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ORBIT-AVERAGED KINETIC EQUATIONS FOR AN AXTSYMMETRIC MIRROR MACHINE

ABSTRACT

The orbit-averaged kinetic equation suitable for studying collisional
transport in an axisymmetric mirror machine is derived and reduced to a
three-dimensional equation in phase space in the case of Ve S up 77 A
where Ve is the collision frequency, oy is the bounce frequency, and &
is the gyrofrequency. We found that the qyrophase dependence of the
distribution function, ignored in previous Fokker-Planck calculations, is
responsible for the diffusion of guiding centers and should be retained when
the Larmor radius is comparable to the plasma scale length. The complete
Fokker-Planck equation for a square-well magnetic mirror is given as a
special case to clarify the approximations and assumptions involved in the
radial Fokker-Planck code of Futch. The quasilinear transport code of
Matsuda and Berk is also discussed relative to the orbit-averaged

Fokker-Planck equation.
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1, INTRODUCTION

The numerical solution of kinetic equations with Fokker-Planck
collision terms has been used extensively to study mirror reactors with
neutral heam injection, neutral-beam heating of tokamak plasmas, and two
component tokamaks.l'z Since it is not practical to solve the kinetic
equation in six-dimensional phase space on a present-day computer, some
stmplifying assumptions are usually made to solve the problem in one- or
two-dimensional phase space.

One of the important assumptions in the rokker-Planck codes to date is
that the distribution functions are independent of gyrophase ang]e.3 This
assumption is valid when the Larmor radius of the particles is much smaller
than the scale length of the system, as in tokamaks. In mirror machines,
however, the Larmor radius of high-energy particles can be comparable to the
plasma radius. TIn such cases the gyrophase dependence of the distribution
function cannot be ignored; in fact it is essential for the descripcion of
diffusion of particle-guiding centers as shown in Sectien 2.2. The other
assumption widely used is to neglect spatial dependence of the distribution
functions., Some Fokker-Planck codes take into account the effects of
spatfal inhomogeneity by averaging the collision terms over a particle
orbit. A code that solves the Fokker-Planck equation averaged over bounce
motinn between mirror throats is such an examp]e.a

In this report we shall first derive the kinetic equation averaged
over a periodic particle orbit to include the effects of both radial and
axial inhomogeneity in an axisymmetric mirror machine and point out the
importance of the gyrophase dependence of the distribution function. We
shall then examine the radial Fokker-Planck code of Futch1 in the light of
our averaged Fokker-Planck equation. We shall also discuss inclusion of the
quasilinear diffusion due to rf turbulence in connection with the

quasilinear radial-transport code of Matsuda and Berk.5
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2. DERIVATION OF ORBIT-AVERGED KINETIC EQUATTONS

2.1 General Formulatior in an Axisymmetric Mirror

We wish to derive a kinetic eguation for an inhomogeneous plasma in a
mirror magnetic field, taking account of both finite gyroradius and axial
bounce motion. Our starting point is the Fokker-Planck equation for the

distribution function f{x,v,t):

.oy,

W
oe = () * S (1)
c
where (%%) is the Fokker-Planck collision term, S is a source {or loss)
C
term, and the total time-derivative operator is
; of 1 ;
DEedtv o mrRETLvoB - (2)
~ a, ", !
' . N

A quasilinear diffusion term due to rf turbulence will be included later.

We assume axisymmetry and choose cylindrical spatial coardinates (r,.,
2) where ¥ is the ignorahle coordinate. For the velocity, one usually
chooses a spherical coordinate system (v,0,?) where v is the speed, 0is the
pitch angle, and 4 is the phase angle of the gyromotion. For a spatially
inhomogeneous system, however, it is more convenient to define the velocity
in terms of constants of the motion (a,u,P$), where ¢ is energy, 1 is the
magnetic moment, and Pw is the canonical angular momentum.* (The gyrophase
information is contained in P¢.) #ith this choice of variables the

distribution function is of the form

f = f(razyﬁal”pw:t) 3 (3)

*If the magnetic field varies appreciably over a distance of one gyroradius,
then p is not a good constant of the motion; in this case one must use a
more general form of the adiabatic invariant.
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and the Fokker-Planck equation is

Lerdeio@) s @

As it stands, this equation must be solved in a five-dimensional phzse space
(r,z,c,u,Pw) plus time (t).

To reduce Eq. (4) to something tractable, we note that the order of
magnitude of the various terms in the kinetic equation car be identified
with the characteristic frequencies of the particle motion in the magnetic

field:

°f = of f
Fe 0 eh), # il 0tef), 7 20 0wy, (51 ) n Ol f) (5)
where Ve is the collision frequency, ah is the axial bounce frequency,
and « is the gyrofrequency. We seek solutioms that vary on 2 collisional
time scale; so (%{) has been assigned the same magnitude as the collision
c
term. Now, assuming that the characteristic time scales are well-separated,

we introduce a smaliness parameter, &, such that

v W

._[.:.".S-l—t—)-f\, 0(“\) . (6)

w

Then we solve the kinetic equation by axpanding f in powers of : :

f=f0+f1+-...a (7)
where

£oo00™ .

Substituting the expansion of Eq. (7) into the kinetic Eq. (4), we obtain

the following equaticns up to the second grder:
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. g
Y'aT'—O 3 (8)
of af
Fetei -0 (9)
af af af af
0,:""2,:"1_ 0
S R Al AR (10)

From the zeroth order Eq. (8) one sees that the zeroth-order

distribution must be independent of r, i.e.,

fo = fo(z,n,u,Pw,t) . (11)

The first-order equation, when muitiplied by 1/r and integrated over a

complete oscillation (gyroperiod) in v, yields

af af
1,2 - 0 _
fdrF+?<D§r—0 . {12)
where
. dr -
GNP gy . (13)

Since the distribution function must be a single-valued function of r, the

first term in Eq. (12) integrates to zero, leaving

(14)

From this we see that the zeroth order distribution must also be independent

of 2, i.6e.,
fO = fo(c ,u,Plb,t) . (15)

Putting this result back into Eq. (9) we see that the first-order

distribution must not depend on r, i.e.,
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f1 = f{z, e 5Ppt) . (16)

Turning to the second-order equation we can eliminate the fo term as in

Eq. (12); the result is

+f af ., 3f
2 0,27 1_2= /0 2x
TR T P T <(ﬁt—)c> rES (17)

¢ at

We now eliminate the fl term in a similar manner, multiplying by 2/2n<z>
and integrating over a complete oscillation {axial bounce period) in z.

This yields the result:

;‘2 - <<(;:_0.)c>> + <<So> (18)

where the gyro- and bounce-averaged collision term is defined by

(@) (% %G - 19

an¢ where

<(;Q)C> (fgl)l fg (;:ﬂ) - (20)

c

We can add the gyro- and bounce-averaged quasilinear diffusion term
given hy Berk6 to the right side of Eq. (18} to obtain the complete form

of the orbit-averaged kinetic eguation:

af 3 f
2 () () s oo

2.2 Model Kinetic Equation in a Square-Well Magnetic Mirror

In this section we study a model problem using a simple collision
operator and a magnetic square-well along the z-axis. The model collision

term we use is the following:
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sfy _ A 2 3f
(56) =¢& - [‘“‘ Wil o (22)
c A

where C, T, and M are constants. This collision term describes drag and
diffusien in velocity space. We choose a set of independent variables {(r, Y
U Pw) to describe the distribution function. The z-dependence has dropped
out hecause of a magnetic square-well assumption. Perpendicular velocity
v;, parallel velocity v, and canonical angular momentum Pw are all

constants of motion under the present assumptions.

Following the procedure used in Section 2.1 we obtain for \Jc/_rg e 12

of
-1 fEED) (23)

where £, is a function of v, v, and Pw, and

To calculate the right-hand side of Eq. {23} we first express Eq. (22} in terms

of Vl » V” s and ¢

1 4 (T1 af

Noting that P, = Mry, sin + qrA /c (Fig. 1); thus 5/06 = Mrra/aP ' and

substituting Eq. (24) in Eq. (23), we cbtain

of of f
0._.)1 5 (2 T 0 7 3%
it - C {vl av (vl formu avl) 3y (‘1‘ 0 W3 v”)
af
A MT 2.2 T
+3-p-7-(-2—<r r> T)} . (25)
vy W
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where

<r ;‘2> =lfﬂr2;‘2 .
T r

Note that the first and second terms on the right-hand side of Eq. (25) were
not affected Ly the orbit integral because they are independent of r.

The first two terms in Eq. (25) represent drag and diffusion in v and
Vye The physical meaning of the third term of Eq. (25) can be made more
explicit by considering a case with a uniform constant magnetic field.
Noting that the guiding center position R is related to the canonical
angular momeptum Pw = l'-‘IfE(R2 - D2)/2 where o is the Larmor radius, as

seen from Fig. 1, we can write Eq. (25} as

M N -f af
0.0l & (2. T _0y, 3 I_0
T'C{qﬁq("ﬁo*mn TR ("ufo*m:.v")
af,
T 13 0
+2M(,(2'FT3_R(R B )} . (26)

where -rlpl

> has heen evaluated to be egqual to 1/2(R2vf). The

meaning of the third term in Eg. (26) is now clear; it represents diffusion
of the guiding-center positions. This shows that the gyrophase dependence
of the distribution function has to be retained when one studies radial-
transpori problems with arbitrary large Larmor radius. It can be easily
shown on the other hand that when the Larmor radius is small compared with
the radial scale length of a plasma, the gyrophase dependence can be

ignored, which is the case for the Fokker-Planck equation appiied to tokamak

problems.



2.3 Fokker-Planck Equation in a Square-Well Magnetic Mirror

We now de .ve the orbit-averaged kinetic equation with the
Fokker-Planck collision term under the same assumption as ¥n the previous
section, namely, a magnetic square-well in z and uniform magnetic field in r
with v ot We choose the speed v, the pitch angle 7, and tne radial
postion of quiding center R as three coordinates representing velacity
space. Note that v, #, and R are constants of motion.

The complete Fokker-Planck coliision term in terms of v, 4, and % is

Ay 1 53 052 1 Y P EP P 1 __*_
("-)c o [VZ w U2 gy e U sin ) + o5 5 ] » (27)

where

J L3
¢ v 8 Ay 3 BGZ
- .2
o1 ‘_f(l'__q__cg_ﬁ__'a)
B as g ’
visine AV WY v ;
_ 1 *h 3 9 gy 1 «f 3 1 g
. VT Ein it " W oawAvsinaar) - 3w mlvyeane o
% v sin o A v \v sin & A VZ 3 23 \y sin A4 ag

S S %(sine 59 4 cot? g, 1 T2> ;

v?. sin29 al 3y v 3% v sin 6 a
and h and ¢ are given hy
. T XCRTRY
- N ' N, A
h(f’ :",t) 4ne Z W n f.b d’\\/‘ —]—V—_Tr-[—-

and

M
s
~ O~

’ st = Yy - y!
g(x,v,t) dv' 1y v]fb(a“c‘,x‘,t) .
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For isotropic Rosenhluth potentials h and g the averaged Fokker-Planck

Eq. (23) hecomes

af 2 af N
0_ 1 3 2 /9h 2 ,3°¢g 0 1 & |sins®
T “7%[" W fo-v D j+sina [ G3 >(,a j

19[ 1 2,2 ig ]
= ) 1 (28)
R "R ?2Rv3 sin2 a < uv> R

where the relation u/#: = (rr/iR)«/:R is used. Here, fO is a function of
v, #, R, and t, and < > represents the orbit integral:

R % dr
1> ZT ‘;."' I(rlv) ] (23)

with

Y P 2
2r
Note that although h and g are assumed isotropic, the orbit-averaged

. “h J 3 R
quantities -~ > , ’%%> R <—~%> , ad<r rz ~Q> , are generally functions
ay

of v, ©, and R.

tquation (28) is the proper xinetic equation to solve when the Larmor
radius is comparable to the scale length, subject to certain boundary
conditions, TIf we assume that there exists an absorbing radial wall at r = a,
then we have a boundary condition fap=0onR+ {v sine}t = a. The other
loss boundary correspgnds to end losses and is given by fLs sin'l(I/Rm),

where Rm is the mirror ratio.

3. COMMENTS ON RADIAL FOKKER-PLANCK CODE OF FUTCH
A radial Fokker-Planck {RFP} code developed by Futch1 has been used
to study the build-up of mirror plasmas ranging from 2XIIB to a reactor.

The RFP code obtains an approximate solution of Eq. (28) based on the
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separation of variables and assumption of locally isotropic Rosenbluth

potentials.

(1)

(3)

(4)

The following procedure is introduced:
The d-dependen:e of the orbit-averaged Fokker-Planck
coefficients is removed by the replacement o{v,o)

v sin 6f¢ = av/fi, where « is some "average" value of sin G,
This leads to soluiions of the form fo(v,*.R,t) = F{v,R,t) M(0},

and the following equations:

2
LI S I L] ?_.g“‘i Lo
W'Vz v [<V w>F'<V w) nv]+;§ <:"v> F

15 1 2.2 2 agy of
+§:_]1-§[’—2E;§<rVr_. T3>._)T?‘] ’ (30)

1 d 3 n M -
-S—in_‘J—.TT"_".(S]n —‘—) = M N {.31)

where ) js the separation constant, i.e., the eigenvalue
associated with each normal mode. Futch drops the last term in
Eq. (30) and solves the truncated equation.

The exact boundary condition on fo(v.ﬂ’R) cannot be satisfied
in general unless one uses a superposition of many normal
modes. Futch replaces the axact boundary condition F(R + v

sin 0/° = a) =0 by F(R + ny/2 = a) = D and uses only the
lowest order normal mode for fD' jdentifying F as the guiding
center distribution averaged over all pitch-angles.

To compute the isotropic part of the Rosenbluth potentials one

needs the isotropic part of the distribution function given by

2

- f d¢f sind dof(r,v,8,¢)
4] 1}
3

r+u

l'-.n

FD(r,v):

]

% f sino de RR
0 rooNaRZe 2o (Rl v2. o2)2

un

F(v,R)M(0) .
{32)
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Futch now replaces o(v,3) by 5 = av/0 to obtain

Fotravy= 1f sin oaon() [ RR__—_ F(v,R)
T-p \’4R2r2 _ (RZ + 2 _ p2)2
{33)
(5) The quasilinear diffusion term [first term on the right-hand
side of Eg. (36)] is averaged over ¢ with the lowest order
normal made assumed and is added to Eq. (30).

The terms representing atomic physics and neutral beam injection are
added to Eq. (30) (without the last term on the right-hand side) and the
resulting equation is solved for ions along with the rate equations for
electron density and temperature.

We now point out some shortcomings in the RFP code when it is applied
to a wide range of transport problems. First, the guiding center diffusion
term is ignored. This means the RFP code may not be well-suited to study
collisional transport in mirror machines such as 2XIIB and TMX (Tandem
Mirror Experiment) in which the plasma scale length is only a few times or
comparable to the Larmor radius. Second, even in a case where the guiding
center collisional diffusion is negligible, the orbit-averaged Fokker-Planck
equation is not strictly separable in v and ¢ as can be seen in Eq. {(28).
Thus the use of the lowest order normal modes for a pitch-angle distribution
is generally questionable. Third, the density in the RFP code is

calculated by

4f v dvF (r,v) = fv dvf RAR — F{v,R), {34)
0 Nan2rl . (RE + 12 - Y

where K is the normalization constant, while the proper density in the case

of unseparated variables is calculated by

n(r) f v dvf smodof RdR fo(v,O,R) . {33)
r-p vaR - (RZ + I"2 _02)2
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The difference between these two densities will be small when the Larmor
radius is small compared with the plasma scale length or when the
pitch-angle distribution is peaked near 90°. Finally. when the quasilinear
diffusion due t-, +~f turbulence is dominant, as in 2XIIB, the use of the
normal mode is not consistent with the quasilinear simulation r'esu'lts.7
This will make it difficult to justify Procedure {5} above. In addition,
the inclusion of piasma stream for drift-cyclotron loss~cone (DCLL)
stahilization in the RFP code needs to be examined carefully because the
axial loss of plasma is assumed to he instantaneous in the loss cone.

The RFP code, however, applies to reactor-like plasmas in which the
pitch angle scattering is important, the RF diffusion is not important, and

the Larmor radius is small compared with the plasma scale length.

4. COMMENTS ON QUASILINEAR TRANSPORT CODE OF MATSUDA AND BERK

Matsuda and Berk have developed a radial transport code for mirror

machines based on the quasilinear diffusion due to DCLC turbu]ence.S’S
The quasilinear equation for ions reads
4]Ei£]2 Jz(_fo_)
F -3 Q“ LA ) H M pg<r> S B S ) .
a3t My T T LT Ty s =5 Y 5T 9
v nvf “5aRé Bug ! avf 25 ¢

where m and 7 are the ion cyclotron harmonic numher and azimuthal mode
number, respective]y;Aug is the particle correlation frequency: -r:
represents the average radius; S represents such terms as neutral-beam
injection, axial transit loss due to loss cone, stream input, and
charge-exchange loss; and vq represents the energy loss due to electron

drag:
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Equation (34) is solved simultaneously with the equations for the wave
ontential i, and the electron energy in the quasilinear transport code.

We point out here that {1) the quasilinear diffusion term is derived
under the assumption of small Larmor radius, (2) it is orbit-averaged over
hoth bounce and gyroperiod, and (3) the electron-drag term represents the
Fokker-Planck collision term in the Yimit of low electron temperature, which
is relevant to the present 2XTIB experiments. Since in the parameter range
of the present 2X1IB experiments the pitch-angle scattering time is much
longer than the quasilinear diffusion and electron drag times, Egq. (34) is
adequate to simulate the ZX1IB experiments dominated by the DCLC
turbulence. When the pitch-angle scattering and guiding-center diffusion
are important as well as the electron drag and the quasilinear diffusion, we
must add the quasilinear term [first term on right-hand side of Eq. (36)] to
the orbit-averaged kinetic Eq. (28). Note that in such a case the

separatinn of variables in v and ¢ is not likely to be valid.

5. CONCLUDING REMARKS
We have derived the Xinetic equations suitable for investigating
mirror plasma transport, taking into account the radial and axial dependence
of the plasmas and magnetic fields. In the limit of large gyrofrequency and
hounce freguency compared with collision frequency, the orbit-averaged
kinetic equation is reduced to a three-dimensional equation in phase space,
tractable on a high-speed computer. For a magnetic square-well case we have

expressed the complete Fokker-Planck eguation in terms of the three
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coordinates v, 9, and R [Eq. (28)] under simplifying assumptions. 1In a
general axisymmetric case with noncircular orbits, however, the energy, the
first adiabatic invariant, and the canonical angular momentum are the proper
coordinates.

Our emphasis in this report is that (1) the gyrophase dependence of
the distribution function needs to be retained when the Larmor rddius is
comparable to the plasma radial scale length and {2) the separation of
variahlaes is ndt strictly valid even for the isotropic Rosenhluth
potentials, We also wish to note that the assumption of isotropic
Rnsenbluth potentials has to bhe axamined more carefully, especially when the
distribution function is peaked in pitch angle.

We have examined the RFP code of Futch when it is applied to plasmg
transport problems in mirror machines and identified the approximations and
assumptions involved., In addition, we have briefly described the
restrictions and a possible extension of the quasilinear transport code of
Matsuda and Berk. While the validity of the RFP code is auestionable when
it is used over a wide range of parameters, e.g., when it is applied to
2X1TB experiments, a quantitative assessment of errors in the simulation

results requires a code based on Eq. (28).
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FIGURE CAPTION
Fig. 1. Particle gyromotion aad relatianship between variables.
(R: gquiding center position, r: particle position, . :
Larmor radius, v, : perpendicular velocity, «: gyrophase. )
The canonical angular momentum is given by

P,

th
"

Wry sin?® +qgr A_#/c =M .-(Rz - ;Y-E)IZ for a uniform

magnetic field B.
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