

MASTER

ANL-HEP-CP-80-63

CONF - 800724--69

REVIEW OF N-N SCATTERING

BY

AKIHIKO YOKOSAWA

DISCLAIMER

This document was prepared by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Prepared for

XXth International Conference

on

High Energy Physics

University of Wisconsin

Madison, Wisconsin

July 16-23, 1980

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MGW

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

**Operated under Contract W-31-109-Eng-38 for the
U. S. DEPARTMENT OF ENERGY**

REVIEW OF N-N SCATTERING

For the Proceedings of the
XX International Conference
on High Energy Physics
Madison, Wisconsin
July 1980
ANL-HEP-CP-80-63

A. Yokosawa High Energy Physics Division Argonne National Laboratory
9700 South Cass Avenue Argonne, Illinois 60439

Abstract

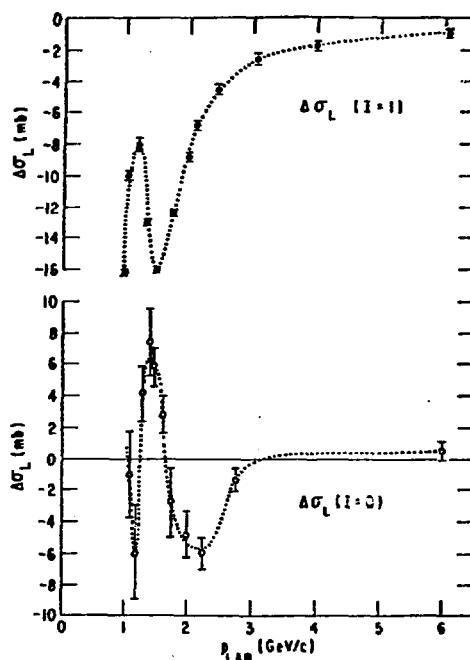
We review structures appearing in various experimental data (particularly those with polarized beams) in nucleon-nucleon systems. We present a number of candidates for dibaryon resonances which can couple to nucleon-nucleon systems.

We discuss the present status of experimental data in the nucleon-nucleon system.¹ Details of N-N scattering are written elsewhere,² and here we present relatively new aspects.

A striking energy dependence has been observed in the difference between the nucleon-nucleon total cross sections for pure spin states, $\Delta\sigma_L(I=1) = \sigma_{\text{Tot}}^{(+-)} - \sigma_{\text{Tot}}^{(+-)}$, and $\Delta\sigma_L = \sigma_{\text{Tot}}^{(++)} - \sigma_{\text{Tot}}^{(+-)}$.^{3,4} The observation of structures in the $I = 1$ system prompted us to investigate the $I = 0$ system.

1) $\Delta\sigma_L(I=0)$ Measurements

The Argonne PPT group has recently measured the difference between isoscalar nucleon-nucleon total cross sections for pure longitudinal initial spin states, $\Delta\sigma_L(pd)$, using a polarized proton beam and a polarized deuteron target.⁵ In the simplest approximation,


$$\Delta\sigma_L(pd) \approx \Delta\sigma_L(pp) + \Delta\sigma_L(pn).$$

One can extract $\Delta\sigma_L(I=0)$ data using both $\Delta\sigma_L(pd)$ and $\Delta\sigma_L(pp)$ as shown in Fig. 1; a significant structure is observed

around 1.5 GeV/c. This seems to

suggest the existence of a new isoscalar spin-singlet dinucleon

resonance. We note here that there exists a clear shoulder in the np total cross-section data⁶ in the vicinity of 1.5 GeV/c.

$\Delta\sigma_L(I=0)$ together with $\Delta\sigma_L(I=1)$.

A recent phase-shift analysis using these preliminary data by Hoshizaki et al.⁷ suggests that there exists a partial wave whose behavior is consistent with the Breit-Wigner resonance formula, namely, the spin singlet 1F_3 wave. From the dispersion analysis of a forward $I = 0$ scattering amplitude using the data on $\Delta\sigma_L$ ($I = 0$), Grein and Kroll⁸ showed that the Argand plot of the amplitude has a resonancelike behavior around 1.5 GeV/c, and that suggests the existence of a spin-singlet dibaryon resonance.

2) C_{LL} (pp) and C_{SL} (pp) Measurements

Our group has collected a very large amount of data in proton-proton scattering, using a longitudinally (L) polarized target and a longitudinally (L) or transversely (S) polarized proton beam at the following seven different incident proton momenta: $p_{lab} = 1.17, 1.35, 1.48, 1.70, 2.00, 2.25, 2.50$ GeV/c, and data were obtained in the channels $pp \rightarrow pp$, π^+d covering essentially the whole kinematic range of angles in these two reactions, namely $\theta_{c.m.} \sim 10^\circ - 90^\circ$ for pp-events. The data analysis is in progress. These data are compared with predictions from phase-shift analyses by Hoshizaki and independently Arndt which give solutions consistent with the existence of two di-proton resonances, namely the 1D_2 (2140) and 3F_3 (2220).

3) A Close Investigation of $\Delta\sigma_L$ ($I = 1$) and $\Delta\sigma_T$ ($I = 1$) Data

The existence of 1D_2 and 3F_3 dinucleon resonance in the $I = 1$ system has been discussed by many authors.⁹ Here we discuss additional structure obtained with $I = 1$ system. $\Delta\sigma_T$ data⁴ contain only singlet structures. Then we expect to see only the triplet structure in $(\Delta\sigma_T - \Delta\sigma_L)$.¹ We observe a new triplet structure at 2.0 GeV/c in addition to the one at 1.5 GeV/c. We can deduce that the quantum number of the triplet peak at 2.0 GeV/c is as follows:

$\Delta\sigma_T - \Delta\sigma_L \sim (2J + 1)Im R_{JJ} - (J + 2)Im R_{J+1,J} - (J - 1)Im R_{J-1,J}$
only the R_{JJ} term has positive sign, therefore the triplet peak at 2.0 GeV/c is due to a partial wave R_{JJ} .

4) A Close Investigation of Polarization Data

We note that there is no 3F_3 partial-wave contribution to the polarization data at $\theta_{c.m.} = 63^\circ$. We see an interesting structure in a plot of $k^2 P$ ($d\sigma/d\Omega$)/ $\sin 2\theta_{c.m.}$ vs. p_{lab} . This quantity is proportional to $(2 Im^3P_0 + 3 Im^3P_1)(Re^3P_2) - (2 Re^3P_0 + 3 Re^3P_1)(Im^3P_2)$

by neglecting higher partial waves. Since the 3P_2 partial wave has very little energy dependence,^{10,11} there is a good chance that either 3P_0 or 3P_1 partial wave is resonating at ~ 1.3 GeV/c.

5) Conclusion on $I = 0$ and $I = 1$ Resonances

Candidates for dibaryon resonances that can couple to nucleon-nucleon systems are summarized in the table below.

Candidates for Dinucleon Resonances

i) $I = 1$ Isospin State

	B_1^2 (2.14)	B_1^2 (2.18)	B_1^2 (2.22)	B_1^2 (2.43)	B_1^2 (2.43)
Mass, GeV	2.14 - 2.17	2.18 - 2.20	2.20 - 2.25	2.43 - 2.50	2.43 - 2.50
Width, MeV	50 - 100	100 - 200	100 - 200	~ 150	~ 150
Quantum State	1D_2	Triplet P ?	3F_3	probably 1G_4	Triplet R_{JJ} ?

ii) $I = 0$ Isospin State

	B_0^2 (2.14)	B_0^2 (2.22)	B_0^2 (2.43)
Mass, GeV	2.14 - 2.17	2.20 - 2.26	2.40 - 2.50
Width, MeV	50 - 100	100 - 200	
Quantum State	Triplet ?	1F_3	Triplet ?

References

1. I. P. Auer et al., paper submitted to this conference (paper number 581).
2. A. Yokosawa to be published in Phys. Report (1980).
3. I. P. Auer et al., Phys. Rev. Lett. 41, 354 (1978).
4. W. deBoer et al., Phys. Rev. Lett. 34, 558 (1975).
E. K. Biegert et al., Phys. Lett. 73B, 235 (1978).
5. D. Underwood et al., Bull. of Am. Phys. Soc. 24, 636 (1979), to be published.
6. T. J. Devlin et al., Phys. Rev. D8, 136 (1973).
7. N. Hoshizaki et al., Proceedings of the 1979 INS Symposium, Tokyo, Japan (November 1979).
8. Private communication.
9. K. Hidaka and A. Yokosawa, Surveys in High Energy Physics, London, England (1979), and references contained therein.
10. N. Hoshizaki, Prog. Theor. Phys. 60, 1796 (1978); 61, 129 (1979).
11. R. A. Arndt, Talk given during LAMPF Nucleon-Nucleon Workshop, July, 1978; also private communication (1979).