MEANS THE IMPACT CATEGORY IS INAPPLICABLE



estimation. However, if consideration is given to what this data would have
looked like had it come from all two-component systems, the equivalent data
would be interpreted (based on mapping sets 4 and s in Table D-4) as

40(.5) + 30(.67) + 20 = 60 occurrences of single component failure events. The
sensitivity of this factor in an example systems analysis is explored in

Section 4.1 of Volume |. The numerical importance of system size mapping in the
estimation of common cause parameters was first explained by Peter Doerre of
Ktol, Federal Republic of Germany, as part of a contribution to the CCF
Reliability Benchmark Exercise (References D-2 and D-3).

D.4 MAPPING UP IMPACT VECTORS

The above discussion demonstrates that downward mapping is deterministic; i.e.,
given an impact vector for an identical system having more components than the
system being analyzed, the impact vector for the same size system can be
calculated without introducing additional uncertainties, given that the basic
assumptions on which the mapping formulas are based are accepted. Mapping up,
however, is a different story. To understand this point, let us return to
Table D-2. Suppose an n-p”) event occurred and the system being analyzed
consisted of four units. As can be seen from the table, there is some chance
that, if the same event were postulated to occur in a four-train system, either
one or two component failures would result. Based on the information provided
in Table D-2, the following statements can be made about the probability that
this event would result in one or two component failures, respectively.

. 30, 4
pil(3)  1.4) | ! (D.7)
3Q/4' + 3Q214)

P{I(3) 2(4)I (D.8)

Therefore, the upward mapping probabilities, unlike the downward mapping
probabilities, are dependent on the underlying basic event probabilities.
(Recall that the downward mapping probabilities were shown to be independent of
the underlying basic event probabilities.) Therefore, it is necessary to either
bring in more information about the events, or accept a greater degree of
uncertainty in the case of upward mapping. In reference to the above
relationships, this uncertainty corresponds with not knowing, a priori, the
underlying basic event probabilities. This is a transcendental problem because
we need to assign the impact vectors in order to determine what the underlying
basic event probabilities are!

There are some aspects of the downward mapping relationships presented in
Tables D-2, D-3, and D-4 that help to reduce uncertainties in upward mapping.
One useful property derived from these tables is that any event involving

k components in a k train system would result in either k or k + 1 component
failures in a k + 1 train system, and either k, k + 1, or k + 2 in a k + 2 train
system. Therefore, the possibilities for upward mapping are well defined, but
the probabilities are not.

D-11



The concept that is used in the definition of the BFR common cause model can be
used to try to limit the problem. This concept is that all events can be
classified into one of three categories:

1. Independent events - causal events that act on components singly
and independently.

2. honlethal shocks - causal events that act on the system as a whole
with some chance that any number of components within the system
can fail. Alternatively, nonlethal shocks can occur when a causal

event acts on a subset of the components in the system.

3. Lethal shocks - causal events that always fail all the components
in the system.

When enough is known about the cause (i.e., root cause and coupling mechanism)
of a given event, it can usually be classified in one of the above categories
without difficulty. |If, in the course of upward mapping, each event can be
identified as belonging to one of the above categories, the uncertainty
associated with upward mapping can be substantially reduced but not eliminated.
To be able to categorize an event into one of the above categories requires the
analyst to understand the nature of the cause. Independent failures

(category 1) are due to internal causes or external causes isolated to a
specific component. Of the remaining external causes, lethal shocks can often
be identified as having a certain impact on all components present. Design
errors and procedural errors form common examples of lethal shocks. What is
left are external causes that have an uncertain impact on each component and
these are the not-necessarily lethal—or nonlethal—shocks.

If an event is identified as being either an independent event or lethal shock,
the impact vectors can be mapped upward deterministically as described below.
It is only in the case of nonlethal shocks that an added element of uncertainty
is introduced upon mapping upward. How each event is handled is separately
described below.

D.4.1 Mapping Up Independent Events

As noted at the beginning of this appendix, the purpose of mapping impact
vectors is to estimate or infer what the data base of applicable events would
look like if it all was generated by systems of the same size (i.e., the number
of components in each common cause group) as the.system being analyzed. In the
case of independent events, the number of such events observed in the data base
is simply proportional to the number of components in the system. Therefore, if
we collected data from systems of two components having some level of system
experience and observed, say, Mj'2' instances of independent events

involving a smgle cpmponent, we should expect to see twice as many independent
events, M-j(4) if the same amount of system experience were

accumulated with identical four-component systems.

The above result is compatible with the notion that independent events are due
to internal causes. If we add more components and fix the level of system
experience, we add a like amount of opportunities for the occurrence of
independent events. The following set of relationships directly follows from
the simple assumption that the number of independent events observed in a system
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of size Kk, , where k = 1, 2, or 3, is proportional to the underlying
independent failure rate,- What we seek to determine is the equivalent number of
independent events, that we would expect to observe if the same

amount of system experience were accumulated with identical systems of size j,

Jj = 1 through 4.

Mj( = j- Mij(k) (D.9)

From the above relationship, the following formula is derived to estimate the
equivalent number of independent events that would be observed from systems of

size given data on independent events in different size systems.
wW m
= E (D.10)
k=l

For the purpose of mapping impact vectors of each independent event,
Equation (D.9) translates into

K
e 1 (D.1)

Because this approach adds events that were not actually observed, it
artificially strengthens the data base and reduces the statistical uncertainty
associated with estimates of Pj. However, the impact on the uncertainty is
generally negligible compared with other sources of uncertainty.

D.4.2 Mapping Up Lethal Shocks

Once an event is classified as a lethal shock, the upward mapping of its impact
vector is straightforward. By definition, a lethal shock wipes out all the
redundant components present within a common cause group. The key underlying
assumption in the following simple formula for upward mapping of impact vectors
involving lethal shock is that the lethal shock rate acting on the system is
constant and independent of system size. This is a reasonable assumption. From
it follows the following simple relationship.

am = ﬁj OF for all & and {D.12)

Therefore, for lethal shocks, the impact vector is mapped directly. The
probability that all j components in a system of j components have failed due to
a lethal shock is mapped directly to the probability of failing all

£ components in an £ component system without modification.

D.4.3 Mapping Up Nonlethal Shocks

In order to uniquely map up the effect of nonlethal shocks, it is essential to
use a model that can relate the probability of failure of k or more components
in terms of parameters that can be determined from measurements of numbers of
failure events involving i = 0, ..., k-1 components. The only one of the models
discussed which is capable of supporting this is the BFR model.
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According to the BFR model, nonlethal shock failures are viewed as the result of
a nonlethal shock that acts on the system at a constant rate that is independent
of the system size. For each shock, there is a constant probability, P, that
each component fails. The quantity p is the conditional probability of each
component failure given a shock. The mapping up of an event is based on a
subjective assessment of p. This assessment is performed for each event and
may be different for different events. When mapping up an event from a system
of size "i" to a system of size "j," j > i, the parameters of the BFR model are
assumed not to change. In other words, the shock rate and the probability P
that a component fails, given the shock occurrence, are conserved. While, as
shown in Section 4.1, the BFR model is somewhat lacking in its generality
(because all nonlethal events in the data are assumed to have the same shock
rate and binomial parameter p), allowing a different assessment of the

P parameter for each event restores the generality. The BFR model in this
context is used as a way of extrapolating events, but not as an integral common

cause failure model to parametize all possible events.

The BFR model is used to perform upward mapping of impact vectors according to
the following procedure:

1. write BI-K equal,
comes. For example, in mapping up from a system size

)

= P (1-P)
@ =2 (1) p
n2(2) = wpr2

(D.13)

where N”i) is used in this section to. represent the

frequency of events that occur within an i-train system resulting

in H train failures due to nonlethal shocks. These equations
postulate that the observed values of ni'™ and nA'Al

were generated in a BFR process with parameters y and p.
2. Write BFR equations for system size "j" to which the data is to be

applied. For mapping up from a system size i=2 to a system
size j=4 for example, these equations are

n/\4/\

4y (1-pr3s p

. §2 2
n2 & C-p)< p
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Wy () p

@) -y (D.14)

These equations postulate (if the y and p are used from step 1)
that we would have observed the values of ni'4’, nz="4',
nzl4),and na*4) from the same BFR process that generated

the values of Nni'2i and nz2*” if the data had been

collected from a four-train system.

Use the equations in steps 1 and 2 to derive N”™'s as a function
of N'111s. For example.

n"4t = 4y (1-p3 p = [2y (1-P) Pl , (4 py

B 2 (1-P)2 n/2 (D.15)

In seme eades, it is not clear which Nn”™'s contribute to a
specific n'Ji. For example, do Nni'2' and n=""

contribute to n2[~® Bnow muchY in these cases, us<
Table D-I. Table D-lI shows that half of na(4l is "c_

as nz|2| in a two-train system. The other half is "observed"
as nNni'2). Thus,

3 =4y (1p) p =2y (1-p) p + 2y (1p) P

P [2y (1-p) pj +2 (1-p) p yp

p2 Nni(2) + 2 (1-p) p n2(2) (D.16)

Table D-5 includes formulas to cover all the upward mapping possibilities with
system sizes up to four. By making use of the concepts of the BFR model, the
uncertainty inherent in mapping up impact vectors is reduced to the uncertainty
in estimating the parameter p; that is, the probability that the nonlethal
shock or cause would have failed a single hypothetical component added to the
system, tohile this may seem obvious, it should reduce the overall uncertainty
in mapping up the impact vector since the formulas in Table D-5 take care of all
the bookkeeping problems of enumerating the possibilities and factoring in the
system size effects.

While it is the analyst's responsibility to assess, document, and defend his
assessment of the parameter p, some simple guidelines should help in its
quantification.

. If an event is classified as a nonlethal shock and it fails only

one component, it is reasonable to expect that P is
small (p < .5).
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Table D-5

FORMULAS FOR UPWARD MAPPING OF EVENTS CLASSIFIED
AS NONLETHAL SHOCKS

SIZE OF SYSTEM MAPPING TO

2 3 4
P12)=-2(1 -pIP/1* P/A-SO -p)2?2,*1) PA4) = 4(1 -p)32/1)
P2<2)<“ppi(1> P2(3) = 3p(1 -pJP,!) P2(4) = 6p(1 -p)22,1)

P3(3).p2PI(1) p3(4)_4p2(1 -piP,!)

P4l4)-p3PI(1)

P.(3)—(3/2X1 -p)P,<2> P,<4>-2(1 -p)22/21
P2(3) = pP,(2 + (1 — P)P22> P2:4) = (512)p<1 -p)P,(2) + (1 -p)2P2(2)
P313) ** Pp2(2) P3(d) - P2p1<2) + 2P(1 — P)p22

PA(4 = P2P2(2:

p1(# = (4/3X1 -p)p,(3)
P2(4) “ Ppi(3) + (1 ~ P)p2(3)
p3(4)-Pp2(3) + 0 -P)p3I3)
p4(4)-pp3(3)
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. If a nonlethal shock fails a number of components intermediate to
the number present, it is unreasonable to expect that p is
either very small (p v o) or very large (p * 1).

. If a nonlethal shock fails all the components present in a system,
it is reasonable to expect that P is large (p > .5).

A final observation to be aware of is that, based on the example problem
presented in Section 4.1, the final results of a common cause analysis are much
more sensitive to uncertainties in the classification of lethal shocks than
nonlethal shocks.

0.5 SUMMARY OF IMPACT VECTOR MAPPING

The impact vector mapping concepts of this appendix are summarized in the form
of a decision tree for the data analyst in Figure D-l. This decision tree
guides the analyst through the important tasks of assessing the applicability of
each event, determination of system size for the events in the data base, as
well as for the system being analyzed, and the use of the appropriate mapping
formulas derived in this appendix. Examples of impact vector mapping are
presented in Tables 0-4 and 0-6 for downward and upward mapping, respectively.
It should be stressed that the particular formulas given in those tables are
dependent on the assumptions made, particularly with regard to data collection
and, in the case of upward mapping, the BFR assumptions.
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Event Impact Vectors
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Table D-s

EXAMPLES OF UPWARD MAPPING OF IMPACT VECTORS

: IMPACT VECTOR
EVENT SYSTEM- IMPACT VECTOR EVENT SYSTEM-
NO. SIZE Pi P2 P3 P4 NO. SIZE Pi P2 P3
INDEPENDENT EVENT CASES LETHAL SHOCK CASE

ORIGINAL - ONE TRAIN

IDENTICAL - TWO TRAIN 1 —
IDENTICAL - THREE TRAIN 0 1
IDENTICAL - FOUR TRAIN 0 0

NONLETHAL SHOCK CASES (p-.9)

ORIGINAL - ONE TRAIN

IDENTICAL - TWO TRAIN 2 9 —_
IDENTICAL - THREE TRAIN .03 .27 .81
IDENTICAL - FOUR TRAIN .004 .054 324

NONLETHAL SHOCK CASES (p = .10) NONLETHAL SHOCK CASES (p - .5)
ORIGINAL - ONE TRAIN 1 — - - 10- ORIGINAL - ONE TRAIN 1
IDENTICAL - TWO TRAIN 1.8 A — - IDENTICAL - TWO TRAIN 1 5 —
IDENTICAL - THREE TRAIN 2.43 .27 .01 —_ IDENTICAL - THREE TRAIN .75 .75 .25
IDENTICAL - FOUR TRAIN 2916 .486 .036 .001 IDENTICAL - FOUR TRAIN .5 .75 5
5—» ORIGINAL - TWO TRAIN 1 0 — — 11—» ORIGINAL - TWO TRAIN 0 1 —
IDENTICAL - THREE TRAIN 1.35 A 0 — IDENTICAL - THREE TRAIN 0 5 5
IDENTICAL - FOUR TRAIN 162 225 .01 0 IDENTICAL - FOUR TRAIN 0 .25 5
6—»> ORIGINAL - TWO TRAIN 5 5 —_ — 12—»> ORIGINAL - TWO TRAIN .5 .5 —_
IDENTICAL - THREE TRAIN 675 .5 .05 —_ IDENTICAL - THREE TRAIN .375 .50 .25
IDENTICAL - FOUR TRAIN .81 5175 .095 .005 IDENTICAL - FOUR TRAIN .25 4375 .375
7—>» ORIGINAL - THREE TRAIN .25 5 .25 — 13—»> ORIGINAL - THREE TRAIN .25 5 .25
IDENTICAL - FOUR TRAIN .3 475 .275 .025 IDENTICAL - FOUR TRAIN 1667 .375 .375

*FOR EACH EVENT, THE "ORIGINAL" IMPACT VECTOR IS ASSUMED TO BE AVAILABLE FROM AN EVENT REPORT TAKEN FROM A
GIVEN SIZE SYSTEM. THEN, WITHIN THE SAME BOX, DIFFERENT EXAMPLES OF NEW IMPACT VECTORS FOR ANALYZED SYSTEMS
OF A LARGER SIZE THAN (BUT OTHERWISE "IDENTICAL" TO) THE "ORIGINAL" SYSTEM ARE GIVEN.

'(—) MEANS THE IMPACT CATEGORY IS INAPPLICABLE

P4

729

125

125



APPENDIX E

STATISTICAL UNCERTAINTY DISTRIBUTION FOR MODEL PARAMETERS

E.l INTRODUCTION

This appendix describes the statistical models that can be used to represent
uncertainty in the estimates of the parameters of various parametric models.

The uncertainties addressed by the statistical models of this appendix are those
associated with statistical inference based on limited sample size (the standard
statistical uncertainty). However, simple extensions of the general structure
of these models provide the vehicle for incorporating other sources of
uncertainty, as discussed in Section 3, Volume I; e.g., uncertainty in impact
vector assessment, incompleteness of data bases with respect to the number of
failures and success data.

The assumption in the models presented here, therefore, is that the statistical
information necessary to estimate the parameters of a model is available without
any uncertainty concerning the various pieces of that information.

The approach adopted here for the analysis of uncertainty is the Bayesian
approach, in which the distribution of a parameter, 0, in light of evidence E,
is obtained from

L(E (O)W0 (0)
ZE(E|0)no(0)dO

(E.1

"(OIE)

where

m(O|E) posterior distribution of Q given evidence E.

1'0C3) E distribution of o prior to the evidence.

L(E|O) likelihood function or the probability of the evidence E,

given o.

The following sections describe how the above concept can be used to develop the
uncertainty distributions of various parameter models. For all models except
BFR, the presentation is limited to the demand-based failure frequencies. The
time-based failure rate models can be developed by a simple change in selected
statistical distributions.



E.2 DISTRIBUTION OF THE BASIC PARAMETER MODEL
The demand based parameters of the basic parameter model are defined as:

= probability of failure of k-specific components on demand due to a
common cause.

The statistical evidence needed to estimate Q< is of the form
E = {n" k=I,....m ; Na} (E.2)

where n* is the number of failures of events involving failure of k components
in a common cause group of size m, and Na is the number of system demands.

Assuming nonstaggered testing (see discussion in Appendix C), the number of
times a group of k components is challenged in each test of a system of
m components can be calculated from

where the binomial term I is the number of groups of k components that can be
formed from m components/ Bayes' theorem, in this case, is written as

"'Vv V =t ‘W B o <V ‘E-4

where
7 Linkiok' V. YNV gak

The binomial distribution

L KWV V .CHVVV\ (E.5)

for the likelihood and its conjugate distribution, beta

r(Ak + Bk} n "1 - Qk} -1

VV 1A T(Bkrk (E.e)

for the prior distribution, are logical and convenient choices. Here A*
and Bfc are the two parameters of the beta distribution and the gamma function
Hx) is defined as

r(x) . f2X—1 e"z dz (E.7)
(0]
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The parameters of the posterior distribution that will also be a member of the
beta family of distributions are

(E.8)
The mean of the posterior distribution is given by
=-A + B (E.9)
k k
Therefore
k=l (E.10)
For a uniform prior with = 1, we get
(E.IH

Since, for higher values of k (k > 2), the n* are generally small, the
assumption of the particular prior can have a significant effect on common cause
failure probability estimates. This is true of the other models also.
Therefore, these results should not be used without an understanding of what
drives them.

The mode of the posterior distribution is given by

k ©  *S -2 (E.12)

which, in terms of the prior distribution parameters and the data, is written as

n, + A - i
Qk = NR + Ak + Bk - 2 (E*13

For a uniform prior (A*» = B* = 1), the above estimator reduces to a form
commonly known as the maximum likelihood estimator (MLE):

(E.14)

In application to the uncertainty analysis of a system unavailability, or
sequence frequency, the distributions on the are regarded as statistically
independent. So for example, in a Monte Carlo analysis, the distributions on
the are sampled independently. This, of course, results in underestimation
of the overall uncertainty.

E-3



E.3 DISTRIBUTION OF THE ALPHA-FACTOR MODEL PARAMETERS
The parameters of the alpha-factor model are defined as:

ok = fraction of basic events involving failure of any k components due
to common cause.

The data needed to estimate oik's are of the following form:
E = { nki k=Il,....m} (E.15)

where nk is the number of events involving exactly k component failures in a
common cause component group of size m.

The likelihood of observing this evidence, given a set of values for oik's is

r(n1+n9+.-,+nm) rm]
n, m—m.,n [oi & ,. a) ! (E.16)
1z mil™=: m r<"i>..... r<"» k-l
where
m
£ ak = 1 (E. 17)
k=1
This is a multinomial distribution.
Using a Dirichlet prior distribution of the form
T (a rArAT-AD 4 A (E.18)
0 "1 oV T r(A1r(A2)...r(Am) ~ ak :

and the likelihood function given in Equation (E.16) in Bayes' theorem results
in another Dirichlet distribution for the posterior distribution,

11¢01, E) = C-1 L(E 01
) ’am )TTO (a1’Y m ) (E'19)

where C is a normalization factor. The posterior distribution has the same form
as Equation (E.18) with the following parameters

Ak = Ak + nk k=l,...m (E.20)

The marginal distribution of ak is a beta distribution with mean and mode
given by

Ak + nk
mean: a® = k=1,...,m (E.21)

£ (Ak+nk)
k=1 K

E-4



mode: alk="" M- k=l (E.22)

For a uniform prior = 1 k=l,...,m, we have

k=l (E.23)

which is the maximum likelihood estimator of ot/
E.4 DISTRIBUTION OF THE MGL MODEL PARAMETERS

The distribution of the MGL parameters is first developed in its exact form.
However, since the exact form as it will be seen is complicated and for some
practical applications difficult to use, an approximate method is also described
along with a discussion of its limitations and constraints. In both cases, the
presentation is limited to the MGL parameters for a three-component system. The
results can be easily generalized for systems of higher redundancy.

E.4.1 Exact Method

Since the available statistical data are in the form of the number of events
involving different common cause basic events, an event-based parameter such as
the a-factor can be estimated directly from the data. However, the MGL
parameters are, by definition, component based and as such, cannot be directly
related to the observables (n”'s). Therefore, the distribution of MGL
parameters must be obtained indirectly through the distribution of an
event-based parameter. The event-based model selected for this purpose is the
a-factor model.

We first note that, based on the definition of the a-factors and the MGL
parameters, we can establish the following relations.

2a, + 3a
al + 2a2 + 7al (E.24)
Y ah + Agh (E.25)

Using the standard approach for change of variables, the distributions of the
MGL and a-factor model parameters are related through the following equation:

(E.26)
|J (a1, a2, a3)|



where, defining a dummy parameter x = <*2> the Jacobian is written as

33 L 33
al az a3
J(dj, w2, «3) ¥ ¥ ¥ (E.27)

“I az ‘s3

3X 3X 3X

“I “2 “3
Since,
33 36 = 3X
3 (E.26)
Then,
(E.29)
From Equations (E.24) and (E.25), eliminating we have
S d
as (E.30)
a®. (3—F2>/2) 2
J o~
ae
E.31
(s - +173 ) ? ( )
%} a3
a
3Y (E.32)
G —3 “1+1 3 I
3y TN
E.33
ani ( )
Using the above equations in Equation (E.29) and replacing o4 and dj b.
3 (1-8) E.34
al 3 _13-7r¢gy (E.34)
BY
d., = .
3 -43 - 3y (E.35)
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=W (3 -73 "7 3y)

J (E.36)
Therefore,
NY (3*Y) = ®___ 7 (ct-i, 02> A2t (E.37)
2(3°7 3 ~ 7 3y)3 ai a2 ~

Based on the discussion in Section E.3, for a uniform prior distribution, the
distribution of o4, a?, and o1z is given by

r(ni + + n3* ni_n n2~1 n3-*
A A - R S = R _
o, o2, - O 3 B T e RN I mE B =B a3 (E.38)

Equations (E.34) and (E.35) give the relation between aj and o3 and S and y.
The corresponding equation for a? is

8 (1-y)

82:3_|8_|By (E.39)

We can now replace ai, a=2, and o3 in Equation (E.39) by
Equations (E.35), (E.Js), and (E.40). The resulting distribution can then be

used in Equation (E.38) to obtain the distribution of s and vy:

n, + n,-! n_-l ns-1 n9-1
¢ ® ro(1-8) y * ()
ue,y G.¥) 3-8 --jBy nl + n2 + n3

where

(nj + n2 + n3)

C = Ffnj) r(n2) r(n3 (E41)

From Equation (E.40), it can be seen that mean values of s and y can only be
obtained numerically, which is not a desirable property for most practical
applications where the mean value may be needed for an initial quantitative
screening of the common cause component groups as described in step 2 of the
procedure. In such cases, the approximate method described in the following
section may be used.

E.4.2 Approximate Method

The uncertainty distribution of the MGL parameters can be approximated with
simpler parametric distributions if the observed events are assumed to be
independent component failures within different categories of common cause
events. In other words, the set {n* k=I, ..., m} where n* is the number

of events involving failure of k components due to common cause will be

E-7



interpreted as (kn?; k=lI, m} where kn? is the number of components
failed in common cause events involving k component falures, and kn* events
will be assumed to have occurred independently.

With the above assumption, let us define the following conditional probabilities
(for a system of these components).

Zi = 1- 3 = conditional probability of component failure being a single
failure.
Z> = 3(1- Y) = conditional probability of a component being involved in a

double failure.

Z3 = By = conditional probability of a component being involved in a
triple failure.

Mote that

zi + 722 + 23

The likelihood of observing ni single failures, 2n2 component failures due
to double failures, and 3ns component failures due to triple failures can be
modeled by a multinomial distribution for Zjis.

(n, + 2n? + 3n,)! n. 2n? 3n,
= (Ni)i(2n2)(3n3)! 71 22 Z3 (E.42)

Rewriting Equation (E.43) in terms of 3 and Y gives

A 2n9o

2n9+3ni( n
(1-Y) (E.43)

n, 3
P(n1,2n2,3nz13)Y) = M 3 Z (1-3) Y

where M is the multinomial multiplier as in Equation (E.42).
We now write Bayes' theorem as
TTfB.YIn*n*n.”*) =+ P(n1,2n2,3n3(3,Y)T0(B,Y) (E. 44)

where To and 1 are the prior and posterior distribution of 3 and Y
and C is a normalizing factor defined as

c TMP (n1,2n2,3n313,Y)i;o(B,Y)d3 dY (E .4b)

As the prior, one can use a multinomial distribution

A -1 B -1 C -1 D -1
mT@EY) =h3o (1-3) 0 Yo (1-Y) o (E.46)



where h is given by

h = 0 0 0 0 (E.47)
r(Ao)r(Bo)r(co)r(Do)

A flat prior distribution is obtained by setting Ao = Bo = Co = Do = 1.

Using Equation (E.46) in Equation (E.44) results in a posterior distribution
for B and y that is also multinomial, with parameters

A=A + 2n2 + 3n3

B = B0 + ni
C=Co + 3n3
D = Do + 2n2 (E.48)

The mode of the posterior distribution occurs at

A (E.49)
T  C+D-=2 (E.50)

The mean values are calculated from

B - A+B (E.51)
= L
v <+ (E.52)

Note that for the flat prior the mode of the posterior distribution is

= 2"; * 33
nl+2n2+'in3 (E.53)
3n3
Y ~ Tn?+ZiTA (E.54)

which correspond to the point estimates developed in Section 3, Volume | for a
component common cause group of size m = 3. As we can see, the approximate
method results in estimators that are similar to the commonly used estimators
for the MGL parameters. The commonly used estimators, therefore, are not exact
and should only be used if the magnitude of error introduced is judged to be
insignificant compared with other sources of error and uncertainty. The most
important difference between the exact and the approximate methods described
here is that the spread of the distributions based on the approximate method is



smaller, a consequence of assuming that the component statistics (kn”?) are the
result of independent observations (References E-2 and E-3). The difference may
not be significant, however, if other sources of uncertainty are accounted for
in the development of these distributions.

E.5 DISTRIBUTIONS FOR BFR PARAMETERS

To obtain uncertainty distributions for the parameters of the BFR model, Bayes'
theorem is used as follows (the method presented here is an extension of the
method presented in Reference E-I):

P~ LXt(Jj’p*data’ = A L(clatalQi»Xt’li)>P) Po(QI’Xt’u,’P) (E.55)
where
C = J J f y’L(datalQl Xt,u),p,) P()(Ql,xt.“,p) (E.56)
Ql xt u, p

and Po and P are the prior and posterior distributions for the quantities,
Ql, Xt, w, and p. To obtain the likelihood term, we note that the data

consists of (nj, n_, ni, nz, ..., n?), where nj is the number of
single failures that were not due to common cause shocks, n is the number of
occurrences of lethal shocks, and, finally, n?, k=l, ..., m, is the number of

occurrences of exactly k failures due to nonlethal shocks in t hours of
operation.

In this model, times of occurrences of noncommon cause individual component
failures, nonlethal shocks, and lethal shocks are assumed to be exponentially

distributed. Therefore, nj, n”, and n_ have Poisson distributions with
parameters Qi, Xt, and w.

Now, the joint likelihood of the data can be decomposed into marginal
distributions as follows:

L - Ptnj, n?, ni»...»nm]
= PLnj] PInL] PLnt] ptni»eee»nmint? ' (E.57)

Where the first three distributions on the left-hand side of the equation are
Poisson,

Qjty  -Qit

PtnjlQj] o (E.58)

PLNJI] e (E.59)
g



{E.60)

The fourth term is multinomial distribution; i.e.,

! m ni
..... (E.61)
where
(E.62)
where
q = 1 - D (E.63)

The estimators provided in Section 3 are in fact the maximum likelihood
estimator based on the likelihood function of Equations (E.58) through (E.62).

As we saw earlier, the likelihood function can be decomposed into likelihood
functions for each of the four quantities. Similarly, the prior distribution,
PO, can be written as the product of four prior distributions,

(E.64)

As a result, the posterior distribution of Equation (E.55) can also be
decomposed into the product of four distributions. Since the likelihood for the
first three parameters are Poisson, a reasonable choice for the family of their
corresponding priors is the gamma family of distributions, which has the
following form

(E.65)
F(a)
where a and b >0 are the two parameters of the distribution. Let (a,b),
(a-t.bt), and (aw,bw) be the parameters of the gamma prior distribution
for Qj, Xj., and v, respectively. If
b = b, = =0 (E.66)
then the resulting priors are noninformative for Qj, X*, and w.
Reference E-lI suggests the use of beta distribution for p.
F(c+d C- , d-
f(p) = S T pfid (E.67)
r(c)F(d)



where ¢ and d are the two parameters of the distribution. According to
Reference E-I,

A
C=d=—1j

approximates a noninformative prior for p.

The general form of the posterior distribution is then

p(Qlsxt>u,p) = ol Qja' Xt w< .—(b' Ql+bi Xt+bel)u)

s+c-1 mn.-s+d-l

="V (E.68)
ni
(1-q"
where
a = a+ nj1 b+t
at = at + "t bt = bt+t
aui = aui + Hi-=1 bCJ = bU)+t (E69)

The mean values of X, Xt, and w can be calculated analytically and are

n,+a
h = tW (E.70)

n, +a

-t Tt
r.t * t+b. (E.71)
0 = nL+aui E 72
) = trby) (E.72)

However, the mean of p can only be calculated by numerical integration.

Maximizing the posterior distribution [Equation (E.es)] to obtain the mode
results in the following estimates:

nj+a-1
Q= tap (E.73)
X AV V4
Kt ~ t+b? (E.74)
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E.e

E-I.

E-2.

E-3.

(E.75)

N m n. A

s p — -+ P (d-1) - q (c-1) (E.76)
1 1_q
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APPENDIX F

PRACTICAL CONSIDERATIONS

F. 1 INTRODUCTION

The procedural framework described in Volume | allows application at varying
levels of detail. It is recognized that it may not always be necessary or
practical to perform the analysis to the level of detail discussed in Section 3
and applied in the auxiliary feedwater system example in Section 4. Indeed, the
screening analysis, Stage 2 of the procedure, is included as an essential
element in achieving a practical methodology in that it restricts the number of
common cause failure events that have to be analyzed in detail. The purpose of
this appendix is to discuss the various practical aspects of applying the
proceaure, to identify where simplifying assumptions are made, and where they
can be made without loss of accuracy. The topics discussed here are entirely
concerned with the analytical aspect, and not the qualitative screening or the
data analysis.

To understand the necessity of performing simplifying assumptions on the grounds
of practicality, consider the following: in system-level analyses (i.e., the
analysis of common cause events within a given system), large fault trees can
result from the identification of large common cause component groups or many
common cause component groups. In plant-level analyses (e.g., applied risk
studies), especially those that employ the fault-tree-linking technique, the
fault trees are typically large even before the inclusion of common cause
events.

For example, consider the case of one-out-of-N (for success) systems that are
comprised of N components so that system failure requires failure of all

N components. Suppose that all N components are assigned to the same common
cause group. The systematic procedures described in the guide suggest as one
alternative the incorporation of a number of basic events into the logic model,
equal to all the combinations of components that can be affected by a particular
cause. This number, ne, is given by

(F.D

Values of ne are listed in Table F-lI for selected values of N, together with
the number of minimal cutsets of the resulting fault trees. The highly
nonlinear proliteration of cutsets with system size is evident in this table.
More than b,000 minimal cutsets result from the s component-common cause fault
tree. Even systems with 10 or 11 identical components (e.g., relief valves in a
BWR ADS system) are well beyond the practical limit of a complete fault tree

F-I



TABLE F-I

SIZE PARAMETERS FOR COMMON CAUSE EVENT FAULT TREES OF ONE-OUT-OF-N SYSTEMS

n ne
Number of Basic , nm
\ Number of Unioue Number of Minimal

Events in the . .
Number of Components Expanded Fault Basic Events in Cutsets in Expanded

in System Expanded Fault N

Tree(a) Tree(b) (c) Fault Tree
2 4 3 2
3 12 7 5
4 32 15 15
5 80 31 42
6 192 63 278
11 11,264 2,047 ™)
100 6.3 x 1032 1.3x1030 @)

*Unknown. It is believed that these fault trees are well beyond existina computer

software and hardware capability.

(@) Determined from

(b) Detemined from Equation F-I.
(c) As determined by fault tree solution with SETS.



analysis of all common cause events. In these situations, it is necessary to
either simplify the model or apply algebraic formulas to component-level logic
models, as more fully described below.

Section F.2 discusses analytical methods that are applicable in both the
screening and the detailed analysis, while Section F.3 is concerned with methods
that are specific to the detailed analysis of Stage 3 of the procedural
framework. Section F.4 discusses briefly the iterative application of this
framework to achieve an economical yet detailed system analysis that
incorporates common cause failures.

F.2 ANALYTICAL METHODS APPLICABLE TO BOTH SCREENING AMD DETAILED ANALYSES

The first method discussed in this section is that of simplifying the common
cause model. The second technique, truncation, is applicable to any systems
analysis but is mentioned here for completeness. The third section addresses
the introduction of the common cause events into the model.

F.2.1 Model Simplification

In the most rigorous application of the procedures recommended in this
procedures guide, a certain number of common cause events are added to the logic
model, one for each different combination of components that could be affected
by a common cause. As shown above, there are =~-41 such combinations in a
group of N components. By selectively eliminating some combinations, the number
of minimal cutsets in the extended fault tree can be reduced and the
determination of the algebraic system model can thereby be simplified. The
original beta factor model incorporated this technique by modeling only the
purely independent events and the global common cause events; i.e., the event
that fails all N components in a common cause group.

There are natural variations on the beta factor model within this class of
techniques in which additional common cause events can be added to progressively
allow a greater degree of detail within the model but less than the full detail
provided by the "rigorous" approach. One such variation, for groups having five
or more components, might be to include the independent events, the global
common cause event, and all the common cause events that fail two and three
components. In this model, the global event accounts for any common cause event
that fails four or more components. In practical situations with five or more
components, there is no real technical justification in light of data analysis
uncertainties to have a greater degree of freedom than that included in this
type of model.

When the model is simplified using one of these approaches, it is very important
to analyze the data in a consistent manner. If care is taken, the analyst can
ensure that any errors introduced by event deletion are controlled in a
conservative manner. For example, if using the above model in a system of, say,
12 components, any event that involved failure of 4 or more components would be
counted in the data analysis as failing all 12 components, or, if the original
beta factor model is being used, any common cause event would be counted as
failing all N components.



For example, if the truncated model described above is being used to analyze a
12-component system, suppose that the following data were developed (after
screening the events and performing the necessary upward and downward mapping of
applicable data from different sized systems).

ni = 100
ng = 4
n3 =22
n>4 = 1

Since the model has been truncated not to distinguish among any differences in
impact for four or more components, to be consistent, the parameter estimators
should also not make the distinction. So, for estimation of the 3-factor, the
following approach would be used to estimate the mean of the 3-factor
uncertainty distribution (see Section E.3, Appendix E, Volume 1).

2n™ + 3nM + lon>A
26
nl + *n2 + *n3 + 1°n>4 126

If the 3-factor model was being used to analyze some system with the same data
as above, the following approach would ensure that the modeling truncation error
is conservative. Assume all common cause events (i.e., n£ + n3 + n>a) fail all
12 components, and estimate 3 as —

(n, +n. +nd (12
A ° — 84
A nl + ¢(n2 + n3 + n>4) (12) -~ 134

The quantitative screening proposed in this guide has adopted the most simple
and conservative approach of using the beta factor type of model; that is, using
only the global common cause terms. The use of the global common cause term
will be revisited in terms of the detailed analysis in Section F.3.

F.2.2 Truncation

When all the common cause events are included in the logic model, or when some
are omitted and the others are conservatively quantified as described above, the
models can be further simplified by truncating higher order cutsets. This
technique is normally used in ordinary fault tree analysis and is incorporated
into much of the fault tree analysis software. This technique is more powerful
ana more defendable if common cause events are included in the logic model. The
assumption of lower probability of higher order cutsets is the basis of
truncation, but is only valid if the events are independent statistically.
Explicit inclusion of common cause events preserves the validity of the
assumption and the method.

In the auxiliary feedwater system example of Section 4.1, Volume |, the
numerical error associated with truncating all but first-order terms was found
to be about 4%, while truncating the third-order terms yielded an error of less
than 1%.
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These results are rather typical and reflect an important contribution of the
global common cause events. Seldom do terms of fourth order and higher make
significant contributions, even collectively. It is also normally safe to
truncate cutsets of an order higher than the lowest order of purely independent
event cutsets of events within a common cause group. For example, if a system
has minimal cutsets of order =2, with single failures of components in a given
component group, any cutsets of events within the same group of order 3 or
higher can be safely truncated, provided the probabilities of the events
contributing to the higher order cutsets are comparable with those of the lower
order cutsets and are small.

A variation on this approach is to truncate certain types of cutsets within a
given order. For example, the approach followed in the COMCAN software
(Reference F-l) includes three types of cutsets: (1) purely independent events
of any order, (2) cutsets with one independent event, a common cause event, and
(3) first-order cutsets that are global events.

An alternative approach is one in which cutsets or algebraic model terms are
truncated, based on estimates, or bounds, on their probabilities. This approach
is generally superior to cutset order truncation because it is not necessary to
assume a direct correlation exists between cutset order and cutset probability.
To best control this approach, it is highly desirable that the estimates, or
bounds, on the probability of truncated cutsets be saved for comparison to the
final result. This comment also applies to the cutset order truncation
technique.

In yet another approach, subtrees whose underlying basic events do not appear
any other place in the system fault tree can be combined into a single
"superevent" or "supercomponent." This approach is well known to fault tree
analysts and is incorporated into such fault tree computer programs as WAME and
SETS. It was employed in the U.S. contribution to the Common Cause Reliability
Benchmark Exercise (Reference F-2). The system that was analyzed consisted of
four identical trains, and the success criterion was one or more trains. Each
train consisted of 17 components which were grouped into 12 component groups.

An ordinary independent events fault tree would have 20,736 minimal cutsets in a
component-level fault tree. After expansion of the system fault tree to include
common cause events according to the "rigorous" approach described in this
procedures guide, the number of cutsets increased to 45,295. After making the
fullest possible use of the independent subtree technique, the number of minimal
cutsets was reduced to 5,739. Hence, an eight-fold reduction in the number of
terms was achieved in this example. Unlike the .above techniques to simplify the
model, this one does not introduce any numerical errors whatsoever. A minor
drawback is that when independent subtrees are identified as significant
contributors, they must be separately broken down so they can be used to examine
causes at a level of detail consistent with the parts of the fault tree not
simplified in this way.

F.2.3 Incorporation of Common Cause Events into the Plant Model

There are basically two different approaches to plant modeling: the fault tree
linking and the support state model approach. There is essentially no
difference in the way that common cause events are introduced into these
models. Perhaps the simplest approach is to introduce the common cause events



directly into the fault trees for the support systems and frontline systems
before solution for the cutsets. However, the inclusion of many additional
events into fault trees can make their solution cumbersome. Two alternatives
are discussed here. lhis approach is to solve for the cutsets without the
common cause events and to substitute into the resulting minimal cutsets
expressions, which expand the component events into independent and common cause
events. The latter approach can be subject to the criticism that truncation may
eliminate cutsets, based on order or probability, that might have significant
common cause potential. In practice, at the system level, this is seldom a
problem for an experienced analyst since he has identified the appropriate
common cause groups and would perform a check to see why they did not appear.
This may be more difficult when systems are combined together to form accident
sequences. However, it is a powerful approach to providing a practical solution
when used with care. It is illustrated below.

F.2.3.1 Basic Event Substitution

Suppose a system is composed of four components, X, Y, Z, and W. The first
three of these are identical and belong to a common cause group, and the fourth,
component W, is independent of the first three. Let all the causal events in
this system be denoted by Cj, where j denotes the particular impact of that
cause in terms of a component, or combination of components, that is affected.
All the basic events in the resultant fault tree are listed as follows:

Independent Common Cause
Cause Events Events

Cx CxYy

Cy cxz

cz Cyz

Cw CXYZ

Assume that the system success criterion dictates that there are two minimal
cutsets for the system in the component-level Boolean for the normal alignment.
The minimal cutsets are given by

{X,Y} and {Z,W}

Therefore, the solution to the problem with component level basic events is

T = XY + Z% (F.2)

*Ali equations with boxes are Boolean algebra; those without are normal algebra.



Incorporation of the common cause basic events into the fault tree is equivalent
to the Boolean substitution

Cxy + Cxz + CxYZ + CX

>
1]

Y = Cxy + Cvyz + CxYZ + CY
Z = CYz+ Cxz + CXYZ + cz
W = Civ

Consequently Equation (F.2) becomes

T = [Cxy + Cxz + CxYZ + Cxi*[CxY + Cyz + CxYZ + CvZ!

+ [CYyz + cxz + CXYZ + czj*Cw

After Boolean reduction

T = cXY + cXyz + Cxz*cy + Cx*cY + Cxz*cYz
+ CYz*Cw + Cxz*Cw + cz*cw + Cx*CYz (F.13)

The final equation is equivalent to the following list of minimal cutsets:
Singles: {Cxy"3" { {Cxyz'
Doubles: (CXz*CYz)(a) ; {CXz*Cy} ) {Cx*CY} ; {Cx*CYz}
{cYz*cw} ; {Cxz*cw} ; {cz*cw}

The system failure probability can now be written using the rare event
approximation and assuming that all the listed causal events are independent.

P(T) = P{CXY} + P{Cxyz} + P{CXZ} « P{CYZ}
+ P{cxz) * P{cy) + p(cx} < [P{CY) + P{cyz}]
+ P{CW[P{CYZ} + P{CXZ} + P{C2)] (F.4)

Applying the assumption of symmetry, i.e., that
P{CX) = P{Cy} = P(CZ} = Qu

(a)For a discussion of these controversial cutsets, refer to Section C.I of this
volume.

F-7



= P(cxz} = P{cyz} = Q2

je]
oy
0
X
<
—
1

we obtain

P(T) + Q3 + Of + 2Q1Q2 + Q1 + °W(o1+ 2Q2]

(F.5)

F.2.3.2 A "Support State" Model

The support state model suggests an alternative approach to the inclusion of
common cause events. This model uses a conditional probability formalism to
account for all dependencies. Thus

N

P(T) = &£ P ) P(TIS.) (F.s)
Jj=i J J

where

P(X) = probability of event X.

T = top event of the system fault tree.

Sj = one of N mutually exclusive and exhaustive conditions under which
the top event can occur.

TIS =

fault tree modified to reflect the condition S; i.e., given
Prob (Sj) = 1. J

The common cause events can be included in such a model by associating a common
cause failure occurrence with one of a set of states, Sj. Since the common
cause dependency is explicitly accounted for in the term P(Sj), the events
constituting T|Sj are now independent and, therefore,
P(TI Sj) = P(X[Sj)+P(Y[Sj) + P(Z]Sj) P(W Sj)
- P(XISH-(P(YISHP(ZIS)HP(WIS)) (F.7)

What this means in practice is that each term in the right-hand side can be
expressed as the following for P(X]|Sj)

yP(CV), states that do not impact component X
1, states that impact component X

The use of an event tree to generate all the common cause event states is
illustrated as follows.*

*See discussion in Section C.I of this volume regarding terms involving
overlapping components in basic events.
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IMPACT VECTOR
CXYZ XX = F(TISj))

SC 1 1 1 1

OCCURS S 1 1t 1

33 1 1 1 1
SC 1 1 1

CXY CXz CcYz

DOES
NOT
OCCUR

86' 1 1 1 1
s7 1 1 1 1

s8 10
9 1 1 1

s100 1 1 i

sic 1 1 i 1

3.2 1 0 1 -F(Cv)+F(Cw)
s13* o+ 1t 1

sie 0 1 1  ~F(Cx)+F(Cw)
st5 1 1 1

s16 0 0 0 -F(Cx).F(Cy)+ F(Cz).F(Cw)

Using the event tree to help calculate the P(Sj) terms in Equation (F.E) and
the impact vectors to help calculate the P(7|Sj) terms, the top event
frequency, P(T), can be written as

P(T) = P(Cxyz) + P(Cxy) + P(CX2)IP(CYZ)** + P(CY) + P(CW)]

—+

P(CYZ)*[P(Cx) + P(CW)] + P(CX)P(CY) Vp(cz)-P(Cw)

Q2 + Q3 + Qz + 2072 + Q + QW@ + 2Q2) (F.10)

where the approximations are valid for all frequencies P(a)<<l.

Equation (F.10) is identical to Equation (F.s), which demonstrates the
feasibility of this alternative approach to solving the example problem. In
larger problems, it may be easier to follow the decomposition method, or vice

versa.
F.3 DETAILED MODELING

Three topics are presented in this section. The first is a useful table of
results that can be used directly or as a means to check that an analysis has
been done correctly. It is called here "the pattern recognition approach." The
second topic concerns the merits of using the global common cause

*If the events are considered mutually exclusive, these states cannot exist.
**This basic event would not exist if the basic events involving overlapping
components are considered mutually exclusive.
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terms only in the detailed modeling, and the third topic is that of refinement
of common cause grouping when components are potentially a common cause group
but some feature, perhaps of their operation, introduces some asymmetry.

F.3.1 The Pattern Recognition Approach

khen the systematic procedures of this report are followed, it is not necessary
to know the algebraic formulas for relating the system failure logic to the
common cause model parameters. It is only necessary to know the formulas for
relating each basic event to the model parameters. The effect of the system
logic is systematically incorporated into the analysis using standard fault tree
analysis techniques. The experience gained in applying the systematic approach
to a large number of systems with different configurations has resulted in the
accumulation of a rather large "library" of formulas for different systems and
situations. This "library" of formulas can be used to support an alternative
approach to common cause analysis, which the authors have termed the "pattern
recognition approach.”

The pattern recognition approach refers to the process of developing an
algebraic model for system failure frequency by recognizing the pattern or
configuration of the system logic. By matching the pattern to one in his
library, the analyst synthesizes the appropriate algebraic formulas from the
library to obtain the system model. When the pattern recognition approach is
used, some of the key steps of the recommended systematic procedure are
bypassed. These steps include the incorporation of common cause events into the
system fault tree and the systematic examination of cutsets in the development
of the system algebraic model. When bypassing these steps, the analyst entrusts
whoever developed the formulas that these steps have been properly performed and
relies on the judgment that the patterns have been appropriately matched.
Therefore, the pattern recognition approach has many pitfalls and should be
followed with care. It is not difficult to omit or double count important
cutsets and key contributors, as explained more fully in Section 4, Volume I.

In fact, the systematic approach is recommended in favor of the pattern
recognition, whenever feasible.

Unfortunately, the large fault tree problem and resource constraints on analysis
projects will preclude the full implementation of the systematic approach and
will maintain a continuing need for the pattern recognition approach. Moreover,
the authors recognize that there may be some resistance to adopting the
recommended "rigorous" approach, even when its application is feasible.
Therefore, the authors provide guidance in this section on the proper use of
formulas for common cause analysis when the pattern recognition approach is
followed.

The chief difficulty with the pattern recognition approach is in matching the
patterns or configuration of the system being analyzed with the appropriate
pattern in the "library." When the configuration and success criteria cannot be
matched exactly, an attempt should then be made to decompose the system into
independent subsystems for pattern matching. Independence implies here that
there are no shared components between two or more subsystems and that the
boundaries of all the common cause component groups are not crossed by the
boundaries of the subsystems. If an exact match cannot be made at the system,
or at the independent subsystem level, the pattern recognition approach should
be abandoned since significant errors are likelyto result. Seemingly minor and
subtle differences in the configurations can lead to major differences in the
results.
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A compilation of formulas for independent and common cause events in some
simple, frequently encountered configurations is provided in Table F-2. For
each model, formulas are provided for the basic parameter model on the
assumption that the common cause basic events are manually exclusive.
Additional terms are required if independence is assumed and indicated in the
comments column. All the formulas account for all the first and second order
minimal cutsets in the fault trees that include the common cause events. In
some models, the technique of omitting or disallowing some common cause events
is applied.

Niodels 1 through s cover all the simple "K out of N" (for success) situations
for h up to four, and "one out of N" (for success) situations for N up to six.
In each of these model formulas, the only approximations made are the rare event
approximation and the truncation of cutsets of order 3 and higher. Otherwise,
all possible common cause events are accounted for.

Models 9, 10, and 11 cover selected four-component configurations that exhibit
some asymmetries that have been accounted for in selecting common cause events
for inclusion in the models. Models 12 and 13 cover general parallel-series and
series-paral lei configurations of identical redundant components. These models
and model 14 do not include all the possible common cause events, but they do
include the ones with significant contributions over the practical range of
model parameter values.

There are pitfalls when formulas are applied to a list of minimal cutsets
obtained from a component-level fault tree. To illustrate, suppose the minimal
cutsets of a system were:

(A.B.Ch {A,B,D}; (A,C,D); {B,C,D}

The correct approach is to recognize this as a "three-out-of-four" (for success)
system and apply the formula for model 5. An incorrect approach is to recognize
each cutset as a separate "one-out-of-three" (for success) system and compute
the system formula as four times the formula for model 4. Since the cutsets
share components and comprise components within the same common cause group, the
separate cutsets do not correspond with independent subsystems. When this point
is not recognized, the global common cause events (i.e., the lethal shocks) are
multiply accounted for. Additional pitfalls in applying formulas are described
in Section 4, Volume 1.

F.3.2 USE OF SIMPLIFIED MODELS

It is not always necessary to include all possible common cause events
associated with a common cause component group containing many (more than two)
components. The example in Section 4.1 illustrated that neglect of all terms
other than the global common cause term resulted in an underestimate of the
system unavailability that was negligible particularly when taking into account
the uncertainties in the parameter estimates.

It should be pointed out however that while this is not necessarily a general

rule, under, a certain set of conditions the approximation is wvalid. The
conditions are basically that the independent event unavailability is low
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(I0-* or less), and that the conditional probability of three or more

components failing, given two have failed, is fairly high (on the order of 0.5),
and somewhat higher than the conditional probability that two have failed, given
one has failed.

Currently, this appears to be the case in most evaluations. The reason is
possibly that the data base, even after expansion to include industry wide
experience, is small for multiple failure events, leading to potentially
conservative estimates of the conditional probabilities of three, given two;
four, given three; etc., failures.

The judgement of the adequacy of the global common cause term to represent
common cause failure effects is, therefore, a function of the probability
estimates.

F.3.3 Modeling Asymmetrical Common Cause Events

Miost of the common cause event models presented in this guidebook use an
assumption regarding the symmetry of causes acting on a group of causes. The
basic parameter, multiple Greek letter, and binomial failure rate models in
Table F-2 all assume, with a few exceptions, that the frequency of a common
cause event that fails a specific combination of components within a common
cause group is the same for all such combinations of a given size. In a
three-train system, for example, the basic parameter model assumes that

QaB = QBC = QAC = Qo (F.1D)

There are many situations in practice in which the common cause events would be
expected to exhibit asymmetries. An example is the case of certain so-called
alternating systems, of which component cooling water is one where one train is
normally operating, while the others are in standby. Some of these situations
were envisioned in models 9, 10, and 11 in Table F-2. In model 9, a mix of
normally operating and standby components produces an asymmetry. In models 10
and 11, the location of four identical components in two different systems and
at a different reactor unit on the same site provides another example of an
asymmetry. This consideration was used to justify the elimination of certain
common cause events from the model; e.g., those affecting a pair of components,
each in a different system.

The basic approach to modeling asymmetries is to incorporate them into the
system logic model by either adding to or subtracting from the model as
appropriate to model the asymmetry. Because the common cause events affect the
determination of minimal cutsets, this is highly preferable to manipulating
algebraic formulas directly to add or delete the appropriate events. In

Table F-2, models 1 through s include fully symmetric causes, whereas models 10
through 11 incorporate asymmetries by the deletion of events from the system's
logic model.

Another example of an asymmetrical model was developed by adding events to the
logic model that initially included all the symmetric causes. This occurred in
the case of a three-train auxiliary feedwater system that included three
identical mechanical pumps. During the screening of common cause event data
some of the events could act on the pumps in a symmetric fashion, whereas



Table F-2

ALGEBRAIC FORMULAS FOR COMMON CAUSE EVENTS IN SOME SIMPLE SYSTEM

RELIABILITY BLOCK
DIAGRAM

MODEL
NO.

MODEL DESCRIPTION/
SUCCESS CRITERIA

TWO UNITS IN STANDBY; ONE OF TWO
MUST OPERATE ON DEMAND

TWO UNITS IN OPERATION; ONE OF TWO
MUST OPERATE AT LEAST t HOURS

THREE UNITS IN STANDBY. TWO OF
THREE MUST OPERATE ON DEMAND

THREE UNITS IN STANDBY; ONE OF
THREE MUST OPERATE ON DEMAND

FOUR UNITS IN STANDBY; THREE OF
FOUR MUST OPERATE ON DEMAND

FOUR UNITS IN STANDBY; TWO OF
FOUR MUST OPERATE ON DEMAND

FOUR UNITS IN STANDBY; ONE OF FOUR
MUST OPERATE ON DEMAND

FIVE UNITS IN STANDBY; ONE OF FIVE
MUST OPERATE ON DEMAND

"NTEO BY Q AND

APPROXIMATE FORMULAS
BASIC PARAMETER MODEL*

Q2 + Q!2

ty + V12

30,2 + 302 + 03

30,02 + 403 + 0,2

6(Q,2+ Qz) + 4Q3 + 04

120,02 + 3Q22 + 4(Q3 + q13) + q4

3Q22 + 40,Qz + Q4 + 6Q,Q22

+ 0.4

10Q2Q3 + 50,Q4 + Q5

CONFIGURATIONS

KEY ASSUMPTIONS

NONE

NONE

ADD 3Q22 IF UNITS ARE ASSUMED
INDEPENDENT NOT MUTUALLY EXCLUSIVE

NONE

ADD 12Q22 IF EVENTS ARE ASSUMED
INDEPENDENT NOT MUTUALLY EXCLUSIVE

ADD 15Q32 + 20Q204 + 30Q3Q4 + 20Q42 IF

EVENTS ARE ASSUMED INDEPENDENT NOT
MUTUALLY EXCLUSIVE

RESPECTIVELY. THE MISSION TIME IS t WHEN APPLICABLE.
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RELIABILITY BLOCK

DIAGRAM
—A,
A2
-Bi
—B2
—Af1
I« _1
1 -B, |
r
| A2 |
i )
B2
Ai-- a2 - A3 MN
B,-—p2.—8B3 BN
Ai- A2 ra3y-ct-r AN
B3
B,.LB2 L *.eee . BN
—Al

MODEL
NO.

10

1

12

13

14

Table F-2 (Sheet 2 of 2)

MODEL DESCRIPTION/
SUCCESS CRITERIA

TWO TRAINS (A AND B) OF TWO
COMPONENTS (1 AND 2), A1 AND

B* NORMALLY RUNNING, A2 AND
B2 IN STANDBY; AT LEAST ONE

COMPONENT MUST CONTINUE TO
OPERATE FOR t HOURS

FOUR REDUNDANT UNITS IN
STANDBY; TWO IN UNIT 1 AND TWO
IN UNIT 2; ONE OF FOUR MUST
OPERATE ON DEMAND

SAME AS MODEL VIl EXCEPT UNITS
ARE ALL IN OPERATION AND ONE
MUST OPERATE FOR 1 HOURS

TWO PARALLEL TRAINS OF N
IDENTICAL UNITS. ALL N
COMPONENTS IN ONE OF TWO
TRAINS MUST OPERATE ON
DEMAND

SAME AS MODEL 13 WITH
CROSSTIES; AT LEAST ONE OF
TWO IN EACH OF N STAGES MUST
OPERATE ON DEMAND

N COMPONENTS IN STANDBY; AT
LEAST K COMPONENTS OUT OF N,
K < N MUST OPERATE ON DEMAND

APPROXIMATE FORMULAS
BASIC PARAMETER MODEL'

(X1t)4 + Q12(>.1)2
+2Q1(X14)3
+ (X2t)2 + x4t

+ 2\2t(Qi

2Q"Q2 + Q4

2X1X2t2 + X4t

N2(Q12 + 02) + 02N

N(Oi2 + 82) + Q2N

e =,>,1-0/-*

j=N-k '
+1 +ON

KEY ASSUMPTIONS

COMMON CAUSE FAILURES BETWEEN A,
AND A2 OR BETWEEN B, AND B2 ARE
ACCOUNTED FOR IN Q. NO COMMON
CAUSE EVENTS AFFECTING EXACTLY
THREE COMPONENTS MODELED.

COMMON CAUSE FAILURES INVOLVING
TWO COMPONENTS CAN ONLY AFFECT
A1 AND B1 OR A2 AND B2. NO COMMON
CAUSE FAILURES INVOLVING EXACTLY

THREE UNITS MODELED.

COMMON CAUSE FAILURES INVOLVING

TWO COMPONENTS CAN ONLY AFFECT
A- AND B, OR A2 AND B2, NO COMMON
CAUSE FAILURES INVOLVING EXACTLY

THREE UNITS MODELED.

COMMON CAUSE FAILURES EITHER
INVOLVE ONLY TWO OR ALL.2N
COMPONENTS. ANY PAIR OF,
COMPONENTS BEING FAILED BY A
COMMON CAUSE IS EQUALLY LIKELY.

COMMON CAUSE FAILURES EITHER
INVOLVE ONLY TWO OR ALL 2N
COMPONENTS. ANY PAIR OF
COMPONENTS BEING FAILED BY A
COMMON CAUSE IS EQUALLY LIKELY.

WHEN A COMMON CAUSE FAILURE
OCCURS, ALL N COMPONENTS ARE
ASSUMED TO FAIL.

FAILURES ON DEMAND AND DURING OPERATION ARE REPRESENTED BY Q AND X, RESPECTIVELY. THE MISSION TIME IS t WHEN APPLICABLE



others, due to the scoping layout, could only affect two specific pumps. A

model of this system that accounts for both the symmetric and asymmetric causes
was developed using the systematic procedures of this guidebook. A fault tree
was constructed by separating the symmetric and asymmetric causes, as shown in

Figure F-1. The asymmetry is represented by common cause event "X"-, which acts
on components A and B only. Without the "X" event, and with the assumption of
symmetry for the remaining causes (e.g., the = Qgg = Q\c = Q7), this

fault tree corresponds with model 4 in Table F-2 whose MGL formula for system
failure probability is

Q$ * -3(1-Y)3QzL2 + (I-Y)BJ * + YBQ (F.12)

The minimal cutsets of the fault tree in Figure F-l are:
First Order: {CaBC*
Second Order: {CAB, Cj}; (Cac. BJ}; (Csc, AJ}
{caB) cBc”™ {cac. cBc”™ {caB> CAC}*
{X, Cj}; {X, cAch {x, CBC}
Third Order: (Aj, BI, Cp}
where each set of braces represents a single minimal cutset. It is important to
note that in setting up the impact vectors for screening event data events X
and CAB be distinguished from each other.
The above list of minimal cutsets includes all the cutsets of model 4 in
Table F-2 that include purely symmetric cause events, plus three second-order

cutsets that include the asymmetric cause event. In terms of the basic
parametric model, the formula for the system in Figure F-l can be developed using

0§ * 30N + 3022 * + Q3 + + 2Q2)

which, according to the MGL formulas becomes

Qs =I(1-Y)BQ2[1 + (1-y)B] * + YBQ + Qx(1-BY)

In estimating parameters for this model, care was exercised to avoid double
counting events as both symmetric and asymmetric causes.

The above example illustrates a straightforward application of the systematic
procedures of this guidebook to incorporate asymmetries into the models. The
overall approach is to selectively add or delete basic events from a common
cause event fault tree that initially contains all the cause events that were
used to generate the symmetric models. This approach is preferable to the

*See discussion in Appendix C regarding cutsets involving basic events with
overlapping components.
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development of a generalized asymmetric model. Such a model would include
common cause events, linking any and all combinations of components that may be
difficult to enumerate, not to mention impractical to quantify.

Yet another example results in modeling the common cause failure of the safety
relief valves in a BWR. There are many of these valves {typically on the order
of 14 or so) and a large number have to fail to propagate an accident. Because
of the lack of data on high multiplicity groups of components and the natural
tendency to be conservative in this situation, the data analysis approach
discussed at length in Section 3 would result in the higher order parameters in
the MGL or alpha model being essentially unity, and the global common cause term
clearly dominates. This will lead to unrealistically high common cause failure
probabilities. One of the authors has used an approach based on asymmetry to
argue, subjectively, for lower failure probabilities. The asymmetry was that
which resulted from the maintenance policy of the plant where one-third of the
valves were stripped down and rebuilt every refueling outage. This results,
therefore, in an asymmetry of the valves with respect to the state of
degradation as a result of the environment inwhich they are located.
Therefore, for those causes that result in degradation, the valves are divided
into three separate common groups with a less than complete coupling. Since it
was judged from looking at failure event data that the failure modes of such
valves were dominated by causes that can be attributed to gradual deterioration,
a lower common cause failure probability than would otherwise be assigned was
judged to be acceptable. This type of asymmetry is, therefore, dealt with in a
different way, by its incorporation in the estimation of a common cause
probability, rather than being represented explicitly in the model.

F.4 ITERATION! AS ANl INTEGRAL PART OF THE PROCEDURE

One of the features of the procedure discussed in this report, but perhaps not
stressed enough, is that its application is necessarily iterative. The first
iteration is clear; the procedure calls for a quantitative screening, which uses
a conservative treatment to identify the important common cause failure terms.
As common cause failure events are analyzed in more detail and as refinements to
the system analysis, such as addition of recovery actions, are incorporated, the
relative importance of the various terms changes and a further iteration is
required. Of course, the secono time around the model is already set up for
screening. After the first screening, those common cause terms not requiring
reevaluation should not be deleted from the model. The results of the screening
merely imply that, at that stage in the analysis, it does not appear that
reevaluation would be beneficial to producing a more realistic result. However,
as stated above, as the analysis becomes more refined, these same terms may, in
their turn, become important.
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APPENDIX G

RECOVERY CONSIDERATIONS IN A CCF ANALYSIS

Several factors involved in the analysis of accident sequences will affect the
contribution of CCFs to the accident sequence frequency. Some of these factors
tend to affect different CCF contributors in different ways. A particularly
important example is that of the incorporation of recovery actions.

Reference G-l provides specific guidance on performing a recovery analysis. Two
examples are given below showing how recovery considerations affect the relative
contribution of CCF scenarios to accident sequence frequencies. Because of
this, recovery considerations (even if only of a preliminary nature) can play an
important role in the quantitative screening step (Section 3.2.2) since the
purpose of this step is to focus on dominant CCF scenarios as early in the
analysis as possible.

As can be seen in the examples that follow, recovery considerations depend on
the specific accident sequence minimal cutsets. Thus, recovery considerations
cannot be incorporated at the system level but must be aodressed in connection
with the accident sequence analysis.

Example 1: Station Blackout Scenarios. This example consists of accident
scenarios initiated by a loss of offsite power at a BWR plant (see, for example,
Reference G-2). Two CCF events that, if either existed following LOSP would,
without recovery, result in a core damage, are (1) CCF of the emergency diesel
generator and (2) CCF of the station batteries.

Consider Case 1 first without regarding possible recovery actions. Loss of the
EDGs results in a station blackout (loss of all AC power). The station
batteries provide DC power to the HPCI and RCIC systems. In the plant being
analyzed, it is supposed that these systems maintain adeouate core cooling
(barring no additional failures) for about & hours. After this time, the
batteries deplete and so become unable to supply enough power to HPCI and RCIC
to keep the systems operable. Once these systems become functionally
unavailable, it is supposed that core damage occurs within 3 hours.

Recovery from this "long-term" ( 9-hour) scenario is modeled by either
restoration of one of the EDGs or by recovery of offsite power. Either recovery
action would avoid core damage (barring any additional failures) if accomplished
in time. The overall recovery potential for this scenario is high mainly
because offsite power is likely to be recovered in time to avoid core damage.
Data on recovery of offsite power or an EDG at U.S. nuclear power plant sites
indicate that the probability of recovery is about 0.9b (Reference G-2). By far
the most likely recovery action is that of offsite power.
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For Case 2, loss of the station batteries is assumed to result in failure to
start and load the EDGs and, therefore, loss of all AC and DC power. Core
damage will occur, unless AC or DC power is recovered, in about 30 to

40 minutes. The recovery of the station batteries is difficult in such a short
period of time, and the recovery of AC power is severely affected by the DC
power loss. (Plant instrumentation is also significantly degraded under these
circumstances.) Thus, the probability of recovering AC or DC power in this
"short-term" blackout scenario is small and assumed to have no impact on
scenario frequency.

Table G-l shows the frequencies of these long-term and short-term blackout
scenarios with and without recovery considerations taken directly from

Reference G-2. The core damage scenario involving a CCF of the EDGs is, without
recovery, about four times more likely to occur than the scenario involving a
CCF of the station batteries. However, the EDG core damage scenario becomes
about 11 times less likely to cause core damage than the station battery
scenario when recovery is considered. Since these two CCF scenarios are the
dominant contributors to the emergency power supply system unavailability, the
results presented in Table G-l also represent the impact of recovery
considerations on system unavailability.

Since recovery considerations can substantially affect the relative importance
of CCF contributors to system unavailability (in this case, a support
system-emergency power supply unavailability), they should be incorporated into
the quantitative screening step. If this is not possible, the results should be
revisited when recovery terms have been included at a later stage in the
analysis.

Example 2: Loss of Service Water Scenario. Figure G-l shows a simplified
schematic of a hypothetical SWS at a PWR power plant.* The system continuously
operates with both pumps running and supplying the normal plant loads through
normally open MOVs MOV-1A and MOV-2A. The system automatically realigns to the
emergency configuration on an engineered safeguards actuation system signal
expand by closing MOV-1A and MOV-2A and opening the normally closed motor-
operated valves MUV-1B and MOV-2B. The MOVs in the crossover line are normally
closed, and the manual valves in the pump discharge lines are locked open during
power operations.

Only one CCF event is addressed in this example: a CCF of MOV-1B and MOV-2B to
open on demand. However, two types of initiating events will be considered to
illustrate how recovery considerations concerning the same CCF event differ for
different sequences. The two types of initiators considered are (1) LOSP or
another transient involving LOSP and (2) transients with loss of main
feedwater. (In this second case, the EDGs are not required.)

To further define accident scenarios, assume that, for both initiating events,
in addition to losing main feedwater, auxiliary feedwater has failed leading to
the requirement for the use of the high pressure safety injection system in the
feed and bleed mode to extract decay heat from the reactor.

*Although this SWS is hypothetical, the information and data presented in this
example are fairly typical of U.S. nuclear power plants.
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Table G-l
IMPACT OF RECOVERY CONSIDERATIONS ON SELECTED BLACKOUT SCENARIOS

Frequency
c 5 (year-1) Factor of Reduction on
gre amage Scenario Frequency when
cenario Without With Recovery Is Considered
Recovery = Recovery
LOSP fol lowed by 1.65-5% 3.3-7 50
CCF of EDGs.
LOSP followed by 3.7-6 3.7-6 1
CCF of station
batteries.

*A11 frequency values in this table were taken from Reference G-2.

NOTE: Exponential notation is indicated in abbreviated form;
i,e., 1.65-5 = 165 x 10"5.
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LOADS - LOOP 1
MOV-1A
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MOV-2A

Figure G-I.

TO NORMAL PLANT
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Simplified Schematic of a Service Water System



The CCF of MOV-1B and MGV-2B results in loss of service water to all
safety-related loads. With the loss of offsite power as an initiating event,
the load of most importance initially is the emergency diesel generators and for
other transients it is the cooling to the HPIS' pumps.

The HPIS pumps at the plant can operate for a little more than 1 hour without
lube oil cooling. Thus, whenever the initiating event does not involve LOSP,
the safety-related system failures due to the CCF of interest can be avoided if
the service water supply is restored within 1 hour. The probability that the
operators would restore the service water supply within 1 hour is assumed to be
0.96 (see discussion later).

The EDGs however will fail within a few minutes following loss of SWS cooling.
Thus, whenever the initiating event involves LOSP, the EDGs will be lost
(realistically assuming a negligible probability of restoring SWS cooling to the
EDGs within a few minutes), and the only recovery action that can be taken to
avoid core damage is to restore offsite power within about 30 minutes, the time
assumed to be available to restore HPIS flow without irreversible core damage.
Data on recovery of offsite power at U.S. nuclear power plant sites indicates
that the appropriate probability of recovery is about 0.6 (Reference G-2).

Table G-2 shows the impact of recovery considerations in both of the scenarios
analyzed in this example. Recovery decreases the estimated frequencies of SWS
failure scenarios (frequency estimates are not shown in Table G-2) by a factor
of about 2.5., if LOSP is involved, and by a factor of about 25, if LOSP is not
involved.

In this second example, the recovery action of interest was associated with the
basic event representing the common cause failure itself and as such is part of
the detailed analysis that would be performed. This is to be contrasted with
the first example where the recovery action was largely associated with another
event, the recovery of the offsite power source. What this second example shows
is that the credit for recovery is dependent on the sequence as that determines
the amount of time available. For this example, the probability of
accomplishing this recovery action was obtained by (1) identifying all failure
modes for the equipment of interest (e.g., valve motor-operator fails, valve
plugs, circuit breaker fails, circuit breaker control circuit fails, etc.),

(2) evaluating the probability of recovery for each failure mode [e.g., plugging
of a valve is unrecoverable within 1 hour, motor-operator failure is moderately
recoverable (requires local operation of the valve), and circuit breaker control
circuit failure is more easily recoverable (requires pushing a button in the
control room)], and (3) determining an appropriate average probability of
recovery, weighted by the contribution of each failure mode to the CCF event
probability. Reference G-l provides specific guidance on evaluating recovery
probabilities, and References G-2 through G-4 provide several additional
examples of these evaluations.

The option remains open to the analyst: to apply these recovery factors in
screening the data, so that only events that could not be recovered in the
allowable time are retained for parameter estimation purposes, or to have a
general common cause parameter and explicitly apply a recovery factor. The
amount of work is the same; it is only a matter of preference in displaying the
results.
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Table G-2

IMPACT OF RECOVERY CONSIDERATIONS ON SELECTED SWS SCENARIOS

Probability of CCF
of MOV-1B and

MOV-2B To Open Factor of Reduction on CCF
Type of Initiating on Demand* Probability when Recovery
Event Is Considered
Without With

Recovery Recovery

Not Involving LOSP ~ 74 ~3-5- - ~ 25

Involving LOSP ~7-4 ~3-4 ~ 25

*The probability of CCF without recovery considerations was obtained by
multiplying the probability of an independent MOV failure to open on

demand (Reference G-l) by a generic beta factor for MOVs (Reference G-5).

NOTE: Exponential notation is indicated in abbreviated form;
ie., 7-4 = 7 x 10-4.



G-3.

G-5.

Kolaczkowski, A. M., F. T. Harper, A. L. Camp, et al., "Analysis of Core
Damage Frequency from Internal Events: Peach Bottom, Unit 2,"
NUREG/CR-4560/4 of 10, SAND86-2084, prepared for U.S. Nuclear Regulatory
Commission by Sandia National Laboratories, September 1986.

JBF Associates, Inc., "Plant Risk Status Information Management System
(PRIS1M) Version 2.0 User's Guide," JBFA-108-86, prepared for U.S. Nuclear
Regulatory Commission, October 1986.

Kolb, G. d., et al., "Interim Reliability Evaluation Program: Analysis of
the Arkansas Nuclear One - Unit 1 Nuclear Power Plant,"” NUREG/CR2787,
SAND82-0978, prepared for U.S. Nuclear Regulatory Commission by Sandia
National Laboratories, June 1982.

Fleming, K. N., A. Mosleh, et al., "Classification and Analysis of Reactor
Operating Experience Involving Dependent Events, "EPRI-NP-3967, prepared

for Electric Power Research Institute by Pickard, Lowe and Garrick, Inc.,
June 1986.

G-7

0665E0616&8



APPENDIX H

REFERENCES FOR BETA FACTOR ESTIMATES

This appendix was originally intended to be a compilation of generic beta factors
that have been derived worldwide from nuclear, chemical, aircraft, and other
industries.

The motivation was that the 3-factor model has been the most widely used
quantitative CCF model and that "generic" values might be useful, either as
screening values or to provide a benchmark against which screening values could
be judged. Although several extensions of the 3-factor model (e.g., the basic
parameter, the MGL, and the shock models described in Volume | and Appendices C
and E) have been developed and are in current use in risk and reliability
analyses, the 3-factor model is still likely to play an important role in
future studies; e.g., the quantitative screening step proposed in Volume |
recommends using the 3-factor model for obtaining preliminary estimates.

However, one of the problems with using generic beta factors is the difficulty of
determining the criteria used for screening data (if any) and the component and
failure mode definitions. As has been stressed throughout this report these have
a direct influence on the estimates. It was decided therefore simply to supply a
list of references (References H-I through H-19) in which beta factor estimates
can be found. Before using a particular estimate, the analyst should make every
effort to determine compatibility with his model, and even then they should only
be used as screening values or as a benchmark.

The systematic procedures for dependent events analysis presented in Volume |
require the analyst to screen and classify event data, use estimators provided,
and develop uncertainty distributions and/or point estimates of model parameters
for each specific analysis. This procedure is recommended instead of using
published numerical data for these parameters for several important reasons. One
reason is to prevent the use of data that are inapplicable to the combining data
from systems having different numbers of components and for accounting for
differences between the number of components being analyzed and those associated
with systems providing the data. In addition, event screening can eliminate all
inconsistencies between the data and the assumptions buiU into the common cause
event models. Finally, the event screening and classification process provides
qualitative insights about possible approaches to defending against future
occurrences of these events in the system.
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