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1. INTRODUCTION

4Few efficient iterative methods have been develobed’for treating
large nonsymmetric linear systems. Some methods amount to solving the
normal equations AHAx = AHb.associated with the system Ax = b 6r with some
other system derived by a preconditioning techniqﬁe. ‘

This, unfortunately, is sensitive to the conditioning of AHA
which is in general much worse than that of A. Techniques using
Tchebycheff iterétion [12] do no£ suffef'froﬁ'this drawback but require
the computation of some eigenvalues of A.

.A powerful method for solving symmetric linear syétems is
provided by the conjugate gradient algorithm. This method achieves a
projgction process onto the Krylov gubspace Km = Span (ro, Aro,..., Am—lro)
where r, is the initial residual vector. Although the process should
theoretically produce the exact solution in at most N steps, it is well
known‘thaf a satiéféctory accuracy is often achieved for values of m for
less than N [15]. Concus and Golub [5] have proposed a.generalization of
the>conjugate gradient method which is based upon the splitting of A into
its symmetric.and skew—symmetric parts.

The purpose of the present paper is to generalize the conjugate gradient
method regarded as a projection process onto the Krylov subspace &n‘ We
shall say of a method realizing such‘a process that it belongs to the
class of Krylov subspace methods. It will be seen that these methods
can be efficient for solving large rionsymmetric systems.

The next section describes the Krylov subspace methods from
a theo;etical point of view. In Section 3 some algorithms are prpposed.

They are essentially the extensions of thg Arnoldi-like methods for solving

large eigenvalue problems described in [18]. Section 4 deals with the
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convergence of the Krylov subspace metheds. Finally, some numerical

experiments are described in Section 5.

2. THE KRYLOV SUBSPACE METHODS -- THEORETICAL ASPECTS

2.1. General projection process -- notations
Consider the linear syétem
Ax - b =.0 . | (2.1)
where A is a (complex or real) N x N matrix and let Vo= [v],..., vm]
be a system of m linearly independent vectors in ¢N. The projection

process onto the subspace Km = Span (vl,..., vm) seeks an approximation

x(m) to the solution of (2.1) by requiring that
<™ e ¢
" (2.2)
. Ax(m)-b;l_vvj, i=1, 2,..., m
'Writing x(m) = Vm-'.y(m), it 1y Immedlate that y(m) muot oaticfy tham x m

linear system
H . L (m Ho _ ,
V AV -y v b=20 (2.3)

H ‘ —_
where Vm denotes the transpose of the.conjugate of Vm: V§.= i.

<

-Let
ﬂm denote the orthogonal projector onto the subspace Km. Then another

formulation of (2.2) is the following

x(m) € Km
(2.4)

(m)-

T (Ax -b) =0
m

It -will be assumed for simplicity that b € Km. We shall denote by'Aﬁ the
(m)

restriction of ﬂmA to Km, so that x is the solution in Km of the equation

Ax-b=0 (2.5)
m

(Note that b € Km so that ﬂm b = b.)



The problem (2.1) is therefore replaced by the m-dimensional

problem (2.5).
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In order to study the convergence properties of this-

process, one may express the error in terms of the distance between the

exact solution x* and the subspace Km, that is in terms ofII(I - ﬂm)x*||.

See [8].

Note here that when A is Hermitian definite positive, the

convergence'is more easily studied by using the fact that the approximate

(m)

solution .x

minimizes the error function E(x) = (x - x*)H A(x - x*) over

all elements x in Km. Unfortunately, this property does not extend to the

nonsymmetric case so it becomes necessary to make a different approach.

Suppose that the exact solution x* is close to K > in that me* is close

to x*, then it is possible to show that x

by showing that the.residual of ﬂmx* for the problem (2.5) is small.

More precisely,

Proposition 2.1

Let v_ = |[|m AL - ).

(2.5) satisfies

Proof

(m)

b - amxxl] < v_ficx - 7 )]

b-ATXx*
m m

il

b - T A x*

m m
H - * - - *
b ﬂmA[x (I Wm)x ]

- - %
umA(I nm)x :

is close to Wx; (hence to x%)

]. Then the residual of me* for problem

(2.6)
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Observing that (I - ﬂm) is a projector we can write
b - Amﬂﬁx*|l= ”ﬂﬁA(I - T - nm)x*H

<yl - m o]

which completes the proof. O

As a consequence, we can state the next corollary which gives a bound for

(m)lL

||%* - x

Corollary 2.1.

Let Ym'be defined as above and let km be the norm of the inverse

of Am' . Then the error x* - x(m)

[N

satisfies.

[|x* - x(m)”_i vl + Yme [| (1 - ﬁm)x*” ' 2.7)

Proof
By Proposirion (2.1) aud the fact that x(m) - wmu* =
A-l(b -~ A T x*), we get
m m m
Im_Ger = =™y || <y |l - m )z (2.8)
m — mm - m .

(remark that ﬂmx(m) = x(m)). Writing

x* - x(m) = (I - Wm)x* + ﬂm(x* - x(m)) | (2.9)

and observing that the two vectors on the right hand side of (2.9) are

orthogonal, we obtain
lx = ™ =l - x|+ [lm e - x|

which, in view of (2.8), gives the desired result (2.7). O
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The above results show that the error Hx(m)v— x*Iywill be of
the same order'as||(I - Wm)x*H provided that the approximate problem- (2.4)

is not badly conditioned.

2.2. Krylov subspace methods

Let X, be an initial guesé at the solution x* of (2.1) and

let ro'be the initial residual ro =b - Axo. If the unknown x is

decomposed as x = X, + z then clearly the new unknown z must satisfy

Az - ry = 0 (2.10)

By a Krylov subspace method we shall refer to any method

that obtains an approximation z(m) to problem (2.10) by applying a

projection process to the. system (2.10) onto the Krylov subspace

m-1

Km = Span [ro, Aro,..., A ro].
We shall assume throughout that the vectors rO, Aro,..., Am_lr0
are linearly independent, which means that
dim(Km) =m (2.11)
If Vm = [vl,..., vm] is any basis of Km, then according to
Sectrion 2.1, z(m) caih be expresscd as z(m) = Vm . y(m) where y(m) is the
solution of the m x m system
vy - y® i o . (2.12)
m m m 0 _
and the approximate x(m) of problem (2.1) is related to z(m) by
x(m) =x_ <+ z(m).
0
If z* =vAf1r0 denotes the exact solution of the system (2.10),
then we notice that
xk - x(m) = z* - z(m) ’ : (2-13) .
, (m) (m) ,
which means that x and z admit the same error vector for (2.1)

and (2.10), respectively.



3. PRACTICAL METHODS
Some algorithms based upon the Krylov subspace methods

dgscribed above will now be presénted. We first propose an adaptation
of Arnoldi's method [1], [18] to the solution of systems of linear equations.
The algorithm constructs an orthonormél basis Vm = [v,,e.., vm] of Km such
that V:;AVm has Hessenberg form. An iterative version of this method is
also given so as to avoid the storage of too large arrays in memory. Then
anothér class of algorithms is derived from the incomplete orthogohalization

method described in [18].

3.1. The method of Arnoldi

Arnoldi's algorithm,buiids an orthonormal basis Vyseees Vo of
K‘ = Span [r., Ar Am_1 ] by the r
m P 0’ 0’ r0 y 2 recurrence .
k
hkﬂ,k Vibp ~ A T 1:1 B Yy ' (3.1)

starting with v, = rO/Hr0||and choosing h,,, i = 1,..., k+l1 in such a

1 ik

k+l” = 1. 1In exact arithmetic the

way that Vk+1'l vl,..., vk and Hv

algorithm would be as follows.

Algorithm 3.1

1. Compute r0 =b - Ax0 and take v

2. For k := 1 until m do

1T rOA|r0”.

k
w o= Av, - .E hy, v, with b, = (v, , Vi) (3.2)
i=1
L Il -3
v = w/h
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See [18] for some remarks on the ﬁraétical realiz#tion_of this algo?ithm.
It is easily Seen:phat [vl, Voseees vm] is an .orthonormal basis of Km
and that the matrix,GiAVm is the Hessenberg matrix Hm whose nonzero
elements are the hij defined by (3.2) and (3.3). As a consequence

H : .
the vector er in (2.7) is equal to B - Vl:lv1 = Bel whe;e B = ”rolL

0
Thus the system (2.7) becomes

N 3.4
Hm y = B e (3. ?
and the approximate solution x(m) defined in Section 2.2 reads
x(m) = X + z(m)'where
2™ = gy wle . (3.5)
, mm 1
The following estimate for the residual norm]lb - Ax(m)H is very
useful as a stopping criterion
(m) H_(m)
o - ax™ = ny o el y ™) 3.6)

Equality (3.6) follows immediately from the relation
AV =VH +h v eH
m mn mtl,m mt+l m
which can be derived from the algorithm and from equality (2.8).

An interesting practical method would be to generate the

vectors vk'and the matrix Hk’ k=1, 2,..., m,..., to compute

periodically the estimate h |e$ y(m)l of the norm of the residual

. m+l,m
and to stop as soon as thie is small enough. As was suggested in [15]

(m)l

o . . . 0
for the symmetric case, there are various ways of updating |em y

()

without even actually computing the vector y . Let us give a few
indications about the problem of computing the estimation Ieg y(m)| s
since it will appear in several parts along thc paper. Parlett [15]

suggests utilizing a recurrence relation proposed by Paige and

Saundcrs [14], which is based upon the LQ factorization of H .
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'Anothef interesting possibility is to pefform the more
economical factorizétion provided by the Gaussian elimination with
partial pivoting on thg matrix Hj. The factorization of Hj can be
easily performed byiusing the information at the prévio&s step.
Supposing fhat no pivoting has been necessary for sfeps 1 through j-1,

and writing the LU factorization of Hj’ Hj = LU, it can be easily
CH

_ _ H._(m) ;
seen that pj h.+1*jlem y | is Slmp;y
: j-1
. =h. . . I,/ u,,
P57 Py ,5 P |(1=1 ) JJ'

where the 21, i=1,..., j-1, are the successive pivots. More
generally it can be shown that when no pivoting has been.necessary

at steps i, 1 € I, where I C {1, 2,...,.j-1}, then pj becomes

P, =h

g cm g
37 Pyea,y P ki B gyl

€l

This means that pj can be updated at each step at a negllgilile coot.
Finally, after it is AECided that the estimate of_the residual norm
is small enough,'the final factorization of Hm will be used to fully
solve the system (3.4). The Gaussian.elimination with partial
pivoting.gives satisfactory results in general, but one might as well
use a more stable decomposition, as the LQ decompusition in [14], [15]
although at a high cost.

As m increases, the process of computing the v, becomes,

i
unfortunately, intolerably expensive and core memory demanding. To

remedy this, one can use the algurithm in an iterative way, as is

described next.



3.2. . Iterative Arnoldi method
Due to core memory capacities, the number m of steps in

Algorithm 3.1 is inevitably limited. After having computed the approximate

(m)

solution x with the maximum number of steps allowed, one may find that

the accuracy is still unsatisfactory. This naturally raises the question

(m) )

The simplest idea is to restart

(m)

of how to improve the accuracy of x

obtained. The

the algorithm with x, replaced by the approximation x

0
idea is similar to that of the m step steepest descent in the symmetric
case. (See [6].) One can restart as many times as ﬁecessary to ensure
satisfactory accuracy. We now give a mére detailed description of this
iterative version. Let us start with an initial guess X and form

ry = b - Axo.

the approximate solution x

Then construct Hm‘and Vm by algorithm (3.1) and compute

%0

used to determine whether the process must be stopped or restarted.

im) = +'z£m).v The estimation (3.6) can be

zim) and compute

Suppose a restart is necessary. Then take Xy = X, +

r, = b - Axl. (Remark that r,

‘Construct again V. and H starting with v, = rlﬂ|rlH in Algorithm 3.1.

is also equal to the residual ry - Az{m).)

ém) to the equation Az = r, is obtained

Then an approximate solution z 1

yielding the new approximation X, = X + zém) to the solution x* and

so forth.
At the s-th iteration the approximate solution X is equal to

Xy + zim) +...+ zém). Thus the algorithm can be formulated as follows.

(The subscripf (m) is dropped for simplifications.)



Algdrithm 3.2

r. :=b - Ax ..

1. Start. Choose m and xo; 0 0

2, For s :=0, 1,..., do

* compute Vis Voseees Vo and Hm by Algorithm 3.1 starting with
vy = /@ s=x b

+ Solve the system Hm . y =B - e

T %541 = Vm Ty

" Xs1 = s + zs+l

T Teil (T g T AZgy

',If hm+l,m |e£ y] < e , stop else continue

3.3. Incomplete orthogonalization methods

3.3.1. The construction of the vectors v o Vo by Algorithm 3.1

120"

amounts to orthogonalizing the vectors Av égainst all previous vectors

k
vl,...?‘vk. This is costly and some numerical observations:suggest'to
orthogonalize Avk against the preceding p+l vectors rather than all
(see [18]).

The system produced is such that (vi, vj) = Gij for 1,j

satisfying Ji—jl < p.

Algorithm 3.3

1. Choose p and m such that p < m; compute ry = b - Ax0 and

v, = rO/”rO”.

2, For j:=1, 2,..., m do

iO := max(1l, j-p+l)
i
w := Av, - & h,, v, with
=1, Mt
0
hij:= (Avj,.vi) (3.9

Vi T Wy g lwD (3.8)
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Under . the assumption (2.11), this algorithm will not ‘'stop before the m-th

step and will produce a system of vectors v

170 Vo locally orthogonal

and a (banded) Hessenberg matrix of the form

whose nonzero. elements are computed from (3.7) and (3.8). The generalized

Lanczos approximation z‘m) must satisfy the equations
v 3™ _ e =0 (3.9)
m m m
(m) (m)
4 = Vm y

, ' , H
In the present case, however, the matr1X'VmAVm does not have
any particular stfuctqre as before, so we need to transform (3.9) into
a simpler problem. ;
3 HV -1 _H AP
Let us set H = (V.V.) ~ VAV . Note that this is just the
_ m S mm° - m m :
matricial representatibnoof the linear operator Am ='ﬁmA|K (see Section
' m

2.1), in the basis {vl, v . vm}. It was shown in [18] that ﬁm differs

92"

from ﬁm only in its last column. = More precisély

Theorem 3.1

i =H +5s el | (3.10)

Proof. From Algorithm 3.3 we get the basic equation

~ H
= . +
AVm Vm Hm hm+1,m Vm+l em

which yields (3.10) on multiplying by (‘ﬁvm)—LV;- 0

Multiplying (3.9) by (Vng)—ngives the equivalent equation

A

(m) -1 H_ _
by - (V:Vm) vm Yo T Q
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H

. -1 = G : - ‘obtad Cavef
Observing that (vivm) V.%o T Bel where B —||ro|L we obtafn the system
£ () -
H vy - Bel =0 A (3.11)
If we set §(m) = Bﬁ;lel and ;(m) = Bﬁ;lel, then by the Shermaﬁn

and Morrison formula [7] these two vectors are related by

N

Y = Y~ OH S, - (3.12).

~ e
where 0 = eﬂy(m)/(l_+ eH H
fun} i}

\S .
iil m)
On the practical side the only difficulty lies in the computation

+

f th rr i s . N =
.of e corrective column m ote Fhat S hm+1,m Vm Vol

and that S
is the solution of the least square problem (see [19])

nin [|vs - Boelom v | (3.13)
for which many efficient algorithms are available (see 31, [13]). 1t
should be added that only a moderate accuracy is needed in practice,

so 'tﬁe bidiagonalization algorithm BIDIAG described in 113) is

suitable for solving (3.13) with moderate accuracy. We can now give an

algorithm based upon all the above observations.

Algorithm 3.4. fncomplete‘OrthogonaliZation with Correction

Start. Choose two integers p and m with p < m. Compute rO 1= b = Ax

B =||rOH; vy = rn/B.

s

Iterate. Comment compute Hﬁ and vl,..., v

For j =1, 2,..., mdo
io = max(l, j-p)
h|
w o= ij - iEi (hij := (Av., vi)) X v,
O .
iy 1= W (b o=l
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Correct:
1. Compute least square solution S of (3.13)..
2. Compute Yy := Bﬁ-l e
m m n
_ -1
X s Hm S'm
g := eH vy /(1 +e x)
m
ym = ym - 0x
3. Form the approximate solution

1.

‘We shall now give some additional préctical details.

If neceséaty, the vectors Vs V Vo may be stored in auxiliary

IR

memory, one by one as soon as tHey are computed. Only the p

vectors Vj’ v, must. be kept in main memory for more

PIRERREE vj__p+l

efficiency.

The storage of ﬁm now requires only the storage of (p+1l) x m elements
instead of the previous m2.

For the choice of the integer p we should first point out that p is
limited by the available core memory. In theory the larger p, the

better. If p is large, the system (v ., v ) will, in practice,
. m

120"

be close to orthogonality and the solution of the least square
t

problem (3.13) in step correct becomes easier [at the limit if'p =m

H

mHl,m Vm Vol = 0]. But in that case the

then the solution is just h
computations in the step iterate areée more expensive.. If p is too
small, on the other hand, it is very likely thaf the problem (3.13)

will become difficult to solve (if not impossible numerically) as
}

the vectors (v vm) will become nearly linearly dependent. Note

1270

i
that this depends also upon m. When m = p the system is orthonormal

and as m increases it is observed that the system departs from
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orthogonality,.inla slow manner at the beginning. All these

observations suggest that p must firét be chosen according to the
~main memory capac;ty and some arbitrary limitation p < Prax’

Afterwards, a maximum number of steps m oo should be fixed. Then

a test must be included at the end of the step iterate in order to

shift to the correction step as soon as the system {vl, vz,..., §j+1}

is suspected to be too far from orthonormal, as for example

Ef_l(vj+1, vl)| > n goto corrcct

where n is a certain tolerance. The heuristic criterion given above

is not the best.

4. When the matrix A is symmetric, then by taking p = 2 we obtain a
version of the conjugate gradient method which is known to be
equivalenf to the Lanczos algorithm (see [14]). 1In that case the
vectors vl,..., v are theoretically orthogonal. Suppose.now that
A is nearly symmetrié and take p = 2 again. By a continuity argument
it is clear Fhat the system (vl,..., vﬁ) will be nearly orthonormal,
making the choice p = 2 optimal in a certain sense. This suggests
that when it is known that A is close to a symmetric matrix, p could
be taken small (or even p = 2). However, it is not easy to give a
rigorous meaning to the notion of nearly symmetric and it is even
more difficult to monitor automatically the choice of the parameter p.

3.3.2. In the following we develop another algorithm which is, in

particular, more appropriate for the cases of almost symmetric matrices.

As pointed out above, the correction step can be expensive and one may

ask whether an acceptable accuracy could be achieved by ignoring the

(m) _

X, +V_ §

corrective step and replacing the approximate solution x 0 m Tm

by
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~(m) _ ~
X ;— xO + Vm ym (3.14)

The answer is yes, provided that V is not too far from '

m+l

- > o H .
orthonormal. In effect, writing Hm =H - s, €, We can derive the

following analogue of (3.12)

h el g
y, =9, + “‘“"}‘; T iﬁ;l s | (3.15)
1- H" s " '
m -~ m

It is remarkable that, by (3.6), the term h is equal to the

':eH A
ml,m m ym
residual norm ”ro_— Az(m)|lexcept for the sign, and hence it becomes

smaller as m increases. If'{vi,..., v l} is nearly orthonormal

mt

then VH v
m

k] is nearly zero and so will be Bm in general. This shows that

in general the second term on the right hand side of (3.15) can be

neglected (in comparison with ?m) as long as Vm+ remains nearly orthonormal.

1
This fact~is confirmed by the experiments and it is observed that the
residual norms beha&e in the same manner as the residual norms obtained
for the incomplete orthogonalization method applied to the eigenvalue
problem (see [18], section 4.2). |

..The residual norms “ro - Aim” decrease rapidly ﬁntil a certain
step and then start oscillating and dcercasing more slowly. This
suggests restarting immediately after a residual norm is larger than the

previous one. Here again the formula (3.6) remains very useful for

estimating the residual norm. This leads to the following algorithh.
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Algorithm 3.5. Incomplete Orthogonalization without Correction

~ ~

Start. % := x.3 ¥ i= b - Ax.; B,£=||r”; vi Q=A§/8;

0’ 0’
Iterate. For j =1, 2;..;, m _ do
_— max
1. compute
3
hj+1,j Vj+l = Avj - 'EI hij A
1—10

where i  and . the hi "s are as in Algorithm 3.4.

0 3

2. Update the factorization of Hj and the estimate pj of the

residual norm (see 83:.1).

‘3. Test for convergence performed every q steps only (e.g., every q =-5
steps).

a. If pj < g goto restart,

b. If pj > pj_q goto restart; otﬁerwise take m :.= j and continue.
Restart: '
2 gy i te,
%= %+ 3™
A SR
B =1l
vl‘:= r/B
If B < € stop else goto iterate

The numerical experiments (§5) will reveal that, this last algorithm is to
be preferred to the iterative Arnoldi Algoriéhm and to the incomplétev

orthogonalization method with correction. Surprisingly, it is often the
case th;t no restart is necessary, eveﬁ for matrices that are not nearly

‘symmetric.
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We shali‘conclude this section by a remark concerning the
application of preconditioning techniques'to.the élgorithms described
above. Suppose that we can find a matrix M for which linear systems are
easily solvable and such that M 1A is closer to the identity than A. 1In
this case it is advantagedué, in géneral, to replace the systéﬁ Ax =D

by the new system M_lAi = M_lb before applying one of the previous

- methods. There are two reasons for this. The first is that the rate of
convergence of the second system will, in general, be higher than that
of the first Secause the spectrum will be included in a disk with center
one and with small radius, and the next section will show that in that
case the smaller the radius, the higher the rate of convergence. The
second is that M—lA,wﬁich is close to the identity matrix, is clearly
close to a symmetric matrix (the Identity)»so that the application of

incomplete orthogonalization without correction is most effective (Cf 85.5).

4. RATES OF CONVERGENCE FOR THE KRYLOV SUBSPACE METHODS

4.1. Introduction

We shall now consider the problem of the convergence of the

(m)

approximaté X toward theAeXact soluciop g*. We first point out that
the convergence is achieved in at most N steps where N is the dimension
of A. (This is immediate from the fact that KN is the whole subspace

¢N and. from the definition 2.2.) Therefore, the problem is not to show
the convergence but rather to establish theoretical error bounds showing
that one can obtain a satisfactory accuracy for values of m much less
than the dimension N, which is supposed to be very large; Another way

of stating the problem is to, suppose that A is an operator on a Hilbert

space (N.= ®) such that the convergence, the rate ot convergence..., ul Lhe
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(m)

infinite sequence x can be discussed. We shall not, however, adopt

this extension in the present paper.

In view of relation (2.13) it is equivalent to study either the

(m) (m)

convergence of x to x* or the convergence of z to z*. 1In

addition, Corollary 2.1 shows that the convergence can be studied in

terms ofJ](I - ﬂm)z*|lwhere m is the orthogonal projection onto the
m-1

Aro,...,A ro].

the space of polynomials of degree not exceeding k. Then, a useful

Krylov subspace Km = Span [r Let us denote by Pk

n,
expression for the distance ”(I - ﬂm)z*” can be derived by remarking
that Km is nothing but the subspace of tN constituted by all the elements

q(A)rO where q belongs to Pm—l'

Proposition 4.1. The distance || (I - ﬂm)z*]|between z* and the Krylov

subspace Km sallsfles

(1= w )z*|]| = min ||p(A)z#]| ' (4.1)
m P .

Rait
ip(O)fl

Proof. The following equalities are easy to show

| (x = 7 )z*|| ='ndn 1|z* - z|| = min ”z* - q(A)rOH
m 2EK q€P
m- m-1
= min ||z* - q(A)Az*“ = min H(I - Aq(A))z*“
qtpm--l ‘ qepm—l

= min |lp(a)z*|| O
P

m

p(0)=1
In order to obtain an upperbound for (4.1) we shall assume that

A admits N eigenvectors ¢l’ ¢ . ¢N of norm one, associated with the

23"

A_. - Then the solution z* can then be expressed as

eigenvalues Xl,..., N



and we can formulate the next theorem.

Theorem 4.1

Set a =
i

o2

Iai|, where the o, are the components of the
1 ! S

solution z* in the eigenbasis of A.

Then
||(I - )z*||< o min max |p(A,)| B (4.2)
.. m T . [ pEP J
- t m j=l,..., N
' p(0)=1 - ‘
Proof. Let p € Pm,.with p(0) = 1. Then
. N. , - N
loyz|l = llpa) = a0 =1l pes.ll
. . ~i=1 j=1
N . N
< 2o fle; pQp0 < 2 o] Jer)]
» i=1 . . - i=1 .
5 ol | x b0y
<lz o |l=x max p(A,)
i=1 j=l,..., N *

Therefore, for any polynomial of degree not exceeding m such that p(0) = 1

we have I " L : . .
l|p(a)z*]|| < o max [P : (4.3)
j=1,..., N ]
Hence min |lp(A)z*||<a min ‘max |p(kj)| which by equality (4.1)
=P ' =P j=l,..., N
=1 \po=1 "

completes the proof.. O

We point out here that from classical results it can be showp
that cthe poiynomial realizing the minimum in (4.2) exists and is unique
provided that m < N (see [11]5. We should also add that there is

unfortunately no upper bound for a.
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We shall set throughout

e(m) = min max lp(X) | , (4.4)
PP j=l,..., N I

p(0)=L

so that inequality (4.2) simplifies to

(T - m)z*| < o e™ (4.5)
and the result (2.7) becomes
s = =™ = flax = 2™ < wh 442 ™
We, therefore, need to show that the sequence E(m) decreases

rapidly to zero. Note that E(N) = 0 which shows again that the process

- will give the exact solution in at most N steps. The rate of convergence

(m) ¢

of the sequence € o zero provides a bound for the actual rate of

ronvergence. Estimating €(m)

(m)

is, unfortunately, a difficult problem
in general. The number € is the degree of best approximation of the
zero function by polynomial of degree m satisfying the constraint

p(0) = 1, over the set Al’ A v e AN (see [111).

27"

(m)

4.2. An exact expression for ¢

The following theorem gives an expression for €(m) in tetrms

of m + 1 eigenvalues of A.

Theorem 4.2
Let m < N-1. Then there exist . utl eigenvalues Which;‘with—

A such that

out ambiguity . can be labelled Al’ AZ,..., ol



-20-

L mHl ml -1 '

e - 5 g A.AE T | o (4.6)

. o J'=1 k=1 J } . . .
We omit ‘the proof of this equality. An analogue result will

be proved in.a forthcoming paper dealing with the convergence of Arnoldi-like

methods for computing eigenelements.

The result does not specify which are the_eigenvalﬁes A A

100 A
_but it still gives an interesting indication. If the origin is well
separated from the spectrum then e(m) is likely to be very small. Indeed

if Al is, for example, the eigenvalue the closest to zero, among those
eigenvalues involved in the theorem, then, in general, we shall have

lkk| > |A1 - Akl, k=1,..., N as seen in Figﬁre 1. Therefore,

“mtl

Ak | . -
T >>1
- k= 1Ak - A
I,
0 N Re(})
T
Figure 1.

and it is seen from (4.6) that E(m) will be small. There are particular
distributions of the eigenvalues where e(m)ﬂis known exactly (for

m =.N-1). - But, in general, the result. (2.14) is not .useful for giving
. (m)

an estimation of the rate of convergence. Upperbounds for € must be

established for that purpose.
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(m)

4.3. Bounds for €

(m)

In the real case one usually obtains bounds for € by majorizing

the discrete norm max |p(X.)| by the continuous norm max |p(A)| where I
' j=1,N J €1

is éniinterval (or the union of two intefvals) containing the eigenvalues
Aj and not zero.

In the complex case, however, otie encounters the difficulty of
choosing an adequate céntinuum containing all the eigenvalues and not
zéro, An infiniti of choices'are possible but e#cept'for soﬁe particulér
shapes.such as circles, eilipses..., there.is no'simplé expréssion for the

minimax quantity min max |p(z)]| .
pGPm z€D

p(0)=1
We first deal with the simplesf‘case where all the eigenvalues
of A are real and positive. The next case to consider is naturally the

case where the eigenvalues are almost real. Thé general case will be

considered in subsections 4.3.3 and 4.3.4.

4.,3.1. Case of a purely real spectrum

Theorem 4.3

Suppose that all the eigenvalues of A are real and positive and

let Amin and Amax be the smallest and the largest ot them.

‘T'hen
|z - ﬂm)z*|L§va/Tm(Y) (4.7)

where o is as before, v = (A + Amin)/(xma

-~ A . ) and where T is the
max min’ — —/—— m — —

X

Tchebycheff polynomial of degree m of the first kind.

- This result is an immediate apﬁlication of a well-known bound

for (4.4) when the Xi are real [2]. 1t is also possible to establish some



-22- -

fesuits when the eigenvalges aféAkﬂown_to:iieﬁin»tw§ or more intervals
(see [2], [10]). o
Ineduality (2.11) shows that the Genefalized Lahczqs.methéd._
converges at least és rapidly as [fm(y)];% = (v +‘/Y2 -'l)ié such ﬁhat
the rate of convergence is.bouﬁded:by Y +;/Y2 - 1 a o .
Finally note that siﬁilar results‘caﬁ éésily'be ébt;ine& if
all thé'eigenvalues are'purely‘iméginarf o¥ if they lie on a stfaight

line of €, containing the origin.

4.3.2. Almost purely feal spectra

Iﬁ the follo&ing.we shall assume that the spe;trum lies inside
a certain ellipse which has center c on ;he real line-and foci c + e,
c - e where e is the ecceﬁtricity.  Furthermore we shall assume that the

origin is not inside that eliipse (see Figure 2).

AIm(z)
c— e—>
:e— a ; =
. . Il i
o 1 i ;
! SN
R ' oo
. S ! PN
F C F \- Re(z
__,.Q ( ;I -,.:. ng' ( ) >

S

Figure 2.

Let us denote by E the closed domain bounded by the ellipse defined above.
(i)

Consider the variable transform z' = (¢ - z)/ejthen € satisfies the

inequality
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e™ < min max [p(z")]| L (6.0
pEP_ ~ z'EE' R
) m
plc/e)=1

where the domain E' is bounded by the ellipse centered at‘origin with
ecéentficity one and major semi-axis a/e. It was shown by Clayton [4]

that the above mini-max is fealized for the polynomial:Tm(z')/Tm(c/e).

Theorem 4.4

Assume that the eigenvalues of A lie within an cllipse will

center ¢ on the real axis, foci c ! e, ¢ - &, and with major gemi-axis

a. Suppose that the origin is not inside this ellipse. Then"

Tm(é/e)

13;327;7T ' ' - (4.11)

In view of (4.10) this inequality is a simple corollary of

€(m) <

Clayton's result. Since the proof is tedious, we shall give a direct
proof of (4.11) and bypass Clayton's result.
Proof. Considering the particular polynomial Tm(z')/Tm(c/e) we get

from (4.10)

(m) Tm(z' )

< max —_—
- Zz'EE"' Tm(C/E)

£ (4.12)

By the maximum principle, the maximum on the right hand side is realized
for z' belonging to the boundary OE' of the ellipse E' centered at the

vrigin and having major semi-axis a/e and eccentricity one. Thus (4.2)

becomes
(m) 1 ‘
£" 5'1_____—__T * max IT (z')l (4.13)
Tm(c/e) z'EQ3E' m '
Consider now the transform u: w <> z' = %-(w + %). It is known

[11], [17] that when w belongs to the circle C, centered at the origin

P

and having radius p, z' will belong to the ellipse BEp having eccentricity
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4

1)/2. We may take p = a/e + /ka/e)z'—l

one and major semi-axis (p + p
such that 3Ep is just 9E'. Tm(z) can be defined by Tn'l(_z) = ch(m.u ) where:
u and z are related by ch(u) = z.A Setfing e’ = w we seéAthat another
definition for Tm(é) is Tm(z) = (wm + w—m)/Z where w and .z are ;elate;i

by (w +'w—1)/2 = z. Hence

max T (z')] = max % Iwm + Q—.m|
z'epp! T WECp
_ max 1H| meime + pfme—imer
6€(0,27]

It is easily seen that the above maximum is just'

1 a /a2 m a ->a2 -m
5[(2"' (‘g) -1 +(g--/('€) .-1) ]

% e"+p™

a
Tm(g)

which completes the proof. [
(m)

The upperbound Tm(a/e)/Tm(lc/aI) for € is asymptotically

equivalent to
ale -Fv/(a/e},2 -1
lc/e} +/(c/e)2 -1

so that an upperbound for the asymptotic rate of convergence is given by

- lcl +v/c2— e2
a +va" -e

When the eigenvalues are all real, then the ellipse dégenefates

T (4.14)

to the interval',[)\l, )\N] and we shall have e = a = ()\N - )\l)/Z,

c (Al + )\N)/Z such that T will become Yy +-»/Y‘2 - 1 with

Y .O\N + Al)/(AN - A,). This means that the result (2.17) ;:oincides

1
with that of Corollary 2.1 when the spectrum lies on the real line.

Consider now the family of all éllipses having center ¢ and

major semi-axis a and let the eccentricity decrease from a to zero. Then
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the ellipse will pass from the interval (c - a, ¢ + a) to the circle
with center c and_radius a. It is easily seen that the bound (4.14):
for the rate of convergence will decrease from Toax =~ |c/a|-+¢ (c/a)2 -1
to Tmin f Ic/a|. ‘Therefore, we may assert»that the convergence is likely
to be better if the eigenvalues are close to the real line and that
when the spectrum has a circular shape the convergence is likely to’
be slower.v Note that the comparison is made for the same relative
separation |c/a| from the origin. The above comments are confirmed
by a numerical example in section 5.1.

Before considering the more general case wheré fhe ellipse
containing the spectrum does not stretch along the real axis, let us point
out that inequality (4.11) cannot be improved as Clayton's result shows.

By this we mean that if one replaces the discrete set {A . AN} by

10"
the set of all points contained in an ellipse of the form described in

Figure 2, one cannot find a better inequality than (4.11).

4.2.3. Spectrum contained in an ellipse

If the spectrum lies inside an éllipse with center ¢ and foci
c + e, ¢ - e whéete now both ¢ and e are cumplex, it is easily ascen that
the proof of Theorem 4.4.is stiil valid. Therefore, we can eétablish that

. IT (a/e)] | |
g () iﬁ?/e_)l' - | ,  (4.15)

Where c, e are the center and the "eccentricity" and are complex, while
a the (complex) major semi-axis is such that ¢ + a and ¢ %'a are the
coordidaﬁes of the two points of the ellipse situated on the major
semi—axié. Note that a/e is real while c/e is not. The interpretation

of (4.15) will, therefore, not be easy in generél. It can be shown,
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however, thaﬁ the right hand side of (4.15) converges to zero as m ~ w0
.(see [l2]). The next subsection gives a resﬁlt which is weaker, in -

general, .but easier to interpret. .

4.3.4. Spectrum contained in a circle

In this subsection we shall assume that the. spectrum lies in
a certain domain bounded by a circle having center c and radius a.
Furthermore, let us assume that the origin lies outside the circle

(cf. Figure 3).

Figure 3.
Then we have

Theorem 4.4

radius a, that contains all the eigenvalues of A-and not the origin.

" Then

(4.16)

(=2

Proof. Consider the particular polynomial p(z) = . p has degree

m and satisfies p(0) = 1. Hence, by (2.13)
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[od

L Fop| < |E.;£._>:i|mi TR

The coefficient la/c| in (2.21) is smaller than one and one

can even choose an "optimal" circle for which |a/c| is the least. The

optimal center ¢ should minimize : max . I(c - Xj)/cl over all complex
j=1,..., N
c, ¢ # 0 and the optimal radius a is simply max lc - A\j|. The
: Jj=1,..., N

{m)

inequality (2.21) is the best bound possible fot € that can be obtalued

by replacing the discrete set {A AN} by the disk D(c,a) in the

1000
formula (2.13). This is due to the next theorem, proved by Zorantonello

in [22].

Theorem 2.3

The polynomial ((c - z)/c)m_ig the polynomial of degree m

having least uniform norm over the disk D(c,a) when a < Iclf ~Furthermore
min max = -%]m
pEPm z€ED(c,a)

1p(0)=1

5. NUMERICAﬁ EXPERIMENTS

The expérimeﬂts described-in subsections 5.1 to 5:4 ha?e been performed
on the Prime 650 computer of the Department of Computer Science. at the
University of Illinois at Urbana-Champaign. The computations have been

made in double precision, using a 48-digit mantissa.

5.1.
The purpose of this first experiment is to illustrate the

comments of section 4.3.2 on the convergence properties in the case of
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cdmplex eigenvalues. Let us consider the block diagonal matrix A whose

diagonal blocks are 2 X 2 and have the form

d e
b =| © | ,k+1,2,..., 0
' e %]
The dk and ek are chosen in such a way that the eigenvalues
A, =d + ie, of A lie on the ellipse having center ¢ = 1 and major

k k k

semi-axis a = 0.8. The eccéntricity e varies frome = 0 to e = 0.8.

The real parts d, of the eigenvalues are uniformly distributed on the

k
interval [c - a, ¢ + a]. In other words
' k-1 2 2.1/2 (4 - 0)? 1/2 .
dk = 0.2 +‘B —1 3 ek = (a” - e7); [1 - az ]

k = i, 2,..., 1N
where ¢ = 1; a = 0.8; 0 < e < 0.8. The number of blocks is n = 40 so
that: A hasAdimgnsidn N = 80.

We compare for different values of e the estimated iogarithﬁic
rates of convergence pest = Log(T), where T is given by (4.14), with the
"actual" logarithmic rates —*% Log(|x* - x(m)|b where x* and x(m) are the
exact and the approximate solutions, respectively. The method used was
.Arnoldi's algorithm described in section 3.1. The right hand side b of
the system Ax = b was the vector b = Af where £ = (1, 1,..., l)T S0

the solution is equal to f. The starting vector xO was set to zero.

' The next table gives the results obtained when m = 30 for various values

of e.
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TABLE 1.
€ s Pact Pest
0.00 2.68 x 107> 0.199  0.223
0.10 2.38x 107> 0.201 0.224
0.20  2.11 x 107> 0.205  0.228
0.30  1.69 x 103 o212 0.237
0.40  1.18 x 1073 . 0.225  0.250
0.50  6.71 x107% - 0.243  0.270
-4

0.60 2.62 x 10 0.275 ~ 0.303

0.70  4.22 x 10> 0.335  0.367

0.75  6.40 x 10°° 0.398 0,432
0.79 1.62 x 107/ 0.521  0.555
0.80 1.55 x 101  0.753  0.693

Note that.in passing from e = 0.79 to e = 0.80 the spectrum of the matrix
A becomes purely real and consists in 40 doubie eigenvalues, whiéh,explains
the juﬁp in the actual rate of convergence.

The values pact and pest of Table 1 are plopted‘in ghg next

figure.
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5.2

¢

We shall compare in the following experiment the method of
. " ‘ . . ll
conjugate gradients applied to the problem AHAx = A'b with the iterative

Arnoldi algorithm. Consider the block-tridiagonal matrices
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AN \
-I \ \ b N\
NN N v N
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\\ N \‘
_ -1 B | B

and a =
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-1+6; b=-1-86.

These matrices come from a discretization of partial
differential equations involving a non—selfadjoiﬁgloperator (see [12],
(18]). When § is small the matrix A is almost s&mmetric. The éonjugate
gradient algorithm was run for the following case: & = 0.01, B
has dimensibn 10 and A has dimension 200. The right hand side b was set
“to Af where f = [1,..., 1]T and the initial vector was chosen randomly.
We have compared the results with those obtained with the iterative
Arnoldi method using 10 stepé per iteration (m = 10) and 20 steps
per iteration. The initial vector as well as the right han& side are
the same as above.

Figure 5 shows in a logarithmic scale the evolution

of the error norms obtained for the same total number of steps.

Notice that aithough the total number of steps required to aéhieve
convergence is smaller with'Arnéldi's méthod, thé total amount of work
required in this example is in favor. of the conjugate gradient method
because the cost of computing Av is not high. The method‘of Arnol&i will
be appropriate whenever the cost of computing Av dominates all the other
costs in each step but this will not always be the case. Figure 5 also
shows that when the matrix by vector multipliéation'is costly; it may be

advantageous to choose m as large as possible.
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Figure 5. Conjugate gradients for'ATAx'= ATb (upper curve) and
iterative Arnoldi methed,. p = 10 middle curve,
p- = 20 lower curve. )
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5.3. In the previous example, the ma;rix’treatéd,is neérly symmetric
and so  the use of the incomplete orthogonalization method without
correction is more suitable. Taking pb= 2, and starting with the same
initial vector as in the experiment of 5.2, yielded a rapidly decreasing
sequence of residual norm estimates. No restart was necessary

and convergence occurred after 90 steps with a residual norm equal to

1

4.6 x 10“1 . Clearly the amount of work required here is far less than

.that required by either of the methods compared in 5.2..

S.4. We shall now compare the incomplete orthogonalization methods with
and without corrective step on the 100 x 100 block tridiagonal matrix A
of §5.2 obtained by taking § = 0.2. In a first test an iterative method
based upon the incomplete orthogonalization algorithm with correction
(Algorithm 3.4) was tried. As soon as the estimate ma+l,m leﬁ'ym| ofAA
the residual norm stops decreasing or when the humbgr_of sleps reaches
the maximﬁm number of steps allowed, mmax = 40, the algorithm is halteq;
a corrective step is taken and the algorithm is either stopped (if the
residual norm is small enough) or restarted. For the present example the
algorithm halted first at m = 20 and gave a residual norw of 1.8. After
the correction step, the residual norﬁ dropped down to 672X10_3. In thé
second iteration the algorithm halted at m = moox 40 and gave the

residual norms 9.6><10'_5 before the correction and 1.l4><10_6 after.
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It is important to mentién that, here, .the corrective steps
necgésitatg the use of the bidiagonalization algoréthm to compute the
.corréctive ;olumn s 0 which is usually very expensive.

. The results obtainedlwith the incomplete orthogonalization
method without correction are by far superior from the point of view
Aof the run times. Algorithm 3.5 was first tested with p = 2.

t

s , : :
At the 1 . iteration the residual norms decreased from 7.6 to

1.8 at the 15th step and then a restart was made. At the an.

iteration the residual norms kept decreasing rapidly to 2.1 x 10"6
at the 60th step. The test with p = 4 yielded a steadily decreasing
sequence of residual norm estimates and' therefore no restart has been

necesséry. The final residual norm obtained at m = 60 was 7.88 x 10—7.

5.5. Finally we shall describe an experiment on a more difficult example
considered in [19]. The runs reported below have been made on a CDC
CYBER 175 compqter using a word of 60 bits'and a mantissa of 48 bits
(single precision). The problem Ax = b treated has dimension N = 1000

and the nonzefo part of A consists in 7 diagonals.

. . .
(The nonzero elements of the 1° ‘row and 1° column of A are A A

11°

) The problem originated from the

12°
A1,10’ Al,lOO’ A21’ AlOzl’ A100,1'.

simulation of a reservoir, and is known to he badly conditioned. It has

been solved in [18] by ﬁsing Chebychev iteration combined with a
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preconditioning technique. The matrix A wésfirstdecomposed as A=LU+ F
where M = LU is an approximate LU decomposition of A provided by one

step of the SIP algorithm described in [21]. Then Richardson iteration

was run for the problem M_le = M_lb, yieélding the sequence of approiimate
solutions ‘. “
LD GO £ M ON (5.2)
(k) (k)

where r" ° is the residual b = Ax" ’ and t, is an acceleration parumeter.

k

The acceleration parameters Weve first chosen a priori and as the
'iteratibn proceeded, they were periodically adjuSted.in'such a.way that

the iteration (5.2) matches.the (optimal) Chebyshev iteration [12] -

1 1

for the problem M ~A = M b. After 60 steps the residual norm has

decreased by a factor of (see [19]):

NGO e @ = 2.025 x 1075

The initial vector X, was generated randomly. Note that an important

part of the calculations lies in the computation of a few eigenvalues
of'A, as these ‘are needed for determining the optimal parameters tk'
Two runs have been made with Algorithm‘3.5, the first with
p_=.2 and the second with p = 4. The same preconditioning matrix M = LU
as above has been used. Figure 6 shows the evolution of the residual
-1, (k) -1 . , L -
norms||M Ax - M bl| and confirms the remarks ending section 3.
In either case, no réscart was necessary and at the 60th step,

the actual residual norms ||b - Ax(k)” decreased by a factor of

]
N

”r(69)”A|r(0)”'~ 4.44 x 10“7 for p= 2

and O @) = 1.62 x 107/ for p

I
S
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Clearly, here the choice p'¥ 2 is mﬁre suitable than p =<4. Note that,
with P = 2, each step of Algorithm 3.5'requires about 21 N operations
whileieach sfep of the first method reduires an averége of 16.7 N
operations per step [19]. Considering that it takes 40 steps for the
secong method to get the residual norm reduced ﬁy a factor of |
Ilr(ao)Hﬂlr(O)”l= 3.3 x 10_5, it is easily seen that the tofal number
of operations is about 167% less with Algorithm 3.57 Thus, the tofal
numbers of operat;ons are comparable. Thé first method fequires,
however, 5 N more memory locations than the-second..'(These are useq.l
to estimate the eigenvalues of M_lAL)- Let us mention that on another
example simila; to the present'one, the Chebyshev'iterétién failed to

converge, while the I.0.M. gave the solution without any problem with p = 2.
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