

Commitment to Excellence

NIPER-686
May 1993

**MONTHLY PROGRESS REPORT
FOR
APRIL 1993**

Work Performed for the
U. S. Department of Energy
Under Cooperative Agreement DE-FC22-83FE60149

RECEIVED
JUN 03 1993
OSTI

National Institute for Petroleum and Energy Research
IIT Research Institute • P. O. Box 2128
Bartlesville, Oklahoma 74005-2128 • (918) 336 - 2400

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

NIPER-686
Distribution Categories UC-122 and 125
May 1993

MONTHLY PROGRESS REPORT
for
April 1993

Work Performed for the
U.S. Department of Energy
Under Cooperative Agreement
DE-FC22-83FE60149

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither IIT Research Institute nor the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors herein do not necessarily state or reflect those of the United States Government or any agency thereof.

IIT Research Institute
NATIONAL INSTITUTE FOR PETROLEUM AND ENERGY RESEARCH
P. O. Box 2128
Bartlesville, Oklahoma 74005
(918) 336-2400

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

FOREWORD

The Monthly Progress Report for April 1993, NIPER-686, is submitted in accordance with the provisions of Cooperative Agreement DE-FC22-83FE60149 between the Department of Energy and the IIT Research Institute.

The status of a new project, designated as SGP72 and funded under the Supplemental Government Program, is included in this report. The objectives of the project are to achieve effective coordination of technology transfer efforts among DOE and the diverse organizations that are part of the petroleum industry and to provide feedback to DOE regarding technology needs of the petroleum industry.

TABLE OF CONTENTS

	<u>Page</u>
Foreword	iii
 Summaries	
Energy Production Research	1
Fuels Research.....	2
Base Program Funding and Manpower	3
 Base Program	
Energy Production Research	5
BE1. Reservoir Assessment and Characterization	5
BE2. TORIS Research Support	9
BE3. Development of Improved Microbial Flooding Methods	11
BE4A. Development of Improved Chemical Flooding Methods.....	13
BE4B. Development of Improved Alkaline Flooding Methods.....	15
BE4C. Mobility Control and Sweep Improvement in Chemical Flooding.....	17
BE5A. Gas Flood Performance Prediction Improvement	19
BE5B. Mobility Control, Profile Modification, and Sweep Improvement in Gas Flooding.....	21
BE9. Three-Phase Relative Permeability Research.....	23
BE11A. Thermal Processes for Light Oil Recovery	25
BE11B. Thermal Processes for Heavy Oil Recovery	27
BE12. Imaging Techniques Applied to the Study of Fluids in Porous Media.....	29
Fuels Research.....	31
BFR2. Development of Analytical Methodology for Analysis of Heavy Crudes	31
BFR3. Thermochemistry and Thermophysical Properties of Organic Nitrogen- and Diheteroatom-Containing Compounds	33
Supplemental Government Program.....	35
SGP13. Microbial-Enhanced Waterflooding Field Project	35
SGP37. Feasibility Study of Heavy Oil Recovery in the Midcontinent Region: Oklahoma, Kansas, and Missouri.....	37
SGP41. Surfactant-Enhanced Alkaline Flooding Field Project	39
SGP49. Process-Engineering Property Measurements on Heavy Petroleum Components.....	41
SGP50. Development and Application of Petroleum Production Technologies	43
SGP56. Upgrade BPO Crude Oil Data Base	45
SGP58. Simulation Analysis of Steam-Foam Projects	47
SGP61. DOE Education Initiative Project	49
SGP63. Field Application of Foams for Oil Production Symposium.....	51
SGP64. Technology Transfer to Independent Producers	53
SGP69. Compilations and Analysis of Outcrop Data from the Muddy and Almond Formations	55
SGP72. Implementation of Oil and Gas Technology Transfer Initiative.....	57
SGP73. Horizontal Well Production from Fractured Reservoirs	59

SUMMARY

ENERGY PRODUCTION RESEARCH

Organization and coordination of the technology transfer conference, New Technology for Independent Producers, to be held in Denver, CO, May 6-7, 1993, has continued. NIPER personnel will chair the Reservoir Characterization and Biotechnology sessions and present eight papers at the meeting, four of which reflect work conducted in project BE1. Talks to be presented by the project staff personnel include subjects such as the effects of reservoir heterogeneity on oil recovery efficiency, reservoir characterization for EOR potential evaluation, application of standard petrographical analysis, and application of hydrogeochemical techniques to reservoir characterization. (BE1)

The compiled BOAST simulator has been tried on several one- and two-dimensional (1-D and 2-D) simulations. On 2-D data sets involving approximately 3,000 grid blocks, the simulator takes about 30 minutes to perform 600 trials before reaching terminating conditions. For a 1-D data set involving 40 grid blocks, the simulator takes 33 seconds to perform 1,000 trials before reaching endpoint. During this 33 second run, the simulator output 36 data files showing the 1-D oil, water, and gas saturations and how the flood front traversed the length of the model during the simulation. Now that the simulator is working properly, it will be used to study 1-D and 2-D models based on permeability, porosity, capillary pressure, and saturation distributions representative of real rock systems under study in the laboratory. (BE9)

A topical report, entitled "Evaluation of NIPER Thermal EOR Research, State of the Art and Research Needs," (NIPER 675) has been delivered to the BPO. This report summarizes NIPER's thermal recovery research over the past 10 years, analyzes contributions of the research, describes the transfer of the technology to potential users, defines current trends in thermal research and thermal oil production, and identifies areas where NIPER can contribute to future advances in thermal oil production. (BE11A)

Numerical simulation of a steamflood in the Taylor-Ina (TX) field is in progress. The feasibility of improving steamflood performance with CO₂ as an additive is being investigated. A literature survey of a steamflood using CO₂ was undertaken to collect the requisite data for simulation. The Computer Modeling Group's phase behavior model (CMG PROP) will be used in modeling CO₂-steam phase behavior. (BE11B)

A paper, entitled "Imaging Technology Applied to Rock and Fluid Imaging in Cores," will be presented at the New Technology for Independent Producers Workshop to be held in Denver, CO, May 6-7. (BE12)

Report NIPER-606, "Estimates of Future Regional Heavy Oil Production at Three Production Rates—Background information for Assessing Effects on the U.S. Refining Industry," has been delivered to the BPO. In addition, an update of trends in heavy oil production and refining in California was presented and published in the Proceedings of the American Chemical Society Symposium on Enhanced Oil Recovery, that was held in Denver, CO, Mar. 28-Apr. 2. (SGP37)

Nineteen students have accepted offers to participate in the summer intern program. Each student has been notified as to safety training, seminars, and meetings planned for the summer. Topics of the seminars include geology, primary and secondary recovery, EOR, biotechnology, and environmental issues associated with petroleum production. The teacher-interns from NIPER and Phillips Petroleum Co. also plan to attend the seminars. (SGP50)

Information pertaining to the curriculum of the Oil and Gas Exploration module was presented to Mike Benard, president of the Midcontinent Oil and Gas Association, and Mickey Thompson, executive vice-president of the Oklahoma Independent Petroleum Association. Both gentlemen displayed considerable interest in the curriculum and suggested that NIPER present additional information on the module at future meetings of their respective organizations. (SGP61)

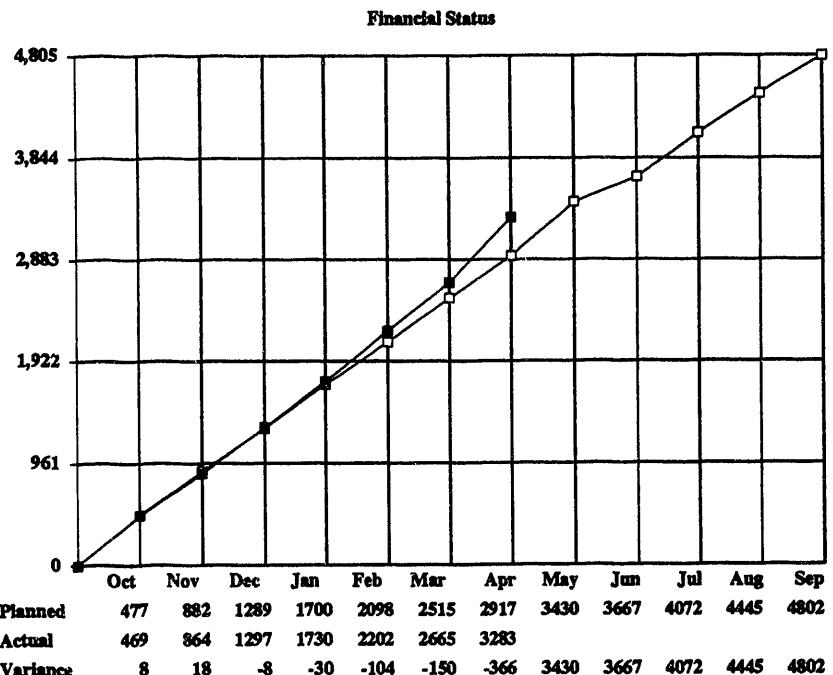
The papers, extended abstracts of poster session presentations, and summary of a panel discussion have all been assembled into the Proceedings of the symposium on the field application of foams (NIPER-699). The Proceedings will be available for distribution following publication as a DOE/FE report. (SGP63)

An organizational meeting was held in Austin, TX, Jan. 18, to discuss formation of an industry committee to facilitate transfer of oil and gas technology to the domestic petroleum industry. This meeting was conducted as part of a new SGP project established to implement an oil and gas technology transfer initiative. Participants of the

meeting included representatives from the petroleum industry, societies, and trade associations and observers from DOE and the national laboratories. Representatives from TIPRO, TORP, Illinois Geological Survey, and New Mexico Petroleum Recovery Research Center made brief presentations relating to ongoing technology programs. A majority of those attending selected the name of the coordinating committee to be the Petroleum Technology Transfer Council. (SGP72)

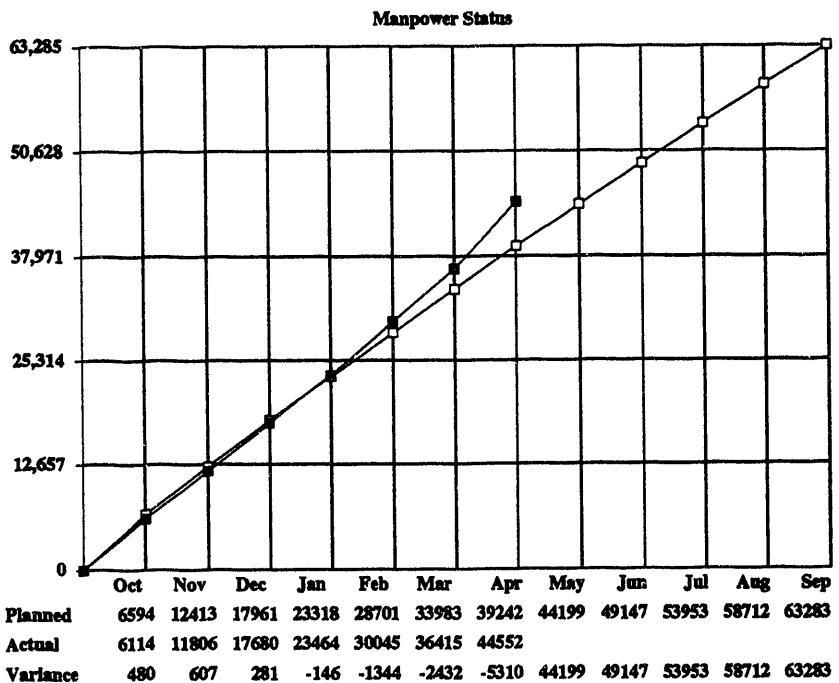
FUELS RESEARCH

Cat cracking of Lagomedio >650° F resid, and chromatographic fractions thereof, has been completed. Solid and liquid products from those runs are currently being analyzed. Analysis of Brass River products also has been completed; those data are being entered into the computer for calculation of material balances. (BFR2)


A journal article, entitled "The Thermodynamic Properties of Thianthrene and Phenoxathiin," has been accepted for publication in the *Journal of Chemical Thermodynamics*. (BFR3)

A commercial zone-refining apparatus has been received and assembled. Testing and determination of operating parameters has begun. A sample of 1,2,3,4-tetrahydrofluoranthene, synthesized by Oklahoma State University, will be zone refined once the apparatus is operational. (SGP49)

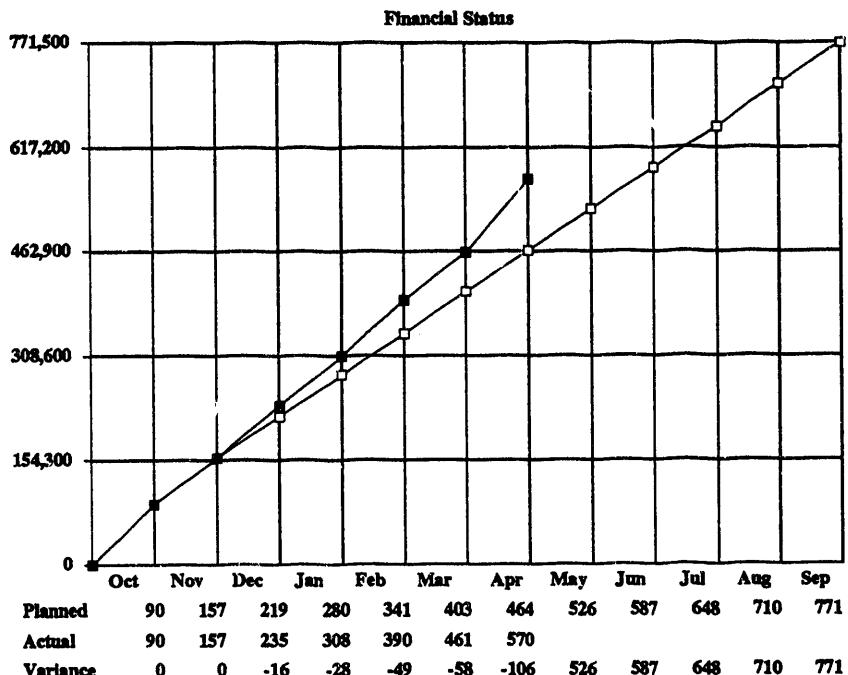
BASE PROGRAM


FINANCIAL STATUS OF THE PROJECT FOR APRIL

Total Appropriation:	5,000,000
Less Capital Equipment:	197,600
Appropriation Balance:	4,802,400
Expenditures for the Month:	617,434
Total Expenditures to Date:	3,282,711
Net Available:	1,717,289
Capital Equipment Expenses and Committs:	23,543

MANPOWER STATUS OF THE PROJECT FOR APRIL

Total Man-hours:	63,283
Man-hours used this Month:	8,117
Total Man-hours used to Date:	44,552
Net Available:	18,731


Legend for Key Milestones

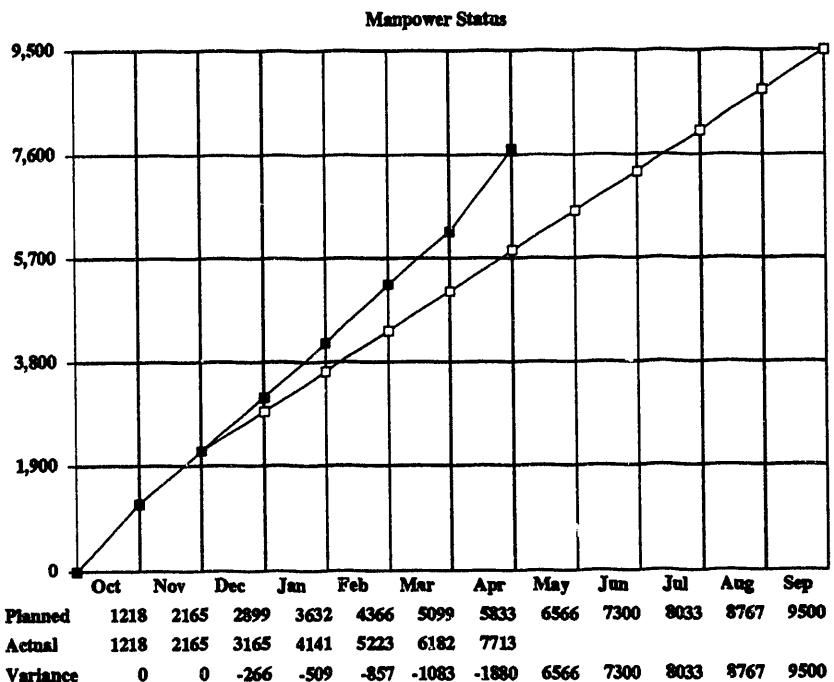
X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C'' = Completed Ahead of Schedule

BE1**FINANCIAL STATUS OF THE PROJECT FOR APRIL**

Total Appropriation:	795,000
Less Capital Equipment:	23,500
Appropriation Balance:	771,500
Expenditures for the Month:	108,673
Total Expenditures to Date:	569,476
Net Available:	225,524

Capital Equipment Expenses and Commit:	4,488
--	-------

Annual Plan Project BE1**Reservoir Assessment and Characterization****MANPOWER STATUS OF THE PROJECT FOR APRIL**


Total Man-hours:	9,500
Man-hours used this Month:	1,531
Total Man-hours used to Date:	7,713
Net Available:	1,787

Legend for Key Milestones

X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Submit Status Report on Project Environmental, Safety, and Health Assessment
- 2 Complete Summary of Shoreline Barrier Deposits and Evaluation of Effective Oil Recovery Processes
- 3 Complete Updated Data Base on Patrick Draw Field and Annotated Bibliography on Shoreline Barrier Deposits
- 4 Prepare Chapter for NIPER Final Report Summarizing Accomplishments of Project BE1 (Draft Complete by April 15)
- 5 Status Report Describing Plan for Characterizing Class 1, Fluvial-Dominated Deltaic Reservoirs
- 6 Promote Information Exchange & Complete Technology Transfer Activities

XXX XXC

____ XXX XXX XXX XXX XXX ____ C

____ XXX XXX XXX XXX ____ C

____ XXX XXX ____ XXX ____ C

____ XXX XXX XXX XXX XXX XXX ____ C

ENERGY PRODUCTION RESEARCH

BE1. RESERVOIR ASSESSMENT AND CHARACTERIZATION

Accomplishments

The objectives of this project are (1) to develop geological and engineering methods to predict mobile oil saturation distribution and quantify reservoir architecture and flow unit geometry for application to targeted infill drilling and EOR and (2) to synthesize reservoir and production characteristics of shoreline barrier reservoirs and to determine similarities and differences and the degree to which information from one reservoir can be applied to another.

Milestone 2—Decline curve analysis of production data from Patrick Draw (WY) field is being evaluated for its potential use as a reservoir characterization tool. The decline curve analysis offers reliable reserve estimates and provides accurate calculation of reservoir parameters such as the drainage area or the skin factor which are of critical importance in any enhanced oil recovery operation. Parameters obtained from decline curve analysis may be compared with those obtained from seismic or wireline log interpretations for a greater degree of confidence before initiating an expensive EOR project.

Estimations of reservoir parameters from the decline curve data are based on a trial and error approach in which values of certain parameters have to be known before others can be calculated. Decline curve analysis and comparison of reservoir parameters were performed on Monell wells 1 and 14 from Patrick Draw field. Porosities and pay thicknesses previously determined from core-log correlations indicate that Monell 14 is located in a much more uniform part of the reservoir as compared to Monell 1 which is located in an area of significant depositional and structural heterogeneities. Decline curve analyses drainage radii of 333 ft for Monell 1 and 2,100 ft for Monell 14 support the previous findings. A large negative skin factor of -4.5 in Monell 14 suggests a significant effect of stimulation in this well as compared to that in Monell 1 which had a skin factor of 0. The OOIP in Monell 1 was estimated to be 1,088 MMBBLs compared to 4,966 MMBBLs in Monell 14. The type curve match for well Monell 14 suggested that the drainage is characteristic of a layered reservoir with no communication between layers. In contrast, the values calculated for well Monell 1 indicate that the effect of layering is small. While the actual values of these parameters will depend upon the accuracy of the input parameters like formation pressure or water saturation, analysis of decline curves can independently provide information about relative variations of certain reservoir parameters in a producing field.

Milestone 3—Report NIPER-622, "Annotated Bibliography of Selected References on Shoreline Barrier Island Deposits With Emphasis on Patrick Draw Field, Sweetwater County, Wyoming," is in preparation.

Milestone 4—The section of the final report summarizing the FY93 research activities and accomplishments has been completed. A draft of the entire report is nearly complete.

Milestone 6—Organization and coordination for the technology transfer conference, New Technology for Independent Producers, Denver, CO, May 6-7, 1993, has continued. NIPER personnel will chair the Reservoir Characterization and Biotechnology sessions and present eight papers at the meeting, four of which reflect work conducted in project BE1. Text and figures for the preprints, as well as slides and talks have been prepared. Talks to be presented by project staff personnel include subjects such as the effects of reservoir heterogeneity on oil recovery efficiency, reservoir characterization for EOR potential evaluation, application of standard petrographical analysis, and application of hydrogeochemical techniques to reservoir characterization.

The paper, entitled "Integration of a Geological-Engineering Model with Production Performance: A Case Study at Patrick Draw Field, Wyoming," was accepted by SPE for presentation in the Development Geology and Geophysics Poster Session of the 1993 SPE Annual Meeting at Houston, TX, Oct. 3-6.

A proposal has been submitted to the DOE Office of Fossil Energy for a cooperative project with Russia to optimize petroleum production in both countries. The application of modern technologies for advanced reservoir characterization and improved oil recovery to enhance production from known reservoirs was emphasized in the proposal, drawing heavily on technology developed in BE1 and related SGP projects supported by DOE.

Four proposals for the Small Business Innovative Research program were reviewed for the Department of Energy.

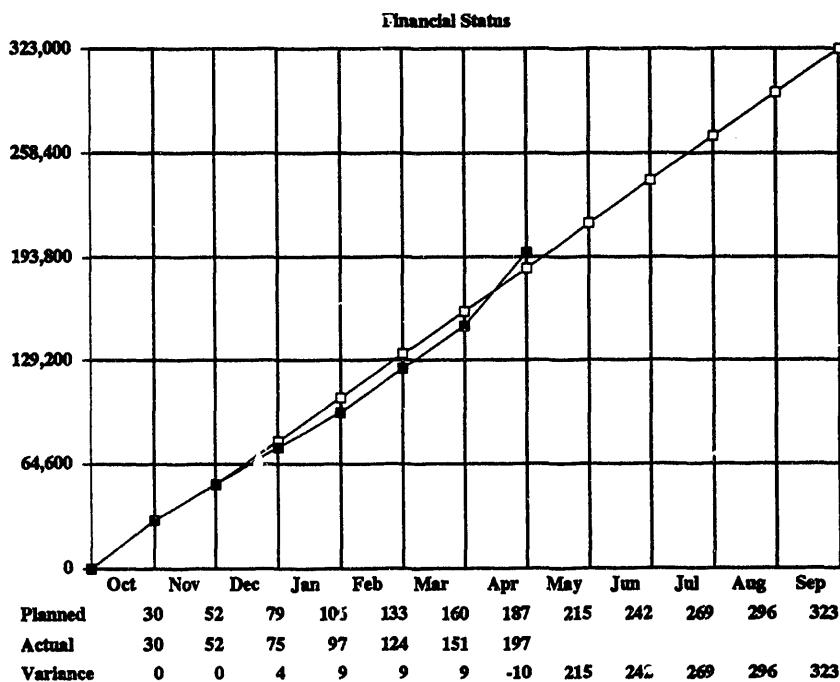
A tour of NIPER facilities was conducted for a group of Tulsa University professors and students. Presentations regarding the reservoir characterization research program and the petrographic image analysis and CT laboratories were provided by staff personnel.

Manpower and Financial Status

Financial expenditures and manpower are higher than predicted due to the early milestone completion dates and greater than anticipated efforts required in organizing a technology transfer conference.

Status of Project Milestones

Project milestones are on schedule.

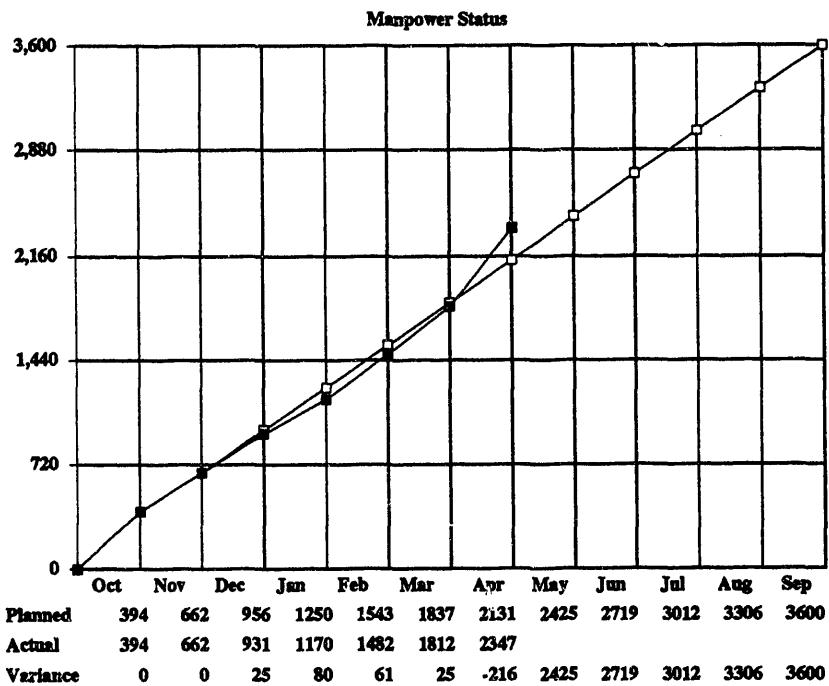


BE2**FINANCIAL STATUS OF THE PROJECT FOR APRIL**

Total Appropriation:	340,000
Less Capital Equipment:	17,000
Appropriation Balance:	323,000
Expenditures for the Month:	45,719
Total Expenditures to Date:	196,671
Net Available:	143,329
Capital Equipment Expenses and Commits:	0

Annual Plan Project BE2

TORIS Research Support


MANPOWER STATUS OF THE PROJECT FOR APRIL

Total Man-hours:	3,600
Man-hours used this Month:	535
Total Man-hours used to Date:	2,347
Net Available:	1,253

Legend for Key Milestones
 X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Submit Status Report on Project Environmental, Safety, and Health Assessment
- 2 Status Report on Review of the INGRES Version of the EOR Project Data Base and Assessment of Future Needs
- 3 Prepare Chapter for NIPER Final Report Summarizing Accomplishments of Project BE2 (Draft complete by April 15)
- 4 Complete FY93 Research Support of EOR Project Data Base
- 5 Complete FY93 Support of RSVR Reservoir Data Base
- 6 Complete FY93 Computer Modeling Research Support
- 7 Status Report Summarizing 1991 Data Collected for Incentive Projects
- 8 Topical Report Defining Estimated Confidence Level of the TORIS EOR Predictive Models

XXX XXC

XXX XXX XXX XXX _____ XXX _____ C*

XXX XXX XXX XXX _____ XXX XXX _____ C

_____ XXX XXX XXX XXX _____ C

_____ XXX XXX XXX XXX _____ C

_____ XXX XXX XXX XXX _____ C

BE2. TORIS RESEARCH SUPPORT

Accomplishments

The objective of this project is to provide research support to the DOE Program Manager for the Tertiary Oil Recovery Information System (TORIS) in the areas of enhanced oil recovery (EOR) project and reservoir data base management, EOR project technology and trends analysis, and computer simulation.

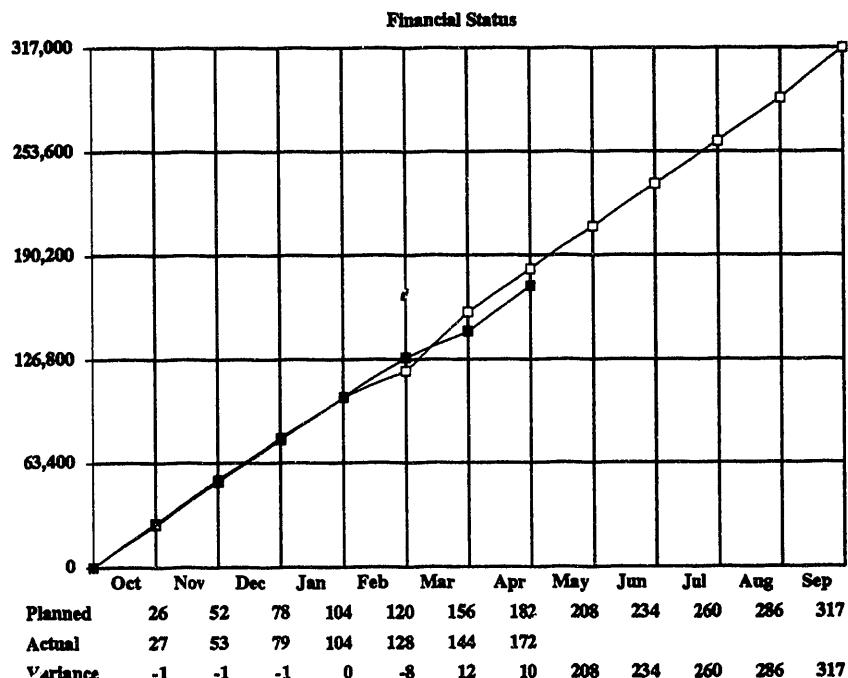
Milestone 3—The work on the BE2 chapter for the NIPER final report was a priority task during the month, and the initial draft is nearing completion.

Milestone 4—Research support of the EOR Project Data Base consisted of correcting and updating the two versions. While updating the INGRES version, some of the errors found in the S2k version were identified as already corrected. At least some the unexpected corrections relate to the method of forming the INGRES version from the S2k version—dates were disaggregated to eliminate date-related errors. A detailed analysis of what data were changed and why, as well as updating the INGRES version, will continue.

Milestone 7—Letters requesting 1992 and 1991 (when appropriate) data on the Tertiary Incentive Projects were mailed in February. Forty-nine responses have already been received for 1992, three for 1991, and two for 1990. Of the total fifty-four forms, 43 are active, leaving 11 either terminated, abandoned, shut-in, or sold. Production and injection data from most of the responses were entered into a working file.

Milestone 8—Work under this task has concentrated on comparing oil production from 15 steam projects in the Tertiary Incentive Program to estimated oil production of the TORIS model. Since there are more steam projects than any other EOR process, this will provide the best opportunity to statistically estimate the accuracy of the model. Aggregated results show excellent agreement between the TORIS model and the selected projects. Unfortunately, the variation of actual and simulated oil production between the model and the actual project is significant. After rigorous review of all the project data, a series of reruns of the projects has been made to ensure that the starting oil in place is appropriately represented. Although results for specific projects changed during this review, the statistical results changed very little. Since the total oil production is in good agreement, it was decided that sampling should be expanded to as many steam projects as possible.

Manpower and Financial Status


Manpower and financial expenditures are on schedule.

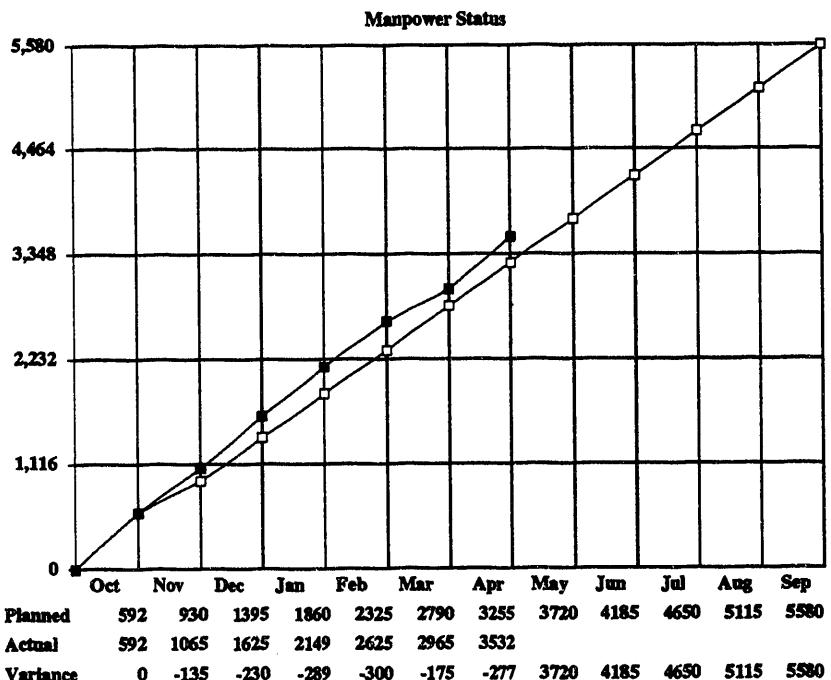
Status of Project Milestones

Project milestones are on schedule.

BE3**FINANCIAL STATUS OF THE PROJECT FOR APRIL**

Total Appropriation:	320,000
Less Capital Equipment:	3,000
Appropriation Balance:	317,000
Expenditures for the Month:	27,709
Total Expenditures to Date:	171,548
Net Available:	148,452
Capital Equipment Expenses and Committs:	3,729

Annual Plan Project BE3**Development of Improved Microbial Flooding Methods****MANPOWER STATUS OF THE PROJECT FOR APRIL**


Total Man-hours:	5,580
Man-hours used this Month:	567
Total Man-hours used to Date:	3,532
Net Available:	2,048

Legend for Key Milestones

X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Submit Status Report on Project Environmental, Safety, and Health Assessment
- 2 Complete Evaluation of Microbial Systems in Porous Media Using CT/NMR-Imaging Techniques
- 3 Complete Experiments Investigating the Role of Microbial Polymer Production in Oil Recovery
- 4 Prepare Chapter for NIPER Final Report Summarizing Accomplishments of Project BE3 (Draft complete by April 15)
- 5 Finalize Development of Mathematical Descriptions for Use in MEOR Predictive Simulator
- 6 Provide Support to DOE's Cooperative Effort with Venezuela by Presenting Project Research Results at Annex XIII Meetings
- 7 Topical Report Describing Development of Mathematical Descriptions for Predicting Mechanisms of Microbial Oil Recovery

XXC

_____ XXX XXX XXX XXX XXX XXX _____ C

_____ XXX XXX XXX XXX XXX XXX _____ C

_____ XXX XXX XXX XXX XXX XXX _____ C

_____ XXX XXX XXX XXX XXX XXX _____ C

_____ _____ _____ C

_____ _____ _____ C

BE3. DEVELOPMENT OF IMPROVED MICROBIAL FLOODING METHODS

Accomplishments

The FY93 objectives of this project are (1) to continue development of an engineering methodology for use in the design and application of microbial methods and (2) to improve oil recovery methods and refine modeling procedures for predicting the effectiveness of such methods in field applications.

Different types of microorganisms can improve oil recovery in various ways. NIPER's research has focused primarily on surfactant and gas-producing microbes that are capable of improving microscopic oil displacement efficiency. Microorganisms can also be used to plug high-permeability zones and cause fluid diversion. During the past 2 years, microbial retention experiments have been conducted with surfactant and gas-producing microbes to determine the effects of microbial adsorption and clogging in porous media. These experiments have been used to define parameters and values for the numerical MEOR simulator.

Research for FY93 will continue with laboratory experiments designed to meet both near- and mid-term objectives. Based upon the laboratory data, mathematical models are being developed to predict microbial transport, metabolism, oil recovery, and permeability modification. The resulting models can then be used to predict the behavior of microbial EOR processes under actual reservoir conditions. Injection strategies for maximizing incremental oil recovery are also being developed.

Milestone 2—A coreflood experiment is in progress using a microbial species of *Leuconostoc*. This species produces polymer when fermenting sugar and should not produce gas in the coreplug. By comparing NMR images obtained during this coreflood with previously acquired images in corefloods using gas-producing microbes, it may be possible to determine and quantify gas distribution in the pores. The results of this experiment will not be available until next month.

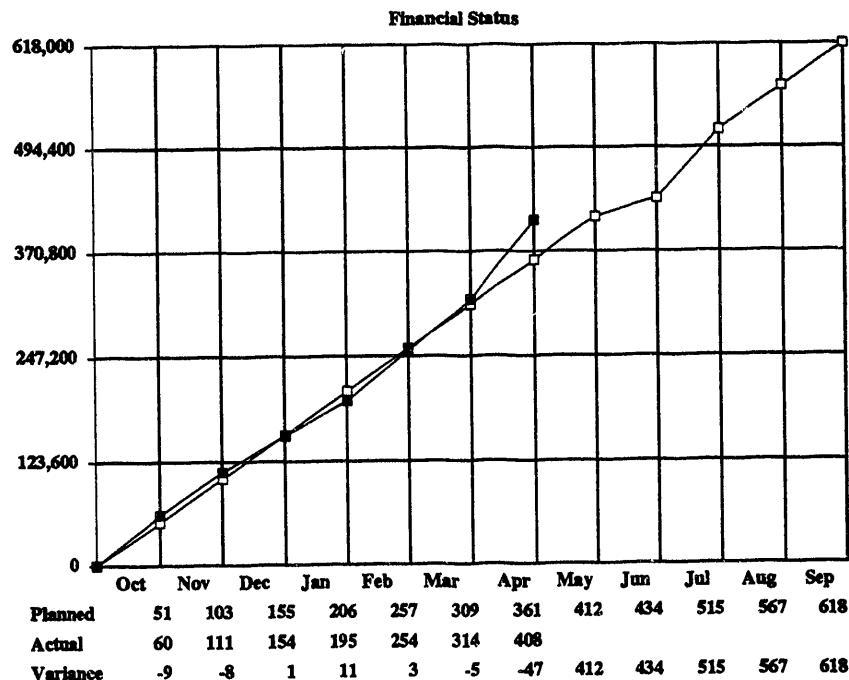
Milestone 3—A coreflood was conducted with a polymer-producing microorganism to compare the results of oil recovery efficiency and pressure drop across the core during waterflooding with results obtained previously using NIPER 6 *Clostridium*—a producer of gas, acids, and surfactant. Results with the polymer-producer showed no significant pressure drop increase across the core compared to NIPER 6. The experiment will be repeated with another polymer-producing microorganism using a longer shut-in time.

Milestone 4—The chapter on microbial EOR processes for the NIPER final report has been written and is in review.

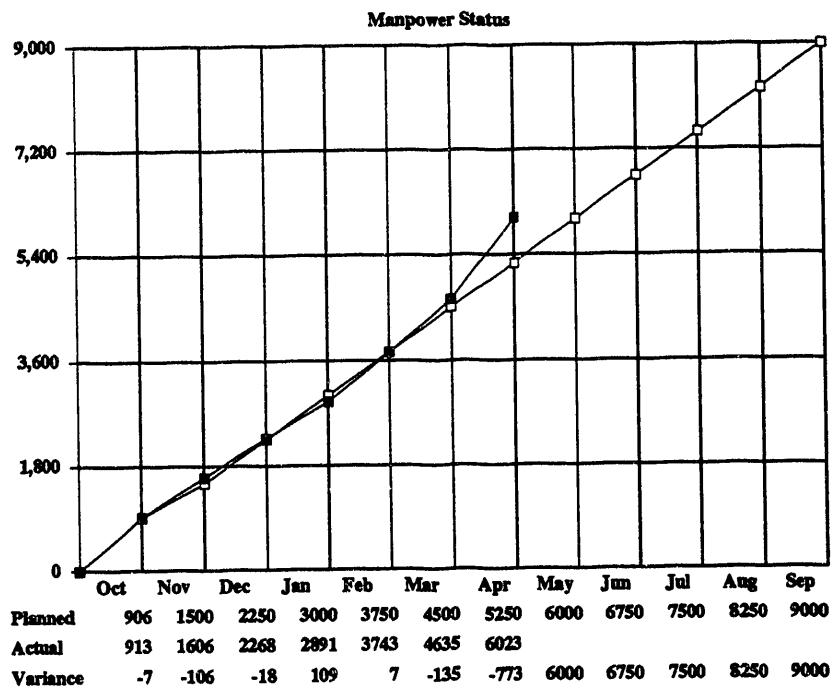
A paper, entitled "Basics of Microbial EOR Processes," has been prepared for presentation at the New Technology for Independent Producers seminar to be held in Denver, CO, May 6-7.

Milestone 5—Evaluation of the retention test data continued this month. Problems encountered with the glass beadpack have been resolved, and it can now be used for a retention test using NIPER 6 microbial species.

Manpower and Financial Status


Manpower and financial expenditures are on schedule.

Status of Project Milestones


Project milestones are on schedule.

BE4A**FINANCIAL STATUS OF THE PROJECT FOR APRIL**

Total Appropriation:	640,000
Less Capital Equipment:	22,000
Appropriation Balance:	618,000
Expenditures for the Month:	93,991
Total Expenditures to Date:	407,620
Net Available:	232,380

Capital Equipment Expenses and Commit:**Annual Plan Project BE4A****Development of Improved Chemical Flooding Methods****MANPOWER STATUS OF THE PROJECT FOR APRIL**

Total Man-hours:	9,000
Man-hours used this Month:	1,388
Total Man-hours used to Date:	6,023
Net Available:	2,977

Legend for Key Milestones

X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Status Report on Environmental, Safety, and Health Review
- 2 Evaluation of Mixed Surfactants for use in Class 1 Reservoirs
- 3 Through CT-Imaged Coreflood Experiments, Determine Effectiveness of Mixed Surfactant Systems for Oil Recovery
- 4 Determine Adsorption Characteristics of Mixed Surfactant Systems
- 5 Conduct CT-Imaging Experiments to Determine Optimum Injectant Slug Size for Oil-bank Formation and Mobilization
- 6 Develop Surfactant Data Base to Facilitate Design of Chemical Flooding Systems & Submit Status Report on Its Effectiveness
- 7 Prepare Chapter for NIPER Final Report (Draft by April 15)
- 8 Top. Rpt. Describing Adsorption Studies of Mixed Surfactant Systems
- 9 Top. Rpt. Describing Effectiveness of Mixed Surfactant Systems for Use in EOR

XXX XXX
 XXX XXX XXX XXX XXX XXX XXX _____ C
 XXX XXX XXX XXX XXX XXX XXX _____ C
 XXX XXX XXX XXX XXX XXX XXX _____ C
 _____ XXX XXX XXX XXX XXX XXX _____ C
 _____ XXX XXX XXX XXX XXX XXX _____ C
 _____ XXX XXX XXX XXX XXX XXX _____ C
 _____ XXX XXX XXX XXX XXX XXX _____ C
 _____ XXX XXX XXX XXX XXX XXX _____ C

BE4A. DEVELOPMENT OF IMPROVED CHEMICAL FLOODING METHODS

Accomplishments

The objectives of this project are (1) to determine the applicability of advanced EOR technologies, based on mixed surfactant systems, to improve oil recovery from Class 1 and other DOE-targeted reservoirs; (2) to adapt surfactant EOR technology to different salinity and temperature ranges by developing surfactant systems that are tolerant to changes in chemical composition in selected reservoirs; and (3) to develop cost-effective systems for selected applications using low concentration surfactants with alkaline additives or other sacrificial agents. The studies will focus on problem areas which adversely affect performance and economics of chemical EOR and thus achieve a balance between cost and oil recovery effectiveness.

Milestone 2—Salinity scans are being conducted on selected combinations of the anionic surfactant TRS 10-410/IBA and nonionic surfactants in the Genapol and Igepal series, with different alkane hydrocarbons (n-octane, n-decane, and n-dodecane) and at different temperatures. Similar scans are being conducted with the nonionic surfactants alone (at different HLB values) using the different alkanes. These experiments are being performed to quantify and correlate the oil and water solubilization parameters of these surfactant systems and to compare the values of optimal salinity obtained using this method with the results from earlier PIT studies over a range of temperatures from room temperature up to 60° C. Phase behavior observations over the conditions considered will be made over a period of 1 week per temperature. This will give the oil-brine-surfactant mixtures time to equilibrate.

Milestone 3—The minipermeameter was used to determine permeability variations in an oil-wet core from North Burbank Unit, Osage County, Oklahoma. Average air permeability of this core was approximately 50 mD. The core appeared to be relatively uniform before cleaning. However, after cleaning, a narrow, dark band extended through the core. Average permeability in the area of the dark band ranged from 10 to 14 mD. Regions of higher permeability (50 to 65 mD) could be found on either side of the band. Thin sections will be prepared to determine mineralogical differences that might account for the color change during cleaning. This core is being prepared for evaluation of the effect of iododecane (an oil additive to increase the CT-density of the oil phase during chemical coreflood experiments) on oil saturation distribution calculations using oil-wet core.

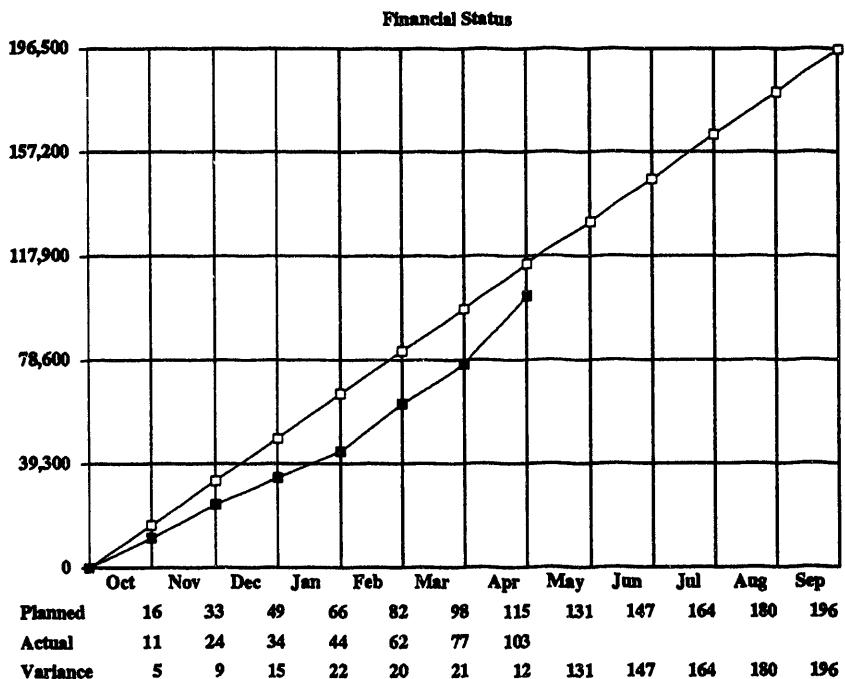
Milestone 4—The primary objective of this milestone is to determine the adsorption behavior of mixed surfactant systems. The system currently being tested consists of a 1:1 mixture of Stepan's B-100 (anionic surfactant) and Igepal DM-530 (nonionic surfactant) at a total surfactant concentration of 2%. The adsorbent is Davison Grade 62 silica gel, with a specific surface area of 330 m²/g. Preparation of calibration curves for the analytic technique using these mixed surfactants is near completion. Preliminary bottle adsorption tests of the unmixed surfactants indicate that the nonionic surfactant will adsorb to the extent of 500-600 milligrams surfactant per gram of solid, while the anionic adsorption is in the range of 0.8 to 1.0 gram surfactant per gram of solid. Static tests are underway to determine the adsorption characteristics of these surfactant mixtures.

Milestone 5—Two CT-monitored corefloods were designed to determine the effect of changing surfactant slug injection size (at constant polymer concentration) on oil-bank formation and propagation. Surfactant slug sizes of 0.4 and 0.2 PV of a 0.4% total-concentration mixed surfactant system were used. Problems occurred with polymer injection during the test using the 0.4 PV system in that the concentration of polymer was only 500 ppm rather than the designed concentration of 3,500 ppm. As a result, this test will have to be repeated.

Milestone 6—Work on the surfactant data base is continuing. A subset of 175 references has been selected for critical review. Detailed information on 30 of these references has been entered into the data base.

Milestone 7—The first draft of the chemical flooding research chapter for the NIPER final report has been completed and submitted for editorial review.

Manpower and Financial Status

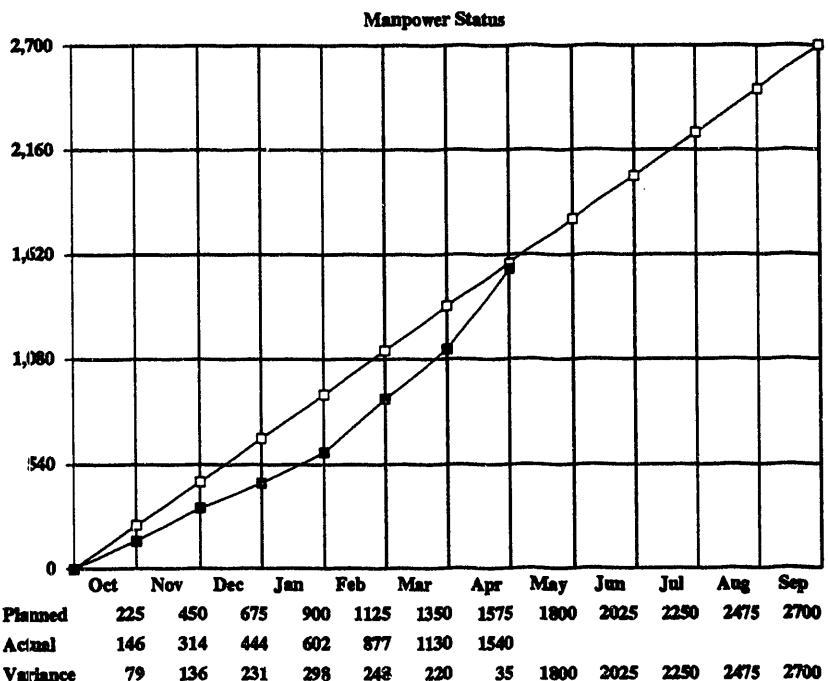

Manpower and financial expenditures are higher than planned because of efforts of senior staff personnel in completing the first draft of the 10-year final report.

Status of Project Milestones

Project milestones are on schedule.

BE4B**FINANCIAL STATUS OF THE PROJECT FOR APRIL**

Total Appropriation:	200,000
Less Capital Equipment:	3,500
Appropriation Balance:	196,500
Expenditures for the Month:	25,669
Total Expenditures to Date:	102,923
Net Available:	97,077
Capital Equipment Expenses and Committs:	2,665


Annual Plan Project BE4B**Development of Improved Alkaline Flooding Methods****MANPOWER STATUS OF THE PROJECT FOR APRIL**

Total Man-hours:	2,700
Man-hours used this Month:	410
Total Man-hours used to Date:	1,540
Net Available:	1,160

Legend for Key Milestones
 X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Submit Status Report on Project Environmental, Safety, and Health Assessment
- 2 Conclude Study on Dispersion/Interactions Associated with Surfactant-Enhanced Alkaline Flooding Systems
- 3 Complete Transfer of Surfactant-Enhanced Alkaline Flooding Technology to Independent Oil Producers
- 4 Prepare Chapter for NIPER Final Report Summarizing Accomplishments of Project BE4B (Draft Complete by April 15)
- 5 Topical Report Describing Characteristics of Dispersions Associated with Surfactant & Alkaline Chemical Systems

XXC

XXX XXX XXX XXX XXX XXX XXX C

XXX XXX XXX XXX XXX XXX XXX"

XXX XXX XXX XXX XXX XXX XXX C

C

BE4B. DEVELOPMENT OF IMPROVED ALKALINE FLOODING METHODS

Accomplishments

The objectives of this project are to develop improved alkali-surfactant flooding systems and to provide support for an SGP field project. The specific objectives for FY93 are to improve the stability of alkali-surfactant flooding systems by designing combinations of chemicals that will curtail the loss of surfactant from chemical interactions. Most of the tests are being performed with crude oil from the Tucker sand (a Cherokee group sand) of Hepler (KS) oil field, the site of a alkaline/surfactant/polymer field project.

Milestone 2—The BPO approved a change in the objective of this milestone because it was found that characterization of dispersions typical of surfactant-enhanced alkaline systems was more complicated and time intensive than anticipated. The revised objective incorporates the use of CT scanning for the accurate determination of oil saturations in field cores partially swept with surfactant-enhanced alkaline chemical formulations. This research is necessary because heterogeneities in midcontinent field cores make it difficult to predict accurately the final oil saturations that result after application of chemical flooding methods.

A core from Hepler (KS) oil field, which was previously characterized by minipermeameter measurements, was selected for further study. This core was selected because it had a more uniform permeability distribution (between 100 to 225 mD) than many cores from Hepler field, and thus had better potential for good sweep efficiency during chemical flooding.

The interfacial tension (IFT) between oil and injected fluids was measured using a surfactant concentration of 0.1% Chevron CF-100 surfactant, which is a lower surfactant concentration than was used for prior chemical floods with Hepler oil and core. Surfactant concentration was reduced in an effort to improve economics and reduce front-end costs during the field pilot test. Minimum IFT was about 90 μ N/m, and was fairly insensitive to the NaHCO_3 concentration.

Injection and propagation of a slug of brine (0.3 PV) containing NaI tracer was monitored with the CT scanner. The results indicated considerable dispersion, but gross channeling of injected fluid was not observed. After displacement of the tracer-containing slug, the core was oil flooded to residual water saturation and again monitored by CT. Brine was displaced by the oil without observing any gross channeling. The next step will be to waterflood, followed by chemical flooding.

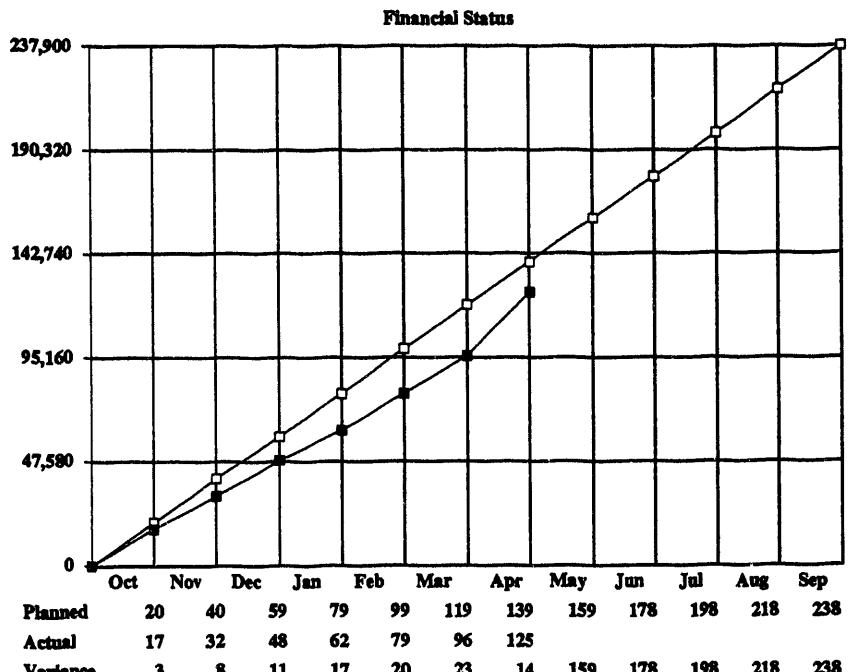
Milestone 3—Completed.

Milestone 4—Final report preparation was continued with a written section on the accomplishments of surfactant-enhanced alkaline flooding research during this year, which will be a part of Chapter 4 of the NIPER final report.

Manpower and Financial Status

Manpower and financial expenditures are on schedule.

Status of Project Milestones


Milestone 3 was completed in March with presentation of project results at the Tenth TORP conference in Wichita, KS, and at the FDD sandstone reservoir workshop in Norman, OK. The other project milestones are on schedule.

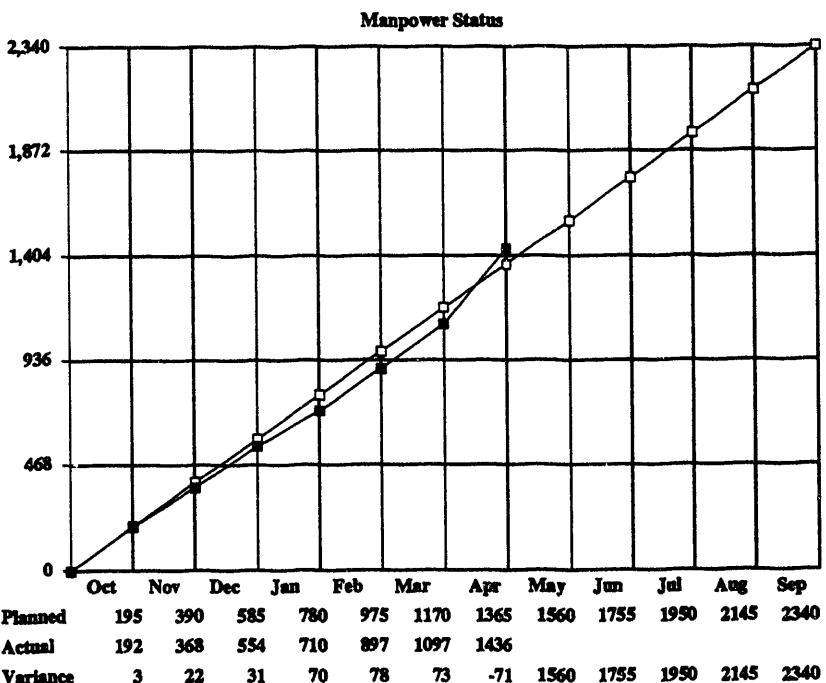
BE4C**FINANCIAL STATUS OF THE PROJECT FOR APRIL**

Total Appropriation:	240,000
Less Capital Equipment:	2,100
Appropriation Balance:	237,900
Expenditures for the Month:	28,560
Total Expenditures to Date:	124,572
Net Available:	115,428
Capital Equipment Expenses and Committs:	0

Annual Plan Project BE4C

**Mobility Control and Sweep Improvement
in Chemical Flooding**

MANPOWER STATUS OF THE PROJECT FOR APRIL


Total Man-hours:	2,340
Man-hours used this Month:	339
Total Man-hours used to Date:	1,436
Net Available:	904

Legend for Key Milestones

X = Work Completed
C = Planned Completion Date
C' = Revised Completion Date
C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Submit Status Report on Environmental, Safety, & Health Review
- 2 Complete Determination on the Effect of Lamination Angle & Pore Size Distribution on Polymer Retention
- 3 Finalize Comparison of Simulation Results from Permeability Modification Simulator with Field Performance Data
- 4 Finalize Adaptation of Permeability Modification Simulator to IBM-PC/80386 Microcomputer
- 5 Prepare Chapter for NIPER Final Report (Draft by April 15)
- 6 Status Report Describing the Simulation & Prediction of Oil Recovery from Field Permeability Modification Treatments
- 7 Topical Report Describing the Effect of Lamination Angle & Pore Size Distribution on Polymer in Unfired Berea Cores
- 8 Complete Source Code, Executable Code, & User's Manual for IBM-PC/80386 Version of Permeability Modification Simulator

XXC

XXX XXX XXX XXX XXX XXX XXX _____ C

XXX _____ XXX XXX XXX XXX XXX _____ C

C

XXX XXX XXX _____ C

C

C

C

C

BE4C. MOBILITY CONTROL AND SWEEP IMPROVEMENT IN CHEMICAL FLOODING

Accomplishments

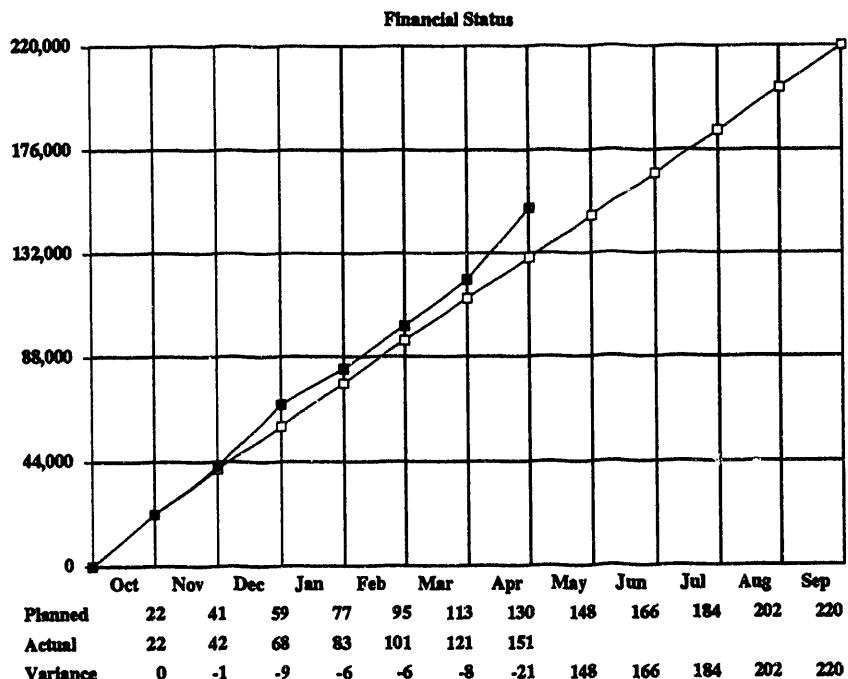
The objectives of this project are to develop improved methods for maintaining effective mobility control throughout the reservoir in chemical flooding and to use NIPER's permeability modification simulator to design a cost-effective gel treatment using polymer gel systems. Specific objectives in FY93 are (1) to determine the effect of lamination angle on polymer retention in unfired Berea cores, (2) to compare simulation results using the permeability modification simulator with field performance, and (3) to convert the permeability modification simulator for use with an BM-PC/80386 or compatible microcomputer.

Milestone 2—Brine permeability measurements and a coreflood were conducted on an unfired rectangular Berea sandstone core to determine the permeability and level of polymer retention. The core had dimensions of 23.88 x 3.81 x 3.81 cm and was cut at 30° from the direction of laminations. The porosity was 19% and brine permeability was 160 mD. The brine was made with 2% KCl. A 3.5 PV (232 mL) slug of & 1,000-ppm biopolymer solution in 2% KCl was then injected and followed by 9.93 PV (657 mL) of 2% KCl. The injection rate used was 3.8 mL/hr or 1.08 ft/d (apparent shear rate = 10 sec⁻¹). Results showed that the maximum amount of polymer retention during polymer flow was 1,143 kg/acre/m, compared to 1,200 kg/acre/m in an unfired Berea sandstone core that was cut along the direction of laminations. This amount was 40% higher than that in a similar but fired Berea core (816 kg/acre/m). The post-brine flood showed that irreversible polymer retention was 370 kg/acre/m, which was lower than that in an unfired Berea sandstone core (402 kg/acre/m) also cut along the direction of laminations.

Milestone 3—Analysis of the field data from a pilot field that had been treated with gelled polymer showed that more information on the top zone would be required in order to determine the permeability distribution. This additional information was requested from an independent oil producer.

Milestone 5—The first draft of the mini-summary and analysis of research results on polymer flooding and permeability modification obtained during the past 9 years, along with recommendations for future research on polymer flooding and permeability modification, has been completed and is in review.

Manpower and Financial Status


Manpower and financial expenditures are on schedule.

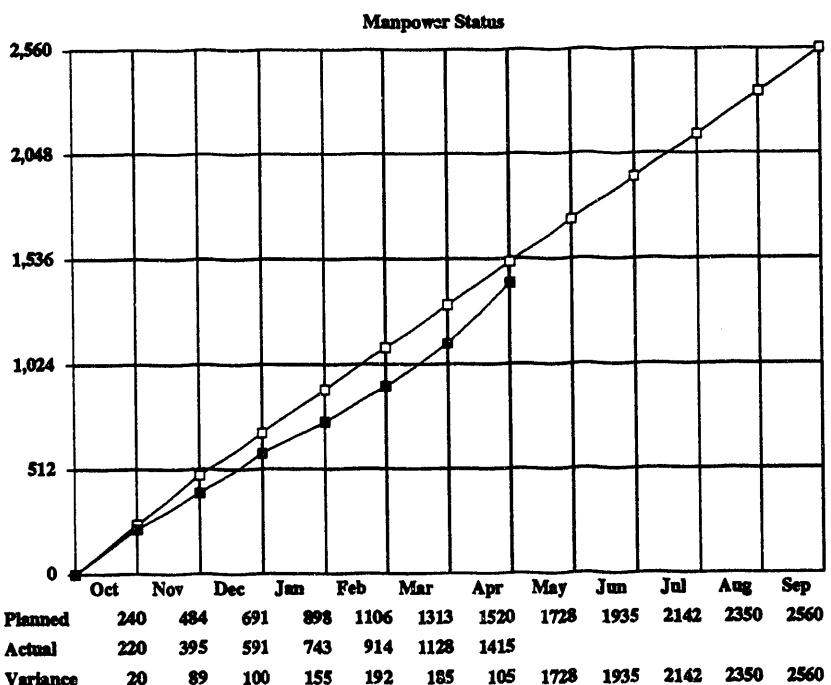
Status of Project Milestones

Project milestones are on schedule.

BESA**FINANCIAL STATUS OF THE PROJECT FOR APRIL**

Total Appropriation:	250,000
Less Capital Equipment:	30,000
Appropriation Balance:	220,000
Expenditures for the Month:	30,057
Total Expenditures to Date:	150,939
Net Available:	99,061
Capital Equipment Expenses and Committs:	7,916

Annual Plan Project BESA**Gas Flood Performance Prediction Improvement****MANPOWER STATUS OF THE PROJECT FOR APRIL**


Total Man-hours:	2,560
Man-hours used this Month:	287
Total Man-hours used to Date:	1,415
Net Available:	1,145

Legend for Key Milestones

X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Submit Status Report on Environmental, Safety, and Health Review
- 2 Complete Construction & Testing of High-Pressure IFT Measurement Apparatus
- 3 Finalize Studies on PVT Determination of Carbon Dioxide Partitioning Between Hydrocarbon & Water Phases at Selected Temperature & Pressure Conditions
- 4 Complete IFT Measurements for Water-Hydrocarbon Systems
- 5 Prepare Chapter for NIPER Final Report Summarizing Accomplishments of Project BESA (Draft Complete by April 15)
- 6 Topical Report Describing Experimental Techniques & Correlations Developed for IFT and Carbon Dioxide-Partitioning Measurements

XXX XXC

____ XXX XXX XXX XXX XXC

____ XXX XXX XXX XXX XXX XXX

____ XXX XXX XXX XXX XXX XXX

____ XXX XXX ____

____ XXX XXX ____

C

C

C

C

BES5A. GAS FLOOD PERFORMANCE PREDICTION IMPROVEMENT

Accomplishments

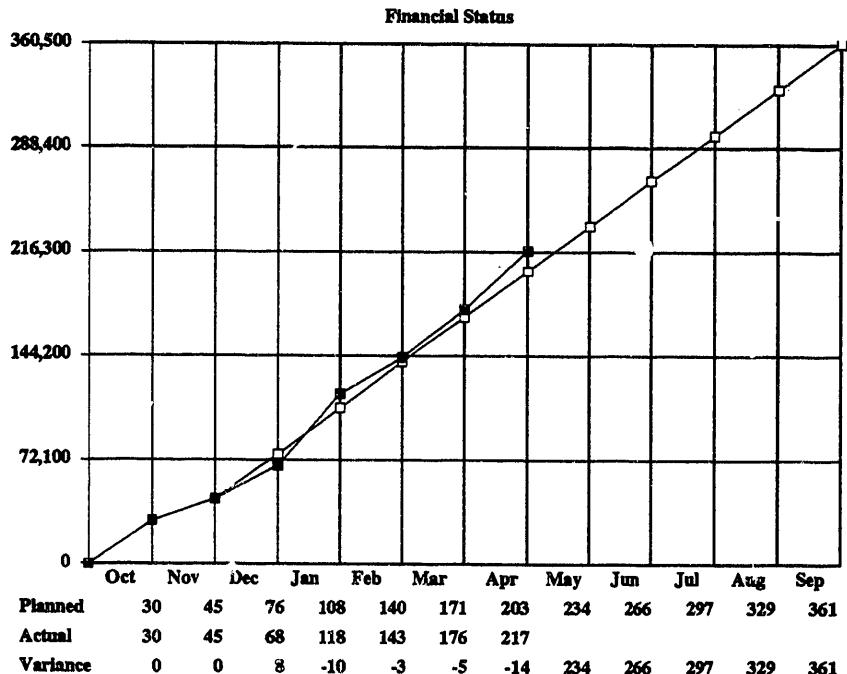
The objective of this project is to improve prediction techniques for gas miscible displacement through fundamental research in displacement mechanisms. The FY93 studies are to determine (1) the effects of CO₂ partitioning in oil and water phases and (2) the significance of CO₂ dissolution on water-oil interfacial tension (IFT) and relative permeability.

Milestone 3—Before completing IFT measurements of CO₂ systems, the solubilities of CO₂ in the aqueous and oil phases have to be determined. To this end, a prediction technique for CO₂ solubility in water and brine is being developed.

Milestone 4—Calibration of the equipment for measuring IFT is in progress. The surface tension of pure water at 10° to 40° C and the IFT of n-pentane with water at 25° C have been measured successfully and match data reported in the literature. However, the present repeatability of some measurements is unacceptable, and additional tests will be required to assure the IFT measuring method can provide reliable and reproducible data.

Milestone 5—The revised draft of the chapter on gas flooding research has been prepared and is in review.

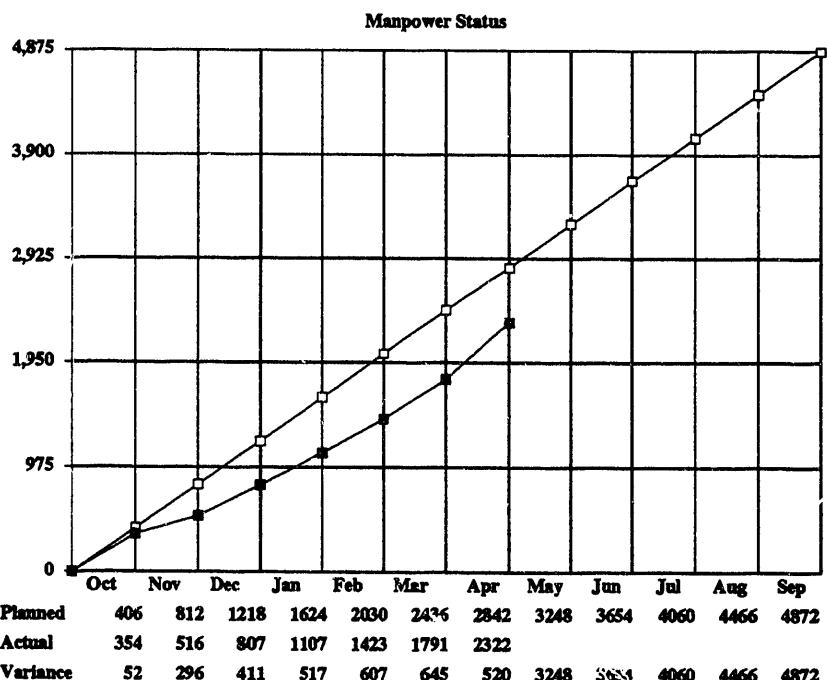
Manpower and Financial Status


Manpower utilization is on schedule, but financial expenditures are high by 16% due to concentrated efforts in developing the IFT apparatus and prediction techniques.

Status of Project Milestones

Milestones 1 and 2 have been completed. The other milestones are on schedule.

BE5B**FINANCIAL STATUS OF THE PROJECT FOR APRIL**


Total Appropriation:	375,000
Less Capital Equipment:	14,500
Appropriation Balance:	360,500
Expenditures for the Month:	41,617
Total Expenditures to Date:	217,419
Net Available:	157,581
Capital Equipment Expenses and Commits:	0

Annual Plan Project BE5B

Mobility Control, Profile Modification,
and Sweep Improvement in Gas Flooding

MANPOWER STATUS OF THE PROJECT FOR APRIL

Total Man-hours:	4,872
Man-hours used this Month:	531
Total Man-hours used to Date:	2,322
Net Available:	2,550

Legend for Key Milestones

X = Work Completed
C = Planned Completion Date
C' = Revised Completion Date
C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Submit Status Report on Project Environmental, Safety, and Health Assessment
- 2 Complete Feasibility Evaluation on Use of Alcohol-Induced Salt Precipitation for Profile Modification; Determine Phase Behavior & Salt Precipitation of Alcohol-brine Systems
- 3 Complete Studies on Plugging of Porous Media by Alcohol-Induced Salt Precipitation
- 4 Prepare Chapter for NIPER Final Report Summarizing Accomplishments of Project BE5B (Draft Complete by April 15)
- 5 Complete Profile Modification Determinations Using Polymer Gels and/or Alcohol-Induced Salt Precipitation
- 6 Status Report Describing Results of Profile Modification Studies

XXX XXX

XXX XXX XXX XXX XXX

____ XXX XXX XXX XXX XXX XXX C

____ XXX XXX XXX XXX C

____ XXX C

KE5B. MOBILITY CONTROL, PROFILE MODIFICATION, AND SWEEP IMPROVEMENT IN GAS FLOODING

Accomplishments

The objective of this project is to develop methods for improving sweep efficiency in gas flooding. Proposed methods for profile modification include the use of polymers, in situ formation of polymer gels, and by precipitation of salts and chemicals.

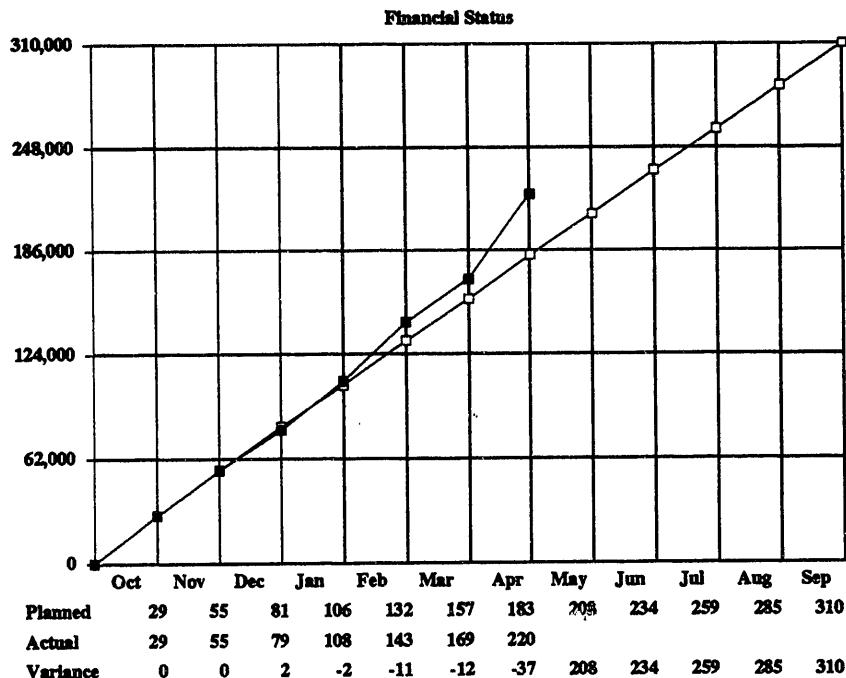
Milestone 3—Coreflood tests with salt precipitate and ethanol are continuing in order to determine the effects of longer intervals of shut-in time on increased crystal growth and improved permeability reduction. Shut-in times of several weeks duration appear to gradually decrease the permeability.

Other corefloods were conducted with cores at irreducible oil saturation. The cores were then treated with saturated brine and 10% PV ethanol and shut in for 5 days. A waterflood following the brine/ethanol treatment did not produce any additional oil. These corefloods will be continued using a larger quantity of ethanol.

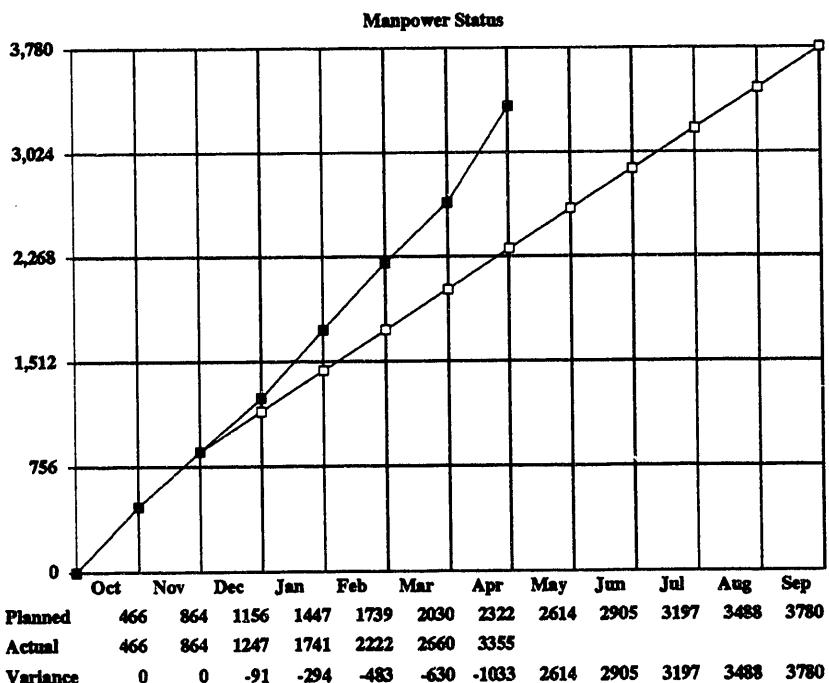
Milestone 4—A draft final report for gas flooding research has been prepared and is in review.

Milestone 5—Testing continued on other polymer systems having potential as profile modification agents for CO₂ flooding. Preliminary tests were made with Curdlan. This biopolymer is soluble only in basic solutions. Solutions of Curdlan thickened and increased in viscosity by decreasing the solution pH. For example, solutions of 0.5% polymer in 1.0 and 0.1 N NaOH had viscosities of 2 and 9 cP, respectively. A gel was formed at a pH of about 9. CO₂ was contacted with the polymer solution to decrease the solution pH, and the gaseous CO₂ reduced the solution pH sufficiently to form a stable gel. About 5 pore volumes of gaseous CO₂ were required to form a gel with a 0.1 N NaOH solution. Properties of this polymer may be useful for profile modification of high-permeability zones in the formation. These properties include a low solution viscosity during injection, and a gel formation when the solution is contacted by the CO₂ flood. However, the desirable property of low viscosity during injection would initially require a highly basic polymer solution.

Manpower and Financial Status


Financial expenditures are on schedule. Manpower is temporarily below planned projections due to commitments to other DOE projects.

Status of Project Milestones


Project milestones are on schedule.

BE9**FINANCIAL STATUS OF THE PROJECT FOR APRIL**

Total Appropriation:	340,000
Less Capital Equipment:	30,000
Appropriation Balance:	310,000
Expenditures for the Month:	50,153
Total Expenditures to Date:	219,647
Net Available:	120,353
Capital Equipment Expenses and Committs:	4,745

Annual Plan Project BE9**Three-Phase Relative Permeability Research****MANPOWER STATUS OF THE PROJECT FOR APRIL**

Total Man-hours:	3,780
Man-hours used this Month:	695
Total Man-hours used to Date:	3,355
Net Available:	425

Legend for Key Milestones

X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Submit Status Report on Environmental, Safety, and Health Assessment
- 2 Complete Multiphase Relative Permeability Tests at 150 Degrees F on Almond Formation Rock
- 3 Select & Characterize Rock for FY93 Experimental Program
- 4 Complete Design of Test Fluid & Equipment for Use in Measuring IFT Under Selected Conditions of Temperature & Pressure
- 5 Conclude FY93 Multiphase Relative Permeability Experiments at Elevated Conditions of Temperature & Pressure
- 6 Complete Development of Coreflood Simulator
- 7 Prepare Chapter for NIPER Final Report Summarizing Project Accomplishments (Draft Complete by April 15)
- 8 Topical Report Describing Two- and Three-Phase Relative Permeability & Other Experimental Results

XXX XXX

XXX ____ XXX XXX XXX XXC
____ XXX XXX XXX XXX XXX ____ C

____ XXX XXX XXX X__ C

____ XXX XXX XXX XXC
____ XXX XXX ____ XXX ____ C

____ XXX XXX XXX XXX ____ C

C

BE9. THREE-PHASE RELATIVE PERMEABILITY RESEARCH

Accomplishments

The objectives of this project are (1) to improve the reliability of laboratory measurements of three-phase relative permeability for steady- and unsteady-state conditions in core samples; (2) to investigate the influence of rock, fluid, and rock-fluid properties on two- and three-phase relative permeabilities; and (3) to expand the state of the art for measuring relative permeabilities at higher temperatures and pressures.

Milestone 3—Capillary pressure tests will be performed next month.

Milestone 4—A fluid system consisting of methane, propane, and bromopropane is in design. Permeameter designs are under evaluation.

Milestone 5—Laboratory flow tests have been designed, and experiments are expected to start during the next reporting period.

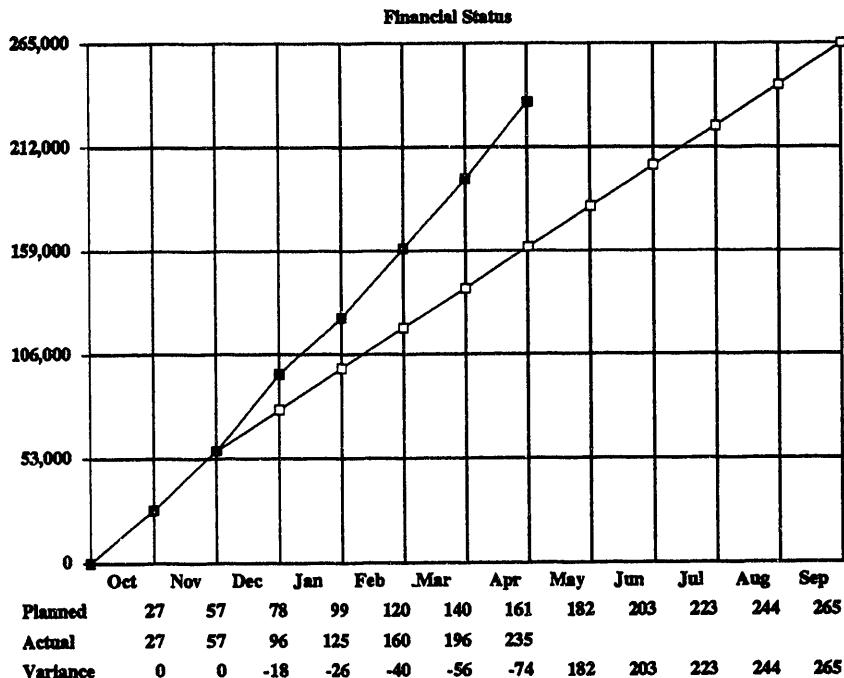
Milestone 6—The Gateway 2000 Model 486DX2/66V computer system was received at the beginning of the month. This computer is equipped with 32 MBytes of memory, a 340 MByte hard drive, and a very fast video adapter with a 38.1-cm color monitor. The hard drive and video adapter operate off a VESA local bus system and provide very fast response. The computer is also equipped with a CD-ROM drive and a tape-cartridge drive for backup. The computer was provided with the DOS 5.0 and Windows 3.1 operating systems. The computer has since been equipped with a beta version of the OS/2 2.1 operating system from IBM. While there are a few bugs in this operating system, it appears to be very versatile, being able to run DOS and Windows 3.1 programs together with OS/2 programs with true multi-tasking. All of the software currently available on DOS or Windows 3.1 appears to run with no problems. Two versions of the Microway FORTRAN compilers—one for DOS extenders and one for OS/2 2.x—have been installed on the computer. These have been used to compile a version of the BOAST simulator for both systems. Some time was required to modify the source code to obtain a working simulator.

The compiled BOAST simulator has been tried on several one- and two-dimensional (1-D and 2-D) simulations. On 2-D data sets involving approximately 3,000 grid blocks, the simulator takes about 30 minutes to perform 600 trials before reaching terminating conditions. For a 1-D data set involving 40 grid blocks, the simulator takes 33 seconds to do approximately 1,000 trials before reaching endpoint. During this 33 second run, the simulator output 36 data files showing the 1-D oil, water, and gas saturations and how the flood front traversed the length of the model during the simulation. Now that the simulator is working properly, it will be used to study 1-D and 2-D models based on permeability, porosity, capillary pressure, and saturation distributions representative of real rock systems under study in the laboratory.

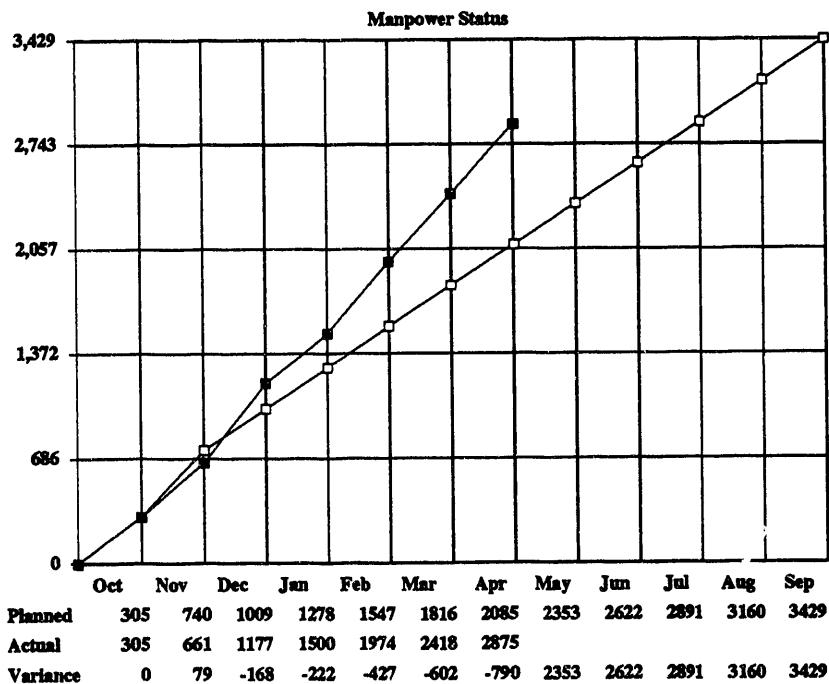
Milestone 7—A first draft of the BE9 final report chapter has been completed.

Manpower and Financial Status

Manpower and financial expenditures are above target levels and reflect the effort in meeting the early completion dates for milestones 3 through 6.


Status of Project Milestones

Milestone 3 is on schedule. Milestone 4 is behind schedule and has proven to be more difficult than anticipated. The other milestones are on schedule.


BE11A**FINANCIAL STATUS OF THE PROJECT FOR APRIL**

Total Appropriation:	300,000
Less Capital Equipment:	35,000
Appropriation Balance:	265,000
Expenditures for the Month:	39,362
Total Expenditures to Date:	234,871
Net Available:	65,129

Capital Equipment Expenses and Commit:	0
--	---

Annual Plan Project BE11A**Thermal Processes for Light Oil Recovery****MANPOWER STATUS OF THE PROJECT FOR APRIL**

Total Man-hours:	3,429
Man-hours used this Month:	457
Total Man-hours used to Date:	2,875
Net Available:	554

Legend for Key Milestones

X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C" = Completed Ahead of Schedule

Key Milestone Status

- 1 Submit Status Report on Project Environmental, Safety, and Health Assessment
- 2 Topical Report on Assessment of NIPER Thermal EOR Research Program Over Past Ten-Year Period
- 3 Complete Supporting Research on Improved Steamflooding at NIPR No. 3, Teapot Dome (WY) Field
- 4 Develop Procedures & Apparatus for Measuring Dynamic Saturation Changes in Steamflooding Using X-ray & CT-scanning
- 5 Prepare Chapter for NIPER Final Report Summarizing Accomplishments of NIPER's Thermal EOR Program (Draft by April 15)
- 6 Complete Transfer of Thermal Technology Developmental Research Through ANNEX IV of the DOE/Venezuelan Cooperative Agreement
- 7 Topical Report Describing Research on Thermal Processes for Light Oil Recovery

XXX XXC

____ XXX XXX XXX XXX XXC¹

XXX XXX XXX XXX XXC

____ XXX XXX ____ XXX XXX XXX ____ C

____ XXX XXX ____ XXX XXX XXX ____ C

XXX ____ XXX ____ XXX XXC"

____ XXX XXX XXX ____ C

BE11A. THERMAL PROCESSES FOR LIGHT OIL RECOVERY

Accomplishments

The FY93 objectives of this project are (1) to perform an environmental, safety, and health (ES&H) analysis on project tasks; (2) to assess the thermal research performed at NIPER; (3) to develop procedure and apparatus for measuring dynamic saturation changes in steamfloods at field conditions using X-ray and CT scanning and incorporate temperature and pressure measurements to calibrate a numerical simulator for predictive purposes; (4) to conduct laboratory research in support of NPR No. 3, Teapot Dome (WY) field light oil steamflood; and (5) to participate in the Annex IV meetings conducted by the DOE and the Venezuelan Ministry of Energy and Mines.

Milestone 2—In completion of this milestone, a topical report, entitled "Evaluation of NIPER Thermal EOR Research, State of the Art, and Research Needs," (NIPER 675) has been delivered to the BPO. This report summarizes NIPER's thermal recovery research over the past 10 years, analyzes contributions of the research, describes the transfer of the technology to potential users, defines current trends in thermal research and thermal oil production, and identifies areas where NIPER can contribute to future advances in thermal oil production.

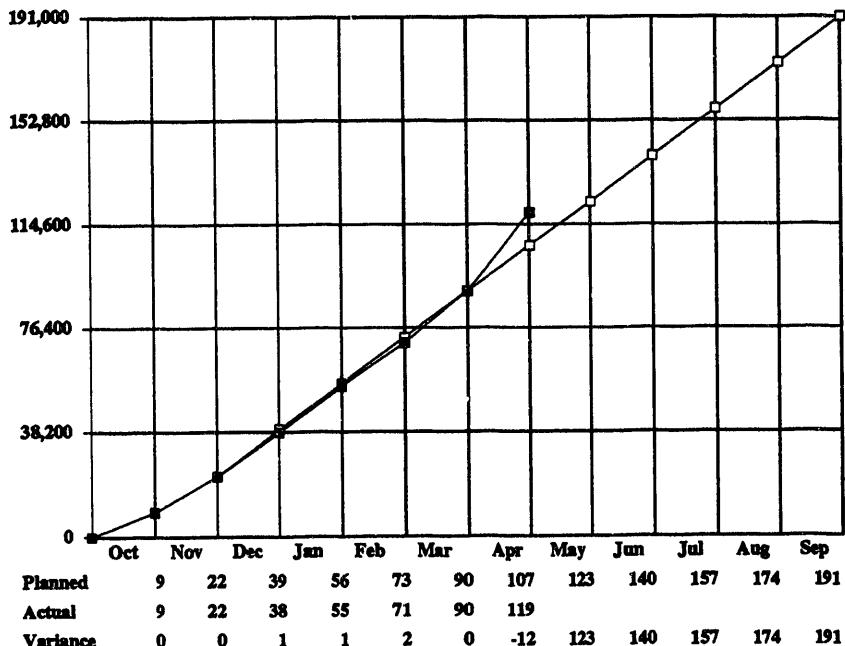
Milestone 4—A safety review of the proposed new steamflood laboratory has been undertaken and a draft of the report is being reviewed. Submission of the proposal to NIPER management in May is anticipated.

Milestone 5—A draft of the results of the previous 10 years research at NIPER by the thermal group was prepared as a chapter for inclusion in NIPER's final report. The chapter is in review.

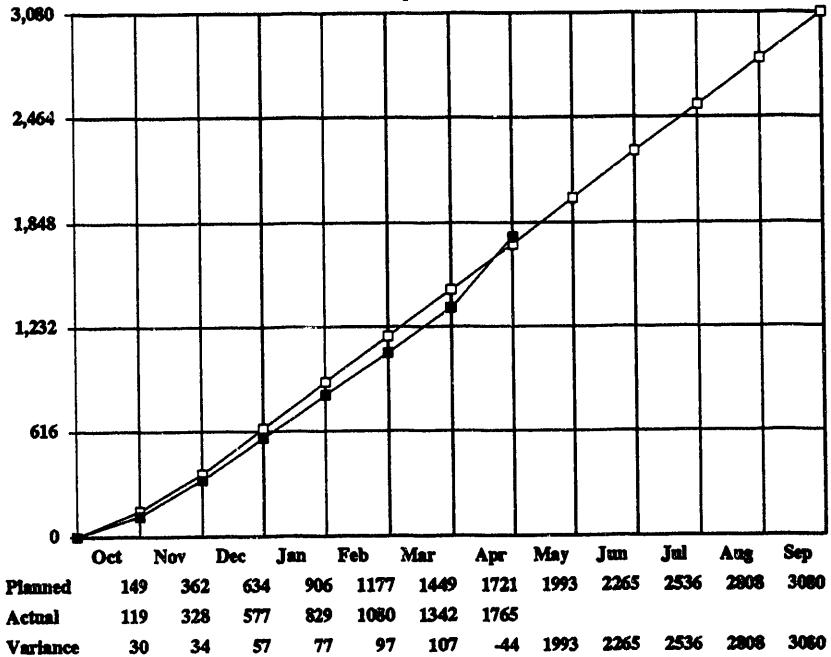
Milestone 7—A topical report on the software for laboratory control, data collection, automation, and analysis is being revised and will be submitted for review in May. This software, designed as NIPER LAB WARDEN, was developed as a general laboratory operating software that can easily be customized to meet individual laboratory or pilot plant applications. The topical report contains a guide to the software operation, a copy of the software, and a section to assist those wishing to customize their applications.

At the request of the BPO, three small business innovative research (SBIR) proposals on oil production technologies were reviewed during April.

Manpower and Financial Status


Manpower and financial expenditures are high by 38 and 46%, respectively, due to work required in preparing the 10-year reports for milestones 2 and 5. Only the DOE contractors review (July 18-22, 1993) and the topical report for milestone 7 remain to be completed.

Status of Project Milestones


Milestones 2 and 6 have been completed. All other milestones are on schedule.

BE11B**FINANCIAL STATUS OF THE PROJECT FOR APRIL**

Total Appropriation:	200,000
Less Capital Equipment:	9,000
Appropriation Balance:	191,000
Expenditures for the Month:	29,129
Total Expenditures to Date:	119,090
Net Available:	80,910
Capital Equipment Expenses and Committs:	0

Financial Status**Annual Plan Project BE11B****Thermal Processes for Heavy Oil Recovery****MANPOWER STATUS OF THE PROJECT FOR APRIL**

Total Man-hours:	3,080
Man-hours used this Month:	423
Total Man-hours used to Date:	1,765
Net Available:	1,315

Manpower Status**Legend for Key Milestones**

X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Submit Status Report on Project Environmental, Safety, and Health Review
- 2 Complete Screening & Identification of Potential Heavy Oil Reservoirs in Texas Gulf Coast Region; Obtain Rock, Fluid, & Reservoir Data on Most Promising Reservoir
- 3 Topical Report on Assessment of NIPER Thermal EOR Research Program Over Past Ten-Year Period
- 4 Complete Evaluation of Mobil's Steamflood Predictive Model
- 5 Complete Modeling Studies to Determine Applicability of Thermal EOR for Recovery of Heavy Oil in Texas Gulf Coast Reservoirs
- 6 Prepare Chapter for NIPER Final Report (Draft by April 15)
- 7 Status Report on Results of Predictive Model & Simulation Studies

XXX XXC

____ XXX XXC

____ XXX XXX XXX XXX'

____ XXX XXX XXX

____ C'

____ XXX XXX XXX

____ C

____ XXX XXX XXX

____ C

C

BE11B. THERMAL PROCESSES FOR HEAVY OIL RECOVERY

Accomplishments

The FY93 objectives are (1) to analyze the NIPER heavy oil data base to screen Texas Gulf Coast reservoirs for priority ranking and (2) to conduct modeling and reservoir studies to determine the applicability of thermal enhanced oil recovery techniques in Texas Gulf Coast heavy oil reservoirs.

Milestone 3—The topical report for the 10-year assessment of thermal EOR research (NIPER-675) was delivered to BPO and completes work scheduled for this milestone.

Milestone 4—The assessment of Mobil's steamflood prediction model is in progress.

Milestone 5—Numerical simulation of a steamflood in the Taylor-Ina (TX) field is in progress. The feasibility of improving steamflood performance with CO₂ as an additive is being investigated. A literature survey of a steamflood using CO₂ was undertaken to collect the requisite data for simulation. The Computer Modeling Group's phase behavior model (CMG PROP) will be used in modeling the CO₂-steam phase behavior.

Milestone 6—A chapter on thermal EOR research activities for inclusion in NIPER's 10-year report was submitted to NIPER management for review on April 15, 1993.

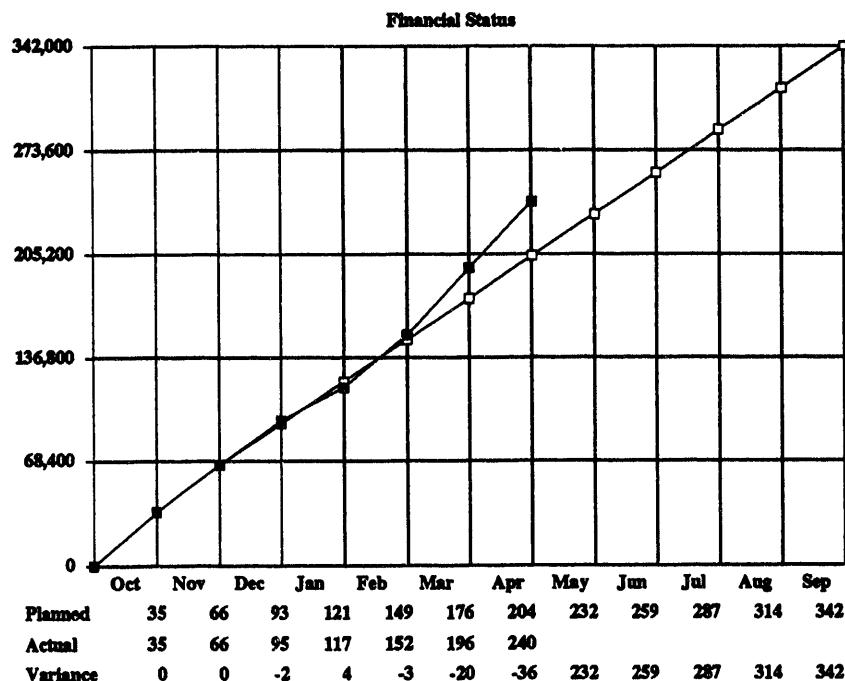
At the request of BPO, project staff reviewed seven Small Business Innovative Research proposals.

Manpower and Financial Status

Manpower utilization is on schedule, but financial expenditures are high by 11% and reflect staff involvement in preparing the 10-year research report.

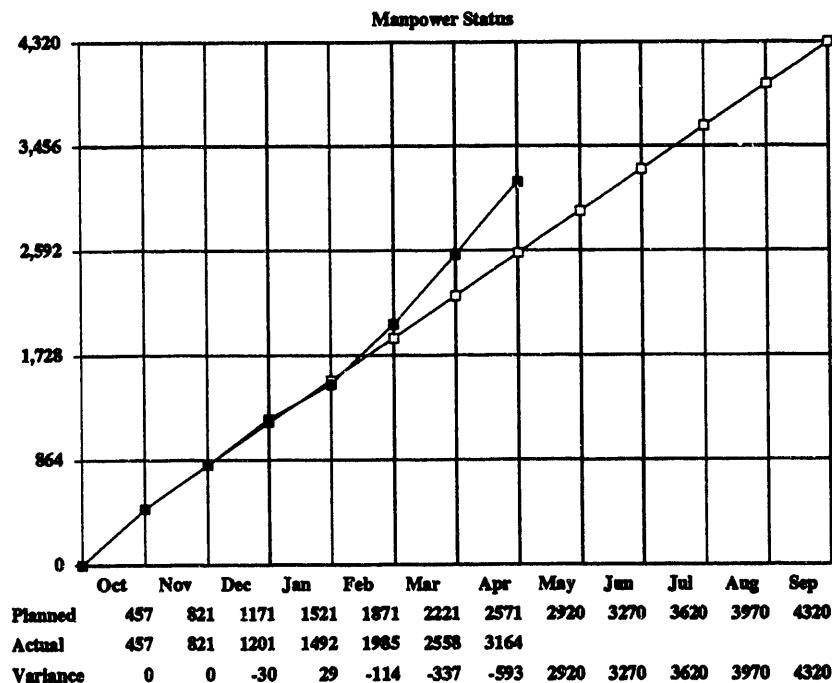
Status of Project Milestones

Milestone 3 was completed. The other project milestones are on schedule.


BE12

FINANCIAL STATUS OF THE PROJECT FOR APRIL

Total Appropriation:	350,000
Less Capital Equipment:	8,000
Appropriation Balance:	342,000
Expenditures for the Month:	44,662
Total Expenditures to Date:	240,249
Net Available:	101,751
Capital Equipment Expenses and Commit:	0


Annual Plan Project BE12

Imaging Techniques Applied to the Study
of Fluids in Porous Media

MANPOWER STATUS OF THE PROJECT FOR APRIL

Total Man-hours:	4,320
Man-hours used this Month:	606
Total Man-hours used to Date:	3,164
Net Available:	1,156

Legend for Key Milestones

X = Work Completed
C = Planned Completion Date
C' = Revised Completion Date
C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Submit Status Report on Environmental, Safety, and Health Review
- 2 Topical Report Describing Scale-up of Reservoir Rock Types in Class 1 Reservoirs
- 3 Complete Investigation on Use of Single- & Multi-energy Scans for Rapid Characterization of Core Samples
- 4 Derive Scale-up Procedures for Determining Permeability & Relative Permeability Values in Large, Heterogeneous Core Samples
- 5 Complete Investigation on the Applicability of NMR Spectroscopy & Microscopy for Studying Rock-Fluid Interactions Affecting Wettability
- 6 Prepare Chapter for NIPER Final Report (Draft by April 15)
- 7 Complete Development of Technology Transfer Activity
- 8 Status Report Describing the Application of NMR Spectroscopy to the Study of Wettability

XXX XXX

XXX XXX

XXX XXX XXX XXX ____ XX XXX _____ C'

XXX XXX XXX XXX XXX XXX XXX _____ C

XXX XXX XXX XXX XXX XXX XXX _____ C

____ XXX XXX XXX

BE12. IMAGING TECHNIQUES APPLIED TO THE STUDY OF FLUIDS IN POROUS MEDIA

Accomplishments

The objectives of this project are: (1) to develop and correlate reservoir engineering parameters from petrographic image analysis, computed tomography (CT) scanning, and nuclear magnetic resonance imaging (NMRI); (2) to investigate the applicability of imaging technologies in the development of scale-up procedures from core plug to whole core to interwell scale; (3) to develop an industry consortium or industrial advisory panel organized to help plan, review, and participate in the research through the Work-For-Others program and to provide for effective technology transfer; and (4) to strongly encourage collaborative research by industrial participants.

Milestone 3—Because of the possibility of conducting joint imaging research with a major oil company, a request to extend the completion date of this milestone until July 1 has been submitted to the BPO for approval.

Milestone 4—The drainage cycle for relative permeability measurements in a heterogeneous Tallant sample has been nearly completed. Permeability and saturation distributions for fractional oil flow rates of 0.02, 0.05, 0.1, 0.2, 0.4, 0.7, 0.9 have been measured for the 26 cP oil viscosity, and analysis of the data is in progress. Preliminary analysis indicates a possible correlation between the porosity of various rock laminations and the saturation distributions at the various fractional flow conditions.

Milestone 5—Two sizes of small-bore glass capillary tubing have been acquired for NMRI studies of systems having mixed wettabilities. The smaller-bore tubing, 530-microns OD and 140-microns ID, will be cleaned with acid to achieve water-wet conditions. The larger-bore tubing, 630-microns OD and 210-microns ID, will be converted to an oil-wet condition by heating for several hours (at elevated temperatures) while in contact with oil. By blending the two types of tubing into a bundle using Teflon shrink tubing, NMRI phantoms will be made containing both water- and oil-wet surfaces. These phantoms will be used to investigate the feasibility of using NMR microscopy to identify the wettability of specific locations in systems of mixed wettability. In the NMR images, the nature of the surfaces will be identified by the size of the capillary tubing.

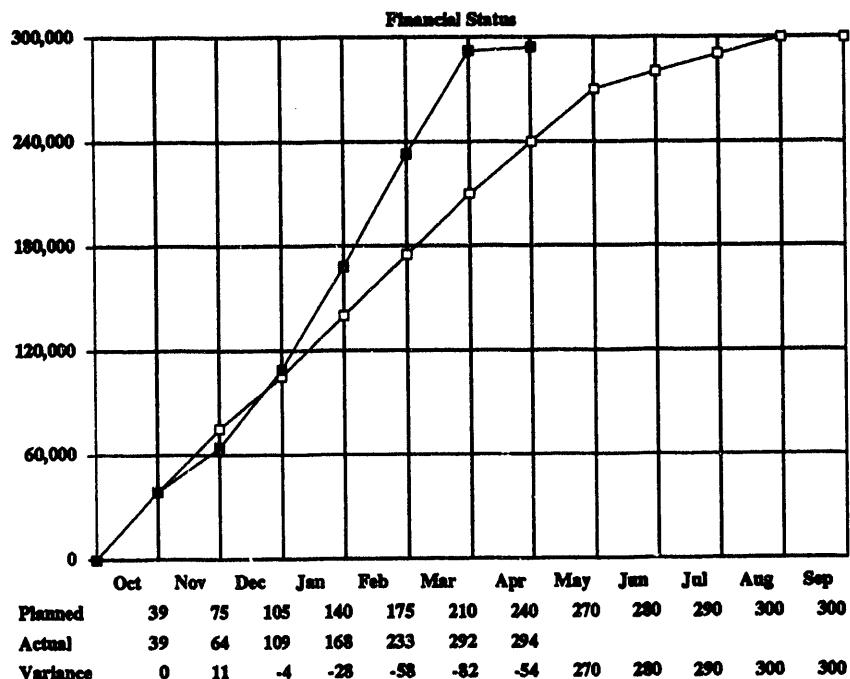
Milestone 6—A first draft of the rock-fluid imaging research chapter (containing results and accomplishments of project BE12 and earlier projects BE12A and BE12B) has been prepared for the NIPER final report.

Milestone 7—A paper, entitled "Imaging Technology Applied to Rock and Fluid Imaging in Cores," will be presented as a part of the series of talks to be given at the New Technology for Independent Producers Workshop, to be held in Denver, CO, May 6-7, 1993. Contacts have continued with three major oil companies regarding cooperative research.

Manpower and Financial Status

Manpower and financial expenditures are higher than planned due to efforts required in meeting the completion dates for milestones 3 and 4.

Status of Project Milestones

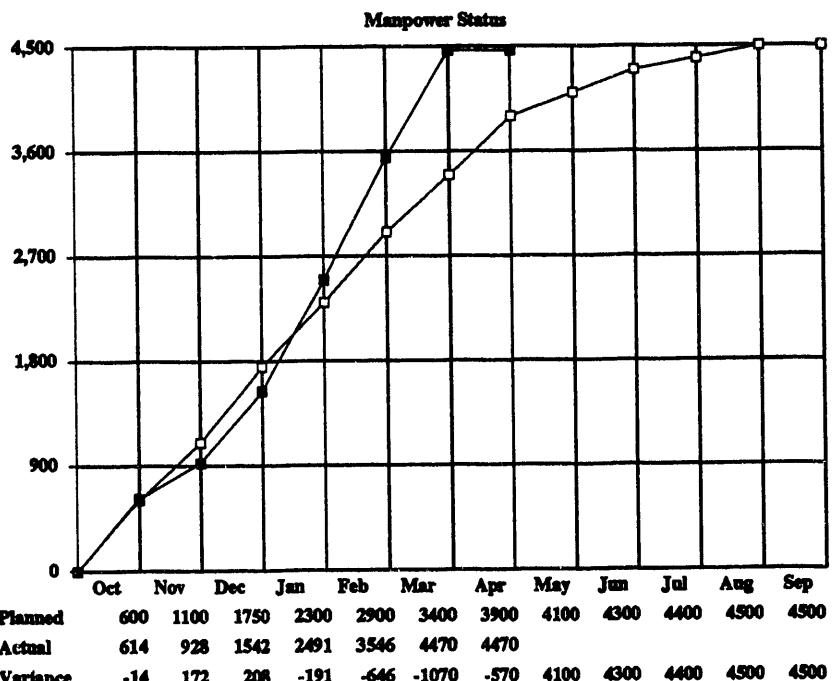

A request to extend the completion date for milestone 3 to July 1, 1993, has been approved by the BPO. The other project milestones are on schedule.

BFR2**FINANCIAL STATUS OF THE PROJECT FOR APRIL**

Total Appropriation:	300,000
Less Capital Equipment:	0
Appropriation Balance:	300,000
Expenditures for the Month:	2,110
Total Expenditures to Date:	294,037
Net Available:	5,963
Capital Equipment Expenses and Committs:	0

Annual Plan Project BFR2

Development of Analytical Methodology
for Analysis of Heavy Crudes


MANPOWER STATUS OF THE PROJECT FOR APRIL

Total Man-hours:	4,500
Man-hours used this Month:	0
Total Man-hours used to Date:	4,470
Net Available:	30

Legend for Key Milestones
 X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Submit Status Report on Project Environmental, Safety, and Health Assessment
- 2 Prepare Chapter for NIPER Final Report Summarizing Accomplishments of Project BFR2 (Draft complete by July 30)
- 3 Complete FY93 Research on Catalytic Cracking of 650 Degrees F Resids and Fractions; Submit Topical Report on the Research Results

XXX XXX

_____ XXX XXX XXX _____ C

_____ XXX XXX XXX XXX XXX _____ C

FUELS RESEARCH

BFR2. DEVELOPMENT OF ANALYTICAL METHODOLOGY FOR ANALYSIS OF HEAVY CRUDES

Accomplishments

Milestone 2—Work on the 10-year summary report has been initiated.

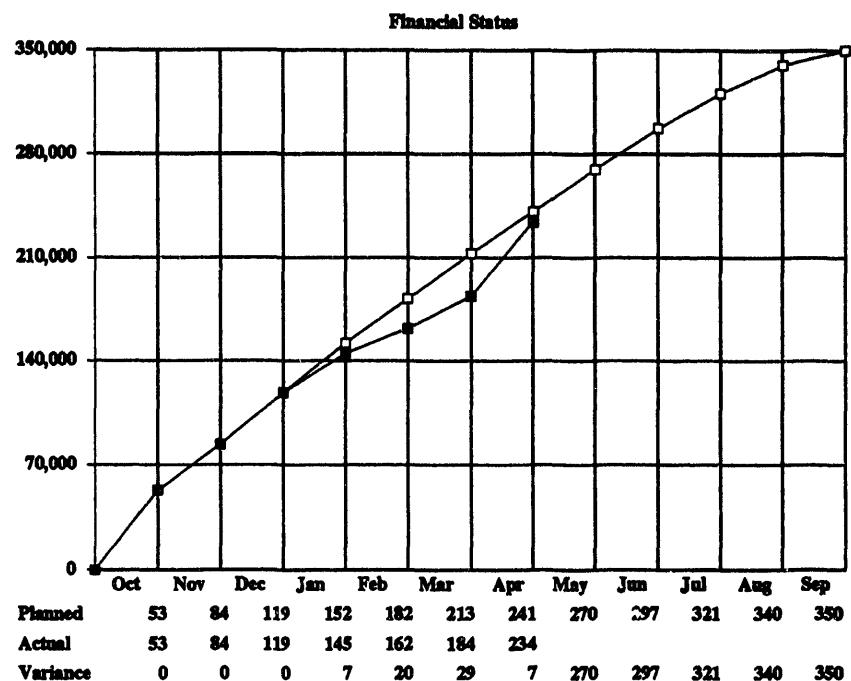
Milestone 3—Cat cracking of Lagomedio >650° F resid, and chromatographic fractions thereof, has been completed. Solid and liquid products from those runs are currently being analyzed. Analysis of Brass River products also has been completed; those data are being entered into the computer for calculation of material balances for those runs.

Manpower and Financial Status

Experimental work has essentially ceased due to the exhaustion of available funds.

Status of Project Milestones

Milestone 2 is on schedule; milestone 3 is ahead of schedule.

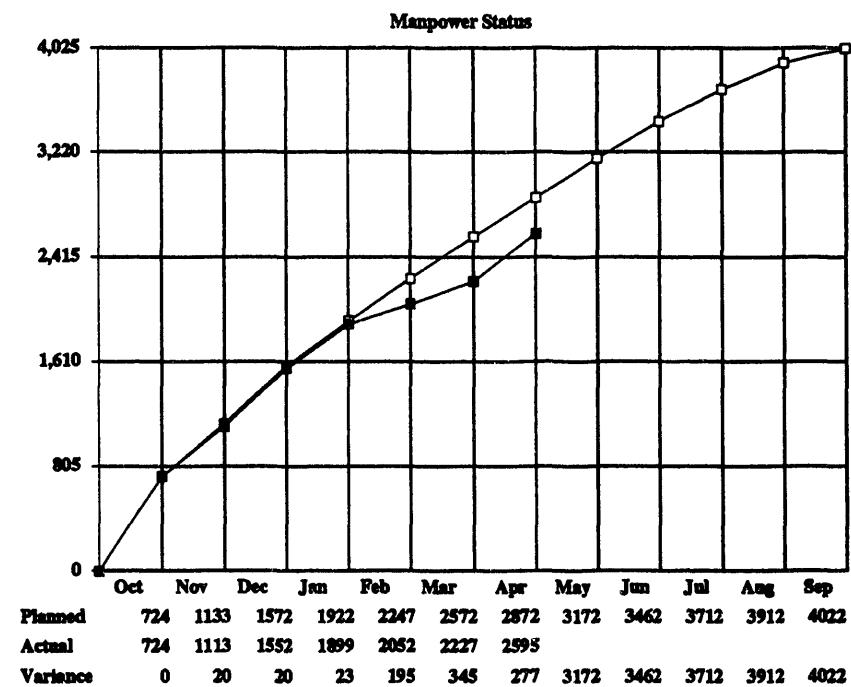

BFR3

FINANCIAL STATUS OF THE PROJECT FOR APRIL

Total Appropriation:	350,000
Less Capital Equipment & Sub:	0
Appropriation Balance:	350,000
Expenditures for the Month:	50,023
Total Expenditures to Date:	233,649
Net Available:	116,351
Capitol Equipment/Subcontract Exp & Comm	0

Annual Plan Project BFR3

Thermochemistry & Thermophysical Properties of Organic Nitrogen- and Diheteroatom-Containing Compounds


MANPOWER STATUS OF THE PROJECT FOR APRIL

Total Man-hours:	4,022
Man-hours used this Month:	348
Total Man-hours used to Date:	2,595
Net Available:	1,427

Legend for Key Milestones
 X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Submit ES&H Report for DOE Review and Action
- 2 Conduct Review Meeting with DOE Headquarters
- 3 Complete Three Journal Articles on the Thermodynamic Properties of Nitrogen-Containing Compounds Measured in this Research
- 4 Prepare Chapter for NIPER Final Report Summarizing Accomplishments of Project BFR3 and State of the Art of Fossil Energy Thermo-dynamics Research
- 5 Topical Report and Computer Software for EPCoP

XXC

C

XXX XXX XXX XXX XXX XXX XXX

C

C

C

BFR3. THERMOCHEMISTRY AND THERMOPHYSICAL PROPERTIES OF ORGANIC NITROGEN- AND DIHETEROATOM-CONTAINING COMPOUNDS

Accomplishments

Last month, heat capacity and enthalpy studies on 8-methylquinoline were halted for cryostat repairs. Repairs were completed and the cryostat and calorimeter were calibrated. Preparations for reloading 8-methylquinoline into the calorimeter were begun.

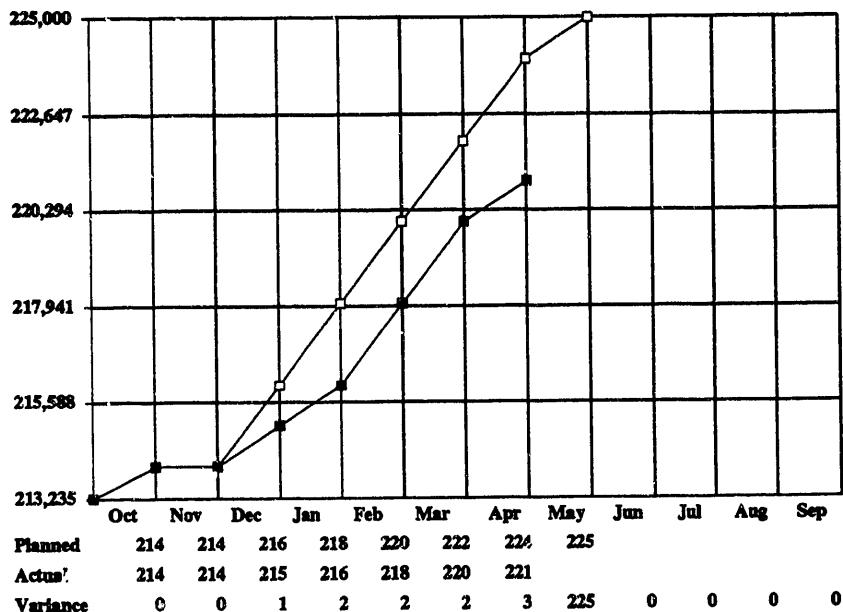
A journal article, entitled "The Thermodynamic Properties of Thianthrene and Phenoxathiin," was accepted for publication in the *Journal of Chemical Thermodynamics*.

Writing of the chapter for the NIPER final report on the accomplishments in this research was completed this month.

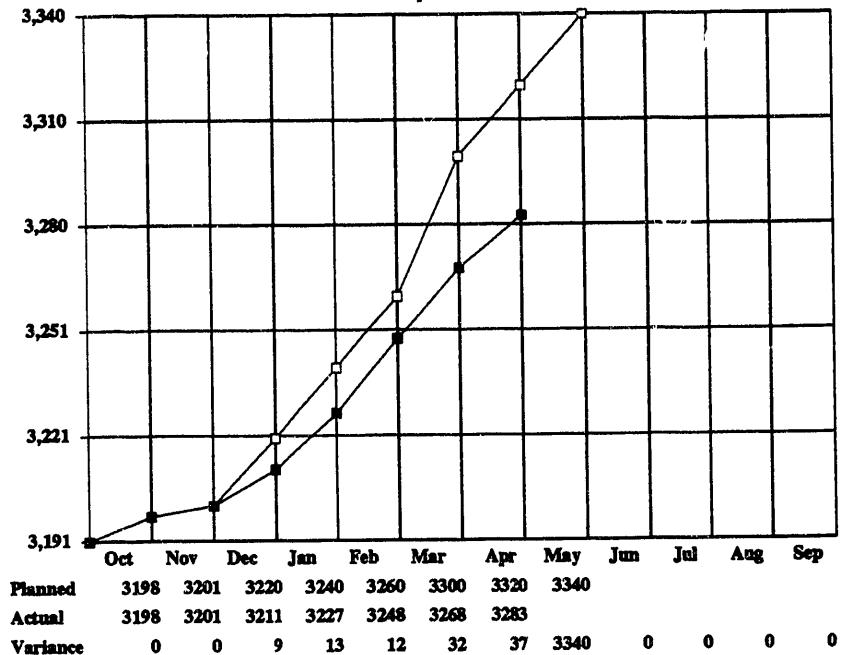
Preparation of a journal article on the thermodynamic properties of 2-methylaniline and trans-decahydroquinoline continued. Data analyses are now complete. Updating of all of the relevant tables continues. The article will be submitted to the *Journal of Chemical Thermodynamics* during the coming quarter.

Enthalpy of combustion studies on 2-methyl- and 8-methylquinolines continued. These compounds are included in a series of measurements scheduled for completion in this quarter.

Manpower and Financial Status


Manpower and financial expenditures are on schedule.

Status of Project Milestones


The status report to complete the FY92 milestones is in preparation. FY93 project milestones are on schedule.

SGP13**FINANCIAL STATUS OF THE PROJECT FOR APRIL**

Total Appropriation:	419,000
Less Subcontracts:	194,050
Appropriation Balance:	224,950
Expenditures for the Month:	1,373
Total Expenditures to Date:	415,254
Net Available:	3,746
Subcontract Expenses:	202,513

Financial Status**Annual Plan Project SGP13****Microbial-Enhanced Waterflooding Field Project****MANPOWER STATUS OF THE PROJECT FOR APRIL**

Total Man-hours:	3,340
Man-hours used this Month:	15
Total Man-hours used to Date:	3,283
Net Available:	57

Manpower Status**Legend for Key Milestones**

X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C'' = Completed Ahead of Schedule

Key Milestone Status

1 Complete Oil Recovery Monitoring Phase; Submit Topical Report
 Describing Performance of MEC's Field Project

XXX XXX XXX XXX XXX XXX XXX ____ C

SUPPLEMENTAL GOVERNMENT PROGRAM

SGP13. MICROBIAL-ENHANCED WATERFLOODING FIELD PROJECT

Accomplishments

The objectives of this project are to determine the feasibility of improving oil recovery in an ongoing waterflood using microorganisms and to expand the initial pilot and determine the economics of microbial enhanced waterflooding.

The site for the expanded MEOR pilot is located in Section 8, Township 24 North, Range 17 E, of Rogers County. This site is part of the Chelsea-Alluwe field in the Bartlesville formation and was initially developed shortly after Delaware-Childers field. The site is currently under waterflood and is owned by Phoenix Oil and Gas Ltd. This field is in a very isolated area, with virtually no other oil-producing leases nearby. Although this field has much in common with the Mink Unit, there are some significant differences. The Phoenix field is not a freshwater flood; the water is recycled and injected and has an average total dissolved solids value of 3%. The permeability of the formation is about 20 mD.

Milestone 1—Fluorescein tracer (100 bbl at a concentration of 126 ppm) was injected June 6, 1990, and the microorganisms were injected 14 days later on June 20. Wellhead injection pressures, volumes, and oil production continue to be monitored. Production data through February 1993, indicated an improvement in oil production of 17.4%.

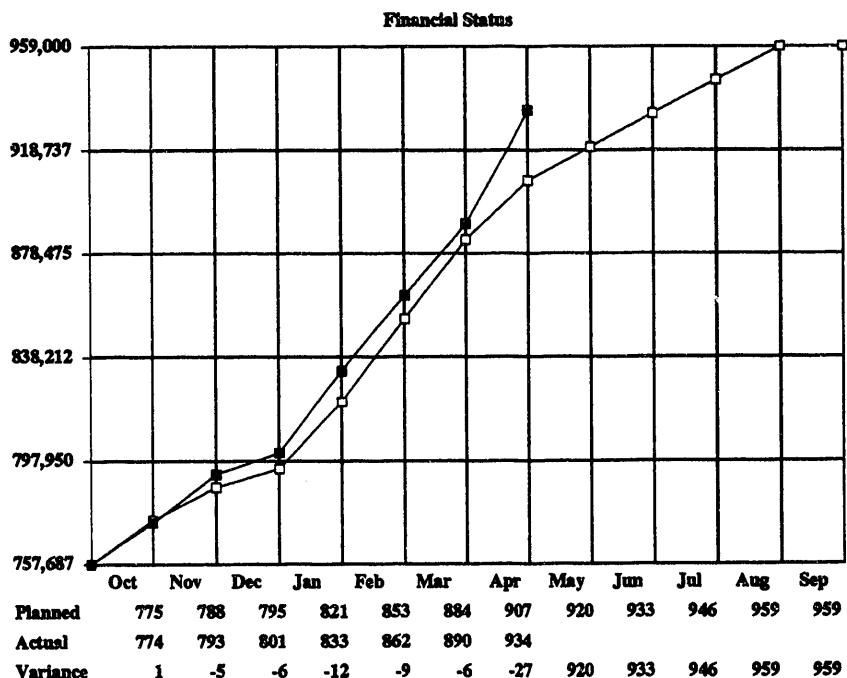
A presentation detailing the results of this field test was prepared for the New Technology for Independent Producers seminar to be held in Denver, CO, May 6-7, 1993.

Manpower and Financial Status

Manpower and financial expenditures are on schedule.

Status of Project Milestones

Milestone 1 is on schedule.

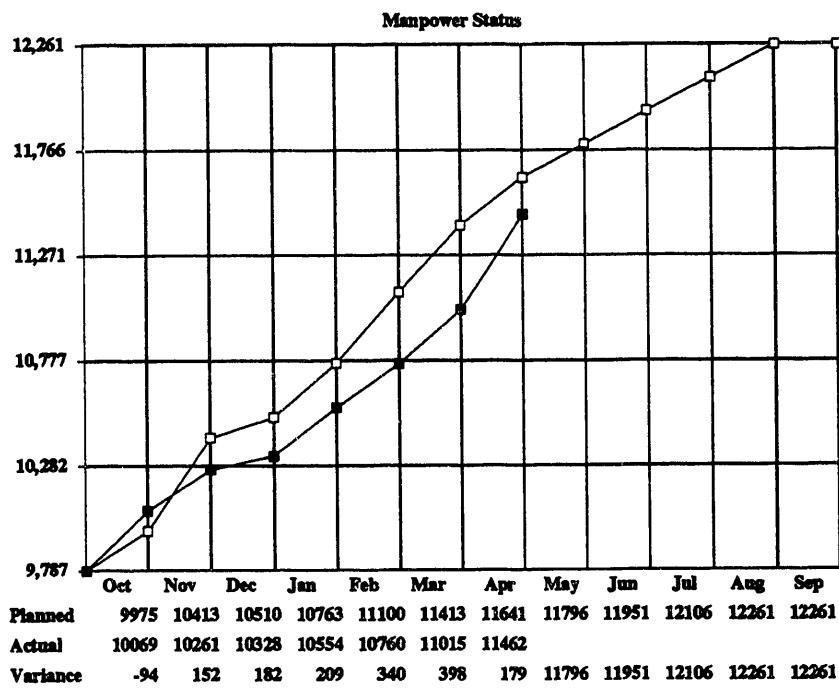

SGP37

FINANCIAL STATUS OF THE PROJECT FOR APRIL

Total Appropriation:	1,099,440
Less Subcontracts:	131,463
Appropriation Balance:	967,977
Expenditures for the Month:	43,617
Total Expenditures to Date:	1,057,585
Net Available:	41,855
Subcontract Expenses:	711

Annual Plan Project SGP37

Feasibility Study of Heavy Oil Recovery
in the Midcontinent Region: Oklahoma, Kansas, & Missouri


MANPOWER STATUS OF THE PROJECT FOR APRIL

Total Man-hours:	12,655
Man-hours used this Month:	447
Total Man-hours used to Date:	11,462
Net Available:	1,193

Legend for Key Milestones
 X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C" = Completed Ahead of Schedule

Key Milestone Status

- 1 Status Report Describing Results of Computer Modeling Study on Potential for Heavy Oil Recovery
- 2 Complete Detailed Review of Heavy Oil Potential For Gulf Coast Region
- 3 Status Report Discussing Results of U. S. Heavy Oil Reservoir Data Study

XXX _____ XXX XXX XX C

XXX XXX XXX XXX XXX XXX XXX _____ C

XXX _____ C

SGP37. FEASIBILITY STUDY OF HEAVY OIL RECOVERY IN THE MIDCONTINENT REGION: OKLAHOMA, KANSAS, AND MISSOURI

Accomplishments

The objectives of this research project are (1) to determine the known heavy oil resources of the United States, (2) to evaluate the various economic constraints that may impact development of this resource, and (3) to determine if steam or other EOR processes are applicable to economic production of this resource.

Milestone 1—The computer modeling was completed in March and the results were delivered to the BPO Technical Project Officer. Due to other DOE priority projects, a status report containing results will be delayed until June, and a memo requesting an extended completion date has been submitted to BPO.

Milestone 2—The analysis and update of reservoir data for Texas heavy oil reservoirs was completed this month, and the information is being reviewed for inconsistencies and errors. After the information is reviewed, it will be incorporated into the U.S. heavy oil data base file. Oil production data in the heavy oil data base were updated for several states. Inconsistencies with data from various sources (TORIS public data base, Oil & Gas Journal EOR report, state publications) and parameter ranges were entered into a separate data base for future clarification.

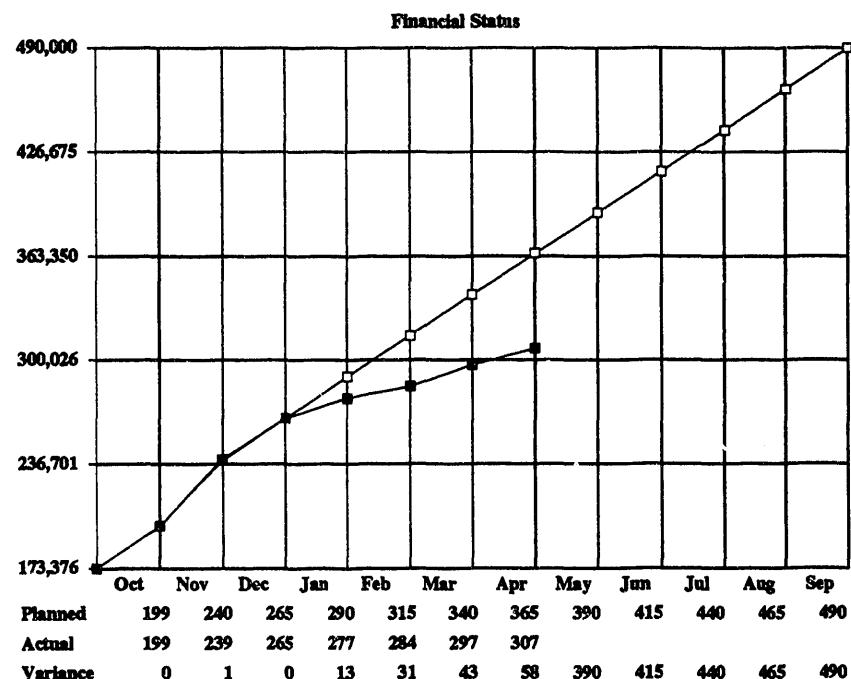
Manpower and Financial Status

Manpower and financial expenditures are on schedule.

Status of Project Milestones

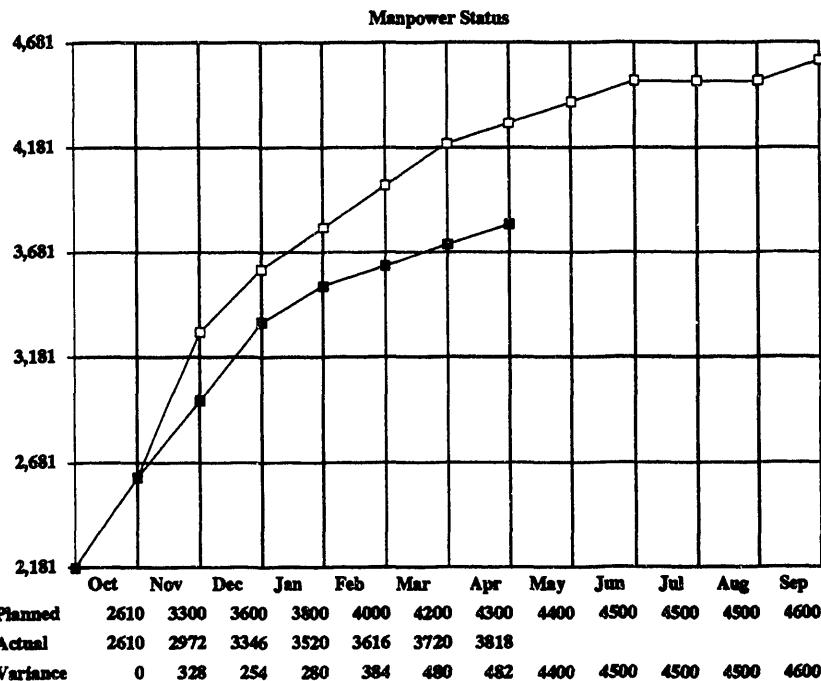
As noted above, milestone 1 is running behind schedule and an extended completion date is being requested. Report NIPER-560, "Feasibility of Heavy Oil Recovery in the Midcontinent Region (Kansas, Missouri, Oklahoma)" is ready for final typing. Report NIPER-606, "Estimates of Future Regional Heavy Oil Production at Three Production Rates—Background Information for Assessing Effects on the U.S. Refining Industry," has been delivered to the BPO.

A report updating the trends in heavy oil production and refining in California was presented at the American Chemical Society Symposium on Enhanced Oil Recovery, Denver, CO, Mar. 28-Apr. 2. The reported data will be published in the symposium Proceedings.


SGP41

FINANCIAL STATUS OF THE PROJECT FOR APRIL

Total Appropriation:	618,000
Less Subcontracts:	111,000
Appropriation Balance:	507,000
Expenditures for the Month:	10,743
Total Expenditures to Date:	307,413
Net Available:	310,587
Subcontract Expenses:	45,946


Annual Pier Project SGP41

Surfactant-Enhanced Alkaline Flooding
Field Project

MANPOWER STATUS OF THE PROJECT FOR APRIL

Total Man-hours:	6,000
Man-hours used this Month:	98
Total Man-hours used to Date:	3,818
Net Available:	2,182

Legend for Key Milestones

X = Work Completed
C = Planned Completion Date
C' = Revised Completion Date
C" = Completed Ahead of Schedule

Key Milestone Status

- 1 Complete Environmental Assessment
- 2 Finalize Geological Evaluation of Field Core
- 3 Test Chemical System in Field Core; Finalize Design of Chemical System Based on Results Obtained with Field Core
- 4 Prepare Presentation on Comparison of Methods for Evaluating Core from a Midcontinent Fluvial-Dominated Deltaic Sandstone Reservoir
- 5 Inject Chemicals
- 6 Complete Oil Recovery Monitoring Phase; Submit Final Report (FY95 Completion Date)

XXX XXC
XXX XXX XXX XXX XXX X C

XXX XXX XXX X C

XXX XXX XXX XXC

C

SGP41. SURFACTANT-ENHANCED ALKALINE FLOODING FIELD PROJECT

Accomplishments

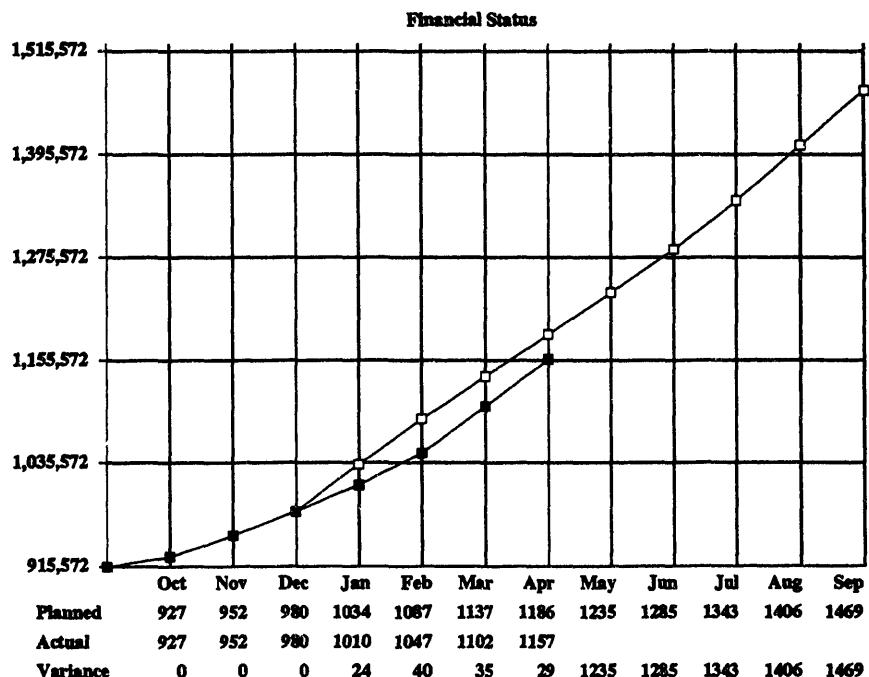
The objectives of this pilot project are (1) to obtain information and data that will help demonstrate the applicability of surfactant-enhanced alkaline flooding as a cost-effective EOR method, (2) to transfer the surfactant-enhanced alkaline flooding technology that has been developed under the sponsorship of the DOE to the petroleum industry, and (3) to obtain information regarding procedures for designing and applying this technology that will assist independent producers in sustaining production from mature producing oil fields rather than abandoning marginal wells.

The site selected for the surfactant-enhanced alkaline flooding pilot test is Hepler oil field, which is located in Crawford and Bourbon Counties of the State of Kansas. This near-term application of a promising EOR technology in a fluvial-dominated deltaic type reservoir is consistent with the strategy outlined in DOE's oil research program implementation plan.

Milestone 2—The primary need before implementing the project in the field is a better estimate of the final oil saturation in the area swept by chemical flooding. Final oil saturation has been difficult to estimate from coreflooding experiments due to channeling of fluids through high-permeability streaks in the field cores. In an attempt to better estimate oil saturation in the zone swept by chemicals, corefloods are being performed while monitoring flow patterns via CT scanning. These experiments are being performed under project BE4B, which is supporting this pilot project.

Milestone 3—One remaining task in the final design of the chemical flooding system is to ensure that the sodium bicarbonate originating in western Colorado or Wyoming (North American Chemical Co.) is compatible with the other EOR chemicals. The sample was received this month from North American.

Manpower and Financial Status

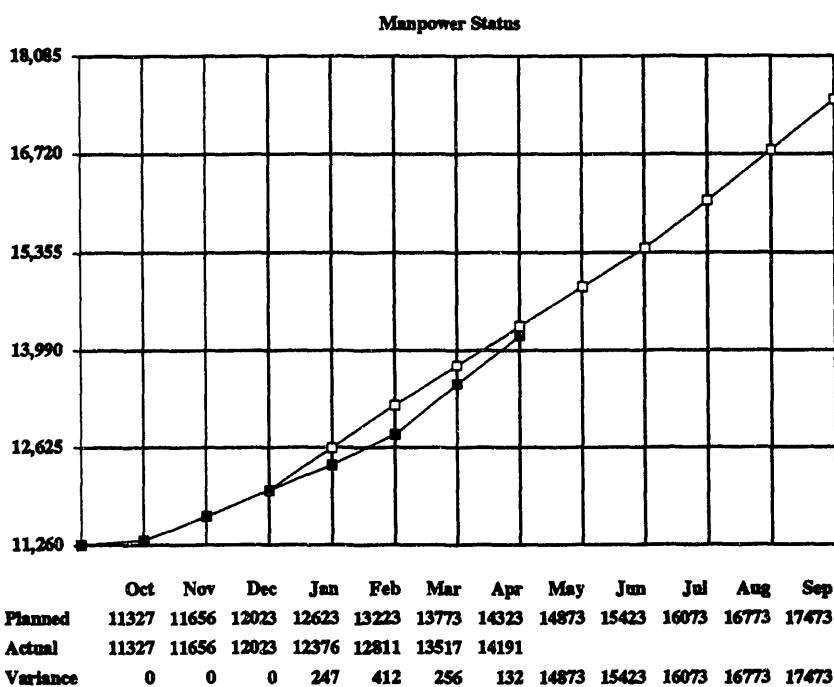

Manpower and financial expenditures are behind schedule due to delays that have resulted from unfavorable laboratory testing of cores taken from the area of the field originally selected for the pilot site.

Status of Project Milestones

Because of unfavorable laboratory core test results, project milestones are running behind schedule. During the month of May, a revised set of milestones will be submitted to the BPO for approval.

SGP49**FINANCIAL STATUS OF THE PROJECT FOR APRIL**

Total Appropriation:	1,523,572
Less Cap Equip & Subs:	90,115
Appropriation Balance:	1,433,457
Expenditures for the Month:	55,174
Total Expenditures to Date:	1,157,424
Net Available:	366,143
Cap Equip/Subcontract Exp & Committs:	90,115


Annual Plan Project SGP49**Process-Engineering Property Measurements on Heavy Petroleum Components****MANPOWER STATUS OF THE PROJECT FOR APRIL**

Total Man-hours:	18,085
Man-hours used this Month:	674
Total Man-hours used to Date:	14,191
Net Available:	3,894

Legend for Key Milestones
 X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Topical Report/Journal Article on the Thermochemical & Thermophysical Properties at High Temperature (Approaching the Critical Region) of Phenanthrene & the Products of Its Hydrogenation
- 2 Prepare a Minimum of Three Journal Articles on the Thermodynamic Properties of Aromatic & Hydroaromatic Compounds Measured in This Research
- 3 Status Report on the Synthesis & Purification of Key Compounds (FY94 Completion Date)
- 4 Status Report Summarizing Data Acquired, Its Utility, & Updated Assessment of Needs for Future Work (FY94 Completion Date)

XXX XXX XXX X__ C

XXX _____ XXX XXX XXX XXX _____ C

SGP49. PROCESS-ENGINEERING PROPERTY MEASUREMENTS ON HEAVY PETROLEUM COMPONENTS

Accomplishments

Heat capacity and enthalpy studies by adiabatic calorimetry on 1,2-dihydronaphthalene were continued this month. Replicate determinations of the enthalpy of fusion were completed and solid-state studies were begun. Two phase transitions were located in the solid phase. Determination of transition enthalpies has begun.

A topical report, entitled "The Thermodynamic Properties to 700 K of Naphthalene and 2,7-Dimethylnaphthalene," NIPER-678, has been submitted to the BPO. The report fulfills the requirements of FY92 milestone 5. A journal article describing this work was submitted to the *Journal of Chemical Thermodynamics*. Work on a topical report on phenanthrene and its hydrogenation products continues (milestone 1).

A commercial zone-refining apparatus was received and assembled. Testing and determination of operating parameters has begun. A sample of 1,2,3,4-tetrahydrofluoranthene, synthesized at Oklahoma State University, will be zone refined once the apparatus is operational.

The topical report in which the thermodynamics of hydrogen shuttling are compared for pyrene, phenanthrene, and anthracene, is near completion. This report was not part of the original milestones for this project, but will be completed due to the important insights it provides to the controversy existing in the literature over the mechanism(s) of hydrogen shuttling. Work on the organometallics report (FY92 milestone 3) is also near completion.

Enthalpy of combustion studies on 1,2-dihydronaphthalene and 1,10-trimethylenephenanthrene continued. These compounds are included in a series of measurements scheduled for completion in this quarter.

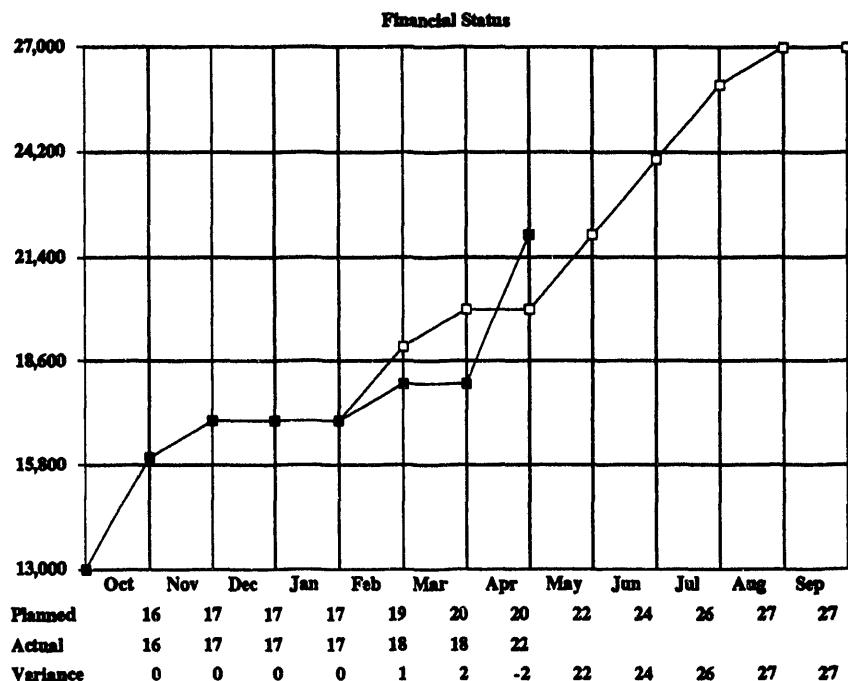
The status reports for research completed in FY92 (FY92 milestones 7 and 8) are near completion.

Manpower and Financial Status

Manpower and financial expenditures are on schedule.

Status of Project Milestones

Details of project milestones are given above.


SGP50

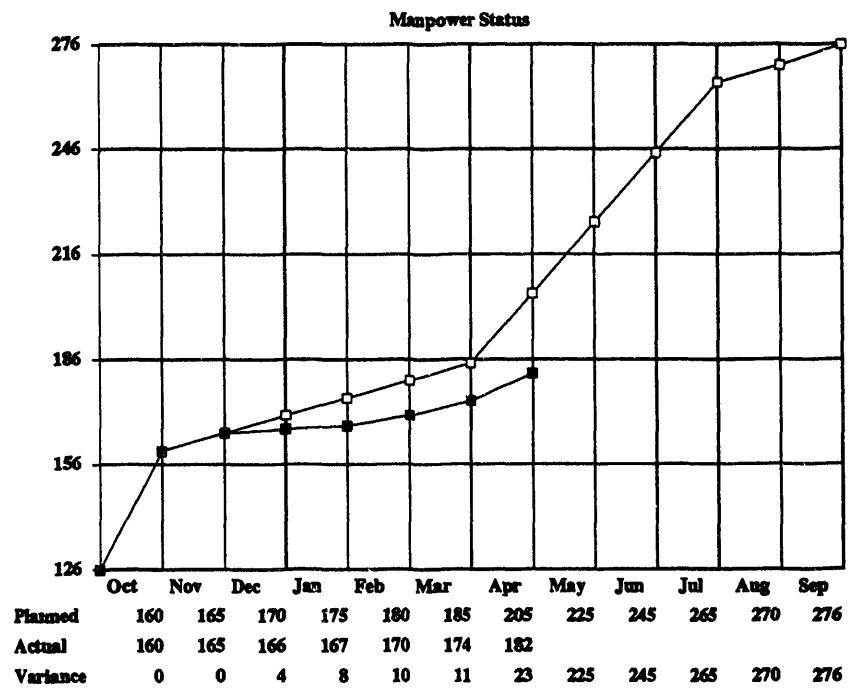
FINANCIAL STATUS OF THE PROJECT FOR APRIL

Total Appropriation:	296,000
Less Subcontracts:	269,000
Appropriation Balance:	27,000
Expenditures for the Month:	3,730
Total Expenditures to Date:	197,319
Net Available:	98,681
Subcontract Expenses:	178,237

Annual Plan Project SGP50

Training In Development & Application
of Petroleum Production Technologies

MANPOWER STATUS OF THE PROJECT FOR APRIL


Total Man-hours:	276
Man-hours used this Month:	8
Total Man-hours used to Date:	182
Net Available:	94

Legend for Key Milestones

X = Work Completed
C = Planned Completion Date
C' = Revised Completion Date
C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Submit Final Report on Development & Application of Petroleum Production Technologies
- 2 Recruit Summer Interns
- 3 Interview and Select Summer Interns
- 4 Supervise and Teach Summer Interns
- 5 Complete Final Report

XXC

XXX XXX XXX XXX XXX XXX

XXX XXX C

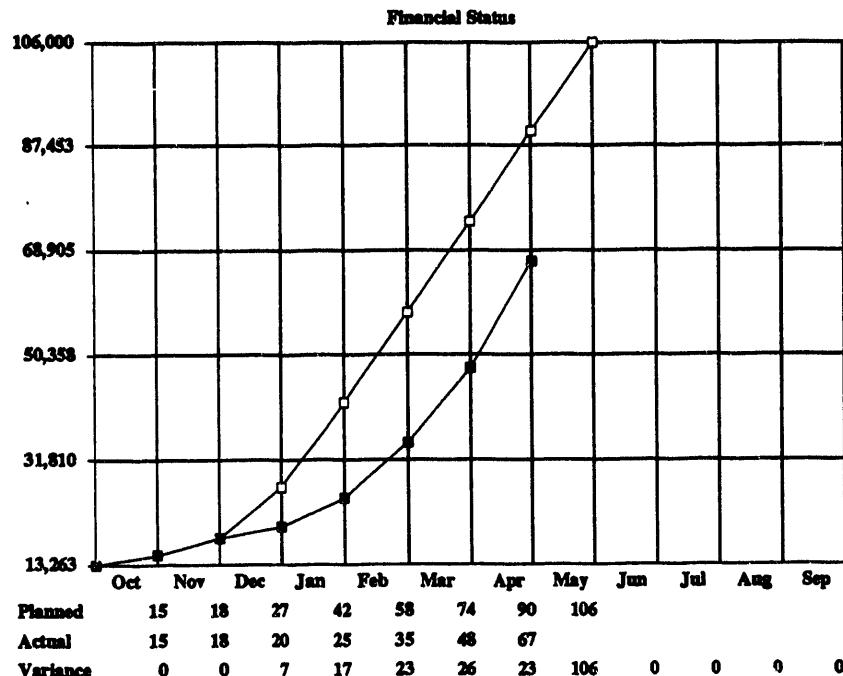
C

C

SGP50. DEVELOPMENT AND APPLICATION OF PETROLEUM PRODUCTION TECHNOLOGIES

Milestones 2 and 3—Nineteen offers to students were made, and all have accepted. A letter was sent to these students informing them of the seminars and meetings planned for this summer which will include one safety training session and eight seminars. The topics of these seminars include geology, primary and secondary recoveries, EOR, biotechnology, and environmental issues associated with petroleum production. George Hirasaki, a professor from Rice University, will give a seminar on wettability. The teacher-interns from NIPER and Phillips are also planning to attend these seminars.

Manpower and Financial Status

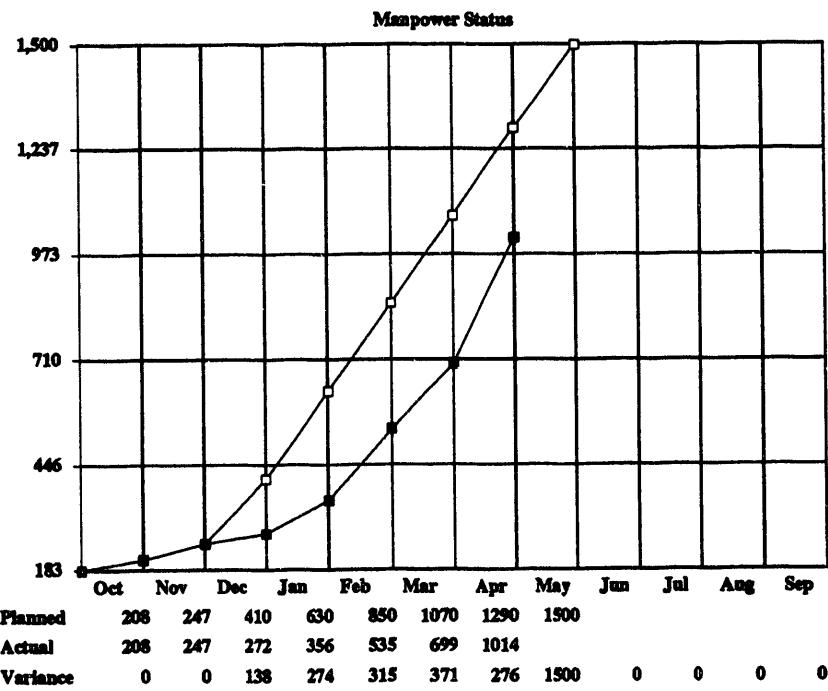

Financial expenditures are on schedule, but manpower is slightly below projection due to extended period (approximately 1 month) in finalizing intern recruitment.

Status of Project Milestones

The work planned for milestone 2 has been completed. The other project milestones are on schedule.

SGP56**FINANCIAL STATUS OF THE PROJECT FOR APRIL**

Total Appropriation:	106,000
Less Subcontracts:	0
Appropriation Balance:	106,000
Expenditures for the Month:	19,423
Total Expenditures to Date:	66,986
Net Available:	39,014
Subcontract Expenses:	0


Annual Plan Project SGP56**Upgrade EPO Crude Oil Analysis Data Base****MANPOWER STATUS OF THE PROJECT FOR APRIL**

Total Man-hours:	1,500
Man-hours used this Month:	315
Total Man-hours used to Date:	1,014
Net Available:	486

Legend for Key Milestones
 X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Participate in UNITAR Crude Oil Analysis Round Robin
- 2 Complete Development of Crude Oil Analysis (COA) Data Management System
- 3 Upgrade Data in Data Base
- 4 Prepare a New COA Data Base User's Guide

C

 XXX XXX XXX XXX XXX XXX C

 XXX XXX XXX XXX XXX XXX C

 XXX XXX C

SGP56. UPGRADE BPO CRUDE OIL ANALYSIS DATA BASE

Accomplishments

The objectives of this project are (1) to develop and maintain a high-integrity, on-line, crude oil analysis (COA) data base that is available to the public; (2) to upgrade and update crude oil analyses for inclusion in this data base; and (3) to participate in the UNITAR analysis round robin.

Milestone 1—A preliminary report, "Third Round Robin on Heavy Crudes and Bitumen Statistical Analysis on Cerro Negro Crude Analytical Data," was distributed by the United Nations Institute for Training and Research Centre for Heavy Crudes and Tar Sands to project participants for review. A final date for the conference has not been established.

Milestone 2—Computer coding for the on-line data base is progressing. A commercial bulletin board software (BBS) will control the communication between the user and the on-line computer, and commercial data management software will control the file storage and retrieval functions. A written computer code will control the user interface, develop queries, and return results to the user. This month, the user interface was tested using direct screen writes with the BBS. Additional work was done on keyword queries by the user.

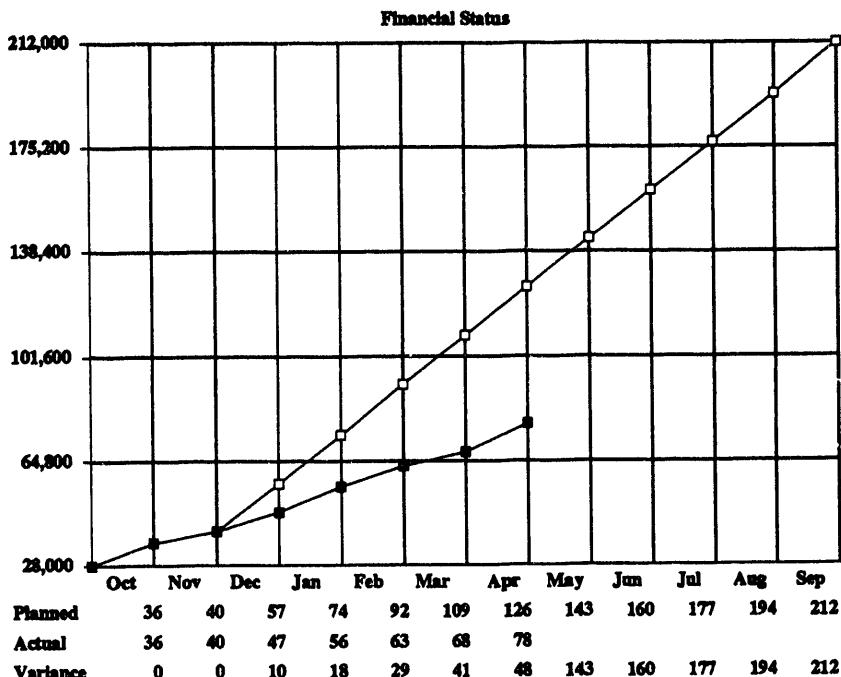
Milestone 3—Crude oil samples will be analyzed for trace metals and for hydrocarbon type. No analytical work was performed this month due to other priority work and required repairs to the ICP spectrophotometer. Hard copy files of crude oil analyses were moved. Analyses that are not in the data base are being identified.

Manpower and Financial Status

Additional funding has been allocated to this project. A revised milestone schedule and budget will be submitted for approval next month.

Status of Project Milestones

Project milestones are on schedule.


SGP58

FINANCIAL STATUS OF THE PROJECT FOR APRIL

Total Appropriation:	350,000
Less Subcontract:	0
Appropriation Balance:	350,000
Expenditures for the Month:	9,769
Total Expenditures to Date:	77,724
Net Available:	272,276
Subcontract Expenses:	0

Annual Plan Project SGP58

Simulation Analysis of Steam-Foam Projects

MANPOWER STATUS OF THE PROJECT FOR APRIL


Total Man-hours:	4,410
Man-hours used this Month:	121
Total Man-hours used to Date:	1,052
Net Available:	3,358

Legend for Key Milestones

X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Complete Review of Data from Previous Steamflood Projects
- 2 Complete Basic History Match
- 3 Finalize Full-Pattern Simulation Study (FY94 Completion Date)
- 4 Final Report on Research Findings (FY94 Completion Date)

XXX XXX
 XXX XXX XXX XXX XXX XXX C

SGP58. SIMULATION ANALYSIS OF STEAM-FOAM PROJECTS

Accomplishments

The objectives of this research project are (1) to study the viability of the steam-foam process by analyzing data from selected completed steam-foam projects and (2) to assess conditions under which the process is likely to succeed, both technically and economically.

Milestone 2—The history match of Chevron's Section 26-C Steam-Foam Pilot is continuing. As pointed out in the March 1993 Monthly Report, it is difficult to match both the temperature and pressure simultaneously due to the assumption that foam propagates at the same rate as surfactant. In real reservoirs, a foam front lags behind the surfactant front. This month, attempts were made to match both temperature and pressure by retarding the foam propagation rate. The advancement of the foam front can be slowed (1) by increased surfactant adsorption, (2) by increased residual gas saturation, or (3) by both increased surfactant adsorption and residual gas saturation. Only by increasing the surfactant adsorption and residual gas saturation was it possible to improve the simulator's matching ability. Additional simulation runs are planned with further adjustment of surfactant adsorption rate and residual gas saturation values to improve the predictability.

Manpower and Financial Status

Manpower and financial expenditures are below planned estimates due to senior staff commitments to other DOE priority projects.

Status of Project Milestones


Project milestones are on schedule.

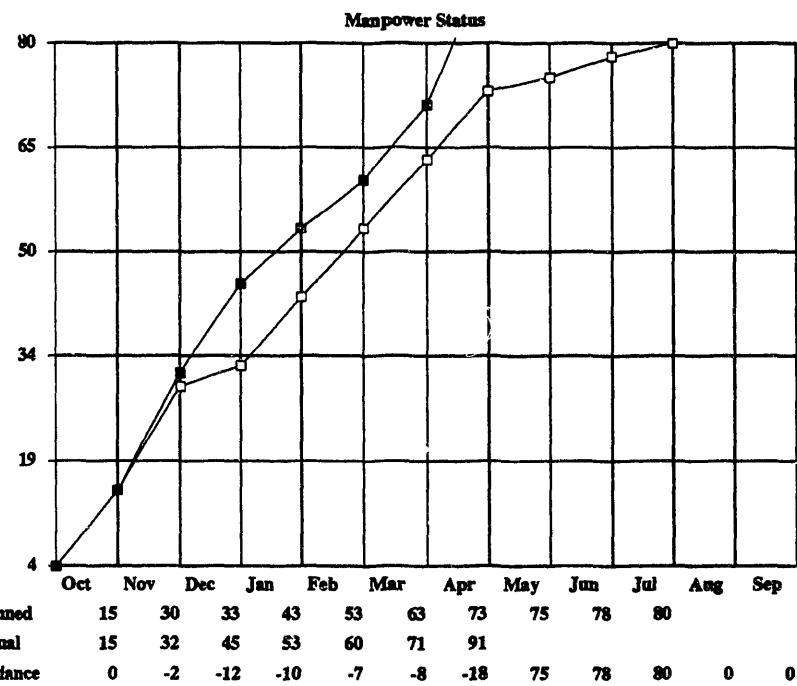
SGP61**FINANCIAL STATUS OF THE PROJECT FOR APRIL**

Total Appropriation:	110,000
Less Subcontracts:	24,900
Appropriation Balance:	85,100
Expenditures for the Month:	2,817
Total Expenditures to Date:	46,063
Net Available:	63,937
Subcontract Expenses:	18,005

Annual Plan Project SGP61

DOE Educational Initiative Project

MANPOWER STATUS OF THE PROJECT FOR APRIL


Total Man-hours:	80
Man-hours used this Month:	20
Total Man-hours used to Date:	91
Net Available:	(11)

Legend for Key Milestones

X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Complete Assessment of School Needs & Community Resources
- 2 Complete Development of Science Classroom Support Bureau
- 3 Coordinate Staff Development Opportunities for Teachers

XXX XXXC

XXX XXX XXX XXX XXX _____ XXX _____ C

_____ XXX XXX XXX XXX XXX _____ C

SGP61. DOE EDUCATION INITIATIVE PROJECT

Accomplishments

The objective of the DOE Education Initiative Project is to enrich the science programs of public schools in the northeastern part of Oklahoma by developing partnerships between the schools, communities, businesses, and other interested groups.

Milestone 2—In coordinating the DOE Regional Science Bowl for Oklahoma, responses to the evaluation forms were tabulated and sent to the Science Bowl Committee, and Science Bowl Officials. Judy Kokesh accompanied the Edmond Memorial High School team and coach to the National Science Bowl competition in Washington, D.C., Apr. 16-19. She also served as point of contact at the National Science Bowl for the Oklahoma team.

Milestone 3—Ms. Kokesh met with Duane Wilson of Conoco, Inc., to discuss the Oil and Gas Exploration curriculum and to seek support for the "Train the Trainers" workshop in Tulsa. A follow-up letter was sent to Mr. Wilson.

A brochure explaining the Oil and Gas Exploration Module workshop in Oklahoma City, summer 1993, was developed and mailed to:

All high school principals in the state
Oklahoma Science Teachers' Association members
Science coordinators and earth science teachers in Oklahoma County

Mike Bernard, president of the Midcontinent Oil and Gas Association, was provided information pertaining to the Oil and Gas Exploration curriculum. He was very interested and suggested that a presentation be made at the next meeting of the organization. Likewise, Mickey Thompson, executive vice-president of the Oklahoma Independent Petroleum Association, was contacted and was also quite interested in the curriculum. A presentation was made to their Board of Directors in Norman, April 30. The OIPA is interested in supporting education projects but currently does not have the necessary 501c3 status. However, this is in process of being worked out, and the organization may be in position to provide funding for the teacher kits at future workshops. NIPER has been invited to make a presentation at the OIPA Annual Convention, in mid-June.

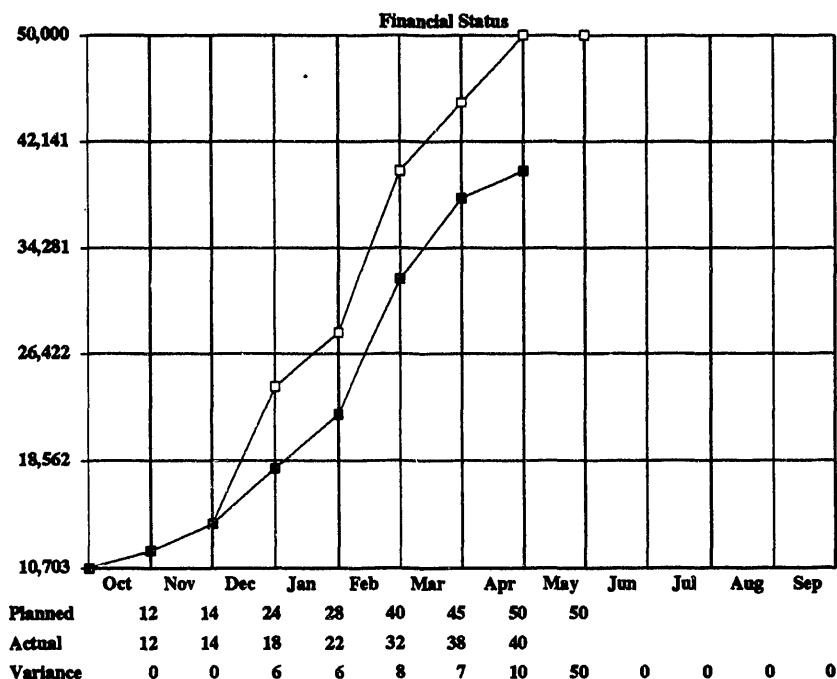
For the Teacher Internship Program, application information for the joint Phillips-NIPER teacher internship project was mailed to 60 teachers in Bartlesville and surrounding districts. Teacher applications will be reviewed by supervising researchers in early May.

Manpower and Financial Status

Financial expenditures are low, while manpower is higher than originally scheduled. This is due to the inability to plan accurately for the type of activities involved.

Status of Project Milestones

Milestones 2 and 3 are on schedule.

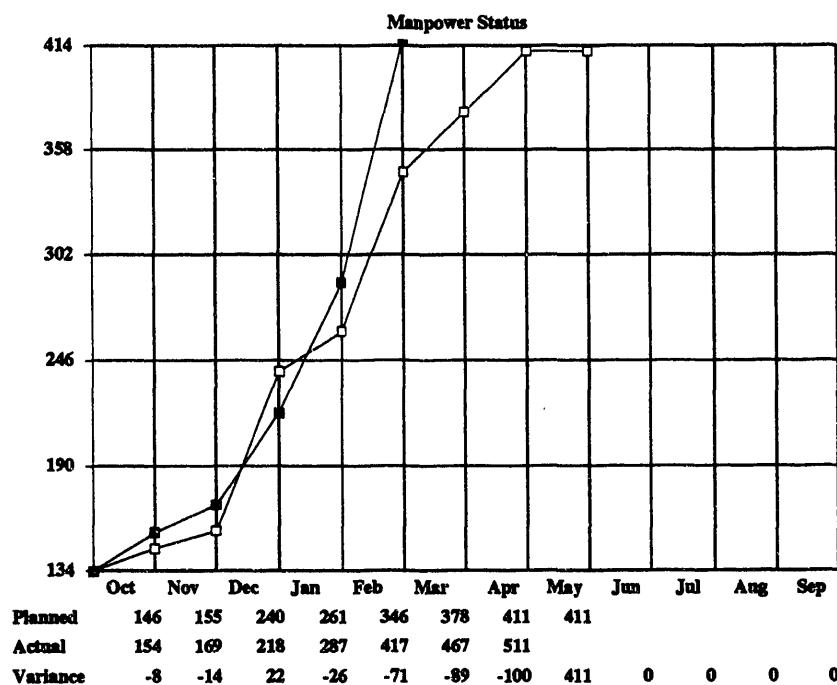

SGP63

FINANCIAL STATUS OF THE PROJECT FOR APRIL

Total Appropriation:	50,000
Less Subcontracts:	0
Appropriation Balance:	50,000
Expenditures for the Month:	2,720
Total Expenditures to Date:	40,489
Net Available:	9,511
Subcontract Expenses:	0

Annual Plan Project SGP63

Field Application of Foams for Oil Production Symposium


MANPOWER STATUS OF THE PROJECT FOR APRIL

Total Man-hours:	475
Man-hours used this Month:	44
Total Man-hours used to Date:	511
Net Available:	(36)

Legend for Key Milestones
 X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Organize & Conduct a Symposium on Field Application of Foams
- 2 Compile Summary of Technical Comments Obtained During Symposium
- 3 Compile Proceedings for DOE Fossil Energy Report

XXX XXX XXX XXX XXC

XXX XXC

XXX XXX XXX C

SGP63. FIELD APPLICATION OF FOAMS FOR OIL PRODUCTION SYMPOSIUM

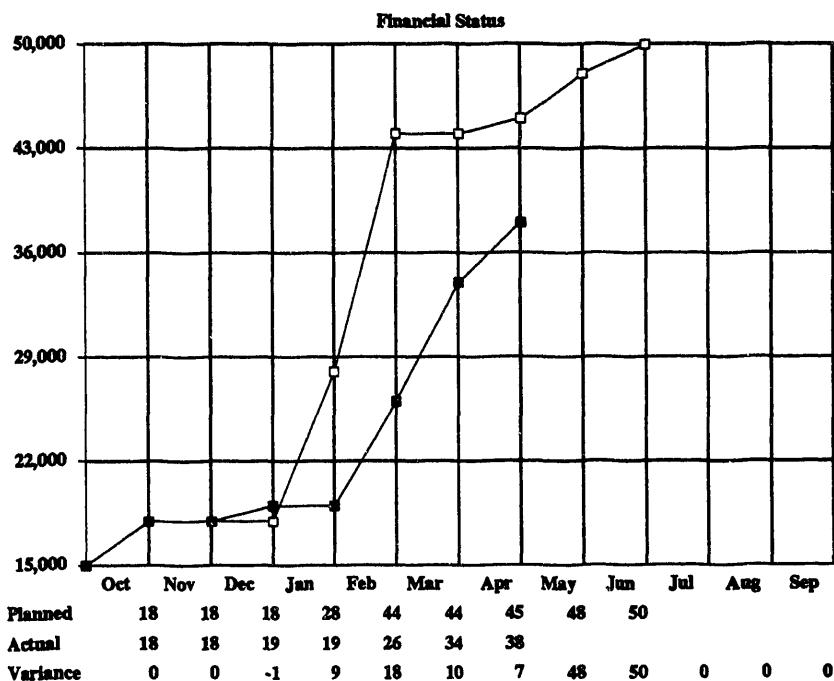
Accomplishments

The DOE and NIPER cosponsored a day and a half symposium on the field application of foams for oil production at the Red Lion Inn, Bakersfield, CA, Feb. 11-12, 1993. Seventy-two individuals from seven countries were in attendance and actively participated in the discussions and panel presentations on the current status of foam technology. The agenda included 13 technical papers and 8 poster sessions. Responses from the participants indicated that the symposium was an overwhelming success, and many wanted to see additional process-specific meetings of this type.

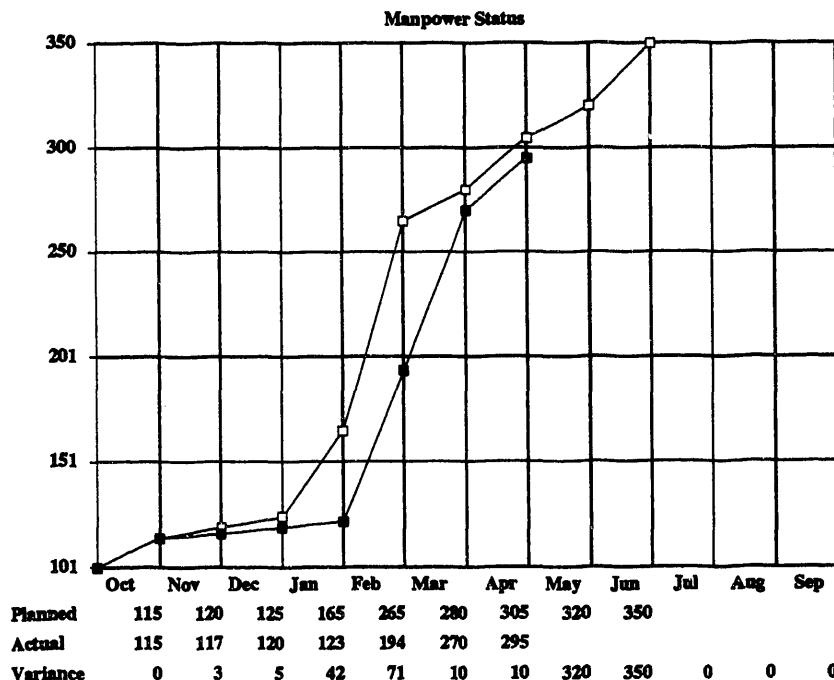
Milestoner 3—The symposium Proceedings have been submitted to the reviewers for comment, and it is anticipated the report (NIPER-669) will be ready for submittal to the BPO early next month. The Proceedings will be distributed to the attendees and the public following publication as a DOE/FE report.

A status report (NIPER-681) on the future of foams and problems associated with the application of foams has been prepared at the request of BPO. The report is in review.

Manpower and Financial Status


Manpower usage is above projections due to the extra time involved in preparing a summary on the benefits of the foam symposium. Financial expenditures are low because some invoices associated with the symposium are still outstanding.

Status of Project Milestones


Milestone 3 is on schedule. Following the symposium, more than 20 requests were received for copies of the Preprints; however, all available copies had previously been distributed. A listing of these unfulfilled requests will be provided to the BPO for distribution as Proceedings when they are printed as a DOE/FE report.

SGP64**FINANCIAL STATUS OF THE PROJECT FOR APRIL**

Total Appropriation:	174,350
Less Subcontracts:	124,350
Appropriation Balance:	50,000
Expenditures for the Month:	3,353
Total Expenditures to Date:	37,539
Net Available:	136,811
Subcontract Expenses:	0

Annual Plan Project SGP64**Technology Transfer to Independent Producers****MANPOWER STATUS OF THE PROJECT FOR APRIL**

Total Man-hours:	350
Man-hours used this Month:	25
Total Man-hours used to Date:	295
Net Available:	55

Legend for Key Milestones

X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Review Response to First Seminar; Complete Design for Additional Seminars
- 2 Conduct Series of One-Day Seminars
- 3 Submit Final Report Describing Project Results

XXX XXC

_____ XXX XXX XXX

_____ XXX XXX _____

C

SGP64. TECHNOLOGY TRANSFER TO INDEPENDENT PRODUCERS

Accomplishments

The objective of this project is to transfer information, through a series of seminars, on oil and gas related subjects which have been identified by independent operators as having the highest priority.

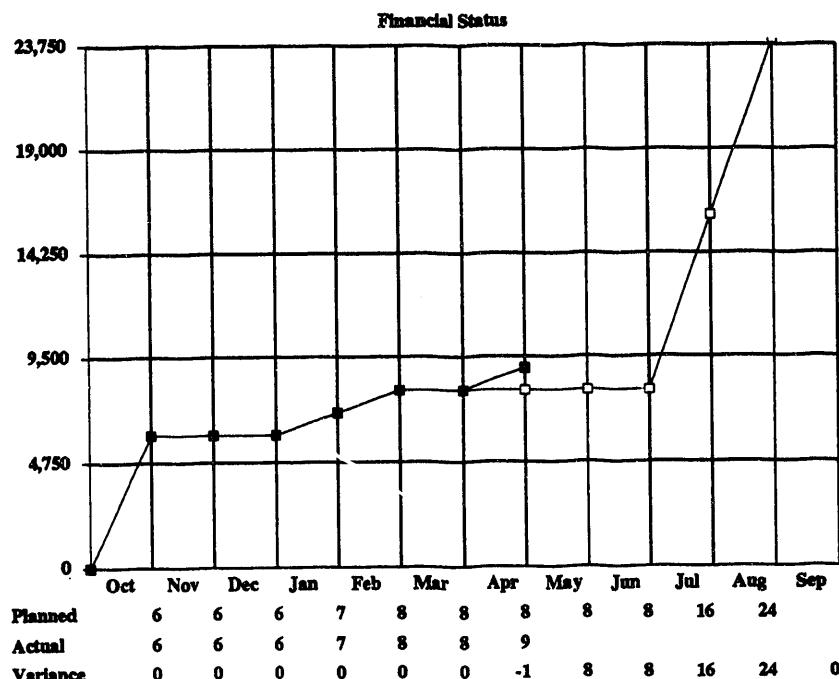
Milestone 3—A first draft of the final report analyzing the technology transfer activities in this project has been completed. In addition to the analysis, the report also includes comments by independent producers, survey results, and recommendations for future projects.

Manpower and Financial Status

Manpower usage is on schedule, and financial expenditures are approaching planned estimates.

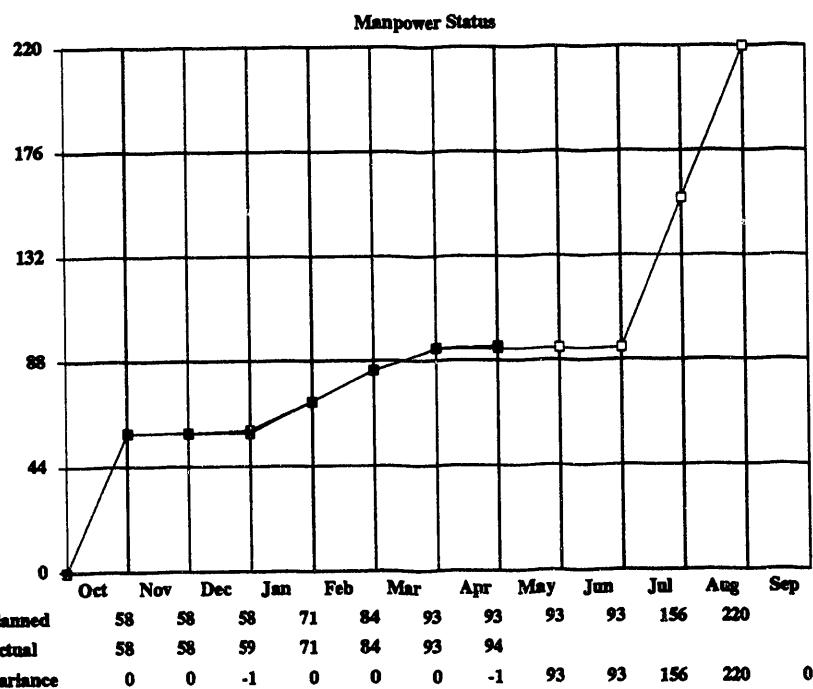
Status of Project Milestones

Milestone 3 is on schedule.


SGP69

FINANCIAL STATUS OF THE PROJECT FOR APRIL

Total Appropriation:	23,750
Less Subcontract:	0
Appropriation Balance:	23,750
Expenditures for the Month:	100
Total Expenditures to Date:	8,501
Net Available:	15,249
Subcontract Expenses:	0


Annual Plan Project SGP69

Compilations and Analysis of Outcrop Data from the
Muddy and Almond Formations

MANPOWER STATUS OF THE PROJECT FOR APRIL

Total Man-hours:	212
Man-hours used this Month:	1
Total Man-hours used to Date:	94
Net Available:	118

Legend for Key Milestones

X = Work Completed
C = Planned Completion Date
C' = Revised Completion Date
C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Supply Missing Data, Interpretations, & Analyses of Outcrop Data Collected
- 2 Correlate Minipermeameter & CT Density Data with Sedimentological Features in Core Well No. 2
- 3 Compile Almond & Muddy Formation Outcrop Data into Transferable Format & Prepare Illustrations & Documentation of Data Files
- 4 Topical Report Containing a Compilation of Data Collected & Analyzed from Muddy & Almond Formation Outcrops & Providing Descriptions, Sedimentological Interpretations, Correlations, & Analyses of Muddy & Almond Formation Outcrop Sections Studied
- 5 Submit Electronic Files of Permeability & Porosity Data, Grain Size, & Facies Data from Muddy & Almond Formation Outcrops

XXX _____ XXX XXX

_____ XXX _____ C

_____ C

_____ C

_____ C

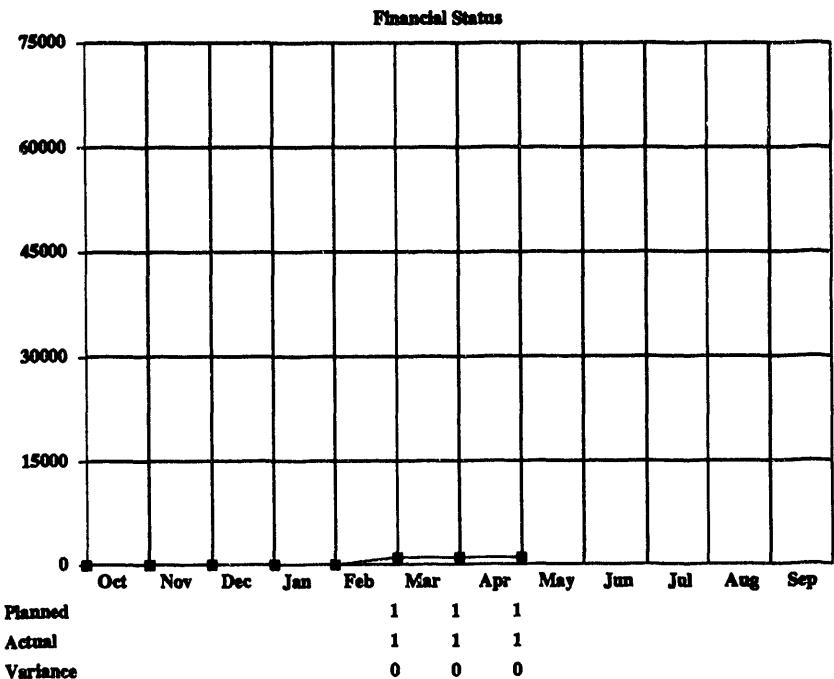
SGP69. COMPILED AND ANALYSIS OF OUTCROP DATA FROM THE MUDDY AND ALMOND FORMATIONS

Accomplishments

The objectives of this project are (1) to compile outcrop data from the Muddy and Almond formations; (2) supply missing data, interpretations, and analyses where needed; and (3) put data in a transferable format for use by interested parties.

No work was performed on this project this month. Work will resume in June.

Manpower and Financial Status


Financial expenditures and manpower have been rescheduled with permission of the BPO.

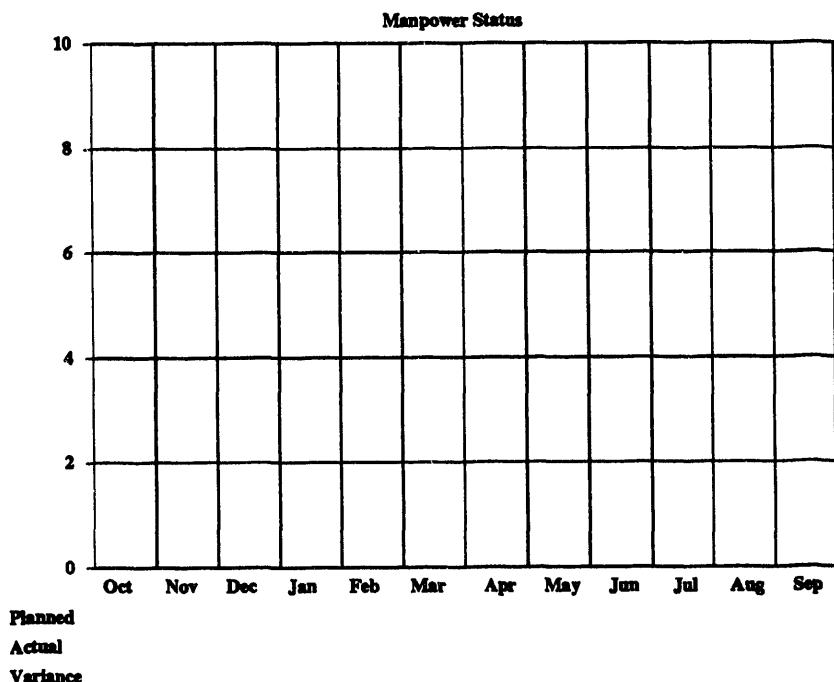
Status of Project Milestones

Milestones have been extended to accommodate manpower and financial rescheduling.

SGP72**FINANCIAL STATUS OF THE PROJECT FOR APRIL**

Total Appropriation:	100,000
Less Subcontracts:	25,000
Appropriation Balance:	75,000
Expenditures for the Month:	0
Total Expenditures to Date:	539
Net Available:	99,411
Subcontract Expenses:	0

Annual Plan Project SGP72**Implementation of Oil and Gas Technology Transfer Initiative****MANPOWER STATUS OF THE PROJECT FOR APRIL**


Total Man-hours:	0
Man-hours used this Month:	0
Total Man-hours used to Date:	0
Net Available:	0

Legend for Key Milestones

X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C'' = Completed Ahead of Schedule

Key Milestone Status

- 1 Organize Industry Coordinating Committee
- 2 Prepare Report on Recommendations for Design and Implementation of a Comprehensive National Technology Transfer Program

 XXX XXC XXX C

SGP72. IMPLEMENTATION OF OIL AND GAS TECHNOLOGY TRANSFER INITIATIVE

Accomplishments

The objectives of this project are to achieve effective coordination of technology transfer efforts among DOE and the diverse organizations that are part of the petroleum industry and to provide feedback to DOE regarding technology needs of the petroleum industry.

Milestone 1—An organizational meeting was held Jan. 18, 1993 in Austin, TX, to discuss formation of an industry committee to facilitate transfer of oil and gas technology to the domestic petroleum industry. Invitees to the meeting included 26 representatives from various sectors of the petroleum industry, societies, and trade associations and five observers from DOE and national laboratories. Presentations were made by IPAA representatives regarding approaches for implementing a technology transfer program. Representatives from TIPRO, TORP, the Illinois Geological Survey, and the New Mexico Petroleum Recovery Research Center made brief presentations about ongoing technology transfer programs. A majority of those attending selected the name of the coordinating committee to be the Petroleum Technology Transfer Council (PTTC). This completed milestone 1.

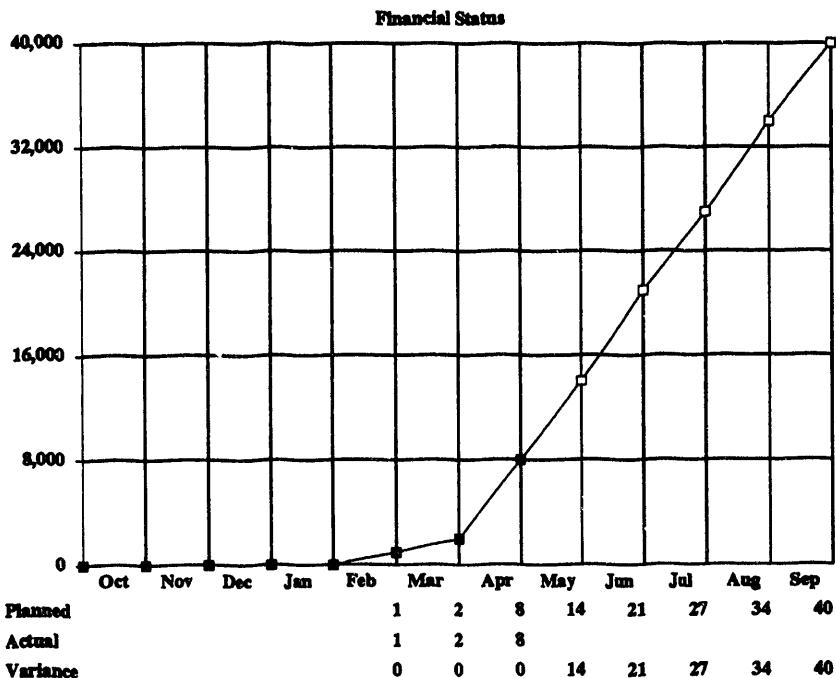
Milestone 2—A working group meeting of the PTTC was held in Dallas on Feb. 8-9, 1993, to work on preparation of a report on design and implementation of a comprehensive national technology transfer program for submission to DOE. Debra Rowell, Vice-President of Economics with the IPAA, is serving as the coordinator for preparation of the report. The meeting focused on discussions of the elements of the technology transfer program and the structure of the report to DOE. A draft of the report has been prepared and is currently being reviewed and revised by members of the committee. The committee expects to submit a draft of the report to DOE near the end of the month.

Manpower and Financial Status

No direct labor is being charged on this project. Only direct costs associated with the project are being charged. There is no manpower allocated to the project; and, because of the uncertainty in the timing of expenditures, it is not possible to predict the schedule for financial expenditures. The financial charts reflect only actual expenditures and not any budget projections.

Status of Project Milestones

Milestone 1 has been completed. Milestone 2 is on schedule.


SGP73

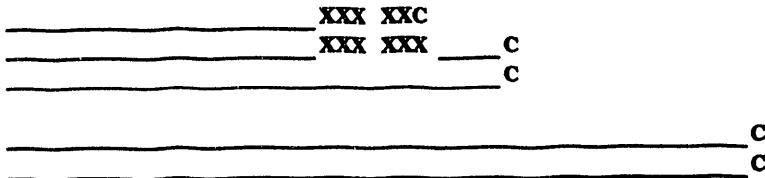
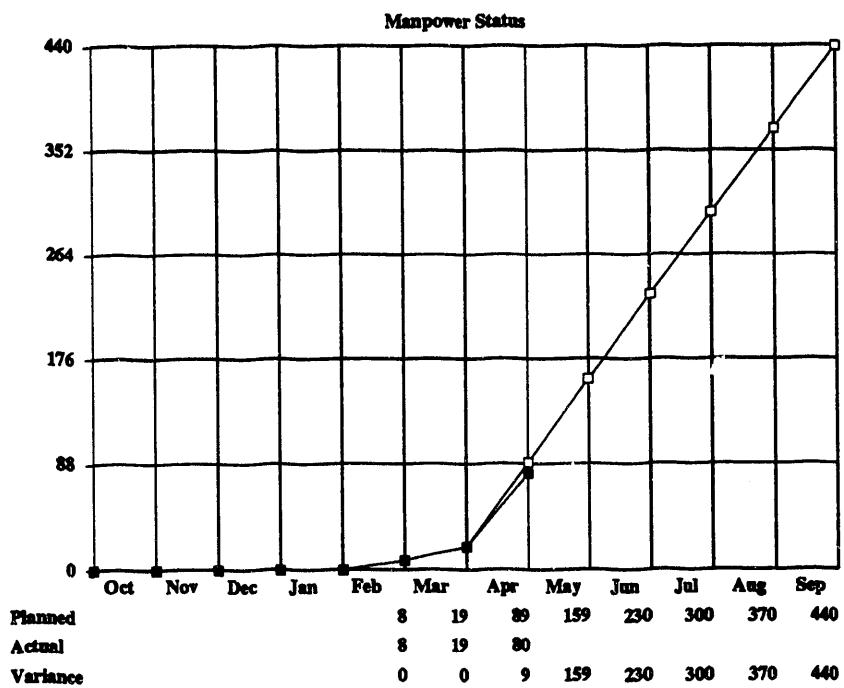
FINANCIAL STATUS OF THE PROJECT FOR APRIL

Total Appropriation:	40,000
Less Subcontracts:	0
Appropriation Balance:	40,000
Expenditures for the Month:	6,229
Total Expenditures to Date:	7,874
Net Available:	32,126
Subcontract Expenses:	0

Annual Plan Project SGP73

Horizontal Well Production from Fractured Reservoirs

MANPOWER STATUS OF THE PROJECT FOR APRIL



Total Man-hours:	440
Man-hours used this Month:	69
Total Man-hours used to Date:	80
Net Available:	360

Legend for Key Milestones

X = Work Completed
 C = Planned Completion Date
 C' = Revised Completion Date
 C" = Completed Ahead of Schedule

Key Milestone Status

- 1 Complete Fracture Data Collection from Reservoir and Outcrop
- 2 Improve Transfer Function Between Rock Matrix and Fracture
- 3 Finalize Development of Fracture Reservoir Model
- 4 Conduct Numerical Simulation of Horizontal Production from Fractured Reservoirs
- 5 Topical Report Describing Horizontal Production from Reservoir

SGP73. HORIZONTAL WELL PRODUCTION FROM FRACTURED RESERVOIRS

Accomplishments

The objective of this project is to determine effects of natural fractures on horizontal well production using numerical simulation to provide guidelines, screening criteria, or analytical predictions of horizontal well production.

Milestone 1—The collection of fracture density and distribution patterns from reservoirs and outcrops has been completed.

Milestone 2—The shape factor in the transfer function was calculated by solving the three-dimensional diffusivity equation of a rock matrix block under unsteady-state production. The diffusivity equation in the x, y, and z coordinate was solved in two cases by assuming different boundary conditions of (1) constant fracture pressure and (2) constant flow rate. This is the first time that the shape factor was derived under the condition of unsteady-state production in contrast to the condition of pseudo steady state assumed by other studies denoted in the literature.

Shape factor values are high at the initial depletion stage under unsteady-state conditions. When the fracture pressure is constant, the shape factor converges to π^2/d^2 , $2\pi^2/d^2$, and $3\pi^2/d^2$ for one-, two-, and three-dimensional rock matrix, respectively, at the dimensionless time (t_D) of about 0.5. The 'd' value in the shape factor formula is the length of rock matrix. The period of 0.5 for t_D ranges from less than 1 day for commonly encountered fractured reservoirs to months for large and tightly fractured rock.

When the flow rate from the rock matrix to the fracture is constant, the fracture pressure varies with location on the rock surface. Based on the average fracture pressure, the shape factor decreases with production time until a t_D value of 0.05 is reached. The shape factor values increase with time when the t_D value is greater than 0.05, and the shape factor values at 0.05 are $10.2/d^2$, $20.4/d^2$, and $30.6/d^2$, for one-, two-, and three-dimensional rock matrix flow, respectively. The shape factors calculated from the case of constant flow rate are less than those from the case of constant fracture pressure when the t_D value is less than 0.1.

The shape factor values calculated from unsteady state production are higher than those proposed by Kazemi (*SPEJ*, Dec. 1976) and by Coats (*SPE paper 18427*), but less than those by Warren and Roots (*SPEJ*, Sept. 1963).

Manpower and Financial Status

Manpower and financial expenditures are on schedule.

Status of Project Milestones

Milestone 2 has been completed. The other milestones are on schedule.

**DATE
FILMED
7/13/93**