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ORBIT-AVERAGED KINETIC EQUATIONS FOR AN AXISYMHETRIC MIRROR MACHINE 

ABSTRACT 

The orbit-averaged kinetic equation suitable for studying col l is ional 

transport in an axisymmetric mirror machine is derived and reduced to a 

three-dimensional equation in phase space in the case of v << (.,. " '.: 

where « is the col l is ion frequency, u. is the bounce frequency, and :.' 

is the gyrofrequency. We found that the gyrophase dependence of the 

distr ibut ion function, ignored in previous Fokker-Planck calculations, is 

responsible for the diffusion of guiding centers and should be retained when 

the Larmor radius is comparable to the plasma scale length. The complete 

Fokker-Planck equation for a square-well magnetic mirror is given as a 

special case to c la r i fy the approximations and assumptions involved in the 

radial Fokker-Planck code of Futch. The quasilinear transport code of 

Matsuda and Berk is also disci.ssed relative to the orbit-averaged 

Fokker-Planck equation. 



1. INTRODUCTION 
The numerical solution of kinetic equations with Fokker-Planck 

collision terms has been used extensively to study mirror reactors with 
neutral beam injection, neutral-beam heating of tokamak plasmas, and two 

1 f component tokamaks. • Since it is not practical to solve the kinetic 
equation in six-dimensional phase space on a present-day computer, some 
simplifying assumptions are usually made to solve the problem in one- or 
two-dimensional phase space. 

One of the important assumptions in the i-okker-Planck codes to date is 
3 that the distribution functions are independent of gyrophase angle. This 

assumption is valid when the Larmor radius of the particles is much smaller 
than the scale length of the system, as in tokamaks. In mirror machines, 
however, the Larmor radius of high-energy particles can be comparable to the 
plasma radius. In such cases the gyrophase dependence of the distribution 
function cannot be ignored; in fact it is essential for the description of 
diffusion of particle-guiding centers as shown in Section 2.2. The other 
assumption widely used is to neglect spatial dependence of the distribution 
functions. Some Fokker-Planck codes take into account the effects of 
spatial inhomogeneity by averaging the collision terms over a particle 
orbit. A code that solves the Fokker-Planck equation averaged over bounce 
motion between mirror throats is such an example. 

In this report we shall first derive the kinetic equation averaged 
over a periodic particle orbit to include the effects of both radial and 
axial inhomogeneity in an axisymmetric mirror machine and point out the 
importance of the gyrophase dependence of the distribution function. We 
shall then examine the radial Fokker-Planck code of Futch* in the light of 
our averaged Fokker-Planck equation. We shall also discuss inclusion of the 
quasilinear diffusion due to rf turbulence in connection with the 
quasilinear radial-transport code of Matsuda and Berk.15 
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2. DERIVATION OF ORBIT-AVERGED KINETIC EQUATIONS 

2.1 General Formulation in an Axisytnmetric Mi r ror 

We wish to derive a k i ne t i c equation fo r an inhomogeneous plasma in a 

mi r ror magnetic f i e l d , tak ing account of both f i n i t e gyroradius and axial 

bounce motion. Our s ta r t i ng point is the Fokker-Planck equation for the 

d i s t r i b u t i o n func t ion f { x , v , t ) : 

fit = (i£\ + s m 
Dt Vnt/ c

 s ' ' 1 J 

where /•!—-) is the Fokker-Planck collision term, S is a source (or loss) 
term, and the total time-derivative operator is 

• I . ^ 

A quasilinear diffusion term due to rf turbulence will be included later. 
We assume axisymmetry and choose cylindrical spatial coordinates (r,., 

z) where 'i is the ignorable coordinate. For the velocity, one usually 
chooses a spherical coordinate system (v,f>,i<) where v is the speed, ois the 
pitch angle, and $ is the phase angle of the gyromotion. For a spatially 
inhomogeneous system, however, it is more convenient to define the velocity 
in terms of constants of the motion (e,u,P,r), where e is energy, u is the 
magnetic moment, and Ptlj is the canonical angular momentum.* (The gyrophase 
information is contained in P,u.) w'ith this choice of variables the 
distribution function is of the form 

f = f(r,z,,:,n,P t) , (3) 

*If the magnetic field varies appreciably over a distance of one gyroradius, 
then u is not a good constant of the motion; in this case one must use a 
more general form of the adiabatic invariant. 
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and the Fokker-Planck equation is 

As it stands, this equation must be solved in a five-dimensional phase space 
(r,z,c,u,P ) plus time (t). 

To reduce Eq. (4) to something tractable, we note that the order of 
magnitude of the various terms in the kinetic equation car, be identified 
with the characteristic frequencies of the particle motion in the magnetic 
field: 

$•- 0(« cf), r £<<. 0(nf), 7. H x 0( U b f ) , Q £ ) <, 0(v cf) , (5) 

where u is the collision frequency, a h is the axial bounce frequency, 
and a is the gyrofrequency. We seek solutions that vary on 5 collisional 
time scale; so (~\ has been assigned the same magnitude as the collision 
term. Now, assuming that the characteristic time 
we introduce a smallness parameter, f,, such that 

c 
term. Now, assuming that the characteristic time scales are well-separated, 

*-f*m . (6) 
b 

Then we solve the kinetic equation by expanding f in powers of L : 
f = f 0

 + fl + W 

whare 

Substituting the expansion of Eq. (7) into the kinetic Eq. (4), we obtain 
the following equations up to the second order: 
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r.f, af n 

'r-7^+'zJT'-° ' ( 9 ) 

df. ;>f, »f. af_. 

W^sr'^WV* • (10 
From the zeroth order Eq. (8) one sees that the zeroth-order 

distribution cust be independent of r, i.e., 

f 0 - f0(z.':,M,P^,t) . (11) 

The first-order equation, when multiplied by 1/r and integrated over a 

complete oscillation (gyroperiod) in r, yields 

/ * £ * ir ̂  ir • ° • ( 1 2 ) 

where 

^-i> y ? i . en) 

Since the distribution function must be a single-valued function of r, the 
first term in Eq. (12) integrates to zero, leaving 

From this we see that the zeroth order distribution must also be independent 
of z, i.e., 

Putting this result back into Eq. (9) we see that the first-order 
distribution must not depend on r, i.e., 



fx = f 1(z,E,«,P^t) . (16) 

Turning to the second-order equation we can eliminate the f« term as in 
Eq. (12); the result is 

? £ * £ * £ • ¥ < # ) , ) • £ * • ( l 7 ) 

We now eliminate the fi term in a similar manner, multiplying by >\t7.t'r> 

and integrating over a complete oscillation (axial bounce period) in z. 

This yields the result: 

where the gyro- and bounce-averaged collision term is defined by 

<#)c» (yw 1 fa <$)t> , 
and where 

We can add the gyro- and bounce-averaged quasilinear diffusion term 

given by Berk to the right side of Eq. (18) to obtain the complete form 

of the orbit-averaged kinetic equation: 

2.2 Model Kinetic Equation in a Square-Well Magnetic Mirror 

In this section we study a model problem using a simple collision 

operator and a magnetic square-well along the z-axis. The model collision 

term we use is the following: 

-6-



where C, T, and M are constants. This collision term describes drag and 
diffusion in velocity space. We choose a set of independent variables (r, v. 
V||, P ) to describe the distribution function. The z-dependence has dropped 
out because of a magnetic square-well assumption. Perpendicular velocity 
Vj, parallel velocity v(I» and canonical angular momentum Pr are all 
constants of motion under the present assumptions. 

Following the procedure used in Section 2.1 we obtain for v . / 9 . « 1: 

£-f/?(£) c • («> 
where f~ is a funct ion of vL , v- , and P,, and 

/ d r _ 2-

To ca lcu la te the r ight-hand side of Eq. (23) we f i r s t express Eq. (22) in terms 

of V j , V||, and &: 

Noting that P̂  = Mrv^ s in •!>+ qrA,,/c (F ig . 1 ) ; thus a/a$ = Mrr?./3P i , and 

s u b s t i t u t i n g Eq. (24) in Eq. (23) , we obtain 

! f 0 - i l 3 / 2 , _, T 3 f 0 N i a / , _,. T 3 f 0 \ 

r = c^('iVfi^J + ^ U fo + HsifJ 
3 /MT 2-2 s f r 0 \ ) 

* x v 2 l / J 
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where 

-2 1 /* dr 2-Z 
<r r > = - j — r r 

Note that the first and second terms on the right-hand side of Eq. (25) were 
not affected by the orbit integral because they are independent of r. 

The first two terms in Eq. (25) represent drag and diffusion in vx and 
v... The physical meaning of the third term of Eq. (25) can be made more 
explicit by considering a case with a uniform constant magnetic field. 
Noting that the guiding center position R is related to the canonical 

2 2 
angular momentum P, = M'i(R - n )/2 where o is the Larmor radius, as 
seen from Fig. 1, we can write Eq. (25) as 

where --r r •> has been evaluated to be equal to 1/2(R vf)- The 
meaning of the third term in Eq. (25) is now clear; it represents diffusion 
of the guiding-center positions. This shows that the gyrophase dependence 
of the distribution function has to be retained when one studies radial-
transport problems with arbitrary large Larmor radius. It can be easily 
shown on the other hand that when the Larmor radius is small compared with 
the radial scale length of a plasma, the gyrophase dependence can be 
ignored, which is the case for the Fokker-Planck equation applied to tokamak 
problems. 
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2.3 Fokker-Planck Equation in a Square-Well Magnetic Mi r ror 

We now de ve the orbit-averaged k i ne t i c equation wi th the 

Fokker-Planck c o l l i s i o n term under the same assumption as *n the previous 

sec t ion , namely, a magnetic square-well in z and uniform magnetic f i e l d in r 

w i th v> << •"'. We choose the speed v, the p i t ch angle i , and tne rad ia l 

post ion of guiding center R as three coordinates representing ve loc i t y 

space. Note that v, u, and R are constants of motion. 

The complete Fokker-Planck c o l l i s i o n term in terms of v, o, and •> is 

( f )c

 = * [7 IT "/> + v-iTHT ̂  (J s sin 0) • ^ - 4 ^ ^ ] , (27) 

where 

i = f A 2£ i!a L_ if ('25 I A\ 1 21 IzA^ 1 A] 
J v '*v " )v „ v2 " v 2 ->fl \ *v"!3 " v 3>V " 7 s i r ) 2 , , «? \3v?« " v ; ^ y ' 

j = f J!L . jf a_ CI ̂  _ 1 _ i f ( i a + I»!a) 
J r ; v -.» v̂ ")v \v s 3 / 2 >3 V^v v , . 2 / 

'f / l •• q cotJ3 2a \ 

. _ 1 A.AA ( 1 ia\ L. if i_ / 1 ia\ 
•;> v sin 0 35. " 3v 3v \v s in 0 a?y " 7 so no \ v s in r ' " ? / 

1 i f / • . 3g ^ cotn Og ^ 1 a 2 g \ 

and h and c, are given by 

D 

b b 
h(x,v,t)=4̂  E^in^ydv-^-vr 

and 

2 2 
Z ^ - z^z^ /• 

g(x,v,t) = 2,.e £ — r In ', / dv' ;v - v* | f h ( x , v ' , t ) 
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For iso t rop ic Rosenbluth po tent ia ls h and g the averaged Fokker-Planck 

Eq. (23) becomes 

1 a [",2 7:ih\. , „2 / 3 2 g \ , f 0 | ̂  1 r. ["sin e /Hqv 3 f o I 
' -J 57 [ V <*7> f 0 " v <̂ 2> ^r j + sTST MT L~7~ W ~ J 

• i L - f 1 ( r 2 f 2 i a> ^ 1 (28) 
R 1 4 - 2 R v 3 s i n 2 o ^ r ' v > ~'R J ' { ] 

where the relation •>/•''• = (rf/i:R)-/^R is used. Here, f Q is a function of 
v, », R, and t, and < -- represents the orbit integral: 

r / > «'• 

with 

J . . , ! . V4R 2r ?-(R 2

 + r 2 - . 2 ) 2 . 
2r 

Note that although h and g are ^ssuiied isotropic, the orbit-averaged 
,2 

quantities "T̂ --- , ' ^ , < ^ 2 > ' -i(i < r ^ "5v » a r e generally functions 
of v, '•, and R. 

equation (28) is the proper kinetic equation to solve when the Larmor 
radius is comparable to the scale length, subject to certain boundary 
conditions. If we assume that there exists an absorbing radial wall at r = a, 
then we have a boundary condition f Q = 0 on R + (v sin e)/; = a. The other 
loss boundary corresponds to end losses and is given by r<. = sin (1/R ), 
where R_ is the mirror ratio, m 

3. COMMENTS ON RADIAL FOKKER-PLANCK CODE OF FUTCH 
A radial Fokker-Planc'< (RFP) code developed by Futch 1 has been used 

to study the build-up of mirror plasmas ranging from 2XIIB to a reactor. 
The RFP code obtains an approximate solution of Eq. (28) based on the 
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separat ion of var iables and assumption of l o c a l l y i so t rop ic Rosenbluth 

p o t e n t i a l s . The fo l low ing procedure is introduced: 

(1) The ^-dependence of the orbit-averaged Fokker-Planck 

coe f f i c i en ts is removed by the replacement D ( V , O ) 

v s in of'.: - - i v / ' i , where r ' is some "average" value of s in o. 

(?) This leads to solut ions of the form f 0 ( v , ^ , R , t ) = F(v ,R, t ) M(0), 

and the fo l low ing equations: 

1 \ (sin » ̂ ) = --n , (31) sin o 

where .\ is the separation constant, i.e., the eigenvalue 
associated with each normal mode. Futch drops the last term in 
Eq. (30) and solves the truncated equation. 

(3) The exact boundary condition on f 0(v, f l,R) cannot be satisfied 
in general unless one uses a superposition of many normal 
modes. Futch replaces the exact boundary condition F(fi + v 
sin <V" = a) = 0 by F(R + *v/K = a) = 0 and uses only the 
lowest order normal mode for f», identifying F as the guiding 
center distribution averaged over all pitch-angles. 

(4) To compute the isotropic part of the Rosenbluth potentials one 
needs the isotropic part of the distribution function given by 

F0 ( r' v ) h J 6< J sir,;i d ( , f( r.v,0,*) 
= \ C sino dp/" R d R Ffv.RlHriM . 

• '0 -V - rV4R 2 r 2 - (R 2+ r 2 - P 2 ) 2

 { 3 2 ) 

-11-



Futch now replaces P ( V , 3 ) by p = av/p to obtain 

F n ( r , v )= - f ' s i n e d 8M(co/" r R d R - F(v.R) . 

(33) 

(5) The quasi l inear d i f fus ion terra [ f i r s t term on the r ight-hand 

side of Eq. (36) ] is averaged over 0 with the lowest order 

normal mode assumed and is added to Eq. (30) . 

The terms representing atomic physics and neutral beam in jec t ion are 

added to Eq. (30) (without the last term on the r ight-hand side) and the 

resu l t ing equation is solved for ions along wi th the rate equations for 

electron density and temperature. 

We now point out some shortcomings in the RFP code when i t is applied 

to a wide range of transport problems. F i r s t , the guiding center d i f fus ion 

term is ignored. This means the RFP code may not be wel l -su i ted to study 

co l l i s i ona l transport in mirror machines such as 2XIIB and TMX (Tandem 

Mirror Experiment) in which the plasma scale length is only a few ti;nes or 

comparable to the Larmor radius. Second, even in a case where the guiding 

center c o l l i s i o n s ! d i f fus ion is neg l ig ib le , the orbit-averaged Fokker-Planck 

equation is not s t r i c t l y separable in v and e as can be seen in Eq. (28). 

Thus the use of the lowest order normal modes for a pi tch-angle d i s t r i bu t i on 

is generally questionable. Th i rd , the density in the RFP code is 

calculated by 

n ( r ) = 4 - l vZdvF ( r , v ) « K / / d v / MR- F(v,R), (34) 
J° J° *-*"V 4 R 2 r 2 -"(R2 •7 ? T72J2 

where K is the normalization constant, while the proper density in the case 

of unseparated variables is calculated by 

n(r ) = | v 2 d v | sinedo f R d R — f „ ( v 0 jn /?=» 
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The difference between these two densities will be small when the Larmor 
radius is small compared with the plasma scale length or when the 
pitch-angle distribution is peaked near 90°. Finally, when the quasilinear 
diffusion due to rf turbulence is dominant, as in 2X11B, the use of the 

7 normal mode is not consistent with the quasilinear simulation results. 
This will make it difficult to justify Procedure (5) above. In addition, 
the inclusion of plasma stream for drift-cyclotron loss-cone (DCLC) 
stabilization in the RFP code needs to be examined carefully because the 
axial loss of plasma is assumed to be instantaneous in the loss cone. 

The RFP code, however, applies to reactor-like plasmas in which the 
pitch anqle scattering is important, the RF diffusion is not important, and 
the Larmor radius is small compared with the plasma scale length. 

4. COMMENTS ON QUASILINEAR TRANSPORT CODE OF MATSUDA AND BERK 
Matsuda and Serk have developed a radial transport code for mirror 

machines based on the quasilinear diffusion due to DCLC turbulence. * 
The quasilinear equation for ions reads 

,r
 4I M ' Jm\fi.<rJ , 

+ yd T T (vfF) + s ' {36) 

where m and i. are the ion cyclotron harmonic number and azimuthal mode 
number, respectively;A"„ is the particle correlation frequency; -r> 
represents the average radius; S represents such terms as neutral-beam 
injection, axial transit loss due to loss cone, stream input, and 
charge-exchange loss; and v d represents the energy loss due to electron 
drag: 
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nzV-^lnA 
d - 3 '< ? 1 H T3/Z e 

Equation (34) is solved simultaneously with the equations for the wave 
potential !•,. and the electron energy in the quasilinear transport code. 

Me point out here that (1) the quasilinear diffusion term is derived 
under the assumption of small Larmor radius, (2) it is orbit-averaged over 
hoth bounce and qyroperiod, and (3) the electron-drag term represents the 
Fokker-Planck collision term in the limit of low electron temperature, which 
is relevant to the present 2X1 IB experiments. Since in the parameter range 
of the present 2XIIB experiments the pitch-angle scattering time is much 
longer than the quasilinear diffusion and electron drag times, Eq. (34) is 
adequate to simulate the 2XIIB experiments dominated hy the DCLC 
turbulence. When the pitch-angle scattering and guiding-center diffusion 
are important as well as the electron drag and the quasilinear diffusion, we 
must add the quasilinear terra [first term on right-hand side of Eq. (36)] to 
the nrhit-averaged kinetic Eq. (28). Note that in such a case the 
separation of variables in v and o is not likely to be valid. 

5. CONCLUDING REMARKS 
We have derived the '<inetic equations suitable for investigating 

mirror plasma transport, taking into account the radial and axial dependence 
of the plasmas and magnetic fields. In the limit of large qyrofrequency and 
bounce frequency compared with collision frequency, the orbit-averaged 
kinetic equation is reduced to a three-dimensional equation in phase space, 
tractable on a high-speed computer. For a magnetic square-well case we have 
expressed the complete Fokker-Planck equation in terms of the three 
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coordinates v, o, and R [Eq. (23)] under simplifying assumptions. In a 
general axisymmetric case with noncircular orbits, however, the energy, the 
first adiabatic invariant, and the canonical angular momentum are the Drooer 
coordinates. 

Our emphasis in this report is that (1) the gyropbase dependence of 
the distribution function needs to be retained when the Larmor <-ddius is 
comparable to the plasma radial scale length and (2) the separation of 
variables is not strictly valid even for the isotropic Rosenbluth 
potentials. Me also wish to note that the assumption of isotropic 
Rosenbluth potentials has to be examined more carefully, especially when the 
distribution function is peaknd in pitch angle. 

Me have examined the RFP code of Futch when it is applied to plasma 
transport problems in mirror machines and identified the approximations and 
assumptions involved. In addition, we have briefly described the 
restrictions and a possible extension of the quasilinear transport code of 
Matsuda and 8erk. 'while the validity of the RFP code is questionable when 
it is used over a wide range of parameters, e.g., when it is applied to 
2XIIB experiments, a quantitative assessment of errors in the simulation 
results requires a code based on Eq. (28). 
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FIGURE CAPTION 
Fig. 1. Particle gyromotion and relationship between variables. 

(R: guiding center position, r; particle position, . : 
Larraor radius, v, : perpendicular velocity, •;•: gyrophase.} 
The canonical angular momentum is given by 
P,,, Hrvj, sin : + q r A. /c = M :{R2 - /)/2 for a uniform 
magnetic field B. 
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Figure 1. 
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