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ICRF Oscillations of an Inhomogeneous Plasma Cylinder*

T. E. Cayton and H. R. lewis
Los Alamos National Laboratory
University of California
Los Alamos, New Mexico 87545

ABSTRACT

We have derived a dispersion differential equation suitable for studying
free and forced oscillations of a radially inhomogeneous plasma cylinder in the
ion cyclotron range of frequencies (ICRF). Solving the differential equation,
subject to appropriate boundary conditions, yilelds global eigenmodes of the
cylindrical configuration; thus, our description embraces botin the geometry and
the physics relevant in the ICRF. The derivation begins with the equations of
the Vlasov(ion)=-fluid(electron) model. An approximate solution of the 1ion
Vlasov equation 1s obtained analytically for a general screw pinch equilibrium
by restricting the ion gyroradius to small, but finite values. llowever, the
frequency of oscillation 1is no: assumed to be small compared with the ion
cyclotron frequency, and the pitch of the magnetic field lincs is not restricted
to large values. Thus, we have generalized and extended the theory of finite
gyroradius effects by 1including ion cyclotron damping, arbitrary diffuse
cylindricalliy symmetric equilibrium profiles, and other ecffects. The
approximate solution of the 1on Vlasov equation together with the Ampere
cquation yileld the dispersion differential equation. The solutions of the
cquation cxplicitly exhibit two different length scales: a MHD length scale, the
pinch radius; and a microscopic scale, the ion gyroradius. In the limit of
vanishingly small lon gyroradii, our model reduces to the guiding center plasma
model.

INTRODUCTION

Experiments have demonstrated that the fons of a high-g plasma column are
efficiently heated by resonanl magnetoacoustic oscillations. ! In these
experiments the magnetoacoustic resonance frequency turned out to be of the
order of the fon cyclotron frequency; the resonant osclllations themsulves
corresponded to high-Q eigenmodes of the particular geometric confipuration.
This sugpests that both the peometry and the detalled ion  response to  the
excltation are important aspects of resonant magnetoacoustlc osclllations.
Previous descriptions of these oscillations in hot=ion  pinches  Lnvolve very
restrictive assumptlons about both the geometry and the fon responsc.) In
particular, the geometry has been restricted in previous theorles to the near 0
pinch where the axial component of mapgnetic Fleld {s much larger than any of the

other components; llkewlse, lon dynamics have  been restricted to low
frequencles, “<<nrl' an  aszumptlon  that 18 almost always violated in actual
experimentss  In the present theory we relax  both  restrictions. The present

theory should be applicable to both the experiments mentlioned and ones of
current interest: the Reversed Fleld Z-Pinch.

THEORY

We constder small amplitude oscillations of a stralpht, cylindrically
symmet ric, hot=ion plasma  column. This plasma  cylinder {9 surrounded by a
vacuum reglon, and finally by a coaxlal, ripid, perfectly conducting shell.
Oscillations are exclted by surface currents that  flow on another coaxial



-2-

cylindrical surface located between the plasma column and the conducting shell.
The 1dealized excitation coil divides the vacuum region 1into two annular
volumes.

The unevcited plasma is inhomogeneous. Plasma density, p, pressure, p, and
the magnetic field components, B and Bz, are functions only of the radial
coordinate, r, in cylindrical polar coordinates. The equilibrium quantities
satisfy the equations of 1deal magnetohydrostatics, a property of the
Vlascv-fluid model? which we use to describe the plasma. Current 1in the
unexcited i1nhomogeneous plasma 1s carried solely by electrons. The macroscopile
ion current density and the flow velocity vanish. But because of this, tue ion
gulding centers must be drifting, and there 1s a correspoading electric field in
the stationary reference frame. The electron fluld transfers momentum to the
ion fluid via the electrostatic field. In thils respect, tnraese equilibria differ
from the usual description found in ideal MHD or gulding ceniec plasma theory
where the guiding centers are a rest, and there is no equilibrium electric
field.

To determine the eigenmodes, we solve the equations of the Vlasov-fluid
model which have been linearized about the (inhomogeneous) equilibrium. The
model equations, are

of of . e, ..V of Ye ) 138

—_—+ + = IS = = B - -

at | -~ ax mi(E+chJ v 0, E+-—XB =0, E cat ' t-3
0 4 Vv

(BEXB)YE = ?_J_Xlg = lﬂTLIdaV (L: A E)f » Ng = 0y . 4,5

Ion macroscopic quantities are defined by appropriate moments of the 1ion
distribution fuunction, f. [Equation (2) 1is the mumentum equation for a cold,
massless fluid, but it 1s posgible to 1include more sophisticated electron
models, e.g., finite clectron pressure, guiding center electrons, ctc.]

Because of the symmetries of the equilibrium, perturbation quantities arc
assumed to be of the form g(f,t) m g(r) oxpli(m0+kz=wt)] , where m 18 the
azlmuthal mode number, k the axial wavevector, and w the frequency. Two other
quantities are defined:

ky = kBSO4mB{D /ey /1801 5 k) = {0 /e-kn§V)) 7 1800

To obtain an analytic solutlon of Eqse. {(1)=(5), we restrict our attentlon to
ciases with gmall,yet finlte, {on gyroradii. We assume 0 < (”t/") << 1, where
py 18 the 1on gyroradius (°l - Vlh/ncl)' and a ls the radial scale length, But
unlike other small fon gyrowadlus theorfes, we do not restrict w/Q., , knvth/nc&

[§

cf
or kLVE/nci to small values (VH s the electric drift  speed). The linearize
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ion Vlasov equation reads [(l + LILO—I)LOJ f; = ', where the linear operators
L, and Ly are components of the ¢total time derivative operator. In our
description,

= ) - -
LO = _QCi 3'5 - i(m kan leE) ’

where ¢ 1s the gyro-phase angle. The 1inverse op?rator Lo~ 1s  known
explicitly.3 We assume that t!= operator inequality L;L "7 ¢ 1, 1s valid with
respect to operations on the ¢-dependent part of the solution. This fundamental
assumption allows calculation of the inverse of the total time derivative
operator by the formal expansion Ly (1 + LlLO_ )-1 = Ly (1 - LlLO- + 0o ),
Application of this Inverse operator ylelds an analytic approximation for the
perturbed 1ion distf}?ution function, fl' from which is obtained the perturbation
current density, J « Substituting this curvent density into Eqs. (3)-(5)
ylelds a disgprsion differential equation which the cylindrical modes must
satisfy. For diffuse screw pinch equiltbria, this prescription has been
accomplished with the MACSYMA symbolic manipulation computing system (Mathleb
Group, M.I.T. Laboratory for Computer Scicnce)."

The basic perturbati?n quantity is El' tive displacement of the electron
fluid perpendicular to B ; 1t 1s related to the perturbe? lertr§c field. We
use the representation E = £ .2 + £.9, where 9= BXt, and B=i /IB and £

satisfy a pair of coupled secon -order ordinary differential equations. Tht
cocfficlent 1in these equations are extremely complicated in the general case.
Numerical methods are being developed to solve the systems A FORTRAN code
produced by MACSYMA has been compiled. Some features of the solution are:
1) The basic radial wavelungth is of the order of the cylinder radius, a.
2) The modes exhibit features that vary rapidly with r == a skin depth of the
order of the fon gyroradius appears.
J) Ion cyclotron resonance(fundamental and harmonics) and Cerenkov resonance
(n=0 subharmonic) are Included in the {fon responsc.
4) The fon dynamics couple the shear Alfvén and fast magnetoacoustic waves.
There 18 no Alfvén continuum == we have an lon kinetic Alfvén wave.

In the special case of a cyllnder partially filled with homogencous plasma,
t he cquations simplify and we can obtaln analytie solutlons. For mea0
(axisymmetric) modes, the differential cequatlions read

Y 20 = k2kBa = ayw 2wy - KEGv) =0,
!’ » L v 1
AV 2CV) + (k2=kB)(1v) + Ay B Kdu = 0,
where u=f£.“(r), v-Ey‘(r), and the coefficlents are defined a4 ollows

A =1 = 85,2 (gy)
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Ap = (B/8)p[2(5p) +2(5)) + 2(ay) + 2(54p)]
Ay = —(B/8)gg[2(5p) = 2(z_)) + 2(gy)) - 2(z)]
As = =(B/8)gg[2(z_p) + 2(z)) = 2(gy)) = 2(24)]
Ag = =(B/4)go[2(e_p) = 2(5_)) = 2(g4y) + 2(5yp)]
(e2-k%) = k2 - (a2/edrzg(2¢a ) +2gy]/2

k§ = (af/ed /g - goleten) - 2(ey] /2]

u’tnnci
Here, Z(x) is the plasma dispersion function and g = LTG;———
th

L]
Note that the ion skin depth, (cA/nCi), the Cerenkov resonance, §y» and the ion
cyclotron resonances, Cooyr Lol Eq]s and 4, are included in this description.
By taking proper limits these equations reduce to those given in Ref. 1, and
finally, to the guiding center plasma result. At the perturbed plasma-vacuunm
interface we must match this plasma snlution with the TM and TE components of
the vacuum electromagnetic field. Jump condiirions arce belng evaluated.
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