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1. INTRODUCTION 

Few efficient iterative methods have been developed for treating 

large nonsymmetric linear systems. Some methods amount to solving the 

normal equations AHAx = A~ associated wfth the system Ax b or with some 

other system derived by a preconditioning technique. 

This, unfortunately, is sensitive to the conditioning of AHA 

which is in general much worse than that of A. Techniques using 

Tchebycheff iteration [12] do not suffer from this drawback but require 

the computation of some eigenvalues of A. 

A powerful method for solving symmetric linear systems is 

provided by the conjugate gradient algorithm. This method achieves a 

· i h K 1 b ( A Am-lr
0

) proJect on process onto t e ry ov su space K =Span r
0

, r
0

, ... , 
. . m 

where r 0 is the initial residual vector. Although the process should 

theoretically produce the exact solution in at most N steps, it is well 

known that a satisfactory accuracy is often achieved for values of m for 

less than N [15]. Concus and Golub [5] have proposed a generalization of 

the conjugate gradient method which is based upon the splitting of A into 

its symmetric.and skew-symmetric parts. 

The purpose of the present paper is to generalize the conjugate gradient 

method regarded as a projection process onto the Krylov subspace K . We . m 

shall say of a method realizing such a process that it belongs to the 

class of Krylov subspace meth~ds. It will be seen that these methods 

can be efficient for solving large rtonsymmetric systems. 

The next section describes the Krylov subspace methods from 

a theoretical point of view. In Section 3 some algorithms are proposed. 

Tht:!y art:! l:!ssentially the extensions of the Arnoldi-like methods for·solving 

large eige~value problems described in [18j. Section 4 deals with the 
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convergence of the Krylov subspace methods. Finally, some numerical 

experiments are described in Section 5. 

2. THE KRYLOV SUBSPACE METHODS -- THEORETICAL ASPECTS 

2.1. General projection process -- notations 

Consider the linear system 

Ax- b =:0 

wh~!'~ A is a (complex or real) N x N matrix and let V 
m 

1 ¢N. be a system of m inearly independent vectors in The projection 

(2.1) 

process onto the subspace Km Span (v1 , ... , vm) seeks an approximation 

x(m) to the solution of (2.1) by requiring that 

K 
m 

{

x(m) E 

Ax (m) - b .1 v. , 
J 

(2.2) 

j=l,2, ... ,m 

(m) 
Writing x · · V · • y (m) ~ it il:l luuu~ula te that y (m) mu:::~t oatiofy thQ m x !11 

m 

• y(m) - VH b 
m 

0 

H H -T 
where V denotes the transpose of the.conjugate of V: V = V .. Let 

m m m m 

TI denote the orthogonal projector onto the subspace K . Then another 
m m 

formulation of (2.2) is the following 

{

x(m) E Km 

TI (Ax(m) - b) = 0 
m 

(2. 3) 

(2.4) 

It will be assumed for simplicity that b E K . We shall denote by A the 
m m 

restriction of TI A to K , so that x(m) is the solution in K of the equation 
m· m - m 

A x - b = 0 
m 

(Note that bE K so that~ b =b.) 
m m 

(2.5) 
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The problem (2.1) is therefore replaced by the m-dimensional 

problem (2~5). In order to study the convergence properties of this· 

process, one may express the error in terms of the distance between the 

exact s9lution x* and the subspace K , that is in terms of II (I - 1T )x* II m m 

See [8]. 

Note here that when A is Hermitian definite positive, the 

.convergence·is more easily st~died by using the fact that the approximate 

solution.x(m) minimizes the error function E(x) = (x- x*)H A(x- x*) over 

all elements x in K . Unfortunately, this property does not extend to the 
m 

nonsymmetric case so ·it becomes necessary to make a different approach. 

Supp6se that the exact solution x* is close to K , i~ that 1T x* is close 
m m 

to x*,then it is possible to show that x(m) is close to 1Tx* (hence to x*) m . 

by showing that the-residual of 1T x* for the problem (2.5) is small. 
m 

More precisely, 

Proposition 2.1 

Let Y = lilT A(I -· 1T ) -II· Then the residual of 1T x* for problem 
m m m m 

(2.5) satisfies 

Proof 

II b - A 1T x* II < Y II(! - 1T )x* II . m m - m m 

b - A 1T x* 
mm 

b 1T A1T x* 
m m 

b - 1T A[x* - (I 
m 

'If A(I 
m 

1T )x* 
m 

1T )x*] 
m 

(2.6) 
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Observing that (I - TI ) is a projector we can write 
m 

II b - A TI x* II = II TI A (I - TI ) (I - TI ) x* II m m m m m 

which completes the proof. D 

As a consequence, we can state t])e next corollary which gives a bound for 

II x* - x ( m) 11. 

Corollary 2 .1. 

Let y be defined as above and let K be the norm of the inverse 
m m 

fA Th h * (m) . f" o . en t e error x - x sat1s 1ea 
m 

.Proof 

llx*- x(m) II< h + YZKZ II (I- TI )x*ll 
- m m m 

Hy Proposit:ion (2 .1) e::Utc.l .the fact that Jl (m) -· TI x* = 
m 

A-l(b -A TI x*), we get 
m mm 

1111· (x*- x(m)) II~ y ·~-.~ II (I- TI )x*ll 
m - m m m 

(remark that TI x(m) 
m 

x(m)). Writing 

(m) (m). 
x*- x = (I- TI )x* + TI (x~- x· ·) 

m m 

and observing that the two vectors on the right hand side of (2.9) are 

orthogonal, we obtain 

which, in view of (2.8), gives the desired result (2.7). D 

(2. 7) 

(2.8) 
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The above results show that the error II x (m) - x* II will be of 

the same order·as II (I-n )x*ll provided that the approximate problem·(2.4) 
m 

is not badly conditioned. 

2.2. Krylov subspace methods 

Let x0 be an initial guess at the solution x*· of (2.1) and 

let ro'be the initial residual ro = b Ax
0

. If the unknown x is 

decomposed as x = x
0 

+ z then clearly the new unknown z must satisfy 

Az - r 
0 

0 

By a ~rylov subspace method we shall refer to any method 

that obtains an approximation z(m) to problem (2.10) by applying a 

projection process to the. system (2.10) onto the Krylov subspace 

K 
m 

(2.10) 

m-1 We ·shall assume throughout that the vee tors r 
0

, Ar 
0

, ... , A r 0 

are linearly independent, which means that 

dim(K ) = m 
m 

of K , then according to 
m 

(2 .11) 

If Vm- [v1 , ... , vm] is any basis 

Sec~ion 2.1, ~(m) can be expressed ao z(m) = V • y(m) whPrP. y(m) is the 
m 

solution of the m x m system 

VHAV • y(m) - VHr = 0 
m m m 0 

and the approxi~ate x(m) of problem (2.1) is related to z(m) by 

x(m) = xO + ~(m). 

(2 .12) 

-1 If z* =A r
0 

denotes the exact solution of the system (2.10), 

then we notice that 

~* - x(m) = z* - z(m) (2.13) 

which means that x(m) and z(m) admit the same error vector for (2.1) 

and (2.10), respectively. 
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3. PRACTICAL METHOQS 

Some algorithms based upon the ;Krylov subspa·ce methods 

described above will now be presented. We first propose an adaptation 

of Arnoldi's method [1], [18] to the solution of systems of linear equations. 

The algorithm constructs an orthonormal basis Vm = [v
1

, ... , vm] of Km such 

that VTAV has Hessenberg form. An iterative version of this method is 
m m 

also given so as to avoid the storage of too large arrays in memor.y. Then 

another class of algorithms is derived from the incomplete orthogonalization 

method describen in [18]. 

3.1. The method of Arnoldi 

Arnoldi's algorithm.builds an orthonormal basis v
1

, ... , 

m-1 
v of 

m 

K 
m 

Span [r
0

, Ar
0

, ••• , A r
0

] by the recurrence 

], ... , k+l in such a 

way that vk+l ~ v1 , ... , vk and llvk+lll = 1. In exact arithmetic the 

algorithm would be as follows. 

Algorithm 3.1 

1. Compute ro = b - Axo and take vl := ro!ll ro II· 
~. Fur k := 1 until m do 

k 
w ...... Av - E hik v. with h.k := .- k 

i=l 
1 l 

hk+l,k := llwll 

vk+i := w/hk+l k 
' 

(Avk, v.) 
1 

(3.1) 

(3. 2) 

(3. 3) 
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See [18] for some remarks on the practical realization of this algorithm. 

It is easily seen. _that [v
1

, v
2

, ••• , vm] is an .orthonormal basis of Km 
H 

and that the matrix V AV is the Hessenberg matrix H whose nonzero m m . · m 

elements are the hi. defined by (3.2) and .(3.3)~ As a consequence 
H J 

the vector VmrO in (2. 7) is equal to S • v!v1 = Se1 where S = II r 0 II· 
Thus the system (2.7) pec9mes 

Hm • y(m) = S • ei 

d h · 1 · x(m) def1'ned · S t' 2 2 d an t e approx1mate so ut1on 1n ec 1on . rea s 

x(m) = x
0 

+ z(m) where 

z(m) = SV H-1e
1 rom 

The following estimate for the residual norm II b - Ax (m) II is very 

useful as a stopping criterion 

Equality (3.6) follows immediately from the relation 

AV 
m 

= V H + h v eH 
m m· mt-l,m mt-1 m 

which can be derived from the algorithm and from equality (2.8). 

An interesting practical method would be to generate the 

vectors vk and the matrix ~, k = 1, 2, •.•• , m, •.• , to compute · 

(3. 4) 

(3 0 5) 

(3. 6) 

periodically the estimate I H (m)l h-Ll e y of the norm of the residual 
uro ,m m 

and to stop_ as soon as this is small ~nough. As was· suggested in [15] 

for the symmetric case, there are various _ways of updating leH y(m)l 
m 

(iri) 
without even actually computing the vector y . Let us give a few 

' 
indications about the problem of computing the estimation leH y(m)l , 

m 

since it will appear in several partR along the paper. Parlet;:t [:1)] 

suggests utilizing a recurrence relation proposed by Paige and 

Saunders [14], which is based upon the LQ factorization of H . 
m 

/ 
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Another interesting possibility is to perform the more 

economical factoriz?tion provided by the Gaussian elimination with 

~artial pivoting on the matrix H .. The factorization of H. can be 
J . J 

easily performed by using the information at the previous step. 

Supposing that no pivoting has been ne-cessary for steps 1 through j -1, 

and writing the LU factorization of H., H. = LU, it can be easily 
J J . 

seen that p. 
J 

h 1·e· H y (m)l is simply 
j+l,j m 

j-l 
h.+l . 8 IC II R-i)/u .. 1 

J ,J i=l JJ 

wher.e the~., i = 1, ... , j-1, are the successive pivots. More 
:•. 

generally it can be shown that when no pivoting has been.necessary 

at steps i, iE I, where I C {1, 2, ... ,.j-l}, then Pj becomes 

P. = h.+l. S· !CIT ~i)/u .. l · 
J J ,J iEI JJ_ 

This means that p. can be updated at e'!lch step at a. n~gllgilJle coat. 
J . 

Finally, after it is d~clded that the estimate of the residual norm 

is small enough, the final factorization of H will be used to fully 
m 

solve the system (3.4). The·Gaussian.elimination with partial 

pivoting. gives satisfact:ory I:esults in general, but. one might as w~ll 

use a more stabl~_decomposition, as the LQ decomposition in [14], [15] 

although at a high cost. 

As m increases, th~ process of computing the vi becomes, 

unfortunately, intolerably expensive and core memory demanding. To 

remedy this, one can use the algurithm in an ite;rat:tve way, as is 

described next. 
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3.2. Iterative Arnoldi method 

Due to core memory capacities, the number m of steps in 

Algorithm 3.1 is inevitably limited. After having computed the approximate 

solution x(m) with the maximum number of steps allowed, one may find that 

the accuracy is still unsatisfactory. This naturally raises the question 

f h · h of x(m). o ow to 1mprove t e accuracy The simplest idea is to restart 

the algorithm with x
0 

replaced by the approximation x(m) obtained. The 

idea is similar to that of the m step steepest descent in the symmetric 

case. (See [6].) One can restart as many times as necessary to ensure 

satisfactory accuracy·. We now give a more detailed description of this 

iterative version. Let us start with an initial guess x0 and form 

ro = b - Axo. Then construct H and 
m 

v by 
m 

algorithm (3.1) and compute 

the approximate solution xim) = x
0 

+ (m) 
zl . The estimation (3.6) can be 

used to determine whether the process must be stopped or restarted. 

Suppose a restart is necessary. Then take x
1 

= x
0 

+ zim) and compute 

r
1 

= b- Ax
1

. (Remark that r
1 

is also equal to the residual r
0

- Azim).) 

Construct again V~ and Hm starting with v
1 

= r/11 r
1 

II in Algorithm 3.1. 

Then an approximate solution z~m) to the equation Az = r
1 

is obtained 

yielding the new approximation x
2 

= x
1 

+ z~m) to the solution x* and 

so forth. 

At the s-th iteration the approximate solution x is equal to 
s 

xo + 
(m) . (in) 

Thus the algorithm can be formulated follows. zl + ... + z • as 
s 

(The subscript (m) is dropped for simpli.f.ic.ations.) 
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Algorithm 3.2 

1. Start. Choose m and x
0

; r
0 

:= b - Ax
0

. 

2. For s : = 0, 1, ... , do 

• compute v1 , v 2 , ..• , vm and Hm by Algorithm 3.1 starting with 

v 1 = r / c 8 : = II r s II) 
• Solve the sys.tem H • y 

m 

. 
xs+l 

. 
rs+l 

If h 

:= v • y 
m 

.- X + 2
s+l s 

:= r - Azs+l s 

leT Yl < 
m+l,m m e , 

8 • e 
1 

stop else continue 

3.3. Incomplete orthogonalization methods 

3.3.1. The construction of the vectors v
1

, ... , vm by Algorithm· 3.1. 

amounts to orthogonalizing the vectors Avk against all previous vectors 

v1 ~···~ vk .. This is costly and some numerical observations suggest to 

orthogonalize Avk against the preceding p+l vectors rather than all 

(see [18]). 

The system produced is such that (v., v.) 
. 1 J 

Algorithm 3.3 

o .. for i,j 
1] 

1. Choose p and m such that p < m; compute r
0 

:= b - Ax0 and 

vl = ro/llroll· 

2. For j := 1, 2, ... , m do 

i
0 

:= max(l, j-p+l) 

w := Av. -
J 

j 
L: 

i=i 
0 

h .. v. with 
1] 1 

h .. := (Av. , vi) 
1] J 

vj+l .- w/ (hj+l,j := jjwjj) 

o. :n 

(3.8) 
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Under the assumption (2 .11), this. algorithm will not stop before .~he m.,...th 

step and will produce a system of vectors v
1

, ... , vm locally orthogonal 

and a (banded) Hessenberg matrix of the form 

-H 
.m 

whose nonzero elements are computed from (3.7) and (3.8). The generalized 

(m) 
Lanczos approximation z. · must satisfy the equations 

.VHAv· · (m) v· H r = 0 
m my - m 0 

z (m) = V 
m 

(m) 
y 

In the present case, however, the matrix VHAV does not have 
m m 

any particular structure as before~ so we need to transform (3.9) into 

a simpler problem. 
,... 

Let us set H 
m 

(VliV )-l VHAV . Note that this is just the 
. m m m. m 

(3. 9) 

matriciai representation-of the linear operator A 
m 

TimAIK (see Section 
m 

2.1), in the basis {v
1

, v
2

, ... , vm}. It was shown in [18] that H differs 
m 

' More precisely 

Theorem 3.1 

~ -1 VH ThP.n Let s = hm+l,m(Vm m) vm+l' m 111 

,... H H H + s e 
m m mm 

Proof. From Algorithm 3.3 we get the basic equation 

- H AV = V H + h v e 
m m m m+l,m m+l m 

lL -J. ,. 
~.·hlch yields (3.10) on multiplying by (1{--v) ifl. 0 · .m·m m 

Multiplying (3.9) by (~ )-l.·gives the equival~nt equation 
mm 

H y(m) - (V~ )-l VH ro = 0 
m m m m 

(3 .10) 
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Observing that (v!!vm)-+ v: r 0 = Se
1 

where f3 llr0 !1, we obtain the system 

"(m) If we set y 

H (m) 
my 0 

and Morrison formula [7] these two vec-tors are related by 

- --1 =y -crH s 
m m m 

(3.11) 

(3.12) 

On the practical side the only difficulty lies in the computation 

of the corrective column s . Note that s = h V+ v and that s · m m m+ 1 ,m m m+ 1 . m 

is the solution of the least square problem (see [19]) 

for· which many efficient algorithms are available (see [3], [13]). It 

should be added that cinly a moderate ·accuracy is needed in practice, 
. . 

so the bidiagonalizatibn algorithm BIDIAG described in ll3J is 

suitable for solving (3.13) with moderate accuracy. We. can now give au 

algorithm based upon all the above observations . 

. 
Algorithm 3.4. Incomplete Orthogonalization with Correction 

Start. Choose two integers p and m with p < m. Compute r
0 

:= b Ax0 , 

f3 = II r 0 ll; vl := r 0/B. 
-Iterate. Comment compute H and v 1, .•• , v . 
m m 

For j = 1, 2' ••• , m do 

io := max(l, j-p) 

j 
w := Av. - ~ (h .. := (Av., v.)) X V. 

J i=i l.J J l. l. 
0 

vj+l := w/ (hj+l,j := llwll) 
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Correct: 

1. Compute least square solution s of (3.13) .. 
. m 

2. Compute ym := sii-l e 
m n 

--1 
X := H S· m m 

a eH- /(1 + eH x) := m ym m 

y - ax 
m 

3. Form the approximate solution 

(m) 
X =x+V •y 

0 m m 

We shall now give some additional practical details. 

1. If necessary, the vectors v
1

, v
2

, ... , vm may be stored in auxiliary 

memory, one by one as soon as they ar.e computed. Only the p 

2. 

vectors v., v. 
1

, .•• , v. +l must.be kept in main memory for·more 
J J- J-p 

efficiency. 

The storage of 

instead of the 

... 
H now requires only the storage of (p+l) x m elements 

m 
2 

previous m 

3. For the choice of the integer p we should first point out that p is 

limited by the available core memory. In theory the larger p, the 

better. If pis large, the system (v
1

, ••. , v) will, in practice, 
. m 

be close to orthogonality and the solution of the least square 

probiem (3.13) in step correct becomes easier [~t the limit if p = m 

H 
then the solution is just hm+l,m Vm vm+l = 0]. But in that case the 

computations in the step iterate are more expensive.· If p is too 

$mall, on the other hand, it is very likely that the problem (3.13) 

wili become difficu"!t to solve (if not impossible numerically) as 

the vectors '<v
1

, ••• , vm) will become· nearly linearly dependent. Note 
I 

that this depends also upon m. When m = p the system is orthonormal 

~nd as m increases it is observed that the system departs from 
: 
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orthogonality, in a slow manner at the beginning. All these 

observations suggest that p must first be chosen according to the 

main memory capacity and some arbitrary limitation p < p . - max 

Afterwards, a maximum number of steps m should be fixed. Then 
max 

a test must be included at the end of the step iterate in ord.er to 

shift to the correction step as soon as the system {v
1

, v2 , ... , vj+l} 

is suspected to be too far from orthonormal, as for example 

where n is a certain tolerance. The. heuristic criterion given above 

is not the best. 

4. When the matrix A is symmetric, then by taking p = 2 we obtain a 

version of the conjugate gradient metho.d which is known to be 

equivalent to the Lanczos algorithm (see [14]). In that case the 

vectors v
1

, ..• , vm are theoretically orthogonal. Suppose now that 

A is nearly symmetric and take p = 2 again. By a continuity argument 

it is clear that the system (v
1

, •.. , vm) will be nearly orthonormal, 

making the choice p = 2 optimal in a certain sense. This suggests 

that when it is known that A is close to a symmetric matrix, p could 

be taken small (or even p = 2). However, it is not easy to give a 

rigorous meaning to the notion of nearly s~mmetrie and it is even 

more difficult to monitor automatically the choice of the parameter p. 

3.3.2. In the following we deve,lop another algorithm which is, in 

particular, more app_ropriate for the cases of almost symmetric matrices. 

As pointed out above, the correction st~p c~n be expensive and one may 

ask whether an acceptable accuracy could be achieved by ignoring the 

(m) 
corrective step and replacing the approximate solution x = x

0 
+ Vm ym by 
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-(m) 
X = X + V y 

. 0 m m 

The answer is yes, provided that Vm+l is no~ too far from 

orthonormal. In effect, writing Hm = Hm - s.m e:, we can derive the 

following analogue of (3.12) 

h H A 
A + 

m+l,m em ym . A-1 
ym ym H A.;..l H s 

1 m m - e H s· 
m m m 

It is remarkable that, by (3. 6), the term h 
1 

· 'eH yA is equal to the 
m+ ,m m m 

residual norm II ro - Az (m) II except for the sign, and. hence it becomes 

smaller as m increases. If { v 
1

, ••• '. v m+ 
1

} is nearly or.thonormal 

(3 .14) 

(3 .15) 

H 
then Vm vm+l is nearly zero and so will be sm in gener~l. This shows that 

in general the second term on the right hand side of (3.15) can be 

neglected (in comparison with ym) as long as Vm+l remains nearly orthonormal. 

This fact is confirmed by the experiments and it is observed that the 

residual norms behave in the same manner as t~e residual norms obtained 

for the incomplete orthogonalization method applied to the eigenvalue 

problem (see [18], section 4.2). 

The residual norms II r
0 

- Axm II decrease rapidly until a certain 

RtP.p ~nd then start oscillating and dccrcooing more slowly. This 

suggests restarting immediately after a residual norm is larger than the 

previous one. Here again the formula (3.6) remains very useful for 

estimating the residual norm. This leads to the following algorithm. 

'·. 
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Algorithm 3.5. Incomplete Orthogonalization without Correction 

Iterate. For j 1, 2", ..• , m do 
max 

1. compute 

2. 

where i 0 and.the hij;s are as in· Algorithm 3.4. 

Update the factorization of Hj and the estimate pj of the 

residual norm (see §3;1). 

'3. Test for convergence performed every q steps only (e.g., every q = 5 

steps). 

a. 

b. 

Restart: 

If pj < E goto restart. 

If PJ. > P. goto restart; otherwise take m := j and continue. 
J-q 

- (m) 
~ 

X 

~-r 

s 

vl 

-i :..:; 8v H e1 mm 

~ 

+ -(m) := X z 

~ A~(m) := r - z .. 

:= ·11 r II 

:= r/8 

If 8 ..:::_ E stop else goto iterate 

The numerical experiments (§5) will reveal that, this last algorithm is to 

be preferred to the iterative Arnoldi Algorithm and to the incomplete 

orthogonalization method with correction. Surprisingly, it is often the 

case that no restart is necessary, even for matrices that are not nearly 

symmetric. 
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We shall· conclude this section by a remark concerning the 

application of· p.reconditioning techniques· to the algorithm's described 

above. Suppose that we can find a matrix M for which linear systems are 

easily ·solvable and such 'that M-lA is closer to the identity than A. In 

this case· it is advantageous, in general, to replace the system Ax =· b 

. -1 . -1 . 
by the new system M Ax = M b before applying one of the previous 

methods. There are·two reasons for this. The first is that the rate of 

convergence of the second system will, in general, be higher than that 

of the ·first because the spectrum will be included in a disk with center 

one and with small radius, and the next section will show that in that 

case the smaller the radius, the higher the rate of convergence. The 

-1 
second is that M A,which is close to the identity matrix, is clearly 

close to a symmetric matrix (the Identity)' so that the application of 

incomplete orthogonalization without correction is most effective (cf §5.5). 

4. RATES OF CONVERGENCE FOR THE KRYLOV SUBSPACE METHODS 

4.1. Introduction 

We shall now consider the problem of the convergence of the 

approximate x(m) toward the exact solution x*. w~ first point out that 

the convergence is achieved in at most N steps where N is the dimension 

of A. (This is immed,iate from the fact ~hat ~ is the whole subspace 

¢Nand from the definition 2.2.) Therefore, the problem is not to show 

the convergence but rather to establish · theo.retical error bounds showing 

that one can obtain a satisfactory accuracy for values of m much less 

than the dimension N, which is supposed to be very large. Another way 

of. stating ~he problem is to, suppose that A is an operator on a Hilbert 

sp~ce (N, = 00) such that the convergence,. ~he rate ot convergence ..• , uf Llte 
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infinite sequence x(m) can be discussed. We shall not, however, adopt 

this extension in the present paper. 

In view of relation (2.~3) it is equivalent to study either the 

convergence of x(m) to x* or the convergence of z(m) to z*. In 

addition, Corollary 2.1 shows that the convergence can be studied in 

terms of· .II (I - 7Tm) z* II where TTm is the orthogonal projection onto the 

m-1 
Krylov subspace Km =Span [r0 , Aro~···• A r 0 ]. Let us denote by Pk 

the space of polynomials of degree not exceeding k. Then, a useful 

expression for the distance II (I - TT ) z* II can be derived by remarking . m 

that K is nothing but the subspace of tN constituted by all the elements 
m 

q(A)r0 where q belongs to Pm-l' 

Proposition 4.1. The distance IICI- TTm)z*ll between z* and the Krylov 

aubspdL~ R ~aLl~fies 
m 

II (I - ·rr ) z * II m min II P (A) z* II 
( pt=:P m 

~(0)==1 

Proof. The following equalities are easy to show 

II {I- 7T )z*ll = min liz*- zll 
111 zEK 

m 

= min II z* 
qe:Pm-1 

min !"lz*- q(A)r0 11 

qEP m-1 

q (A) Az * II = min II (I - Aq (A) ) z * II 
qEP m-1 

(4 .1) 

In order to obtain an upperbound for (4.1) we shall assume that 

A admits N eigenvectors ~l' ~2 , •.. , ~N of norm one, associated with the 

eigenvalues ~\, ••• , AN •. Then the solution z* can then be expressed as 
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.. 
and we can formulate the next theorem. 

Theorem 4.1 
N 

Set a= E jail, where the ai are the components of the 
i=l ,, 

;·. 

solution z* in the eigenbasis of A. 

Then 

II (I - 1T ) z * II 2_ a min max I p (A . ) I 
~ (pEP ·- J m J-1, ..• , N 

p(O)=l . 

Proof. Let p E P , with p(O) 1. Then .. m. 

N · N 
llp(A)z*ll ~ IIPCA) E a.<t>. II= II E p(J..)a.<t>. II 

'1 ].]. '1 ]. ].]. ].= J=. 

-. N .· N 

~ .E llai p(\)<Pill 2. r 
' J.=l . . i=l 

Ia.! jp(A.) I 
]. ]. 

2. r ~ la.ll 
Li=l ]. j 

x. max jp(J..) I 
j=l, ..• , N 

1 

(4.2) 

Therefore, for any polynomial of degree not exceeding m such that p(O) 1 

we have 

llp(A)z*ll 2_ a ._ max jp(Aj) I 
J-1, .•• , N 

(4. 3) 

Hence min ll·p(A)z*ll 2_ a min max jp(A.) I which by equality (4.1) 

{ 

pEP . { pEP . _ J 
ru m J-1, •.• , N 

. p (0)=1 . . . p (0)=1 . 

completes the proof. 0 

We point out here that from classical results it can be shown 

tha~ ~he polynomial realizing the minimum in (4.2) exists and is unique 

provided that m ~ ~ (see [11]). We Rhould also add that there is 

unfortunately no upper bound for a. 



We shall set throughout 

-19-

max 
j=l, ••• , N 

so that inequality (4~2) simplifies to 

and the result (2.7) becomes 

I p (A.) I 
J . 

(m) 
We, therefore, need to show that the sequence E decreases 

(4. 4) 

(4. 5) 

rapidly to zero. Note that E(N) 0 which shows again that the process 

will give the exact solution in at most N steps. The rate of convergence 

of the sequence E(m) to zero provides a bound for the actual rate of 

Estimating E(m) is, unfortunately, a difficult problem 

in general. The number E(m) is the degree of best approximation of the 

zero function by polynomial of degree m satisfying the constraint 

p(O) = 1, over the set A1 , A2 , ..• , AN (see [11]). 

4. 2. An e;xact expression· for e; (m) 

The following theorem gives an expression for t(m) in terms 

of m + 1 eigenvaiues of A. 

Theorem 4.2 

Let m < N-1. Then there exist., urtl eigenvalues which,· with-

out ambiguity can be labelled A1 , A2 , ... , Am+l such that 
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~ m+l m+l 
r 1T 

; j=l k=l 
L k;j 

IAkl '-l 
I Aj - Akj I 

! 
I 
~ 

We omit ·the proof of this equality.. An analogue result will 

(4. 6) 

be proved in.a forthcomin& paper .dealing with the convergence of Arnoldi-like 

methods for computing eigenelements. 

The.result does not specify which are the eigenvalues A1 , •.. , Am+l 

but it still gives an inter,esting indication. If the origin is well 

separated from the .spectrum then E(m) is likely to be very small. Indeed 

if A
1 

is, for example, the eigenvalue the closest tc;> zero, among those 

eigenvalues involved in the theorem, then, in ~eneral, we shall have 

IAkl > IA1 - Akj, k = 1, ... , N as seen in Figure 1. Therefore, 

. m+l I I 
rr Ak . >> '1 

k=Z jAk- uj 

1m(,\) A 

·Figure 1. 

and it is seen from (4.6) that E(m) will be small. There are particular 

distributions of the eigenvalues where E(m) is known .exactly (for 

m ~ N-1). · Bqt, in general, the ~cault· (2.14) is not .useful fur giving 

an estimatio.n of th.e ·rate of convergence. 
(m) 

qpperbQunds for £ must be 

established for that purpose. 
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4.3. Bounds for £{m) 

{m) 
In the real case one usually obtains bounds for E by majorizing 

the discrete norm max IP(A.) I by the continuous norm max IP(A) I where I 
j=l,N J zEI 

is an interval (or the union of two intervals) containing the eigenvalues 

A. and not zero. 
J 

In the complex case, however, one encounters the difficulty of 

~.hoosi.ng an adequate continuum containing all the eigenvalues and not 

zero. An infinity of choices are possible but except for some particular 

shapes such as circles, ellipses ... , there is no simple expression for the 

minimax quantity min 

(p~~:l 
max 
zED 

IP(z) I · 

We first deal with the simplest_case where all the eigenvalues 

of A are r.eal and positive. The next case to consider is naturally the 

case where the eigenvalues are almost real. The general case wi11 be 

considered in subsections 4.3.3 and 4.3.4. 

4.3.1. Case of a purely real spectrum 

Theorem 4.3 

Suppose that all the eigenvalues.£.!..~ are real and positive and 

let A . and A be the smallest and the largest ot them. 
mJ.n -- max - -- -- -- - - --

Then 

(4. 7) 

where a is as before, y = (A + A . )/(A - A . ) and where T is the max mJ.n max mJ.n m - --

Tchebycheff polynomial of degree m .£.!..the first,kind. 

This result is an immediate application of a well-known bound 

for· ( 4. 4) when the Ai are real [ 2]. It is also possible to establish some 
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results when the eigenvalues are known t.o lie .. in twq or more intervals 

(see [2], [10]). 

Inequality (2.11) shows that the Generalized Lanczos method 

converges at ~east ~s rapidly as [~m(y)]~1 ~ (y +;fy2 - ·l)~m such that 

the rate of convergence is. bounded by y + /y2 -· L 

Finally note · that similar results can easily be obtained if 

all the eigenvalues are'purely imaginary or if they lie on a straight 

line of t, containing the origin. 

4.3.2. Almost purely real spectra 

In the following we shall assume that the spectrum lies inside 

a certain ellipse which has center c on the real line and foci c + e, 

c '- e where e is the ec:centricity. ·Furthermore we shall assume that the 

origin is not inside that ellipse (see Figure 2). 

Aim( z) 
~-e----.;> 

~ a ' 
I I 

i ...... 
I 

/ 
I .... ,. 

I 
,. 
; 

I tj 0 (~I c Re(z) . 
--·· .... . .p > 

•. 

' ,, 
· .... 

Figure 2. 

Let us denote by E the closed domain bounded by the ellipse defined above. 

Consider the variable transform z' = (c - z) I e; then e: (iii) satisfies the 

inequality 
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e:(m) < min -r pEP -

\._p(c/e)=l 

max 
z'EE' 

where the domain E' is bounded by the ellipse centered at origin with 

_eccentricity one and major semi-axis a/e. It was shown by Clayton [ 4] 

that the above mini-max is realized for the polynomial T (z')/T (c/e). m m 

Theorem 4.4 

Assume_ ~_!he eig_~nvalu_es of A H P ~oJithin an cllip.5e wlllt 

center con thP. rPal axi~, foci c I e, e- ~. and wit-h m::!jo-x- somi-mli:J 
- -- --- ---·- - -- ---

a. Suppose that the origin is not inside this ellipse. Then · 

T (a/e) 
e:(m) < m 

-.-1 T----,(,.-c -:-/ e--.,.).....-1 

m 

In view of (4.10) this inequality is a simple corollary of 

Clayton's result. Since the proof is tedious, we shall givP R dt-r'ict 

proof of (4.11) and bypass Clayton's result. 

Proof. Considering the particulc:t:r. polynomial T (z')/T (c/e) we get 
m m 

from (4.10) 

e:(m) < max 
z'EE' 

T (z') 
m 

T (c/e) 
m 

(4.10) 

(4.11) 

(4.12) 

By the maximum principle, the maximum on the right hand side is realized 

for z' belonging to the boundary aE' of the ellipse E' centered at the 

urigin and having major semi-axis a/e and ec.centricity one. Thus (4.2) 

becomes 

e: (m) < 1 I ( , ) I 
IT (c/e)l • max T z 

m z'EaE' m 
(4.13) 

Consider now the transform u: 1 1 
w +-+ z' = 2 (w + w). It is known 

[11], [17] that when w belongs to the circle Cp centered at the origin 

and having radius p, z' will belong to the ellipse aEP having eccentricity 
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one and major semi-axis (p + p-1)/2. We may take p 
.. --2--­

a/e + /(a/e) -1 

$UCh that dEP is just aE'. T (z) can be defined by T (z) ch(m.u ) where 
m m 

u and z are related by ch(u) .= z. Setting eu = w we see that another 

definition forT (z) is T (z) = (wm + w-m)/2 where.w and z are related 
m m 

-1 by (w +·w )/2 = z. Hence 

max IT (~')I 
z'EaE' · m 

1 lwm + w-ml = max 2 
v.Ecp 

1 I m im8 -m - im8 
1
-

max i p e + ~ e 
8E[0,2rr] 

It is easily seen that the above maximum is just 

which completes the proof. 0 

The upperbound T (a/e)/T Clc/al) for E(m) is asymptotically 
m m 

equivalent to 

[ 

a/e 

lc/el 

+ /ca/e).Z 
+/(c/e) 2 

-l]m 
- 1 

so that an upperbound for the asymptotic rate of convergence is given by 

(4.14) 

When the eigenvalues are all real, then the ellipse degenerates 

to the interval .[A1 , AN] and we shall have e = a = (AN - A1)/2, 

c = (A
1 

+ AN)/2 such that Twill become y +/'y
2 

- 1 with 

Y (AN+ A
1
)/(AN- A1). This means that the result (2.17) coincides 

with that of Corollary 2.1 when the spectrum lies on the real line. 

Consider now the family of all ellipses having center c and 
. ' 

major semi-axis a and let the ec:centricity decrease from a to zero. Then 



-25-

the ellipse will pass from the interval (c - a, c + a) to the circle 

with center c and radius a. It is easily seen that the bound (4.14): 

for the·rate of convergence will decrease from T = lc/al +;f(c/a) 2 - 1 
max 

toT . = lc/aj. ·Therefore, we may assert that the convergence is likely 
ml.n 

to be better if the eigenvalues are close to the real line and that 

when the spectrum has a circular shape the convergence is likely to 

be slower. Note that the comparison is made for the same relative 

separation lc/al from the orig~n. The above comments are confirmed 

by a numerical example in section 5.1. 

Before considering the more general case where the ellipse 

containing the spectrum does not st·retch along the real axis, let us point 

out that inequality (4.11) cannot be improved as Clayton's result shows. 

By this we mean that if one replaces the discrete set {A
1

, ... , AN} by 

the set of all points contained in an ellipse of the form described in 

Figure 2, one cannot find a better inequality than (4.11). 

4.2.3. Spectrum contained in an ellipse 

If the spectrum lies inside an ellipse with center c and foci 

c + e, c' - e where fiO'W bo'Ch c and 1:! at'l:! ~.;uw~lto!A, it i.!l eaaily 3ccn that 

the proof of Theorem 4.4 is stil~ valid. Therefore, we can establi.sh that 

IT (a/e)l 
e: ( w) < ,.· --=m'-:--:-7"'T' 

ITm(c/e) I (4 . 15 ) 

Where c, e are the center and the "e:ccentricity" and are complex, while 

a the (complex) major semi-axis is'such that c +a and c- a are the 

coordinates of 'the two points of the ellipse situated on the major 

semi-axis. Note that a/e is real while c/e is not. The interpretation 

of (4.15) will, therefore, not be easy in general. It can be shown, 
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howe:ver, that the right hand side of (4.15) converges to zero as m-+ co 

.· 
(see [12]). The next subsection gives a result which is weaker, in· 

general;,.but easier to interpret. 

4.3.4. Spectrum contained in a circle 

In this subsection we shall assume that the. spectrum lies in 

a certain domain bounded by a circle having center c and radius a . 

. Furthermore, let us assume that the origin l:i,es outside the circle 

( cf. Figure 3) . 

Then we have 

Theorem 4.4 

1\ 
Im(z) 

0 -----

Figure 3. 

Suppose ~hat there exists ~ disk U(c,a) with center c and 

radius a, that contains all the eigenvalues of A and not the origin. 

Then 

(4.16) 

Proof. Consider the particular polynomial p(z) p has degree 

m a~d satisfies p(O) = 1. Hence, by (2.13) 



E(m) < max 
j=l, ..• , N 
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li>O .. ) I 
.J 

The coefficient la/cl in (?.21) is smaller than one and one 

can even choose an "optimal" circle for_which la/cl is the least. The 

optimal center c should minimize max· 
j=l, .•• , N 

c, c ~ 0 and the optimal radius a is simply 

I (c - Aj)/cl over all complex 

max 
j""'l, ... , N 

lc - t-j 1- The 

inequality (2.21) is the best bound possible for E:(m) that ·can be ubralut:!tl 

by replacing the discrete set{\, •.• , AN} by the disk D(c,a) in the 

formula (2.13). This is due to the next theorem, proved by Zorantonello 

in [22]. 

Theorem 2.3 

The polynomial ((c - z)/c)m is the polynomial of degree m 

having least uniform norm over the disk D(c,a) when a< lei. Furthermore 

min max = l~lm. 

{ 

pEP m zED(c,a) 

· p(O)=l 

5. NUMERICAL EXPERIMENTS 

• 

The experiments described in subsections 5.1 to 5.4 have been performed 

on the Prime 650 computer of the Department of Computer Science. ac r:he 

University of Illinois at Urbana-Champaign. The computations have been 

made in double precision, using a 48-digit mantissa. 

5.1. 

The purpose of this first experiment is to illustrate the 

comments of section 4.3.2 on the convergence properties in the case of 
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complex eigenvalues. Let us consider the block diagonal matrix A whose 

diagonal blocks are 2 x 2 and have the form 

, k + 1, 2, ... , n 

The dk and ek are chosen in such a way that the eigenvalues 

A.k = dk ±. iek of A lie on the ellipse having center c = 1 and major 

semi-axis a= 0.8. The eccentricity e varies from e = 0 to e = 0.8. 

The real parts dk of the eigenvalues are uniformly distributed on the 

interval [c- a, c +a]. In other words 

k = 1, 2," ••• , n 

where c = 1; a= 0.8; 0 < e < 0.8. The number of blocks is n = 40 so 

that·, A has ·dimension N = 80. 

We compare for d·ifferent values of e the estimated logarithmic 

rates of convergence 

"actual" logarithmic 

p t = Log(T), where es 

rate~ -! Logdlx* -
m 

~is given by (4.14), with the 

x (m) II) where x* and x (m) are the 

exact and the approximate solutions, respectively. The method used was 

Arnoldi's algorithm described in section 3.1. The right hand side b of 

the system Ax= b was the vector b = Af where f = (1, 1, ... , l)T so 

the solution is equal to f. The starting vector x0 was set to zero. 

The next table ~ives the results obtained when m = 30 for various values 

of e. 
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TABLE 1. 

e II x*-x (m) II pact pest 

0.00 2.68 X 10-3 0.199 0.223 

0.10 2.38 x io-3 0.201 0.224 

0.20 2.11 X 10-) 0.205 0.228 

0.30 1. 69 X 10-3 0.212 0.237 

0.40 1.18 X 10-3 0.225 0.250 

0.50 6. 71 )[ 10 -4 . o. 2''3 0·. 270 

0.60 2.62 X 10-4 0.275 0.303 

0.70 4.22 X 10-S 0.335 0.367 

0.75 6.40 10-6 
X --- 0.398 0,432 

0.79 1. 62 X 10-7 0.521 0.555 

0.80 1. 55 X 10-lO Q.753 0.693 

Note that in passing from e = 0.79 toe= 0.80 the spectrum of the matrix 

A becomes purely real and consists in 40 double eigenvalues, whichexplains 

the jump in tQe_actual rate of c9nvergence. 

T.he values p t and p t of Table 1 are plotted in the next ac es 

figure. 
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5. 2. 

w~ shall compare in the following experiment the method of 

conjugate graJi~nts applied to the problem AHAx = A
11

b with the iterative 

Arnoldi algorithm. Consider the block-tridiagonal matrices 



A= 

B -I 

' '\. -I '\. \. ., ' ., 
' '\. ' 
" ' ' " '\. -I 

' ' -I B 

and a= -1 + o; b = -1 c. 
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with B = 

4 a 
\ 

b " ' \ 

" ' " \ " ' " . 
' " b 4 

a 

These matrices come from a discretization' of partial 

differential equations involving a non-selfadjoint operator (see [12]~ 

[18]). When 6 is smail the matrix A is almost symmetric. 'l'he conju~ate 

gradient algorithm was run for the following case: o = 0.01, B 

has dimension 10 and A has dimension 200. The right hand side b was se·t 
T . 

to Af where f = [1, ..• , 1] and the initial vector was chosen randomly. 

We have compared the results with those obtained with the iterative 

Arnoldi method using 10 steps per iteration .(m = 10) and 20 ~teps 

per iteration. The initial vector as well as .the right hand side are 

the same as above. Figure 5 shows in a logarithmic scale the evolution 

of the error norms obtained for the same total number of steps. 

Notice that although the total number of steps required to achieve 

convergence is smaller with Arnoldi's method, the total amount of work 

required in this example is in favor. of the conjugate gradient method 

because the cost of computing Av is not high. The method of Arnoldi will 

be appropriate whenever the cost of computing Av dominates all the other 

costs in each step but this will not always be the case. Figure 5 also 

shows that when the matrix b~ vector multiplication is costly, it may be 

advantageous to choose m as large as possible. 
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5.3. In the previous example, the matrix treated is nearly symmetric 

and so the use of the incomplete orthogonalization method without 

correction is more suitable~ Taking p = 2, and starting with the same 

initial vector as in the experiment of 5.2, yielded a rapidly decreasing 

sequence of residual norm estimates. No restart was necessary 

and convergence occurred after 90 steps with a residual norm equal to 

-11 
4.6 x 10 • Clearly the amount of work required here is far less than 

.that required by either of the methods compared in 5.2 .. 

5.4. We shall now compare the incomplete orthogo~alization methods with 

and without corrective step on the 100 x 100 block tridiagonal matrix A 

of §5.2 obtained by taking o = 0.2. In a first test an iterative method 

basf>.d upon the incomplete oithogonalization algorithm with correction 

(Algorithm 3.4) was tried. As soon as the estimate Shm+l leH y I of 
,m m m . 

the residual norm stops decreasing or when the humber uf 8L~ps reaches 

the maximum number of steps allowed, m = 40, the algorithm is halted; 
·max 

a corrective step is taken and the algorithm is either stopped (if the 

residual norm is small enough) or restarted. Fur the present example the 

algorithm halted first at m = :w and gave a residual nu.t.·ut uf 1. 0. After 

the correction step, the residual norm dropped down to 6.2x10-3 . fn the 

second iteration the algorithm halted at m = m . max = 40 and gave the 

5 -6 
residual norms 9.6xlO~ before the correction and 1.14Xl0 after.. 
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It isimportant to mention that, here, .the corrective steps 

necessitate the use of the bidiagonalization algorithm to compute the 

corrective columns , which is usually ~er_y expensive. . m 

. The results obtained with the incomplete orthogonalization 

method without correction are by far superior from the point of view 

of the run times. Algorithm 3.5 was first ·tested with p = 2, 

st 
At the 1. : iteration the residual norms decreased from 7.6 to 

1. 8 at the 15th step and then a restart was made. 
rid At the 2 . 

iteration the residual norms kept decreasing rapidly to 2.1 x 10-
6 

at the 60th step; The test with p = 4 yielded a steadily decr~asing 

sequence of residual n·orm estimates and· therefore· no restart has been 

necessary. The final residual norm obtained at m =· 60 was 7.88 x 10-7 . 

5.5. Finally we shall describe an experiment on a more difficult example 

considered in [19]. The runs reported below have been made on a CDC 

CYBER 175 computer using a word of 60 bits and ~ mantissa of 48 bits 

(single precision), The problem Ax= b treated has dimension N = 1000 

and the nonzero part of A consists in 7 diagonals . 

. A= 

(The nonzero elements of the 1st. row and 1st column of. A are A
11

, A
12 

·, 

Al,lO' Al,lOO' A21 , A10 ~ 1 , A100 , 1 ._) The problem originated from the 

simulation of a reservoir, and is known to be badly conditioned. It has 

been solved in [18] by using Chebychev iteration combined with a 
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preconditioning t·echnique. The matrix A was first decomposed as A = LU + F 

where M = LU is an approximate LU decomposition of A provided by one 

step of the SIP algorithm described in [21]. Then Richardson iteration 

was run for the problem M-1Ax = M-1b, yielding the sequence of approximate 

solutions :. 

(5. 2) 

(k) . (k) . 
where r · is the residual b = Ax and. tk 1s an accclcrat·ion paramste1·. 

The acceleration parameters well'e first chosen a priori and a,s the 

iteration proceeded, they were periodically adjusted in such a.way that 

the i_teration (5.2) matches .. the (optimal) Chebyshev iteration [12] · 

for the problem M-1A = M-1b. After 60 steps the residual norm has 

decreased by a factor of (se·e [19]): 

llr(60) IVIIr(O) II~ 2.025 x 10-5 

The initial vector x0 was generated randomly. Note that an important 

part of the calculations lies in the computation of a few eigenvalues 

of A, as these are needed fo·r determining the optimal parameters tk. 

Two runs have been made with Algorithm·3.5, the first with 

P. = 2 and the second with p = 4. The same preconditioning matrix M = LU 

as above has been used. Figure 6 shows the evolution of the residual 

II 
-1 < k.) -1 II -norms M Ax - M b .and confirms the remarks ending section 3. 

In either case, no restart: wa:s ilecessacy and at: the 60Lh ~::>Lidp, 

the actual residual norms II b - Ax (k) II decreased by a factor of 

and 

II r c6o> IIIII r Co> 11-

llrc6o> ll!llr(O) II ~ 

-7 4.44 x 10 for p - 2 

-7 1.62 x 10 for p 4 

., 
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Clearly, here the choice p = 2 is more suitable than p = 4. Note that, 

with p = 2, each step of Algorithm 3.5 requires about 21 N operations 

while each step of the first method requires an average of 16.7 N 

operaFions per step [19]. Considering that it takes 40 steps for the 

secon4 method to get the residual norm reduced by a factor of 

II r (40) IIIII r (O) II ~ 3. 3 x 10-5 , it is easily seen that the total number 

of operations i~ about 16% less with Algorithm 3.5. Thus, the total 

numbers of operations are comparable. The first method requires,. 

however, 5 N more memory locations than the second. (These are used 

to estimate the eigenvalues of M-1A.) Let us mention that on another 

example similar to the present one, the Chebyshev iteration failed to 

converge, while the I.O.M. gave the solution without any problem with p = 2. 
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