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Linear Stability of Self-Similar Flow:
3. Compressional Waves in Imploding Spherical Shells

When a pellet or shell of a medium containing standing sound waves undergoes compres­

sion, the external force does work in compressing the waves as well as the medium itself. The 

wave amplitude tends to decrease, but the characteristic thickness d of the compressed medium 

may decrease faster. When this happens a/d, the amplitude of the oscillations relative to the 

size of the system, increases. If o/r/becomes of order unity, the perturbations disrupt the basic 

state.

We can determine the condition for such "relative instability" using the following simple 

argument, applicable to systems having spherical symmetry. For motions in which the external 

pressure p(i) does not increase too abruptly, the action a2kc is an approximate adiabatic invari­

ant, where k is the wave number and c is the speed of sound. For adiabatic compression,

c = (yplp)''12 ~ p 2y . The characteristic scale size d is related io p by d ~ p-1/3 ~ p~'liy and 

to k by kd ~ const. Combining these expressions, we find

S/3-y

a/d — (dc)~xl2 ~ p 4y , (1)
Thus if y is greater than 5/3, the "geometric" ratio of specific heats, the relative amplitude of

the perturbations decreases. If y < 5/3, the relative amplitude grows. Similar reasoning, e.g.,

in slab geometry, leads to the relative growth condition y < 3. It should be emphasized that

the mechanism described here does not depend on the magnitude of the effective acceleration

and is unrelated to the Rayleigh-Taylor instability.

Manuscript submitted July 13, 1978.
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DAVID L. BOOK

If y —* 1 (the worst case), a/d ~ pxlb ~ pl/6. Though weak, this dependence is enough 

to bring about a state of catastrophic vibration in a target pellet imploding under the action of a 

laser or particle beam, where compression by as much as 106 can take place. The crucial 

question is the appropriate form for the equation of state. Thermal conduction, incomplete 

molecular dissociation, and the energy required for ionization tend to reduce the effective adia­

batic index y below its geometric value; condensation at high densities tends to raise it.

The aim of this letter is to illustrate the above ideas by some analytic calculations of the 

amplification of acoustic modes in imploding spherical shells. For this purpose a self-consistent 

soluble ideal fluid model previously used by Kidder [1] is employed. The equation of state is 

taken to be a polytropic adiabatic law with arbitrary y. The results indicate that amplification is 

determined by the value of y, not the form of the density profile.

Consider an initially stationary spherical shell with density p(r) in the region defined by 

/•_</•< r+. A pressure loading p+(/) applied unformly at r = r+ causes it to begin implod­

ing radially with velocity u{r). Assuming the shell material to be an ideal fluid, the motion is 

described in Lagrangian variables by the equations

(2)

(3)

(pp-?)' = 0, (4)
where R{r, i) is the position at time / of a fluid element whose initial position was r, and time 

derivatives are denoted by dots.

The class of solutions of Eqs. (2-4) which describe what is known as homogeneous self­

similar motion results from assuming the existence of a function /(/) such that for any fluid 

element

R(r, t) = r/O), (5)
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with /(0) = 1, /(0) = 0. From Eq. (5) it follows that u{r, t) = rf, while the solution of Eq. 

(2) is

p(/-, t) = p0(r)/ 3- (6)
Hence from Eq. (4), the pressure must be of the form

p(r, t) = s(r)f)y = (7)
For self-consistency, the driving pressure must balance the pressure at r = r+ found from Eq.

(7), i.e., p+(/) = p(r+, t) = s(r+)ptf(r+)f~3y. Substituting Eqs. (5-7) in the force law (3), we

obtain

'//■«+1 -2 1 ^Po 1 d ,- //“+1 = r 2 = -------- — = — — (spj)p0r dr p0r dr
where a = 3(-y — 1) and t is a separation constant.

The time-dependent part of Eq. (8) can be integrated once to give

11/2

(8)

7/ = - — (/-" - 1) a (9)

for y > 1, and

7/= - (2 In/"1)1/2 (9')
for y = l. Equations (9) and (9') distinguish the motions called Type II by Sedov [2], who first

investigated them. Both equations evidently give rise to functions /which vanish at some finite

time /o, when the system becomes singular (implodes completely).

The spatial part of Eq. (8) yields a solution for each non-negative choice of s or of p0. We 

select two cases for investigation: (i) Isentropic motion, s = s = const; (ii) Uniform density, 

p0 = p = const. Isothermal (7 = 1) motion is distinguished as subcases (i)' and (ii)', respec­

tively. In case (i) we find

Po = P
p(y - Dr2

2pyr2

l/(y-l)
(10)
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Here p and p = spy are constants. In case (i)

p0 = p exp[p/-2/(2pr2)]. (10')

For case (ii) we find, independently of y,

s = s [pr2/(2pr2) - 1], (11)

In order to restrict the problem somewhat, we choose rl = 2ypr2/(y — l)p in case (i),

making Po(r_) =0, and rl = 2pr2/p in case (ii), making s(r_) =0, so that in both cases 

p_ = p(r_) = 0. Then we express r in units of /•_. For case (i)', p(r) nowhere vanishes, so we

take r_ = 0 and normalize /-with respect to (pr2/p)1/2. Time is conveniently expressed in units

of r and density in units of p.

We begin by investigating linear stability with respect to compressible perturbations for 

case (i). It is convenient to employ the formulation developed by Book and Bernstein [3,4]. 

The fluid element whose unperturbed motion is described by R (r, r) is displaced to 

R(/\ i) + £(r, /). Expressing the perturbed density and pressure in terms of the Lagrangian 

displacement £ and the unperturbed quantities, we obtain

(12)

The free surface boundary condition associated with Eq. (12) is just V • £ = 0 at r = r ±.

In Eq. (12) the space and time dependence are completely separated. An equation for 

o- = V • | is derived by applying the divergence operator to Eq. (12), assuming V x £ = 0. 

The result in normalized units is

/«+2- _ 7 1 V2[(r2 - Do-] + r + a.
2 dr (13)
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We look for a solution in the form cr = 5(r) W(r) Yim(0, </>), where K/„, is the usual spherical 

harmonic. Two ordinary differential equations result:

and

y ~ 1
2r2

d
dr

r2 JL ((r2 - Du/) - /(/ + D(/-2 - 1) fT
dr

+ r + 1) fT = 0dr

(14)

r+2?=-n3:. 05)
where ^ >s a separation constant.

Equation (14) is solved together with the boundary conditions W(r±) = 0. First we show 

that the eigenvalue /jl must be positive. Letting U = (r2 — \) W and x = r2, we can rewrite Eq. 

(14) in the Sturm-Liouville form

d
dx

1
x3/2U - 1) y~x dU

dx + + 1 
y - l

2x1/2(x - 1) y-'

4
y - 1

1
x3/2(x - 1) y~] 2 - /(/ + 1) (7 = 0. (16)

Multiplying Eq. (16) by U and integrating from 1 to r2 in the usual way yields an expression 

for n. as the ratio of two positive quantities, whence /u > 0.

The radial eigenfunction can be written as a superposition of two independent integrals of 

Eq. (14), expressible in terms of hypergeometric functions 2F\- For example

W(r) = C+rl2Fl | (6+ + d+), | (b+ - d+)- 2 + —; 1 - r2
2 1 y — 1

+ C_r'/_12F1 | (6_ + d_), | (6_ - rf_); 2 + 1 - r2
L l y — 1

where

(17)

b± 2 + 1
y - 1 (18)
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d± =
hi 2/i+11 [/ + \\ 1 + \ T 4 +y - 1 4 2 2 y-l\

1/2

(19)

The eigenvalue n and the constants C± are chosen to satisfy the boundary conditions and a 

normalization condition.

Evaluation of /x in general must be carried out numerically, for example using the varia­

tional principle associated with Eq. (15). Approximate results can be obtained analytically in a

number of interesting limits, however. Thus in the thin-shell limit the WKB approximation
2

, n = 1, 2, .... For thick shells (r+ — °°) the ground stateyields //. = -2- - 1 n n
rjr- - 1

eigenvalue found using WKB is /j. —2(y — !)/(/ 4- 1). The spectrum can readily be shown to 

have the following properties in general: (1) It is discrete, contains an infinite number of modes 

and is unbounded above; (2) the lowest level (minimum) value of /i. increases with increasing / 

arid y and (3) decreases with increasing shell thickness, as also does the level separation. 

Clearly /xl/2, which depends on the value of the indices / and n (but not m) is just the dimen­

sionless characteristic frequency.

Given /z, two independent solutions of the time-dependent Eq. (15) can be written

?(/) = 2F{ I + 2 + /A
4 4a

!+
4 4a

/A. J
’ 2 ; 1 - .r"

§(/) = 1

r

H 1/2
2F\

2 + /A 3 2 - /A
t ; i -a 4 4a 4 4a 2

(20)

(21)

where A = [8;ua - (a + 2)2]172. At / = 0, JIO) = 1, j(0) = 0 and §(0) =0, §(0) = 1. As 

/ —* 0, the standard asymptotic formulas yield

?(/)

r 1
2

r _ .IA
2a

r 1 , 2 - /A
4 4a

r 1 2 + /A
4 4a

<i + 2 + /i

f + c.c. (22)
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V a

r 3_
2 r _ 1A

2a

r It +
I 4 4a r 3 2 + /A

4 4a

f
«+2+/A

4 + C.C. (23)

Evidently, the relative amplification ?// (or §//) consists of a rapidly oscillating part multiplied

-r (a—2) 2- (y—5/3)

by /4 = /4 . If y < 5/3 (y > 5/3) this factor diverges (vanishes) as f —* 0. For

y = 5/3, the perturbations and the size of the shell go to zero at the same rate. The constants 

multiplying the factors containing / depend weakly on /u. through A, however, both decreasing 

monotonically as \x increases. Figure 1 displays the absolute values of these constants as func­

tions of /c for a = 1 (y = 4/3). Since /x increases with both / and «, lower-order modes have 

larger amplitudes then higher ones, hence are more disruptive.

We note that by Eqs. (6) and (7), /? ~ and so the limiting dependence of Eqs. (22) 

and (23) on /?(/) is precisely that given by Eq. (1). Of course, to study the temporal develop­

ment of the perturbations in detail it is necessary to integrate Eq. (15) [or evaluate Eqs. (20) 

and (21)] numerically. This presents no difficulty until times when the oscillation period 

becomes very small, at which stage the asymptotic formulas can be used.

Case (O' (y = 1) is treated in very similar fashion. Equation (13) is replaced by

/2cr = V2o- + r + o-, (13')
or

which again separates. The space- and time-dependent equations are both solvable in terms of 

confluent hypergeometric functions. The spectrum obtained from the former is qualitatively like 

that found for y > 1 in all important respects. The solutions of the time-dependent equation,

/25 = -

may be written as
05')
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?(/)=<!>

and

H(r) = V

1 1 i /i2 M’ 2;'ny1

1 1 i /i2 2 , In ./I

(20')

(21')

where <l> and are the standard solutions of the confluent hypergeometric equation. As f —» 0, 

the asymptotic forms of the latter yield

y(t) / (In /) 2
~ (m-»

(22')

and

H(r) — (In /) 2. (23')
Thus only the former solution gives rise to an amplification, with diverging as a power

of In /.

Turning next to example (ii), the uniform density case, we begin by noting that for an

anisentropic unperturbed state, the terms —
Po

dPo >V —- ( 
ds

Vs - V dPo , c Vs
ds ~

must be

added to the right hand side of Eq. (12). In scaled variables, the equation for f is now

/"+2f = ^ V[(r2 - 1)V • £] + • r - rV • |.
2. •'**» A**!

(24)

It is no longer possible to obtain a solution with w_= V x £ = 0. Instead we find two coupled 

equations,

= X v2[(r2 - l)tr] - 2o- - r -V x o> 
2 ^

(25)

and

/"+2 w = — oj + r x Vtr. (26)
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Elimination of between Eqs. (25) and (26) yields an equation for a which is fourth order in 

time and second order in space:

J- V2l(r2 - Dct] - 3a

+ j- V2l(r2 - Do-] - r2V2a + rr:VVo- + 2r • Vo- - 2o-. (27)

A solution is again found by separation of variables, with the time dependence given by 

Eqs. (15) and (15'), and the radial dependence expressible in the form Eq. (17). The depen­

dence on ju, of is now nonlinear. The solution of the eigenvalue problem leads to two values 

of /x, one positive and one negative, of which only the former can give rise to amplification. No 

special treatment is required in the limit y —* 1, which is now nonsingular. The spectrum is 

qualitatively similar to that found for case (i). The only changes in the time history of a pertur­

bation are those ascribable to the changed values of /x. It is clear that this time dependence is a 

general property of the homogeneous self-similar motion on which the present examples are 

based.

Thus in the two examples treated in detail here, sound waves standing in an imploding 

spherical shell can become large in amplitude compared with the diminishing shell dimension, 

at the same rate in each instance. From this it may be concluded that the result is insensitive to 

the form of the density profile. Since the time dependence agrees asymptotically with the 

model-independent estimate of Eq. (1), it is unlikely that the shape of the pressure pulse plays 

an important role. Because the long-wavelength modes have the fastest relative amplification, 

neither viscosity or other dissipative processes are likely to provide a way of controlling them. 

Thermal conduction, which reduces the effective y, only makes matters worse. Layering might 

help by raising the natural vibration frequencies. The tendency of all materials to behave 

incompressibly (y » 1) at high densities, when the Fermi energy becomes large, means that

9
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the relative amplification cannot really diverge. To determine for a given initial vibration level 

the actual limit on aspect ratio or compression imposed by the mechanism discussed here 

requires calculations using a more detailed model.
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i.-h2 ..-t-2

Figure 1 — Asymptotic numerical factors |F/f 4 |, | G/f 4 | defined by Eqs. (22-23) as func­

tions of /li for a = 1.
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