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ABSTRACT

Volume I of this report presents a framework for the inclusion of the 
impact of common cause failures in risk and reliability evaluations. 
Common cause failures are defined as that subset of dependent failures 
for which causes are not explicitly included in the logic model as basic 
events. The emphasis here is on providing procedures for a practical, 
systematic approach that can be used to perform and clearly document the 
analysis.

The framework comprises four major stages:

1. System Logic Model Development. The basic system 
failure logic is modeled in terms of basic events that 
represent component status.

2. Identification of Common Cause Component Groups. The 
principal object is to identity, using quantitative and 
qualitative screening, the groups of components that 
are felt to have significant potential for common cause 
failures.

3. Common Cause Modeling and Data Analysis. Common cause 
basic events are defined for inclusion in the logic 
model, to represent the residual dependent failures and 
probability models are constructed for each new basic 
event. At this stage, the logic model is extended from 
a component state basis to a component group impact 
basis. Historical data on multiple failure events are 
analyzed and the parameters of the probability models 
for common cause basic events estimated.

4. System Quantification and Interpretation of Results.
The results are integrated into the system and sequence
analyses and the results are analyzed.

The framework and the methods discussed for performing the different 
stages of the analysis integrate insights obtained from engineering 
assessments of the system and the historical evidence from multiple 
failure events into a systematic, reproducible, and defensible analysis.

The present volume contains a series of appendices that provide 
additional'background and methodological detail on several important 
topics discussed in Volume I.
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GLOSSARY OF TERMS AND DEFINITIONS

In order to better communicate the procedures and guidance presented in 
this report, it is necessary and useful to summarize in one place the 
definitions of terms used frequently in dependent events analyses. More 
in-depth definitions of some of these terms are provided at appropriate 
points of the report, as needed, to provide a clear description of the 
methodology. Concise definitions are presented below.

1. Component. A component is an element of plant hardware 
designed to provide a particular function. Its boundaries 
depend on the level of detail chosen in the analysis. The 
hierarchy of the level of detail of modeling a plant in risk 
and reliability analysis flows from plant, to system, to 
subsystem, to component, then to cause (see definition 
below). For system modeling purposes, a component is at the 
lowest level of detail in the representation of plant 
hardware in the models. Events that represent causes of one 
or more component states in a system logic model
(e.g., fault tree) are found at the level of detail below 
the component.

2. Component State. Component state defines the component 
status in regard to the function that it is intended to 
provide. In this context, the following two general 
categories of component states are defined (the same states 
apply to higher levels of plant hardware, such as system):

a. Available. The component is available if it is capable 
of performing its function according to a specified 
success criterion. (Not to be confused with 
availability, which is defined below.)

b. Unavailable. The component is unable to perform its 
intended function according to a stated success 
criterion. It is important to note that the success 
criterion defined by the analyst to enable him to 
distinguish between available and unavailable states is 
not unique. This is because there are cases of several 
functions and operating modes for a given component, 
each with a different success criterion. Also, a given 
event in one plant may be classified differently than a 
similar component in another plant with different 
success criteria. Therefore, the specification and 
documentation of the success criteria and the 
reconciliation of potential mismatches between the data 
base and systems models become important tasks of the 
systems analyst.
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Two subsets of unavailable states are failure and 
functionally unavailable. Note that "unavailable" 
should not be confused with "unavailability," which is 
defined below.

(1) Failure. The component is not capable of
performing its specified operation according to a 
success criterion. In order to restore the 
component to a state in which it is capable of 
operation, some kind of repair or replacement 
action is necessary. Additionally, the event may 
also be considered a failure when a component 
performs its function when not required or performs 
its function as required, but does not stop 
operating once meeting its success criteria.
The latter is equivalent to saying that stopping 
when required is part of the success criterion. 
Therefore, failure encompasses functioning when not 
required, as well as not functioning when required.

(2) Functionally unavailable. The component is capable 
of operation, but the function normally provided by 
the component is unavailable due to lack of proper 
input, lack of support function from a source 
outside the component (i.e., motive power, 
actuation signal), maintenance, testing, or the 
improper interference of a person.

Sometimes, although a given success criterion has been 
met and the component has performed its function 
according to the success criterion, some abnormalities 
are observed that indicate that the component is not in 
its perfect or nominal condition. Although a component 
in such a state may not be regarded as unavailable, 
there may exist the potential of the component becoming 
unavailable with time, other changing conditions, or 
more demanding operational modes. Events involving 
these potentially unavailable states provide valuable 
information about causes and mechanisms of propagation 
of failures and thus should not be ignored. The concept 
of potentially unavailable states also serves a 
practical need to enable the consistent classification 
of "grey area" cases and difficult-to-classify 
situations. The following component state category is 
defined for this situation.

c. Potentially Unavailable. The component is capable of 
performing its function according to a success 
criterion, but an incipient or degraded condition, as 
defined below, exists.

(1) Degraded. The component is in such a state that 
it exhibits reduced performance but insufficient 
degradation to declare the component unavailable 
according to the specified success criterion. 
Examples of degraded states are relief valves
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opening prematurely outside the technical 
specification limits but within a safety margin and 
pumps producing less than 100% flow but within a 
stated performance margin.

(2) Incipient. The component is in a condition that, 
if left unremedied, could ultimately lead to a 
degraded or unavailable state. An example is the 
case of an operating charging pump that is observed 
to have excessive lube oil leakage. If left 
uncorrected, the lube oil could reach a critical 
level and result in severe damage to the pump.

A key to distinguishing between degraded and incipient 
conditions is the knowledge that an incipient condition 
has not progressed to the point of a noticeable 
reduction in actual performance, as is the case with a 
degraded condition.

It is important to recognize that potentially 
unavailable is not synonymous with hypothetical.
Both incipient and degraded conditions are indicative of 
observed, real component states that, without corrective 
action, would likely lead to unavailable component 
states.

Although the above potentially unavailable states are 
often used in event report classification in support of 
parameter estimation, system models (e.g., fault trees) 
generally do not model states other than success or 
unavailable. Therefore, how potential states are 
"mapped" into two state models is an important subject 
of this procedures guide.

3. Cause. A cause is simply an explanation for why a component 
became unavailable or is potentially unavailable. In 
complete, traditional system logic models, the cause level 
is the most detailed level of analysis and is almost always 
implicit in the quantification model, being located below 
the component level. With every cause, there exists a 
mechanism fully or partially responsible for the state of a 
component when an event includes a single component state; 
the cause of the component state is referred to loosely as a 
root cause. In more complex events involving two or more 
component states, a particular component state or set of 
component states can result from either a root cause or can 
be caused by the state of another component; i.e., component 
cause.

4. Event. An event is the occurrence of a component state or a 
group of component states.
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5. Independent Event. An independent event is an event in 
which a component state occurs, causally unrelated to any 
other component state. Two events, A and B, are independent 
if and only if P(A and B) = P(A) • P(B).

6. Dependent Event. If an event is not independent, it is 
defined as a dependent event. Two events, A and B, are 
dependent only if

P(A and B) = P(A) • P(B|A) = P(B) P(A|B) t P(A) • P(B)

7. Common Cause Event. It is not the purpose of this report to 
resolve, once and for all, the issues associated with 
attempts to provide a clear and unambiguous definition of 
the term "common cause event." The only way to treat these 
issues is to adopt a cause-effect event classification 
system, such as that described in detail in Reference 2-4 
and summarized in Appendix A. Here, we define what common 
cause events mean to the systems analyst. In the context of 
system modeling, common cause events are a subset of 
dependent events in which two or more component fault states 
exist at the same time, or in a short time interval, and are 
a direct result of a shared cause. It is also implied that 
the shared cause is not another component state because such 
cascading of component states is normally due to a 
functional coupling mechanism. Such functional dependencies 
are normally modeled explicitly in systems models without 
the need for special common cause event models. The special 
models that have been developed to model common cause 
events, such as the beta factor, binomial failure rate, 
multiple Greek letter, basic parameter, common load, and 
other models, all apply to root-caused events branching into 
impact multiple components, but are generally not applied to 
component-caused events. A more focused definition of 
common cause events is presented in Section 2.

8. Root Cause. Ideally, the cause of an event can be traced to 
an event that occurred at some distinct but possibly unknown 
point in time. These causal events are known as "root 
cause." There are four general types of root causes.

a. Hardware. Isolated random equipment failures due to 
causes inherent in the affected component.

b. Human. Errors during plant operations (dynamic 
interaction with the plant), errors during equipment 
testing or maintenance, and errors during design, 
manufacturing, and construction.

c. Environmental. Events that are external to the 
equipment but internal to the plant that result in 
environmental stresses being applied to the equipment.

xvi



d. External. Events that initiate external to the plant 
that result in abnormal environmental stresses being 
applied to the equipment.

9. Coupling Mechanism. A coupling mechanism is a way to 
explain how a root cause propagates to involve multiple 
equipment items; e.g., components. The three broad 
categories of coupling mechanisms are functional, spatial, 
and human.

a. Functional Couplings

(1) Connected equipment. Encompasses plant design 
involving shared equipment, common input, and loop 
dependencies plus situations in which the same 
equipment provides multiple functions.

(2) Nonconnected equipment. Encompasses interrelated 
success criteria, such as the relationship between 
a standby system and the system it is supporting. 
More subtle forms of nonconnected equipment 
couplings are environmental conductors, such as 
heating, ventilation, and air conditioning systems.

b. Spatial Couplings

(1) Spatial proximity. Refers to equipment found 
within a common room, fire barriers, flood 
barriers, or missile barriers.

(2) Linked equipment. Equipment in different locations 
that, although not functionally related, is 
similarly affected by an extreme environmental 
condition possibly due to the breach of a barrier.

c. Human Couplings. Refers to activities, such as design, 
manufacturing, construction, installation, quality 
control, plant management, station operating procedures, 
emergency procedures, maintenance, testing and 
inspection procedures, and implementation, etc.

10. Unavailabi1ity. The probability (relative frequency) that a 
system or component occupies the unavailable state at a 
point in time. In applied risk and reliability evaluations, 
this point in time is when a randomly occurring initiating 
event or system or component challenge occurs. Availability 
is the complement of unavailability.

11. Unreliabi1ity. The probability (relative frequency) that a 
system or component fails (in regard to specified success 
criteria) during a specified time interval. This time 
interval is often referred to as the "mission time."
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12. Shock. A concept used in some common cause models, such as 
the BFR model, to explain how component states other than 
intrinsic, random, independent failures occur. A shock is 
an event that occurs at a random point in time and acts on 
the system; i.e., all the components in the system 
simultaneously. There are two kinds of shocks distinguished 
by the potential impact of the shock event, as defined below.

a. Lethal Shock. A lethal shock is a shock in which all 
the components in a system are failed, with certainty, 
any time the shock occurs.

b. Nonlethal Shock. A nonlethal shock is a shock that has 
some independent chance that each component in the 
system fails as a result of the shock. The range of 
possible outcomes (each having a different probability 
of occurrence) of a nonlethal shock range from no 
component failures to all the components failed.

13. Common Cause Component Group. A group of usually similar 
components that are considered to have a high potential of 
failing due to the same cause.

14. Common Cause Basic Event. An event involving common cause 
failure of a specific subset of components within a common 
cause component group.

15. Impact Vector. An assessment of the impact an event would 
have on a common cause component group. The impact is 
usually measured as the number of failed components out of a 
set of similar components in the common cause component 
group.

16. Defensive Strategy. A set of operational, maintenance, and 
design measures taken to diminish the frequency and/or the 
consequences of common cause failures. Common cause design 
review, surveillance testing, and redundancy are, therefore, 
examples of tactics contributing to a defensive strategy.
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INTRODUCTION

This is the second volume of a two-volume report 
Common Cause Failures in Safety and Reliability 
joint sponsorship of the Electric Power Research 
Regulatory Commission.

on Procedures for Treating 
Studies developed under the 
Institute and the U. S. Nuclear

The overall objectives of this work are to:

1. Provide a procedural framework for system-level common cause 
analysis for use in applied risk and reliability evaluations by 
and for the nuclear industry.

2. Provide a comprehensive and integrated systems analysis framework 
for common cause events analysis that includes a proper balance 
between qualitative and quantitative aspects.

3. Provide guidance and analysis techniques to circumvent some of the 
practical problems facing the common cause events analyst.

4. Account for advances that have been made in the state of the art 
in common causes and thereby serve to update previously published 
PRA procedures guides.

5. Identify important interfaces between the various tasks, including 
qualitative analysis, systems modeling, event classification, 
parameter estimation, and quantitative analysis tasks.

6. Provide the flexibility of choice among alternative systems 
modeling approaches and techniques for parameter estimation and 
data handling when alternatives exist and when the superior choice 
cannot be easily determined.

7. Solicit a sufficiently broad base of input to achieve a consensus 
on the principles of common cause failure analysis to the extent 
possible within the constraints of schedule and budget.

Volume I, entitled "Procedural Framework and Examples," presents a framework and 
a set of procedures for the analysis of system-level common cause failures in 
risk and reliability studies. This procedure irvvolves four major stages, each 
of which contains a number of steps, as outlined in Figure 1 and explained in 
detail in Section 3 of Volume I.

The present volume contains a 
background and methodological 
Volume I. Each appendix is se

series o^ 
detail on 
If-contai

appendices that provide additional 
several important topics discussed 

ned and addresses one specific issue
i n
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(

II

Stage 1 - System Logic Model Development

Steps

1.1 System Familiarization
1.2 Problem Definition
1.3 Logic Model Development

Stage 2 - Screening of Common-Cause
Component Groups'

Steps

2.1 Qualitative Screening
2.2 Quantitative Screening

Stage 3 - Common Cause Modeling

Steps

3.1 Definition of Common Cause
Basic Events

3.2 Selection of Probability
Models for Common Cause
Basic Events

3.3 Data Classification and
Screening

3.4 Parameter Estimation
3.4.1 - Point
3.4.2 - Uncertainty

Stage 4 - System Quantification and
Interpretation of Results

Steps

4.1 Quantification
4.2 Sensitivity Analysis
4.3 Reporting

Figure 1. Stages and Steps of a Procedural 
Framework for Common Cause Analysis
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Appendix A describes a classification system that has been used to classify and 
analyze failure reports and to extract information in support of step 3.3 (Data 
Classification and Screening) of the procedure. This scheme should be regarded 
as state-of-the-art development and some evolution and refinement is ongoing.

Appendix B is a more detailed presentation of the so-called Generic Cause 
Approach to the qualitative screening of common cause scenarios and determination 
of those components within the system that need to be considered for more 
detailed modeling from the point of view of common cause failures.

Appendix C describes the various parametric common cause failure models and the 
estimators for their parameters. It discusses key assumptions behind the models 
and the estimators and the implication of those assumptions. The material in 
this appendix supplements the presentation, in Volume I, of steps 3.2 (Selection 
of Probability Models), and 3.4 (Parameter Estimation - Point Estimate) of the 
procedure.

Appendix D establishes the relationships among data bases of systems of identical 
components having different levels of redundancy. It obtains the relationships 
among model parameters that stem from the data base relationships and provides 
guidance for interpretation of data from systems of different size and for the 
assignment of impact vectors; i.e., for mapping up and mapping down impact 
vectors. The material in this appendix supplements a summary presentation in 
Volume I, step 3.3 (Data Classification and Screening).

Appendix E presents statistical uncertainty distributions for the model 
parameters in support of step 3.4 (Parameter Estimation). It also derives mean 
value estimators for the various parameters.

Appendix F provides additional guidance on dealing with practical difficulties in 
implementing the fault tree expansion approach discussed in step 3.1 (Definition 
of Common Cause Basic Events).

Appendix G discusses consideration of recovery actions in common cause failure 
analysis in support of stages 2 and 4 of the procedure.

Finally, Appendix H discusses the pitfalls of using generic common cause failure 
probabilities for plant-specific analyses.
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APPENDIX A

A DATA CLASSIFICATION SYSTEM

This appendix briefly describes a classification system that can be used to 
classify and categorize event reports to extract information for the study of 
dependent events and, in particular, for the context of this report, to identify 
candidate common cause events for further analysis. The classification system 
described below is essentially the system developed in a project sponsored by 
EPRI (Reference A-l) and applied to a large number of failure events in a 
companion project (Reference A-2). In the following presentation of the 
classification system, it is assumed that the reader is familiar with the basic 
concepts and definitions presented in Section 2 of this report. While this 
scheme has been, and will continue to be used as the current state-of-the-art, 
it is not necessarily definitive, and other more comprehensive schemes may be 
developed to more explicitly present information, particularly on root causes, 
coupling mechanisms, and failures of defenses.

A.l COMPONENT STATES AND FAULT MODES

A.1.1 Component State Space

Various states that a component can occupy with regard to its intended function 
and according to a given success criterion are presented in Figure A-l. The 
first tier reflects the principle that all component states can be categorized 
based on whether the component was available to perform its function according 
to the specified success criterion. The second tier breakdown of the available 
category shows that even though a component may be capable of fulfilling its 
function, an incipient or degraded condition could exist in that component or in 
a'component directly impacting it. The available states, therefore, are 
categorized as either "nominal" (i.e., "good") or "potentially unavailable."

The final breakdown in Figure A-l is the distinction between "failed" and 
"functionally unavailable" states in the case of unavailable states, and 
"potentially failed" and "potentially functionally unavailable" in the case of 
potentially unavailable states. This figure also shows the symbols provided for 
each of the above component states. The application of event classification 
will be oiscussed later. Brief descriptions of the component states used are 
listed below:

• Functionally Unavailable State ( Fvl ). The component is capable 
of operating, but the function normally provided by the component 
is unavailable for one of the following reasons:

--Loss of Input. This refers to loss of motive power, command 
signal, water source, cooling water, air, etc.
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AVAILABLE UNAVAILABLE

POTENTIALLY
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UNAVAILABLE

Figure A-l. Component States Used in Classification System



--Preventive Maintenance and Calibration. The component has been 
removed from service to perform a preventive maintenance 
activity (including modifications) or calibration check, thereby 
rendering the component incapable of performing its function.

--Testing. Some form of diagnostic test is being performed on the 
component that necessitates the component's isolation from the 
system, resulting in its inability to fulfill its function.

• Failed State ( Ex] ). The component is not capable of performing 
its function, or it functions when not required. In order to 
restore the component to operability, some kind of repair or 
replacement action is necessary. In cases where a component 
becomes damaged and needs to be repaired and the cause of the 
damage is the failure of another component or system on which the 
damaged component is functionally dependent, the damaged component 
is classified as failed. An example of this case is overheating 
of a component due to HVAC system failure.

• Potentially Functionally Unavailable State ( fx] ). An incipient 
or degraded condition exists, generally for a component on which 
the component of interest is dependent so that, if left 
unremedied, it could result in failure of the first component.
The component of interest would then become functionally
unavaiTable.

• Potentially Failed State ( El )• A condition exists either in 
the component of interest or in a component impacting the 
component of interest that, if left unremedied, could render the 
component failed. This category of states includes:

--Degraded. The component is in such a state that it exhibits 
reduced performance that, potentially, if left uncorrected, 
could result in failure.

— Incipient. The component is in a condition (i.e., exhibiting 
a small oil leak, loose piece of equipment, or wear) for which 
performance has not been interfered with, yet if the condition 
is left unremedied, it could potentially render the component 
failed.

• Nominal State ( □ ). The component is capable of performing its 
function according to a success criterion, and no incipient or 
degraded condition exists.

A.1.2 Fault Modes

The fault modes of a component are its characteristic symptoms of not being able 
to perform its function. They describe the manner in which component states 
occur. The term "fault" modes is used in favor of the more frequently used 
"failure" modes because such modes can be ascribed to component states other thar 
the "failed" state. In fact, all states except the nominal state can be ascribec 
fault modes. The assignment of an unavailable component state signifies that its 
success criteria were in some way violated. However, the fault mode describes 
the manner in which the success criteria were violated. The distinction between
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fault modes can be important for equipment (e.g., valves) that can operate in 
more than one way (e.g., open/close), depending on system requirements. This 
distinction also enables users of classified data to extract only those portions 
of the unavailable state statistics that are applicable to the specific problem.

In general, fault modes vary from one component type to another. However, 
several generic modes can be defined that describe to a large extent the most 
frequently observed fault modes for a large number of components. A generic list 
of fault modes is provided in Tables A-la and A-lb. For example, the mode 
"transfers open" (TO) applies to both reactor trip breakers and relief valves, 
and "fails to start" is applicable to diesel generators, as well as pumps.

Depending on the level of detail desired and the availability of information, one 
may choose to define more specific fault modes. For instance, a valve may fail 
to open automatically although it is still operational manually. In this case, 
the fault mode can be specified as "fails to open automatically (FOA)," instead 
of a more general mode of "fails to open (FO)." It is important to note that FO 
applies to the case in which the valve fails to open both automatically and 
manually as well as the case in which, due to lack of information, no distinction 
can be made. In a situation in which the component state is classified as 
potential, the corresponding fault mode is also labeled potential. The mode code 
for this situation is formed by using the letter "P" in conjunction with the code 
for the actual mode; e.g., PFO for "potentially fails to open."

A.2 CAUSE CATEGORIES

The discussion in this section is presented as. an example. Additional work on a 
hierarchy of root causes is in progess.

The causes, which are the mechanism(s) directly responsible for the state of a 
component, fall into eight broad classes, as presented below. Each class has 
also been subdivided to provide a means of recording more detailed information on 
the cause(s) when such information is available.

• Other Component. The cause of the state of the component under 
consideration is the state of another component.

• Design, Manufacturing, and Construction Inadequacy. This category 
of causes encompasses actions and decisions during design or 
manufacturing or installation of components both before and after 
the plant is operational.

• Procedures Inadequacy (ambiguous, incomplete, or erroneous). This 
category refers to ambiguity, incompleteness, or error in 
procedures for operation and maintenance of equipment.

• Human Actions, Plant Staff Error. Represents causes related to 
errors of omission and commission on the part of plant staff, such 
as failure to follow a correct procedure.

• Maintenance and Test. The cause of component state is a scheduled 
or nonscheduled maintenance activity or a test and inspection.
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Table A-la

SOME GENERIC FAULT MODES - COMPONENT FAILS TO TRANSFER 
FROM INITIAL STATE TO DESIRED STATE

Code Fault Mode Initial State Desired State

FO Fails To Open Closed Open

FC Fails To Close Open Closed

FS Fails To Start Stopped Operating

FT Fails To Stop Operating Stopped

Table A-lb

SOME GENERIC FAULT MODES - COMPONENT TRANSFERS 
FROM INITIAL STATE TO UNDESIRED STATE

Code Fault Mode Initial State Undesired State

FR Fails To Run Operating Stopped

TO Transfers Open Closed Open

TC Transfers Closed Open Closed

SS Spuriously Starts Stopped Operating

ST Spuriously Stops Operating Stopped

L Leaking Nonleaking Leaking
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• Abnormal Environmental Stress. This category includes all causes 
related to a harsh environment that is not within the component's 
specified design criteria.

• Internal. The component state is due to malfunctioning of 
something internal to the component as a result of normal wearout 
or other intrinsic failure. It includes the influence of the 
ambient environment of the component.

• Unknown. The cause of the component state cannot be identified.

Table A-2 provides a list of subcategories for the above cause categories along 
with the corresponding symbolic codes which will be used later in cause-effect 
logic diagrams. In the case for which the immediate cause of the state of a 
component is the state of another component, the cause codes are basically the 
component state codes ( □ ). For noncomponent causes (root cause), the code is 
a circle ( (J) ) with one or two letters representing the cause category or 
subcategory. The use of cause codes in the context of event classification will 
be explained later in this section. The following paragraphs provide additional 
guidelines for handling cases in which various cause categories may seem to 
overlap.

The key for distinction betweenJlembient environmental stress (ij)" and 
"abnormal environmental stress (e)" is the design limits for thenormal 
operating environment and the expected variations of that environment. Any 
stress higher than—such expected limits should be considered abnormal and should 
be classified as (Y); otherwise, the stress should be classified as ambient. 
Examples are:

• Boron. Ambient stress for boron injection tank inlet/outlet 
valves.

• Salt-Induced Corrosion. Ambient stress for some service water 
system components at coastal sites.

• Extremely High or Low Room Temperatures. Abnormal stress for 
diesel generators.

• Water. Abnormal stress for compressed air system.

Any of the following environmental stresses could be considered ambient or 
abnormal depending on the component and the degree of stress compared to the 
design basis: vibration, moisture/humidity, boron, fatigue, sand/salt, or 
salt-induced corrosion.

The distinction between utilizing "unknown, ^u)" and "wearout or other intrinsic 
failure, UC)" is sometimes governed by the language of the report. As an 
example, irit is stated that a motor operator had loose screws, this could be 
attributed to (1) a human error due to insufficiently tightening the screws,
(2) a severe environmental stress (e.g., vibration), (3) an ambient 
environmental stress (e.g., vibration), or (4) an intrinsic nature of the 
component to have its threads worn with time leading to loosening. Therefore, 
if it is not explicitly stated that an intrinsic condition caused the component 
state and a variety of causes could easily be hypothesized, the cause is 
designated as unknown, Tuj.

It is important to realize that most component states resulting from an ambient 
environmental condition are ultimately due to a human oversight; in particular,
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Table A-2

CAUSE CODES

Sheet 1 of 2

□ State of a Component*

Design, Manufacturing, and Construction Inadequacy

© Plant Definition Requirements Inadequacy

© Design Error or Inadequacy

Manufacturing Error or Inadequacy

© Construction Error or Inadequacy

fox) Other (explain)

® Proce ures Inadequacy (ambiguous, incomplete, or erroneous)

© Defective Operational Procedure

© Defective Maintenance Procedure

© Defective Calibration/Test Procedure

© Other (explain)

© Huma Act •'■''ns, Plant Staff

© f-ailure To Follow Procedures

© Misdiagnosis (followed wrong procedure)

© Accidental Action

© Other (explain)

Maintenance

© Scheduled Preventive Maintenance (including 
surveillance tests and calibration)

© Forced Maintenance (repair of a known failure)

*Refer to Figure A-l for component-caused symbols.
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Table A-2 (continued)

Sheet 2 of 2

© Abnormal Environmental Stress

© Electromagnetic Interference

© Moisture (spray, flood, etc.)

© Fire

© Temperature (abnormally high or low)

© Radioactive Radiation (irradiation)

© Chemical Reactions

© Vibration Loads

© Impact Loads

© Human-Caused External Event

© Acts of Nature

© Internal (internal to component, piece-part ambient 
environmental stress)

© Internal to Component, Piece-Part

© Ambient Environmental Stress

© Unknown
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in not applying or incorrectly applying defenses against the failure 
mechanisms. Examples are:

• Loose Screws Occurring due to Vibration. The use of a sealing 
compound, washers, or locking wire could prevent this.

• Moisture Shorting Motor Wires. A watertight design could prevent
this.

• Boron Crystallization on Valve Stems. Proper maintenance and/or 
operating procedures could prevent this.

• Fatigue Failures and Salt-Induced Corrosion. Use of materials 
capable of withstanding the environment or operating conditions 
could prevent this.

There are a few exceptions against which the ambient environment cannot really 
be defended, such as when breaker contacts become dirty due to the dust in the 
air. Short of continuously cleaning them (an impractical idea), the component 
can be made subject to routine preventive maintenance, which may or may not 
prevent dirt from interfering with contact operation.

In general, the ambient environmental designator (IE) is used when there is 
inadequate information provided to discern what root human cause allowed the 
ambient environment to impact the component, resulting in its state. This 
leaves some room for varied interpretations of these events, either as a human 
error or an internal failure.

Finally, the maintenance cause code for "repair of a known failure, (MF)," is 
used only when no information is provided regarding the cause of the component's 
failed state. Otherwise, the appropriate cause code from Table 2-2 is used.

A.3 CAUSE-EFFECT LOGIC DIAGRAM

The symbols introduced earlier to represent the basic elements of an event 
(namely, causes and component states) can now be used to graphically represent 
event scenarios. This is achieved by showing the cause and effect relationship 
between various causes and component states involved in an event in a 
cause-effect logic diagram. The following is an example:

3

Translated into words, the above diagram means that a human error caused 
component 1 to fail, which in turn led to components 2 and 3 becoming 
functionally unavailable.
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In general, the progression of an event is reconstructed from left to right and 
the cause-effect logic diagram always begins with one or more circles 
representing one or more root causes, and should always end with boxes 
representing the resulting component states. Links (i.e., solid lines 
connecting any two elements) represent the coupling mechanisms between those 
elements in such a way that the element to the left is the cause of the element 
to the right.

If a cause impacts several components, the situation is represented by multiple 
lines connecting the corresponding cause code with every resulting component 
state. On the other hand, there are situations where more than one cause can be 
identified as being involved in creating a given component state. For instance, 
there may be a case in which a given component state is the result of several 
causes acting together. Similarly, there are situations for which several 
causes can be identified based on the available information but a subgroup of 
those causes is sufficient to cause the event. In order to represent these 
situations, a logic operator is introduced that graphically shows what 
configuration of the identified causes has resulted in the state of the 
component being considered. This logic operator is called a "node" and is 
represented by a circle, which is placed between the cause and the effect 
symbols. An example is the following:

The cause node, 2/2 , with the inscribed 2/2 logic means that there are two 
causes and that both are required to cause the component state. This situation 
corresponds with the "AND" gate used in reliability logic diagrams.

As another example, consider the following:

In this case, 1/2 indicates that two causes are present and either one of them 
is capable of causing the component state. This situation corresponds with the 
"OR" gate used in reliability logic diagrams.

A.4 EVENT CATEGORIES

The event categories are based on the structure of the cause-effect logic 
diagram. Although the number of different cause-effect logic configurations 
that can be postulated is large, a reasonable number of event categories can be 
defined by keying on some general features of these logic configurations.
Before discussing such event categories, it is helpful to define some general 
features of a cause-effect logic diagram useful to key on to establish event 
categories.

One feature of importance in event categorization is whether there is any 
branching in the structure of the cause-effect logic diagram. Branching occurs 
when two or more components states directly result from a cause, either a root 
cause or a component state that constitutes a cause. A branched event is any 
event with at least one such propagation of a cause to directly result in two or
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more component states. All other events are called linear events. The names of 
these categories reflect the structures of the corresponding cause-effect logic 
diagrams, as indicated in the examples illustrated below:

LINEAR EVENT BRANCHED
STRUCTURES EVENT STRUCTURES

Another characteristic feature of the cause-effect logic diagram useful in event 
categorization is the event substructure known as the unit. A unit of a 
cause-effect logic diagram is any portion of the diagram consisting of a cause 
and all the component states that directly result from that cause. Just as 
events can be categorized as linear or branched, there are also linear and 
branched units, as indicated in the following.

I------------------ 1

I___________ I

____ i
LINEAR UNITS BRANCHED UNITS

As an example, consider an event having the following logic structure and 
consisting of the four indicated units.
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The event is classified as a branched event because it includes a branched unit, 
Unit 2. This event also includes three linear units: Units 1, 3, and 4.

The above definitions provide a basis for describing the particular hierarchy 
used in this study to categorize the possible cause-effect logic configurations, 
which are illustrated in Figure A-2. Events are first categorized into linear 
events, which have only linear units, and branched events, which have at least 
one branched unit. The linear event category is further subdivided into 
single-unit (LS) and multiple-unit (LM) categories. Linear, multiple-unit 
events are sometimes described in the literature as "cascade events."

As indicated in Figure A-2, branched events are first broken down into separate 
categories based on whether there is a single-branched unit or multiple-branched 
units within the event logic structure. The single-branched unit category and 
the multiple-branched unit category can have, in addition to the branched units, 
any number of linear units. A final breakdown of the branched categories is 
afforded by distinguishing between two types of causes associated with the 
branched unit or units. There are root-caused (BSR) and component-caused (BSC) 
categories for single-branched units and component-caused (BMC) and mixed-caused 
(BMM) categories for multiple-branched unit events. It was not necessary to 
subdivide the linear categories in this manner because of the properties already 
built into the system. All single-unit linear events have a single root cause 
and a single component state. All multiple-unit linear events have one 
component state resulting from a root cause and all subsequent component states 
are component caused.

As a result of the above breakdown, six event categories are defined in terms of 
the general characteristics of the cause-effect logic diagrams. Although 
many additional categories can be defined (for example, by keying on the number 
of linear units combined with branched units), the set defined in Figure A-2 is 
the extent of breakdown provided in the statistical analysis of data in 
Section 3. No particular advantage to defining further categories could be 
identified.

1 he relationship between dependent events and the cause-effect logic structure 
categories defined above is depicted in Table A-3. As seen in this table, logic 
structure category, LS, corresponds and is synonymous with what have been 
described earlier as independent events. This is because events in category LS 
include and wholly contain all events having one and only one component state. 
All remaining logic structure categories (i.e., LM, BSR, BSC, BMC, and BMM) have 
at least two component states that are interdependent (i.e., "connected within 
the same cause-effect logic diagram") and are therefore dependent events.

Having defined dependent and independent events in terms of the six basic logic 
diagram event categories, it is convenient to identify the subset of these logic 
diagrams which represent the common cause failure events as defined in 
Section 2. The definition given there was that common cause events are that 
subset of the more general class of dependent events whose causes are not 
normally explicitly modeled as basic events in the system logic models. 
Component-caused events, whether they be linear or branched, should always be 
modeled explicitly in the system model if the model is to be an accurate 
representation of the system, but root-caused branched events may not be. Logic 
models are generally described down to the component state level but not the
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Table A-3

RELATIONSHIP BETWEEN DEPENDENT EVENTS AND LOGIC DIAGRAM EVENT CATEGORIES

Event
Type

Event Classification System Categories
Character!stic

Name Code Typical Cause-Effect 
Logic

Independent One Actual or 
Potential Component 
State

Linear

Single Uni t LS o-n

Multiple Units LM 00-0

Dependent Two or More Single

Root-
Caused

BSR
ccg

Interdependent
Actual or Potential 
Component States

Branched

Unit

Component-
Caused

BSC OC<:

Component-
Caused

BMC o-oO3^
Multiple

Uni ts

Mixed
Causes

BMM



failure cause, except in the analysis of particular causes, such as fires and 
floods, where the causes of failure may also be dealt with explicitly. Thus, 
the common cause events that are to be used to obtain qualitative and 
quantitative information on common cause failures as defined in this report are 
to be found among the root-caused branched events only.
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APPENDIX B

THE GENERIC CAUSE APPROACH TO THE QUALITATIVE SCREENING

A detailed engineering analysis of CCFs must consider the root causes of 
component failures and the degree of dependence among component failures with 
regard to each root cause. A plant-specific CCF analysis should, in addition, 
evaluate the plant defense strategies designed to protect against equipment 
failures and human errors that lead to equipment unavailability. When a CCF 
analysis is performed on a nuclear power plant, it is not feasible, due to the 
complexity of the analysis problem, to analyze in detail every possible CCF 
scenario; i.e., every root cause event and the group of components that could 
all fail as a result of the occurrence of that event. However, there is an 
analysis method, the generic cause approach to common cause failure analysis, 
that allows the analyst to identify, through a series of six screening tasks,
CCF scenarios that contribute most to system unavailability.

This method begins with the identification of a wide range of postulated causes 
of CCF events, events that each involve a particular group of components; e.g., 
a group of components that would all be affected by a common design error or a 
group of components that would all be susceptible to a fire in a certain 
location. The following tasks permit the analyst to separate potentially 
important cause/component group combinations from unimportant combinations based 
on qualitative arguments as early in the analysis as such judgments are 
possible. As the analysis progresses, more information is collected and the 
cause/component group combinations that survived the previous screening tasks 
are then analyzed in greater detail. The result of the screening is a list of 
CCF scenarios the analyst feels confident--due to the wide range of postulated 
causes of CCF events and the carefully selected screening arguments--represents 
the failures that contribute most to system unavailability.

Figure B-l summarizes the six tasks involved in a system analysis using the 
generic cause approach. Specifically, the six screening tasks an analyst can 
use to identify the most important CCF scenarios of a plant are:

• Task 1. Identify important root causes of common failures and 
define the groups of components that are susceptible to each root 
cause of failure.

Review the FMEA for the system of interest, the plant operating 
experience, the operating experience of similar plants, and 
previous CCF studies to identify important root causes of failures 
for the system being analyzed. All of the causes of failure 
underlying the reported events should be identified for the 
plant-specific CCF analysis. These failure causes usually fall 
into a few general categories, such as those defined by Edwards 
and Watson (Reference B-l).
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Key Inputs Comments

• System Information
• System FMEA
• Operating Experience
• Previous CCF Studies

Task I

Root Cause/Component 
Group Identification

• Eliminate combinations 
that are not relevant 
or not significant.

t Eliminate combinations 
that do not result in 
sufficient equipment 
failures to fail the 
system.

i
• Eliminate combinations 

for which no credible 
source exists for 
generating the harsh 
environment of interest.

I
• Identify MCSs affected 

by each root cause.

1

• Eliminate combinations 
that are not credible 
or not relevant.

Figure B-l. Overview of the Generic Cause Approach

Task 6

Detailed Screening

i
• Major Contributors
• Qualitative Insights

Task 5

Minimal Cutset 
Determination

Task 4

Harsh Environment 
Screening

i
Task 2

Preliminary Screening

i
Task 3

Screening of Combinations 
That Do Not Result in 
Sufficient Equipment 
Failures To Fail the 
System
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The identification of root causes of failure is based mostly, but 
not solely, on operational experience data. This raises the issue 
of completeness. The data may not reflect all the possible root 
causes of failure to which the system equipment could be 
vulnerable. In particular, low frequency events with potentially 
high consequences may not be reflected in the data. Furthermore, 
the quality of the data is an important consideration.
Insufficient investigation and documentation of failure events 
make it difficult or impossible to determine some causes of 
failure.

The problems are particularly evident when the plant being 
analyzed is at the design stage. Nevertheless, the wealth of data 
from all sources, such as from failure reports or design studies, 
does allow a comprehensive, if not complete, list of root causes 
to be developed.

After important generic failure causes have been identified, 
determine groups of components that are susceptible to the causes 
of failure. There are at least three types of these root 
cause/component group combinations that must be identified for the 
CCF analysis: (1) root causes that primarily affect similar 
equipment, (2) root causes that affect equipment operated 
according to the same procedures, and (3) root causes that affect 
equipment in the same location.

Type 1 - Root Causes that Affect Similar Equipment. Similar 
components are usually affected by the same installation, 
maintenance, and testing procedures and by common design and 
manufacturing processes. These commonalities allow for 
multiple failures due to systematically repeated human 
errors. Therefore, for these causes of CCFs, the component 
groups of interest are groups of similar components.

To identify all similar equipment in the system, examine 
P&IDs, the FSAR, and other relevant system documentation and 
interview utility personnel. Each group of similar 
components will be considered a combination of potential 
interest.

Type 2 - Root Causes that Affect Equipment Operated According
to the Same Procedures. Components that are all affected by
the same emergency or normal operating procedures should also 
be considered a component group of potential interest because 
these components could all fail due to a common operator 
error. Unlike the first type of component group just 
defined, the component groups defined by common emergency or 
normal operating procedures may involve dissimilar components.

For the proper identification of the group of components 
operated according to the same procedures, first identify all 
plant emergency and normal operating procedures that affect 
each component in the system of interest. Then, identify 
those components that are all affected by a particular 
procedure and do this for every procedure being considered in

B-3



the analysis. Each group of components affected by a 
specific procedure will be considered a component group of 
potential interest.

Very often the analyst will find that these root causes are 
also more likely to affect similar equipment; thus, a portion 
of this type of root cause may be considered a subset of the 
first type--root causes that affect similar eouipment. It is 
still convenient, however, to consider these procedure- 
related root causes as a separate type for analysis purposes.

The benefit of considering this type separately is that a 
detailed analysis of emergency and normal operating 
procedures permits a closer scrutiny of the utility's 
testing, maintenance, and operational activities. This in 
turn allows closer examination of the procedure-related root 
causes of failure.

Type 3 - Root Causes that Affect Equipment in the Same
Location. CCFs can also be attributable to harsh
environments; i.e., adverse environmental conditions caused 
by fire, flood, moisture, etc. Most causes of harsh 
environments generate an adverse environment only within a 
limited area. The spread of the'adverse conditions is 
mitigated or stopped by barriers, such as walls and fire 
doors, within the plant. Therefore, for environmental causes 
of CCFs, the component groups of interest are the components 
that are all susceptible to a specific harsh environment and 
in the same location with respect to the harsh environment; 
i.e., not separated from the source of the harsh environment 
by barriers.

For the proper identification of the groups of components of 
interest for specific harsh environments, first locate the 
system components of interest identified in the PRA fault 
trees. [Exact locations are not necessary at this point in 
the analysis; it is only necessary to identify the room (or 
rooms) containing each component.] This part of this task 
can usually be accomplished without a plant visit. Then, 
identify barriers to each harsh environment. (This part of 
this task may require a plant visit since barriers to one 
environmental agent may not be barriers to another.) Safety 
analysis reports, since they describe fire barriers and flood 
zones within plants, can be used for a preliminary 
identification of barriers to some harsh environments; a more 
reliable identification can be accomplished through the plant 
visit to obtain detailed barrier descriptions for analyzing 
each environment of interest.

Next, use component and barrier locations to develop domains 
(areas within a plant that are bounded by barriers to a 
particular harsh environment) for the harsh environments of 
interest. A group of components of interest for a specific
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harsh environment will consist of the components that are 
susceptible to the harsh environment and in the domain of 
that harsh environment.

There are two categories of harsh environments: (1) harsh 
environments caused by energetic events (fires, floods, 
earthquakes, explosions, missiles, etc.) and (2) harsh 
environments caused by nonenergetic events or extremes of 
normal environmental conditions (contamination, vibration, 
moisture, corrosion, high temperature, etc.). An in-depth 
analysis of nonenergetic harsh environments has shown that 
these events almost invariably affect similar components 
(Reference B-2). This is due, in part, to the fact that most 
of these events are often caused by human errors in design, 
installation, and maintenance activities, etc. For example, 
most moisture-related CCF events involve a designer's failure 
to specify properly qualified equipment during the design 
stage or an operator's failure to properly seal the equipment 
following maintenance. Since an operational environment of 
high temperature and high relative humidity is common in 
several locations (e.g., pump rooms) of some plants, these 
design and maintenance errors frequently result in multiple 
component failures. These are human error-related failures 
that involve mostly similar equipment.

Although most nonenergetic harsh environments are caused by 
human errors, as just described, there are some instances 
when nonenergetic harsh environments can be caused by 
abnormal occurrences that affect equipment in the same 
location; e.g., equipment damage due to moisture and heat 
from a defective valve in close proximity to the equipment. 
Plant operational experience suggests that these nonenergetic 
events also result in the failure of similar equipment only. 
This observation is, however, based on sparse data. This 
lack of data indicates this type of event is less frequent 
than the other type of nonenergetic harsh environment, the 
type caused by human errors.

Analyzing CCFs caused by these two types of nonenergetic 
harsh environments as CCFs of similar equipment is more 
efficient than analyzing these failures of equipment in the 
same location. That is, the analysis of these events as 
failures that involve similar equipment will save the CCF 
analyst time because domains of susceptibility will not have 
to be established and analyzed for these nonenergetic events 
as is the case with the events caused by energetic harsh 
environments. Also, the CCF analyst will not have to search 
for all credible sources of noneaergetic harsh environments 
in a subsequent task of the analysis (Task 4). The search 
for credible sources of nonenergetic harsh environments and 
the analysis of their impacts on the system components (e.g., 
accounting for barriers to harsh environments) can be 
performed later in Task 6 when the MCSs have been determined 
and the analyst is dealing with a smaller number of 
potentially important component groups.
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It is important to consider the susceptibility of the 
component piece-parts to the harsh environments of interest 
when analyzing component susceptibilities to those 
environments. Basic events in the system fault trees often 
represent the sum of the failures of the component 
piece-parts. For example, basic events representing pump and 
valve failures may also include cable faults, a circuit 
breaker failure, a circuit breaker control circuit failure, 
junction box faults, and other failures. Similar piece-parts 
belonging to dissimilar components could be susceptible to 
CCFs caused by harsh environments.

i Task 2. Screen the root cause and component group combinations 
initially defined for analysis and eliminate from the analysis 
those component groups that can be determined to be not relevant 
or not a significant contributor to system unavailability.

The number of root cause and component group combinations 
postulated in Task 1 for the system of interest is necessarily 
large to ensure a comprehensive analysis. In this second task, 
some of these combinations can be eliminated from the analysis 
based on simple observations about the system and the nature of 
the root causes of failures. For example, suppose a CCF analysis 
was being conducted on a two-train emergency feedwater system with 
a common intake line from the condensate storage tank. In Task 1, 
three type A check valves (two valves in the system discharge 
lines and one valve in the common intake line) are identified as a 
group of similar components due to the fact that they are all 
identical valves maintained in the same way. In this second task, 
the CCF of the two type A check valves in the discharge lines of 
the pump would be considered relatively unimportant because the 
common intake line also contains a type A check valve, maintained 
in a similar way, whose single failure could cause system 
failure. Therefore, the CCF of the check valves in the discharge 
line can be screened as irrelevant to further analysis because any 
postulated cause of these valve failures could also be a cause of 
failure of the valve in the common intake line and this failure 
has already been considered a system failure in the system fault 
tree. (The CCF of the check valves in the discharge line would be 
relatively unimportant regardless of the failure probability of 
the check valves and the correlation among failures of type A 
check valves in redundant trains.) This type of screening is 
based on the logic of the system model.

Other root cause and component group combinations for the system 
of interest could also be eliminated from the analysis at this 
time for other reasons, such as a very low probability of 
occurrence of the root cause event compared with the system 
failure probability from "normal" hardware and operator failures; 
e.g., an explosion in certain areas of the plant. This implies a 
screening on probability grounds. While it can be argued that 
this is quantitative screening, the implication here is that the
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screening can be performed without a detailed probabilistic 
analysis, relying on the use of a relative assessment of 
probability instead.

• Task 3. Screen the root cause and component group combinations
and eliminate from further analysis those combinations that do not 
result in sufficient equipment failures to fail the system.

Several root cause and component group combinations do not result 
in sufficient equipment failures to fail the system (barring any 
additional failures). For example, consider a motor design 
deficiency that results in failure of two motor-driven pumps in an 
emergency feedwater system. This combination will not result 
(barring any additional failures) in EFW system unavailability if 
the system consists of two full capacity turbine-driven pumps in 
addition to the two motor-driven pumps. Similarly, a break in the 
steam supply line to one of the turbine-driven pumps has only a 
limited impact on system unavailability if the motor-driven pumps 
are in a different location from the steam supply line (and thus 
cannot fail due to the adverse high temperature environment 
generated from the line break).

For some systems, the combinations that cannot by themselves cause 
system unavailability may not have to be analyzed in detail and 
can be screened in this task if it is clear, without having to 
perform a detailed quantitative assessment, that the additional 
failures necessary to cause system failure are sufficiently 
unlikely. Although this may be possible when analyzing a simple 
system, these combinations can be important in an accident 
sequence analysis because of their potential impact on other 
systems involved in the accident sequence. NUREG/CR-4837 (to be 
published soon) will describe the generic cause approach tailored 
to an accident sequence analysis. Screening as performed here 
does require an implicit assumption about relative probabilities 
of events and thus is not strictly qualitative. Quantitative 
screening as described in Section 3.2.2 may be of value here.

In any case, the group of components that can by themselves cause 
system failure must be retained for further analysis. When no 
groups are identified that can cause system failure, the analyst 
should retain for further analysis other groups that, in 
combination with independent failures and/or other CCFs, can cause 
system failure.

This task can be performed with the aid of a computer program 
designed to test system fault trees to see if the top event can 
occur as a result of the occurrence of a group of basic events.

A number of computer programs [e.g., COMCAN III (Reference B-3), 
SETS (Reference B-4), and WAMCOM (Reference B-5)] can be used to 
test the system fault trees in this step. These programs will 
"turn on" the appropriate basic events to see if the top event can 
occur as a result of the occurrence of the group of basic events.
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• Task 4. Screen each harsh environment-related combination to 
determine if there is a root cause event that can trigger the 
scenario.

This task is only applicable to harsh environment-related root 
causes. Each harsh environment-related combination represents a 
harsh environment (e.g., high temperature) and a domain; e.g., the 
area within the plant that is bounded by barriers to the harsh 
environment. In addition, since each combination has survived the 
screening in Task 3, it is now known that the occurrence of the 
harsh environment within that domain can disable the system of 
interest; e.g., it is known that the system fails if a high 
temperature condition in that domain causes all susceptible system 
equipment to fail. Thus, a search for credible sources of the 
harsh environments of interest is warranted.

This task requires a substantial amount of plant-specific 
information. A visit to the plant to accomplish this task is 
recommended. Use the information obtained from this visit and 
information from plant documents to identify possible sources of 
harsh environments for each domain associated with the scenarios 
identified in Task 3. For each harsh environment considered, 
determine if there are credible sources for generating the harsh 
environment identified for the respective domain. If there are no 
sources for the harsh environment/domain of interest, then 
eliminate the scenario from further analysis at this point.
Involve specialists in the analysis of some causes of harsh 
environments (e.g., fires) to verify the adequacy of barriers to 
the harsh environment and to help determine if there are credible 
sources for generating the harsh environment identified for the 
respective domain.

• Task 5. Determine the component minimal cutsets that are involved 
in each root cause and component group combination retained for 
analysis.

Each combination that survived the previous screening tasks 
represents a root cause of failure and the group of affected 
components. In addition, it is known that the occurrence of the 
root cause can disable all affected components and contribute 
significantly to system failure; e.g., high temperature in a 
certain domain can cause sufficient system equipment failures to 
result in loss of the high pressure injection system. In this 
task, determine the minimal cutsets associated with each 
combination; e.g., high temperature causes HPIS failure by failing 
the lube oil system in all HPIS pumps, or by failing all HPIS pump 
motors, and so on.

The input required for this task are the system fault trees and 
the list of potential root cause and component group combinations 
that passed the previous screening tasks.

B-8



Several computer programs, such as COMCAN III (Reference B-3),
SETS (Reference B-4), and WAMCOM (Reference B-5), are available 
for determining MCSs for CCF scenarios.

• Task 6. Screen the scenarios that have been retained for analysis 
and eliminate scenarios that are not credible or not relevant by 
considering details of the relationships between the root causes 
of failure and the component failures in the MCSs.

This task identifies unimportant scenarios retained from Task 5 
and eliminates them from further consideration by considering 
details of the relationships between the root causes of failure 
and the component failures in the MCSs. This screening task is 
effective for eliminating installation, maintenance, testing, and 
operator error scenarios and scenarios caused by harsh 
environments.

The input required for performing this task are the lists of root 
causes of failures and MCSs identified in step 5; copies of the 
plant procedures that have an effect on these scenarios; 
information on testing, maintenance, and scheduling activities; 
and, for harsh environment scenarios, additional information from 
a plant visit.

The following is a description of some criteria that can be used 
to screen scenarios involving errors in the installation, 
maintenance, testing, or operation of components and scenarios 
involving harsh environments. These criteria are only examples of 
how engineering insights can be applied to the screening of 
scenarios. For any given case, there may be other powerful 
screening criteria. In all analyses, the screening criteria must 
be carefully applied to ensure no important scenarios are 
eliminated from the analysis. • -

In the screening of installation, maintenance, testing, and 
operating error scenarios, determine if there are any plausible 
errors in performing the task that could result in component 
unavailability. If there are none, the scenario may be 
discarded. For example, if a procedure does not call for removing 
a component from service, there is little chance that the 
component will be left in a disabled state at the end of the task.

Look at the plant testing and maintenance schedules to determine 
if a specific testing or maintenance-related scenario is 
credible. For example, consider an MCS involving three pumps. A 
common preventive maintenance task is to be performed at 1-month 
intervals on each of the three pumps. The plant maintenance 
schedule calls for this maintenance to be staggered among the 
three pumps; that is, pump 2 is to be serviced 1 month after 
pump 1, and pump 3 is to be serviced 2 months after pump 1. A 
functional test of the pumps is also to be performed monthly, and 
it too is to be staggered among the three pumps. Each pump is to 
be tested 1 month after its preventive maintenance. Therefore, an 
error that occurs during the maintenance of pump 1 will probably

B-9



be discovered and corrected before the same error can fail pump 3 
and possibly even pump 2. Thus, the MCS will likely never occur 
due to errors in this maintenance task, and the scenario may be 
eliminated from the analysis. In general, it is only necessary to 
consider MCSs whose basic events are all affected by the same 
procedure within one testing interval.

Also, screen out scenarios in which different personnel perform a 
task on multiple components in an MCS. The systematic repetition 
of task-related errors is highly dependent on the interpretation 
of the working procedure and on the effects of stress, fatigue, 
and personnel abilities. These factors can vary considerably 
among individuals.

Finally, for analyzing scenarios involving harsh environments, a 
plant visit is required for making a detailed survey to determine 
the spatial relationships of components, sources of harsh 
environments, and barriers to the harsh environments of interest.
The plant visit may determine some scenarios incredible in light 
of these details.

For example, in Task 1, an analyst may discover several 
penetrations with unsealed conduits connecting equipment in 
different locations. Moisture in one location (e.g., at an upper 
floor) could propagate through the conduits and cause the 
components connected to these conduits in the other locations 
(e.g., at a lower floor) to fail. Since operating experience 
indicates several component failures due to moisture propagating 
through conduits, the analyst postulates in Task 1 that moisture 
could cause CCFs of components in these locations. In Task 6, the 
MCSs for this scenario are all known. A detailed analysis of the 
locations may reveal that the unsealed conduits do not connect 
equipment in the same MCS to a common source of moisture. Thus, 
the scenario can be screened out. Note that the analysis of 
locations in this task is more detailed than in previous tasks 
because the MCSs are now known, and the analyst can investigate 
the specific equipment of interest. In addition, the number of 
scenarios to be investigated in detail has been reduced to a 
smaller, more manageable number.

The result of performing the six screening tasks just described is a list of the 
CCF scenarios the analyst feels confident represents the failures that 
contribute most to system unavailability and plant risk. These CCF scenarios 
have been identified through a detailed engineering analysis and, therefore, are 
valuable intermediate results of a CCF analysis. In addition, they are valuable 
input to a quantitative analysis of CCF contributions to system unavailability 
and plant risk.
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APPENDIX C

PARAMETRIC MODfl S AND THEIR ESTIMATES

C.l INTRODUCTION

This appendix provides a more detailed description of the various parametric 
models presented in Section 3 of Volume I, develops a set of estimators for 
their parameters, and describes the implication of the assumptions made in 
oeveloping the estimators. The estimators presented here are point estimators. 
Appendix E discusses the representation of the statistical uncertainty in the 
values of these estimates. The models presented in the following are described 
by showing how each model is used to calculate the probability of occurrence of 
the various "basic events." It is therefore helpful to review the definition of 
common cause basic events and other key concepts prior to the discussion of the 
models.

Definition of Common Cause Basic Events

In the context of the procedures of this report and as described in 
Section 3.3.1, Volume I, a common cause basic event is defined as "an event 
representing multiple failures of (usually similar) components due to a shared 
cause."

Thus, in modeling a system of three components A, B, and C as in Section 3.3.1, 
in addition to the basic events Aj, Bj, and Cj representing unavailability 
or failure of one and only one component, it is necessary to consider the common 
cause basic events Cab> Cbc> ^ABC* * When def'ined in this way, events are
clearly interpreted as specifying the impact of the underlying causes of 
failure. In the same way that the single component basic events represent the 
sum of contributions from many causes, so do the common cause basic events.

When constructing system models, not taking common cause failures into account, 
the basic events representing unavailability of different components are 
regarded as independent. The question arises whether, since the common cause 
basic events form a partition of the failure space of the components, these 
basic events can be defined as being independent. To investigate this further 
it is necessary to decompose the events into the contributions from root causes.

Define

A, = Ea/1'1 + i;Acl(j) (C.l)
* \J

where Aj^ is a truly independent failure of component A as a result of 

cause i, and Aci^ is a failure of component A and only A as a result of 
the occurrence of a common cause trigger j. In this context, the common cause 
trigger implies the occurrence of some root cause of failure and also a coupling 
mechanism.
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Similarly, define

CAB ^CAB (C2) (i) (C.2)

where Cab(c2)^1^ is a failure of components A and B from the occurrence of a 
common cause, which resulted in the two failures only.

If the events Cab. aI» etc., are regarded as being independent, the 
following cutset expansions result:

AI ’ BI
= £ Al(i) • + Za/1'5 • Z

Cl
(j)

+ Z Acl(l) • Z Bj^ + Z Acl(l) • Z Bcl(j’
i j i j

(C.3)

f * Plab ubc "AB(C2)
(i) • E 'BC(C2]

(j: (C .4)

Looking at the cutsets more closely it can be seen that among them there exist 
cutsets of the type

(k) . □ (k)
I

A (k) • B (k) 
MC1 BC1

r (k) . r (k)
tAB(C2) °BC(C2)

The first of these is logically correct given that the causes indicated by a 
subscript I are independent. Then the two failures may by chance occur 
simultaneously. However, when the failures result from a common cause, cutsets
such as Aqi^) • Bqi^) would be indistinguishable from Cab(C2)^> and should
be classified as the latter. Similarly, Cab(C2)^ * Cbc(C2) k^ would be 
indistinguishable from C/\bc(c3) k • Thus, when the common cause failures are 
introduced at the impact level, the basic events can now no longer be regarded 
as truly independent, and this may cause logical inconsistencies with the system 
model.

A convenient approach to properly model common cause failures events is to 
define the events Aj, Cab. Cac> and BABC t0 be mutually exclusive, since they 
partition the failure space of A according to the explicit impact on other 
components in the common cause group.

Such a definition implies that cutsets of the type Cab * ^ac are 
identically zero. This definition has particular implications for the analysis 
of event data in that events in which three components fail, must be identified 
as one or another of the combinations Aj Cbc> Aj Bi Cj, Cabc> and the other

C-2



permutations but excluding C^g • Cgo This, and the observation made earlier about 
indistinguishabi1ity, guarantees mutual exclusivity of the partition of the 
failure space of each component. It shoulo be noted that in this report the 
Aj, Bj, and Cj are still regarded as independent events even though
the common cause contribution to these events, the Agj U)in Equation (C.l), 
can lead to some cutsets at the cause level, which have the same problem 
concerning indistinguishabi1ity as the multiple component cutsets discussed 
previously. The contribution of the latter is considered'to be insignificant.

Symmetry Assumption

Once the basic events are defined, a simplifying assumption is made to reduce 
the number of probabilities that need to be estimated. According to this 
assumption, the probabilities of similar basic events involving similar types of 
components are the same. For example, if A, B, and C are identical components, 
then

P( Aj ) = P(Bj) = P(Cj) = Qj

P(CAB) P^CAC^ = P^CBC^ = ^2

P(CABC) = ^3 (C.5)

Note that, with the symmetry assumption, the probability of failure of any given 
basic event involving similar components depends only on the number and not on 
the specific components in that basic event. This number is indicated as a 
subscript to the letter Q used to represent the probabilities of basic events. 
Therefore, Q2, for example, is the probability of basic events involving 
failure of two and only two components due to a shared cause.

It should be mentioned at this point that, as will be seen shortly, the 
probability of the basic event, changes with "m," the total number of 
components in the common cause component group.* Therefore, the general 
representation of the probabilities of basic events is the following

Q1^ = probability of a basic event involving k specific components
(1 _< k _< m) in a common cause component group of size m (C.6)

and, in general,

Q(m) ^ QW j, / m (C.7)

The above discussion provides the necessary background for the following 
presentation of the various parametric models for calculating the probabilities 
of basic events.

*See glossary in front of this volume for the definition of common cause 
component group.
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C.'t PARAMETRIC MODELS

The objective of all the parametric models described in this report is to 
develop the probability of the basic events based on a set of parameters. 
Numerous parametric models have been proposed over the past decade, and some 
have been widely used in risk and reliability analyses. The models presented in 
this appendix and also in Section 3, Volume I, cover a wide range of such 
mooels. The main characteristics of these models are summarized in Table C-l.

Table C-l also provides a categorization of these models based on how each of 
the basic event probabilities is estimated. The two major categories are:

• Shock Models
• Nonshock Models

The "shock models" recognize two failure mechanisms: (1) failures due to random 
independent causes of single component failures and (2) failures of one or more 
components due to common cause "shocks" that impact the system at a certain 
frequency. The shock models, therefore, develop the frequency of the second 
type of failure as the product of the frequency of shocks and the conditional 
probability of failure of components, given the occurrence of shocks.

The nonshock models estimate basic event probabilities without postulating a 
model for the underlying failure mechanisms. The basic parameter model is used 
to estimate the basic event probabilities directly. The other models discussed 
here, namely, the beta factor, MGL, and alpha factor models, are 
reparameterizations of the basic parameter model. They are used whenever common 
cause failure probabilities are estimated by using estimates of the ratios of 
multiple component failure rates or probabilities to total failure rates or 
probabilities from one source of data, and, independently a total failure rate 
or probability from another source. For example, plant-specific data may be 
used to estimate a total failure probability but, as there is insufficient data 
to estimate multiple failure probabilities, a generic source like Nuclear Power 
Experience (Reference C-l) may be used to estimate ratios of multiple to simple 
component failure events. It should be noted that parameter estimators for all 
these models estimators for the parameters are dependent on the assumptions made 
about success data.

Basic Parameter Model

The basic parameter model (Reference C-2) refers to the straightforward 
definition of the probabilities of the basic events as given by Equation (C.6).
Depending on the system modeling requirements, Qk^'s can be defined as 
demand-based (frequency of failures per demand) or time-based (rate of failures 
per unit time). The latter can be defined both for the standby failure rates as 
well as for the rate of failures during operation.

In terms of the basic specific parameters defined in Equation (C.6), the total 
failure probability, Qt, of a component in a common cause group of 
m components is
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TABLE C-l

Table C-l

KEY CHARACTERISTICS OF THE P"RAMETRIC MODELS

ESTIMATION
APPROACH MODEL MODEL PARAMETERS*

GENERAL FORM FOR MULTIPLE 
COMPONENT FAILURE FREQUENCY*

DIRECT BASIC PARAMETER Q,, Q_......Q1 2 m Qk = Qk k-1,2......m

^h*UJ

co cr 
<

BETA FACTOR 0.0 (1-0)0, k-1
= ( 0 1 m) k) 1

1 0Q k = m

QO5
*oo
Xoo
2o
2

MULTIPLE GREEK LETTERS

ALPHA FACTOR

Qt.0.7. s,...

m- 1 PARAMETERS

‘ ( TT PiVl-Pk + 1)Qt
(rvA1-1 7

pi “1-p2“0.a3-7....pm + r°

Qf“r“2....am k k
Q, = ------ — Q k = 1, .... m

K /m-K a 1 
Vk-W 1

at = S
1 k = 1 K

QO

o01 co

BINOMIAL FAILURE RATE Qj, m.P, vv
^Qj+pd-p)111-1 k-i

Qk = S MPk (1 -p l"'1 " k k ^ 1,m
m ,/ip + w k = m

•REFER TO THE TEXT FOR DEFINITION OF VARIOUS PARAMETERS
••FORMULAS ARE PRESENTED FOR THE BASIC EVENTS IN A COMMON CAUSE COMPONENT GROUP OF SIZE m
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where the binomial term

m-l\ = (m-1)!
k-1/ " (m-k)! (k-D! (C .9)

represents the number of different ways that a specified component can fail with 
(k-1) other components in a group of m similar components. In this formulation, 
the events Qj(m) are mutually exclusive for all k, j. If the
events were not defined as being mutually exclusive, but independent.
Equation (C.8) is still valid under the rare event approximation.

Beta Factor Model

The beta factor model (Reference C-3) is a single parameter model; that is, it 
uses one parameter in addition to the total component failure probability to 
calculate the common cause failure probabilities. It was the first model to be 
applied to common cause events in applied risk and reliability analysis. This 
model assumes that a constant fraction (3) of the component failure rate can 
be associated with common cause events shared by other components in that 
group. Another assumption is that whenever a common cause event occurs, all 
components within the common cause component group are assumed to fail.
Therefore, for a group of m components, all Q^'s defined in Equation (C.6) are 
zero except Qi and Qm. The last two quantities are written as (dropping the 
superscript m)

Ql = (1-3) Qt

Qm = S Qt (C.10)
This implies that

Note that Qt, the total failure probability

Qt = Ql + Qm

which is the special case of Equation (C.8)

Therefore, using the beta factor model, the 
in a common cause group of m components are

of one component, is given as

(C.12)

when Q2 = Q3 = = Qm-1 = 0-

frequencies of various basic events

Q k

(1-3) Qt k=l

0 2 _< k < m

3Qt k=m

(C.13)

As can be seen, the beta factor model requires an estimate of the total failure 
rate of the components, which is generally available from generic data sources, 
and a corresponding estimate for the beta factor. As will be shown later in 
this appendix, the estimators of beta do not explicitly depend on system or
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component success data, which are not generally available. Also, estimates of 
the beta parameter for widely different types of components do not appear to 
vary appreciably. These two observations and the simplicity of the model are 
the main reasons for its wide use in risk and reliability studies.

It should be noted that relaxing the requirement for data on demands or time in 
operation (success data) requires making specific assumptions concerning the 
interpretation of data. This and several related issues regarding the 
assumptions behind the various models and the implications of the assumptions 
are discussed later in this appendix. The questions about interpretation of 
data and its impact on the form of estimators led to the development of a single 
parameter model known as the C-factor model (Reference C-4), which is different 
from the beta-factor model only in the way the data are used to estimate the 
single parameter of the model.

Although historical data collected from the operation of nuclear power plants 
indicate that common cause events do not always fail all redundant components, 
experience from using this simple model reveals that, in some cases, it gives 
reasonably accurate (only slightly conservative) results for redundancy levels 
up to about three or four. However, beyond such redundancy levels, this model 
generally yields results that are conservative. When interest centers around 
specific contributions from third or higher order trains, more general 
parametric models are recommended.

Multiple Greek Letter Model

The MGL model (Reference C-5) is the most general of a number of recent 
extensions of the beta-factor model. The MGL model was the one used most 
frequently in the International Common Cause Failure Reliability Benchmark 
Exercise (Reference C-6). In this model, other parameters in addition to the 
beta factor are introduced to account more explicitly for higher order 
redunoancies and to allow for different probabilities of failures of subgroups 
of the common cause component group.

The MGL parameters consist of the total component failure probabilty, Qt, 
which includes the effects of all independent and common cause contributions to 
that component failure, and a set of failure fractions, which are used to 
quantify the conditional probabilities of all the possible ways a common cause 
failure of a component can be shared with other components in the same group, 
given component failure has occurred. For a group of m redundant components and 
for each given failure mode, m different parameters are defined. For example, 
the first four parameters of the MGL model are, as before

Qt = total failure probability of each component due to all independent 
and common cause events.

plus

3 = conditional probability that the cause of a component failure will
be shared by one or more additional components, given that a specific 
component has failed.
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Y = conditional probability that the cause of a component failure that 
is shared by one or more components will be shared by two or more 
additional components, given that two specific components have failed.

6 = conditional probability that the cause of a component failure that 
is shared by two or more components will be shared by three or more 
additional components, given that three specific components have 
failed.

The general equation that expresses the probability of k specific component 
failures due to common cause, Q|<, in terms of the MGL parameters, is 
consistent with the above definitions. The MGL parameters are defined in terms 
of the basic parameter model parameters for a group of three similar components 
as:

Qt = + 2 Q2(3) + Q3(3)

3
20 (3) + 0 (3)

(3) + g3
" O'3' + 2Q +Q,^

0 (3)
,( 3) = g3________

2Q2(^1 + Q3(3)

(C.14)

(C.15)

<5 and higher order terms are identically zero.

For a group of four similar components, the MGL parameters are:

n - n (4) + ™ {4) + ™ (4) + n <4)Qt - Q1 + 3Q2 + 3Q3 + Q4 (C.16)

?(4)
3Q2(4) + 3Q3(4) + Q4(4) 

Q/4' + 3Q ‘4) + 3Q ‘4) + Q '4;

-

3Q3(4) + g4(4)

3Q9(4) + 3Q ‘4) + Q ‘4)

J4) - C45
3Q3(4) + Q4(4)

(C.17)

It is important to note that the integer coefficients in the above definitions 
are a function of m, the number of components in the common cause group. 
Therefore, it is generally inappropriate to use MGL parameters that were
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quantified for an m unit group in an l unit group, m ^ The same 
comment applies to the other similar multiparameter methods.

The following equations express the probability of multiple component failures 
due to common cause, Q|<, in terms of the MGL parameters for a three-component 
common cause group.

Qx = (1-3) Qt 

Q2 = -^ 3 (1-Y) Qt

Q3 = Y 3 Qt (C.18)

For a four-component group, the equations are:

Qi = (1-3) Qt

Q2 = 4 B {1_Y) Qt

Q3 (i.6) gt

Q4 = 3y5 Qt (C.19)

The generalization of this is given by

where

P1 = 1, p2 = 8, p3 = Y, ’ pm+l 0

Alpha-Factor Model

(C.20)

As explained in Appendix E, rigorous estimators for the beta factor and the MGL 
model parameters are fairly difficult to obtain, although approximate methods 
have been developed and used in practice (Reference C-7). A rigorous approach 
to estimating beta factors is presented in Reference C-8 by introducing an 
intermediate event-based parameter, which is much easier to estimate from 
observed data. Reference C-9 uses the multiparameter generalizations of 
event-based parameters directly to estimate the common cause basic event 
probabilities. This multiparameter common cause model is called the alpha 
factor model.
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Alpha factor parameters are estimated from system failure data. The MGL 
parameters are estimated from component failures. This difference and its 
implications are described more fully in Appendix E.

The alpha factor model defines common cause failure probabilities from a set of 
failure frequency ratios and the total component failure frequency, Qf In 
terms of the basic event probabilities, the alpha factor parameters are defined 
as

(m)
ak (C.21)

whereym/Q|< is the frequency of events involving k component failures in a 
common cause group of m components, and the denominator is the sum of such 
frequencies. In other words,

ak = ratio of the probability of failure events involving any
k components over the total probability of all failure events in 
a group of m components.

For example, for a group of three similar components we have

a 1
(3) 3Q (3)

1

3Q
(3) 3Q23)

+ Q
(3)
3

a2
(3) 3Q (3)

2

+ + Q
(3)
3

a3
(3) (C.22)

and ot (3) + ot (3) as expected.

Using Equations (C.21) and (C.8), we can see that the basic event probabilities 
can be written as a function of and the alpha factors as follows:
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where

E E k a!m) (C.24)
z k=l K

To see how Equation (C.23) is obtainted from Equations (C.8) and (C.21), note 
that Equation (C.21) can also be written as

By summing both sides over k we get

where we have used Equations (C.8) and (C.24). By using the above equation in 

Equation (C.21) and solving for we get Equation (C.23).

The parameters of the a-factor and the MGL models are related through a set of 
simple relations. For example, for a common cause component group of 
size three, the MGL parameters are

2a2 + 3a^
^ + 2o,2 * 3a3

Y =
3a3

2a2 + j (C.25)

Similarly, the alpha factor model parameters for the same group are written as 

a! = 3(1-8)

= 4 8(1-y)
L. C

a3 = 8Y (C.26)

Binomial Failure Rate Model

The BFR model (Reference C-10) considers two types of failures. The first 
represents independent component failures; the second type is caused by shocks 
that can result in failure of any number of components in the system. According 
to this model, there are two types of shocks: lethal and nonlethal. When a

C-ll



nonlethal shock occurs, each component within the common cause component group 
is assumed to have a constant and independent probability of failure. The name 
of this model arises from the fact that, for a group of components, the 
distribution of the number of failed components resulting from each nonlethal 
shock occurrence follows a binomial distribution. The BFR model is, therefore, 
more restrictive because of these assumptions than all other multiparameter 
models presented here. When originally presented and applied, the model only 
included this nonlethal shock. Because of its structure, the model tended to 
underestimate the probabilities of failure of higher order groups of components 
in a highly redundant system; therefore, the concept of lethal shock was 
includeo. This version of the model is the one recommended.

When a lethal shock occurs, all components are assumed to fail with a 
conditional probability of unity. Application of the BFR model with lethal 
shocks requires the use of the following set of parameters:

Ql = independent failure frequency for each component.

y = frequency of occurrence of nonlethal shocks.

p = conditional probability of failure of each component, given a 
nonlethal shock.

w = frequency of occurrence of lethal shocks.

Thus, the frequency of basic events involving k specific components is given as

k=l

2 £ k < m

k=m (C.27)

It should be noted that the basic formulation of the BFR model was introduced in 
terms of the rate of occurrence of failures in time, such as failure of 
components to continue running while in operation. Here, consistent with our 
presentation of other models, the BFR parameters are presented in terms of 
general frequencies that can apply to both failures in time and to failure on 
demand for standby components.

{Qj + yp(l-p)m-1 

y(p)k (l-p)m_k 

ypm + w

C.3 ESTIMATORS FOR MODEL PARAMETERS

C.3.1 Incompleteness in Data, Modeling Assumptions, and Parameter Estimates

In order to estimate a parameter value, it is necessary to find an expression 
that relates to measurable quantitites that can be obtained from data. This 
expression is called an estimator. Before deriving a general set of estimators 
for the models discussed in Section C.2, it is important to recognize the 
relationship between adopting specific modeling assumptions and the derivation 
of parameter estimates. Two types of modeling assumptions will be discussed; 
the first is that associated with the choice of a reliability model for basic 
events. The second is associated with a response to the incompleteness in the 
data, with respect to success data.
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In the approach to system modeling, certain basic events have been defined. 
Consider those basic events, either of independent failures or multiple 
(dependent) failures that represent the failure to start of a stanoby 
component. Two models are commonly used for such events (Reference C-ll). The 
first assumes a constant failure probability on demand. In h demands, the 
probabilities of i failures, (i = 0, 1, ..., N), are binomially distributed and 
a maximum likelihood estimator of the probability of failure, given n failures 
were observed in h demands, is n/N. The second model assumes a constant failure 
rate, X$, while in standby. If it is assumed that the component is replaced 
when failed, a maximum likelihood estimator of X5 is given by n/T where n is 
the number of failures observed in a total time T on standby. (Mote this 
failure rate should not be confused with the failure rate of a standby component 
to run once it has started.) In this model, if it is assumed that the time 
between tests is Tj, then the probability of failure on a randomly occurring 
real demand is Xs Tj/2, assuming XST is small, since on average the demand would 
occur halfway between tests.

Note that the time between tests does not however enter the expression for the 
estimator of Xs. Therefore, the estimator is the same whatever the value of 
Tj. The reason can be seen in Figure C-l, which represents the pointwise 
probability of a basic event with two values of the time between tests, Ty and 
Ty/2. At the end of each test interval, the probability that a failure 
occurred in that interval is Xs Ty and Xs Ty/2, respectively. The expected 
number of failures, n, in a total time T therefore is Xs Ty x T/Ty and 
xs Ty/2 x 2T/Ty, respectively. Since the failure rate is assumed constant, then 
in the rare event approximation the number of failures is directly proportional 
to the total time of observation. The expected numbers of failures are equal 
since, while in the second case, the probability of a failure having occurred 
before the test is halved, there are twice as many opportunities to reveal a 
failure. This is clear since, in this model, the test does not cause failures, 
but merely reveals if they have occurred. However, the unavailability on a real 
demand is given by X$ Ty/2 and Xs Ty/4, respectively, showing, in this model of 
failures, the advantage of reducing the time between tests. The significance of 
the distinction between the two basic event models, the failure on demand and 
the failure rate models, in the context of common cause modeling and the role of 
testing strategies will be further discussed below.

Test Interval is T

3T/2 2T 5 

Test Interval if T/2

Figure C-l. Pointwise Unavailability as a Function of Time for 
Two Different Test Intervals
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Having identified two models for common cause basic events, consider the 
estimation of the basic event probabilities in these two models. First, 
consider the probability of failure on demand model. The maximum likelihood 
estimators are of the form n^/N^, where n^ is the number of occurrences of 
the event, “k components fail," and is the number of demands on 
k components, or the number of opportunities that the cause that resulted in 
k components failing had a chance of being revealed. For the beta factor, 
defined as in Equation (C.ll), it is clear that to derive an estimator it is 
necessary to have at least a measure of the ratio of Nm to This can be
seen to be true of the other models, such as the MGL and alpha factor models, 
where the ratios to Nj are also needed. The importance of this 
observation can be seen by considering the data.

Suppose the data for the common cause failure estimation has been established by 
the procedure discussed in Section 3, an interpretation and reinterpretation of 
event data for plant-specific conditions. This data base consists of numbers of 
events with 1, 2, up to m failures. But it does not provide the success data;
i.e., how many times was it possible for such failures to be revealed? This 
information is generally not recorded in compilations of event data. 
Nevertheless, there are good rules of thumb for estimating the numbers of 
demands on the component population, based on technical specifications related 
to surveillance testing. If it is assumed that the majority of demands are from 
surveillance tests, which is usually the case for the major standby component, 
such as pumps, valves, and diesel generators, then it is relatively 
straightforward to estimate the number of demands on single components, 
especially if the technical specifications specify that, for instance, each pump 
must be tested once a month. Of course, there are other demands on components 
from interfacing maintenance, real demands, etc., which must be accounted for.
In common cause analysis however this evaluation may be circumvented to some 
extent, by fixing the number of demands to provide a single failure probability, 
which agrees with an estimate from another source, such as plant-specific data, 
as discussed in Section 3 of Volume 1.

Technical specifications do not, however, specify how to perform tests. 
Consequently, the exact number and method of component test in each test episode 
may not be known. Also, since success data are not normally recorded and 
reported in the generic sources of data, the particular way components are 
tested in each plant in the generic population is usually unknown to the data 
analyst although the plant procedures may be quite clear. We will now show how 
the assumption the data analyst has to make regarding testing schemes affect the 
estimators.

As an example, consider two testing strategies; nonstaggered testing where all 
trains are tested simultaneously, in each test episode, and staggered testing 
where different trains are tested at different test episodes. We will derive 
estimators for a beta factor for a two-train system assuming both testing 
strategies.

Estimate 1: Nonstaggered Testing

In this case, if the number of single comoonent demands is N^, the number of 
failures of one component n^, and of 2, n?, then the single component 
failure probability is

Ql = ni/Ni (C.26)
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There are clearly N2 = N 1/2 demands on the group of two components, which is 
the number of test episodes. Thus

Q2 = n2/N2

= 2n2/N1 (C.29)

and

3 = 2n2/(ni + 2n2) (C.30)

which is the result found in, for instance, NUREG/CR-2300 (Reference C-ll). 

Estimate 2: Staggered Testing

Suppose in this testing strategy it is known that there are, in a certain 
period, a number, Nq, of testing episodes. A testing episode is defined as 
follows. At each episode, one component is tested. If it succeeds, no more is 
done until the next scheduled testing episode that may be a week, 2 weeks or a 
month later. If however the component tested fails, the other is tested 
immediately. If the second fails, a multiple failure is revealed. If it does 
not fail, the failure is confirmed as a single component failure. In this 
strategy, therefore, the number of tests against the multiple failure is 
precisely Nq, the number of testing episodes. However, the number of tests 
performed on individual components, N^, is slightly higher and given by

Nl = Nq + nj + n^ (C.31)

where ni is the number of independent component failures, and n2 the number 
of multiple failure events. The additional n^ + n2 demands arise from the 
necessity to test the second component, given the first has failed. Without 
testing the second, it is not known how to partition the observed failures of 
the first component between ni and n2. Thus, there are nj + n2 failures 
of the first component leading to ni + 02 extra tests on the second.

Therefore, in this regime

ND + ni + n 2

and

^2
n
N

2

D

(C.32)

(C.33)

The beta factor is approximately (since Nq >> ni + n2) 

n2
0 =------- £-----

nl + n2
(C.34)

Note that when these two different, reasonable assumptions regarding the unknown 
testing strategies at the plants that form the basis for the common cause data 
base are made, the two estimates of the common cause failure probability differ
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by a factor of approximately 2. This shows that making assumptions regarding 
the testing strategies adopted directly affects the estimates. Such assumptions 
are usually necessary because of incompleteness of the success data in the data 
base.

Now consider the standby failure rate model. We will again investigate the 
difference between the estimates of common cause failure probability and beta 
factors for different testing strategies. It was shown earlier that the test 
interval did not affect the estimator of the standby failure rate. Again, 
consider the two-train system. If the number of failures are ni and r\2 as 
before, the standby failure rate for event Qi is

X s
(1) nl 

" 7T {C.35)

where I is the calendar time on standby; that is, each component has been on 
standby for T.

For event Q2, the time that both components have been on standby as a group is 
T, thus

(2) _ n2
(C.36)

This is independent of the assumption of staggered versus nonstaggered testing 
at the plants in the data base, since, as discussed previously, increased 
testing against the common cause (as would be obtained by staggered testing) 
lowers the probability of failure by common cause per demand, but increases the 
number of opportunities to observe failure by the same fraction in a 
compensating way. However, the testing scheme at the plant being analyzed is of 
interest as seen below. The time between tests of each component is Tj.

Estimate 1: Nonstaggered Testing (at the plant being analyzed)

V2 or n^ T.J./4T (C.37)

and

^2 =
(2)

V2 or n2 Tt/2T (C. 38)

and

8 = 2n2/(n1 + 2n2)

as before in Equation (C.30).

Estimate 2: Staggered Testing (at the plant being analyzed)

:c.39)

Q1 = Xs(1) V2 or nx Tt/4T (C.40)
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but now

Qo = X m V4 or Tj/4T (C.41)

since the effective time between tests for 
the successful test of the first component 
has not occurred.

a common cause failure is halved, as 
indicates the common cause failure

In this case

3 = (C.42)

as in Equation (C.34).

It should be noticed that while both the standby failure rate and demand models 
above produce similar estimation of the beta factor for the cases of staggered 
and nonstaggered testing, respectively, the differences between the two testing 
regimes arise in different ways in the two models. In the probability on demand 
model, the testing assumption has to be made for the plants in the data base.
In the failure rate model, no such assumption has to be made. However, the 
apparent advantage of not having to make this assumption in this case is bought 
at the expense of assuming the standby failure rate model applies.

In summary, adopting the probability of failure on demand model introduces into 
the estimation process the need to resolve an uncertainty with respect to how 
the data was collected at the group of plants that constitute the data base. 
Adopting the standy failure rate model introduces no such uncertainty; the 
impact of the testing scheme is at the level of the plant being analyzed. Thus, 
when performing a common cause analysis, it is important to be clear what 
assumptions are being made and what effects these assumptions have.

C.3.2 Some Estimators for Parameters of the Common Cause Models

There are several possible estimators that can be used even if no modeling 
uncertainties, as discussed before, exist. Estimators presented in this section 
are the maximum likelihood estimators and are presented here for their 
simplicity. However, the mean values obtained from probability distribution 
characterizing uncertainty in the estimated values are more appropriate for 
point value quantification of system unavailability. These mean values are 
presented in the context of developing statistical uncertainty distributions for 
the various parameters in Appendix E.

The estimators of this section are also based on assuming a particular component 
and system testing scheme. More specifically, it is assumed that, for the 
plants in the data base, in each test or actual demand, the entire system (or 
common cause component group) and all possible combinations of multiple 
components are challenged. This corresponds to the nonstaggered testing 
scheme. However, if this assumption is changed.(e.g., if a staggered testing 
scheme is assumed), the form of the estimators will also change, resulting in 
numerically different values for the parameters. The estimators presented in
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this section are the more conservative, given a fixed Q^. A consistent set of 
estimators, based on alternative strategies, has not yet been evaluated, but 
some discussion is given in Section C.4.

Istimators for Basic Parameters

The maximum likelihood estimator for Qj,. is given as

where

n|< = number of events involving k components in a failed state 

and

(C.43)

= number of demands on any k component, in the common cause group.

If it is assumed that each time the system is operated, all of the m components 
in the group are demanded, and this number of demands is Nq, then

\ ‘ (r) %
The binomial terms flj1) represents the number of groups of k components that 

can be formed from m components. We, therefore, have

(C .44)

Thus, Equation (C.45) assumes that the data are collected from a set of Nq 
system demands for which the state of all m components in the common cause group 
is checked. It is simply the ratio of the number of basic events involving 
k components, divided by the total number of times that various combinations of 
k components are challenged in Nq system demands. This is represented by the 
binomial term in the denominator of Equation (C.45). Similar estimators can be 
developed for rate of failure per unit time by replacing Nq with T, the total 
system operating time.

Replacing in Equation (C.8) with the corresponding estimator yields the 
following estimator for the total failure frequency for a specific component

0 =-i-vt m N
m
E

D k = l
k n, (C.46)

Estimator for the B-Factor Model Parameter

Although the 8-factor was originally developed for a system of two redundant 
components and the estimators that are often presented in the literature also 
assume that the data are collected from two-unit systems, a generalized 
8-factor estimator can be defined for a system of m redundant components.
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Such an estimator is based on the following general definition of the 8-factor 
(identical to the way it is defined in the more general MGL model).

^ _ 1 yj' (m-1) i g 
"^t (m-k)! (k-1)! k (C.47)

Using the estimator of Q|<, given by Equation (C.45), and Q^, given by 
Equation (C.48), in the above equation results in the following estimator 
for 8.

A
8

£ kn 
k = 2 K

m
£ kn. 
k=l K

(C.48)

For a two-unit system (m=2), the above estimator reduces to the familiar 
estimator of the 8-factor,

2n..

n^ + 2n^ (C.49)

Note that the estimator for 8 is developed from maximum likelihood estimators 
of Qk's. An alternative estimator can be developed directly from the 
distribution of the beta factor based on its definition in Equation (C.47). 
(See Appendix E.)

Estimators for the MGL Parameters

In the following, we develop estimators for the first three parameters of the 
MGL model for a system of m components. Estimators for the higher order 
parameters can be developed in a similar fashion. Based on the definition of 
the MGL parameters,

: 1_ V* (m-1). r 
Qt (m-k)! (k-1) g

6 1 (m-1)! n
^ fa (m-k)! (k-D! gk

(C.50)

(C.51)

(C.52)
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Therefore, by using Equations (C.45) and (C.46) in the above, we obtain the 
following estimators.

m

A
E knk
k=2 K

m (C.53)

E knk
k=l

m
E knk

£ = JSzl___ _

E knkk=2 K

m
a ^ knk
a k=4 K
6 = m

E knkk=3 K

(C.54)

(C.55)

For instance, for a three-unit system (m=3), we have 

a 2n2 + 3n3
^ nl + ^n2 + ^n3

Similarly,

0 _ 3n3
Y 2n2 + 3n3

(C.56)

(C. 57)

As can be seen from the above estimators, the MGL parameters are essentially the 
ratios of the number of component failures in various basic events. For 
instance, in Equation (C.54), the numerator (303) is the total number of 
components failed in common cause basic events that fail three components 
(n3). This is in contrast with the estimates of the a-factor model, which 
are in terms of the ratio of events rather than component states. This is seen 
in the following.

Estimators for the ot-Factor Model Parameters

An estimator for each of the a-factor parameters (o^) can be based on its 
definition as the fraction of total failure events that involve k component 
failures due to common cause. Therefore, for a system of m redundant components,

Aa,

k = l

(C.58)
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It is shown in Appendix E that o^'s correspond to the maximum likelihood 
estimate of the distribution of

Estimators for the BFR Model

The main parameters of the model are Qi, y, w, and p. To develop 
estimators for these parameters, several other quantities are defined as

= rate of nonlethal shocks that cause at least one component 
failure.

m
nt = 53 nk (C.59)
r k=l K

where, as before, n^ is the number of basic events involving k components.

n|_ = the number of occurrences of lethal shocks.

nj = the number of individual component failures, not counting 
failures due to lethal and nonlethal shocks.

The maximum likelihood estimators for the four parameters Qi, X-j., w, 
and p, as presented in Appendix E, are

$ =- 
VI mN

D

a n
xt1 <r

D

A "L 
O) = Nr

and p is the solution of the following equation:-

* a m n*a a t
s = p -

(1-p) m

where

As
m
E k "y
k = l K

(C.60)

(C.61)

(C.62)

(C.63)

(C.64)

Based on the above estimators, an estimator for y can be obtained from the 
following equation:

Xt = y[l-(l-p)m] (C.65)
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which is based on the definition of Xt as the rate of nonlethal shocks that 
cause at least one component failure. Therefore,

A

(C.66)

Table 3-6, Volume I, summarizes the point estimators for the various model 
parameters.

C.4 THE EFFECT OF TESTING SCHEMES ON ESTIMATORS

As explained before, estimators presented here (and in Table 3-6, Volume I) 
assume that periodic tests or actual demands on systems challenge all components 
of the system. This assumption is explicit in some models (e.g., basic 
parameter) and implicit in others; e.g., MGL and alpha factor.

For example, in the estimator for in the basic parameter model, the number 
of times a group of k components is challenged (N^) is derived from the number 
of test episodes, Nq, using the following relation:

(C.67)

This means that all such combinations are assumed to be challenged in each 
episode.

Note that Nq in this case is the same as Njj, the number of tests of each of 
the redundant trains (components) as specified by plant technical specifications:

As shown earlier for the case of a two component group, the assumption of a 
staggered testing scheme results in different values of Nk. The value depends 
on the response to the failure observed. Suppose, for the sake of argument as 
was assumed previously, that, given a failure is observed in the single 
component tested in a particular test episode, all the other components are 
tested immediately, then N^ can be evaluated in terms of the number of test 
episodes Nq‘ as follows. (Note that in this case the number of test episodes 
is denoted as Nq1. This is done to avoid an equivalence being made with the 
number of test episodes of the nonstaggered testing case. In fact, for the same 
technical specification or frequency of testing of a component, the value of 
Nq1 in any given calendar time period would be related to N75 by 
Nq1 = m N75, since in each of the test episodes for nonstaggered testing all 
components in the group are tested at a test episode whereas unless there is a 
failure, in the staggered case only one is tested in a test episode.)

Each successful test results in demonstrating that forfk-ijgroups of 

k components there was no common cause failure. In addition, each time the 
component failed the test, all other components are tested and this leads to
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tests on any group of k components*. Neglecting the second order effects

arising from the complication that if k+1 components are failed this modifies 
the number of feasible tests on k components; the number of demands on a group 
of k components can be expressed as

N, (“o' - £ "j) (";i) '(& ";)(«)
■o U-ll “ ....TS (k-l)= s' (ri) = ^

The number of single component demands is given by

(C.68)

Nq' + nj • (m-1) (C.69)
j = l

With the above estimates of N|< for different testing schemes, the following 
estimators for the probability of basic events involving k components are 
derived:

For nonstaggered testing scheme, using Equation (C.67), 

n NS n'-

TS
(C.70)

For staggered testing scheme, using Equation (C.68),

Q
S

k

Therefore QkS _< because

Q

Q

S
k
NS
k

1
k

(C.71)

(C .72)

In light of the above difference, we can now see that estimates of beta-factor, 
for example, are different depending on what testing scheme is assumed. To show 
this we recall that for a two component system

Q
(C.73)

*In this example, it is assumed that we are estimating Q^, and not 
specifically a common cause failure probability. If we were identifying 
combinations of multiple and independent failures such as Qi • at each 
testing episode, this term would be (^). However, since the nj are 
collectively usually much smaller than Nq1, this subtle distinction will make 
little difference.
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Therefore

(C.74)

and

(C.75)

thus

S (C.76)

where we assumed, as it is true in most cases, that Q2 << Qi»

The staggered-based estimator is approximately a factor of 2 smaller.

The estimator presented by Equation (C.74) is similar in form to the estimator 
of a single parameter model called the C-factor model (Reference C-4). In this 
respect, the C-factor is another estimator of the B-factor under the 
assumptions leading to Equation (C.74). It should be mentioned, however, that 
the C-factor method was developed to try to use the LER summary data to provide 
estimates of common cause failure probabilities. It essentially involved an 
interpretation of data on historical events based on an assessment of root 
cause. The potential of each observed root cause for being a cause of multiple 
failures at the plant in question was judged on engineering grounds, taking into 
account such aspects as plant design, maintenance philosophy, etc. The 
estimator (the C-factor) was the fraction of observed root causes of failure 
that either did, or were judged to have the potential to, result in multiple 
failure. The spectrum of root causes used comes from both single and multiple 
failure events. Since it is the occurrence of the root cause that is important 
and the common cause root causes are assumed to result in this model in totally 
coupled failures, the multiple failure events, if applicable, are only counted 
once (not multiplied by the number of components failed).
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APPENDIX D

ACCOUNTING FOR COMMON CAUSE GROUP SIZE DIFFERENCES IN COMMON CAUSE 
PARAMETER ESTIMATION; i.e., HOW TO MAP IMPACT VECTORS

D.l INTRODUCTION

One of the key elements of the procedures presented in this report is the 
recognition of the necessity, when reviewing data from several plants, to take 
account of the differences between those plants and the particular plant to be 
modeled in order to produce a plant-specific evaluation of common cause 
potential.

There are two types of differences between systems of interest in data 
classification: qualitative and quantitative. The former refers to physical 
differences in characteristics, component type operating conditions, 
environments, etc. The latter deals with the sizes of the common cause 
component group in terms of the different number of components present. The 
purpose of this appendix is to establish relationships among the data bases 
associated with groups having different numbers of components; i.e., different 
levels of redundancy. These relationships are intended to help combine the data 
bases in support of parameter estimation. In particular, the insights derived 
should provide useful guidance on how to account in parameter estimation for 
differences in size between the system being analyzed and those that generated 
the data.

The objectives of this appendix are to:

• Establish relationships between data bases of systems* of 
identical components having different levels of redundancy.

t Provide guidance for interpretation of data from systems of 
different size from the one for which the analysis is being 
performed and for the assignment of impact vectors for the system 
of interest; in this report this is referred to as mapping up and 
mapping down impact vectors.

D.2 DEF1NI1ION OF BASIC EVENTS

As an example, consider a system* (common cause component group) of four 
identical redundant components. In this four-train system, a number of 
different types of events can be defined in term's of a particular

*In this context, system can be thought of as meaning "common cause component 
group."

D-l



combination of components that fail. The total number of different basic events 
of this type that can be defined for a system of four components is given as:

These 15 different basic events include 4 events in which 1 and only 1 component 
is impacted, 6 that impact 2, 4 that impact 3, and 1 that impacts all 
4 components. In this scheme, each event is uniquely defined by a particular 
combination of components that fail. Note that all the causes that impact one 
specific combination of components are counted as one basic event. The specific 
causes are not identified a priori.

Note also that when data are collected (e.g., reports are filed to note problems 
identified during a system test) there is usually at most one "event" identified 
in each event report. On rare occasions, there may be two or more concurrent 
independent events covered in the report. The event classification system used 
in Reference D-l accounts for this by drawing two or more separate cause-effect 
logic diagrams to cover the separate events. One of the problems facing the 
data analyst is the need to distinguish between a single event impacting a set 
of components and the coincidence of multiple independent events impacting the 
same set of components, however, experience has shown the latter category to be 
much less frequent than the former.

The first question we address is: given a set of data from a four-train 
redundant system (common cause component group consisting of four identical 
components), what would the data look like for an otherwise identical system 
having either three, two, or one identical components; i.e., how does the level 
of redundancy or population of components impact the character istics of the data 
in the limit of a very large number of demands in operating experience when the 
same set of causes are "acting" on the system?

Models of common cause events, such as the beta factor, BFR, MGL, and basic 
parameter models, all recognize the potential for two broad categories of event 
causes: independent events resulting in single component failures, and common 
cause events resulting in multiple component failures. In view of this general 
distinction, when one assumes that the occurrences of the causes of the common 
cause events are independent of the number of components present, it follows 
that the same cause may have different impacts depending on the number of 
components present. As a trivial example, any of the causes impacting two or 
more specific components in a system with two or more components could only 
impact one component when only one component is challenged.

The above point is illustrated quite visibly in Table D-l. In the left column 
are listed the 15 different basic events that could occur in a system of 
4 components denoted as A, B, C, and D. Each basic event characterizes the 
occurrence of any cause that fails a specific set of components. Any event that 
could occur in a four-train system is covered by these possibilities. In the 
next three columns in Table D-l, each of the four-train basic events is 
evaluated in terms of the impact each event would have if only three, two, or 
one specific components were present. As the transition is made between any two 
adjacent columns, it is seen that any basic event in a j train system would 
either fail the same number of components or one less component if the same
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Table D-l

IMPACT OF FOUR-TRAIN “INDEPENDENT" AND COMMON CAUSE EVENTS 
ON THREE, TWO, AND ONE-TRAIN SYSTEMS

Sheet 1 of ?

Event
Type

Basic Events in Basic Event 
Probabi1ity

Impact on Impact on Imoact on
Four-Train System 

(A, B, C, D)
Three-Train System 

(A, B, O*
Two-Train System 

(A, B)*
One-Train System

m*

A) A A A

B V (4)** B B None
Independent

•
Ql

C None None

D ) None None None

AB AB AB A

AC I AC A A
Common
Cause AD 1 (4)** A A A
Impacting
Two
Components

BC 1
02

BC R None
BD I

B R None

CD C None None

*Impact expressed in terms of the specific set of components failed by each basic event.
**Applies to each basic event within the braces.
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Table D-l (continued)

Sheet 2 of 2

Event
Type

Basic Events in 
Four-Train System 

(A, B, C, D)

Basic Event 
Probabi1ity

Impact on
Three-Train System 

(A, B, O*

Impact on 
Two-Train System 

(A, B)*

Impact on 
One-Train System 

(A)*

ABC ^ ABC AR A
Common /
Cause ABD ! (4)** AB AB A
Impacting ) 03
Three ACD 1 AC A A
Components )

BCD / BC B hone

(4)
Common ABCD 04 ABC AB A
Cause
Impacting
Four
Components

*Impact expressed in terms of the specific set of components failed by each basic event.
**Applies to each basic event within the braces.



basic event were postulated to occur in a j - 1 train system. In the case ot 
the independent events, which are covered by the basic events Aj, Bj, Cj, 
and Dj, the above observation is simply a reflection of the fact that the 
frequency of independent failures is the sum of the independent component 
failure rates. However, for common cause events, the situation is more 
complicated. Some of the common cause events take on a characteristic of the 
independent events in mapping downward--they impact a single component. Such 
events, which might be termed "latent common cause events," may appear to be 
independent events, but if more components were present, they could reveal their 
true character as common cause events. This may help to explain the observation 
that was made in Reference D-l that more than 50% of the data that was collected 
on events involving single component effects were due to external causes (e.g., 
design errors, operator errors, etc.) that on other occasions produced multiple 
component effects. It is generally believed that most of the data in 
Reference D-l came from low redundancy systems; i.e., two redundant components 
per system.

At this point we introduce the symmetry assumption that is incorporated into all 
the CCF models (3, MGL, BFR, and basic parameter). This assumption states 
that the probability of each basic event is independent of the specific 
combination of components affected; it is only dependent on the number of 
components failed.

These probabilities are the parameters of the basic parameter model that, for 
the four-train system, include:

Parameter* Applicable Basic Events

q/4' Aj, Bj, Cj, Dj

q2(4) CAB, CAC, CAD, CBC, CBD, CC0

«3(41 CABC, CABD, CACD, CBCD
C

r CABCD

*The parameter defines the probability of each (not the total) 
of the indicated applicable events.

If a four-train system is challenged N times and it is assumed that a challenge 
results in all four trains being challenged, and if N is large, the average 
number of events involving a cause impacting j components, Mj, is given by:

[4) (5) q«4)n
J

(D.l)
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In other words, in N system challenges there are n] N challenges of 
combinations of j components and is the probability that each of
those challenges results in j-specific component failures. Evaluating 
Equation (D.l) for the parameters in a four-train model yields

(4) _= 4Q (4) N; M2(4) = 6Q2 (4) N; "j'4' ' V 4) N; m4(4) = Q4 (4) N (D.2)

The total data base generated by N demands on the four-train system is given by

Event Data Vector = M2(4), M3(4), M4(4)J (D.3)

To simplify the subsequent development, we introduce a set of system or 
component group failure rates that correspond with each of the components of the 
event data vector

M (4)
q (4> = _J___ i = 1 2 3 4 (D.4)

where qj = frequency of events that occur within the four-train system 
resulting in j component failures (events per system demand)

The qj^4^ can be regarded as system failure rates and should not be 
confused with component failure rates. These rates provide a means of 
describing a data base that is normalized against the number of system demands.

Returning to Table D-l we can establish what the four-train data would look like 
in three, two, and one-train systems in terms of the basic event probabilities 
for the four-train system that on the assumption that these probabilities are in 
fact independent of system size, and that the system demand is equivalent to a 
demand on all components. On comparison of the first two columns of Table D-l, 
the following relationships are easily established:

(3) _ n (4) _ 1 (4)
= Q

n (3) - ™ (4)
Q i " 3Q

(3) .

(3)

•jn (4) 
2

J ql

, ,n (4) . 3 (4) , 1 (4)
+ 3Q2 ' 4 ql + 2 q2

(4) _ 1 (4) 3 _ (4)
3Q? + 3Q3 " "2 q2 + 4 q3

n (4) + n (4) - 1 n (4) + n (4) Q3 Q4 " 4 q3 q4 (D.5)

These and the remaining relationships among the data bases are summarized in 
Table D-2. Each column of Table D-2 shows how the four-train events are 
distributed in smaller sized systems. The total number of basic events is 
conserved in each column; however, the number of events having no impact grows, 
moving from left to right. These latter events are essentially unobservable 
since data are only available when failures occui—the available data on cause 
events that do not produce at least one component failure are sketchy, at best.
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Table D-2

o

AVERAGE RATE OF OCCURRENCE* OF BASIC EVENTS IN SYSTEMS AS A FUNCTION OF 
SYSTEM SIZE AND THE NUMBER OF TRAINS FAILED PER EVENT

NUMBER OF IDENTICAL REDUNDANT TRAINS OR COMPONENTS

4 3 2 1

♦ - q-

•RATES ARE GIVEN IN UNITS OF EVENTS PER SYSTEM DEMAND



D.3 MAPPING DOWN IMPACT VECTORS

The relationships in Table D-2 can be used to calculate impact vectors of 
classified events in a system of three, two, or one component, given an impact 
vector in any system with more components up to four. This is true because of 
the specific properties of the data bases indicated in Table D-2. The key 
property is that, when moving from left to right to simulate downward mapping of 
data, the events are distributed in a predictable way. Take, for instance, the 
term ni'^', which represents the system failure rate of single component 
failures in four-train systems. Now we ask the question: if one of these same 
events were postulated to occur in a three-train system, what is the probability 
that a single component failure would occur? Using the information in Table D-2

Prob U(4) - 1(3)} = ---v .-v = .75
4Q, 4

(4)

(D.6)

This probability and all the other downward mapping probabilities are 
independent of the underlying failure rate parameters; they are only dependent 
on the sizes of the systems being mapped! A complete set of formulas for 
mapping down data from systems having four, three, or two components to any 
identical system having fewer components is presented in Table D-3. The 
application of these formulas to binary impact vectors (i.e., impact vectors 
whose entries are either zero or one) is illustrated in Table D-4 for mapping 
down data from four or three-train systems. This provides the basis for the 
formulas presented in Section 3 for downward mapping of impact vectors. Note 
that, because these formulas depend on Equation D.2, they are dependent on the 
assumption made about the sampling scheme that produced the data. (See Appendix 
C for a fuller discussion.)

The probability of impact of zero components is carried through these tables 
(D-2, D-3, and D-4) for bookkeeping purposes--to show how the event impact 
probability is conserved. Also, the accounting of the Pq term of the impact 
vector reveals important factors that must be taken into account in parameter 
estimation. In combining data from systems having different sizes, only the 
impact vector terms associated with one or more component failures are 
"observable;" i.e., have the potential for showing up in an event report. 
However, in the process of synthesizing statistics from the generic data base, a 
picture of what the data base would look like if it came from a collection of 
systems with the same size, conserving the probability of impacting zero 
components is extremely important. Take, for example, mapping set No. 4 in 
Table D-4, which covers the case of mapping single component failure events in 
four-train systems to systems having fewer components. Carrying through the 
Pq terms shows in this case how the frequency of single component failures in 
the system is proportional to the number of components present. Hence, half of 
the P]/4) events would not occur in a two-train system. This factor must 
be reflected in parameter estimation to account for differences in system size 
among the systems in the data base in relation to the size of the system being 
analyzed. To illustrate this point numerically, suppose that data from systems 
having four, three, and two components were being used to assess a two-component 
system. Further, suppose that the number of single component failures observed 
in these systems was 40, 30, and 20, respectively. Without consideration of the 
zero impact effect, the data analyst would be led to interpret this data as 
40 + 30 + 20 = 90 instances of single component, failures for use in parameter
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Table D-3

FORMULAS FOR MAPPING DOWN EVENT IMPACT VECTORS

SIZE OF SYSTEM MAPPING TO (NUMBER OF IDENTICAL TRAINS)

3 2 1

4

P <31 - 1 p HI +p <41*
0 4 i *0

p (3).3 (4)+i (4)

1 4 1 2 2

P <3>.!p (4) 3 ,4)

2 2 2 4 3

p <3> ’ (4) (4)

3 4^ 4

P <2>_! p (4) .1 p (4)

0 2 1 6 2

p (2>.lp <4> 2 (4)+ 1 (4)

1 2 1 3 2 2 3

p <2>„! p (4)+ IP (4) . p (4)
^2 s 2 2 3 + H4

P m.2p I4) + Ip (4) + I (4)

0 4 1 2 2 4 3

p m.ip (4) 1 (4)t 3 ,4,

1 4 1 2 2 4 3

+ P'4»
4

3

p (2) = p (3) . 1 (3)
0 0 + 3

p (2) .2 p (3) +1 p (3)

1 3 1 3 2

p (2)„IP (3) + p (3) 

232 3

pnf11 * pn131 + — P,13’ + - P,<3)
0 0 3 1 32

p U) „ I p (3) + 2 p (3) + p (3)

1 3 1 32 3

2

p (D^p (2) . 1 p (2)

P0 0 + 2 1

P n>.lp (2) (2)

1 2 1 2

•THE TERM P^41 IS INCLUDED FOR COMPLETENESS. BUT IN PRACTICE. ANY EVIDENCE THAT MIGHT EXIST ABOUT 

CAUSES THAT IMPACT NO COMPONENTS IN A FOUR-TRAIN SYSTEM WOULD BE "UNOBSERVABLE."
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Table D-4

MAPPING DOWN BINARY IMPACT VECTORS FROM FOUR-TRAIN AND THREE-TRAIN SYSTEM DATA

SYSTEM
IMPACT VECTOR-

po p1 p2 p3 P4

MAPPING OF EVENT 1

ORIGINAL FOUR-TRAIN SYSTEM 0 0 0 0 1.00
IDENTICAL THREE-TRAIN SYSTEM 0 0 0 100 ---* *
IDENTICAL TWO-TRAIN SYSTEM 0 0 1 00 — —
IDENTICAL ONE-TRAIN SYSTEM 0 1.00 — — —

MAPPING OF EVENT 2

ORIGINAL FOUR-TRAIN SYSTEM 0 0 0 TOO 0
IDENTICAL THREE-TRAIN SYSTEM 0 0 .75 .25 —
IDENTICAL TWO-TRAIN SYSTEM 0 .50 .50 — —
IDENTICAL ONE-TRAIN SYSTEM .25 .75 — — —

MAPPING OF EVENT 3

ORIGINAL FOUR-TRAIN SYSTEM 0 0 1 00 0 0
IDENTICAL THREE-TRAIN SYSTEM 0 .50 .50 0 —

IDENTICAL TWO-TRAIN SYSTEM .17 .67 .17 — —

IDENTICAL ONE-TRAIN SYSTEM .50 .50 — — —

MAPPING OF EVENT 4

ORIGINAL FOUR-TRAIN SYSTEM 0 1.00 0 0 0
IDENTICAL THREE-TRAIN SYSTEM .25 .75 0 0 —

IDENTICAL TWO-TRAIN SYSTEM .50 .50 0 — —

IDENTICAL ONE-TRAIN SYSTEM .75 .25 — — —

SYSTEM
IMPACT VECTOR

po P1 P2 p3

MAPPING OF EVENT 6

ORIGINAL THREE-TRAIN SYSTEM 0 0 0 100
IDENTICAL TWO-TRAIN SYSTEM 0 0 1.00 —

IDENTICAL ONE-TRAIN SYSTEM 0 1 00 — —

MAPPING OF EVENT 7

ORIGINAL THREE-TRAIN SYSTEM 0 0 100 0
IDENTICAL TWO-TRAIN SYSTEM 0 .67 33 —

IDENTICAL ONE-TRAIN SYSTEM .33 .67 — —

MAPPING OF EVENT 8

ORIGINAL THREE-TRAIN SYSTEM 0 1.00 0 0
IDENTICAL TWO-TRAIN SYSTEM .33 .67 0 —

IDENTICAL ONE-TRAIN SYSTEM .67 .33 — —

MAPPING OF EVENT 9

ORIGINAL THREE-TRAIN SYSTEM 1 00 0 0 0
IDENTICAL TWO-TRAIN SYSTEM 1 00 0 0 —

IDENTICAL ONE-TRAIN SYSTEM 1.00 0 — —

MAPPING OF EVENT 5

ORIGINAL FOUR-TRAIN SYSTEM TOO 0 0 0 0
IDENTICAL THREE-TRAIN SYSTEM TOO 0 0 0 —

IDENTICAL TWO-TRAIN SYSTEM TOO 0 0 — —

IDENTICAL ONE-TRAIN SYSTEM 1.00 0 — — —

•FOR EACH EVENT, THE "ORIGINAL" IMPACT VECTOR IS ASSUMED TO BE AVAILABLE FROM AN EVENT REPORT TAKEN FROM A GIVEN 
SIZE SYSTEM THEN. WITHIN THE SAME BOX, DIFFERENT EXAMPLES OF NEW IMPACT VECTORS FOR ANALYZED SYSTEMS OF A SMALLER 
SIZE THAN (BUT OTHERWISE IDENTICAL TO) THE "ORIGINAL" SYSTEM ARE GIVEN.

•(—) MEANS THE IMPACT CATEGORY IS INAPPLICABLE



estimation. However, if consideration is given to what this data would have 
looked like had it come from all two-component systems, the equivalent data 
would be interpreted (based on mapping sets 4 and 8 in Table D-4) as 
40(.5) + 30(.67) + 20 = 60 occurrences of single component failure events. The 
sensitivity of this factor in an example systems analysis is explored in 
Section 4.1 of Volume I. The numerical importance of system size mapping in the 
estimation of common cause parameters was first explained by Peter Doerre of 
Ktoll, Federal Republic of Germany, as part of a contribution to the CCF 
Reliability Benchmark Exercise (References D-2 and D-3).

D.4 MAPPING UP IMPACT VECTORS

The above discussion demonstrates that downward mapping is deterministic; i.e., 
given an impact vector for an identical system having more components than the 
system being analyzed, the impact vector for the same size system can be 
calculated without introducing additional uncertainties, given that the basic 
assumptions on which the mapping formulas are based are accepted. Mapping up, 
however, is a different story. To understand this point, let us return to 
Table D-2. Suppose an n-p^) event occurred and the system being analyzed 
consisted of four units. As can be seen from the table, there is some chance 
that, if the same event were postulated to occur in a four-train system, either 
one or two component failures would result. Based on the information provided 
in Table D-2, the following statements can be made about the probability that 
this event would result in one or two component failures, respectively.

pjl(3)

P{l(3)

1.(4) |

2(4)|

3Q (4)
1

3Q/4' + 3Q2l4)
(D. 7)

(D.8)

Therefore, the upward mapping probabilities, unlike the downward mapping 
probabilities, are dependent on the underlying basic event probabilities.
(Recall that the downward mapping probabilities were shown to be independent of 
the underlying basic event probabilities.) Therefore, it is necessary to either 
bring in more information about the events, or accept a greater degree of 
uncertainty in the case of upward mapping. In reference to the above 
relationships, this uncertainty corresponds with not knowing, a priori, the 
underlying basic event probabilities. This is a transcendental problem because 
we need to assign the impact vectors in order to determine what the underlying 
basic event probabilities are!

There are some aspects of the downward mapping relationships presented in 
Tables D-2, D-3, and D-4 that help to reduce uncertainties in upward mapping.
One useful property derived from these tables is that any event involving 
k components in a k train system would result in either k or k + 1 component 
failures in a k + 1 train system, and either k, k + 1, or k + 2 in a k + 2 train 
system. Therefore, the possibilities for upward mapping are well defined, but 
the probabilities are not.

D-l 1



The concept that is used in the definition of the BFR common cause model can be 
used to try to limit the problem. This concept is that all events can be 
classified into one of three categories:

1. Independent events - causal events that act on components singly 
and independently.

2. honlethal shocks - causal events that act on the system as a whole 
with some chance that any number of components within the system 
can fail. Alternatively, nonlethal shocks can occur when a causal 
event acts on a subset of the components in the system.

3. Lethal shocks - causal events that always fail all the components 
in the system.

When enough is known about the cause (i.e., root cause and coupling mechanism) 
of a given event, it can usually be classified in one of the above categories 
without difficulty. If, in the course of upward mapping, each event can be 
identified as belonging to one of the above categories, the uncertainty 
associated with upward mapping can be substantially reduced but not eliminated. 
To be able to categorize an event into one of the above categories requires the 
analyst to understand the nature of the cause. Independent failures 
(category 1) are due to internal causes or external causes isolated to a 
specific component. Of the remaining external causes, lethal shocks can often 
be identified as having a certain impact on all components present. Design 
errors and procedural errors form common examples of lethal shocks. What is 
left are external causes that have an uncertain impact on each component and 
these are the not-necessarily lethal—or nonlethal—shocks.

If an event is identified as being either an independent event or lethal shock, 
the impact vectors can be mapped upward deterministically as described below.
It is only in the case of nonlethal shocks that an added element of uncertainty 
is introduced upon mapping upward. How each event is handled is separately 
described below.

D.4.1 Mapping Up Independent Events

As noted at the beginning of this appendix, the purpose of mapping impact 
vectors is to estimate or infer what the data base of applicable events would 
look like if it all was generated by systems of the same size (i.e., the number 
of components in each common cause group) as the.system being analyzed. In the 
case of independent events, the number of such events observed in the data base 
is simply proportional to the number of components in the system. Therefore, if 
we collected data from systems of two components having some level of system 
experience and observed, say, Mj'2' instances of independent events 
involving a single cpmponent, we should expect to see twice as many independent 
events, M-j(4) = if the same amount of system experience were
accumulated with identical four-component systems.

The above result is compatible with the notion that independent events are due 
to internal causes. If we add more components and fix the level of system 
experience, we add a like amount of opportunities for the occurrence of 
independent events. The following set of relationships directly follows from 
the simple assumption that the number of independent events observed in a system
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of size k, , where k = 1, 2, or 3, is proportional to the underlying
independent failure rate,- What we seek to determine is the equivalent number of 
independent events, that we would expect to observe if the same
amount of system experience were accumulated with identical systems of size j, 
j = 1 through 4.

Mj( = j- Mj(k) (D.9)

From the above relationship, the following formula is 
equivalent number of independent events that would be 
size given data on independent events in different

derived to estimate the 
observed from systems of 
size systems.

W .= E
m (k)

k=l
(D.10)

For the purpose of mapping impact vectors of each independent event, 
Equation (D.9) translates into

IP (k)
(D.ll)

Because this approach adds events that were not actually observed, it 
artificially strengthens the data base and reduces the statistical uncertainty 
associated with estimates of Pj. However, the impact on the uncertainty is 
generally negligible compared with other sources of uncertainty.

D.4.2 Mapping Up Lethal Shocks

Once an event is classified as a lethal shock, the upward mapping of its impact 
vector is straightforward. By definition, a lethal shock wipes out all the 
redundant components present within a common cause group. The key underlying 
assumption in the following simple formula for upward mapping of impact vectors 
involving lethal shock is that the lethal shock rate acting on the system is 
constant and independent of system size. This is a reasonable assumption. From 
it follows the following simple relationship.

m _ P (j)
a, - Hj ’ for all & and {D.12)

Therefore, for lethal shocks, the impact vector is mapped directly. The 
probability that all j components in a system of j components have failed due to 
a lethal shock is mapped directly to the probability of failing all 
£ components in an £ component system without modification.

D.4.3 Mapping Up Nonlethal Shocks

In order to uniquely map up the effect of nonlethal shocks, it is essential to 
use a model that can relate the probability of failure of k or more components 
in terms of parameters that can be determined from measurements of numbers of 
failure events involving i = 0, ..., k-1 components. The only one of the models 
discussed which is capable of supporting this is the BFR model.
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According to the BFR model, nonlethal shock failures are viewed as the result of 
a nonlethal shock that acts on the system at a constant rate that is independent 
of the system size. For each shock, there is a constant probability, P, that 
each component fails. The quantity p is the conditional probability of each 
component failure given a shock. The mapping up of an event is based on a 
subjective assessment of p. This assessment is performed for each event and 
may be different for different events. When mapping up an event from a system 
of size "i" to a system of size "j," j > i, the parameters of the BFR model are 
assumed not to change. In other words, the shock rate and the probability P 
that a component fails, given the shock occurrence, are conserved. While, as 
shown in Section 4.1, the BFR model is somewhat lacking in its generality 
(because all nonlethal events in the data are assumed to have the same shock 
rate and binomial parameter p), allowing a different assessment of the 
P parameter for each event restores the generality. The BFR model in this 
context is used as a way of extrapolating events, but not as an integral common 
cause failure model to parametize all possible events.

The BFR model is used to perform upward mapping of impact vectors according to 
the following procedure:

1. write bi-k equal, 
comes. For example, in mapping up from a system size

(2) = P (1-P)‘

(2) .= 2p (1-p) p

n2(2) = wp2

where n^i) is used in this section to. represent the 
frequency of events that occur within an i-train system resulting 
in H train failures due to nonlethal shocks. These equations 
postulate that the observed values of ni'^ and n^'^l 
were generated in a BFR process with parameters y and p.

(D.13)

2. Write BFR equations for system size "j" to which the data is to be 
applied. For mapping up from a system size i=2 to a system 
size j=4 for example, these equations are

n^4^ = 4y (1-p)3 p

c ,, i2 2n2 = 6y (1-p) p
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(D.14)

!4) = 4y (1-p) p'

(4) . yp

These equations postulate (if the y and p are used from step 1) 
that we would have observed the values of ni'4', n2'4', 
n3l4),and n4'4) from the same BFR process that generated 
the values of ni'2i and n2*^ if the data had been 
collected from a four-train system.

Use the equations in steps 1 and 2 to derive n^'s as a function 
n'111:of s. For example.

n^4^ = 4y (1-p)3 p = [2y (1-p) p] 

■ 2 (1-P)2 n/2'

2 (1-P)'

In some ca^e^, it is not clear which n^'s contribute to a
example, do ni'2' and n2'^^

iome cases, it i 
specific n'Ji. For e
contribute to n2[~tlnow muchY in these cases, us<
Table D-l. Table D-l shows that half of n3(4I is "c___
as n2|2| in a two-train system. The other half is "observed" 
as ni'2). Thus,

n3
(4) _= 4y (1-p) p = 2y (1-p) p + 2y (1-p) p'

(D.15)

= P [2y (1-p) pj + 2 (1-p) p yp

= p2 ni(2) + 2 (1-p) p n2(2) (D.16)

Table D-5 includes formulas to cover all the upward mapping possibilities with 
system sizes up to four. By making use of the concepts of the BFR model, the 
uncertainty inherent in mapping up impact vectors is reduced to the uncertainty 
in estimating the parameter p; that is, the probability that the nonlethal 
shock or cause would have failed a single hypothetical component added to the 
system, tohile this may seem obvious, it should reduce the overall uncertainty 
in mapping up the impact vector since the formulas in Table D-5 take care of all 
the bookkeeping problems of enumerating the possibilities and factoring in the 
system size effects.

While it is the analyst's responsibility to assess, document, and defend his 
assessment of the parameter p, some simple guidelines should help in its 
quantification.

• If an event is classified as a nonlethal shock and it fails only 
one component, it is reasonable to expect that P is 
small (p < .5).
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Table D-5

FORMULAS FOR UPWARD MAPPING OF EVENTS CLASSIFIED 
AS NONLETHAL SHOCKS

SIZE OF SYSTEM MAPPING TO

2 3 4

P1<2)=-2(1 -plP/1* p/^-SO -p)2?,*1) P^4) = 4(1 -p)3?/1)

5 1
P2<2)“ppi(1> P2(3) = 3p(1 -pJP,!1) P2(4) = 6p(1 -p)2?,!1)

OCE P3(3).p2Pl(1) p3(4)_4p2(1 -piP,!1)
U.
o

P4l4)-p3Pl(1)

Q.Q.< P,(3)-(3/2X1 -p)P,<2> P,<4>-2(1 -p)2?/21
2 2 P2(3) = pP,(2> + (1 - p)P2<2> P2<4) = (5/2)p<1 -p)P,(2) + (1 -p)2P2(2)
2LU p313) “ Pp2(2) p3(4) - P2p1<2) + 2P(1 - P)p22

If)
>

p4(4» = p2p2(2»
</)
u.
o
LU p1(4> = (4/3X1 -p)p,(3)
rsi
</) 3 p2(4) “ Ppi(3) + (1 ~ P)p2(3)

p3(4)-Pp2(3) + 0 -P)p3l3) 
p4(4)-pp3(3)
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• If a nonlethal shock fails a number of components intermediate to 
the number present, it is unreasonable to expect that p is 
either very small (p ■* 0) or very large (p ^ 1).

• If a nonlethal shock fails all the components present in a system, 
it is reasonable to expect that P is large (p > .5).

A final observation to be aware of is that, based on the example problem 
presented in Section 4.1, the final results of a common cause analysis are much 
more sensitive to uncertainties in the classification of lethal shocks than 
nonlethal shocks.

0.5 SUMMARY OF IMPACT VECTOR MAPPING

The impact vector mapping concepts of this appendix are summarized in the form 
of a decision tree for the data analyst in Figure D-l. This decision tree 
guides the analyst through the important tasks of assessing the applicability of 
each event, determination of system size for the events in the data base, as 
well as for the system being analyzed, and the use of the appropriate mapping 
formulas derived in this appendix. Examples of impact vector mapping are 
presented in Tables 0-4 and 0-6 for downward and upward mapping, respectively.
It should be stressed that the particular formulas given in those tables are 
dependent on the assumptions made, particularly with regard to data collection 
and, in the case of upward mapping, the BFR assumptions.
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Table D-6

EXAMPLES OF UPWARD MAPPING OF IMPACT VECTORS

EVENT SYSTEM-
IMPACT VECTOR

NO. SIZE Pi P2 P3 P4
EVENT SYSTEM- IMPACT VECTOR’

NO. SIZE Pi P2 P3 P4

INDEPENDENT EVENT CASES LETHAL SHOCK CASE

NONLETHAL SHOCK CASES (p = .10)

ORIGINAL - ONE TRAIN 1 — --- ---
IDENTICAL - TWO TRAIN 1.8 .1 --- ---
IDENTICAL - THREE TRAIN 2.43 .27 .01 —
IDENTICAL - FOUR TRAIN 2.916 .486 .036 .001

ORIGINAL - ONE TRAIN
IDENTICAL - TWO TRAIN
IDENTICAL - THREE TRAIN
IDENTICAL - FOUR TRAIN

1 —

0 1
0 0

NONLETHAL SHOCK CASES (p- .9)

ORIGINAL - ONE TRAIN
IDENTICAL - TWO TRAIN
IDENTICAL - THREE TRAIN
IDENTICAL - FOUR TRAIN

.2 .9 —

.03 .27 .81

.004 .054 324

NONLETHAL SHOCK CASES (p - .5)

10- ORIGINAL - ONE TRAIN
IDENTICAL - TWO TRAIN
IDENTICAL - THREE TRAIN
IDENTICAL - FOUR TRAIN

1
1
.75
.5

.729

.5 — —

.75 .25 —

.75 .5 .125

5—► ORIGINAL - TWO TRAIN 1 0 — — 11—► ORIGINAL - TWO TRAIN 0 1 — —
IDENTICAL - THREE TRAIN 1.35 .1 0 — IDENTICAL - THREE TRAIN 0 .5 .5 —
IDENTICAL - FOUR TRAIN 1 62 .225 .01 0 IDENTICAL - FOUR TRAIN 0 .25 .5 .25

6—► ORIGINAL - TWO TRAIN .5 .5 — — 12—► ORIGINAL - TWO TRAIN .5 .5 — —
IDENTICAL - THREE TRAIN .675 .5 .05 — IDENTICAL - THREE TRAIN .375 .50 .25 —
IDENTICAL - FOUR TRAIN .81 .5175 .095 .005 IDENTICAL - FOUR TRAIN .25 .4375 .375 .125

7—► ORIGINAL - THREE TRAIN .25 .5 .25 — 13—► ORIGINAL - THREE TRAIN .25 .5 .25 —
IDENTICAL - FOUR TRAIN .3 .475 .275 .025 IDENTICAL - FOUR TRAIN .1667 .375 .375 .125

•FOR EACH EVENT, THE "ORIGINAL" IMPACT VECTOR IS ASSUMED TO BE AVAILABLE FROM AN EVENT REPORT TAKEN FROM A 
GIVEN SIZE SYSTEM. THEN, WITHIN THE SAME BOX, DIFFERENT EXAMPLES OF NEW IMPACT VECTORS FOR ANALYZED SYSTEMS 
OF A LARGER SIZE THAN (BUT OTHERWISE "IDENTICAL" TO) THE "ORIGINAL” SYSTEM ARE GIVEN.

'(—) MEANS THE IMPACT CATEGORY IS INAPPLICABLE



APPENDIX E

STATISTICAL UNCERTAINTY DISTRIBUTION FOR MODEL PARAMETERS

E.l INTRODUCTION

This appendix describes the statistical models that can be used to represent 
uncertainty in the estimates of the parameters of various parametric models.
The uncertainties addressed by the statistical models of this appendix are those 
associated with statistical inference based on limited sample size (the standard 
statistical uncertainty). However, simple extensions of the general structure 
of these models provide the vehicle for incorporating other sources of 
uncertainty, as discussed in Section 3, Volume I; e.g., uncertainty in impact 
vector assessment, incompleteness of data bases with respect to the number of 
failures and success data.

The assumption in the models presented here, therefore, is that the statistical 
information necessary to estimate the parameters of a model is available without 
any uncertainty concerning the various pieces of that information.

The approach adopted here for the analysis of uncertainty is the Bayesian 
approach, in which the distribution of a parameter, 0, in light of evidence E, 
is obtained from

"(0|E) =
L(E (0)tt (0)

0

fL(E|0)no(0)dO
(E.l)

where

tt(0|E) = posterior distribution of Q given evidence E.

■"oC3) E distribution of 0 prior to the evidence.

L(E|0) = likelihood function or the probability of the evidence E, 
given 0.

The following sections describe how the above concept can be used to develop the 
uncertainty distributions of various parameter models. For all models except 
BFR, the presentation is limited to the demand-based failure frequencies. The 
time-based failure rate models can be developed by a simple change in selected 
statistical distributions.

E-l



E.2 DISTRIBUTION OF THE BASIC PARAMETER MODEL

The demand based parameters of the basic parameter model are defined as:

= probability of failure of k-specific components on demand due to a 
common cause.

The statistical evidence needed to estimate Q|< is of the form

E = {n^, k=l,...,m ; Nq} (E.2)

where n^ is the number of failures of events involving failure of k components 
in a common cause group of size m, and Nq is the number of system demands.

Assuming nonstaggered testing (see discussion in Appendix C), the number of 
times a group of k components is challenged in each test of a system of 
m components can be calculated from

where the binomial term JJ1 is the number of groups of k components that can be 
formed from m components/ Bayes' theorem, in this case, is written as

"'Vv V = tL ‘W “k> "o <V ‘E-4’
where

f L(nkIQk' V W dQk

The binomial distribution

L KV V ■CHvVV\ (E.5)

for the likelihood and its conjugate distribution, beta

vv r(Ak + Bk} n 
T('A“kl T(Bkrk

"1(1 ' Qk} -1

(E.6)

for the prior distribution, are logical and convenient choices. Here A^ 
and Bfc are the two parameters of the beta distribution and the gamma function 
Hx) is defined as

r(x) . f 2X-1 e"z dz
0

(E. 7)
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The parameters of the posterior distribution that will also be a member of the 
beta family of distributions are

(E.8)

The mean of the posterior distribution is given by

= A’ + B' 
k k

(E.9)

Therefore

k=l (E.10)

For a uniform prior with = 1, we get

(E.ll)

Since, for higher values of k (k > 2), the n^ are generally small, the 
assumption of the particular prior can have a significant effect on common cause 
failure probability estimates. This is true of the other models also.
Therefore, these results should not be used without an understanding of what 
drives them.

The mode of the posterior distribution is given by

(E.12)Qk ‘ * S' - 2

which, in terms of the prior distribution parameters and the data, is written as 

n, + A. - i
Qk = Nr + Ak + Bk - 2 (E*13

For a uniform prior (A^ = B^ = 1), the above estimator reduces to a form 
commonly known as the maximum likelihood estimator (MLE):

(E.14)

In application to the uncertainty analysis of a system unavailability, or 
sequence frequency, the distributions on the are regarded as statistically 
independent. So for example, in a Monte Carlo analysis, the distributions on 
the are sampled independently. This, of course, results in underestimation 
of the overall uncertainty.
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E.3 DISTRIBUTION OF THE ALPHA-FACTOR MODEL PARAMETERS

The parameters of the alpha-factor model are defined as:

oik = fraction of basic events involving failure of any k components due 
to common cause.

The data needed to estimate oik's are of the following form:

E = { nki k=l,...,m } (E.15)

where nk is the number of events involving exactly k component failures in a 
common cause component group of size m.

The likelihood of observing this evidence, given a set of values for oik's is

n,, n,n | oi & ,. a )
1 z ml*: m

r(n1+n0+..,+n ) 
1 c m

r<"i>.........r<".»

mn
k-l

(E.16)

where

m
£ ak = 1 (E. 17)
k = l

This is a multinomial distribution.

Using a Dirichlet prior distribution of the form

tt (a o 1’
r(A.+A,+...Am) m A,-1 \ _ 1 *: m rr k

•’V ' r(A1)r(A2)...r(Am) ^ ak (E.18)

and the likelihood function given in Equation (E.16) in Bayes' theorem results 
in another Dirichlet distribution for the posterior distribution,

11(01, E) = C-1 L(E ,a )tt (a,, m 0 1
,01 ) 

m (E.19)

where C is a normalization factor. The posterior distribution has the same form 
as Equation (E.18) with the following parameters

Ak = Ak + nk k=l,...,m (E.20)

The marginal distribution of ak is a beta distribution with mean and mode 
given by

Ak + nk
mean: a^ =—---------------- k = l,...,m (E.21)

£ (Ak+nk)
k = l K
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1

mode: ak="^-------------------
E (yv1*
k = l K K

k=l (E.22)

For a uniform prior = 1 k=l,...,m, we have

k=l (E.23)

which is the maximum likelihood estimator of ot^.

E.4 DISTRIBUTION OF THE MGL MODEL PARAMETERS

The distribution of the MGL parameters is first developed in its exact form. 
However, since the exact form as it will be seen is complicated and for some 
practical applications difficult to use, an approximate method is also described 
along with a discussion of its limitations and constraints. In both cases, the 
presentation is limited to the MGL parameters for a three-component system. The 
results can be easily generalized for systems of higher redundancy.

E.4.1 Exact Method

Since the available statistical data are in the form of the number of events 
involving different common cause basic events, an event-based parameter such as 
the a-factor can be estimated directly from the data. However, the MGL 
parameters are, by definition, component based and as such, cannot be directly 
related to the observables (n^'s). Therefore, the distribution of MGL 
parameters must be obtained indirectly through the distribution of an 
event-based parameter. The event-based model selected for this purpose is the 
a-factor model.

We first note that, based on the definition of the a-factors and the MGL 
parameters, we can establish the following relations.

2a„ + 3a
(E.24)

al + 2a2 + ^a3

(E.25)Y 2a^ + ^a^

Using the standard approach for change of variables, the distributions of the 
MGL and a-factor model parameters are related through the following equation:

(E.26)
| j (a1, a2, a3)|
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where, defining a dummy parameter x = <*2> the Jacobian is written as

J (dj, cx2, «3)

Since,

_33_ _ 36 = 3X
3a2 "

33 iL 33
al a2 a3

3Y 3Y 3Y
“l a2 “3

3X 3X 3X
“l “2 “3

Then,

From Equations (E.24) and (E.25), eliminating we have

as
a®.

ae

3Y

3Y
a^i

9 9
2 ' 4 “3

(3-h*h) 2

J “l
( 3 - + ^3 ) 2

27
2 a3

(5 -3 “1+1 “3 r

1 P
H
-*

Using the above equations in Equation (E.29) and replacing 04 and dj b. 

3 (1-8)
al 3 - | 3 - ^ ey

d., = B Y
3 - 4 3 - 3y

(E.27)

(E.26)

(E.29)

(E.30)

(E.31)

(E.32)

(E.33)

(E.34)

(E.35)

E-6



J (E.36)
= W (3 - 7 3 " 7 3y)

Therefore,

\Y (3*Y) = 9B_______  ^ ,
2(3'7 3 ~ 7 3y)3 ai’ a2’ ^ 1(ct-i, 0^2 > ^2 ^ (E.37)

Based on the discussion in Section E.3, for a uniform prior distribution, the 
distribution of 04, a?, and 013 is given by

r(ni + + n3^ ni_1 n2~1 n3-^
^ ^ (cx,, a a,) = —r—^,---- r—jri-----r a. a0 a- (E.38)«!, ot2, 1’ 2’ J ffn^ 1(02) r(n3) 12 3

Equations (E.34) and (E.35) give the relation between aj and 03 and S and y.
The corresponding equation for a? is

a2 =
8 (1 -y)

3 - | 8 - I By (E.39)

We can now replace ai, a2, and 03 in Equation (E.39) by
Equations (E.35), (E.J6), and (E.40). The resulting distribution can then be 
used in Equation (E.38) to obtain the distribution of 8 and y:

u
e,y (3,y) C

n„ + n,-! n.-l n^-1 n9-l
8 ^ (1-8) y ^ (1-y)

3-^ 8 - -j By nl + n2 + n3

where

C =
(nj + n2 + n3)
Ffnj) r(n2) r(n3) (E.41)

From Equation (E.40), it can be seen that mean values of 8 and y can only be 
obtained numerically, which is not a desirable property for most practical 
applications where the mean value may be needed for an initial quantitative 
screening of the common cause component groups as described in step 2 of the 
procedure. In such cases, the approximate method described in the following 
section may be used.

E.4.2 Approximate Method

The uncertainty distribution of the MGL parameters can be approximated with 
simpler parametric distributions if the observed events are assumed to be 
independent component failures within different categories of common cause 
events. In other words, the set {n^ k=l, ..., m} where n^ is the number 
of events involving failure of k components due to common cause will be
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interpreted as (kn^; k=l, m} where kn^ is the number of components 
failed in common cause events involving k component falures, and kn^ events 
will be assumed to have occurred independently.

With the above assumption, let us define the following conditional probabilities 
(for a system of these components).

Zi = 1- 3 = conditional probability of component failure being a single
failure.

Z2 = 3(1- y) = conditional probability of a component being involved in a 
double failure.

Z3 = By = conditional probability of a component being involved in a 
triple failure.

Mote that

zi + z2 + z3 = !

The likelihood of observing ni single failures, 2n2 component failures due 
to double failures, and 3n3 component failures due to triple failures can be 
modeled by a multinomial distribution for Z j1 s .

(n, + 2n? + 3n,)! n. 2n? 3n,
= (ni)i(2n2)!(3n3)! Z1 Z2 Z3 (E.42)

Rewriting Equation (E.43) in terms of 3 and Y gives

2n9+3nr( n, 3n^ 2n9
P(n1,2n2,3n3l3,Y) = M 3 Z (1-3) Y (1-Y)

where M is the multinomial multiplier as in Equation (E.42).

We now write Bayes' theorem as

TTfB.Yln^n^n.^) =-^ P(n1,2n2,3n3(3,Y)TT0(B,Y)

where tt0 and tt are the prior and posterior distribution of 3 and Y 
and C is a normalizing factor defined as

c -i r P (n1,2n2,3n3l3,Y)i;0(B,Y)d3 dYV1“& *T)

As the prior, one can use a multinomial distribution

A -1 B -1 C -1 D -1 
tt (3,Y) = h 3 0 (1-3) 0 y 0 (1-Y) 0

(E.43)

(E. 44)

(E ,4b)

(E.46)
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where h is given by

h = o o o o (E.47)
r(Ao)r(Bo)r(co)r(Do)

A flat prior distribution is obtained by setting A0 = B0 = C0 = D0 = 1.

Using Equation (E.46) in Equation (E.44) results in a posterior distribution 
for B and y that is also multinomial, with parameters

A = A0 + 2n2 + 3n3

B = B0 + ni

C = C0 + 3n3

D = D0 + 2n2 (E.48)

The mode of the posterior distribution occurs at

o _ A-1 
P " A+B^Z

T C+D-2

(E.49) 

(E.50)

The mean values are calculated from

r -B A+B

v =_L_
' C+D

Note that for the flat prior the mode of

= 2"; * 3"3 

nl+2n2+'in3

3n3
Y ~ Tn^+ZiT^

(E.51)

(E.52)

the posterior distribution is

(E.53)

(E.54)

which correspond to the point estimates developed in Section 3, Volume I for a 
component common cause group of size m = 3. As we can see, the approximate 
method results in estimators that are similar to the commonly used estimators 
for the MGL parameters. The commonly used estimators, therefore, are not exact 
and should only be used if the magnitude of error introduced is judged to be 
insignificant compared with other sources of error and uncertainty. The most 
important difference between the exact and the approximate methods described 
here is that the spread of the distributions based on the approximate method is



smaller, a consequence of assuming that the component statistics (kn^) are the 
result of independent observations (References E-2 and E-3). The difference may 
not be significant, however, if other sources of uncertainty are accounted for 
in the development of these distributions.

E.5 DISTRIBUTIONS FOR BFR PARAMETERS

To obtain uncertainty distributions for the parameters of the BFR model, Bayes' 
theorem is used as follows (the method presented here is an extension of the 
method presented in Reference E-l):

P^I,Xt,(Jj’p*data^ = ^ L(clatalQi»Xt’li)>P) Po(QI’Xt’u,’P)

where

C = J J f y’L(datalQI,Xt,u),p,) P()(QI,xt.“,p)

Ql xt u, p

(E.55)

(E.56)

and P0 and P are the prior and posterior distributions for the quantities,
Ql, Xt, w, and p. To obtain the likelihood term, we note that the data 
consists of (nj, n|_, ni, n2, ..., n^), where nj is the number of 
single failures that were not due to common cause shocks, n[_ is the number of 
occurrences of lethal shocks, and, finally, n^, k=l, ..., m, is the number of 
occurrences of exactly k failures due to nonlethal shocks in t hours of 
operation.

In this model, times of occurrences of noncommon cause individual component 
failures, nonlethal shocks, and lethal shocks are assumed to be exponentially 
distributed. Therefore, nj, n^, and n|_ have Poisson distributions with 
parameters Qi, Xt, and w.

Now, the joint likelihood of the data can be decomposed into marginal 
distributions as follows:

L - Ptnj, n^, ni»...»nm]

= PLnj] PlnL] PLnt] ptni»•••»nmInt^ ' (E.57)

Where the first three distributions on the left-hand side of the equation are 
Poisson,

PtnjIQj]
(Qjt)

nI!

-Qlt

PLnJl] n i
f

e
-wt

(E.58)

(E.59)
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{E.60)

The fourth term is multinomial distribution; i.e.,

n! m n i
(E.61)> • • • >

where

(E.62)

where

q = 1 - p (E.63)

The estimators provided in Section 3 are in fact the maximum likelihood 
estimator based on the likelihood function of Equations (E.58) through (E.62).

As we saw earlier, the likelihood function can be decomposed into likelihood 
functions for each of the four quantities. Similarly, the prior distribution, 
P0, can be written as the product of four prior distributions,

(E.64)

As a result, the posterior distribution of Equation (E.55) can also be 
decomposed into the product of four distributions. Since the likelihood for the 
first three parameters are Poisson, a reasonable choice for the family of their 
corresponding priors is the gamma family of distributions, which has the 
following form

(E.65)
F(a)

where a and b >o are the two parameters of the distribution. Let (a,b), 
(a-t.bt), and (aw,bw) be the parameters of the gamma prior distribution 
for Qj, Xj., and u>, respectively. If

b = b, = = 0 (E.66)

then the resulting priors are noninformative for Qj, X^, and w. 

Reference E-l suggests the use of beta distribution for p.

_ F(c+d) c-1 ,, Nd-1f(p) = —----------  p (1-p) (E.67)
r(c)F(d)
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where c and d are the two parameters of the distribution. According to 
Reference E-l,

^ 1 
c = d = -j

approximates a noninformative prior for p.

The general form of the posterior distribution is then

-1 a' , < -(b' QI+bi Xt+bcl)u)p(Ql5xt>u,p) = c" Qj Xt w e

s+c-1 mn.-s+d-l
£!

where

nix(1-q )

(E.68)

a = a + nj-1 b+t

at = at + "t"1 bt = bt+t

aui = aui + Hi’1 b = b +tCJ U)

The mean values of X, Xt, and w can be calculated analytically and are

n ,+a
h = tW

n +a
r. = t t
t t+b.

(E.69)

(E.70)

(E.71)

U) =
nL+aui 
t+bU)

(E.72)

However, the mean of p can only be calculated by numerical integration.

Maximizing the posterior distribution [Equation (E.68)] to obtain the mode 
results in the following estimates:

Qt =
n j+a-1

I t+b

x W1
Kt ~ t+b^

(E.73)

(E.74)
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(E.75)

A
S

1

m n. A
p ----- - + P (d-1) - q (c-1)

1-q
(E.76)
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APPENDIX F

PRACTICAL CONSIDERATIONS

F. 1 INTRODUCTION

The procedural framework described in Volume I allows application at varying 
levels of detail. It is recognized that it may not always be necessary or 
practical to perform the analysis to the level of detail discussed in Section 3 
and applied in the auxiliary feedwater system example in Section 4. Indeed, the 
screening analysis, Stage 2 of the procedure, is included as an essential 
element in achieving a practical methodology in that it restricts the number of 
common cause failure events that have to be analyzed in detail. The purpose of 
this appendix is to discuss the various practical aspects of applying the 
proceaure, to identify where simplifying assumptions are made, and where they 
can be made without loss of accuracy. The topics discussed here are entirely 
concerned with the analytical aspect, and not the qualitative screening or the 
data analysis.

To understand the necessity of performing simplifying assumptions on the grounds 
of practicality, consider the following: in system-level analyses (i.e., the 
analysis of common cause events within a given system), large fault trees can 
result from the identification of large common cause component groups or many 
common cause component groups. In plant-level analyses (e.g., applied risk 
studies), especially those that employ the fault-tree-linking technique, the 
fault trees are typically large even before the inclusion of common cause 
events.

For example, consider the case of one-out-of-N (for success) systems that are 
comprised of N components so that system failure requires failure of all 
N components. Suppose that all N components are assigned to the same common 
cause group. The systematic procedures described in the guide suggest as one 
alternative the incorporation of a number of basic events into the logic model, 
equal to all the combinations of components that can be affected by a particular 
cause. This number, ne, is given by

(F.l)

Values of ne are listed in Table F-l for selected values of N, together with 
the number of minimal cutsets of the resulting fault trees. The highly 
nonlinear proliteration of cutsets with system size is evident in this table. 
More than b,000 minimal cutsets result from the 6 component-common cause fault 
tree. Even systems with 10 or 11 identical components (e.g., relief valves in a 
BWR ADS system) are well beyond the practical limit of a complete fault tree
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TABLE F-l

SIZE PARAMETERS FOR COMMON CAUSE EVENT FAULT TREES OF ONE-OUT-OF-N SYSTEMS

N
Number of Components 

in System

n
Number of Basic 
Events in the 

Expanded Fault
Tree(a)

ne
Number of Unioue 
Basic Events in 

Expanded Fault
Tree(b) (c)

nm
Number of Minimal 

Cutsets in Expanded
Fault Tree^

2 4 3 2

3 12 7 5

4 32 15 15

5 80 31 42

6 192 63 278

11 11,264 2,047 (*)

100 6.3 x 1032 1.3x1030 (*)

*Unknown. It is believed that these fault trees are well beyond existina computer 
software and hardware capability.

(a) Determined from

(b) Detemined from Equation F-l.
(c) As determined by fault tree solution with SETS.



analysis of all common cause events. In these situations, it is necessary to 
either simplify the model or apply algebraic formulas to component-level logic 
models, as more fully described below.

Section F.2 discusses analytical methods that are applicable in both the 
screening and the detailed analysis, while Section F.3 is concerned with methods 
that are specific to the detailed analysis of Stage 3 of the procedural 
framework. Section F.4 discusses briefly the iterative application of this 
framework to achieve an economical yet detailed system analysis that 
incorporates common cause failures.

F .2 ANALYTICAL METHODS APPLICABLE TO BOTH SCREENING AMD DETAILED ANALYSES

The first method discussed in this section is that of simplifying the common 
cause model. The second technique, truncation, is applicable to any systems 
analysis but is mentioned here for completeness. The third section addresses 
the introduction of the common cause events into the model.

F.2.1 Model Simplification

In the most rigorous application of the procedures recommended in this 
procedures guide, a certain number of common cause events are added to the logic 
model, one for each different combination of components that could be affected 
by a common cause. As shown above, there are 2^-1 such combinations in a 
group of N components. By selectively eliminating some combinations, the number 
of minimal cutsets in the extended fault tree can be reduced and the 
determination of the algebraic system model can thereby be simplified. The 
original beta factor model incorporated this technique by modeling only the 
purely independent events and the global common cause events; i.e., the event 
that fails all N components in a common cause group.

There are natural variations on the beta factor model within this class of 
techniques in which additional common cause events can be added to progressively 
allow a greater degree of detail within the model but less than the full detail 
provided by the "rigorous" approach. One such variation, for groups having five 
or more components, might be to include the independent events, the global 
common cause event, and all the common cause events that fail two and three 
components. In this model, the global event accounts for any common cause event 
that fails four or more components. In practical situations with five or more 
components, there is no real technical justification in light of data analysis 
uncertainties to have a greater degree of freedom than that included in this 
type of model.

When the model is simplified using one of these approaches, it is very important 
to analyze the data in a consistent manner. If care is taken, the analyst can 
ensure that any errors introduced by event deletion are controlled in a 
conservative manner. For example, if using the above model in a system of, say, 
12 components, any event that involved failure of 4 or more components would be 
counted in the data analysis as failing all 12 components, or, if the original 
beta factor model is being used, any common cause event would be counted as 
failing all N components.
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For example, if the truncated model described above is being used to analyze a 
12-component system, suppose that the following data were developed (after 
screening the events and performing the necessary upward and downward mapping of 
applicable data from different sized systems).

ni = 100
n£ = 4
n3 =2
n>4 = 1

Since the model has been truncated not to distinguish among any differences in 
impact for four or more components, to be consistent, the parameter estimators 
should also not make the distinction. So, for estimation of the 3-factor, the 
following approach would be used to estimate the mean of the 3-factor 
uncertainty distribution (see Section E.3, Appendix E, Volume I).

2n^ + 3n^ + !2n>^ 

nl + ^n2 + ^n3 + 1^n>4
26

126
.2

If the 3-factor model was being used to analyze some system with the same data 
as above, the following approach would ensure that the modeling truncation error 
is conservative. Assume all common cause events (i.e., n£ + n3 + n>4) fail all 
12 components, and estimate 3 as —

(n, + n. + n J (12)
^ ° — _ 84

^ nl + (n2 + n3 + n>4) (12) 134

The quantitative screening proposed in this guide has adopted the most simple 
and conservative approach of using the beta factor type of model; that is, using 
only the global common cause terms. The use of the global common cause term 
will be revisited in terms of the detailed analysis in Section F.3.

F.2.2 Truncation

When all the common cause events are included in the logic model, or when some 
are omitted and the others are conservatively quantified as described above, the 
models can be further simplified by truncating higher order cutsets. This 
technique is normally used in ordinary fault tree analysis and is incorporated 
into much of the fault tree analysis software. This technique is more powerful 
ana more defendable if common cause events are included in the logic model. The 
assumption of lower probability of higher order cutsets is the basis of 
truncation, but is only valid if the events are independent statistically. 
Explicit inclusion of common cause events preserves the validity of the 
assumption and the method.

In the auxiliary feedwater system example of Section 4.1, Volume I, the 
numerical error associated with truncating all but first-order terms was found 
to be about 4%, while truncating the third-order terms yielded an error of less 
than 1%.
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These results are rather typical and reflect an important contribution of the 
global common cause events. Seldom do terms of fourth order and higher make 
significant contributions, even collectively. It is also normally safe to 
truncate cutsets of an order higher than the lowest order of purely independent 
event cutsets of events within a common cause group. For example, if a system 
has minimal cutsets of order 2, with single failures of components in a given 
component group, any cutsets of events within the same group of order 3 or 
higher can be safely truncated, provided the probabilities of the events 
contributing to the higher order cutsets are comparable with those of the lower 
order cutsets and are small.

A variation on this approach is to truncate certain types of cutsets within a 
given order. For example, the approach followed in the COMCAN software 
(Reference F-l) includes three types of cutsets: (1) purely independent events 
of any order, (2) cutsets with one independent event, a common cause event, and
(3) first-order cutsets that are global events.

An alternative approach is one in which cutsets or algebraic model terms are 
truncated, based on estimates, or bounds, on their probabilities. This approach 
is generally superior to cutset order truncation because it is not necessary to 
assume a direct correlation exists between cutset order and cutset probability. 
To best control this approach, it is highly desirable that the estimates, or 
bounds, on the probability of truncated cutsets be saved for comparison to the 
final result. This comment also applies to the cutset order truncation 
technique.

In yet another approach, subtrees whose underlying basic events do not appear 
any other place in the system fault tree can be combined into a single 
"superevent" or "supercomponent." This approach is well known to fault tree 
analysts and is incorporated into such fault tree computer programs as WAME and 
SETS. It was employed in the U.S. contribution to the Common Cause Reliability 
Benchmark Exercise (Reference F-2). The system that was analyzed consisted of 
four identical trains, and the success criterion was one or more trains. Each 
train consisted of 17 components which were grouped into 12 component groups.
An ordinary independent events fault tree would have 20,736 minimal cutsets in a 
component-level fault tree. After expansion of the system fault tree to include 
common cause events according to the "rigorous" approach described in this 
procedures guide, the number of cutsets increased to 45,295. After making the 
fullest possible use of the independent subtree technique, the number of minimal 
cutsets was reduced to 5,739. Hence, an eight-fold reduction in the number of 
terms was achieved in this example. Unlike the .above techniques to simplify the 
model, this one does not introduce any numerical errors whatsoever. A minor 
drawback is that when independent subtrees are identified as significant 
contributors, they must be separately broken down so they can be used to examine 
causes at a level of detail consistent with the parts of the fault tree not 
simplified in this way.

F.2.3 Incorporation of Common Cause Events into the Plant Model

There are basically two different approaches to plant modeling: the fault tree 
linking and the support state model approach. There is essentially no 
difference in the way that common cause events are introduced into these 
models. Perhaps the simplest approach is to introduce the common cause events
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directly into the fault trees for the support systems and frontline systems 
before solution for the cutsets. However, the inclusion of many additional 
events into fault trees can make their solution cumbersome. Two alternatives 
are discussed here. Ihis approach is to solve for the cutsets without the 
common cause events and to substitute into the resulting minimal cutsets 
expressions, which expand the component events into independent and common cause 
events. The latter approach can be subject to the criticism that truncation may 
eliminate cutsets, based on order or probability, that might have significant 
common cause potential. In practice, at the system level, this is seldom a 
problem for an experienced analyst since he has identified the appropriate 
common cause groups and would perform a check to see why they did not appear. 
This may be more difficult when systems are combined together to form accident 
sequences. However, it is a powerful approach to providing a practical solution 
when used with care. It is illustrated below.

F.2.3.1 Basic Event Substitution

Suppose a system is composed of four components, X, Y, Z, and W. The first 
three of these are identical and belong to a common cause group, and the fourth, 
component W, is independent of the first three. Let all the causal events in 
this system be denoted by Cj, where j denotes the particular impact of that 
cause in terms of a component, or combination of components, that is affected. 
All the basic events in the resultant fault tree are listed as follows:

Independent Common Cause
Cause Events Events

Cx CxY
Cy cxz
cz Cyz
Cw CXYZ

Assume that the system success criterion dictates that there are two minimal 
cutsets for the system in the component-level Boolean for the normal alignment. 
The minimal cutsets are given by

{X,Y} and {Z,W}

Therefore, the solution to the problem with component level basic events is

★

T = X*Y + Z*k (F.2)

*AI1 equations with boxes are Boolean algebra; those without are normal algebra.
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Incorporation of the common cause basic events into the fault tree is equivalent 
to the Boolean substitution

x = Cxy + Cxz + CxYZ + CX

Y = Cxy + Cyz + CxYZ + CY

Z = CYz + Cxz + CXYZ + cz

W = Civ

Consequently Equation (F.2) becomes

T = [Cxy + Cxz + CxYZ + Cxi*[CxY + Cyz + CxYZ + Cyz^I 

+ [Cyz + cxz + cxyz + czj*Cw

After Boolean reduction

t = cXY + cXyz + Cxz*cy + Cx*cY + Cxz*cYz
+ CYz*Cw + Cxz*Cw + cz*cw + Cx*CYz (F.13)

The final equation is equivalent to the following list of minimal cutsets:

Singles : {Cxy^3^ 1 {Cxyz^

Doubles: (CXz*CYz)(a) ; {CXz*Cy} '» {Cx*CY} ; {Cx*CYz}

{cYz*cw} ; {Cxz*cw} ; {cz*cw}

The system failure probability can now be written using the rare event 
approximation and assuming that all the listed causal events are independent.

P(T) = P{CXY} + P{Cxyz} + P{CXZ} • P{CYZ}

+ p{cxz) • p{cy) + p(cx} • [P{CY) + p{cyz}]

+ P{CW)[P{CYZ} + P{CXZ} + P{CZ)] (F.4)

Applying the assumption of symmetry, i.e., that 

P{CX) = P{Cy} = P(CZ} = Q1

(a)For a discussion of these controversial cutsets, refer to Section C.l of this 
volume.
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(F.5)

p{cxy} = p(cxz} = p{cyz} = q2

P(C } = Q 
XYZ 3

we obtain

P(T) = + Q3 + Of + 2Q1Q2 + Q1 + °W(01+ 2Q2]

F.2.3.2 A "Support State" Model

The support state model suggests an alternative approach to the inclusion of 
common cause events. This model uses a conditional probability formalism to 
account for all dependencies. Thus

N
P(T) = £ P(S ) P(T|S .) (F.6)

j = i J J

where

P(X) = probability of event X.

T = top event of the system fault tree.

Sj = one of N mutually exclusive and exhaustive conditions under which 
the top event can occur.

T|S-j = fault tree modified to reflect the condition S; i.e., given 
Prob (Sj) = 1. J

The common cause events can be included in such a model by associating a common 
cause failure occurrence with one of a set of states, Sj. Since the common 
cause dependency is explicitly accounted for in the term P(Sj), the events 
constituting T|Sj are now independent and, therefore,

P( T| Sj) = P( X | Sj) • P( Y | Sj) + P( Z | Sj )• P( W| Sj)

- P(X|Sj)-(P(Y|Sj)P(Z|Sj)P(W|Sj) (F.7)

What this means in practice is that each term in the right-hand side can be 
expressed as the following for P(X|Sj)

!P(CV), states that do not impact component X

1, states that impact component X

The use of an event tree to generate all the common cause event states is 
illustrated as follows. *

*See discussion in Section C.l of this volume regarding terms involving 
overlapping components in basic events.
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CXY CXZ CYZ CXYZ

IMPACT VECTOR 
XYZ F(T|Sj)

OCCURS

i
DOES 
NOT 
OCCUR

sc 1 1 1 1

s2- 1 1 1 1

s3- 1 1 1 1

SC 1 1 1 1
Ss' 1 1 1 1

s6- 1 1 1 1

s7 1 1 1 1

S8 1 1 0 1
s9- 1 1 1 1

S10' 1 1 1 1

siC 1 1 1 1

3,2 1 0 1 -F(Cy) + F(Cw)

s13* 1 1 1 1

Sl4 0 1 1 ~-F(Cx) + F(Cw)

S15 1 1 1 1

S16 0 0 0 -F(Cx).F(Cy) + F(Cz).F(Cw)

Using the event tree to help calculate the P(Sj) terms in Equation (F.E) and 
the impact vectors to help calculate the P(7|Sj) terms, the top event 
frequency, P(T), can be written as

P(T) = p(cxyz) + P(Cxy) + P(CX2)IP(CYZ)* ** + P(CY) + P(CW)]

+ p(cyz)*[p(cx) + P(CW)] + P(CX)P(CY) Vp(cz)-P(Cw)

= Q2 + Q3 + Qz + 20^2 + Qj + QW(Q1 + 2Q2) (F.10)

where the approximations are valid for all frequencies P(a)<<l.

Equation (F.10) is identical to Equation (F.6), which demonstrates the 
feasibility of this alternative approach to solving the example problem. In 
larger problems, it may be easier to follow the decomposition method, or vice 
versa.

F.3 DETAILED MODELING

Three topics are presented in this section. The first is a useful table of 
results that can be used directly or as a means to check that an analysis has 
been done correctly. It is called here "the pattern recognition approach." The 
second topic concerns the merits of using the global common cause

*If the events are considered mutually exclusive, these states cannot exist.
**This basic event would not exist if the basic events involving overlapping 
components are considered mutually exclusive.
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terms only in the detailed modeling, and the third topic is that of refinement 
of common cause grouping when components are potentially a common cause group 
but some feature, perhaps of their operation, introduces some asymmetry.

F.3.1 The Pattern Recognition Approach

khen the systematic procedures of this report are followed, it is not necessary 
to know the algebraic formulas for relating the system failure logic to the 
common cause model parameters. It is only necessary to know the formulas for 
relating each basic event to the model parameters. The effect of the system 
logic is systematically incorporated into the analysis using standard fault tree 
analysis techniques. The experience gained in applying the systematic approach 
to a large number of systems with different configurations has resulted in the 
accumulation of a rather large "library" of formulas for different systems and 
situations. This "library" of formulas can be used to support an alternative 
approach to common cause analysis, which the authors have termed the "pattern 
recognition approach."

The pattern recognition approach refers to the process of developing an 
algebraic model for system failure frequency by recognizing the pattern or 
configuration of the system logic. By matching the pattern to one in his 
library, the analyst synthesizes the appropriate algebraic formulas from the 
library to obtain the system model. When the pattern recognition approach is 
used, some of the key steps of the recommended systematic procedure are 
bypassed. These steps include the incorporation of common cause events into the 
system fault tree and the systematic examination of cutsets in the development 
of the system algebraic model. When bypassing these steps, the analyst entrusts 
whoever developed the formulas that these steps have been properly performed and 
relies on the judgment that the patterns have been appropriately matched. 
Therefore, the pattern recognition approach has many pitfalls and should be 
followed with care. It is not difficult to omit or double count important 
cutsets and key contributors, as explained more fully in Section 4, Volume I.
In fact, the systematic approach is recommended in favor of the pattern 
recognition, whenever feasible.

Unfortunately, the large fault tree problem and resource constraints on analysis 
projects will preclude the full implementation of the systematic approach and 
will maintain a continuing need for the pattern recognition approach. Moreover, 
the authors recognize that there may be some resistance to adopting the 
recommended "rigorous" approach, even when its application is feasible. 
Therefore, the authors provide guidance in this section on the proper use of 
formulas for common cause analysis when the pattern recognition approach is 
followed.

The chief difficulty with the pattern recognition approach is in matching the 
patterns or configuration of the system being analyzed with the appropriate 
pattern in the "library." When the configuration and success criteria cannot be 
matched exactly, an attempt should then be made to decompose the system into 
independent subsystems for pattern matching. Independence implies here that 
there are no shared components between two or more subsystems and that the 
boundaries of all the common cause component groups are not crossed by the 
boundaries of the subsystems. If an exact match cannot be made at the system, 
or at the independent subsystem level, the pattern recognition approach should 
be abandoned since significant errors are likelyto result. Seemingly minor and 
subtle differences in the configurations can lead to major differences in the 
results.
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A compilation of formulas for independent and common cause events in some 
simple, frequently encountered configurations is provided in Table F-2. For 
each model, formulas are provided for the basic parameter model on the 
assumption that the common cause basic events are manually exclusive.
Additional terms are required if independence is assumed and indicated in the 
comments column. All the formulas account for all the first and second order 
minimal cutsets in the fault trees that include the common cause events. In 
some models, the technique of omitting or disallowing some common cause events 
is applied.

Niodels 1 through 8 cover all the simple "K out of N" (for success) situations 
for h up to four, and "one out of N" (for success) situations for N up to six.
In each of these model formulas, the only approximations made are the rare event 
approximation and the truncation of cutsets of order 3 and higher. Otherwise, 
all possible common cause events are accounted for.

Models 9, 10, and 11 cover selected four-component configurations that exhibit 
some asymmetries that have been accounted for in selecting common cause events 
for inclusion in the models. Models 12 and 13 cover general parallel-series and 
series-paral lei configurations of identical redundant components. These models 
and model 14 do not include all the possible common cause events, but they do 
include the ones with significant contributions over the practical range of 
model parameter values.

There are pitfalls when formulas are applied to a list of minimal cutsets 
obtained from a component-level fault tree. To illustrate, suppose the minimal 
cutsets of a system were:

(A.B.Ch {A,B,D}; (A,C,D); {B,C,D}

The correct approach is to recognize this as a "three-out-of-four" (for success) 
system and apply the formula for model 5. An incorrect approach is to recognize 
each cutset as a separate "one-out-of-three" (for success) system and compute 
the system formula as four times the formula for model 4. Since the cutsets 
share components and comprise components within the same common cause group, the 
separate cutsets do not correspond with independent subsystems. When this point 
is not recognized, the global common cause events (i.e., the lethal shocks) are 
multiply accounted for. Additional pitfalls in applying formulas are described 
in Section 4, Volume I.

F.3.2 USE OF SIMPLIFIED MODELS

It is not always necessary to include all possible common cause events 
associated with a common cause component group containing many (more than two) 
components. The example in Section 4.1 illustrated that neglect of all terms 
other than the global common cause term resulted in an underestimate of the 
system unavailability that was negligible particularly when taking into account 
the uncertainties in the parameter estimates.

It should be pointed out however that while this is not necessarily a general 
rule, under, a certain set of conditions the approximation is valid. The 
conditions are basically that the independent event unavailability is low
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(lO-^ or less), and that the conditional probability of three or more 
components failing, given two have failed, is fairly high (on the order of 0.5), 
and somewhat higher than the conditional probability that two have failed, given 
one has failed.

Currently, this appears to be the case in most evaluations. The reason is 
possibly that the data base, even after expansion to include industry wide 
experience, is small for multiple failure events, leading to potentially 
conservative estimates of the conditional probabilities of three, given two; 
four, given three; etc., failures.

The judgement of the adequacy of the global common cause term to represent 
common cause failure effects is, therefore, a function of the probability 
estimates.

F.3.3 Modeling Asymmetrical Common Cause Events

Miost of the common cause event models presented in this guidebook use an 
assumption regarding the symmetry of causes acting on a group of causes. The 
basic parameter, multiple Greek letter, and binomial failure rate models in 
Table F-2 all assume, with a few exceptions, that the frequency of a common 
cause event that fails a specific combination of components within a common 
cause group is the same for all such combinations of a given size. In a 
three-train system, for example, the basic parameter model assumes that

Qab = QbC = QaC = Q2 (F.ll)

There are many situations in practice in which the common cause events would be 
expected to exhibit asymmetries. An example is the case of certain so-called 
alternating systems, of which component cooling water is one where one train is 
normally operating, while the others are in standby. Some of these situations 
were envisioned in models 9, 10, and 11 in Table F-2. In model 9, a mix of 
normally operating and standby components produces an asymmetry. In models 10 
and 11, the location of four identical components in two different systems and 
at a different reactor unit on the same site provides another example of an 
asymmetry. This consideration was used to justify the elimination of certain 
common cause events from the model; e.g., those affecting a pair of components, 
each in a different system.

The basic approach to modeling asymmetries is to incorporate them into the 
system logic model by either adding to or subtracting from the model as 
appropriate to model the asymmetry. Because the common cause events affect the 
determination of minimal cutsets, this is highly preferable to manipulating 
algebraic formulas directly to add or delete the appropriate events. In 
Table F-2, models 1 through 8 include fully symmetric causes, whereas models 10 
through 11 incorporate asymmetries by the deletion of events from the system's 
logic model.

Another example of an asymmetrical model was developed by adding events to the 
logic model that initially included all the symmetric causes. This occurred in 
the case of a three-train auxiliary feedwater system that included three 
identical mechanical pumps. During the screening of common cause event data 
some of the events could act on the pumps in a symmetric fashion, whereas
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Table F-2

ALGEBRAIC FORMULAS FOR COMMON CAUSE EVENTS IN SOME SIMPLE SYSTEM CONFIGURATIONS

RELIABILITY BLOCK MODEL MODEL DESCRIPTION/ APPROXIMATE FORMULAS KEY ASSUMPTIONSDIAGRAM NO. SUCCESS CRITERIA BASIC PARAMETER MODEL*

1 TWO UNITS IN STANDBY; ONE OF TWO Q2 + Q!2

A MUST OPERATE ON DEMAND

NONE
B TWO UNITS IN OPERATION; ONE OF TWO ty + M2

MUST OPERATE AT LEAST t HOURS

A THREE UNITS IN STANDBY. TWO OF 30,2 + 302 + 03 NONE

B

THREE MUST OPERATE ON DEMAND

THREE UNITS IN STANDBY; ONE OF 30,02 + 403 + 0,2 ADD 3Q22 IF UNITS ARE ASSUMED
C THREE MUST OPERATE ON DEMAND INDEPENDENT NOT MUTUALLY EXCLUSIVE

FOUR UNITS IN STANDBY; THREE OF 6(Q,2+ Q2) + 4Q3 + 04 NONE
A

0 FOUR MUST OPERATE ON DEMAND

B
FOUR UNITS IN STANDBY; TWO OF 120,02 + 3Q22 + 4(Q3 + q1 3) + q4 ADD 12Q22 IF EVENTS ARE ASSUMED

C
FOUR MUST OPERATE ON DEMAND INDEPENDENT NOT MUTUALLY EXCLUSIVE

D
FOUR UNITS IN STANDBY; ONE OF FOUR 3Q22 + 40, Q3 + Q4 + 6Q,Q22 

+ 0,4MUST OPERATE ON DEMAND

A

B

8 FIVE UNITS IN STANDBY; ONE OF FIVE 10Q2Q3 + 50, Q4 + Q5 ADD 15Q32 + 20Q2O4 + 30Q3Q4 + 20Q42 IF
o MUST OPERATE ON DEMAND EVENTS ARE ASSUMED INDEPENDENT NOT

D

E

MUTUALLY EXCLUSIVE

"NTEO BY Q AND RESPECTIVELY. THE MISSION TIME IS t WHEN APPLICABLE.
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RELIABILITY BLOCK 
DIAGRAM

MODEL
NO.

MODEL DESCRIPTION/ 
SUCCESS CRITERIA

APPROXIMATE FORMULAS 
BASIC PARAMETER MODEL' KEY ASSUMPTIONS

—

-a,

a2

-Bi

-b2

— 9

TWO TRAINS (A AND B) OF TWO 
COMPONENTS (1 AND 2), A1 AND
B^ NORMALLY RUNNING, A2 AND
B2 IN STANDBY; AT LEAST ONE 
COMPONENT MUST CONTINUE TO 
OPERATE FOR t HOURS

(X1t)4 + Q12(>.1t)2 
+ 2Q1(X.1t)3 
+ (X2t)2 + x4t 

+ 2\2t(Qi

COMMON CAUSE FAILURES BETWEEN A, 
AND A2 OR BETWEEN B, AND B2 ARE 
ACCOUNTED FOR IN Q. NO COMMON
CAUSE EVENTS AFFECTING EXACTLY
THREE COMPONENTS MODELED.

10

FOUR REDUNDANT UNITS IN 
STANDBY; TWO IN UNIT 1 AND TWO
IN UNIT 2; ONE OF FOUR MUST 
OPERATE ON DEMAND

2Q^Q2 + Q4 COMMON CAUSE FAILURES INVOLVING
TWO COMPONENTS CAN ONLY AFFECT
A1 AND B1 OR A2 AND B2. NO COMMON 
CAUSE FAILURES INVOLVING EXACTLY 
THREE UNITS MODELED.

r “
1

-A1

-B,

a2

b2

_ 1
1

1
1__

r
1

_ j 11
SAME AS MODEL VII EXCEPT UNITS 
ARE ALL IN OPERATION AND ONE 
MUST OPERATE FOR 1 HOURS

2X1X2t2 + X4t COMMON CAUSE FAILURES INVOLVING
TWO COMPONENTS CAN ONLY AFFECT
A-, AND B, OR A2 AND B2. NO COMMON 
CAUSE FAILURES INVOLVING EXACTLY 
THREE UNITS MODELED.

12

TWO PARALLEL TRAINS OF N 
IDENTICAL UNITS. ALL N 
COMPONENTS IN ONE OF TWO 
TRAINS MUST OPERATE ON
DEMAND

N2(Q12 + 02) + 02N COMMON CAUSE FAILURES EITHER
INVOLVE ONLY TWO OR ALL.2N 
COMPONENTS. ANY PAIR OF,
COMPONENTS BEING FAILED BY A
COMMON CAUSE IS EQUALLY LIKELY.

Ai-

B,-

- a2

-b2-

- a3

-b3 —

MN

bn

13

SAME AS MODEL 13 WITH 
CROSSTIES; AT LEAST ONE OF
TWO IN EACH OF N STAGES MUST 
OPERATE ON DEMAND

N(Oi2 + a2) + Q2N COMMON CAUSE FAILURES EITHER 
INVOLVE ONLY TWO OR ALL 2N 
COMPONENTS. ANY PAIR OF
COMPONENTS BEING FAILED BY A
COMMON CAUSE IS EQUALLY LIKELY.

Ai-

B,.

a2

Lb2

r a3
[b3

-y- • • • - -

-*-••• -

an

bn
-

L

-ai

___

14
N COMPONENTS IN STANDBY; AT 
LEAST K COMPONENTS OUT OF N,
K < N MUST OPERATE ON DEMAND

[l (>,>,1-0/-*

j = N-k '
+ 1 + On J

WHEN A COMMON CAUSE FAILURE 
OCCURS, ALL N COMPONENTS ARE 
ASSUMED TO FAIL.

FAILURES ON DEMAND AND DURING OPERATION ARE REPRESENTED BY Q AND X, RESPECTIVELY. THE MISSION TIME IS t WHEN APPLICABLE



others, due to the scoping layout, could only affect two specific pumps. A 
model of this system that accounts for both the symmetric and asymmetric causes 
was developed using the systematic procedures of this guidebook. A fault tree 
was constructed by separating the symmetric and asymmetric causes, as shown in 
Figure F-l. The asymmetry is represented by common cause event "X"-, which acts 
on components A and B only. Without the "X" event, and with the assumption of 
symmetry for the remaining causes (e.g., the = Qgg = Q/\c = Q?), this 
fault tree corresponds with model 4 in Table F-2 whose MGL formula for system 
failure probability is

Q$ * -3(1-Y)3Q2L2 + (I-y)BJ * + YBQ (F.12)

The minimal cutsets of the fault tree in Figure F-l are: 

First Order: {CabC^

Second Order: {CAB, Cj}; (Cac. Bj}; (Cbc, Aj}

{cab» cbc^ {cac. cbc^ {cab> cac}* 

{X, Cj}; {X, cAch {x, CBC}

Third Order: (Aj, Bj, Cp}

where each set of braces represents a single minimal cutset. It is important to 
note that in setting up the impact vectors for screening event data events X 
and Cab be distinguished from each other.

The above list of minimal cutsets includes all the cutsets 
Table F-2 that include purely symmetric cause events, plus 
cutsets that include the asymmetric cause event. In terms 
parametric model, the formula for the system in Figure F-l

of model 4 in
three second-order
of the basic
can be developed using

0$ * 30^ + 3Q22 * + Q3 + + 2Q2)

which, according to the MGL formulas becomes

Qs =I(1-y)BQ2[1 + (1-y)B] * + YBQ + Qx(1-By)

In estimating parameters for this model, care was exercised to avoid double 
counting events as both symmetric and asymmetric causes.

The above example illustrates a straightforward application of the systematic 
procedures of this guidebook to incorporate asymmetries into the models. The 
overall approach is to selectively add or delete basic events from a common 
cause event fault tree that initially contains all the cause events that were 
used to generate the symmetric models. This approach is preferable to the

*See discussion in Appendix C regarding cutsets involving basic events with 
overlapping components.
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development of a generalized asymmetric model. Such a model would include 
common cause events, linking any and all combinations of components that may be 
difficult to enumerate, not to mention impractical to quantify.

Yet another example results in modeling the common cause failure of the safety 
relief valves in a BWR. There are many of these valves {typically on the order 
of 14 or so) and a large number have to fail to propagate an accident. Because 
of the lack of data on high multiplicity groups of components and the natural 
tendency to be conservative in this situation, the data analysis approach 
discussed at length in Section 3 would result in the higher order parameters in 
the MGL or alpha model being essentially unity, and the global common cause term 
clearly dominates. This will lead to unrealistically high common cause failure 
probabilities. One of the authors has used an approach based on asymmetry to 
argue, subjectively, for lower failure probabilities. The asymmetry was that 
which resulted from the maintenance policy of the plant where one-third of the 
valves were stripped down and rebuilt every refueling outage. This results, 
therefore, in an asymmetry of the valves with respect to the state of
degradation as a result of the environment in which they are located.
Therefore, for those causes that result in degradation, the valves are divided 
into three separate common groups with a less than complete coupling. Since it
was judged from looking at failure event data that the failure modes of such
valves were dominated by causes that can be attributed to gradual deterioration, 
a lower common cause failure probability than would otherwise be assigned was 
judged to be acceptable. This type of asymmetry is, therefore, dealt with in a 
different way, by its incorporation in the estimation of a common cause 
probability, rather than being represented explicitly in the model.

F.4 ITERATION! AS ANI INTEGRAL PART OF THE PROCEDURE

One of the features of the procedure discussed in this report, but perhaps not 
stressed enough, is that its application is necessarily iterative. The first 
iteration is clear; the procedure calls for a quantitative screening, which uses 
a conservative treatment to identify the important common cause failure terms.
As common cause failure events are analyzed in more detail and as refinements to 
the system analysis, such as addition of recovery actions, are incorporated, the 
relative importance of the various terms changes and a further iteration is 
required. Of course, the secono time around the model is already set up for 
screening. After the first screening, those common cause terms not requiring 
reevaluation should not be deleted from the model. The results of the screening 
merely imply that, at that stage in the analysis, it does not appear that 
reevaluation would be beneficial to producing a more realistic result. However, 
as stated above, as the analysis becomes more refined, these same terms may, in 
their turn, become important.

F.b REFERENCES

F-l. Rasmuson, U. M., et al., "Use of COMCAN III in System Design and 
Reliability Analysis," EG&G Idaho, Inc., EGG-2187, October 1982.

F-2. Fleming, K. N., J. K. Liming, T. J. Mikschl, and A. Mosleh, "Common Cause 
Failure Reliability Benchmark Exercise, United States Team Contribution," 
prepared for Electric Power Research Institute, PLG-0426, July 1985.
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APPENDIX G

RECOVERY CONSIDERATIONS IN A CCF ANALYSIS

Several factors involved in the analysis of accident sequences will affect the 
contribution of CCFs to the accident sequence frequency. Some of these factors 
tend to affect different CCF contributors in different ways. A particularly 
important example is that of the incorporation of recovery actions.
Reference G-l provides specific guidance on performing a recovery analysis. Two 
examples are given below showing how recovery considerations affect the relative 
contribution of CCF scenarios to accident sequence frequencies. Because of 
this, recovery considerations (even if only of a preliminary nature) can play an 
important role in the quantitative screening step (Section 3.2.2) since the 
purpose of this step is to focus on dominant CCF scenarios as early in the 
analysis as possible.

As can be seen in the examples that follow, recovery considerations depend on 
the specific accident sequence minimal cutsets. Thus, recovery considerations 
cannot be incorporated at the system level but must be aodressed in connection 
with the accident sequence analysis.

Example 1: Station Blackout Scenarios. This example consists of accident 
scenarios initiated by a loss of offsite power at a BWR plant (see, for example, 
Reference G-2). Two CCF events that, if either existed following LOSP would, 
without recovery, result in a core damage, are (1) CCF of the emergency diesel 
generator and (2) CCF of the station batteries.

Consider Case 1 first without regarding possible recovery actions. Loss of the 
EDGs results in a station blackout (loss of all AC power). The station 
batteries provide DC power to the HPCI and RCIC systems. In the plant being 
analyzed, it is supposed that these systems maintain adeouate core cooling 
(barring no additional failures) for about 6 hours. After this time, the 
batteries deplete and so become unable to supply enough power to HPCI and RCIC 
to keep the systems operable. Once these systems become functionally 
unavailable, it is supposed that core damage occurs within 3 hours.

Recovery from this "long-term" ( 9-hour) scenario is modeled by either 
restoration of one of the EDGs or by recovery of offsite power. Either recovery 
action would avoid core damage (barring any additional failures) if accomplished 
in time. The overall recovery potential for this scenario is high mainly 
because offsite power is likely to be recovered in time to avoid core damage. 
Data on recovery of offsite power or an EDG at U.S. nuclear power plant sites 
indicate that the probability of recovery is about 0.9b (Reference G-2). By far 
the most likely recovery action is that of offsite power.

Gb65E0816b8
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For Case 2, loss of the station batteries is assumed to result in failure to 
start and load the EDGs and, therefore, loss of all AC and DC power. Core 
damage will occur, unless AC or DC power is recovered, in about 30 to 
40 minutes. The recovery of the station batteries is difficult in such a short 
period of time, and the recovery of AC power is severely affected by the DC 
power loss. (Plant instrumentation is also significantly degraded under these 
circumstances.) Thus, the probability of recovering AC or DC power in this 
"short-term" blackout scenario is small and assumed to have no impact on 
scenario frequency.

Table G-l shows the frequencies of these long-term and short-term blackout 
scenarios with and without recovery considerations taken directly from 
Reference G-2. The core damage scenario involving a CCF of the EDGs is, without 
recovery, about four times more likely to occur than the scenario involving a 
CCF of the station batteries. However, the EDG core damage scenario becomes 
about 11 times less likely to cause core damage than the station battery 
scenario when recovery is considered. Since these two CCF scenarios are the 
dominant contributors to the emergency power supply system unavailability, the 
results presented in Table G-l also represent the impact of recovery 
considerations on system unavailability.

Since recovery considerations can substantially affect the relative importance 
of CCF contributors to system unavailability (in this case, a support 
system-emergency power supply unavailability), they should be incorporated into 
the quantitative screening step. If this is not possible, the results should be 
revisited when recovery terms have been included at a later stage in the 
analysis.

Example 2: Loss of Service Water Scenario. Figure G-l shows a simplified 
schematic of a hypothetical SWS at a PWR power plant.* The system continuously 
operates with both pumps running and supplying the normal plant loads through 
normally open MOVs M0V-1A and M0V-2A. The system automatically realigns to the 
emergency configuration on an engineered safeguards actuation system signal 
expand by closing M0V-1A and MOV-2A and opening the normally closed motor- 
operated valves MUV-1B and M0V-2B. The MOVs in the crossover line are normally 
closed, and the manual valves in the pump discharge lines are locked open during 
power operations.

Only one CCF event is addressed in this example: a CCF of M0V-1B and M0V-2B to 
open on demand. However, two types of initiating events will be considered to 
illustrate how recovery considerations concerning the same CCF event differ for 
different sequences. The two types of initiators considered are (1) LOSP or 
another transient involving LOSP and (2) transients with loss of main 
feedwater. (In this second case, the EDGs are not required.)

To further define accident scenarios, assume that, for both initiating events, 
in addition to losing main feedwater, auxiliary feedwater has failed leading to 
the requirement for the use of the high pressure safety injection system in the 
feed and bleed mode to extract decay heat from the reactor.

*Although this SWS is hypothetical, the information and data presented in this 
example are fairly typical of U.S. nuclear power plants.

G-2
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Table G-l

IMPACT OF RECOVERY CONSIDERATIONS ON SELECTED BLACKOUT SCENARIOS

Core Damage

Frequency
(year-1) Factor of Reduction on 

Scenario Frequency when 
Recovery Is ConsideredScenario Without

Recovery
With

Recovery

LOSP fol lowed by
CCF of EDGs.

1.65-5* 3.3-7 50

LOSP followed by
CCF of station 
batteries.

3.7-6 3.7-6 1

*A11 frequency values in this table were taken from Reference G-2.

NOTE: Exponential notation is indicated in abbreviated form; 
i.e., 1.65-5 = 1.65 x 10"5.
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The CCF of M0V-1B and MGV-2B results in loss of service water to all 
safety-related loads. With the loss of offsite power as an initiating event, 
the load of most importance initially is the emergency diesel generators and for 
other transients it is the cooling to the HPIS' pumps.

The HPIS pumps at the plant can operate for a little more than 1 hour without 
lube oil cooling. Thus, whenever the initiating event does not involve LOSP, 
the safety-related system failures due to the CCF of interest can be avoided if 
the service water supply is restored within 1 hour. The probability that the 
operators would restore the service water supply within 1 hour is assumed to be 
0.96 (see discussion later).

The EDGs however will fail within a few minutes following loss of SWS cooling. 
Thus, whenever the initiating event involves LOSP, the EDGs will be lost 
(realistically assuming a negligible probability of restoring SWS cooling to the 
EDGs within a few minutes), and the only recovery action that can be taken to 
avoid core damage is to restore offsite power within about 30 minutes, the time 
assumed to be available to restore HPIS flow without irreversible core damage. 
Data on recovery of offsite power at U.S. nuclear power plant sites indicates 
that the appropriate probability of recovery is about 0.6 (Reference G-2).

Table G-2 shows the impact of recovery considerations in both of the scenarios 
analyzed in this example. Recovery decreases the estimated frequencies of SWS 
failure scenarios (frequency estimates are not shown in Table G-2) by a factor 
of about 2.5., if LOSP is involved, and by a factor of about 25, if LOSP is not 
involved.

In this second example, the recovery action of interest was associated with the 
basic event representing the common cause failure itself and as such is part of 
the detailed analysis that would be performed. This is to be contrasted with 
the first example where the recovery action was largely associated with another 
event, the recovery of the offsite power source. What this second example shows 
is that the credit for recovery is dependent on the sequence as that determines 
the amount of time available. For this example, the probability of 
accomplishing this recovery action was obtained by (1) identifying all failure 
modes for the equipment of interest (e.g., valve motor-operator fails, valve 
plugs, circuit breaker fails, circuit breaker control circuit fails, etc.),
(2) evaluating the probability of recovery for each failure mode [e.g., plugging 
of a valve is unrecoverable within 1 hour, motor-operator failure is moderately 
recoverable (requires local operation of the valve), and circuit breaker control 
circuit failure is more easily recoverable (requires pushing a button in the 
control room)], and (3) determining an appropriate average probability of 
recovery, weighted by the contribution of each failure mode to the CCF event 
probability. Reference G-l provides specific guidance on evaluating recovery 
probabilities, and References G-2 through G-4 provide several additional 
examples of these evaluations.

The option remains open to the analyst: to apply these recovery factors in 
screening the data, so that only events that could not be recovered in the 
allowable time are retained for parameter estimation purposes, or to have a 
general common cause parameter and explicitly apply a recovery factor. The 
amount of work is the same; it is only a matter of preference in displaying the 
results.

REFERENCES

G-l. Carlson, D. D., et al., "Interim Reliability Evaluation Program
Procedures Guide," NUREG/CR-2728, SAND82-1100, prepared for U.S. Nuclear 
Regulatory Commission by Sandia National Laboratories, January 1983.
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Table G-2

IMPACT OF RECOVERY CONSIDERATIONS ON SELECTED SWS SCENARIOS

Type of Initiating 
Event

Probability of CCF 
of M0V-1B and 

M0V-2B To Open 
on Demand*

Factor of Reduction on CCF 
Probability when Recovery

Is Considered
Without
Recovery

With
Recovery

Not Involving LOSP ~ 7-4 ~ 3-5- - ~ 25

Involving LOSP ~ 7-4 ~ 3-4 ~ 2.5

*The probability of CCF without recovery considerations was obtained by 
multiplying the probability of an independent MOV failure to open on 
demand (Reference G-l) by a generic beta factor for MOVs (Reference G-5).

NOTE: Exponential notation is indicated in abbreviated form; 
i.e., 7-4 = 7 x 10-4.
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APPENDIX H

REFERENCES FOR BETA FACTOR ESTIMATES

This appendix was originally intended to be a compilation of generic beta factors 
that have been derived worldwide from nuclear, chemical, aircraft, and other 
industries.

The motivation was that the 3-factor model has been the most widely used 
quantitative CCF model and that "generic" values might be useful, either as 
screening values or to provide a benchmark against which screening values could 
be judged. Although several extensions of the 3-factor model (e.g., the basic 
parameter, the MGL, and the shock models described in Volume I and Appendices C 
and E) have been developed and are in current use in risk and reliability 
analyses, the 3-factor model is still likely to play an important role in 
future studies; e.g., the quantitative screening step proposed in Volume I 
recommends using the 3-factor model for obtaining preliminary estimates.

However, one of the problems with using generic beta factors is the difficulty of 
determining the criteria used for screening data (if any) and the component and 
failure mode definitions. As has been stressed throughout this report these have 
a direct influence on the estimates. It was decided therefore simply to supply a 
list of references (References H-l through H-19) in which beta factor estimates 
can be found. Before using a particular estimate, the analyst should make every 
effort to determine compatibility with his model, and even then they should only 
be used as screening values or as a benchmark.

The systematic procedures for dependent events analysis presented in Volume I 
require the analyst to screen and classify event data, use estimators provided, 
and develop uncertainty distributions and/or point estimates of model parameters 
for each specific analysis. This procedure is recommended instead of using 
published numerical data for these parameters for several important reasons. One 
reason is to prevent the use of data that are inapplicable to the combining data 
from systems having different numbers of components and for accounting for 
differences between the number of components being analyzed and those associated 
with systems providing the data. In addition, event screening can eliminate all 
inconsistencies between the data and the assumptions buiU into the common cause 
event models. Finally, the event screening and classification process provides 
qualitative insights about possible approaches to defending against future 
occurrences of these events in the system.
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