)~ In Situ Response Time Testing of EPRI
Platinum Resistance Thermometers

EPRI NP-834

‘ywords: Volume 1
Project 503-3

Nuclear
Sensor Response #’! Final Report
’ Z_) M July 1978

Temperature Sensor

Prepared by
The University of Tennessee
Knoxville, Tennessee

~LECTRIC POWER RESEARCH INSTITUTE



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.



In Situ Response Time Testing of Platinum
Resistance Thermometers

NP-834, Volume 1
Research Project 503-3

Final Report, July 1978

Work Completed, January 1978

Prepared by

Nuclear Engineering Department
UNIVERSITY OF TENNESSEE
Knoxville, Tennessee

Principal Investigators
T. W. Kerlin
L. E Miller
H. M. Hashemian
W. P. Poore

Prepared for

Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, California 94304

EPRI Project Manager

David G. Cain
Nuclear Power Division

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED, %ﬁ;\



LEGAL NOTICE
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EPRI PERSPECTIVE

PROJECT DESCRIPTION
This final report, In-Situ Response Time Testing of Platinum Resis-

tance Thermometers, brings to a close the second of a three part program

to provide practical means for in-situ sensor time response measurement.
A prior final report (EPRI NP-267) has been issued on the subject of
pressure sensor response testing. An interim report on resistance tem-
perature detector (RTD) testing (EPRI NP-459) is superseded by this
document. The third and last project, exclusively concerned with the
noise analysis approach to response time testing, has yet to be completed.
The response of RTD sensors is an important safety consideration
where these instruments are used in reactor protection system applications.
Current Nuclear Regulatory Commission (NRC) requirements specify that
sensors be included in periodic safety system time response checks. The
advantage of in-situ testing over sensor removal and test is not only a
matter of convenience. Radiation exposure to personnel and possible
damage to the sensor in the removal process are important considerations.
More significant is the fact that laboratory tests cannot precisely
duplicate the same conditions the RTD experiences in service. This may

lead to greater uncertainty in the laboratory test results.

PROJECT OBJECTIVES
The project investigated three prospective methods for in-situ RTD
response measurement: Tloop current step response; self-heating; and

noise analysis. The intent was to assess the feasibility of each approach



within the context of NRC testing requirements, to validate techniques
on the basis of laboratory test data, and to demonstrate techniques in

commercial power plant applications.

CONCLUSIONS AND RECOMMENDATIONS

In-situ RTD response testing technology has been advanced to the
point where it is believed that viable methods now exist for in-plant
application. The project investigators provide suitable recommendations
in the report as to the use of the alternative methods in meeting NRC
requirements. The report should: provide sufficient detail to enable
utilities to implement a suitable RTD dynamic test program; and provide

a technical basis with which to justify the use of a particular method.

David G. Cain, Project Manager
Safety & Analysis Department
Nuclear Power Division
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ABSTRACT

This report provides final results of Research Project 503-3,
concerned with in-situ resistance temperature detector time response
verification. The report covers the theoretical bases, laboratory
experimentation, and in-plant testing of three prospective methods.
Sensors employed in this project are representative of those employed

in safety-related applications in the field.
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PREFACE

This report documents research performed under contract with the
Electric Power Research Institute. It is a revised and updated version
of a previously issued interim progress report (EPRI Report NP-459).

In order to make a complete, self contained report, this final report
contains some portions that are identical with parts of the interim
report. Also, portions of this report are taken from another report
generated in this project. It was written by H. M. Hashemian and is
titled, "In-Situ Response Time Testing of Platinum Resistance Thermom-
eters in Nuclear Power Plants."

This report is in two parts. Volume 1 deals with thermometry funda-
mentals and testing methods that employ electrical heating of the sensor
filament in a platinum resistance thermometer to obtain the test data
needed to determine the sensor time constant or to detect changes in the
time constant. Volume 2 deals with a method for estimating sensor time
constants by analyzing the normal fluctuations in the sensor output (noise

analysis).
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SUMMARY

Methods for in-situ response time testing of platinum resistance

thermometers were developed, implemented and validated. These methods

provide the technology needed to comply with the recommendations on

sensor response time verification of temperature sensors outlined in

U. S. Nuclear Regulatory Commission Regulatory Guide 1.118. The methods

were validated by theoretical analysis, laboratory testing, and four

in-plant tests on operating pressurized water reactors.

The methods are:

1.

Loop current step response

The temperature transient due to a step change in 12R heating
of the sensor filament is analyzed to determine the response
that would have followed a fluid temperature change. The test
can be implemented in a plant by connecting a test instrument
at the point where the sensor leads are normally connected to
their in-plant transmitter. The data analysis is best performed
by a computer. Laboratory results show that the time constant
estimates by this method are within 10 to 20 per cent of their
true values.

Self heating

The steady state temperature rise due to steady state 12R
heating of the sensor filament is used to detect changes in
the sensor's overall heat transfer coeficient and consequently

changes in its response time. The results are expressed in

terms of the self heating index (ohms of resistance change/watt

S-1 N



of 12R power). An increase in the self heating index indicates

an increase in response time. The test can be implemented in

a plant by connecting a test instrument at the point where the

sensor leads are normally connected to their in-plant trans-

mitter. The test data are analyzed by constructing a plot of

resistance change versus IZR power and measuring the slope.

Limited information has been obtained on the sensitivity of the

self-heating index to changes in time constant. This is needed

to determine the change in self heating index required to indicate

a given change in the time constant.

3. Noise analysis (Volume 2 of this report)

Noise analysis uses the normal small fluctuations in sensor

outputs to obtain information on sensor response characterstics.

Basically, the idea is that fast sensors can track the actual

fluid temperature changes better than a slower sensor. Methods

have been developed for quantitative time constant estimation

by noise analysis that apply when the statistical properties

of the fluid temperature fluctuations are known. Unfortunately,

it has been found that these assumptions are not routinely

satisfied in an operating plant, making noise analysis unsuit-

able for quantitative response time measurement. However, noise

analysis, results are sensitive to changes in sensor characteristics,

so noise analysis is useful for degradation monitoring.

It appears that the in-situ response time measurement problem for

platinum resistance thermometers can best be handled by a test program

that uses a combination of methods. This program would include degradation

S-2



testing (using the self-heating method and/or noise analysis method)
on a more frequent schedule than quantitative response time testing
(using the loop current step response method). Degradation tests only
give qualitative information on changes in response characteristics
from a reference condition, but they have the potential for greater

simplicity and lower cost than quantitative response time measurements.

S-3



1.0 INTRODUCTION

1.1 Historical Background

The response time has been considered an important property of
resistance temperature detectors (RTDs) since their early use for
industrial temperature measurement. Classically, the response was
measured prior to installation in the plant utilizing a measurement
that involved plunging the sensor into flowing water. The time constant
was usually defined as the time required to reach 63.2 per cent of the
final response following a step change in fluid temperature.

The Nuclear Regulatory Commission added a new dimension to sensor
response time measurement when it recommended that utilities operating
nuclear power plants make in-situ time response measurements of sensors
installed in the plant. This recommendation was promulgated in U. S.

Nuclear Regulatory Guide 1.118.

1.2 O0bjectives of This Research

The research reported herein has the objective of developing a method
for in-situ response time testing of platinum resistance thermometers of
the type used in modern pressurized water reactors. The test is only
required to show that the response time is less than a specified maximum
allowable value; but, of course, actual determination of the response time
is also acceptable. In addition, the testing method should have these
characteristics:

1. Technical acceptability so as to receive Nuclear Regulatory

Commission approval
2. Minimal cost for special equipment

3. Minimal complexity.
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1.3 Approaches for In-Situ Testing

Several methods are plausible for in-situ testing of resistance
temperature detectors (RTDs). The two broad categories are: (1) fluid
temperature perturbations external to the RTD, and (2) internal pertur-
bations of the RTD by ohmic heating in the sensing wire. Applicable
methods related to fluid temperature perturbations involve:

1. analysis of the fluctuations in the sensor output during normal

operation (noise analysis)
a. using time series analysis
b. using frequency domain analysis
c. using correlation function ana]ysis(])
2. analysis of induced temperature fluctuations
a. using control rod motions to cause power changes and
concomitant temperature changes
b. using steam valve or feedwater valve perturbations to induce
primary fluid temperature changes
c. using special local devices near the sensor such as fluid
injection ports or small electrical heating elements.
Those related to internal perturbations include the analysis of:

1. a transient sensor output induced by above-normal current that
causes ohmic heating of the sensor filament (usually called a
loop current step response test)(2-4)

2. the steady state measurement of temperature rise vs. ohmic heating
level in the sensor filament (usually called a self heating test).

In this report, the methods considered are:

1. the Toop current step response (LCSR) test



2. the self-heating test
3. noise analysis (using time series analysis) - reported in Part B
under separate cover.

These methods are used since they require no system modification and can
be accomplished with a modest investment for test equipment. Induced
fluid temperature perturbations are omitted because: (a) transients
induced with control rods, steam valves or feedwater valves involve test
complexity that is probably unnecessary for sensor response measurement
(though these methods may be useful for measuring lags due to by-pass
lines used for some sensor installations), and (b) special in-pipe
hardware would involve an expensive plant modification that is unwarranted.
Furthermore, testing by a remove-and-test procedure or a simple periodic
replacement is ruled out because these methods ignore the important effects
of the environment in the pipe where the measurement is to be made.

The Toop current step response (LCSR) test exploits the fact that
heat transfer resistances and heat capacities are independent of the direc-
tion of heat flow. Thus, the same heat transfer characteristics that control
the transient response following a change in ohmic heating in the sensor
also control the transient response following a change in fluid tempera-
ture change. Of course, the transients are not the same for both pertur-
bations. For a fluid temperature change, the heat must diffuse through
the assembly to the sensing wire. For an ohmic heating change, the heat
is generated exactly at the point of measurement, then it diffuses through
the sensor assembly to thg fluid.

Since the response to a fluid temperature change is desired and the
response to a change in ohmic heating is feasible in an installed RTD,

there is a need to transform the ohmic heating transient into the transient
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that would occur if the fluid temperature changes. This has been done
for the case of a step change in ohmic heating and is referred to as the

lToop current step response transformation.(4’5)

The transformation may

be performed analytically for RTDs that meet two conditions necessary in
the theoretical development (predominately one-dimensional heat transfer
and negligible heat capacity between the filament and the center of the

sensor).*

The physical basis for the self-heating test is that the temperature
rise in a system with a given internal heat generation rate is inversely
proportional to the overall heat transfer coefficient. Thus, the slope
of the curve of temperature rise versus heat generation rate due to ohmic
heating in the sensor element (the self-heating curve) is inversely propor-
tional to the heat transfer coefficient. A change in the slope of the
self-heating curve indicates a change in the heat transfer resistance. The
slope of the self-heating curve is called the self-heating index and is
usually expressed in ohms/watt. A change in effective heat capacity of
the RTD system would change the response time, but would not change the
self-heating index. However, only a change in the heat transfer resistance
is considered plausible so an in-plant measurement of the self-heating
index would provide an indication of changes in sensor response time.

Noise analysis is a well established diagnostic procedure. It may

be used to identify the sensor dynamics so that an impulse response can

*In the interim report (EPRI Report NP-459) this condition was stated
in a more restrictive way. The condition was previously stated as a
centrally located sensing wire. The new statement of the condition is more
precise and has application for at least one practical sensor design.
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be obtained. Knowing the impulse response, one can readily determine the
step response. Consequently, the time constant associated with a plunge
test can be identified. Details relating to the application of noise

analysis for this research are given in Volume 2 of this report.



2.0 RESISTANCE THERMOMETRY

2.1 Material Requirements

Resistance thermometry exploits the temperature dependence of metals
to monitor temperature. Desirable properties of materials for resistance
thermometry are:

1. Tlarge temperature coefficient of resistance

2. Tlinear curve of temperature vs. resistance

3. chemical inertness

4. ductility

5. mechanical strength.

Platinum is an excé]]ent material to provide these characteristics, and
most industrial resistance thermometers use platinum wire as the sensing

element.

2.2 RTD Characteristics

A typical RTD consists of a fine platinum wire mounted inside a
metal sheath (usually stainless steel). It is important that the filament
(the platinum wire) be insulated from the metal sheath. Two construction
methods of mounting the filament are worth mentioning: 1) winding the
filament on an electrically insulating support inside the sheath, then
backfilling with magnesium oxide or cement, and 2) coating the inside of
the sheath with a cement, then attaching the filament to the coating
material.

Each of the construction methods has advantages. If a support
structure is used to mount the filament, stress effects on sensor perfor-
mance can be minimized; however, the back-fill material needed for elec-

trical insulation has significant thermal resistance. If the filament
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is very close to the sheath, as is the case for the second construction
method mentioned above, the time response of the sensor is faster than
when the filament is mounted on a separate support. The fast time
response is desired for some applications.

RTDs may be designed for direct immersion into a fluid stream (wet-
type) or for installation into a well in the stream (well-type). To
improve the heat transmission in well-type sensors, a thermal bonding
material is often used in the gap between the sheath and the well.

The sensors found in pressurized water reactors manufactured by
different vendors are quite different. Table 2.1 gives specifications
on some of the commonly-used sensors. Figures 2.1 through 2.4 show some of
these sensors and X-rays to reveal their internal characteristics.

The resistance element is connected to lead wires that connect to
appropriate instrumentation. Sensors may be constructed with the lead
wire configurations shown in Figure 2.5. The multiple lead and dummy
wire configurations are used in measurement systems to compensate for
lead wire resistance to obtain accurate temperature measurements. RTDs
are made with single sensing elements per sheath and with dual elements
that allow two independent measurements with the same sensor.

The temperature coefficient of resistance of pure annealed platinum
wire is 0.003925 9%%%/°C (0.002181 9%%%/°F). By selecting the wire
length and diameter, one can obtain various values of absolute resistance
at any temperature. Standard sensors have 100 ohms at 0°C or 200 ohms at
0°C. Temperature coefficients depend on platinum purity, and commercial
sensors usually have slightly smaller temperature coefficients than pure

platinum. A pure platinum 100 ohm sensor would have a temperature coef-

ficient of 0.3925 ohms/°C (.2181 ohms/°F), and a pure platinum 200 ohm



TABLE 2.1

SPECIFICATIONS OF THE RTDS USED IN THIS WORK

Sensor Number of 2 Wire Resistance
Sensor Model Plants ~ Wet Type Sheath Well Sensing Elements 3 Wire Dummy at 0°F
Manufacturer Number Where Used Or Well Type 0.D. 0.D. Per RTD or 4 Wire Wire? Ro(n)
*%k
REC* 177-GY B&W wet .335"  NA 2 4 no 100
*%
REC 177HW B&W well .290" .410" 2 4 no 100
REC 104-AFC C.E. well 125 .281" 1 2 yes 200
REC 176-KF  Westinghouse wet 375" NA 1 4 no 200
*dkk
REC 104ADA C.E. well 125", 25 1 2 yes 200
REC 104vC C.E. well 25" 25 1 2 yes 200
Sostman 8606 Westinghouse wet .25" NA 1 4 no 200

%*
Rosemount Engincering Company,

* %
Babcock and Yilcox Co.

*kk .
Combustion Engineering Inc.



Figure 2.1a X-Ray of the Rosemount 177GY Sensor
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Figure 2.1b Picture of the Rosemount 177GY Sensor.
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Figure 2.2a X-Ray of the Rosemount 177-HW Sensor.
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Figure 2.2b Picture of the Rosemount 177-HW Sensor.
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Figure 2.3a X-Ray of the Rosemount 176-KF Sensor.
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Figure 2.3b Picture of the Rosemount 176-KF Sensor.
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Figure 2.4 X-Ray of the Rosemount 104-AFC Sensor.
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a) 2 Wire

b) 3 Wire

e UL

d) 2 \ire with Dummy

Figure 2.5. Possible Lead Wire Configurations for RTDs.
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sensor would have a temperature coefficient of 0.7850 ohms/°C (0.4361
ohms/°F). Temperature coefficients for commercial sensors are typically

80 to 90 percent as large as for those with pure platinum elements.

2.3 RTD Instrumentation

The instrumentation used in resistance thermometry is usually a
bridge circuit as shown in Figure 2.6. Various special methods for con-
necting multiple-wire RTDs are available. but all use the same basic
Wheatstone bridge circuit. If the two fixed resistors have the same
resistance, Ra’ then the RTD resistance can be determined by finding the
value for the variable resistance, Rd’ that nulls the voltage drop, AV.
If the bridge is used in the non-nulling mode then changes in the RTD

resistance are related to the voltage drop across the two arms of the

bridge by

(Ry-Rerp)Ry

AV =
(Ra+Rd) (Ra+R

] E. (2.1)
RTD

Note that the voltage drop is approximately linearly related to the RTD
resistance for bridges in which the change in the sensor resistance is

small compared to the sum of the original RTD resistance and the fixed

resistance, Ra'

The voltage, E, used in normal applications is selected to give
insignificant ohmic heating in the RTD. The self heating effect is
quantified by the self heating index expressed in ohms/w. A typical
value is 8 ohm/w for a 100 ohm sensor. For such a sensor with a 2 ma
sensing current, the heat generation rate is 0.4 mw. This gives a
resistance change of 3.2x10'3 ohms with a resulting temperature measure-

3o

ment error of 8.15x10 °°C. Similar calculations show that a 50 ma current

would give a temperature increase of 5.09°C (9.17°F).
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RTD

Figure 2.6. A Typical Bridge Circuit Used in Conjunction with an RTD.
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2.4 Time Response Characterization of Sensors

2.4.1 The Concept of Time Constant

The time constant is commonly used to represent the response
characteristics of a dynamic system. It has unambiguous meaning
only for first order systems (described by a first order differential

equation or equivalently, a first order transfer function):

dx _
gt Tax =au (2.2)

or

a(s) =ﬁ—§§} - ]—lﬂ . (2.3)

a

If Equation 2.3 is solved for a unit step change in the input, u; one

obtains

x(t) =1 -e "3t (2.4)
If the response is evaluated for t = %—, then

x(t = 1) = 0.632. (2.5)

The quantity, %3 is defined as the time constant, t. It is easily
identified from test data by measuring the time required for the response
to achieve 63.2 percent of its final value following a step change in the

input.

2.4.2 Higher Order Dynamic Systems

The first order approximation is usually inadequate to represent

the dynamics of typical temperature sensors. This means that higher
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order differential equations or transfer functions are required to
represent the dynamics. As will be shown in Section 3.2, a transfer

function without zeroes (no numerator dynamics) is usually adequate:

a

G(s) = — e (2.6)
S +a]s +...+a]s+ao

or
%
G(s) = (s-s])(s-sz) ... (s-sn) (2.7)
For a step change in the input, the response is
a, a_ e s]t
A2 0 | 7% R 0 BN (e 5755
a_ e SZt
¥ S55(s5-57) + - . (52-5;7'+ R (2.8)
or
a (-s:)(-s5) . . . (-s.) e S1t
X(t) - 0 1 + ] 2 n
(-s)(=s5) « . . (=s) 5,(s7-55) < - - (59-5.)

(—s])(—sz) C o (-sn)

t
+ N R e | e 32 + . . ] (2.9)

The s; are the poles of the system transfer function. They are
all negative real numbers for transfer functions for temperature sensors.
It is common to introduce the concept of a time constant for each mode

of the solution:
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-t/
e Sit = e T (2.10)

Thus, we may write:

1 -t/T]
T,T T e
o T T
a = (o) (- )
1 1 2 1 n
1 -t/T2
. ] ]T-]Tz Tn ]e +
=t )
2 2 1 2 n

(2.11)

It is clear that there is no simple relation between the multiple time
constants in the response equation. However, it is still accepted
practice to define an overall time constant, t, as the time required to
achieve 63.2 percent of the final response following a step change in
the input.

It is possible to develop an expression that relates the overall
time constant, t, to the individual time constants, L using an assumption
that is well satisfied in typical temperature sensors. The faster time
constants have a decreasing effect on the response compared to the slowest
one as time progresses since they decay faster. For example, if we let
™ be the slowest time constant and evaluate the second exponential at

t/T] = 1, we obtain the following:
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-t/'r2
T]/Tz e (at t = T])
2 .135
3 .050
4 .018
5 .007

Since T]/T2 is typically about 4 for a sensor, the TH term contribution
is small by the time t = T Since the T] term has the most important
effect on T, we can also assert that Ty and higher terms have a small

influence when t = . Thus, we may write

1 -.1;/1'.I
T,T O e
x(t) & 12 n
1+ .
x(=T HL I S IS B I (2.12)
=T =T T ot =T T
1 1 2 1 n

Now, we can set x(t)/x(®) = 0.632 and solve for t to obtain:

-T/T T T T
e Ve 00 -H0-S...0-D (2.13)
1 1 1
or
T2 T3 T
=t (1- (1 -?]—) - (1 -;T) - .1 -;-;'-) (2.14)

To illustrate the effect of the faster time constants on the overall

time constant, the ratio, T/Tl’ was evaluated for various values of
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12/11 with Ty T 0 for i greater than 2. The results are shown in

Figure 2.7.

2.4.3 Ramp Response

The ramp response of sensors is of interest because safety
studies generally involve ramp changes. The ramp response is obtained
readily from the transfer function of a system. First, let us consider

a first order system:

G(s) = .g]—J,—T (2.15)

The ramp response is evaluated using the Laplace transform of a ramp

with ramp rate K as follows:

L (Kt} = -% (2.16)
s
Then:
x(s) = T——K——'— (2.17)
s™(ts + 1)

The response may be obtained by inverse Laplace transformation:

-t/

x(t) = K[t-t + t1e '] (2.18)
For t>>t, the exponential term is insignificant. The response is as
shown in Figure 2.8. The output, x(t), is delayed relative to the
true process value, Kt, by a time that is less than or equal to T.

The asymptotic delay is called the system ramp time delay and is equal

to the time constant for a first order system. Note that the ramp time
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2.0
1

Basis T = 0 for i > 2

1.8 4

T T T 1 -

0 . .2 .3 .4

[$7]

TZ/T]

Figure 2.7. Effect of Faster Time Constant on Overall Tipe Constant.
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Tirme Delay

Temperature

Temperature Ramp ‘Measurement Error

Measured Temperature

Time

Figure 2.8. Typical Ramp Response and Illustration of Ramp
Time Delay and Measurement Error.



26
delay is independent of the ramp rate. The asymptotic measurement
error is Kr.
Now, we will evaluate the ramp time delay and measurement
error for sensors described by higher order dynamic models. Consider

the transfer function:

a
- 0
Ss) = Gy o sy (2.19)
a, = (-s])(-sz) C e (-sn)
and the input, Kt, with Laplace transform, —%—. The Laplace transform
s
of the output is
Ka0
x(s) = 5 (2.20)
S (s-s])(s-sz) oo (smsy)

The sensor response may be evaluated by inverse Laplace transformation.

The partial fraction method gives

+ ... (2.21)

The arbitrary constants must be evaluated if the complete response is
required. However, we are interested only in determining the ramp

delay time and the asymptotic measurement error. Consequently, the
exponential terms are of no interest, and we can concentrate on A] and
Ry. These may be evaluated to give the following result (see Appendix A

for the derivation of this result):
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A] = K (2.22)

A2 = -K [T] + Ty + rn] (2.23)
Therefore

x(t) ~ K[t—(r] T, bt Tn)] (2.24)

In this case, we obtain:

ramp time delay = 71 + 15 + . . . T (2.25)
and
asymptotic measurement error = K[r] tr, b rn] (2.26)

2.4.4 Relation Between Time Constant and Ramp Time Delay

The time constant and the ramp time delay are given by:

T2 '3
time constant = T, [1 - 2n(1 - ;—) - en(1 - ;—) - ... ]
1 ! (2.27)
and
'2 '3
ramp time delay = t,[1 +— + — +. .. 1. (2.28)
1 1

Insertion of numerical values into these expressions shows that the

ramp delay time is always less than the time constant, but the difference

is small for values of the TS that are typical of temperature sensors.

To illustrate this, the percent difference between the time constant and
the ramp time delay was evaluated for a two-term representation (T] and 12).
The error is shown in Figure 2.9. We note that for a typical ratio of

0.20, the difference is less than two percent.



Percent Difference Between Time Constant and Ramp Time Delay
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8 -
7 J
6 Note: The step response time
7 constant is always greater
than the time delay.
5 4
Tq/T
Note: A typical value for <11
is < 0.2. Therefore, the
difference is < 2%.
4 L
3 4
T = slowest time constant
2
T, = fast time constant in a 2
time constant representation
1 5
0
1 V 1 1) | 1
0 N .2 .3 .4 .5 6

T
Ratio of Z/Tl

Figure 2.9. Relation Between Plunge Time Constant and

Ramp Time Delay.
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2.5 Factors Affecting the Steady State and Transient Performance

of RTDs

2.5.1 Introduction

A change in physical, electrical or thermal properties of the
sensor materials may cause errors in steady state and/or changes in the
transient performance of an RTD. The sources of errors in steady state
performance and the factors affecting the transient response of RTDs

are discussed in this section.

2.5.2 Errors in Steady State Performance

Some of the possible sources of errors in the temperature measured

with an RTD are covered in the following sections.

2.5.2.1 Self Heating Errors

Measurement of temperature with resistance thermometers using a
Wheatstone bridge requires a small electric current called the sensing
current. This current causes a small temperature rise in the sensor
and results in an increase in the resistance of the sensing filament.
The increase in the resistance of the sensing element indicates a false
increase in the temperature being measured. The error in temperature
measurement due to the sensing current is called the self heating error.
The self heating error may be compensated by measuring the resistance
at two different currents to permit an extrapolation to zero power
input to the RTD to get the resistance at the temperature being measured.
Usually, the sensing current used is small enough so that negligible

self heating errors occur.
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2.5.2.2 Errors Due to Stem Losses

The transfer of heat from the region of the sensing filament
along the axis of the sensor's sheath is usually called a stem loss.
Stem losses reduce the amount of heat transferred to the sensing
filament and introduce errors in temperature measurements. Stem
losses are minimized by filling the sheath with insulating materials
such as Mg0 powder or placing mica disks along the leads inside
the sheath.

The errors due to stem losses for several industrial resistance

(6).

thermometers were measured by Carr He measured the resistance of
the thermometers as a function of immersion depth in an oil bath with
a temperature of about 100°C. He demonstrated that the resistance of
these thermometers will not change more than the equivalent of .09°C

when the immersion depth is varied from 10 to 25 cm.

2.5.2.3 Errors Due to Drifting Resistance

(7)

According to Dutt, when an RTD is exposed to a wide range of
temperature for a long period of time, the resistance at a reference
temperature increases. This is due to dimensional changes and con-
tamination from the materials used for supporting the wires. Therefore,
periodic calibration of resistance thermometers is required for accurate

measurement of temperature.

2.5.3 Factors Affecting the Transient Response of RTDs

The response of an RTD to a temperature transient depends on the
physical and thermal properties of the sensor and its environment.
Industrial resistance thermometers are usually exposed to a wide range

of temperature, pressure, flow, vibration and corrosive materials.
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These parameters have an influence on the properties by which a sensor
response is characterized. A discussion of the effect of process
parameters on the dynamic performance of an RTD is given in the

following sections.

2.5.3.1 Effect of Temperature

As temperature rises, the dimensions of materials in the sensor
change. If dimensional changes caused expansion of gas-filled gaps,
the resistance to transfer of heat to the sensing filament would
increase and result in a slower response. Reduction of gaps would
occur if expansion of other materials compressed the gap spaces.

This would decrease the heat transfer resistance of the sensor and
cause a faster response. Therefore, the net effect may be either a
faster or a slower response.

For the well-type RTDs with air in the thermowell, higher temperature
reduces the heat transfer resistance in the air. This is due to the fact
that the conductivity of air increases with temperature (see Figure 2.10)
and results in a smaller heat transfer resistance for the sensor. As
mentioned earlier, the air gap inside the thermowell of well-type RTDs
is sometimes filled with a thermal bonding material to improve the
response time. The effect of temperature on the well-type sensors with
a thermal bonding material in the thermowell appears to be significant.
Experience based on laboratory testing of a substance called Never-Seize
that is sometimes used for thermal bonding indicated that this substance
changes to a powder when it is exposed to a temperature of about 600°F
in air for less than half an hour. The result of degradation of Never-

Seize with temperature may result in a slower response of the sensor.
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Figure 2.10. Thermal Conductivity of Air Versus Temperature.
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2.5.3.2 Effect of Pressure

A faster response is expected for an RTD operating in a high
pressure environment. This is because pressure can compress the
sensor and fill up the gaps (if any) in construction materials. How-
ever, for typical sensors for PWR applications, this effect is expected

to be negligible.

2.5.3.3 Effect of Flow

The surface heat transfer resistance of an RTD depends on the
flow velocity to which the sensor is exposed. A high flow velocity
increases the heat transfer coefficient of the surface and improves

the sensor response time. This is understood from the heat transfer

correlation for flow over submerged bodies.(s)
h D -1/3 DGn
> [pr] = b [-2] (2.29)
f i
where
G = the mass flow rate
D0 = outside diameter of submerged body
Mg = viscosity of the fluid
Pr = Prandtl number (—E—— 3 Cp = specific heat capacity of fluid)
f
hm = the surface heat transfer coefficient
kf = thermal conductivity of the fluid

DG
b and n = constants that depend on the Reynolds number (-%—9.
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These constants for different values of Reynolds numbers are given in
Table 2.2. The effect of fluid flow rate on the surface heat transfer
resistance is illustrated for a typical case where the body is sub-

merged in water for which the flow rate changes from 3 ft/sec to

40 ft/sec.
' -1/3
hm]DoPr
kf : (DOG])n1
3 ft/sec T Yu
- - / - f (2.30)
I -1/3
hszoPr DOG2 n,
k b2 ( u
f f
i 0 ft/sec
This equation reduces to
(DoG1)"1
A LT (2.31)
hmZ
D82, Mo
b, (-2
B
in which
G] = the mass flow rate at 3 ft/sec

G2 = the mass flow rate at 40 ft/sec

=
1

= surface heat transfer coefficient at 3 ft/sec

=
1

m2 - surface heat transfer coefficient at 40 ft/sec
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TABLE 2.2

CONSTANTS OF EQUATION 2.29

DOG/u n b
1-4 .330 .891
4-40 .385 .821
40-4000 .466 .615
4000-40,000 .618 174
40,000-250,000 .805 .0239
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b] and n constants for a Reynolds number at 3 ft/sec

b2 and n, constants for a Reynolds number at 40 ft/sec.
Since

mass flow rate = fluid flow rate x density

and the density of water at room temperature (70°F) is about

62.27 1bm/ft> then:

3 x 62.27 = 186.81 1bm/sec-ft2

o
i

2

[ep]
1]

9 40 x 62.27 = 2490.8 1bm/sec-ft

The viscosity of water at room temperature is 2.37 1bm/ft-hr. If D0

is assumed to be about .5 inch, then

D G
Rey = 07 - 1.8 x 10°
M
D G
Re. = 22 = 1.58 x 10°
2 He

From Table 2.2 the values of n], Nos b] and b2 for these values of

Reynolds numbers are:

n .618 n, = .805

b

.0239

1 174 bs

substituting the Reynolds numbers and the values of Nys Nos b] and b2 into

Equation 2.31 will result in:
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ml

— = 157
hm2

h

e = 637
ml

Thus, the surface heat transfer coefficient and therefore the overall
heat transfer coefficient increases when the fluid flow rate is
increased from 3 ft/sec to 40 ft/sec. On the other hand, the relation
between overall heat transfer coefficient and response time is
approximately given by

T~ MC (2.32)

UA

When the fluid flow rate to which a sensor is exposed increases, the
surface heat transfer coefficient of the system increases and results
in an increase in the overall heat transfer coefficient which reduces
the sensor response time.

Equation 2.29 may also be used to study the effect of temperature
on the surface component of the response time of an RTD. A typical
case in which the sensor is submerged in water and temperature changes

from 70°F (room temperature) to about 500°F is considered:

-

T n
h .D -1/3 1
E] ° [Pr1] b [DoGl
f1 1 500°F 1 L
h D -1/3- ) —_——_———::_ (2.33)
L f2 70°F 2 Heo
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where

hm] = the surface heat transfer coefficient at 500°F
hm2 = the surface heat transfer coefficient at 70°F

Pr1 = Prandtl number at 500°F
Pr2 = Prandtl number at 70°F

kf] = thermal conductivity of water at 500°F
kfz = thermal conductivity of water at 70°F
G] = mass flow rate at 500°F
G, = mass flow rate at 70°F
Hep = viscosity of water at 500°F

Wy = viscosity of water at 70°F

b] and N, constants for a Reynolds number at 500°F

b2 and n, = constants for a Reynolds number at 70°F.

The following data were obtained for water:(g)

At 500°F 1) kﬂ = .356 BTU/hr-ft-°F

2) Pr1= .83

3) Hep = .26 1bm/ft-hr

4) density = p, = 49.02 Tbm/ft3

At room temperature

.349 BTU/hr-ft-°F

1]

(70°F) 1) kep

2) Pr2 =6.78
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3) Mep = 2.37 1bm/ft-hr

4) density = o, = 62.27 bm/ Ft3
If the water flow rate assumed to be 3 ft/sec, then:

147.06 1bm/sec—ft2

o
1

= 3 x 49.02

186.81 1bm/sec-ft2

D
1

= 3 x 62.27

For D0 = .5 inch:

8.48 x 10

_ (.5/12)(147.06)(3600) _ 4
76

1.18 x 10*

Re. = (.5/12)(186.81)(3600) _
2 2.37

The values of Nys Nos b] and b2 for these Reynolds numbers are

3
i]

.805 n, = .618

o
"

.0239 b, = .174

Upon substitution of these data into Equation (2.31) one will obtain:

h
Eml = 1.963

m2
Therefore, the surface heat transfer resistance and the overall heat

transfer resistance of a sensor decrease with temperature and result

in a smaller response time.
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The effect of the surface resistance on response time depends on
the relative importance of internal heat transfer and surface heat

transfer. This is discussed in section 3.4.

2.5.3.4 Effect of Corrosion

Corrosion on the sheath or on the well of an RTD forms an

tnsulating film that results in a slower response.

2.5.3.5 Effect of Vibration

The effect of vibration on the performance of temperature sensors
is of critical importance. Response time degradation and failure of the
sensor may result from operating in a severe vibrating condition. De-
gradation of response time due to vibration occurs if the sensing
structure (sensing element and/or supporting structure) or the insulating
materials are displaced or gaps are opened inside the sheath of the sensor.
The displacement of the sensing structure or insulating materials and
expansion of gaps in the sensor affects the internal heat transfer
resistance and introduces response time degradation. On the other hand,
vibration may detach the sensing coil from the connecting wires inside
the sensor and result in a complete failure of the system. Also, stresses
imposed on the sensing coil by vibration may cause changes in the re-
sistivity of the sensing filament which affects the performance of the
sensor. If the sensor is subjected to periodic stresses that have frequency
components matching the natural frequency of the sensor, the sensor can be

vibrated to destruction.



3.0 THE LOOP CURRENT STEP RESPONSE TRANSFORMATION

3.1 Introduction

The result of interest is the time constant associated with a

step change in fluid temperature external to the sensor. The time

constant is defined to be the time required for the sensor output to
reach 63.2 percent of its final steady-state value after a step change
in fluid temperature. This time constant is usually obtained from a
plunge test in a laboratory environment. Since the plunge test cannot
be used to obtain the time constant of an installed RTD, the LCSR test
is proposed as one method to obtain an estimate of the desired plunge
test time constant.

A transformation is needed to convert LCSR data into a prediction
of the response that would occur following a fluid temperature step
change. The transformation may be developed using a general nodal
model for sensor heat transfer. The development is independent of the
number of nodes included in the model, so use of this approach does
not imply any restrictive assumptions. The following sections give some
details on RTD heat transfer that permit formulation of a transformation

and that define the conditions for validity of the transformation.

3.2 Mathematical Development of the LCSR Transformation

An analytical transformation for converting loop current step
response (LCSR) test results into plunge test results may be developed
using a general nodal model for sensor heat transfer. Consider first a
system with predominantly one-dimensional heat transfer. In this case,

the nodal model may be represented schematically as shown in Figure 3.1.
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LA SAAY, T AN Ti+1

Q. Q, Q

i+l

Figure 3.1, Schematic of a One-Dimensional Node-to-Node Heat Transfer
Model.
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The accuracy of such a model may be made as great as desired by using

enough nodes.

where

The dynamic heat transfer equation for node i is:

dT

i- 1 - LT
Mg “ry T~ T w (Ty - T

) +Q, (3.1)

i+l i

heat generation rate in node i

mass of material in node i

specific heat capacity of material in node i

heat transfer resistance for node i-1 to node i

it

%
M
¢
Ry
Ti temperature of node i.

Dividing through by (MC)i and defining constants gives

where

dT.
12
T 24,040 Tia1 7 24,1 Tt 3L Tia T (3.2)

ai,i41 T i R

.
bs (i)

The nodal equations may be applied to a series of nodes, starting

at the node closest to the center (i=1) and ending with the node

closest to the surface (i=N). The equations have the form:

bl
at

i

sy Ty Fagp T, ¥ by

S Ty m 3y TytayTythbQ
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3 _
T - 332 Tpm 33 T3t ag, Ty + by 0y
dTN
T AN,N-1 -1 T AN T OnLETE T Oy Oy
where
TF = fluid temperature.
These equations may be written in matrix form:
g-;3=AS'(+B'+<':T (3.3)
dt q F y
where )
T] SCI R IE P 0 0 . o e
T2 a1 "3, g 0 .« o e
T3 0 a32 "'a33 a34 e o o
X=1. A= .
| Tn | 3 AN,N-1 7 ON,N
_ ] B
b, 0 0 ... [ q
0 b 0 .« o . ~ Q
B = 2 g = 2
0 0 b3 .« o e Q3
bN_ .
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Laplace transformation gives:

[sI-A] x(s) = E'TF(S) + B q(s). (3.4)

The Laplace transform solution for the response of any node, X;» may

be found using Cramer's rule. Let us consider several cases:

1--no heat capacity in region between the filament and the center
*
of the sensor , no heat generation in any nodes, fluid temperature

perturbation, one dimensional heat transfer

_ __F(s)
where

0 -a]2 0 0

0 (S+&22) -623 0 o ®

0 —332 (S+a33) "334 « s

0 0 -a (s+a,,) . .

F(s) = 34 44
Cn,FTR(s) e R B BT

(3.6)

*
In the interim report (EPRI Report NP-459), this was referred to
as a central node. The specification used here is more general and
applies to the configuration of some sensors.
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This may be written

(s) = ¢ g Tels) (D)

. . “aN-1,N-1

This determinant is for a matrix in lower triangular form (all elements
above the diagonal are zero). The determinant is given by the product
of the diagonals, all of which are constants. Therefore, for a fluid
temperature perturbation in a one-dimensional heat transfer system,

the response of the innermost node is characterized by a transfer
function with no zeroes. If the sensing element in an RTD is centrally
located, or if there is insignificant heat capacity between the filament
and the center of the sensor, then this type of transfer function

describes the response characteristics of the sensor.

The transfer function may be written

Tl(s) _ K
T(s)  |sI-Aj
K
= 3.8
(S—p'l) (5"p2) e o o ( )
where
p; = poles (identical to eigenvalues of A).
For a unit step change in T, TF(s) = %3 and we may write:
K
= 3.9
Ty(s) s(s-py) (s-pp) . . .~ (3.9)

(3.7)
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Inversion of this Laplace transform using the residue theorem gives:
1 ep]t
() = Ky o T~ ) (3ypy) - -
Pyt

e
Yo (o) - - -

+... 0. (3.10)

Thus, we make the following important observation:
For an RTD with predominantly one-dimensional heat
transfer and with insignificant heat capacity between the
sensing element and the center of the sensor, the poles
alone (no zeroes) are adequate to characterize the

response due to a fluid temperature change.

The implication is that if one can identify the poles by some other test
(such as the LCSR), then he can construct the response to a fluid

temperature step.

2--significant heat capacity between the filament and the center
of the sensor, no heat generation in any nodes, fluid temperature
perturbation, one dimensional heat transfer

This case may be analyzed for the response of any non-central node,
but for notational simplicity, let us consider the response of the

second node. In this case

Tols) = % (3.11)



where

(s+a]]) 0 0 0 ..
“ax 0 =53 0 .« . .
° 0 (stagg) -agy -
F(S) = . . . . e o o (3.]2)
. CN,FTF(S) . .
This may be written
(s+a]]) 0 0 0...
"az-l -623 0 0 . .
+
F(s) = ¢ ¢ Te(s) (-n){&M : R B ERE)

Again, we observe that the matrix is triangular, but the diagonals
are not all constant. In this case, the transfer function will have
one zero. For the response of nodes further from the center, there
will be more zeroes. Thus, the poles alone are not adequate to
construct the response for an RTD if the sensing element is not
Tocated at a position with insignificant heat capacity between the

filament and the center of the sensor.
3--insignificant heat capacity between the filament and the center

of the sensor, heat generation in central node, constant fluid

temperature, one-dimensional heat transfer

Ti(s) = ]—E% (3.14)
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where
by @ -3 O 0
0 (stapp) -a,3 O
0 -ag, (stagg) -ay
F(s) =

This may be written
(sta,,) -a,5 0 0
-agy  (stagg) -ag 0

0
F(s) = b, Q

(3.15)

(3.16)

In this case, the matrix is not triangular, and the transfer function

will have zeroes.

The transfer function may be written:

T, (s) 3 (s- -2 ) (s- 22) (s-zM)
ETT_Y 1§—p1) (s-pp) oo (s-p )~ (3.17)
For a unit step change in Ql(Q](s) = %), we obtain
i K](s-z1) (s-zz) ... (s-zM)
T(s) = s(s-p;) (s-pp) . . . (s-py) (3.18)
Inversion by the residue theorem gives:
(-z7) (-z5) . . . (-2zy) (p -z7) (py-25) . . . (py-zy)e
1 1 ? 1 1 72 1 ™M
Tt =X [T*p]) (-py) ... . (- pN (p1) (p] o) o o . (py=py)
(p2 z,) (py- 2) - (py-zy) RZA o (3.19)

") (p2 R (pz-pN)
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Note that the response is determined by the zeroes as well as the poles.
However, the poles are the same as for the fluid temperature change
case. Thus, if we can identify the poles from a LCSR test, we can
construct the equivalent fluid perturbation response using Equation (3.10).
4--insignificant heat capacity between the filament and the center of the
sensor, no heat generation in any nodes, fluid temperature perturbation,
multi-dimensional heat transfer
In this case, there is branching in the heat transfer (see Figure 3.2).
This means that the temperature of a node may be influenced by more
than just two neighboring nodes as in the one-dimensional case. In
the one-dimensional case, all of the elements of the A matrix are on
the diagonal or in the position adjacent to the diagonal. In the
multi-dimensional case, coupling terms appear in other positions

(always symmetrically positioned around the diagonal). Thus F(s) may

be written
- * *
0 a]2 . o .
0 (S+&22) -323 * e e o
. -632 (S+a33) “a34 e o
» * * * * [ 3 *
F(s) = (3.20)

CN,FTF(S) . . . . ..

where

* = possible new coupling terms.
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Figure 3.2 Schematic of a Multi-Dimensional Node-to-Node Heat Transfer
Model.
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In this case, the matrix is not triangular and zeroes can occur. This
means that the availability of the poles through some sort of measure-
ment is not sufficient for construction of the response to a fluid

temperature step.

3.3 Steps in Implementing the LCSR Transformation

The steps for obtaining the plunge test time constant are:
1. perform a LCSR test

2. 1identify the poles associated with the LCSR data

3. construct the step response for a fluid temperature

perturbation using Equation (3.10).

A key element is identification of the poles by analysis of the
LCSR transient data. This is accomplished by minimizing the sum of
the squares of the residual error between the model and the LCSR data.
Although other methods have been used and are adequate, a nonlinear
minimization algorithm that yields unbiased estimates of the model
parameters is preferred. The computer program that estimates the poles
and the plunge time constant is described in Appendix B.

One method to help in the pole-fitting problem has been proposed
by Carroll of Oak Ridge National Laboratory. He observed that for
a centrally located sensor in a cylindrical sensor with small
surface heat transfer resistance compared to internal heat transfer

resistance, the following relation approximately defines the poles:
- . 2
p; = p][1 + (i-1) R]I". (3.21)

This relation is useful because it allows one to estimate higher poles

using fitted values for only two parameters (p] and R).
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3.4 Validity of the LCSR Transformation for RTDs With

Noncentral Filaments

It is shown in Section 3.2 that the plunge test response can be
characterized by only the system eigenvalues when the filament is
centrally located or when the heat capacity interior to the filament
is small compared to the heat capacity exterior to the filament. If
neither of these criteria is satisfied, additional dynamical information
is needed to characterize the response.

In order to demonstrate the effect of heat capacity in the region
between the filament and the center of the sensor on the LCSR trans-
formation, the RTD is modeled as a homogenecus structure with the
filament represented by a delta function. For this case, an analytical

solution is available for investigating the response.

3.4.1 Analytical Results for a Homogeneous RTD

Analytical solutions for three cases are presented: 1) a homogeneous
RTD plunged into a fluid bath, 2) a homogeneous RTD subjected to a step
change in the filament current, and 3) a homogeneous RTD with a hollow
interior plunged into a fluid bath.

The partial differential equation which governs the response for

each case is

3T(r,t) _ a(azT(r,t) s 13thy 4 o(r,t) (3.22)

ot arz r or

subject to the applicable boundary conditions where:



54

a = k/pc

k = thermal conductivity
p = density

¢ = heat capacity

6 = heat source.

The generic procedure for solving the problems of interest is: 1) use
the property that the space and time variables are separable, 2) use the
transcendental equation obtained from the boundary conditions to determine
the system eigenvalues, and 3) use the orthogonality property of the
eigenfunctions (determined from the Sturm-Liouville problem) to obtain
the expansion coefficients associated with each eigenfunction.

First, the key results for the case of plunging the RTD into a
fluid bath are presented. The filament is treated as a cylindrical
shell, Tocated at R*, and is represented mathematically by a delta
function. The outside radius of the RTD is denoted by R. Boundary
conditions are: 1) finite temperature at the center of the RTD, and
2) Newton's Law of cooling at the RTD surface. For the initial
condition, it is assumed that the RTD is in thermal equilibrium with

(1
its surroundings. The result for this case is\lg)

2 2
where
- I (M) 3, (M (R*/R)) (3.24)
n

[ 3,2, + 9,2(M)]
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= (3.25)
Mn = AnR

and the system eigenvalues are defined through the transcendental

equation,
Jo(AnR) AnR _ AnR (3.26)
. = P®R/K - N
3,(0R) / Bi

The Biot modulus, NBi’ is defined by

Ny = b (3.27)
k/R

It is the ratio of internal heat transfer resistance to external heat

transfer resistance. In other words, it is the ratio of conductive

resistance to convective resistance.

The theoretical response of the RTD due to a step change in filament
heating current is now considered. Although the generic procedure for
obtaining the analytical solution for a change in the heating current is
similar to the problem of plunging the RTD into a fluid bath, there are
minor differences. In particular, the expansion coefficients are not
the same. If the filament heating current undergoes a step change, one

can obtain the expression,

2 . 2
e My ot/R (3.28)

~1 8
-

T(T,t) - Ti(r’O) =

n
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where
.« . .
L= B 30y 3,008 2 (3.29)
2 2
mk (an )[J] (AnR) + Jo (AnR)]
60 = the heat source before the step change
Q” = the heat source after the step change
Ti(r,O) = the initial temperature distribution.

The response of the filament is obtained by setting r equal to R*.

The eigenvalues for the response due to a step change in filament
heating current are the same as for the response due to a step in
external fluid temperature (plunging the RTD into a fluid bath). This
follows since the boundary conditions are the same for both cases.

The forcing functions are not the same for the two problems pre-
sented. Consequently, the expansion coefficients are altered for a
step change in heating current as compared to a step change in
external fluid temperature.

Analytical results were also obtained for an RTD modeled as a
hollow cylinder with the filament on the inside surface. Since both
the forcing function and the boundary conditions are not the same as
for the homogeneous cases already presented, both the system eigenvalues
and the expansion coefficients must be determined for this case.

This problem can also be solved by separation of variables; hence

the result can be written as an infinite sum,

8

W o~

2
c e ™nt R(r) (3.30)

T(r,t) - T(r,0) = ;o

n
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where: 1) the Cn are the expansion coefficients (evaluated according

to the Sturm-Liouville problem), 2) the e "Mt are the time dependent

components of the eigenfunctions, and 3) the Rn(r) are the space dependent
components of the eigenfunctions. The transcendental equation defining

(10)

the eigenvalues is,

3, (h,2) ) Y. (x )
ApK 95 (Ap)+ h J_(Aph) gk YD (gb) +h Y (p)
(3.31)
where
a = the inside radius
b = the outside radius.

The primes on the Bessel functions denote differentiation with respect

to the argument.

3.4.2 Numerical Results for a Homogeneous RTD

The effect of heat capacity between the filament and the sensor may
be investigated using the homogeneous RTD model. This is accomplished
easily by simply evaluating the plunge test time constant at various
specified positions in the homogeneous sensor. Since the boundary
conditions are the same for all of these cases, the eigenvalues are
the same. These eigenvalues uniquely define the plunge test estimate
from the LCSR transformation, and the transformation applies only for
the center of a homogeneous sensor. Therefore the time constant obtained
for a central position is equivalent to a perfectly performed LCSR trans-

formation. This is the time constant that would be obtained from the
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LCSR transformation regardless of the position of the filament.
The error due to a non-central filament in a homogeneous sensor
may be obtained by comparing the time constant obtained from
Equation 3.23 for r=0 and for some position, r=R*. Numerical
results were obtained for various filament locations and for
various values of the Biot modulus.

If the RTD filament is near the surface, the response time of
the RTD will be faster than if it is near the center. If the surface
resistance to heat transfer is much greater than the internal resistance,
the location of the filament will not affect the response time sign-
ificantly. This corresponds to a sensor with a small Biot modulus.
Thus, if the filament of a homogeneous RTD is noncentrally located
and the internal resistance approximates the surface resistance (or
is less), the LCSR transformation should give good results. On the
other hand, if the internal resistance is relatively high (large Biot
modulus), the LCSR transformation should give poor results for a homo-
geneous RTD with a noncentral filament.

As the filament is moved toward the surface, the response time
becomes shorter. The magnitude of this effect depends strongly on the
Biot modulus. Figure 3.3 and Table 3.1 show the relative effect (ratio
of the response time with the filament at R*/R to the response time with
the filament at the center) on the response time due to moving the fila-
ment from the center to the surface. This effect is illustrated para-
metrically in the Biot modulus. Note that use of the LCSR transformation
for a homogeneous sensor with R*/R = 0.8 and with a Biot modulus near

unity results in a theoretical error of about 20% in the time constant.
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Figure 3.3. Ratio of the time constant with the filament
at R* to the time constant with the filament
at the center versus the ratioc of the filament
radius to the sensor radius (R*/R).
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TABLE 3.1

RATIO OF THE TIME CONSTANT WITH THE FILAMENT AT R* TO THE TIME
CONSTANT WITH THE FILAMENT AT THE CENTER ( (R*/R)/(0/R) ) FOR
VARIOUS VALUES OF THE BIOT MODULUS AND OF THE FILAMENT RADIUS

TO SENSOR RADIUS (R*/R)

AN 3 2 1 0.8 0.6 0.4
0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 0.973 0.976 0.980 0.986 0.982  0.9907 0.993
0.4  0.888 0.901 0.923 0.946 0.954  0.962  0.973
0.6  0.727 0.795 0.810 0.876 0.894  0.915  0.939
0.8  0.467 0.561 0.643 0.775 0.809  0.848  0.889
1.0 0.133 0.263 0.3995 0.623 0.687 0.754  0.828




4.0 TEST PROCEDURES AND DATA ANALYSIS

4.1 Introduction

The test procedures and data analysis methods for testing RTDs
by the Toop current step response or the self heating methods are

described in this chapter.

4.2 The LCSR Test

4.2.1 Description of the LCSR Test

A loop current step response test is based on an internal step
change in temperature caused by a sudden change of electric current
through the sensing filament. Typically, the current through the sensor
is increased suddenly from its normal level of few milliampers to a level
of 40 to 60 milliampers or higher. The increased current produces 12R
heating in the filament and results in a temperature transient which
settles slightly above the temperature of the sensor surroundings. The
details of the test procedure for in-plant measurements are given 1in
Appendix C. A typical loop current step response output is shown in
Figure 4.1 for a heating transient. A cooling transient is obtained
when the sensor current is suddenly decreased. This is shown in Figure 4.2.
Experiments indicate that the heating or cooling transient of a loop current
step response test carries the same information about the response char-
acteristics of a sensor (though the quality of the test data may differ).

A Toop current step response test provides the response to an
internal step change in temperature while the response to a temperature
change outside the sensor is desired. An analytical transformation has

been developed to convert the loop current step response data to give
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Figure 4.1. A Typical LCSR Heating Transient.
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the response of a sensor to an external change in temperature. This
transformation is valid for sensors with the following characteristics
(see Chapter 3 of this report):

1. Predominantly one-dimensional heat transfer: This requirement
is often satisfied because all of the industrial temperature
sensors are designed for a minimum axial heat conduction
in order to improve their steady state performance.

2. Negligible heat capacity between filament and the center of

sensor assembly.

4.2.2 LCSR Test Procedure

The LCSR test equipment is a bridge with current switching
capability. This is illustrated in Figure 4.3. The switch can be
opened or closed to decrease or increase the current. A detailed
typical test procedure for in-plant tests is given in Appendix C.

There are two basic methods for performing a LCSR test. One
involves initial balancing of the bridge to give zero output at Tow
current (switch open). The other involves initial balancing to
give zero output at high current (switch closed). The balancing
at low current is usually preferred because the data are taken
during high current operation where the signal-to-noise ratio

is higher. The steps in these procedures are outlined below.

4.2.2.1 Balance at Low Current

1. Adjust the decade box resistance to give a zero output
with the switch open.
2. Adjust the power supply voltage to give the desired current

when the switch is closed (usually 40 to 60 ma).
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Test Equipment.
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3. Close the switch and monitor the sensor output. The

response will be shown in Figure 4.1,

The interpretation follows from the bridge equation

av =| Ry = Rerp) Ry : (4.1)
(Ry + Ry)(Ry * Rerp!

Since Rd = RRTD when E changes, AV remains zero at the instant of
switching. As the RTD resistance changes as a result of the heating,

AV is given by:

E

AV = C ARRTD H

where

R
_ a
C= (Ra + Rd)(Ra + RRTD) (4.2)

EH = impressed voltage at the high Tlevel.
If ARRTD is small compared to Ra + RRTD’ then C is essentially constant
and AV o ARRTD'

One can also assess the effect of imperfect initial balancing of
the bridge on the output signal. If Rd # RRTD’ then Equation 4.1 shows
that at the instant of switching to the high current the bridge output

will change (instantaneously) by

(Rd - Rprn) R
RTD a
AV = (E, - E) (4.3)
(Ry + RyJ(Ry * Rppp)  T7H 7L
where
E, = impressed voltage at the Tow level
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Thus, the effect of imperfect balancing can give an output voltage

of the type shown in Figure 4.4.

4.2.2.2 Balance at High Current

There are two approaches for initial balancing at high current.
One involves the following steps:
1. Adjust the decade box resistance to give a zero output
with the switch closed and the power supply voltage set
to give a current of 40 to 60 ma.
2. Open the switch and monitor the output. The output will

be as shown in Figure 4.2.

Equation 4.1 can be used to interpret Figure 4.2. Since Rd = RRTD

when E changes, AV remains zero at the instant of switching. The output

signal is given by
BV =C fRorp Ep (4.4)

where

EL impressed voltage at the low level.

The ARRTD change is the same as in the previous case except for a sign
change. However, one should note that the output signal is proportional
to E as well as the change in RRTD' Since the transient is measured in
this case with E at the Tow level, the signal will be smaller than in
the previous case. Therefore more amplification is required and noise
may be a problem. Because of this difficulity, this method usually is
not used.

Another procedure involving initial balancing at high current can

be used. It involves the following steps:
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1. Adjust the decade box resistance to give a zero output
with the switch closed and the power supply voltage set
to give a current of 40 to 60 ma.
2. Open the switch and let the output go to steady state.
The bridge will now be out of balance.
3. Close the switch again and monitor the output signal.

The response will be as shown in Figure 4.5.

The interpretation of this also follows from Equation 4.1. Since
the bridge is out of balance, the output before the start of the test

transient is:

g )
a d’‘a RTD
where
Ry # Rerp-

At the instant the impressed voltage is switched the value of RRTD is

still essentially unchanged, and AV jumps to

AV = Eid ; ﬁR;?; EaR FoEy (4.6)
a d’'*"a RTD
Then RRTD starts to change because of the heating effect. The output

signal will return to zero since the bridge was set for a balanced

condition at high current.

4.2.3 Steps in Implementing the LCSR Transformation

The plunge test response of a temperature sensor can be determined

from a LCSR test by the following procedure:
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1. Pei-form a LCSR test.
2. Fit the LCSR test data to Equation 4.7:

p]t pzt pnt

T(t) = B0 + B]e + B,e + .. .+ Bne (4.7)

This provides the eigenvalues (pi) necessary for predicting
the plunge test response. A number of methods are available
for performing this fit. Graphical exponential stripping
or computer optimization routines are often used.

3. Subsitute the eigenvalues in Equation 3.10:

T(t) = A+ Ae | +Ae +...+Anen (4.8)

1

where Ai are obtained from Equation 3.10:

1

A

0 " TpIChy) - - - (-py)

AL = 1

A = 1

2 polpy - py) -+ - (py - p)
etc.

Equation 4.8 gives the response of the sensor to a sudden change in the
surrounding fluid temperature.

Special problems in obtaining a good fit occur when the LCSR
data are contaminated with noise. A special procedure has been

developed for handling this case and is described in Appendix D.
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4.3 The Self Heating Test

The self heating test is a method of detecting the changes in the
response time of an RTD installed in a process. This method is based
on steady state measurement of temperature rise versus IZR heating in
the sensing filament. The steady state relation between temperature

and 12R heating generated in the sensor is:

Q = UA (T-8) (4.9)
where

Q = heat generation rate in sensor by IZR heating

U = overall heat transfer coefficient

A = heat transfer area

T = sensor temperature

6 = temperature of surrounding fluid

For constant fluid temperature:
AQ = UA AT (4.10)
Therefore the temperature rise per unit power generated in the sensor is:

_ ]
- I (4.11)

>|>
ol

Since the resistance of a platinum filament is approximately proportional

to its temperature (AR =G AT):

1 _  Constant
GUA - GUA (4.12)

AR
AQ
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On the other hand, the response time of a sensor is approximately

given by:
= MC

T = TA (4.13)
where

M = mass

C = specific heat capacity

U = overall heat transfer coefficient (includes internal

resistance as well as film resistance)

A = heat transfer area.
If the heat capacity C remains constant, then:

. = tonstant (4.14)

UA
Comparing Equations 4.12 and 4.14 leads to the conclusion that:

« AR
T 2Q (4.15)

Therefore, a change in the response time of a sensor can be identified
by a change in the slope of the curve of AR versus AQ. This slope is
called the self heating index and is usually expressed in ohms per watt.
A procedure for evaluating the self heating index is explained in the

following section.

4.3.1 Self Heating Test Procedure

A self heating curve is usually generated by the following

procedures:
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1. Increase the sensor current incrementally from 1-6 milliampers
to 20-60 milliampers.

2. leasure the sensor resistance when the steady state is
attained after each increment in current.

3. Calculate the amount of power generated in the sensor from:

P = 12R

4. Plot the values of resistance as a function of electric

power dissipated in the sensor (R versus P).

Experience indicates that the value of the self heating index (%%) is
quite different from one sensor to another, even when they are the same
design. Therefore, each sensor must be identified by its own self
heating index, i.e., the self heating index of a sensor should not be
used to specify another sensor of the same type. Thus, the application
of self heating method for monitoring the changes in response time of

a RTD requires determination of its self heating index at the time of

jnstallation. Subsequent self heating measurements permit comparisons

with respect to the as-new case.



5.0 LABORATORY RESULTS FOR LCSR AND
SELF HEATING TESTS

5.1 Introduction

In the course of the response time testing program six
different reactor-type RTDs were tested. The instrumentation and
data acquisition are described in Appendix E and the Equipment
Specifications are given in Appendix F. A Tisting of these sensors
and their characteristics were given in Table 2.1. The response
characteristics of these sensors were determined by several plunge,
LCSR and self heating tests performed in a rotating tank at about
3 ft/sec. The test results are listed in Tables 5.1 and 5.2. The
results are the average value of about 10 tests per sensor. The
standard deviation included in the self heating index is obtained
using a standard propagation of error approach that relates fitting

(1)

errors to the error in the slope. The time constant results are
based on the following analyses:
1. Analysis of the plunge test response.
2. Graphical exponential stripping from the plot of the
LCSR test data on semi-log paper (Appendix G).

3. Computer analysis of the LCSR test data (Appendix B).

The time constant estimates obtained by the graphical exponential
stripping method are smaller than the pertinent plunge test time constant.
This is apparently due to inaccurate determinations of the faster time

constants and of the final steady state signal.



TABLE 5.1

RESPONSE TIME VERIFICATION RESULTS

Time Constant (sec)

LCSR Test LCSR Test
RTD Manufacturer (Graphical Exponential (Computer
and Model Number Plunge Test#S.D. StrippinggiS.D. Analysis)+S.D.
Rosemount 176KF .37+.02 .31+.02 .34+.02
Rosemount 1776Y" 5.77+.13 4.17¢.14 5.10£.10
Element #1
Rosemount 177GY 6.07+.18 4.13:.11 5.20+.12
Element #2
Rosemount 104¥§ 5.44+ .14 3.63+.03 4.54+ .07
in Thermowell
Rosemount 104VC 2.27+.04 1.73+.07 2.25+.14

without Thermowell

9/



TABLE 5.1 (continued)

Time Constant (sec)

LCSR Test LCSR Test
RTD Manufacturer (Graphical Exponential (Computer
and Model Number Plunge TestxS.D. StrippinggtS.D. Analysis)+S.D.
Rosemount T04ADA 7.44+ .22 4.90+,04 5.94+,13
in Thermowell**
Rosemount 104ADA 3.12+.10 2.50+.09 3.17+.087
without Thermowell
Sostman 8606 2.01+.09 1.97+.09 1.72+.,05
Rosemount T1G4AFC 6.08 5.1 Fokkok
Rosemount TO4AFC 3.00 3.10 Fodedek

without .,
Thermowell

*
The 177GY is a dual element sensor.

*%
With air in thermowell.

*kk
Thermowell not available.

*kk Xk

Data not available.

Separate measurements were made for each element.

LL



TABLE 5.2
SELF HEATING TEST RESULTS

RTD Manufacturer
and Model Number

Self Heating
index+S.D.
(ohms/watt)

Rosemount 176KF

Rosemount 177GY*
Element #1

Rosemount 1776Y"
Element #2

Rosemount 104YC
in Thermowell

Rosemount 104VC
without Thermowell

6.089+.15
7.634+.20

8.778+.18

6.148+.15

4,675+.,112

8L



TABLE 5.2 (continued)

RTD Manufacturer
and Model Number

Self Heating

index £ S. D.

(ohms/watt)

Rosemount 104ADA
in Thermowell

Rosemount 104ADA
without Thermowell

Sostman 8606

Rosemount 104AFC
in Thermowell

Rosemount 104AFC
without Thermowell

Rosemount 177HW
in Thermowell

8.76%,11

6.66+.11

11.60+.02
6.45

5.64

7.320

YA
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Table 5.1 shows that the time constant estimates from the
computer program are within twenty percent of the plunge test result
and that the time constant estimates obtained by transforming LCSR
data are all too small. Figures 5.1 through 5.5 show computer plots
that demonstrate the LCSR raw data, the result of the exponential fit,
and the constructed plunge test estimate for several of the cases
that provided data for Table 5.1. There are three curves on each
figure, but the curves for raw data and the fitted curves are usually
too close to be distinguished.

The self heating indices shown in Table 5.2 vary considerably
for different sensors. This is due to the fact that the value of
the self heating index depends on the details of the construction of
the sensor. Typical self heating curves are shown in Figures 5.6

through 5.10.

5.2 Self Heating Test for Measuring the Temperature Rise in An RTD

The amount of temperature rise per unit of electric power in an

RTD is given by

If the self heating index (%%) is known, the temperature rise in the
sensor per unit of input electric power (%%) can be determined.
Table 5.3 gives the temperature rise per unit of electric power in
the sensors tested in this work. The tabulated results are based on

the self heating indices of Table 5.2.
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Figure 5.1. LCSR Raw Data, LCSR Fit and Step Response for Rosemount 176KF.
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Figure 5.9. Self Heating Curve for Rosemount 104ADA.
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TABLE 5.3

TEMPERATURE RISE PER UNIT OF ELECTRIC POWER GENERATED IN RTDS

Sensor Manufacturer

Temperature Rise Per Unit
of Electric Power Input

and Model Humber °C/watt
Rosemount 176KF 7.76
Rosemount 177GY 19.45
Element #1
Rosemount 177GY 22.36
Element #2
Rosemount 104VC 7.83
in Thermowell
Rosemount 104VC 5.96
without Thermowell
Rosemount 104ADD 11.16
in Thermowell
Rosemount 104ADA 8.48
without Thermowell
Sostman 8606 14.78
Rosemount 104AFC 8.22
in Thermowell
Rosemount 104AFC 7.19
without Thermowell
Rosemount 177HW 18.65

in Thermowel]l
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5.3 Effect of Thermal Bonding Material

The response time of well-type RTDs may be improved by using a
thermal bonding material to fill up the air gap inside the thermowell.
This was verified by using a thermal bonding material called Never-Seize
inside the thermowell of a Rosemount 104AFC RTD. The sensing portion of
the sensor was completely covered with a thin layer of Never-Seize before
installation in its thermowell. As a result, the sensor time constant
decreased from 6.08 sec to 4.65 sec for a water flow rate of 3 ft/sec
and the self heating index decreased from 6.45 ohms/watt to 6.20 ohms/

watt for a water flow rate of 3 ft/sec.

5.4 Special Tests

5.4.1 Effect of Current on the LCSR Test Results

Experience based on numerous laboratory experiments indicates
that the time constant obtained from a LCSR test is independent of the
amount of electric current used for generating the test transient up

to at least 90 ma.

5.4.2 Test for Degradation of RTD Caused by LCSR Test

The LCSR test was investigated to determine whether a failure or
a degradation of response time can occur by the application of this
method on an RTD. A typical laboratory type RTD was selected for this
study. The response time and the self heating index of the sensor was

carefully determined, then the following tests were performed:
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1. Test for Degradation or Failure of Sensor from Electric
Current Used to Perform a LCSR Test: A current of about
120 milliamperes was input for 48 hours to the sensing
filament of the RTD immersed in still water at room
temperature. No failure occurred (sensor was operating
after the 48 hour period). Plunge and self heating tests
were performed. The results indicated that no degradation
of response time had occurred.

2. Test for Degradation or Failure of Sensor from Sudden
Change of Current in the Sensing Filament: A signal
generator was used to produce pulses for actuating a
relay to cause sudden changes of current through the
sensing filament of the RTD immersed in still water. The
system was adjusted to give signals of 40 second interval
to step the sensor current from about 6 to 60 milliamperes
and vice versa. This test was run for 12 hours to give
more than 1000 step changes in current. The sensor did
not fail as the result of this test (it was operating
after the 12 hour test) and degradations were not observed
(the time constant and self heating index were the same as
before).

As a result of these investigations it appears that the LCSR

test can not cause any failure or degradation of sensors unless current
levels of much more than 120 milliamperes are used. However, exhaustive

tests of all reactor-type RTDs have not been performed yet.
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5.4.3 Experimental Verification of the Affect of Fluid Velocity

on Response Time of an RTD

The response of an RTD is affected by the fluid flow rate to
which the sensor is exposed. The affect of flow velocity on the
response time of a Rosemount 176KF RTD was investigated by per-
forming plunge tests in two different fluid flow rates in a rotating
tank and by conducting a plunge test in a liquid metal bath. The
results of these plunge tests are given in Table 5.4. The liquid
metal (Galium-Indium eutectic) was used to achieve a high heat
transfer rate to simulate a high flow velocity. A high heat transfer
rate results from the high thermal conductivity of the 1liquid metal
compared with water.

Table 5.4 shows that the response time of this sensor is signifi-
cantly affected by the surface resistance; however, this is not a general
rule for all the sensors unless the surface heat transfer resistance is

relatively large compared with the internal heat transfer resistance.
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TABLE 5.4

EFFECT OF FLUID FLOW VELOCITY ON THE RESPONSE TIME
OF A ROSEMOUMT 176KF RTD

Fluid Flow Rate (ft/sec) Sensor Time Constant
2.5 .42
3.5 .34
*
P 22

*Result from tests in liquid metal bath that

simulate high flow conditions for surface heat transfer.



6.0 USE OF LCSR AND SELF HEATING TESTS
FOR MONITORING RESPONSE TIME
DEGRADATION

6.1 LCSR Test for Monitoring Response Time Degradation

The LCSR transformation provides a quantitative estimate of
the time constant of a sensor. However, in some cases it may be
desirable to seek only an indication of change in the time constant.
In these cases, the need for computer analysis of the test data is
avoided. The indication of change can be obtained by direct in-
spection of an LCSR test transient. A quantity called the LCSR
time constant is defined to be used for diagnosis of RTD response
time degradation. This quantity is denoted by TLCSR and defined as
the time required for the sensor to respond to 63.2 percent of the
final value following a step change in the sensor current. The
definition is illustrated in Figure 6.1 using a typical LCSR test
transient.

The LCSR time constant (as the plunge test time constant) depends
on the heat transfer resistances and heat capacities of the sensor.
The same heat transfer resistances and heat capacities control the
plunge test response and the LCSR test response. Therefore, a change
in heat transfer characteristics of a sensor results in a change in the
plunge test time constant and also a change in the LCSR time constant.
A change in the LCSR time constant indicates a change in the plunge
test response resulting from a change in the heat transfer properties
of the sensor. Thus, a measurement of the LCSR time constant can be

used for diagnosis of sensor response time degradation. This method



Sensor Response
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' TLCSR

Figure 6.1.

Time (sec)

Determination of LCSR Time Constant from Test Data.
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does not provide quantitative measurement of sensor response time, but
it is presented as a simple technique for detecting sensor response
time degradation.

Once an increase in the LCSR time constant is observed, response
time degradation is indicated. The change in the LCSR time constant
must be related to corresponding changes in the plunge time constant
to determine whether the degradation is significant. The significance
of a change in the LCSR time constant depends on the correlation between
the response of a sensor to a step change in surrounding temperature
and the response to a step change in internal heating of the sensor.
Experimental results from laboratory tests of two RTDs (Rosemount 104AFC
and Rosemount 176KF) indicated that a unique correlation exists between
the LCSR time constant and plunge test time constant for a given sensor.
An empirical correlation curve was established for each sensor to assist
in relating the changes in the LCSR time constant to corresponding
changes in the plunge test time constant to aid in estimating the amount
of the response time degradation. The empirical correlation curves were
constructed by performing several LCSR and plunge tests on each sensor
for several different simulated surface heat transfer resistances.
Different values of heat transfer resistances were achieved by varying
the amount and/or position of insulating materials added to the surface
of each sensor. The following procedures were used to establish the

. *
technique:

*Tests were performed in a rotating tank at a fluid flow rate
of about 3 ft/sec.
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1. Perform a LCSR test and record the output on a strip

chart recorder.

2. Determine the LCSR time constant (TLCSR).
3. Perform a plunge test.
4., Determine the plunge test time constant-(rpL).

Plot Tp| Versus T ccp ON @ cartesian coordinate system.

6. Add some form of insulating material (such as a portion
of rubber tube or tape) around the surface at the sensing
end (see Figure 6.2 ) of the sensor. This introduces an
artificial degradation of the heat transfer and increases
the plunge test time constant as well as the LCSR time
constant.

7. Perform a new LCSR test and record the output on a strip
chart recorder to determine the LCSR time constant of the

artificially degraded sensor.

8. Perform a new plunge test and determine the new time
constant.

9. Plot the new values of TpL and T csp O" the coordinate
system of step 5.

10. Change the heat transfer resistance of the surface. This
may by done by chang{ng the position or the amount of the
insulating material added to the surface of the sensor.

11. Repeat until enough data are obtained to yield an empirical

correlation curve.

These procedures are illustrated in Figure 6.3.
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",//’/// Sensor

Insulating Material
Around the Sensor

Figure 6.2. Configuration of an RTD with Augmented Surface Heat
Transfer Resistance.
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Figure 6.3. Illustration of Procedures for Establishment of an

Empirical Correlation between Plunge and LCSR Time
Constants.
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The empirical correlation of TpL Versus T ~op developed for the
Rosemount RTD Model 104AFC is shown in Figure 6.4. The data for this
correlation were obtained from tests on the sensor inside its thermowell
as well as tests with the sensor out of its thermowell (bare). Figure 6.4
indicates that the data from the bare sensor satisfy the same correlation
as the in-well configuration and therefore, they are included in the
empirical curve. Since the LCSR and plunge time constants of a sensor
with no heat transfer resistance are expected to be zero, the empirical
curve is extrapolated to zero to provide a range for monitoring the re-
sponse time degradation in high flow and temperature enviornments where
the sensor response time is usually less than the minimum value of the
response that can be measured in a laboratory envirgnment. A similar
curve for the Rosemount 176KF sensor is shown in Figure 6.5

In order to relate the changes in the LCSR time constant to
corresponding changes in the plunge test time constant, the ratio of

the relative changes in these quantities ( GTPL/TPL ) is determined.
87| csr/LCSR

From Figure 6.4 (around the sensor time constant of Tp = 6 sec):

8
“PL/ PL % 2.60  (Rosemount Model 104AFC)
8TLCSR/TLCSR

For example, a 10 percent change in the LCSR time constant indicates a
26% change in the plunge test time constant of this sensor. This ratio
for a Rosemount RTD Model 176KF is (around the sensor time constant

Tp = 0.4 sec):
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8t T
PL/ PL = .692  (Rosemount Model 176KF)
8T| cSR/TLCSR

Thus a 10 percent change in the LCSR time constant of this sensor
corresponds to a 6.92 percent change in its plunge test time constant.

For a sensor installed in a process, response time changes may

occur as a result of various response time degradation mechanisms.
The empirical correlation curve can be used to detect the response time
degradation of installed RTDs. The following procedures may be used:

1. Determine the LCSR time constant shortly after the
sensor is installed in the process.

2. Perform a LCSR test whenever the response of the
sensor is required to be checked. Determine the
LCSR time constant.

3. Compare the values of the new LCSR time constant
with the LCSR time constant of the sensor that was
recorded shortly after the installation of the
sensor.

4, If the LCSR time constant is changed, use the empirical
correlation curve of the sensor to estimate the signifi-
cance of the degradation.

5. If a significant degradation is shown or if the new value
of the sensor response time is desired, the LCSR test
data must be analyzed (using the LCSR transformation) to

give the time constant of the sensor after degradation.
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6.2 Self Heating Test for Diagnosis of Sensor Response

Time Degradation

A self heating test can also be used as a method for diagnosis
of response time degradation of RTDs. The parameters of interest in
this method are the self heating index (%%) and the plunge test time
constant (TPL). An increase in the self heating index of a sensor is
an indication of a response time degradation. (This is true if the
heat capacity of the sensor has not changed since this would not be
revealed by a self heating test.)

In order to determine the approximate change in the response
time of a sensor by a measurement of its self heating index, one needs
an estimate of the correlation between the plunge test time constant
and the self heating index. Experimental results based on laboratory
testing of two RTDs (Rosemount T104AFC and Rosemount 176KF) revealed
that a unique correlation exists between the plunge test time constant
and the self heating index. Empirical data were obtained by numerous
plunge and self heating tests performed on the sensor with simulated
heat transfer degradation at the surface (see Figure 6.6). The self
heating indices and the corresponding plunge test time constants were
measured and the results were plotted in a cartesian coordinate system
to yield an empirical curve representing TpL Versus %% . The empirical
correlation curve of the Rosemount RTD Model 104AFC is shown in Figure
6.7. The correlation curve may be extrapolated to zero because a
self heating index of zero is expected for a plunge test time constant
of zero. The extrapolation of the empirical curve to zero provides a

range for monitoring the response time degradation in operating conditions
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Erpirical Correlation Curve
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Figure 6.7. Empirical Correlation Curve for Tp Versus
Self Heating Index (for Rosemount RTD Model 104AFC).
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(high temperature and flow) where the sensor response time is
usually less than a minimum value that can be measured in a laboratory
environment. Similar results for the Rosemount 176KF sensor are shown
in Figure 6.8.

In order to relate the changes in the slope of the self heating
index to corresponding changes in the plunge test time constant,

the ratio of relative changes in these quantities ( <STPL/TPL ) may

SAR/AP
AR/AP

be determined. From Figure 6.7 (around the sensor time constant of

Tp = 6 sec):

STpL/TpL
SAR/AP
“AR/AP

5.38

Thus, a change of, for example 10 percent, in the self heating index
indicates a change of about 54 percent in the plunge time constant of
this sensor. This ratio for a Rosemount RTD Model 176KF is (around

the sensor time constant of Tp = 0.4 sec):

SToL/TpL
80R , AR
ip / &P

= 5.87

This indicates that a 10 percent change in the self heating index of
this RTD is related to about a 59 percent change in the plunge test
time constant. These results show that the plunge test time constant
is very sensitive to the changes in the self heating index. Therefore,
a small change in the self heating index is an indication of a signifi-

cant change in the plunge test time constant of an RTD.
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The application of the self heating technique for monitoring
the response time degradation of RTDs installed in a process requires
an estimate of the empirical correlation of TpL Versus self heating
index prior to installation of the sensor in the plant. Once this
empirical correlation is established for a sensor in laboratory
conditions (1imited temperature and flow velocity) it can be used
to estimate the degradation of response time after the sensor is

installed in a plant.



7.0 IN-PLANT TEST RESULTS

7.1 Introduction

In-plant implementation of the LCSR and self heating test
methods has taken place in three plants as part of this program.
They are:

- Oconee (Duke Power Company)

- Turkey Point (Florida Power & Light Company)

- St. Lucie (Florida Power & Light Company)

Tests at Oconee and Turkey Point provided the initial in-plant
experience that led to the standard testing and analysis procedures
(See Appendix C and Chapter 4). The St. Lucie tests provided a
full check-out of the standard testing and analysis procedures that

were established in the earlier work.

7.2 Oconee Tests

LCSR tests were performed on three different control system RTDs
(two in the cold legs and one in a hot leg), and two types of RTDs
(Rosemount 177GY wet-type and Rosemount 177HW well-type). Figures 7.1
through 7.3 show typical raw data, fitted curves, and predicted plunge
test results for each sensor. In these tests, the heating current was
40 ma. Clearly, the quality of the test data is good. The time constant
estimates from the LCSR tests are given in Table 7.1.

Self heating tests were also performed on all three Oconee sensors.
The se1f heating curves are shcewn in Figures 7.4 through 7.6 and the

self heating indexes are listed in Table 7.2.
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TABLE 7.1
LOOP CURRENT STEP RESPONSE TEST RESULTS FOR OCONEE 3 RTDS

Sensor Manufacturer: Rosemount

Plant Condition During Tests: Full Power

SENSOR IDENTIFICATION RESULTS
; Number Average Time
Sensor Model # Sensor Tag # Location in Plant of Tests Constant (sec) Standard Deviation
177-HW 3RC5A-TE4 Cold Loop 7 6.59 +.77
177-GY 3RC5B-TE4 Cold Loop 8 3.26 .60
177-GY 3RC4A-TE2 Hot Loop 4 3.38 +.27

9Lt
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Figure 7.4. Self Heating Curve for Oconee 3 RTD
(Rosemount 177-HW, Tag #3RC5A-TE4).
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Figure 7.6. Self Heating Curve for Oconee 3 RTD

(Rosemount T77-GY, Tag #3RC4A-TEZ).



TABLE 7.2

SELF HEATING TEST RESULTS FOR OCONEE 3 RTDs

Sensor Manufacturer: Rosemount

Plant Condition During Tests: 100% Power

SENSOR IDENTIFICATION

RESULTS

Sensor Model # Sensor Tag # Location in Plant

Self Heating

Index (9/watt) Standard Deviation

177-HY 3RC5A-TE4 Cold Loop
177-GY 3RC5B-TE4 Cold Loop
177-GY 3RC4A-TE?2 Hot Loop

7.851 +.089
7.824 +.075
6.165 +.142

0¢lL
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The Oconee results demonstrate the suitability of the test

procedures in a plant environment.

7.3 Turkey Point

Two series of tests were performed at Turkey Point. The first
Turkey Point test was the initial in-plant test in this project, and
it was plaqued by instrumentation problems. A voltmeter that was
connected across a fixed resistor in the bridge caused spikes in
the LCSR transient (see Figure 7.7). The effect of the voltmeter
was discovered in the laboratory after the Turkey Point tests, so all
of the data had this problem. Some effort was spent on analysis of
the portion of the data record after the spike, but this was generally
unsuccessful. Self heating tests had not been conceived at the time
of the first Turkey Point test.

The second Turkey Point test also suffered from a testing pro-
blem, though not as serious. Through a procedural error, only 20 ma
of heating current was used in the LCSR tests. This gave the expected
LCSR transient, but the induced temperature rise was small and the
variations in sensor output because of fluid temperature variations
interferred significantly with the test results. A typical LCSR
transient appears in Figure 7.8. There has not been a great effort
to analyze the Turkey Point data (for example by using the averaging
scheme of Appendix D ). This is because the problem due to inadequate
heating is not 1ikely to be encountered in future tests performed to
satisfy NRC requirements. It was decided that it is more fruitful
to expend project effort on other activities rather than on this

abnormal case.
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The self heating tests at Turkey Point were not affected by
the problem described above. The current determination error was
corrected after it was discovered in post-test investigations. The
resulting self heating curves are shown in Figures 7.9 through 7.11.

The self heating results are summarized in Table 7.3.

7.4 St. Lucie

The St. Lucie tests included LCSR and self heating measurements.
It was the final check of the testing procedures that evolved as a
result of experience gained in earlier plant tests. Tests were made
on four different control system sensors (hot leg and cold leg). All
of the sensors were the Rosemount 104VC type. This is a well-type
sensor and, at St. Lucie, the sensors had air in the gap between the
sensor and the well.

Shortly after the start of the St. Lucie tests, a plant operational
problem required a plant shut-down. LCSR tests were performed during
plant cool-down and subsequently during cold stand-by (at approximately
130°F). Self heating tests were performed during cold stand-by.

After the plant returned to approximately full power (96 percent),
the test program was completed. Figure 7.12 shows typical LCSR raw
data, fitted data and predicted plunge test results. The LCSR test
results are shown in Table 7.4. (Analysis of LCSR tests during cool-
down were not reliable because the estimates are affected by the fluid
temperature ramp.) One interesting point is the measured effect of
ambient temperature on the response. Both of the sensors for which
results were obtained at operating temperature and at cold stand-by

temperature had shorter time constants at higher temperature.
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Figure 7.9. Self Heating Curve for Turkey Point 3 RTD
(Rosemount 176-KF located at loop B cold).
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SELF HERTING PLOT
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Figure 7.10. Self Heating Curve for Turkey Point 3 RTD
(Rosemount 176-KF located at loop B hot).
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Figure 7.11. Self Heating Curve for Turkey Point 3 RTD
(Rosemount 176-KF located at Toop C cold).



TABLE 7.3

SELF HEATING TEST RESULTS FOR THE RTDS INSTALLED IN TURKEY POINT 3

Sensor Manufacturer: Rosemount

Plant Condition During Tests: 100% Power

SENSOR IDENTIFICATION RESULTS
Self Heating
Sensor Model # Location In Plant Index (ohms/watt) Standard Deviation
176-KF Tcold, loop B 5.23 .09
176-KF Thot, Toop B 5.17 .08
176-KF Tcold, Toop C 4.86 .04

821
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TABLE 7.4

LOOP CURRENT STEP RESPONSE RESULTS FOR ST. LUCIE RTDS

Location Coolant Number Average Time Standard
Plant ID # in Plant Temp. °F of Tests Constant (sec.) Deviation (sec.)
TE 1125 Tcold 1Bl 540 16 4.29 0.43
TE 1121Y Tcold 1B2 540 18 5.28 0.52
TE 1121Y Tcold 1B2 134 17 5.80 0.19
TE 1121X Thot, Toop B 583 25 4.47 0.79
TE 1121X Thot, loop B 135 13 4.94 0.24
TE 1111Y Tcold, 1A2 540 19 3.52 0.37

0l
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Self heating test results are shown in Figures 7.13 through
7.17. Table 7.5 gives a summary of the self heating test results.
The self heating index is lower at the higher temperature for both
of the sensors that were tested at two different temperatures. This
gives the same conclusion as the LCSR tests. (These sensors responded

faster as temperature increased.)

7.5 Conclusions Regarding In-Plant Test Experience

The in-plant testing program along with the laboratory testing
program has yielded experience that led to development of equipment
and procedures that are completely adequate for in-plant testing of

RTDs. These were fully demonstrated in the tests at St. Lucie.
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Figure 7.13. Self Heating Curve for St. Lucie RTD
(TE 1125 at 540°F).
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SELF HERTING PLOT
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Figure 7.14. Self Heating Curve for St. Lucie RTD
(TE 1121Y at 540°F).
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Figure 7.15. Self Heating Curve for St. Lucie RTD
(TE 1121Y at 134°F).
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Figure 7.16. Self Heating Curve for St. Lucie RTD
(TE 1121X at 583°F).
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Figure 7.17. Self Heating Curve for St. Lucie RTD
(TE 1121X at 135°F).



TABLE 7.5

SELF HEATING RESULTS FOR ST. LUCIE RTDs

Location Coolant Self Heating Standard
Plant ID # in Plant Temp. °F Index (ohms/watt) Deviation
TE 1125 Tcold 1B1 540 6.41 0.08
TE 1121Y Tcold 1B2 540 5.59 0.26
TE 1121Y Tcold 1B2 134 6.64 0.19
TE 1121X Thot, Toop B 583 5.18 0.24
TE 1121X Thot, loop B 135 6.14 0.11

LEL



8.0 SUMMARY AND CONCLUSIONS

Three methods for measuring the response time of installed
platinum resistance thermometers have been developed. Experience
with two of these methods (the loop current step response method
and the self heating method) is described in this report. The
methods have been tested in the laboratory and in four tests in
three operating pressurized water reactors.
The Toop current step response (LCSR) method invoives analysis
of the transient that occurs following a step increase in current
through the sensor filament. Currents of 40 to 80 ma give temperature
rises of 5 to 30 degrees Celsius. These values are suitable for
in-plant testing and result in no deleterious effect on the sensor.
The Toop current step response data gives the response of the
sensor to an internal heating perturbation, but the response of
interest is the one that results from a fluid temperature perturbation.
An analytical transformation has been developed to predict the
response to a fluid temperature perturbation by using information
from the LCSR data record. Computer implementation of this procedure
in the laboratory has been found to give time constant predictions
within 10 to 20 percent of the true values. This is true for all
sensors tested. This included sensors of the types commonly used in
modern pressurized water reactors supplied by all PWR manufacturers.
Loop current step response testing procedures and analysis methods
have been developed through laboratory tests and in-plant tests. The
procedures and methods that evolved from this experience have been

found to be suitable for practical in-plant measurements.
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Loop current step response data can be used along with the
transformation to provide quantitative time constant estimates.

Also, the LCSR raw data can be used to detect changes in response
characteristics from some reference condition. This may be accom-
plished by evaluating the LCSR time constant (different from the
conventional plunge time constant) and comparing it with previous
experimental evaluations on the same sensor.

The self heating method involves measurement of the steady state
temperature (resistance) increase as a function of 12R power generated
in the sensor filament. Increased time constants resulting from
increased heat transfer resistance are indicated by a larger temperature
rise for a given power generation. Implementation of this method involves
measurement of the slope of the self heating curve (electrical resistance
increase vs. power generation). The slope of the self heating curve is
called the self heating index and is usually expressed in ohms/watt.

The self heating test may be used to detect changes in the heat transfer
characteristics (and consequently the time constant) of sensors installed
in an operating plant. Successful self heating tests were performed in
three operating PWRs, indicating that the measurement is experimentally
feasible in operating plants.

In general, the LCSR and self heating testing procedures provide
methods for in-situ time response testing of platinum resistance ther-
mometers that are safe, reliable, and inexpensive. The methods may be
used to monitor changes or to obtain quantitative time constant estimates
by additional analysis of test data. Thus, the test engineer can match

the test effort (and cost) to the needs of the test program.
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The research reported here provides the technology needed for
in-situ response time testing of resistance thermometers. However,
there are several different methods available that are capable of
providing information of varying quality. Thus, the user must decide
on the approach to time response testing that uses the available
technology in the most reliable and efficient way. The experience
of the authors in developing and implementing this technology has
led to the following opinions on what constitutes a suitable test
program.

1. The test program should be a mix of degradation monitoring

and quantitative response time determination. Degradation

testing provides adequate information on sensor response
characteristics for less effort and cost than quantitative
response time measurements.

2. The loop current step response method is the only suitable
method for quantitative in-situ response time measurements
for resistance thermometers. The data analysis should use
a computer implementation of the transformation in order
to obtain accurate time constant estimates.

3. Noise analysis (See Part B of this report) and self heating
measurements are currently suitable only for degradation
testing. They can indicate a change in sensor characterestics,
but current technology does not provide a means to obtain
reliable quantitative time response information from these
methods.

4. The schedule for tests should not be set arbitarily. Rather,

the test interval should be based on these factors:
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- the experience on the maximum rate of change
that is likely for the sensor under test
- the margin between current sensor response
time and the maximum allowable response time
This information should be used to set a test interval that will detect
a loss of some fraction (say half) of the margin between current condi-
tions and maximum allowable conditions. This will help the industry by
avoiding unnecessary testing, but will require industry cooperation in

compiling information on degradation rates for typical sensors.
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APPENDIX A
DERIVATION OF EQUATION 2.25

This appendix provides the derivation of the result given
in Equation 2.25. It gives the relation between the asymptotic
response to a ramp input and the modal time constants. Consider
the Laplace transform of the ramp response of a sensor (described

by a transfer function with n poles and no zeroes):

Ka
x(s) = — 0 (A.1)
s (s—sl)(s-sz) C .. (s-sn)
where
K = ramp rate
a, = (-s])(-sz) ... (—sn)

The partial fraction approach involves the use of the following form:

A A A A
-+ 2 3y 8
s s =S4 $-S,

x(s) =

(A.2)

The general problem in the partial fraction approach is to find all

of the Ai'
The Ai are evaluated by setting Equation A.1 equal to Equation
A.2:
A A A A Ka
—%- y 2 3 4 4 = 0
s s 3 5-S, s (s-s])(s-sz) C .. (s—sn)

(A.3)
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A common denominator is introduced on the left hand side and can-

celled with the denominator on the right hand side.

A](s—s1)(s—52) ... (s-sn) + Azs(s—s])(s-sz) ... (s—sn)
+ A352(s-52)(s—s3) ... (s-sn) + A452(s-s])(s—s3) ... (s—sn) + ...
= Ka, (A.4)

First we identify all of the constant terms on the left hand side. All
of the factors with i>1 for Ai have s or 52 as a multiplier, so they
contain no constant terms. The term involving A] will have one con-

stant term. It is:

A](-s])(—sz) ... (—sn)

Setting this equal to the constant term on the right hand side and

inserting the definition of a, gives:

Ay(-s)(esy) -on (-s,) = K(-s7)(=sp) + . . (-s,)
or
Ay = K. (A.5)

Now let us consider the terms involving s raised to the first
power. When the factors in the coefficient of A1 in Equation A.4

are multiplied out, the results are:
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constant term = (—s])(-sz) oo (=s)

1

. I ) } ] 1
coefficient of s° = ( s])( 52) A | Sn)[(—s]) + (_52)
+ T_l_y ]
..sn
Also, the coefficient of s] in the term in Equation A.4 involving A2
is

K(-s])(-sz) ... (-sn).

There are no terms involving s] in any other terms in Equation A.4.

Since s] does not appear on the right hand side of Equation A.4,

we obtain:
shy sy (osp) - (s)Mlmgy *+ Togy o ety ]
+ sh, (-51)(-52) .. (-sn) =0 (A.6)
Therefore
A, [ + v + F o ]+A, =0 (A.7)
1 (-s]) (—52) T i-sni 2 g

Since A; = K and (:%—) = T, we obtain
i

A2 = K [T] Tyt F Tn]. (A.8)



149

Now, we note that the terms in Equation A.3 containing Ai for
i>2 will all lead to terms in the inverse Laplace transform with
negative exponentials. Therefore, they will die out with time and

the remaining response is given by:

K(T] + Ty + .. .+ Tn)

x(t) for t>>0

n

r~—
~
1

S S
(A.9)

or

x(t)

K[Lt- (T] + Ty + ...+ Tn)] for t>>0 (A.10)

This is the result shown in Equation 2.25.



APPENDIX B

COMPUTER PROGRAM FOR ANALYSIS OF LOOP
CURRENT STEP RESPONSE DATA

B.1 Introduction

Analysis of the LCSR data requires that unbiased estimates
of the approximating function be obtained. In particular, the
expansion coefficients and the exponents (eigenvalues) of the

function

must be evaluated so that f(t) is the function which optimally
approximates the LCSR data. If the exponents are specified, the
expansion coefficients can be determined by using the linear Teast
squares method. However, if the eigenvalues are to be determined,
a method of nonlinear functional minimization is required.

It is important to note that if the data are equally spaced,
it is theoretically possible to estimate the eigenvalues by a linear
method.(]z) This procedure was evaluated and found to be impractical
for analysis of LCSR data apparently due to the need for a precise
elimination of the constant bias (if this shortcoming could be overcome,
this method should be used instead of the functional minimization approach).
Consequently, the discussion in this appendix is limited to: 1) some
general comments on nonlinear minimization algorithms, 2) a method for
estimating the variance of the unbiased parameter estimates, and 3) de-

tails regarding a computer program developed for analyzing LCSR data.
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B.2 General Comments on Nonlinear Minimization Algorithms

Several nonlinear minimization algorithms commonly used for

(13) 1) steepest descent in conjunction

practical problems are:
with a 1ine search, 2) linearization of the functional or approxi-
mating function in conjunction with a variable stepsize (a general-
jzation of Newton's method), and 3) Marquardt's method. The best
algorithm for a particular application is usually not known a priori.
Thus, three nonlinear minimization algorithms are evaluated for
application to the LCSR data analysis: 1) linearization, 2) Marquardt's
method, and 3) a combination of Marquardt's method and linearization.
The linearization method is preferred to Marquardt's method or to the
combined method for the LCSR data analysis since it is easier to
implement and performs as well for the functional of interest.

Two basic problems associated with any iterative nonlinear
search algorithm are: 1) determining a search direction vector,
and 2) determining the optimal stepsize in the specified search
direction. Most methods provide an implicit estimate of the stepsize
in addition to determining the search direction. Nevertheless, it is
frequently desirable to expend computational overhead to obtain an
optimal (or suboptimal) estimate of the stepsize for at least two

reasons: 1) to improve overall computational efficiency, and 2) to

ensure convergence properties.

B.3 Nonlinear Minimization Using Linearization

One advantage of the linearization method over some second order
methods is that the coefficient matrix for determining the search

direction (the matrix formed during the least squares solution of
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the equations specified by Equation B.8) is positive definite (at

13)

least semidefinite)( ; consequently, the functional value decreases
in the specified direction. Thus, if the optimal (or a suboptimal)

stepsize is obtained for each iteration, the linearzation method is

(14) In

(14)

theoretically guaranteed to converge to a local minimum.
practice, guaranteed convergence cannot always be achieved. A
disadvantage of the Tinearization method is that convergence is typically
slow near the minimum compared to a second order methods. Some
mathematical detailsfollow.
The function which approximates the data is given by,
M Ast

f(t) = a + 121 a, e

(B.1)

Typically, two exponential terms (M=2) are sufficient to approximate
LCSR data adequately. In order to estimate the model parameters
(ao, Coe s By A e e AM), the variance of the residual is
minimized; in particular, the following functional is minimized:

(03 ¥,) = o E‘(f-y)Z oeR® (B.2)
= e’ " N-K Ly Yk Tek! = .
where
T _ 2M+1
0 = (ags « v ws gy Ay o oo Ay)s GeR (B.3)
M Lt
fk =a t .Z a, e k (B.4)
i=1
Xe = vector of data points (B.5)



153

If the approximating function is expanded in a first order

Taylor series, one obtains,

" 1 N
<1)(OaY):_—— Z

=2 "o -K K [fk + ('%‘) _B_Q - Yek] (86)

Minimization of ¢ is equivalent to the linear least squares problem

for the set of equations

k=1, . . ., N (B.7)

Thus, minimization of the functional given by Equation B.2 is con-
verted into a sequence of Tinear least squares problems with a one-
dimensional search for each iteration. At each iteration, the
optimum stepsize is calculated so that ¢(@ + psQ; Xe) is minimized;
in particular, ¢ is minimized with respect to p for each iteration.
The optimum stepsize is estimated hy using: 1) the point where
the functional minimum occurred for the previous iteration, 2) a point
which reduces the functional value (this is found by halving the
interval), and 3) a point which increases the functional value (this
point is found by increasing the stepsize). A quadratic curve is
defined by these three points; thus, the optimum stepsize is easily
estimated. Since the search direction is obtained through the use

(13) the functional can be

of a positive definite coefficient matrix,
reduced in the direction chosen.

Three criteria are used for terminating the minimization algorithm:
1) if the norm of the functional gradient is small with respect to

the norm of the functional, 2) if the functional value cannot be
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reduced in the selected direction by halving the interval a selected
number of times, and 3) if the specified number of interations is

exceeded.

B.4 Nonlinear Minimization Using Marguardt's Method

Marquardt's method uses the Hessian matrix of the functional
(a matrix generated from the second partial derivative of the
functional) to calculate the search direction and stepsize. Since
this is a second order method, it has very good convergence properties
near a local minimum. On the other hand, the Hessian matrix may be
negative definite (and lead to a diverging sequence of functional
values) as well as positive definite; thus, a method based only on
the Hessian matrix could result in finding a maximum instead of a
minimum. Marquardt has devised a method to circumvent this problem
to ensure that the search algorithm always leads to decreasing the
functional. Details of Marquardt's method are given by Bard.(]3)
Marquardt's method requires the calculation of the second partial

derivatives with respect to the model parameters as a preliminary step.

The appropriate derivatives are as follows:

N
30 2 5f
— (05 Y)) = 5= 7 R (=) (B.8)
where
= - (B.9)
Re = fi = Yex
and
2
2 N f
e 2 3f af 5 Tk
o50- - WK L 6| |39 * Rk |36.98, (B.10)
joi k=1 i
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The second partials of the approximating function are specified by:

32f of i< M1, j> M1 and j = M+

30 gé i QEK 3 (B.11)
J i i i> M1, J> Ml and i = j

asz afk

3@j3@i = tk[g@\]—'—] ;1> MH, j < MHT and i = Mt+j (B.12)

otherwise, the second partials of the approximating function with
respect to the model parameters are zero. The first partials are

easily computed. For example, if k = 5:

3f of ALt af Aot
k k 17k k 2°k
—_— = ] , —_— = e . —_— = e (8.13)
aao aa1 8a2
of At of Aot
k _ 17k k _ 27k
§X;' = a]tke , and gxz- = aztke (B.14)
where
((:).Is 92: @39 04’ 95) = (aoa a-ls a2, >\-]s >\2) (B.]5)

B.5 Variances of Model Parameters and Response Time

Data obtained from a LCSR test are analyzed to obtain unbiased
estimates of the model parameters. Some of the estimated parameters
are subsequently used to estimate the time constant that characterizes

a temperature detector plunge test.



156

Uncertainty in the estimates of the model parameters that
characterize the LCSR data arises from at least three factors:
1) noise contamination of the data, 2) the existance of modal
responses in the data that are not included in the model, and
3) sensitivity of the functional to functional parameters (e.qg.
data sampling interval and sampling frequency). A method for
estimating the variance of unbiased parameter estimates due to

(15) and is de-

noise contamination has been discussed with Bayne
scribed by Bard.(]G) If the variances of the parameter estimates
are given, two methods for estimating the variance of the plunge
test time constant are: 1) the propagation of error formu]a(]]) in
conjunction with an analytical approximation for the time constant,
or 2) the parameters used to obtain the "plunge test time constant"
could be randomly varied in conjunction with a direct calculation

of the time constant. Although the second method is preferred, the

first method is used for computational convenience.

In terms of the model and the residuals (noise), the observed

data are given by

Y. = flo,t.) +e. 3 3=1, ..., N . B.16
; f(o tJ) ey 3 ( )
where

o = the unbiased parameter estimates

Yj = an observed datum

a residual.

m
1}
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It is assumed that the expected value of the residual is near zero;

in particular,

(B.17)

Also, the best estimate of the variance of the residuals is used to

estimate the true variance of the residuals,

2 2
E(e.®) =
(e5%) ='s
and
S2 w O2
where 02

is the unknown variance of the residuals.

(B.18)

(B.19)

In order to obtain the variances of the parameter estimates, it

is necessary to calculate the variance-covariance matrix of (Var(e)).

~

The diagonal elements of Var(©) are the variances of the elements of

the vector 0.

Var (6)

or

Var (0)

"
(72]

1l
—
~N
-—l
N
—

N
L

J

of
1 |e0

L

of
30

-1

The variance-covariance matrix is approximated by

(B.20)

(B.21)
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where
[ sf S
%44 ¥
(B.22)
Z =
of .. of
507y 50,y

The first subscript denotes the position vector of o and the second
subscript denotes the observation number. The estimate of the

variance (SZ) is given by

2

It ~1Z

(Y - f(e, t.)]
2 _ =1 © J
§¢ = (B.23)
N - K

It is of interest to point out that the elements of Zij are
simple analytical expressions. Also, if the data are equally spaced,

T

closed form expressions for the elements of Z'Z can be obtained. These

closed form expressions are included in the computer program developed
in this project.
An estimate of the plunge test response (obtained from the LCSR

data) for a second order system is given by
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The time constant T is defined through the expression
- o -1
Yp](T) - Yp]( ) (.I - € )’ (B-25)

and is accurately approximated by

A
T = [ T - In(1 - %)] [%}—] (B.26)

The propagation of error formula is used to estimate the variance in
T as follows:
2

_ 49T 2 9T
o = (51‘]‘) Nt (@

2 2
) Typ (B.27)

where OA]Z and OAZZ are obtained from Var(9).

B.6 Methods Evaluation and Computer Program Verification: Discussion

A number of test problems using theoretical data were studied
during the computer program development. Several computer programs
are available that analyze theoretical LCSR data correctly and also give
the same results for experimental data. Some of the computational
experiments performed while developing the program described were:(]7)
1. Survey calculations to evaluate the linearization method,
Marquardt's method and a Marquardt-linearization method.
2. Calculations to determine the effect of white noise and of

60 Hz in theoretical LCSR data parameter estimates and a

standard deviation of parameter estimates.
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3. Calculations for parameter estimates and for uncertainties

of parameter estimates using experimental data.

Each of the three nonlinear minimization algorithms tested performed
well. Although Marquardt's method (in theory) converges much faster
than the linearization method near the minimum, the overall performance
of the linearization method was better than Marquardt's method for the
functional of interest (c.f. Eq. (B.2)). A combination of the two
methods performed no better than the Tinearization method; consequently,
the computer program listed uses only the linearization method.

Results (reported in Reference 17) relating to the effect of
white noise and of 60 Hz on theoretical data illustrate that the
parameter estimates are not affected by significant white noise or
60 Hz data contamination. A quantative evaluation to verify the
accuracy of the uncertainty estimates would require a detailed

simulation study which has not been performed.

B.7 Analysis of Experimental Data: Discussion

Theoretical considerations indicate that identification of two
eigenvalues should be adequate to obtain a good estimate of the plunge
test time constant. However, experimental data has been found to be
contaminated with other functions: 1) fast transients due to data
acquisition instrumentation, 2) significant process noise in the
frequency range where the RTD spectral power is concentrated, and

3) ramp process transients.
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Analysis of data contaminated with fast transients can be
delt with in two ways: 1) use three to five exponentials in the
approximating function, or 2) use only two or three exponentials
in the approximating function but skip an appropriate portion of
the initial data record. The second method is preferred. However,
several calculations must be made by skipping different Tengths of
the initial transient to determine the appropriate amount of data
to be skipped. Some results to show the effect of skipping initial
data points are given in Figures B.1 and B.2. Note that more data
must be skipped with the second order model than the third order
model. Also, note that the time constant of interest (where the
curve flattens out) is the same for the second and third order
models. If too much data is skipped for a particular model, then
information on a particular mode is discarded and again the time
constant estimate will be incorrect.

If the data is contaminated with a ramp function, one needs only
to include a ramp in the approximating function. Process noise can
usually be delt with using appropriate filtering. However, frequencies
in the range where the RTD spectral power is concentrated cannot be

filtered.

B.8 Comments on the Computer Program Jescribed Herein

An earlier version of this program is given in Reference 17. The
version described herein has been modified to run on a PDP 11 and assumes
that the data are equally spaced. Assuming that the data are equally

spaced allows one to write closed form expressions for elements of the
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Figure B.1.

T T —

.3 .4 .5 .6 .7 .8 .9 1.0

Seconds of Data Skipped

Effect of Skipping Initial Data Points on the Time
Constant Estimate (Second Order Model).

1

.



Time Constant

4.8

4.6

4.2

4.0

3.8

163

3.6

Seconds of Data Skipped

Figure B.2. Effect of Skipping Initial Data Points on the. Time
Constant Estimate (Third Order Model).

1

.0



164

coefficient matrix used to determine the direction vector. This
reduces the execution time by a factor of four to five.

Direction vectors are always calculated using the Tinearization
method. However, two different methods are employed for the optimal
1ine search. One uses the search direction as calculated and the
other exploits the fact that the expansion coefficients can be
obtained with a linear least squares technique.

Before any result is accepted, the influence of changing
functional parameters (i.e. sampling frequency and data interval)
should be evaluated since the uncertainty estimate does not take

these variables into account. However, this evaluation is straightforward.

B.9 Sample Problem and Program Listing

The instructions for using the LCSR transformation program,
the output of this program for a typical case, and the program listing
are given in this section. Table B.1 gives the 1isting of the inputs
to the LCSR program. Explanations of these inputs are:

1. "DO YOU WISH TO GENERATE A LIST FILE?". This input provides the
user with the option of storing the results of the LCSR test
analysis on a computer disk. The user types "Y" to invoke this
option or types "N" otherwise.

2. "ENTER O FOR NO PLOTS, 1 FOR PLOTS, 2 FOR PLOTS AND AUTO-COPIES".
Results of the analysis may be obtained in graphical form on a
CRT as well as digital form on a line printer. The CRT may be
connected to a hard copy unit to give a copy of the results dis-
played on the CRT. The user may type "0" to avoid plotting the

results (to save time) or type "1" to only observe the plots of



Table B.1 [Inputs to the Loop Current Step Response
Computer Program

R LCFT2
00 YOU HIZH T0O GENERATE A LIST FILE? H
ENTER 8 FOR MO PLOTS. 1 FOR PLOTS, & FOR FLOTS AND AUTO-COFIES : 2

ENTER THE NA&ME OF THE FIRST OATA SET TO 'BE ANALYZED : OK1:PAUE.9B1
ENTER THE MUMBER OF DATA SETS TO BE ANALYZED :

PG TO RUM SECOMD ORDER CASES ONLY. ENTER !

i SECOND AHD THIRD ORDER CRZES.

EMTER THE HUMBER OF SsMPLES TO BE SEIFFED - 18

G91
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the LCSR results. If a "2" is entered a hard copy of the
results can be obtained from the hard copy unit.

"ENTER THE NAME OF THE FIRST DATA SET TO BE ANALYZED". The

LCSR program can analyze a sequence of LCSR data with a single
set of inputs. This input specifies the name of the first data
set to be analyzed. After the first data set is analyzed, the
program will proceed to the next data set in the sequence and
perform the analysis. This process will continue until all of
the data sets specified by the inputs are analyzed.

"ENTER THE NUMBER OF DATA SETS TO BE ANALYZED". This input
specifies the number of data sets to be analyzed in a sequence
of LCSR data sets.

"ENTER O TO RUN SECOND ORDER CASE ONLY, ENTER 1 TO RUN SECOND
AND THIRD ORDER CASES". This allows the use of a second order
model or a third order model in analyzing of the LCSR data.

If "0" is entered, the LCSR data will be fitted to a second
order model yielding two eigenvalues (poles). If "1" is entered,
the LCSR data will be fitted to a third order model yielding
three eigenvalues.

"ENTER THE NUMBER OF SAMPLES TO BE SKIPPED". It is usually
required to skip the first few milliseconds of the data that
include a very fast transient. This initial transient is
characteristic of the instrumentation and of the sensor filament
rather than the sensor heat transfer characteristics. The appro-
priate number of points that should be skipped to eliminate the
transient may be determined by plotting the time constant versus

the number of points skipped (c.f. section B.7).
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7. "ENTER DELTA T AND TMAX". The Delta T (T) is the reciprocal
of the sampling frequency and TMAX is the duration of the
data set to be analyzed.

The plot of LCSR data for a typical case is given in Figure B.3.

The results of analysis of this data along with the plots of inter-
mediate and final results are shown in Table B.2 and Figures B.4 and

B.5. The program listing follows Figure B.5.
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Table B.2. Listing of The Results of Analysis of a Typical LCSR Data Set

RESULTS OF THE DIRECT SEARCH:

THE FUHCTIOQHAL MALUE = Q.374c4E+00n
THE TIME ICHETHHT = g.Z26RZE+HA
__THE ESFRHSION COEFFICIENT: = §.89339E+82 -@ 1S314E+483 -8 .47367E+
a3z
THE EIGEMUALUESR = -, 48344E+41 -3 25248E+82
THE FOLLOWING EESULTS FPERTAIM TO AH
APFROZIMATING MODEL WITH 2 ESFOMEHTIALS
MEW AND QLD FUMCTIONRL UgLUES FOE ITERATION 1
GRE L S2T15E+4B8 A0 @ 574L E+B8
MEW &HD LD FUNMCTIOWAL VALUES FOR ITERATION 2
BRE 6. S2450E+490 HHD §.52719E+A3
MEW AHD QLD FUMCTIOHAL VALUES FOR ITERATION 2
REE 2. 32451E+28 HHJ g, 524560+E0

FESULTS FROM THE MIMIMIZATION ALGORITHR:
TERMIHATED BY. HOPT = @

691



Table B.2 (Continued)

EXFECTED URLUE OF RESIDUAL = @.31141E-64
STHMOARD DEVIATION OF THE RESIOUAL = 8.72415E+0f
UARIANCE OF THE RESIDUAL = [A.32441E+80
THE HORMARLIZED GEADIENT = @, 18788E-82
EXFRHSION COEFFICIEHTS ARE:

i 35555E+ﬁ3 + OF - 8.43300E-91

-5 13830E+83 + OR - 0.70REEE+DE

-8 . 477VI5E+82 + OR - 0. FBS1Z2E+58
EIGEHUALUES ARE

-8 . 40037E+81 + OR - 8 1624ZE-A1

-3 . 2367BE+A2 + OR - 8.61714E+84

THE TIME COMSTANT = 8. 2!

[AX]
LY ]
(n g
(]
on
m
+
[}
=
+
X ]
bz |
i
AN

3.81241E-82

0L1



Table B.2 (Continued)

THE FOLLOWIMG RESULTS PEETAIM TO AN
RPFREQSIMATING MODEL MITH 3 EXFOMEHMTIALE:

HEW AND
RRE
HEM gHND
RRE
HEW &HD
HEE
HEW AND
ARE
HEW AHD
ARE

RESULTS

QLD FUHCTIGHAL UQLUES FOR ITERATION
8. 4e328E+88  AHD B, 43715E+46
QLD FUHCTIOMAL ”HL“E' FOR ITERATION

B 4181YE+88  aH0D B 455208E+584

aLh FUHCTIOHAL URL“E’ FOR ITEFQTIWN
A.376C0E+88 AND A, 41317E+8¢

OLO FUMCTIOMAL UALUES FOR ITEFHTI”H
A 37115E+688 AHD 8 Z76eC0EE+80

OLO FUNCTIOHRL YALLES FORE ITERATIOHN
8. 3703eE+08  gHD  B.371135E+88

FROM THE MIHIMIZATION ALGORITHM:

TEEMINATED BY. HOPT = B8

F L) o

n
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FORTRAN 1V VQ1C-03E+ PAGE 091

0001

6002
0003
0004
0003
0000
0607
Q008
0009
0010
o1t
0012
0013
9014

0915
0216
0017
0018
0919
0020
0021
0022
0023
0024
0025

0026

C-T LCFTS.MUL

C

NOTE: THIS VERSION OF DR. MILLER'S PRGGRAM HAS BEEN MODIFIED TO
RUN CN PDP 11 MINICOMPUTERS USING RT/!1 FORTRAN. ALSO THIS
VERSION ASSUMES A CONSTANT SAMPLING RATE FOR THE DATA TO BE
ANALYZED. NO PLOTS ARE PRODUCED BY THIS VERSION. SOME CORRECTIONS
HAVE BEEN MADE TO THE ORIGINAL VERSION. THESE CORRECTIONS HAVE
BEEN INCLUDED IN THIS VERSION. SUBROUTINE GTDAT HAS BEEN INCORPORATED
INTO THIS VERSION SO THAT THE PROGRAM WILL HANDLE LCSR DATA AS
STORED CON THE PDP 11. THIS VERSION EAS BEEN MODIFIED TO RUN
MULTIPLE CASES WHILE VARYING THE STARTING POINT AND KEEPING TMAX
CONSTANT. THE TIME CONSTANT, THE UNCERTAINTY IN THE TINE CONSTANT,
AND THE STANDARD DEVIATION OF THE RESIDUALS ARE OUTPUT T¢ A DISK
FILE, THESL RESULTS MAY BE RETRIEVED AND PLOTTED BY TIWPLT.

Q
|
=

&C)O(DC)Ot3C)OC3C)C)C

aQ

e R RN SRR AR R R A RO R K SR KR KKK R SR NN R R KRR ek KR R R R KR X KK
C THIS PROGRAM IDENTIFIES PARAMETERS OF AN EXPONENTIAL MODEL THAT

¢ APROXIMATES THE LOOP-CURRENT-STEP-RESPONSE(LCSR) DATA. HE OVERALL

€ PRCGRAM LOGIC IS AS FOLLOWS:

C 1. CONDUCT A DIRECT SEARCH FOR A STARTING POINT

C

Cc

C

C

2. MINIMIZE TIIE VARIANCE OF THE RESIDUAL ERROR
8. ESTIMATE THE STANDARD DEVIATION OF THE 63% RESPONSE TIME FROM
THE VARIANCE~COVARIANCE MATRIX
L2 2 2 EHEPE TS HSEH TP EFES ST S HHRE PHEEEIRFHESEEFHTEIEHF IS LRI PIE I EHIE S EE L e S
DIMENSION YG(2G48) , WORK(2048) , X(7) ,Y(7?) ,A(7,7) ,AIV(?,7),
1 ASAV(7,7),P(7),G(7?) ,WK(?) ,DIR(T?) ,PSAV(7T)
INTEGCER::2 JTEMP(C1C0)
LOGICAL:®x1 DBSNAMEC( 14) , RENAMIL( 14)
WRITE (7,80600)
3009 FORMNAT(' ENTER THE LCSR DATA T'ILE NAME : ',8)
WAD (5,3010) DSNAMW
3016 FORMAT (14A1)
WHITE (7,26006)
2000 FORMAT * ENTER THE FILE NAME FOR THEE RESULTS @ ',8)
RISAD (5,386103 KSNAME
CALL ASSTCNCI1O, ISNAME, (4, "0ILD',"NC”, 1)
DEIINE PILE 10(100,6,U, JLO0K)
WRITE (7,3020)
3020 FORHAT (° ENTER O TO RUN SECOND ORDER CASES ONLY,’
1 v ENTER 7O RUN SECOND AND THIRD ORDER CASES ¢ ' ,3)
A (5,30350) NEXP
85030 FORFAT (12)
WRITE (7, 1080)
1080 FORMAT (' LENTER DTN, THAX ¢ *,8)
READ (5, 1096) DTN, TMAX
1090 FORMAT (2110.0)
WRITE (7, 1020)
1020 FORMAT ¢ ENTER TIIE NUMBER OF CASES TO BE RUN @ *,8)
REEAD (5, 1030) NCASES
1630 FOIAT (162
DU 10 I=1,NCASES
30 WRITE (7,1€49) 1

SLL



FOR'TRAN TV VO 1C~-03T+ PAGE. 002
0J27 10490 TFORMAT (’ ENTER JSKIP(*,13,*') : ',8)

co28 READ (5, 1050) JTEMP(I)

6029 1060 TORMNAT (16)

0030 It (JTEMPCI) .GE. 0) GO TO 20
0032 WRRUTE (7, 1060)

0033 1069 FORMAT (° JSKIP MUST BE GREATER THAN OR EQUAL?
1 ' T ZER0t  TRY AGAIN!')

00234 GO TO 30

0035 20 IF (JTEMPC(I) .LT. 100} GO TO 19
€037 WRITE (7,1078)

0035 1679 TORMAT (’ JSKIP MUST BE LESS THAN 106! TRY AGAIN!’)
0039 GO T0 30

0040 10 CONTINUE

0041 NCASE=0

0042 166 NCASE=NCASE+1

0043 SBKIP=JTEMNP (NCASE)

0c44 DT=DTN

6045 TL=TMAX

0046 Np=7

0647 NOUT=G0

0048 NMAX=10

0049 NSRI= 16

0050 NCMX=2

0051 Ers=1. -4

00562 TAU=1.0

Ceeesiaolnision et ek sop ok seol kekskok fokstokol ek or ket kol kar sk ok Rtk ok kR Rk KRR R

C READ THE INPUT DATA FROM THE FILE SPECIFIED BY THE USER.
C  NOMX: NUNBER OF OBSERVATIONS
€ NEXP: IF SET TC 1, A THREE EXPONENTIAL CALCULATION IS PERFORMED
D PAUSE *CALL GTDAT

00653 CALL GTDAT(YO, WORK, NO,DT, T, TL, DSNAME, JSKIP)
D PAUSE °*RETURN FRCM GTDAT®
D VRITE (7,2010) NO

0054 2010 TFOWIAT (2X,16)

0035 ONX—NO
C\ \l \‘— l' D ' \ B ~ «' ) \‘ b ' \ ate «! I \P lt' d e Q(*sl. b )Q\k\"sl k,)(*a(\‘ \cx\!'\"\l' \f'a\'\( s Q‘Q‘»*{***x*k* ****
c LOHDUCT A DIRECT SLATCH TO ESTIMATE A STARTING POINT

0356 AR=1.0

0037 I10PT=0

0058 N¥=2

6859 I0=0.0

6060 FMIN=1.0E+12

6061 NV=2:N4- 1

0062 BU=TAU%3.0

6063 BL=TAU*0G.2

0664 RTO=(BU/BL) #%(1.0/FLOAT(NSRHI-1))

0863 NLP=NSRH

0066 DO 40 1=1,NLP

6667 CALL XS8TOP

0068 P(4)=-BU /AR

0969 P(3)=P(4)%7.0

0070 IER=0

0071 CALL FUNCT(NO,NX,ND,A,X,Y,P,DT, YO, IOPT, IER,FVAL)

0072 IT(IER.EQ.0)CO TO 35

9/1



FORTPAK IV VO1C-93E+ PAGE €03

0074
0075
6976
0077
0078
0079
0081
0082
0033
0084

0085
0686
0087
00838
0689
0090
0691
0092

2093
0694
0995
00926

0097

0098
0099
0100
0101
0162
0103

0104
0165
0167
0166
0109
0110
0111
0113
0114
0115
0116
0118
0119

PRINT 1018, IER
1013 FORMAT('0’,* ERROR IN THE COEFFICIENT CALCULATION, IER=’,I35)
STOP
35 CONTINUE
AR=AR:#RTO
IF(FVAL.GE.FMINYGO TO 490
FHIN=FVAL
CALL VECDP(NV,RHO,P,WK,DIR)
40 CONTINUE
CALL VECDP(NV, RHO, WI(, P, DIR)
O R R T O R R R R R R R R RO R R R RN SRR RR
€ PRINT RESULTS OF THE DIRECT SEARCH
LIGI=P(4)
EIC2=P(5)
CALL TAUA(TAU,EIG1,EIG2)
PRINT 1000
FVAL=FHIN
PRINT 1001, FVAL,TAU,P(1),P(2),P(3),P(4),P(5)
1000  FORMAT('0’,’ RESULTS OF THE DIRECT SEARCH: ')
1601  FCRMAT('@’,’ THE FUNCTIONAL VALUE = *,8X,E12.5/

1’ *,* THE TIME CONSTANT ’,8X,E12.5/

2' *,' THE EXPANSION COEFFICIERNTS ', 3(3X,E12.5)/

3' ',' THE EIGENVALUES ',2(8%,E12.5))
G RO R R R R R SRR R R R R
C MINIMIZE TIE RES1DUAL VARIANCE

NM=2
50 CONTINUE
PRINT 1608, NX
1068  FORMAT(’0’,’ THE FOLLOWING RESULTS PERTAIN TO AN '/
1 ' APPROXIMATING NODEL WITH ',12,' EXPONENTIALS:'/)
CALL LNR( WO, NX, ASAV,P,ND,VWK,DIR, A, X, Y, YO, EPS, NMAX, NOUT,
1 KOPT, FMIN, FVAL, DT, NLOOPS)
PRINT 1064
1004 FORMATC’G*,’ RESULTS FROM THE MINIMIZATION ALGORITIM:'/)
PRINT 1010, NOPT
101G FORMATC' ',' TERMINATED BY, NOPT = ', 12)
60 CONTINUL
CALL SWAP(NX, VK, P)
; KA R RO KRR R R R R R R AR R e
ANDARD DEVIATIONS OF THE ESTIMATED PARAMETERS AND OF
C IHE 487 TLINE CONSTANT
CALL BHGLA, AGAV, ALV, X, Y, YO, P, ND, NO, NX, DT, TAU, JSKIP, NEXP)
IV (NEXP. NE. 1) GO TO 70
PNV =5, 03P (NV)
PCRVE C) =0¢ V)
POHY) =P ERY-1)
3T §
IF(NX.CT.3)CO TO 20
10P=0
CALL I'DNCT(NO,NX,ND,A,X,Y,P,DT, Y0, IOPT, IER, FVAL)
FrIN= VAL
IFCIER.FQ.0)GO TO 65
PRINT 1013, IER
65 CONTINUE

n ot

LLl



FORTRAN 1V VO 1C-03E+

0120 GO TO 50

8121 7O CONTINUE

0122 IF (NCASE .NE. NCASES) GO TO 100

0124 333 TFORMAT (°Oskxk  EXECUTION COMPLETE
01206 stror
0126 END

EXE A0

PAGE 004

8L1



6001
0902

0003
0004
00035
0006
0007
0008
0010
0012
0013
0015
0016
0017
0018
0026
0022
0623

PAGE 001

Caeskeeskeskopskok kiR kR Rk Rk ok kR R R R Rk Rk R R R R R R R R Rk sk R Rk
[T FEFF I IETFELTIEIEIEREILIF LI ET2EF S LIF I IEIFERIIILRELELFILIFLHFEL S LS 2
SUBROUTINE DRCHK(DIR,P,NX, RHO, WK, ITST)
DIMENSION DIRC1),PC1), WK(1)
(33 L2 FEIITIIIFIIREITIIEIILTLEIIIE S IR T I L FFEF T L2 ETITSTL L3
C THIS SUBROUTINE ENSURES THAT THE EIGENVALUES FOR THE SEARCH POINTS
C ARE ALWAYS NECGATIVE.
(IS FESF I F I FEP L IFEI FEFEFEEFIEEFEEFIIETELE LTI ELSEFTLFIILEIIIFELLTSSFTEITLL LS 3 +3
NX2= NX+2
NV=2%NX+1
1TST=0
TST= ABS( RHO)
DO 10 K=NX2,RV
IF(RHO.GT.0.0.AND.DIR(K) .LE.0.0)GO TO 10
IF(RHO.LT.0.0.AND.DIR(K) .CE.0.0)CO TO 10
TERM= ABS(P(K) /DIR(K) )
I7( TERM. GT. TSTYGO TO 10
TST=TERM
10 CONTINUE
TER= ABS ( RIO)
IF(TST.LT. TERM) ITST=1
IFCITST. EQ. 1) RHO= RHOXO0 . 7¥TST/TERM
RETUDN
END
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FORTRAR 1V Va1C~03E+ PAGE 001

0001
0002

0003

0005
0006

0008
8009
0010
0011
0012
0013
0014
0015
0016
0017
6018
0019
0020
0021
0022
0023
0024
0025
0026
0027

CaexcekoRorekiororkkskk kR ik kfopkkik kR kR kR rokokkkorkrrRkrk
CxopsiaRsk BRI AA R KA AR E AR KR KAA KRR KA KRR R KR AR AR AR KR RIKR AR K AR KK
SUBROUTINE, FUNCT(NO,NX,ND,A,X,Y,P,DT, YO, 10PT, IER, FVAL)
DIMENSION A(ND,ND),Y(1),PC(1),Y0O(1),X(1),AEC10),R(10)

CsiesieesesRsisioR N et e st sk s oK SRS sk e s sl Ne s st R SR SR SRS R I S R SR RO AR R SR AR NN N R R SRR R R R kKRR R Rk

C THIS SUBROUTINE CALCULATES THE FUNCCTIONAL TO BE MINIMIZED WHICH IS
C THE APPROXINATE VARIANCE OF THE RESIDUALS.
C THE OPTIMUM EXPANSION COEFFICIENTS ARE CALCULATED.
Coseopapagsiessesin etk ok ke geeieie yoreker sk sk ek ook forserkekiok ek R ok R ek Rk koo Rk sk sk ik
IF (IOPT .NE. 0) GO TO 49
C CALCULATE THE OPTIMUIM EXPANSION COEFFICIENTS
CALL COF(NO,NX,ND,A,X,Y,DT,Y0,P, IER)
IF (IERR .KE. 6) GO TO 39
R S e e ST NN N e ST e R R R S SO NS R KR SR SRR S R R R R R K K sk ek
C EVALUATE THE FUNCTIONAL
40 COLTINUE
NX1=NX+1
SUM=0.6
Do 20 1=1,NX1
AECD)=PCI)
20 SUM=SUM+AE(T)
FVAL=(Y0O( 1) -SUM %2
DO 25 I=1}1,NX
25 ROI)=EXP(DTxP(NXI+1))
DO 10 K=2,N0O
SUM=AE(1)
DO 15 I1=2,NX1
AECD =AECD =RCI-1)
15 SUM=SUM+AE(I)
10 FVAL=FVAL+ ( STM~-YO(ID ) =42
ANO=NG—-( 2:NX+1)
FVAL=FVALZANO
30 CONTINUE
RETURN
LEHD

081



FORTRAN 1V VO1C~@3LE+ PAGE 001

0001
0002

0003
0004
0005
0006
0607
0008
0010
0012
0013
0014
0013
0016
0017
0018

0019
0020
002}
0022
o023
0024
0025
0026
008Y
0028
G029
0030

0031
0032
0033
0035
0036
0037

0038
0039
00490
0041
0042
0043

Ciskskakskaok i ek kR ok Rk ok opkk kR Rk kor e or Rk Rkt ok
Crxkserioiersekko okttt kR Rk ek Rk ooRRok Rk ok ek Rk Rk R Rk kR Rk
SUBROUTINE COr(NO,NX,ND,A,X,Y,DT,YO,P, IER)

DIMENSION A(KND,RD),X(1),Y(1),Y0(1),P(1)
IR B B PP 3 2 PEFT PP E L FF SHEI LT POEFEEFFEEITTIFEEE T T EEET L B F ST S3 $ 5
C THIS SYBROUTINE EVALUATES THE OPTIMUM EXPANSION COEFFICIENTS BY A
C LINEAR LEAST SQUANES ALGORITHM
eSS SRR TG T £33 3 $ 33T TS T TEFEIEEFTTERIFEF T FEFTETE LT LT L DL FEI T T3 22 224
C CALCULATE TIE COEFFICIENT MATRIX
AC1,1)=NO
NX1=NX+1
Do 20 I=1,NX1
Do 20 J=1,NX1
EX=P(NX+ 1)} +P(NX+J)
IF(J.EQ. 1)GO TO 20
IFCTLEQ. 1) EX=P(NX+J)
R=EXP(LEX:DT)
AL=EXP(EX#DT#FLOAT(NO-1))
ACT, D) =(REAL~1.)Z(R-1.0)
CONTINUE
DO 25 I1=2,NX1
BO 25 J=1,1
25 ACT, D =A0J, 1)
C CcoMPUTE ‘THI INHOMOGENEOUS VIICTOR
Y(1)=0.0
bo 45 1=1,NO
45 YD =Y(D+VO(])
B 8O I=2,NXI
Y{13=0.0
XN=pPINI+T)
FAC=1.0
R=FXPCKREDT)
B 30 K=1,NO
XI=1AG
. FAC=VACKER
30 Y=Y 1)+ X1 YO(K)
C CIHECK FOR A ZFRO DIACONAL FLUMENT
TER=0
DO 86 K=1,NXl1
IFCABS(A(K,K)) .GT.1.0E~-12)GO TO 35
1FR=1
CO TO 50
CONTINURE
CALCULATE ‘THI. EXPANSION COEFFICIENTS
CALL CAUS(A,Y,X,ND,NX1)
BO 406 I=1,NXl1
P(I=X(D
COMWTINUL
RETURN
LD

[\
(]

oW
(%]

SO

9

181



FORTRAR IV VO1C-~03E+ PACE ¢91

0001
0002

0303
0004
0005
0006
0007
00068
0009

Coksiesieeseskfeeskeneeiehfefoioksk okt sk ks kol sk Rk ok sk kb kR ek kR R ko ek RNeR R KRR KRR
LSRR 2 FE EHEHEE FEE T FEHFTTETTIEELFEETTILSFIFEEITIEEIEEILLESIIITEIIFLEFTEEE LTSS S 2 3
FUNCTION FAPR(P,NX,TM)
DIMENSION P(1)
CorR KRR KKK KKK R KRR AR AR PR KA KK R KRR KKK R RN RRE KRR KRR KRR RK K
C THIS FUNCTION SUBROUTINE EVALUATES THE APPROXIMATING FUNCTION AT
C A SPECIFIED TIME
CoARRARARARRAOR AR AR AR ORI RNCR A AR NOR RN AR R AR KKK KRR KRR RN RN KRR KR AR K
N¥1=RX+1
FX=P(1)
Lo 10 1=2,R8X1
10 FX=FX+P( 1) *EXP(P( N+ 1) %TM)
IFAPR=FX
RETURN
END

é8l



FORTRAN IV VO 1C-03E+ PAGE 001

0001
0002

0003
0004
0005
0006

CeprrerRkRRRRkRRRk Rk Rk RR R Rk RRRRRRRRR Rk R Rk kR Rk R Rk kKRR kR R kR kR RkRNeR
Ok KR H KKK KR KR LN KRR KRR AR RN RK R KRR KL KRR R KRR KR KIRKRRACHR KRR R KRR KR AR KRR KKK
SUBROUTINE VECDP(K, RHO,X,Y,DIR)
DIMENSION X(1),Y(1),DIR(D)
T2 ETIFL T F I IIIFETEEREEITTEIEF LI LE LTI ELE SIS IIIEILL LI IEEETL L2222
C THIS SUBROUTINE CALCULATES THE COORDINATES OF A POINT THAT LIES A
C SPECIFIED DISTANCE IN A SPECIFIED DIRECTION FROM A K-DIMENSIONAL
C VECTOR
Coleeskakeisors e iRtk s gerser Rir iR Rk sk keRekiek ok kR iRk eoorkR kR
o 10 I=1,K
10 Y(I)=X( 1) +RIO=DIRCI)
RETURN
END

€81



FORTRAN IV Vo 1C-03E+ PAGE 001

0001

0002
0803
0004

(23 Eee st eI LSELEIII SIS LELR LI IIII AT IIL L LRI IIIIILIEI L LI LRI IISE 222

Crissteshesgsitaeskaoksikok ek gkl yolog ek Rk sk stk s R ok kK NSk ol KRR RSN R R SRR K ORI K KRRk
SUBROUTINE TAUA(TAU,E1,E2)

GRS HTRORMK N KARKKRKOR K RRAHKARHR AR KR KKK RN R KA KRR KR KRN XK

C TilI§ SUBROUTINE CALCULATES THE APPROXIMATE TIME CONSTANT(63%) FROM

€ AN ANALYTICAL EXPRESSION USING TWO EIGENVALUES.

Coespsteieies Rk ROk Sk sk R sk sk sl iR ek eR MO R R R Rk R R SRRk R Rk Rk
TAU=(ALCG(1.00-EtI/E2)-1.0) /E1
RETURN
END

8L



FORTRAN 1V Vo 1C~03E+ PAGE 001

0001
0002

0003

0694

@095
VOO
0007
0008
0010
0011

0012

0013
0014
6o15
0016
0017
0018

Ckese
Caxak

Cxcke

COOOOOOOOOOOOOOOO

A OO0
3%

Lt

PR EL ST I EEIDPEILITILLRFIRITEIILIIEIL LTSI LSS LIS LS T LTSS L+ 2
PR I RFIIIIFT LR EETEFLLLE LTI IHF IR I LI IF LTI TLFTE IR ELETEFEE S EE 2 ST
SUBROUTINE TSG(A,ASAV,AlIV,¥,Y,YO,P,ND,NO,NX, DT, TAU,
1 JSKIP,NEXP)
DIMENSION A(ND, 1) ,ASAV(ND,ND) ,AIV(ND,1),X(1),Y(1),YOC(1),
1 P(1)
EEFR T T TELT S EF IS T T FEF I EIEFIEEFEIRFEIEIIERET LTI IE LT TS ELS 2L
THIS SUBROUTINE CALCULATES THE FOLLOWING:
1. STANDARD DEVIATIONS OF THE MODEL PARAMETERS USING THE
VARIANCE-COVARIANCE MATRIX
2. AN ESTIMATE OF THE TIME CONSTANT USIKNG AN ANALYTICAL
EXPRESSION
8. AN ESTIMATE OF THE STANDARD DEVIATION OF THE TIME CONSTANT
USING THE VARIANCE~COVARIANCE MATRIX AND THE PROPAGATION OF
EfROR FORMULA
RS PEF S F TP T FEFEFFF ST LIRS FEEEEL S FER P SEFFIEEPEEE E S F 3
INPUT DATA REQUIRED BY THIS SUBROUTINE ARE AS FOLLOWS:
THE NUMBER OF OBSERVARIONS
UNBIASED PARAMETER ESTINMATES FROM THE LCSR MINIMIZATION
PROGRAM
(ITEMS 1, AND 2. ARE READ UNDER THE FILENAME °*TVDAT®)
8. OBSERVATION DATA AND TIME VALUES ASSOCIATED WITH THE
OBSERVATION DATA
(XIPP . IS READ FROM THE IPILE SPECIFIED BY THE USER. THIS IS
o “Anr ['ILE USED BY THE LCSR MINIMIZATION PROGRAIM)
”z~Y7“ RO RO N R R R s s R s sk el et Rk R S T R R S SRR R KRR SRR K
WV=2:NX+1
CALCULATE TIIE MATR¥: Z TRANSPOSE Z WHICH WILL BE INVERTED TO
OBTAIN TiIF VARIANCE-COVARIANCE MATRIX
CALL Z/VZ(NO,NX,A, P, DT, NB)

[O —
.

C INVERT THE Z TRANSPOSE Z MATRIX TO ODTAIN THE VARIANCE-
T COVARTANCE VATYRIIX
RSO
ey
CALYL INVOA,ATV,ABAV, X, Y,ND, N, IER)
ITCIER EQ.O)E0 'TO 30
PRINT 1003, TER
1005 FORMAT(® °,’ A ZERO DIACONAL ELEMENT WAS ENCOUNTERED °~/
1 IER = *,1I5)
32 CONTINUF
CrRapNesRR R NSRSk ookt ek ok
C  LSTINAT L THE ‘?'I‘AN;)ARJ) ULVIA[‘]N AND 'I‘]H' EXPECTED VALUE OF TIIE
¢ RESIDUAL ERROR.  ALSO CALCULATYE THE NORMALIZED GRADIENT.
CALL VARCPY,NX, NO, DT, YO,NV,STD, EXV)
A= ST
CALL. CRAD(NO,NX,YO,P,DT, X, GRI))
ClM=CRDB/AR
PRINT 1006, EXV,STD,AR,GRD
1006 FORMAT( 0", ° EXPLLTED VALUE OF RESIDUAL = ',E12.5/
1 STANDARD DEVIATION OF THE RESIDUAL = °',E12.5/
2 VARIANCE OF THE RESIDUAL = ’,E12.5/
3 THIN NOIMIALIZED GRADIENT = *,E12. 5)
Coresonaoisy: < e ERSPSEEEL LTSS TS TEE S

c

CALCULATE TiB STAIDARD DEVIATIONS OF THE EXPANSION COEFFICIENTS

a8l



FORTRAN IV VO1C~-03T+ PACE 002

0019
6020
0021
0022
0023
0024
0025

0626
0027

0028
0029
0030
0031
0032
0033
0035
0037
0038
0839
0049

C AND OF THE ETCENVALUES
DO 40 K=1,NV
Y(K) =ATVOI K) kSTD2
XA=ABS(Y(K))

40 Y( IO =8SGRT(XA)
NX1=NX+1

PRINT 10607, (P(K,Y(K),K=1,RX1)
1007 FORMAT('0',* LXPANSION COEFFICIENTS ARE: '/
1 ¢ ", 6X,E12.5,' + OR - ’,E12.5))
PRINT 1008, (P(NX1+K),Y(NX1+K) ,K=1,NX)
1008 FORMAT('0O',* EIGENVALUES ARE: '/
1 ¢ * ,0X,E12.5," + OR - ', ,E12.5))
[ FFTFIIT LT ESIIFESEE LI FETFFFFPIAF T TFFIEE LTI I IS L2 T3P I EEF 333 S
C  CALCULATE THE TIME CONSTART AND THE STANDARD DEVIATION OF TIIE
€ TIME CONSTANT
SG1=Y(NX1+1)
SC2=Y(NX1+2)
CALL TVAR(SG1,S8G2,TAU,TSIG,P,NX)
PRINT 1869, TAU,1TS16
1009 FORMAT(*0*,* THE TIME CONSTANT = ',E12.5,' + OR - ',E12.05)
I" (NX .EQ. 3) GO TO 59
1 (NEXE L EQ. 1Y ARTURN
50 TREC=JSKIP+1 :
WRITEC16°® IREC) STD,TAU,TSIG
RETURN
END
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FORTRAN IV VO1C~03E+ PAGE 001

0601
0002

0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
00156
0016
0017
6018
0019
0020
0021
0022

e e 232 S22 FEIST LTI EE 22 E S R SR R AR 2 S SRS n R SR LRSS E S
Csiokksgstedsksksgsget kst korkskgorakekcrk Rk gk ek iork ek ok koo kR Rk k®

SUBRCUTINE GRAD(NO, NX, YO, P, DT, G, GRD)

DIMENSION YO(1),P(1),G(1)
Coleskatedeoskagtesdstolosialiofoieiokaoksksok ok skiskelskslsk Rk koo ko ko kskskokkskk kR ok ko
C THIS SUBROUTINE EVALUATES THE GRADIENT OF THE FUNCTIONAL WITH
C RESPECT TO EACH PARAMETER AND EVALUATES THE NORM OF THE GRADIENT.
(W FEFFFTFTTEELITI LI TEEEEETTTITRR ST SEESELT IS ST L LT EEIEE LS LR AR S S STt
NV=2:#NX+1
DO 5 J={,NV
C(J=0.0
DO 15 K=1,NO
TM=FLOAT(K-1) *DT
RID=FAPR(P, NX, TID -YO(K)

G(1)=G(1)+RID

O 19 I=2,NV

Ki=1

CALL DRV(K1,NX,TM,P,DIV)
10 CCD=CCD+RID¥XDIV

15 CONTINUE

AT=2.0/FLOAT(NO-NV)

DO 20 K=1,NV
20 C(K) =G(K) *AT

GRD=0.0

DO 30 K=1,NV
30 GRD=GRD+G(K) ®%:2

RETURN

END

(5]
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FORTRAN 1V VO1C-03E+ PAGE 001

0001
0002

6003
0004
0006
0007
0008
0009
0011
0012
0013
6014
0015
0016
0017

Crleesoagaioarskoi ok fokgokok sk sk ok okt ko sk ok Kok kR ok ok kR ok sk kg kiR ek ok R
(R PP FEFFFIFFEFTEEIFFIFEE SELEIFFERFFFFSFHIFFFITFEL T T IFTITITI LTI SRS
SUBROUTINE DRV(K,N¥,T,?,I’'VAL)
DIMENSION P(1)
[+ EFTFREEF IS FFRIEEIEFFFEFF LT TSI EIEE I FIEFIFEF LS F IPEFF ST TS
C TIIIS SUBROUTINE CALCULATES THE PARTIAL DERIVATIVES OF THD
C APPROXIMATING FUNCTION WITH RESPECT TO EACH OF THE MODEL PARAMETERS
C TIE E¥PANSION CONFFICIENTS ARE IN THE FIRST NX1 ELEMENTS OF TIE
C P VECTOR AND THE EIGENVALUES ARE IN THE LAST NX ELEMENTS OF THE
C VECTOR.
Cossekacines

e D B e B P PP R B P T B P T T T PSP P B UV R B P L3
NX1=NX+1
IF(K.GT.1)GO TO 10
FVAL=1.0
GO TO 390
10 CONTINUE
IF(K.GT.NX1)GO TO 28
FVAL=EXP(T*P(NX+X))
GG TO 30
20 CONTINUE
FVAL=P (I3 #THREXP(THP(K) )
30 CONTINUE
IUCTURN
END
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FORTRAN 1V Vo 1C~03E+ PAGE 001

0001
0002

0003
0004
00006
0007
0008
0009
0010

0011
0012
0013
0015
0016
0017
0018
0019
6020
6021
0022
0024
0023
0026

Catssegserorseseiekdekafoklorsei kool ok ko ek koo fok ek ko kak sk koo sk kok kR kK

Cresfesiokskackostostek

RS AOR R KRAR AR ORHAR R R KKK R AR KRR RRRKRAC KK KRR KKK
SUBROUTINE INV(A,AIV,ASAV,X,Y,ND,N, IER)
DIMENSION A(ND,ND),AIV(ND,ND}),ASAV(ND,ND),X(1),Y(1)

TR EFIFIITS FEE T T IS IE ST LTI TES "K**ﬂ“k#’#’***** SRR AR RAR AR K

cooann
w

THIS SUBROUTINE CALCULATES THE INVERSE BY REPEATED CALLS TO A
LINEAR EQUATICN SOLVER WHHICH USES DIRECT GAUSSIAN ELIMINATION.
THUS, NONE OF THE DIAGONAL ELEMENTS CAN BE ZERO. A CHECK IS
hADh POR /bRO DIAFUNAL FLEMENTS EVEN THOUGII NONE QHOULD BE ZERO.
e FETEEEPEFFES T TS S TTTTELETEE T EL S ETSIEILIFIIETEESEEEEE TP LTI
TEST "OR LhRO DIACONAL ELEMENTS

e 2 K=1,N

TFCARS(ACK, D) .ET. 1. 6E~-12)C0 TO 2

100=1

GO TO 30

COIITINUL

[i=0

INSESERS S |

GENERATE THE APTROPRIATE UNIT VECTOR
BO 15 K=1,N
Y1) =0.0
IFMK.EQ.NSYY(K)=1.0
CONTINUL
Do 16 1=1,N
BO 16 J=1,N
ASAV(I, D) =ACI,J)
CALL GAUS(ASAV,Y,X,ND,N}
Lo 20 I1=1,N
AIVCI,NS)=X(I)
IF(AS.LT. M) GO TO 10
CONTINUL
RICTURN
END
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0001
0002

0003
0004
@003
0006
0007
0008
0609
0010
0011
0012
0013
6014
0015
0016
0617
00108
0019
0020
0021

EFRE RIS EIEEEFFI I IR I IISEIIEIIIESEIIIEIIFISI SIS IIEEI IS S S SIS LI ST
Cetseskekskokesforsokok el ook oresr ok kel OR R R R Rk kR oR R ok Yo RNk

SUBROUTINE CGAUS(A,Y,X, ID,N)
DIMENSION ACID, ID),Y(1),X(1)

[T FEIITFEEFTIIFIIEIFFEEFFRIFEITEFFEIIIIEI 2T EFIIFIT ST ILETT 2

C

THIS SUBROUTINE SOLVES A SET OF LINEAR EQUATIONS BY DIRECT ELININATIOR

Ok R ek ks R RN R Nk R R K KR ek K R R sk s R R skl sk N KSR s skl stk e R sk R R R SRR R kR Kk ok ok

10

20
30

M=N-1
DO 10 I=1,M
L=f+1 ¢

o 16 J=L,N

IF(A(J,1))o6,10,6

Do 86 K=L,N

ALK =AJ, K ~-ACT,K)*ACT, D ZACT, ID
YCIH=Y(D-Y(D)*AWT, D 7ACL, I)
CONTINUE

(N =Y(N)7A(N, 1D

Do 30 I=1,M

K=N-1

L=K+1

BO 28 J=L,N

YR = YOI =X 2ACK, J)

XK =Y(K) 7A(K, )

CONTINUE

RETURN

END

061
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Cokssiaaieaafeaatoakaksokoiisk ok ok ek R KRR RR AR R R R RRRRR KRR KRR RRR TR K R R
Cesesleesiatsksns? stk ok R ok kR kR R KRR SRR R R RN
6001 SUBROUTINE VAR(P, NX, NO, DT, YO, NV, SUNM, EXVAL)
0002 DIMENSION P(D), YOC 1)
R R R R RHOR SRR R A A
C THIS SUBROUTINE ESTIMNATES THE VARIANCE OF THE DATA FROM THE RESIDUALS.
C IT ALSO CALCULATES THE EXPECTED VALUE OF THE RESIDUALS

Caeshatfapedeiedokekaol ek sk sooopokor sk ks gk kR sk sk e kok kil g ksl sk sk sk sk sk ek eskok ke
0003 N¥1=NX+1
0004 EXVAL=06.0
0005 SUM=0.0
0006 Do 16 K=1,NO
0007 TM=FLOAT(K-1) *DT
0008 Si1=P(1)
0009 DO & J=1,NX
0010 S S$1=81+P(J+ 1) *EXP(P(NX1+J) T
0011 EXVAL=EXVAL+YO(K) -S1
0012 10 SUM=SUM+{YO(K) =S1) k%2
0013 ANO=NO
0014 EXVAL=EXVAL/ANO
0015 SUM=SUM/( ANO-NV)
0016 SUM=SQRT(SUM
06017 RETURN
6018 END
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€001

06062
6003
6004
00035
006066
0007
6608
0010
0011
0012
0013
0014
€015
6016
6017
6018
6919
0020

[ ELF TS EFIR IS I FFEESFF IS ELFIFIIIIIFITIISIESEI LI LIPS P EEIII TS 3233+
Crriskesasttin SEFFFEFESFEFF I I LEFFFL LI FFFIIFEFEIF ST EFEESETFEFEE ST HET TS S S
SUBROUTINE SWAP(NX, VWK, P)
[(EFFEFEF TS ST PSPPI FFSPF I FFFFIIIFI EHTE IS EITIFIE I IPEEEEFE I E 2 25+ 2
C THIS SUBROUTINE ORDERS THE EIGENVALUES AND ASSOCIATED EXPANSION
C COEFFICIENTS. THE TIME CONSTANT CALCULATION AND TIME CONSTANT
C VARIANCE CALCULATION ASSUMES ORDEREDD EIGENVALUES AND EXPANSION
C COEFFICIENTS.
Cokekoisksioskosksesisskoiee ek ksl sl i st st st sk sis st s R ok e spe e sk R s skl sk stk st sz sk e s st R sk sk R R R ok R Rk Rk K
DIMENSIONWK( 1) ,P(1)
NXI=NX+1
NV=2:8: NN+ 1
DO 26 I=1,NX
ETST=-1.E+12
16 J=1, X
IF(P(NX1+J) .LE.ETSTYGO TO 10
ETST=P(NX1+J)
JSAV=J
16 CONTINUE
WK( [+NX1) =P(JSAV+NX1)
P(JSAV+NX1)=-2,0E+12
WK I+1) =P{JSAV+1)
20 CONTINUE
DO 30 1=2,NV
30 P(D)=WK(I)
RETURN
END

e6l
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69901
00062

0003
06G0o4
0005
Go0o
0007
0008
0010
0611
0012
0013
GOI1S5
0016
0017
0018
6019
0020

Caesieonstaokskais EFFI ST IITIL LRI LI LIFI LI LI IELI LTS ES LTSS L ST T2 22T 22

Coeskakesspesiosk ok EFFF TR IS PEEES FTFS IS IF IR LTI I TLITEREI 222 I LI LTS TS
SUBROUTINE TVAR(SGL,SG2,TAU,TSIG,P,NX)
DIMENSION P(1)

Cgaesegesioneogsionoisintokk ks sk ki gk sk sgesiestesk stk sl sk st s s e SRR sk SOk SRR FUR KRR KR KRR

C THIS SUBROUTINE CALCULATES THE TIME CONSTANT USING THE FIRST TWO

C (ORDERED) EIGERVALUES IN AN ANALYTICAL EXPRESSION. THE STANDARD

C DEVIATICN IS CALCULATED USING THE PROPAGATION OF ERROR FORMULA

DR BR3P SEFEREFFEE F I FEEEEIEE S SRR ACRECR KRR R SRR R Rk R R R

NX1=NX+1
Hi=P(NKI+2)
N2=P(NX1+1)
3= K-
HKe=H3/ K1
IF (NX .NE. 3) GO TO 10
B=PINYXTI-3)
WHEURILIANG
10 TAU= (ALOG(H) -1.,) /X2
[ (NX B0, 3) TAU=TAU+ALOG( 1.0-X6) /X2
DVI==(1./X3+TAU) /X2
DV2=1./7{ X1:%xX3)
RIG2=80 DV IRE2+80C2:3:DV21:E2
TS1G=s500T(S1G2)
ITURN
D
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0001

0002
0603
0064
0005
00606

0607
0068
6009
0010
0012
0013
0014
0015
0017
0018
6019
0020
0021
0022
0024
0023
0026
0028
0030
0631
0032
0033
0034
0035
0036

o R S R R e e S e SR R RS2 22 2 S 2 2 S s s 22 2 222 2SS a S22 TR SRS S S

CoaexerrsioRsiisiek koo Rk sk kot ek R kR Aok Rtk ke ek sk kool sk sk stk ake ek ok ok

CaaekaseseoRiokRok Rk R Rkl Rk R Rk Rk kR Rk RO Rk R AR KKK
SUBROUTINE GTDAT(Y, IWRK, NOP, DTN, TO, TMAX, DSNAME, JSKIP)

C~-F THIS SUBROUTINE OBTAINS THE LGSR DATA TFROM THE DATA FILE
C SPECIFIED BY THE USER AND PLACES IT THE PROPER ARRAY FOR
c ANALYSIS.
LOGICAL% T LMM(9) , THEADC64) , DSNAME( 14)
DIMENSTON TWRK(4096) , Y(2648)
CALL. ASSICNC L, DSNAME, 14, '0LD’,*NC’, 1)
DEFINEG FILI 1C1,6201,U, [WI)
READC ' I, ERR=20,END=20) TUEAD, LMY, RL,NO, ITN,
? CIWIKC(K) ,K=1,4026)
20 CORTINUL
DT=RL/FLOAT(NO)
TO=FLOAT(JSKIP) xDT
IF(NO .CGT. 4096) NO=4026
CALL CLOSE(1)
RL=FLOAT(NO-1):xDT
NP=IFIXCTHMAX/DTN+0.99)
TFCNP LI, 2048) GO T0 160
WRITE(?,60)
60 FORMAT( ® Ol TOO MANY POINTS--TMAX MODIFIED :koxkskk’)
TMAX=2048.0%DTN
NP= IF IX( TMAX-DTN+0.99)
160 ISKIP=IFIX(DTN/BT+9.99)
IF(ISKIP .LE. 0} ISKIP=1
DTO=FLOAT( ISKIP) *DT
NPTS0= IT IX( TMAX/DTO)
1F(NPTS0 .GT. 2048) NPTS0=2048
IFCNPTSOISKIP+19 .GT. NO) NPTSO=(NO-19)/ISKIP
bo 200 I=1,NPTSO
J=(1-1) % I8KIP+1+19+JSKIP
209 Y(1)=FLCAT( IWRK(J))
DTN=DT3
NOP=NPTGO
PETURN
ERD
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0001
0002

0008
8004
00605
0606
00607
0008
0009
6010
0011

2013
0014
0015
0016
0617
0018
6019
0020
0021
0022
0023
0024

0025
0026
6027
0028

0029
6030
0031
0032
60633
0935
2036
00637
0033

X“"“'“f‘***a"*"‘ka"*“’******???Y****x** ‘****“:***?a :r-«*,.x.x:m:**

SUCROUTINE LNR(NG, NX, ASAV,P, ND UK DIR A X, Y,YO FPb NMAX
1 NoUT, NOPT,FMIN, FVAL, DT, RS)
DIMENS 10N ACAV(ND.ND),P(1),WK(1),DIR(1),A(ND.1),X(1),
1 Y(D,Yo(D, T
(0151 S P S RPN P

SUBROUTINE Uo

R ok qesessks! % Rl BRI SR MR RO R R KRR R K
Eq TLC LINEARIZATION HETHOD IN CONJUNCTIOV WITH

C THIS
C A CONSTANT STEP SIZE. SINCE THE COREFFICIENT MATRIX FOR CALCULATING
C  THFE SFEARCH DIRECTION IS POSITIVE DEFINITE THE DITRECTION VECTOR
G  SHOULY ALWAYS BE IN A DIRECTION THAT DECREASES TiF FUNCTIONAL. BY
C DETERIIINING THE OPTIMUM STEP SIZE, THIS MINIMIZATION ALGORITHM
C SHOULD ALWAYS CONVERGE.
Cafesieskskakofsfeaksfesksksiraesiopsiokek ok sheksker sl sk sk e festesosieop sk e kokaal el ek M RNR KN AAR KKK
NV=2:%NX+1
NOLSS=0
FOLD=FVAL
7ZR0=0.0
NOPT=-1
NS=0
35 NS=NS+1
I0PT=0

IF((NS/”)*2 EQ.NS) IOPT=1
Cokskeeesrsfesizsiesstosioioksk koot seskesk ik festesfe e sk el ek sl R R R R Rk sk sk sk ko e feoRskkok
C CALCULATE THE SEARCH DIRECTION
10 CONTINUE
CALL ZTZ(NO,NX, ASAV,P,DT,ND)
DO 15 I=1,NV
15 Y(1)=6.0
Do 29 K=1,NO
TH=FLOAT(K~- 1) %DT
RID=YO(I -TFAPR(P, NX, TID
BO 206 1=1,NV
Ki=1
CALL DRV(X1,N¥,TM,P,DR)
20 Y(D)=Y( I)+RIDDR
CALL GAUS(ABAV,Y,DIR,ND,RNV)
Crskskskesodopaioiok koslokopsine ok okt ks ook ek gk skt ek sk Rk kR ok ok kR Rk ek kR R R
C DETERMINE THE OPTIMUM STEP SIZE
NFAIL=0
15A=1
RII0=1.0
a5 CONTINUE
C VERIFY THAT THE SEARCH POINT DOLS NOT INCLUDE A POSITIVE EIGENVALUE
CALL DBRCIK(DIR,P,NX, RHO, VK, ISET)
CALY. VECDP(NV,RIO,P,VK,DIR)
30 IER=6
CALL TFUNCT(KO,NX,ND, A, X, Y, WK, DT, YO, I10PT, IER, FVAL)
IF(IER.EQ.Q9)GC TO 40
I16PT=1
GO TO 3¢
49 CONTINUE
FTST=FVAL¥(1.+EPB)
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9039
0041

0043
00435
0846
0047
0048
0049
00351
00353
0054
0055
6056

0057
8038
0059
0660
061
00562
0063
0064

00635
0066
0068
0069
€071
0072

0073
0074
0075
(20 rerd
8079
0680
0082
0083
0084

0085
0086
0087
0089
009!
0093
0004
0095

IFCFTST.GE.FMIN. AND. ISA.EQ. DGO TO 45
IF (FVAL .GT. 1.01%FMIN .AND. ISA .NE. 8) GO TO 42
C EXTEND THE LIRE SEARCH UNTIL THE FUKRCTIONAL VALUE IS INCREASED
IF (FVAL .GE. FMIN) GO TO 41
RSAV=RIIO
FIHIN=FVAL
CALL VECDP(NV,ZRO,VK,R,DIR)
41 CONRTINUE
IF(ISA.EQ.3)G0 TOC 50
IF (ISET .EQ. 1 ,AKRD. ISA .NE. 1) GO TO 59
ISA=2
RIIO=RIIO*1.618
GO TO 235
42 CONTINUE
C CALCULATE THE OPTIMUM STEP SIZE USING A QUADRATIC APPROXIMATION
ISA=3
Y1=FHIN-FOLD
Y2=FVAL-TFOLD
DET=RSAVERHD#%2-REOXRS AV 2
Al=(Y1%RUEG:E2-Y2%RSAV2) /DET
B1=(RSAV:Y2-RHO%Y1) /DET
RII0=-0.5%A1/B1
GC TG 23
C IF TIE FURCTIONAL IS NOT LOWERED, THE INTERVAL IS HALVED NMAX
C TIMES.
45 NFAIL=NFAIL+1
IF (RFAIL .GT. 2) ICPT=1
REQ=RIG*0.D
IF(NFAIL.LE.NMAX) GO TO 25
NOLSS=NOLSS+1
GO TO 60
Cokspsfemspangsesie sk ek R o el s i oR ek ek e it e R R R R SRR N N kR ek Ok R
C CRHRECK CONVIIGENCE
50 CALL VECDP(NWV,ZRO,R,P,DIR)
PCT=(FOLD-VMIN) 71 O51D
I (PCT U, EPS) NOLSS=NOLSS+1
I (PCT .CE. EPS) NOLSS=0
CALL GRAD(NO,NX,YO,P,DT,X,CED)
IF (CRD .LT. 10.9%EPS*FHMIN) NOI'T=90
60 CONTINUE
PRINT 1900, NS,FMIN,FOLD
1000 FORMAT(® ',* NEW AND OLD FUNCTIONAL VALUES FOR ITERATION ',12/
1 ARE *,E12.5,' AND ',E12.5)
FOLD=FMIN
CALL Xs'1op
1" (NOLSS JGE. 2) NOPT=1
II* (NS .GE. NOUT) NOPT=2
I (NOP'TT LT, 0) CO TO O
70 CONTINUE
RETURN
END
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CaekerckkokRasseri ROk kR sk kR Rk Rk R kR kok ek ik Rk s R R koo Rk
DEEEREE PRI FEHPEFEPEEPEI LS EEEREESE S IR FEEEEEETTEFET LS EEERE SR II 2L L B2 3
0001 SURROUTINE ZTZ(NO,NX,A,P,DT,ND)
6002 DIMENSION ACND, ND) P(l)
Cokaatesisionsiodkak stttk siotsk ik sk sk ik sk ok kR ek stk Rtk ek siok R sloR sk ok R
C  THIS SUBROUTINE CALCULATE? THE. SQUARE MATRIX NEEDED TO INVERT
C TO (‘B’l/\lﬂ '”'I‘, V/\RIANLE—COVAR[ANCL I‘IA'I"IIX

C ‘ ~1 ',z»v SRR R N AR In.»»a— 0 432 ata ale 024 &bs s ats Afs nis nia als Als 022 a2 a] 'nbw 12 ate ads o, lAL-» A% AN 5[' 22 ate «lu'»!ug:*:
©0C3 =
0604 NXi= NX*I
65035 NX2=[X+2
0096 HXNOP 1=FLOAT(KQ+1)
0007 XNO=FLOAT(NO)
Q003 XNOM1=FLOAT(NO~1)
6669 A(1, 1) =XNO
00610 BO 10 I=1,NX1
6011 Do 160 J=1,NXl
0012 IT (J .E@. 1) GO TO 10
0014 K=P(NX+.])
0013 s (1 J1Q. 1) GO TO 20
00617 K=+ PONX+TD)
0018 20 R=LEXPODTEX)
0019 RL= EXP (DT ERKNO)
0020 ACT, D=(RL-1.0)/(R~1.0)
0021 16 CONTINUE
0022 DO 36 I=1,NXl
0023 DO 30 J=NX2,NV
06624 X=P(J)
0025 IF (I .E€. 1) GO TO 40
0027 X=X+PORXHTD
0028 40 R=EXP(DTHX)
0029 RL=EXP{ DT XxXNO)
0030 RLI=EXP(DT«X:xXNOP1)
0031 ACT,J)=(1.0+XNOMI*RL) /(R-1.0)
0032 ACI,J)=AC(T,J)~-(PL-1.0)/(R~1.0) %2
6833 ACT, D =A01, Jy%P{J-NX) DT
CO034 36 COUTINUR
0633 BO 50 1=NX2,NV
6036 DD 36 J=1,RNV
G037 H=P(J)+P(I}
00833 R (DTS
co39 PL=RXD (DT X <XNOD
0640 ACT,B)y=2.08(1, @*XDOMI *PL}/7(R~1.0)
6041 A01,03=A01,0)-2.0%(RL-1.0) /(R~1.0) ®%2
6042 A(I,J =A(I.J)—(BL—1.0)/(RPI.0)
0043 ACT,J)=ACL,0)+1.0
6044 ACT, ) =ACT, J) ~XNOML»%2::RL
00435 ACT,N=ACT, J)x1.6/7(1.0-T)
0046 ACT I =ACT, J) #DT*P( I-NX) %P ( J~NX) %DT
00647 1) CONTINUE
0043 DO 76 I1=1,RV
6049 Do Yo J=1,NV
00350 70 A(J, D =ACT, T

0031 RETURN
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0001

0002
00603
0005
0006
0007

CagseiokeisieksieRiorvesekisRior kiR kdkore ksl ko kissorop ik Rk Rk

Cistesiesi s R A SR A SRR R R R R N RN N AR AR RN AR R ATOR AR AR KRN RN RO RERK R AR R K

Corsesorsesioek kseger ek koo fog R sor ek ek ek kg kg ek ke ek ok
SUBROUTINE XSTOP

C-T SUBROUTINE XSTOP

C

C-F THIS SUYBROUTINE CHECKS TO SEE WHETHER A REQUEST TO HALT
THE RUN HAS BEEN MADE., IF THE REQUEST HAS BEEN MADE
THE OUTPUT LIST FILE IS CLOSED AND EXECUTION TERMINATES
NORMALLY. THE REQUEST IS MADE BY TYPING THE CHARACTERS
ST FOLLOWED BY A CARRJAGE RETURN ON THE TELETYPE.

CALL TTYABT(ISTOP)

IF (ISTOP .NE. 1) RETURN

CALL CLOSE (10)

STOP ' EXECUTION TERMINATED BY OPERATOR REQUEST®

END

Qoo

661



APPERDIX C

A TYPICAL IN-PLANT TEST PROCEDURE

A typical test procedure for performing a combined self heating,
loop current step response test program is presented below. Of course,
it is not necessary to perform both tests. However, they both use the
same test equipment and the test duration is short for both methods,
so it is probably advisable to perform both types of test during this
stage of implementing the technology. This makes it possible to com-
pare two independent results for each sensor and obtain added confidence

in the results. All tests should be made at identical flow, temperature,
and pressure conditions.

The actual test procedure for a particular plant will depend on
the format used by the utility and by its policy for special tests.
Consequently, the test procedure will need to be tailored somewhat for
a specific plant.

The procedure does not address the question of how to modify the
safety system logic during the test or special instructions for plant
operators during the tests. These will have to be specific to the plant
being tested.

The procedure is:

1. Set up the equipment as near as possible to the cabinet

where the RTD leads are connected to the plant transmitters.

The equipment includes:

- The test instrument (bridge, switchable power supply,
adjustable decade resistors, adjustable-gain amplifier

to amplify the voltage drop across the bridge, and a



20]

digital voltmeter that can monitor the amplifier
output or can be switched to measure the voltage
drop across a fixed bridge resistor to provide the
current).
- an oscilloscope connected to the bridge amplifier
output.
- a strip chart recorder connected to the bridge
amplifier output.
- a data recording system (analog or digital) connected
to the bridge amplifier output and to the current
switch status (open or closed) indicator output.
Connect a spare RTD to the test instrument. The RTD should
be immersed in water {in a bucket) to within two inches of
the top connector on the RTD.
Turn on the power supply with the current selector switch
set to LOW and the power supply voltage at its lowest setting.
Adjust the power supply to give 1-5 ma.
Balance the bridge (adjust the decade resistor until the
bridge amplifier output goes to zero).
Check to be sure that the resistance is correct for the
water temperature.
Switch the current selector switch to HIGH.
Adjust the power supply to give 60 ma (typical through the
sensor).
Adjust the amplifier gain to give an outpiit voltage that is

suitable for the recording equipment.



10.
11.
12.
13.
14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.
26.
27.
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Switch the current selector switch to LOW.

Wait until the bridge amplifier output settles out.

Turn on the strip chart recorder.

Switch the current selector switch to HIGH.

Wait until the bridge amplifier output settles out.
Measure the time required for the output to reach 63.2
percent of its total variation.

Compare this time with a reference value (obtained on
previous tests on the same sensor in still water).

If the difference in times is more than fifteen percent,
check equipment and procedure.

If the difference in times is less than fifteen percent,
set the current selector switch to LOW.

Turn off the power supply.

Disconnect the spare RTD.

Remove the selected plant RTD leads from its in-plant
transmitter.

Connect the in-plant RTD leads to the test instrument.
If the RTD has more than two leads, select only one

from each side of the filament.

Turn on the power supply and adjust to give 1-5 ma
through the RTD.

Balance the bridge.

Check the noise level at the bridge amplifier output.
Set the power supply to its Towest value.

Switch the current selector switch to HIGH.



28.

29.
30.
31.
32.
33.

34.

35.

36.

37.

38.
39.
40.

41.
42.
43.
44
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Start the self heating test. Increase the power supply
voltage to give a current through the RTD of about 10 ma.
Wait until the bridge amplifier output settles out.
Rebalance the bridge.

Calculate the power dissipated in the RTD filament.

Record the resistance and power.

Repeat steps 23 through 32 for current values up to

60 ma (typical).

Plot resistance versus power on linear graph paper.

If the data indicate a well-defined straight 1ine, go

to step 35. If the data indicate scatter, repeat steps

23 through 32 for more data points.

Start the Loop Current Step Response (LCSR) tests. Balance the
bridge at low current then set the current selector switch to

HIGH.

Set the power supply voltage to give a current of 60 ma
(typical) through the RTD.

Adjust the amplifier gain to give an input voltage that
is suitable for the recording equipment.

Set the current selector switch to LOW.

Wait for the bridge amplifier output to settle out.
Start the strip chart recorder and the data recording
equipment.

Switch the current selector switch to HIGH.

Wait until the bridge amplifier output settles out.
Switch the current selector switch to LOW.

Determine the time required for the bridge amplifier



45.

46.

47.

48.
49.
50.
51.

52.
53.
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output from step 41 to reach 63.2 percent of its total
variation from the strip chart recorder trace.

Plot the data from step 41 on semi-log paper and use
the exponential peeling technique (see Appendix G) to
estimate the time constant.

If the results obtained from steps 44 and 45 agree
reasonably well with prior experience or with tests
on other sensors of the same design, continue to

step 47. 1If not, check equipment and procedures
before continuing.

Repeat steps 38 through 43 at least five times (more
for noisy or unstationary data).

Set the current selector switch to LOW.

Turn off the power supply.

Disconnect the sensor.

Repeat steps 22 through 50 for the next sensor to be
tested.

Complete tests on all sensors.

Remove test equipment.



APPENDIX D
A METHOD FOR SMOOTHING THE LCSR TEST TRANSIENTS

A LCSR test transient is naturally smooth unless fluctuations
in fluid temperature or flow occur during the collection of the test
data. A method was developed to smooth the LCSR test transients that are
contaminated with noise. Since small fluctuations in temperature and
flow of the coolant of a nuclear power plant are expected, the LCSR
test transients for installed RTDs may be contaminated with noise.
Plant data should be smoothed before analysis for prediction of response
time if this occurs. The method is based on averaging a set of the LCSR
tests performed on a sensor. A program called LCSRAV* is available that
takes a set consisting of several noise-contaminated LCSR data sets and
constructs a smoothed average transient. The program uses the following
procedures:
1. Determine the average value (TAVE) of the steady state
portion of the transient (the portion of the LCSR transient
in which the output does not change with time). This is
done by fitting a straight Tine through the data in the
steady state region (see Figure D.1).
2. To compensate for the possible offsets that may occur from
one test to another, an arbitrary level (TC) is selected,
the difference (D) between TAVE and TC is determined

(D = TC - TAVE) and the transient is shifted by adding

*
Program is written by Mr. J. E. Jones of the Nuclear Engineering
Department of The University of Tennessee.
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AVE

Relative Temperature

Time

Figure D.1. A No;se Contaminated LCSR Test Output (Hynothetical
Data).
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D to each data point in the transient (see Figure D.2).
This forces the data sets to have the same TAVE' Since
the correction is for possible offset rather than an
amplitude scaling problem, an additive correction is used
instead of a multiplicative factor.

3. Evaluate the average value of the response for each point
on the reconstructed data sets. For example, if the value
of the response at time = to + At from the first, second
and third data sets are 601, 602 and 603 respectively, the
average value of the response at t = tO + At is equal to
602 (see Figure D.3).

4. Construct a transient from the average of each data point

obtained in Step 3.

The smoothing algorithm is applicable only if:

1. The temperature of sensor surroundings has not changed
during the LCSR tests.

2. The fluctuation of output is random.

3. The data set is sufficiently long to provide adequate
data for evaluating the TAVE'

4. Sufficient number of LCSR data sets are provided for a

given sensor.

The capability of this procedure was evaluated by generating
random noise on the LCSR test data and using the computer program to
average a set of tests and provide a smooth transient. Fiqure D.4

shows a sample of a LCSR transient (for a Rosemount 176KF RTD) obtained
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by simulating random fluctuations on the data in the laboratory. The
plot from the analysis of this data set is shown in Figure D.5. As
indicated in this figure a time constant of .432 second is obtained
from this data set for the sensor. This value compares with a time
constant of .420 obtained from a plunge test in the same condition in
the laboratory. Figure D.6 shows the smooth transient resulted from
averaging 40 LCSR tests that had random fluctuations of the shape shown
in Flgure D.4. The plot from analysis of the smooth data set is given
in Figure D.7. A time constant of about .422 second is obtained from
this data set. This value compares with .432 second obtained from the

contaminated data set and .420 from the plunge test.



10 ¢ Time Constant = .432 sec

9

3 LCSR Raw Data
© . LCSR Fitted Data
g
g 7 P ..-
w K
& S
o ,
g 6. ;
{72} .'
« ;
§ 5 T——— Predicted Plunge Test Response
B N
2 ;
)
24
[T
o
g 3 ]
z
&U ’.

2 i

!
1
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

Time (sec)

Figure D.5. Results o§ the Analysis of a Noise Contaminated LCSR Test Data (for Rosemount
176KF RTD).

¢lLe



Sensor Qutput

Figure D.6.

(5]

0.0 0. 1.0 1.5 2.0 2.5 3.0

Time (sec)

A Smoothed LCSR Data Set (for Rosemount 176KF RTD).

€Le
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APPENDIX E
LABORATORY INSTRUMENTATION AND DATA ACQUISITION

E.1 Laboratory Facilities

A thermometry laboratory consisting of a rotating tank, response
time test circuitry and recording facilities was established for
evaluating the methods of in-situ response time testing of platinum
resistance thermometers. The output signals from this equipment can
be connected to a mini-computer system with remote access and control
capability. A schematic of the response time test setup is given in
Figure E.1. The components of this setup are described in the

following sections.

E.1.1 Rotating Tank

The rotating tank consists of a drum of diameter = 22 inches and
height = 13 inches. It is filled with water at room temperature to
a depth of about 9 inches. A 1/12 HP motor rotates the drum to pro-
vide water velocities from zero at the center to 4 ft/sec at the edge

of the drum. This system is shown in Figure E.2.

E.1.2 Measurement Circuit

A Wheatstone bridge with current switching capability is used
for measuring the RTD response characteristics. The output of the
bridge is amplified with a differential amplifier with adjustable gain.
A potentiometer is included in the circuit to vary the output voltage
of the power supply and provide a means for adjusting the current (see
Figure E.3). For the variable resistance of the bridge, a seven-

element decade box with a maximum resolution of .01 ohm is used. A
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fixed resistor with high current tolerance (high wattage resistor)
is usually used in series with the decade box to avoid heating the
elements of the decade box when large currents are passing through
the bridge circuit. The fixed resistors of the bridge are 200 ohms
with a rating of 25 watts to avoid heating due to high currents. A
detailed diagram of the measuring circuit and specifications of its

components are given in Appendix F.

E.1.3 Recording Devices

The transient data were recorded on one or more of the recording

devices listed in Table E.1.

E.1.4 Miscellaneous Equipment

A Tist of miscellaneous equipment used during this work is given

in Table E.2.

E.2 Data Collection Procedures

E.2.1 Plunge Test

Experimental Setup. The experimental setup for a plunge test is

shown in Figure E.4. The sensor is held in air before being plunged into
the rotating tank of water in a location where a desired water velocity is
maintained. A step change in temperature is introduced either by plunging
the sensor from room temperature air into warm water or by using a warm
air blower to heat the sensor prior to immersion into the water at room
temperature. A system was designed for dropping the sensor into the
water in a manner to insure a minimum vibration of the sensor. The

sensor drop assembly consists of a steel rod 7/8 inches in diameter



TABLE E.1

RECORDING INSTRUMENTS

Recording Device

Manufacturer

Model Number

Application In This Work

Strip Chart Recorder

Multichannel Analyzer

Magnetic Tape Recorder

Mini-Computer

Hewlett-Packard
Ino-Tech
Ampex

Digital Equipment
Corporation

7402A

IT-5200

PR-2200
PDP-11

Recording plunge and
LCSR test transients

Recording and Monitoring
LCSR test output

Field Data Acquisition

Digital Data Acquisition

02¢



TABLE E.2

MISCELLANEOUS EQUIPMENT

Equipment

Manufacturer

Model Number

Power Supply
(Adjustable Qutput)

Amplifier

Digital Multimeter

Function Generator
Filter

Storage Display Unit
Computer Display Terminal

Hard Copy Unit

Computer Video Terminal

Wanlass

University of Tennessee
University of Tennessee
Systron Donner
Hewlett-Packard

Valballa Scientific
Sencore

Hewlett-Packard
Krohn-Hite
Tektronix
Tektronix

Tektronix
Tektronix

Digital Equipment Corp.

Maverick II
100
200
7004
3476A
4440
37
3310A
3323
613
4006-1

4631
4610

VT50

Lee



TABLE E.2 (continued)

Equipment Manufacturer Model Number
Line Printer Centronics 101
Digital Equipment Corp. Decwriter II
Versatec 1200A
Oscilloscope (with storage) Tektronix 7633
Hewlet-Packard 1220A
Teletype Teletype Corp. 33TU
Voltage to Frequency University of Tennessee NE

Converter

¢ée
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and 20 inches in height with a holder to which the sensor is secured
(see Figure E.5). The drop assembly falls into the water under
gravitational force when a latch is removed. A cushion stop is used

to reduce vibration. An adjustment can be made to stop the rod after

a desired immersion depth is achieved. A timing circuit is provided

in the setup to indicate the instant that the sensor touches the water.
This circuit provides a timing signal using the conductivity of water

to close a loop consisting of a battery and the recorder with connections

to water and the body of the sensor (see Figure E.6).

Testing Procedures. The steps followed in performing a plunge

test are:

1. Connect the RTD to the measuring circuit (keep the
current switch on the low position).

2. Balance the bridge.

3. Adjust the output voltage of the power supply to give
a low current level of 1 to 6 milliamperes.

4. Adjust the gain of the bridge amplifier and the gain of
the chart amp]ifier* to obtain a useful output Tlevel.

5. Rebalance the bridge (if necessary).

6. Select a high chart speed (25 mm/sec or 125mm/sec) to be

able to obtain an accurate measurement of response time.

*The strip chart recorder used in this study has a built-in
amplifier with adjustable gain.
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7. Drop the sensor into the stirred tank and record the
transient on the strip chart recorder until a steady

state is attained.
A typical output of a plunge test is shown in Figure E.7.

E.2.2 LCSR Test

Experimental Setup. The equipment setup for a LCSR test depends
on the method of recording the test data. Although the LCSR test data
are usually stored on a mini-computer disk, a strip chart recorder and
a multichannel analyzer also may be used to monitor the test output.
Field data from operating plants may be stored on a magnetic tape and
then transferred to a computer disk through an analog to digital con-
verter (this is to avoid taking the computer for field data acquisition).
The steps taken in recording the LCSR test data on each of these re-
cording devices follows:

1. Strip Chart Recorder: The LCSR test data can be recorded
directly on a strip chart recorder, i.e., no special equip-
ment or procedure is required.

2. Multichannel Analyzer: For recording the LCSR test data on
a multichannel analyzer a voltage to frequency (V to F) con-
verter is necessary. The output voltage from the bridge
circuit goes through a V to F converter before it can be

recorded on the multichannel analyzer. The multichannel
analyzer has the capability of converting the data into

digital form that can be printed on a teletype (see

Figure E.8).
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3. Analog Tape Recorder: The equipment setup for recording
the LCSR test data on magnetic tape is shown in Figure E.9.
Since the maximum limit of the voltage input to the tape
recorder is about one volt, an attenuator system is used to
drop the voltage to a value of less than one volt before it
goes to the tape recorder. The output from the tape recorder
is then amplified to provide desired voltage levels. The
field data are usually contaminated with high frequency
components that are not useful. A low pass filter is usually
used to remove the unnecessary components of the data.

4. Mini-Computer: Figure E.10 shows the equipment setup for
collection of LCSR test data with the mini-computer. The
output of the measuring circuit passes through an analog to
digital converter (A/D) before it can be taken by the computer.
A timing circuit is used to provide a signal to initiate the
collection of data at the instant a test starts. After a test
is completed the data are automatically stored on a disk,
displayed on a storage display unit and copied with a hard

copy system.

Test Procedures. A LCSR test may be performed in two different

manners. One in which the bridge circuit is initially balanced when a

low current is passing through the sensing filament and another in which

the bridge is initially balanced when a high current is used. The
procedures for a LCSR test in which the bridge is balanced at a low

current level are listed first:
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1. Connect the sensor to the measuring circuit (keep the
current on low level).

2. Place the sensor in the rotating tank at a location where
a desired fluid flow rate can be obtained.

3. Balance the bridge.

4. Adjust the output voltage of the power supply to obtain
a high current level of about 40 to 60* milliamperes.

5. Adjust the gain of the amplifier to give an output voltage
of 5 to 10 volts when the high current is passing through
the circuit.

6. Return the current to the low value.

7. Connect the measuring system to the recording device (if
sampling the data with the mini-computer, connect the
system to the analog to digital converter, set the timing
signal, make certain that the input voltage to the analog
to digital converter is less than 10 volts and run the
sampling program).

8. Switch the current to the high level and record the output

until a steady state is achieved.

A typical LCSR test transient is given in Fiqure E.11 for which the

bridge has been balanced with a low current passing though the circuit.

*
This is a typical range of current used in the course of this
study. Higher or lower current levels can also be used.
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Another method of performing a LCSR test follows:

1. Balance the bridge while a high current is passing through
the RTD.

2. Step the current back to its low level. This will give a
negative output voltage.

3. Wait until a steady state output is obtained.

4. Switch the current to high level and record the transient.

The output of a LCSR test obtained by balancing the bridge at high current

is given in Figure E.12.

E.2.3 Self-Heating Test

Experimental Setup. The experimental setup of Fiqure E.13 is

used for a self heating test. The variable resistor Rv changes the
voltage input to the bridge and gives different values of current

through the circuit. Two digital voltmeters (DVM) are used, one to measure
the voltage drop across a fixed resistor of the bridge and another for

measuring the output of the system.

Testing Procedures. The following procedures are used to perform

a self heating test in the laboratory:
1. Connect the RTD to the measuring circuit.
2. Place the RTD in the rotating tank at a location where
it is exposed to a desired fluid flow rate.
3. Keep the current switch closed to have a high current level
throughout the test.
4. Adjust the variable resistor RV (potentiometer) to start with

a minimum voltage input to the bridge.
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5. Balance the bridge and record the decade box resistance
at which the bridge is balanced. This resistance is equal

1 3 -
to the sensor's resistance (RRTD = RD).

6. Measure the voltage drop across one of the fixed resistors

of the bridge. Calculate the current from IRTD = VFixed Resistor .
Re.
Fixed

2
RTD"

7. Calculate the power input to the RTD form: P = R - 1

RTD RTD
8. Increase the voltage input to the bridge using the potentiometer
(Rv). This increases the current through the sensor. Repeat
from step 5 on. Use small voltage increments to allow 15 to 20

measurements before the sensor current reaches its limit.

9. Plot the values of RRTD versus PRTD on a cartesian coordinate

system.

The plot is called a self heating curve. A typical self heating curve is

shown in Figure E.14.
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APPENDIX F
COMPONENTS OF MEASURING CIRCUIT

A unit was built for response time testing of RTDs.* This
unit consists of:
1. A DC power supply with adjustable voltage.
2. A Wheatstone bridge circuit with current switching
capability.

3. A differential amplifier with adjustable gain.

A complete schematic of the unit is given in Figure F.1. The components

of the unit along with their specification and approximate price for the

specified quantity are listed in Table F.1.

*Unit was designed and built by Mr. J. T. Smith of Nuclear
Engineering Department of The University of Tennessee.
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TABLE F.1
COMPONENTS OF RESPONSE TIME TESTING UNIT

Specification or Total

*

Component Part Number Quantity Price ($)
Transformer 50 volts, 1 Amp. 1 6.00
Power Supply +15 volts 1 51.00
Diodes (Rectifier) IN4002 4 2.00
NPN Transistor (Q1) 2N, 3904 1 .50
Voltage Regulators (IC1, IC4) BA, 78 MG 2 3.50
Precision Amplifier (IC2) 6054 1 59.00
Operational Amplifier (IC3) 741 1 1.00
JK Flip Flop (IC6) 7473 1 1.50
Relay (IC5) W172, Dip 5 ] 10.00
Switch (SW1) 10 poles Single Wafer 1 12.00
Switch (SW2) Double Pole Single Throw 1 2.50
Switch (SW3) Double Pole Single Throw 1 2.50
Switch (SW4) Triple Pole Triple Throw 1 2.50
Capacitor (C1) 1000 MF, 50 V Electric 1 5.00
Capacitor (C2) 1500 MF, 50 V Electric 1 5.00
Capacitor (C3, C6) 33 pf 2 .30
Capacitor (C4, C5) .1 MF 2 .30
Potentiometer (R1) 10k, 10 Turn 1 3.50
Resistor (R2, R3) 200 , 3 percent 2 4.50
Mini-Potentiometer (R4; 10ke 1 2.00
Resistor (R5, R10, R14 1k 3 .75
Resistors (R6, R7) 15k 2 .50

he



TABLE F.1 (continued)

Specification or

*
Component Part Number Quantity Price ($)
Resistor (R8) 5k 1 .25
Resistor (R9) 3.5k 1 .25
Resistor (R11, R12) 2009 2 .50
Resistor (R13) 6008 1 .25
Resistor (R15) 2.1k ] .25
Resistor (R16) 8.5k% 1 .25
Resistor (R17) 13.5k 1 .25
Resistor (R18) 36.5ka 1 .25
Resistor (R19) 163.5k8 1 .25
Bananna Plug - 1 .25
B&C Connector - 9 9.00
Voltmeter 7 1 150.00
Metal Box - 1 20.00
PC Board - 1 16.00
Probe Sockets - 7 4.20

*
The component number matching with schematic of Figure F.1 are given in parenthesis.

€ve



APPENDIX G
LCSR DATA ANALYSIS BY EXPONENTIAL STRIPPING

The first few eigenvalues of the response of a sensor to an
internal step change in temperature may be obtained by graphical
exponential stripping to obtain estimates of the eigenvalues. The

exponential stripping technique is based on fitting the LCSR

test data into an equation of the form:

(G.1)

e~z
p=J
)
+
=
—
(-’.

o(t) = A0 +

where

.< P Pis = eijgenvalues of LCSR test

0(t) = output of the LCSR test

A = a constant which is zero if the test bridge is
balanced at high current prior to collection
of the LCSR test data. If the bridge is balanced
at low current, A0 is equal to the final value of

the response.

w(t) = process noise level.

If Ao is specified,

y(t) = 0(t) - A = f Ae '+ w(t). (6.2)
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If the eigenvalues are well separated and the noise level is not

significant, the following approximation is valid

-P,t
! for t>> 1—-. (6.3)
Py

y](t) R A]e
Thus, when the LCSR test data is plotted on semi-log paper, a straight
line should be apparent when t is significantly greater than the
slowest time constant. The slope of this line is equal to P]. A

second eigenvalue may be identified by subtracting the straight line

from the remaining portion of the data:

_ -Pst (6.4)
yz(t) = y(t) - y](t) = . Aie . .

1

N~
N

Again, if the eigenvalues are separated one can conclude that,

-P,t
yo(t) = Age 2 te< - (6.5)

ﬁf
The plot of Equation (G.5) on a semi-log paper is a straight line whose
slope is equal to P2‘ The second mode may be subtracted from the rest
of the data (if any) to provide a third eigenvalue. This process may

be repeated as long as the subtraction is possible. Experience indicates
that identification of more than two eigenvalues by the exponential
stripping technique is usually not possible. These eigenvalues are

used to evaluate an approximate value of the plunge time constant.

The plunge time constant is identified from the eigenvalues of the

LCSR test by the following equation:
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= l—'[] - In (1- Bl) - 1n (1- El) - In (1- El)]
Tplunge Pl n P, n Ps Tt P
P.I < P2 < P3 . . W< Pn (G.6)
where
Tp]unge = the sensor time constant
P], P2, e e Pn = the eigenvalues of the LCSR test.

Equation (G.6) is derived in Section 2.4.2.

A LCSR data set for a Rosemount 176KF RTD tested in the laboratory
is given in Table G.1. The data were obtained from a teletype used
to furnish the LCSR data digitized by a multichannel analyzer. The
plot of this data on a semi-log paper is shown in Figure G.1. A
straight Tine is first fitted to the final portion of the data to give

the eigenvalue corresponding to the slowest time constant (TS = %—).
1

The straight 1ine is then subtracted from the rest of the data to
furnish a new data set for obtaining the second eigenvalue. As shown

in Figure G.1 the eigenvalues are:

2.945 secf] >

e/
1l

.34 sec

T

5 = 36.125 sec_] +'r2 .028 sec.

o
[t}

L

If P] and P2 are substituted in Equation (G.1) the plunge test time

constant is obtained as

= [1-1n(1- 2.945 )] = .37 sec

Tplunge = 2.945 36.125
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TABLE G.1
LCSR TEST DATA FOR ROSEMOUNT 176KF*

At = .008 sec
Analyzer's Sensor's Analyzer's Sensor's
Channel Output Channel Qutput
89 7586 114 2326
90 5813 115 2264
91 5092 116 2215
92 4707 117 2149
93 4450 118 2110
94 4229 119 2043
95 4068 120 2012
96 3897 121 1944
97 3781 122 1923
98 3633 123 1855
99 3541 124 1838
100 3407 125 1770
101 3330 126 1757
102 3205 127 1683
103 3141 128 1679
104 3023 129 1611
105 2970 130 1606
106 2861 131 1542
107 2813 132 1537
108 2711 133 1481
109 2662 134 1470
110 2574 135 1422
111 2519 136 1403
112 2445 137 1365

113 2387 138 1336




248

TABLE G.1 (continued)

At = .008 sec

Analyzer's Sensor's Analyzer's Sensor's

Channel Output Channel Output
139 1307 153 957
140 1272 154 905
141 1252 155 916
142 1211 156 868
143 1200 157 876
144 1154 158 835
145 1149 159 837
146 1099 160 805
147 1098 161 796
148 1049 162 775
149 1050 163 758
150 1000 164 747
151 1004 165 723
152 951 166 722

*
Data are obtained by balancing the bridge at high current.
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Granhical Exponential Stripping for Identification of
LCSR Eigenvalues (for Rosemount 176KF RTD).
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This compares well with a time constant of .38 sec obtained from a
plunge test performed under the same conditions as this LCSR test.

If the test bridge is balanced at a low current prior to collection
of the LCSR test data, the final value of the response must be subtracted
from the data before plotting on semi-log paper. A LCSR data set for
which the bridge was balanced at a low current is given in Table G.2.

The data were obtained from the strip chart recorder for a Rosemount
177GY RTD tested in the laboratory. The eigenvalues of the LCSR test

obtained from the plot of the data in Figure G.2 are:

.238 sec"]

o
it

1.20 sec'.l

-
1]

The plunge test time constant is:

Tplunge .2;8 [1- 1 (1- %%%%‘)] = 5.13 sec
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TABLE G.2
LCSR TEST DATA SET FOR ROSEMOUNT 177GY RTD*

Tfina] - Ao =715
At = .2 sec
T (sensor's output) T;tT T (sensor's output) Te-T
293 422 589 126
433 282 595 120
457 258 602 113
474 241 607 108
489 226 612 103
502 213 617 98
513 202 620 95
525 190 625 90
534 181 629 86
545 170 633 82
554 161 638 77
562 153 641 74
570 146 645 70
576 138 648 67
583 132 650 65

*
Bridge was balanced at low current prior to collection of
this data set.

*%

Tf 1s an abbreviation of Tfina1‘
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Figure G.2. Identification of LCSR Eigenvalues by Graphical Exponential
Stripping Technique (for Rosemount 177GY RTD).
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