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EPRI PERSPECTIVE

PROJECT DESCRIPTION

This final report, In-Situ Response Time Testing of Platinum Resis­

tance Thermometers, brings to a close the second of a three part program 

to provide practical means for in-situ sensor time response measurement.

A prior final report (EPRI NP-267) has been issued on the subject of 

pressure sensor response testing. An interim report on resistance tem­

perature detector (RTD) testing (EPRI NP-459) is superseded by this 

document. The third and last project, exclusively concerned with the 

noise analysis approach to response time testing, has yet to be completed.

The response of RTD sensors is an important safety consideration 

where these instruments are used in reactor protection system applications. 

Current Nuclear Regulatory Commission (NRC) requirements specify that 

sensors be included in periodic safety system time response checks. The 

advantage of in-situ testing over sensor removal and test is not only a 

matter of convenience. Radiation exposure to personnel and possible 

damage to the sensor in the removal process are important considerations. 

More significant is the fact that laboratory tests cannot precisely 

duplicate the same conditions the RTD experiences in service. This may 

lead to greater uncertainty in the laboratory test results.

PROJECT OBJECTIVES

The project investigated three prospective methods for in-situ RTD 

response measurement: loop current step response; self-heating; and

noise analysis. The intent was to assess the feasibility of each approach



within the context of NRC testing requirements, to validate techniques 

on the basis of laboratory test data, and to demonstrate techniques in 

commercial power plant applications.

CONCLUSIONS AND RECOMMENDATIONS

In-situ RTD response testing technology has been advanced to the 

point where it is believed that viable methods now exist for in-plant 

application. The project investigators provide suitable recommendations 

in the report as to the use of the alternative methods in meeting NRC 

requirements. The report should: provide sufficient detail to enable

utilities to implement a suitable RTD dynamic test program; and provide 

a technical basis with which to justify the use of a particular method.

David G. Cain, Project Manager 
Safety & Analysis Department 
Nuclear Power Division
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ABSTRACT

This report provides final results of Research Project 503-3, 

concerned with in-situ resistance temperature detector time response 

verification. The report covers the theoretical bases, laboratory 

experimentation, and in-plant testing of three prospective methods. 

Sensors employed in this project are representative of those employed 

in safety-related applications in the field.
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PREFACE

This report documents research performed under contract with the 

Electric Power Research Institute. It is a revised and updated version 

of a previously issued interim progress report (EPRI Report NP-459).

In order to make a complete, self contained report, this final report 

contains some portions that are identical with parts of the interim 

report. Also, portions of this report are taken from another report 

generated in this project. It was written by H. M. Hashemian and is 

titled, "In-Situ Response Time Testing of Platinum Resistance Thermom­

eters in Nuclear Power Plants."

This report is in two parts. Volume 1 deals with thermometry funda­

mentals and testing methods that employ electrical heating of the sensor 

filament in a platinum resistance thermometer to obtain the test data 

needed to determine the sensor time constant or to detect changes in the 

time constant. Volume 2 deals with a method for estimating sensor time 

constants by analyzing the normal fluctuations in the sensor output (noise 

analysis).
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SUMMARY

Methods for in-situ response time testing of platinum resistance 

thermometers were developed, implemented and validated. These methods 

provide the technology needed to comply with the recommendations on 

sensor response time verification of temperature sensors outlined in 

U. S. Nuclear Regulatory Commission Regulatory Guide 1.118. The methods 

were validated by theoretical analysis, laboratory testing, and four 

in-plant tests on operating pressurized water reactors.

The methods are:

1. Loop current step response
2

The temperature transient due to a step change in I R heating 

of the sensor filament is analyzed to determine the response 

that would have followed a fluid temperature change. The test 

can be implemented in a plant by connecting a test instrument 

at the point where the sensor leads are normally connected to 

their in-plant transmitter. The data analysis is best performed 

by a computer. Laboratory results show that the time constant 

estimates by this method are within 10 to 20 per cent of their 

true values.

2. Self heating
2

The steady state temperature rise due to steady state I R 

heating of the sensor filament is used to detect changes in 

the sensor's overall heat transfer coeficient and consequently 

changes in its response time. The results are expressed in 

terms of the self heating index (ohms of resistance change/watt

S-l



of I R power). An increase in the self heating index indicates 

an increase in response time. The test can be implemented in 

a plant by connecting a test instrument at the point where the 

sensor leads are normally connected to their in-plant trans­

mitter. The test data are analyzed by constructing a plot of
2

resistance change versus I R power and measuring the slope.

Limited information has been obtained on the sensitivity of the 

self-heating index to changes in time constant. This is needed 

to determine the change in self heating index required to indicate 

a given change in the time constant.

3. Noise analysis (Volume 2 of this report)

Noise analysis uses the normal small fluctuations in sensor 

outputs to obtain information on sensor response characterstics. 

Basically, the idea is that fast sensors can track the actual 

fluid temperature changes better than a slower sensor. Methods 

have been developed for quantitative time constant estimation 

by noise analysis that apply when the statistical properties 

of the fluid temperature fluctuations are known. Unfortunately, 

it has been found that these assumptions are not routinely 

satisfied in an operating plant, making noise analysis unsuit­

able for quantitative response time measurement. However, noise 

analysis, results are sensitive to changes in sensor characteristics,

so noise analysis is useful for degradation monitoring.

It appears that the in-situ response time measurement problem for 

platinum resistance thermometers can best be handled by a test program 

that uses a combination of methods. This program would include degradation

2
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testing (using the self-heating method and/or noise analysis method) 

on a more frequent schedule than quantitative response time testing 

(using the loop current step response method). Degradation tests only 

give qualitative information on changes in response characteristics 

from a reference condition, but they have the potential for greater 

simplicity and lower cost than quantitative response time measurements.

S-3



1.0 INTRODUCTION

1.1 Historical Background

The response time has been considered an important property of 

resistance temperature detectors (RTDs) since their early use for 

industrial temperature measurement. Classically, the response was 

measured prior to installation in the plant utilizing a measurement 

that involved plunging the sensor into flowing water. The time constant 

was usually defined as the time required to reach 63.2 per cent of the 

final response following a step change in fluid temperature.

The Nuclear Regulatory Commission added a new dimension to sensor 

response time measurement when it recommended that utilities operating 

nuclear power plants make in-situ time response measurements of sensors 

installed in the plant. This recommendation was promulgated in U. S. 

Nuclear Regulatory Guide 1.118.

1.2 Objectives of This Research

The research reported herein has the objective of developing a method 

for in-situ response time testing of platinum resistance thermometers of 

the type used in modern pressurized water reactors. The test is only 

required to show that the response time is less than a specified maximum 

allowable value; but, of course, actual determination of the response time 

is also acceptable. In addition, the testing method should have these 

characteristics:

1. Technical acceptability so as to receive Nuclear Regulatory 

Commission approval

2. Minimal cost for special equipment

3. Minimal complexity.
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1.3 Approaches for In-Situ Testing

Several methods are plausible for in-situ testing of resistance 

temperature detectors (RTDs). The two broad categories are: (1) fluid

temperature perturbations external to the RTD, and (2) internal pertur­

bations of the RTD by ohmic heating in the sensing wire. Applicable 

methods related to fluid temperature perturbations involve:

1. analysis of the fluctuations in the sensor output during normal 

operation (noise analysis)

a. using time series analysis

b. using frequency domain analysis

c. using correlation function analysis^

2. analysis of induced temperature fluctuations

a. using control rod motions to cause power changes and 

concomitant temperature changes

b. using steam valve or feedwater valve perturbations to induce 

primary fluid temperature changes

c. using special local devices near the sensor such as fluid 

injection ports or small electrical heating elements.

Those related to internal perturbations include the analysis of:

1. a transient sensor output induced by above-normal current that

causes ohmic heating of the sensor filament (usually called a
(2-4)loop current step response test)'

2. the steady state measurement of temperature rise vs. ohmic heating 

level in the sensor filament (usually called a self heating test).

In this report, the methods considered are:

1. the loop current step response (LCSR) test
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2. the self-heating test

3. noise analysis (using time series analysis) - reported in Part B 

under separate cover.

These methods are used since they require no system modification and can 

be accomplished with a modest investment for test equipment. Induced 

fluid temperature perturbations are omitted because: (a) transients

induced with control rods, steam valves or feedwater valves involve test 

complexity that is probably unnecessary for sensor response measurement 

(though these methods may be useful for measuring lags due to by-pass 

lines used for some sensor installations), and (b) special in-pipe 

hardware would involve an expensive plant modification that is unwarranted. 

Furthermore, testing by a remove-and-test procedure or a simple periodic 

replacement is ruled out because these methods ignore the important effects 

of the environment in the pipe where the measurement is to be made.

The loop current step response (LCSR) test exploits the fact that 

heat transfer resistances and heat capacities are independent of the direc­

tion of heat flow. Thus, the same heat transfer characteristics that control 

the transient response following a change in ohmic heating in the sensor 

also control the transient response following a change in fluid tempera­

ture change. Of course, the transients are not the same for both pertur­

bations. For a fluid temperature change, the heat must diffuse through 

the assembly to the sensing wire. For an ohmic heating change, the heat 

is generated exactly at the point of measurement, then it diffuses through 

the sensor assembly to the fluid.

Since the response to a fluid temperature change is desired and the 

response to a change in ohmic heating is feasible in an installed RTD, 

there is a need to transform the ohmic heating transient into the transient
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that would occur if the fluid temperature changes. This has been done 

for the case of a step change in ohmic heating and is referred to as the 

loop current step response transformation.^’^ The transformation may 

be performed analytically for RTDs that meet two conditions necessary in 

the theoretical development (predominately one-dimensional heat transfer 

and negligible heat capacity between the filament and the center of the 

sensor).

The physical basis for the self-heating test is that the temperature 

rise in a system with a given internal heat generation rate is inversely 

proportional to the overall heat transfer coefficient. Thus, the slope 

of the curve of temperature rise versus heat generation rate due to ohmic 

heating in the sensor element (the self-heating curve) is inversely propor­

tional to the heat transfer coefficient. A change in the slope of the 

self-heating curve indicates a change in the heat transfer resistance. The 

slope of the self-heating curve is called the self-heating index and is 

usually expressed in ohms/watt. A change in effective heat capacity of 

the RTD system would change the response time, but would not change the 

self-heating index. However, only a change in the heat transfer resistance 

is considered plausible so an in-plant measurement of the self-heating 

index would provide an indication of changes in sensor response time.

Noise analysis is a well established diagnostic procedure. It may 

be used to identify the sensor dynamics so that an impulse response can

*In the interim report (EPRI Report NP-459) this condition was stated 
in a more restrictive way. The condition was previously stated as a 
centrally located sensing wire. The new statement of the condition is more 
precise and has application for at least one practical sensor design.



5

be obtained. Knowing the impulse response, one can readily determine the 

step response. Consequently, the time constant associated with a plunge 

test can be identified. Details relating to the application of noise 

analysis for this research are given in Volume 2 of this report.



2.0 RESISTANCE THERMOMETRY

2.1 Material Requirements

Resistance thermometry exploits the temperature dependence of metals 

to monitor temperature. Desirable properties of materials for resistance 

thermometry are:

1. large temperature coefficient of resistance

2. linear curve of temperature vs. resistance

3. chemical inertness

4. ductility

5. mechanical strength.

Platinum is an excellent material to provide these characteristics, and 

most industrial resistance thermometers use platinum wire as the sensing 

element.

2.2 RTD Characteristics

A typical RTD consists of a fine platinum wire mounted inside a 

metal sheath (usually stainless steel). It is important that the filament 

(the platinum wire) be insulated from the metal sheath. Two construction 

methods of mounting the filament are worth mentioning: 1) winding the

filament on an electrically insulating support inside the sheath, then 

backfilling with magnesium oxide or cement, and 2) coating the inside of 

the sheath with a cement, then attaching the filament to the coating 

material.

Each of the construction methods has advantages. If a support 

structure is used to mount the filament, stress effects on sensor perfor­

mance can be minimized; however, the back-fill material needed for elec­

trical insulation has significant thermal resistance. If the filament
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is very close to the sheath, as is the case for the second construction 

method mentioned above, the time response of the sensor is faster than 

when the filament is mounted on a separate support. The fast time 

response is desired for some applications.

RTDs may be designed for direct immersion into a fluid stream (wet- 

type) or for installation into a well in the stream (well-type). To 

improve the heat transmission in well-type sensors, a thermal bonding 

material is often used in the gap between the sheath and the well.

The sensors found in pressurized water reactors manufactured by 

different vendors are quite different. Table 2.1 gives specifications 

on some of the commonly-used sensors. Figures 2.1 through 2.4 show some of 

these sensors and X-rays to reveal their internal characteristics.

The resistance element is connected to lead wires that connect to 

appropriate instrumentation. Sensors may be constructed with the lead 

wire configurations shown in Figure 2.5. The multiple lead and dummy 

wire configurations are used in measurement systems to compensate for 

lead wire resistance to obtain accurate temperature measurements. RTDs 

are made with single sensing elements per sheath and with dual elements 

that allow two independent measurements with the same sensor.

The temperature coefficient of resistance of pure annealed platinum 

wire is 0.003925 ^|/0C (0.002181 ^|/0F)- By selecting the wire 

length and diameter, one can obtain various values of absolute resistance 

at any temperature. Standard sensors have 100 ohms at 0°C or 200 ohms at 

0°C. Temperature coefficients depend on platinum purity, and commercial 

sensors usually have slightly smaller temperature coefficients than pure 

platinum. A pure platinum 100 ohm sensor would have a temperature coef­

ficient of 0.3925 ohms/°C (.2181 ohms/°F), and a pure platinum 200 ohm



TABLE 2.1

SPECIFICATIONS OF THE RTDS USED IN THIS WORK

Sensor
Manufacturer

Model
Number

Plants 
Where Used

Wet Type
Or Well Type

Sensor
Sheath
O.D.

Well
O.D.

Number of 
Sensing Elements 

Per RTD

2 Wire
3 Wire 

or 4 Wire
Dummy
Wire?

Resistance 
at 0°F
R0(n)

REC* 177-GY
**

B&W wet .335" NA 2 4 no 100

REC 177HW
**

B&W well .290" .410" 2 4 no 100

REC 104-AFC C.E. well .T25 .281" 1 2 yes 200

REC 176-KF Westinghouse wet .375" NA 1 4 no 200

REC 104ADA
***

C.E. well .125" .25 1 2 yes 200

REC 104VC C.E. wel 1 .125" .25 1 2 yes 200

Sostman 0606 Westinghouse wet .25" NA 1 4 no 200

Rosomount Engineering Company. 

Babcock and Wilcox Co.
***

Combustion Engineering Inc.
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Figure 2Ja X-Ray of the Rosemount 177GY Sensor
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Figure 2Jb Picture of the Rosemount 177GY Sensor
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Figure 2.2a X-Ray of the Rosemount 177-HW Sensor.



Figure 2„2b Picture of the Rosemount 177-HW Sensor.
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Figure 2.3a X-Ray of the Rosemount 176-KF Sensor.
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Figure 2.3b Picture of the Rosemount 176-KF Sensor.
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Figure 2.4 X-Ray of the Rosemount 104-AFC Sensor,
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a) 2 Wire

AA/V

b) 3 Wire

AAV

c) 4 Wire

d) 2 Wire with Dummy
AAA/

Figure 2.5. Possible Lead Wire Configurations for RTDs.



17

sensor would have a temperature coefficient of 0.7850 ohms/°C (0.4361 

ohms/°F). Temperature coefficients for commercial sensors are typically 

80 to 90 percent as large as for those with pure platinum elements.

2.3 RTD Instrumentation

The instrumentation used in resistance thermometry is usually a 

bridge circuit as shown in Figure 2.6. Various special methods for con­

necting multiple-wire RTDs are available, but all use the same basic 

Wheatstone bridge circuit. If the two fixed resistors have the same 

resistance, R . then the RTD resistance can be determined by finding the
a

value for the variable resistance, R^, that nulls the voltage drop, aV. 

If the bridge is used in the non-nulling mode then changes in the RTD 

resistance are related to the voltage drop across the two arms of the 

bridge by

^Rd”RRTD^Ra
(Ra+V tRa+>W

E. (2.1)

Note that the voltage drop is approximately linearly related to the RTD 

resistance for bridges in which the change in the sensor resistance is 

small compared to the sum of the original RTD resistance and the fixed 

resistance, R .d

The voltage, E, used in normal applications is selected to give 

insignificant ohmic heating in the RTD. The self heating effect is 

quantified by the self heating index expressed in ohms/w. A typical 

value is 8 ohm/w for a 100 ohm sensor. For such a sensor with a 2 ma 

sensing current, the heat generation rate is 0.4 mw. This gives a
_3

resistance change of 3.2x10 ohms with a resulting temperature measure-
_3

ment error of 8.15x10 °C. Similar calculations show that a 50 ma current 

would give a temperature increase of 5.09°C (9.17°F).
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I

Figure 2.6 A lypical Bridge Circuit Used in Conjunction with an RTD.
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2.4 Time Response Characterization of Sensors

2.4.1 The Concept of Time Constant

The time constant is commonly used to represent the response 

characteristics of a dynamic system. It has unambiguous meaning 

only for first order systems (described by a first order differential 

equation or equivalently, a first order transfer function):

r|y
-pjr + ax = au (2.2)

or

If Equation 2.3 is solved for a unit step change in the input, u; one 

obtains

x(t) = 1 - e “at . (2.4)

If the response is evaluated for t = ^ > then

x(t = t" ) = 0.632. (2.5)a

The quantity, p is defined as the time constant, x. It is easily 

identified from test data by measuring the time required for the response 

to achieve 63.2 percent of its final value following a step change in the 

input.

2.4.2 Higher Order Dynamic Systems

The first order approximation is usually inadequate to represent 

the dynamics of typical temperature sensors. This means that higher
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order differential equations or transfer functions are required to 

represent the dynamics. As will be shown in Section 3.2, a transfer 

function without zeroes (no numerator dynamics) is usually adequate:

6(s)
sn + a/"1 + . . + ans+a„ 1 o

(2.6)

or

G(s) (s-s1)(s-s2) • (s-V
(2.7)

For a step change in the input, the response is

x(t)
a„ e slt 0

(-s1 )(-s2) (-sn) s-[{s^-sz) . . . (s1-sn)

+
a e s2t o

s 2(S2-S1) • T¥v
(2.8)

or

x(t) (“S-j) (~s2) . ! i (-s^j [ 1 +
(-s1)(-s2) • • (-sn) e Slt
S-| (s^ -S2) . .

(-s1)(-s2) ' • ^~sn^
s2(s2“Si).. ■ <s2-sn>

e s2t + . . . ] (2.9)

The s^ are the poles of the system transfer function. They are 

all negative real numbers for transfer functions for temperature sensors. 

It is common to introduce the concept of a time constant for each mode

of the solution:
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(2.10)

Thus, we may write:

-t/T

^7
x(t)

-t/T2
+ . .

+

(2.11)

It is clear that there is no simple relation between the multiple time 

constants in the response equation. However, it is still accepted 

practice to define an overall time constant, x, as the time required to 

achieve 63.2 percent of the final response following a step change in 

the input.

It is possible to develop an expression that relates the overall 

time constant, x, to the individual time constants, x , using an assumption 

that is well satisfied in typical temperature sensors. The faster time 

constants have a decreasing effect on the response compared to the slowest 

one as time progresses since they decay faster. For example, if we let 

x^ be the slowest time constant and evaluate the second exponential at 

t/x1 = 1, we obtain the following:



22

T1A 2

~t/T ?
e (at t = ti)

2 .135

3 .050

4 .018

5 .007

Since T-|/T2 15 typically about 4 for a sensor, the term contribution 

is small by the time t = t-j. Since the term has the most important 

effect on t, we can also assert that t^ and higher terms have a small 

influence when t = x. Thus, we may write

T T T
12 ’ ‘ * n

-t/T.

x(t) ^ i . ___________________________________
_L (J_ + (JL + L.)
"T1 "T1 T2 "T1 Tn

(2.12)

Now, we can set x(t)/x(00) = 0.632 and solve for t to obtain:

-T/Tl T?1 = .368 (1 - ^)(1 - .
1 1

• (1 - ~) 
1

(2.13)

or

T = T (1 _ &1(1 - A) _ £r(i - ^1) - . . S.T, O - J!) (2.14)
1 11 1

To illustrate the effect of the faster time constants on the overall 

time constant, the ratio, T/T-j, was evaluated for various values of
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t2/^•] with t = 0 for i greater than 2. The results are shown in 

Figure 2.7.

2.4.3 Ramp Response

The ramp response of sensors is of interest because safety 

studies generally involve ramp changes. The ramp response is obtained 

readily from the transfer function of a system. First, let us consider 

a first order system:

g(s)=tvVt (2-15)

The ramp response is evaluated using the Laplace transform of a ramp 

with ramp rate K as follows:

L (Ktl = (2.16)

Then:

x(s)
s2(ts + 1)

(2.17)

The response may be obtained by inverse Laplace transformation:

x(t) K [t-x + T (2.18)

For t»T, the exponential term is insignificant. The response is as 

shown in Figure 2.8. The output, x(t), is delayed relative to the 

true process value, Kt, by a time that is less than or equal to t.

The asymptotic delay is called the system ramp time delay and is equal 

to the time constant for a first order system. Note that the ramp time
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Basis t 0 for i >2

1.6 -

1.4 -

1.2 -

Figure 2.7. Effect of Faster Tine Constant on Overall Tine Constant.
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Figure 2.3. Typical Ramp Response and Illustration of Ramp 

Time Delay and Measurement Error.
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delay is independent of the ramp rate. The asymptotic measurement 

error is Kt.

Now, we will evaluate the ramp time delay and measurement 

error for sensors described by higher order dynamic models. Consider 

the transfer function:

G(s) (s-s1)(s-s2) . . . (s-sn) (2.19)

ao = (-s1)(-s2) . . . (-sn)

1/

and the input, Kt, with Laplace transform, . The Laplace transform 

of the output is

Ka„
x(s) = ^--------------------------- (2.20)

s (s-s1)(s-s2) . . . (s-sn)

The sensor response may be evaluated by inverse Laplace transformation. 

The partial fraction method gives

x(s) A1 A2 A3
—'----- T ------------- ■+■

s s s-s^ s-s 2
(2.21)

The arbitrary constants must be evaluated if the complete response is 

required. However, we are interested only in determining the ramp 

delay time and the asymptotic measurement error. Consequently, the 

exponential terms are of no interest, and we can concentrate on and 

A2. These may be evaluated to give the following result (see Appendix A 

for the derivation of this result):
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A-j = K (2.22)

A2 = -K [xi + x2 + . . . xn]

Therefore

(2.23)

x(t) 'v KCt-tx-j + x2 + . . . + xn)]

In this case, we obtain:

(2.24)

ramp time delay = x^ + x^ + . . . x (2.25)

and

asymptotic measurement error = K[x^ + + . . . + xn] (2.26)

2.4.4 Relation Between Time Constant and Ramp Time Delay 

The time constant and the ramp time delay are given by:

T T
time constant = x, [1 - £n(l —-) - £n(l - -^) - . .

! x1 T1

and

• ]

(2.27)

t2 t3ramp time delay = x [l + — + — + . . . ].
i x1

(2.28)

Insertion of numerical values into these expressions shows that the 

ramp delay time is always less than the time constant, but the difference 

is small for values of the x^ that are typical of temperature sensors.

To illustrate this, the percent difference between the time constant and 

the ramp time delay was evaluated for a two-term representation (x^ and x 

The error is shown in Figure 2.9. We note that for a typical ratio of 

0.20, the difference is less than two percent.
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2.5 Factors Affecting the Steady State and Transient Performance 

of RTDs

2.5.1 Introduction

A change in physical, electrical or thermal properties of the 

sensor materials may cause errors in steady state and/or changes in the 

transient performance of an RID. The sources of errors in steady state 

performance and the factors affecting the transient response of RTDs 

are discussed in this section.

2.5.2 Errors in Steady State Performance

Some of the possible sources of errors in the temperature measured 

with an RTD are covered in the following sections.

2.5.2.1 Self Heating Errors

Measurement of temperature with resistance thermometers using a 

Wheatstone bridge requires a small electric current called the sensing 

current. This current causes a small temperature rise in the sensor 

and results in an increase in the resistance of the sensing filament.

The increase in the resistance of the sensing element indicates a false 

increase in the temperature being measured. The error in temperature 

measurement due to the sensing current is called the self heating error. 

The self heating error may be compensated by measuring the resistance 

at two different currents to permit an extrapolation to zero power 

input to the RTD to get the resistance at the temperature being measured. 

Usually, the sensing current used is small enough so that negligible 

self heating errors occur.

29
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2.5.2.2 Errors Due to Stem Losses

The transfer of heat from the region of the sensing filament 

along the axis of the sensor's sheath is usually called a stem loss.

Stem losses reduce the amount of heat transferred to the sensing 

filament and introduce errors in temperature measurements. Stem 

losses are minimized by filling the sheath with insulating materials 

such as MgO powder or placing mica disks along the leads inside 

the sheath.

The errors due to stem losses for several industrial resistance 

thermometers were measured by Carr^. He measured the resistance of 

the thermometers as a function of immersion depth in an oil bath with 

a temperature of about 100°C. He demonstrated that the resistance of 

these thermometers will not change more than the equivalent of .09°C 

when the immersion depth is varied from 10 to 25 cm.

2.5.2.3 Errors Due to Drifting Resistance

According to Dutt, ^ when an RTD is exposed to a wide range of 

temperature for a long period of time, the resistance at a reference 

temperature increases. This is due to dimensional changes and con­

tamination from the materials used for supporting the wires. Therefore, 

periodic calibration of resistance thermometers is required for accurate 

measurement of temperature.

2.5.3 Factors Affecting the Transient Response of RTDs

The response of an RTD to a temperature transient depends on the 

physical and thermal properties of the sensor and its environment. 

Industrial resistance thermometers are usually exposed to a wide range 

of temperature, pressure, flow, vibration and corrosive materials.
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These parameters have an influence on the properties by which a sensor 

response is characterized. A discussion of the effect of process 

parameters on the dynamic performance of an RTD is given in the 

following sections.

2.5.3.1 Effect of Temperature

As temperature rises, the dimensions of materials in the sensor 

change. If dimensional changes caused expansion of gas-filled gaps, 

the resistance to transfer of heat to the sensing filament would 

increase and result in a slower response. Reduction of gaps would 

occur if expansion of other materials compressed the gap spaces.

This would decrease the heat transfer resistance of the sensor and 

cause a faster response. Therefore, the net effect may be either a 

faster or a slower response.

For the well-type RTDs with air in the thermowell, higher temperature 

reduces the heat transfer resistance in the air. This is due to the fact 

that the conductivity of air increases with temperature (see Figure 2.10) 

and results in a smaller heat transfer resistance for the sensor. As 

mentioned earlier, the air gap inside the thermowell of well-type RTDs 

is sometimes filled with a thermal bonding material to improve the 

response time. The effect of temperature on the well-type sensors with 

a thermal bonding material in the thermowell appears to be significant. 

Experience based on laboratory testing of a substance called Never-Seize 

that is sometimes used for thermal bonding indicated that this substance 

changes to a powder when it is exposed to a temperature of about 600°F 

in air for less than half an hour. The result of degradation of Never- 

Seize with temperature may result in a slower response of the sensor.
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0 100 200 

Temperature (°F)

Figure 2.10. Thermal Conductivity of Air Versus Temperature.
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2.5.3.2 Effect of Pressure

A faster response is expected for an RTD operating in a high 

pressure environment. This is because pressure can compress the 

sensor and fill up the gaps (if any) in construction materials. How­

ever, for typical sensors for PWR applications, this effect is expected 

to be negligible.

2.5.3.3 Effect of Flow

The surface heat transfer resistance of an RTD depends on the

flow velocity to which the sensor is exposed. A high flow velocity

increases the heat transfer coefficient of the surface and improves

the sensor response time. This is understood from the heat transfer

(8)correlation for flow over submerged bodies. ;

h D -1/3
-T-2- CPr]

D G n
b [-M 

yf
(2.29)

where

G = the mass flow rate 

Dq = outside diameter of submerged body

Uf = viscosity of the fluid

CDyfPr = Prandtl number (-r— ; C = specific heat capacity of fluid)
P

h„ = the surface heat transfer coefficient

kf = thermal conductivity of the fluid

D G
b and n = constants that depend on the Reynolds number (-^—)
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These constants for different values of Reynolds numbers are given in 

Table 2.2. The effect of fluid flow rate on the surface heat transfer 

resistance is illustrated for a typical case where the body is sub­

merged in water for which the flow rate changes from 3 ft/sec to 

40 ft/sec.

3 ft/sec

W-'1/3

kf
* m 10 ft/sec

DnGl ni
b, (-^ 1 1

D G9 n9
b, 22 v y

This equation reduces to

(2.30)

DnGi ni
b. (-2-!-) 1 1

DoG2xn2
bo (-^) 

’lf2 ' y,

(2.31)

in which

G.| = the mass flow rate at 3 ft/sec

G2 = the mass flow rate at 40 ft/sec

hmi = surface heat transfer coefficient at 3 ft/sec

h^ = surface heat transfer coefficient at 40 ft/sec
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TABLE 2.2

CONSTANTS OF EQUATION 2.29

DoG/y n b

1-4 .330 .891

4-40 .385 .821

40-4000 .466 .615

4000-40,000 .618 .174

40,000-250,000 .805 .0239
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and = constants for a Reynolds number at 3 ft/sec 

b2 and n2 = constants for a Reynolds number at 40 ft/sec.

Si nee

mass flow rate = fluid flow rate x density

and the density of water at room temperature (70°F) is about 

62.27 lbm/ft3 then:

G.| = 3 x 62.27 = 186.81 lbm/sec-ft3 

G2 = 40 x 62.27 = 2490.8 lbm/sec-ft2

The viscosity of water at room temperature is 2.37 Ibm/ft-hr. If 

is assumed to be about .5 inch, then

D0G1 4
Re, = -9-L = 1.18 x 10H

1 vf

0 G? r

Re0 = = 1.58 x 1032 vf

From Table 2.2 the values of n-j, n2> b^ and b2 for these values of 

Reynolds numbers are:

.618 n2 = .805

.174 b2 = .0239

substituting the Reynolds numbers and the values of n-|, 02* b-| and b2 into 

Equation 2.31 will result in:
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.157

Thus, the surface heat transfer coefficient and therefore the overall 

heat transfer coefficient increases when the fluid flow rate is 

increased from 3 ft/sec to 40 ft/sec. On the other hand, the relation 

between overall heat transfer coefficient and response time is 

approximately given by

When the fluid flow rate to which a sensor is exposed increases, the 

surface heat transfer coefficient of the system increases and results 

in an increase in the overall heat transfer coefficient which reduces 

the sensor response time.

Equation 2.29 may also be used to study the effect of temperature 

on the surface component of the response time of an RTD. A typical 

case in which the sensor is submerged in water and temperature changes 

from 70°F (room temperature) to about 500°F is considered:

(2.32)

(2.33)

70°F
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where

= the surface heat transfer coefficient at 500°F

h^ = the surface heat transfer coefficient at 70°F

Prl = Prandtl number at 500°F

Pr2 = Prandtl number at 70°F

k^-| = thermal conductivity of water at 500°F

= thermal conductivity of water at 70°F

G-j = mass flow rate at 500°F

G2 = mass flow rate at 70°F

= viscosity of water at 500°F

Uf2 = viscosity of water at 70°F

b.j and n^ = constants for a Reynolds number at 500°F

b2 and n2 = constants for a Reynolds number at 70°F.

The following data were obtained for water:^

At 500°F 1) kfl = .356 BTU/hr-ft-°F

2) Prl = .83

3) = .26 Ibm/ft-hr

4) density = p-j = 49.02 lbm/ft^

At room temperature

(70°F) 1) kf2 = .349 BTU/hr-ft-°F

2) Pr2 = 6.78
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3) y^ = 2.37 Ibm/ft-hr

4) density = P2 = 62.27 lbm/ft^

If the water flow rate assumed to be 3 ft/sec, then:

G-| = 3 x 49.02 = 147.06 lbm/sec-ft^

G2 = 3 x 62.27 = 186.81 lbm/sec-ft2

For 0 = .5 inch: o

te, = (-5/12)(147.06)(3600) = g 48 x 104

Reg ■= (•5/12)|)86,8JJ(36pO). . 1.18xl04

The values of n^, n2» b^ and for these Reynolds numbers are

.805 n2 = .618

.0239 b2 = .174

Upon substitution of these data into Equation (2.31) one will obtain

1.963

Therefore, the surface heat transfer resistance and the overall heat 

transfer resistance of a sensor decrease with temperature and result 

in a smaller response time.
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The effect of the surface resistance on response time depends on 

the relative importance of internal heat transfer and surface heat 

transfer. This is discussed in section 3.4.

2.5.3.4 Effect of Corrosion

Corrosion on the sheath or on the well of an RTD forms an 

insulating film that results in a slower response.

2.5.3.5 Effect of Vibration

The effect of vibration on the performance of temperature sensors 

is of critical importance. Response time degradation and failure of the 

sensor may result from operating in a severe vibrating condition. De­

gradation of response time due to vibration occurs if the sensing 

structure (sensing element and/or supporting structure) or the insulating 

materials are displaced or gaps are opened inside the sheath of the sensor. 

The displacement of the sensing structure or insulating materials and 

expansion of gaps in the sensor affects the internal heat transfer 

resistance and introduces response time degradation. On the other hand, 

vibration may detach the sensing coil from the connecting wires inside 

the sensor and result in a complete failure of the system. Also, stresses 

imposed on the sensing coil by vibration may cause changes in the re­

sistivity of the sensing filament which affects the performance of the 

sensor. If the sensor is subjected to periodic stresses that have frequency 

components matching the natural frequency of the sensor, the sensor can be 

vibrated to destruction.



3.0 THE LOOP CURRENT STEP RESPONSE TRANSFORMATION

3.1 Introduction

The result of interest is the time constant associated with a

step change in fluid temperature external to the sensor. The time 

constant is defined to be the time required for the sensor output to

reach 63.2 percent of its final steady-state value after a step change 

in fluid temperature. This time constant is usually obtained from a 

plunge test in a laboratory environment,. Since the plunge test cannot 

be used to obtain the time constant of an installed RTD, the LCSR test 

is proposed as one method to obtain an estimate of the desired plunge 

test time constant.

A transformation is needed to convert LCSR data into a prediction 

of the response that would occur following a fluid temperature step 

change. The transformation may be developed using a general nodal 

model for sensor heat transfer. The development is independent of the 

number of nodes included in the model, so use of this approach does 

not imply any restrictive assumptions. The following sections give some 

details on RTD heat transfer that permit formulation of a transformation 

and that define the conditions for validity of the transformation.

3.2 Mathematical Development of the LCSR Transformation

An analytical transformation for converting loop current step 

response (LCSR) test results into plunge test results may be developed 

using a general nodal model for sensor heat transfer. Consider first a 

system with predominantly one-dimensional heat transfer. In this case, 

the nodal model may be represented schematically as shown in Figure 3.1.
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*1 Qi+1

Figure 3.1. Schematic of a One-Dimensional Node-to-Node Heat Transfer 
Model.
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The accuracy of such a model may be made as great as desired by using 

enough nodes.

The dynamic heat transfer equation for node i is:

dT. , I

<Ti-l - V - VTi - Ti+1> +

where = heat generation rate in node i 

M.j = mass of material in node i

= specific heat capacity of material in node i 

= heat transfer resistance for node i-1 to node i 

T.. = temperature of node i.

Dividing through by (MC)^ and defining constants gives

dTi
3t~= ai,i-l Ti-1 " ai,i Ti + ai,i+l Ti+1 + biQi

where

1
ai »i-l “ (MC). Ri -j

. _ 1 /l . 1 V
ai»i " TMC]T ^Ri_1 + R.;

(3.1)

(3.2)

ai,i+l = (MC). RV 

bi

The nodal equations may be applied to a series of nodes, starting 

at the node closest to the center (i=l) and ending with the node 

closest to the surface (i=N). The equations have the form:

dTl
dt = “all T1 + a12 T2 + bl Q1 

dT2
dt = a21 T1 " a22 T2 + a23 T3 + b2 Q2
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dT3
dt " a32 T2 “ a33 T3 + a34 T4 + b3 Q3

dT

dt
N

aN,N-l N,N 'N + CN,FTF + bN QN

where

Tp = fluid temperature.

These equations may be written in matrix form:

dx
dt Ax + Bq + cTp

where

T

T

1

2
T3 a32 ”a33 a34

X A =

(3.3)

TN aM-l " aN,

b] 0 0 . . .

0 b2 0 . . .

0 0 b3 . . .
q

^2

^3

QN J



Laplace transformation gives:
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[sI-A] x(s) = c Tp(s) + B q(s). (3.4)

The Laplace transform solution for the response of any node, , may 

be found using Cramer's rule. Let us consider several cases:

l--no heat capacity in region between the filament and the center 
★

of the sensor , no heat generation in any nodes, fluid temperature 

perturbation, one dimensional heat transfer

T-j (s)

where

F(s)

F(s)
rsT^r

0

0

0

0

_al 2 

(s+a22)

"a32

0

0

“a23

(s+a33)

"a34

0

0

"a34 ‘

(s+a44)

CN,FTF^s^ '

(3.5)

“aN,N-l ^S+aN,N) 

(3.6)

"k
In the interim report (EPRI Report NP-459), this was referred to 

as a central node. The specification used here is more general and 
applies to the configuration of some sensors.



This may be written
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0

(5+822) _a23

“a32 <S+ats+a33) -a34 . .

0

-aN-l.N-l (3.7)

This determinant is for a matrix in lower triangular form (all elements 

above the diagonal are zero). The determinant is given by the product 

of the diagonals, all of which are constants. Therefore, for a fluid 

temperature perturbation in a one-dimensional heat transfer system, 

the response of the innermost node is characterized by a transfer 

function with no zeroes. If the sensing element in an RTD is centrally 

located, or if there is insignificant heat capacity between the filament 

and the center of the sensor, then this type of transfer function 

describes the response characteristics of the sensor.

The transfer function may be written

Tl(S) = k

r^T ~ ]si-a]

K (3.8)
vS“P-j) (s-pp . • •

where

p.. = poles (identical to eigenvalues of A).

For a unit step change in Tp, Tp(s) = 1, and we may write:

T1^S^ s(s-p-j) (s-p2) . . •
(3.9)
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Inversion of this Laplace transform using the residue theorem gives:

p,t
1 e 1

^i^^ ^(-p-j) <> • • (-Pfj) (?]) (p^p^ * • <>*

Pot
+ _ - -y. _ _

(?2' VP2"P'j' • • •
(3.10)

Thus, we make the following important observation:

For an RTD with predominantly one-dimensional heat 

transfer and with insignificant heat capacity between the 

sensing element and the center of the sensor, the poles 

alone (no zeroes) are adequate to characterize the 

response due to a fluid temperature change.

The implication is that if one can identify the poles by some other test 

(such as the LCSR), then he can construct the response to a fluid 

temperature step.

2--significant heat capacity between the filament and the center 

of the sensor, no heat generation in any nodes, fluid temperature 

perturbation, one dimensional heat transfer

This case may be analyzed for the response of any non-central node, 

but for rotational simplicity, let us consider the response of the 

second node. In this case

T2(s) F(s)
Til^AT (3.11)



where

F(s)

(s+a-j-j) 0

-a. 0

0

0 0

"a23 0
(5+833) -a34

CN,FTF^s^ *

(3.12)

This may be written

F(s) = CM F Tp(s) (-1)
(2+N)

(s+a^) 0

-a.

0

0

(s+a33> -a34

0

0

0

(3.13)

Again, we observe that the matrix is triangular, but the diagonals

are not all constant. In this case, the transfer function will have

one zero. For the response of nodes further from the center, there

will be more zeroes. Thus, the poles alone are not adequate to

construct the response for an RTD if the sensing element is not

located at a position with insignificant heat capacity between the

filament and the center of the sensor.

3--insignificant heat capacity between the filament and the center

of the sensor, heat generation in central node, constant fluid

temperature, one-dimensional heat transfer

T-| (s) F(s)
W=K\

(3.14)
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F(s)

bl Q1 ”al2

0

0

0

0

• • •

-a. (s+a^o) -a-

• • •

(3.15)

This may be written

F(s) bl ^

(s+a22) "a23 0 0 ...

_a32 (5+333) -a34 0 ...

• 
o ~a43 (s+a44)

• •

"a45 * • •

• • • »

•

•

• •

• •

• • • •

• • • •

(3.16)

In this case, the matrix is not triangular, and the transfer function 

will have zeroes.

The transfer function may be written:

T-j(s) -j (s-z-j) (s-z2) . . . (s-zM)

Q^s) " K (s-p^ (s-p2) . . . (s-PN) ’

For a unit step change in Q^Q^s) = j)> we obtain

(s-z-|) (s-z2) . . . (s-zM)

T1^S^ “ sU-p-j) (s-p2) . . . (s-pN) •

Inversion by the residue theorem gives:

t _ „ir(-zi> • • • <-zm> . 'fr2!' 'Pr^ 
‘iu'_ l(-p1) i-p2) ... i-pn) (p,) (prp2) .

(P2-Zi) (P2"z2^ ‘ • * ^P2"ZM^ P2t 

IpJ) (P2“P-|) • • • (P2~P|p

(3.17)

(3.18)

• (PrzM)e

^l-PfP

+ + . . .]. (3.19)
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Note that the response is determined by the zeroes as well as the poles. 

However, the poles are the same as for the fluid temperature change 

case. Thus, if we can identify the poles from a LCSR test, we can 

construct the equivalent fluid perturbation response using Equation (3.10).

4--insignificant heat capacity between the filament and the center of the 

sensor, no heat generation in any nodes, fluid temperature perturbation, 

multi-dimensional heat transfer

In this case, there is branching in the heat transfer (see Figure 3.2).

This means that the temperature of a node may be influenced by more 

than just two neighboring nodes as in the one-dimensional case. In 

the one-dimensional case, all of the elements of the A matrix are on 

the diagonal or in the position adjacent to the diagonal. In the 

multi-dimensional case, coupling terms appear in other positions 

(always symmetrically positioned around the diagonal). Thus F(s) may 

be written

0

0

F(s) =

~a12

(s+a22)

"a32
*

* *

_a *

a23

(5+333) "a34 

* *
(3.20)

cn,fVs) *

where

* = possible new coupling terms.
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I

Figure 3.2 Schematic of a Multi-Dimensional Node-to-Node Heat Transfer 
Model.
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In this case, the matrix is not triangular and zeroes can occur. This 

means that the availability of the poles through some sort of measure­

ment is not sufficient for construction of the response to a fluid 

temperature step.

3.3 Steps in Implementing the LCSR Transformation

The steps for obtaining the plunge test time constant are:

1. perform a LCSR test

2. identify the poles associated with the LCSR data

3. construct the step response for a fluid temperature 

perturbation using Equation (3.10).

A key element is identification of the poles by analysis of the 

LCSR transient data. This is accomplished by minimizing the sum of 

the squares of the residual error between the model and the LCSR data. 

Although other methods have been used and are adequate, a nonlinear 

minimization algorithm that yields unbiased estimates of the model 

parameters is preferred. The computer program that estimates the poles 

and the plunge time constant is described in Appendix B.

One method to help in the pole-fitting problem has been proposed 

by Carroll of Oak Ridge National Laboratory. He observed that for 

a centrally located sensor in a cylindrical sensor with small 

surface heat transfer resistance compared to internal heat transfer 

resistance, the following relation approximately defines the poles:

p. = Pl[l + (i-1) R]2. (3.21)

This relation is useful because it allows one to estimate higher poles 

using fitted values for only two parameters (p-| and R).
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3.4 Validity of the LCSR Transformation for RTDs With 

Noncentral Filaments

It is shown in Section 3.2 that the plunge test response can be 

characterized by only the system eigenvalues when the filament is 

centrally located or when the heat capacity interior to the filament 

is small compared to the heat capacity exterior to the filament. If 

neither of these criteria is satisfied, additional dynamical information 

is needed to characterize the response.

In order to demonstrate the effect of heat capacity in the region 

between the filament and the center of the sensor on the LCSR trans­

formation, the RTD is modeled as a homogeneous structure with the 

filament represented by a delta function. For this case, an analytical 

solution is available for investigating the response.

3.4.1 Analytical Results for a Homogeneous RTD

Analytical solutions for three cases are presented: 1) a homogeneous

RTD plunged into a fluid bath, 2) a homogeneous RTD subjected to a step 

change in the filament current, and 3) a homogeneous RTD with a hollow 

interior plunged into a fluid bath.

The partial differential equation which governs the response for 

each case is

3T(r,t) _ 0 (a2T(r_,tl + 1 aT(,r_,,tI) + Q(r t) (3.22)
3t ar2 r ar

subject to the applicable boundary conditions where:
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a = k/pc

k = thermal conductivity 

p = density

c = heat capacity
•

Q = heat source.

The generic procedure for solving the problems of interest is: 1) use

the property that the space and time variables are separable, 2) use the 

transcendental equation obtained from the boundary conditions to determine 

the system eigenvalues, and 3) use the orthogonality property of the 

eigenfunctions (determined from the Sturm-Liouville problem) to obtain 

the expansion coefficients associated with each eigenfunction.

First, the key results for the case of plunging the RID into a 

fluid bath are presented. The filament is treated as a cylindrical 

shell, located at R*, and is represented mathematically by a delta 

function. The outside radius of the RTD is denoted by R. Boundary 

conditions are: 1) finite temperature at the center of the RTD, and 

2) Newton's Law of cooling at the RTD surface. For the initial 

condition, it is assumed that the RTD is in thermal equilibrium with 

its surroundings. The result for this case is v

00

T(R*,t) - Too 
T(R*,0) - Too

2 2 
ot/R* (3.23)

where

K. W J0^n(R*/R)) (3.24)
n

c ,]>„) ♦ o/oy]
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% = xnR
(3.25)

and the system eigenvalues are defined through the transcendental

The Biot modulus, Ng., is defined by

It is the ratio of internal heat transfer resistance to external heat 

transfer resistance. In other words, it is the ratio of conductive 

resistance to convective resistance.

The theoretical response of the RTD due to a step change in filament 

heating current is now considered. Although the generic procedure for 

obtaining the analytical solution for a change in the heating current is 

similar to the problem of plunging the RTD into a fluid bath, there are 

minor differences. In particular, the expansion coefficients are not 

the same. If the filament heating current undergoes a step change, one 

can obtain the expression.

equation.

hR/k

(3.26)

n=l

00 7 t
1 L e'Mn “t/R

nT(r,t) - T.(r,0)
(3.28)
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where

L
n

(i^JCO,2 UnR) + J02(XnR)]
(3.29)

Qq = the heat source before the step change 

= the heat source after the step change

T.(r,0) = the initial temperature distribution.

The response of the filament is obtained by setting r equal to R*.

The eigenvalues for the response due to a step change in filament 

heating current are the same as for the response due to a step in 

external fluid temperature (plunging the RTD into a fluid bath). This 

follows since the boundary conditions are the same for both cases.

The forcing functions are not the same for the two problems pre­

sented. Consequently, the expansion coefficients are altered for a 

step change in heating current as compared to a step change in 

external fluid temperature.

Analytical results were also obtained for an RTD modeled as a 

hollow cylinder with the filament on the inside surface. Since both 

the forcing function and the boundary conditions are not the same as 

for the homogeneous cases already presented, both the system eigenvalues 

and the expansion coefficients must be determined for this case.

This problem can also be solved by separation of variables; hence 

the result can be written as an infinite sum.

00

n=l

(3.30)
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where: 1) the Cn are the expansion coefficients (evaluated according

to the Sturm-Liouville problem), 2) the e "°ant are the time dependent

components of the eigenfunctions, and 3) the Rn(r) are the space dependent

components of the eigenfunctions. The transcendental equation defining

(10)
the eigenvalues is,

J0 (v1

V Jo <xnb)+ h J0(xnb>

where

a = the inside radius 

b = the outside radius.

The primes on the Bessel functions denote differentiation with respect 

to the argument.

3.4.2 Numerical Results for a Homogeneous RTD

The effect of heat capacity between the filament and the sensor may 

be investigated using the homogeneous RTD model. This is accomplished 

easily by simply evaluating the plunge test time constant at various 

specified positions in the homogeneous sensor. Since the boundary 

conditions are the same for all of these cases, the eigenvalues are 

the same. These eigenvalues uniquely define the plunge test estimate 

from the LCSR transformation, and the transformation applies only for 

the center of a homogeneous sensor. Therefore the time constant obtained 

for a central position is equivalent to a perfectly performed LCSR trans­

formation. This is the time constant that would be obtained from the

Yo <v>
xnk lxnb> + h Yo txnb>

(3.31)
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LCSR transformation regardless of the position of the filament.

The error due to a non-centraT filament in a homogeneous sensor

may be obtained by comparing the time constant obtained from
*

Equation 3.23 for r=0 and for some position, r=R . Numerical 

results were obtained for various filament locations and for 

various values of the Biot modulus.

If the RTD filament is near the surface, the response time of 

the RTD will be faster than if it is near the center. If the surface 

resistance to heat transfer is much greater than the internal resistance, 

the location of the filament will not affect the response time sign­

ificantly. This corresponds to a sensor with a small Biot modulus.

Thus, if the filament of a homogeneous RTD is noncentrally located 

and the internal resistance approximates the surface resistance (or 

is less), the LCSR transformation should give good results. On the 

other hand, if the internal resistance is relatively high (large Biot 

modulus), the LCSR transformation should give poor results for a homo­

geneous RTD with a noncentral filament.

As the filament is moved toward the surface, the response time 

becomes shorter. The magnitude of this effect depends strongly on the 

Biot modulus. Figure 3.3 and Table 3.1 show the relative effect (ratio 

of the response time with the filament at R*/R to the response time with 

the filament at the center) on the response time due to moving the fila­

ment from the center to the surface. This effect is illustrated para­

metrically in the Biot modulus. Note that use of the LCSR transformation 

for a homogeneous sensor with R*/R = 0.8 and with a Biot modulus near 

unity results in a theoretical error of about 20% in the time constant.
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VWR7

Internal Heat Transfer Resistance
External Heat Transfer Resistance

R*/R

Figure 3.3. Ratio of the time constant with the filament 
at R* to the time constant with the filament 
at the center versus the ratio of the filament 
radius to the sensor radius (R*/R).
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TABLE 3.1

RATIO OF THE TIME CONSTANT WITH THE FILAMENT AT R* TO THE TIME 
CONSTANT WITH THE FILAMENT AT THE CENTER ( (R*/R)/(0/R) ) FOR 
VARIOUS VALUES OF THE BIOT MODULUS AND OF THE FILAMENT RADIUS 
TO SENSOR RADIUS (R*/R)

\NRi
RVrV1 5 3 2 1 0.8 0.6 0.4

0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.2 0.973 0.976 0.980 0.986 0.988 0.9907 0.993

0.4 0.888 0.901 0.923 0.946 0.954 0.962 0.973

0.6 0.727 0.799 0.810 0.876 0.894 0.915 0.939

0.8 0.467 0.561 0.643 0.775 0.809 0.848 0.889

1.0 0.133 0.263 0.3995 0.623 0.687 0.754 0.828



4.0 TEST PROCEDURES AND DATA ANALYSIS

4.1 Introduction

The test procedures and data analysis methods for testing RTDs 

by the loop current step response or the self heating methods are 

described in this chapter.

4.2 The LCSR Test

4.2.1 Description of the LCSR Test

A loop current step response test is based on an internal step

change in temperature caused by a sudden change of electric current

through the sensing filament. Typically, the current through the sensor

is increased suddenly from its normal level of few milliampers to a level
2

of 40 to 60 milliampers or higher. The increased current produces I R 

heating in the filament and results in a temperature transient which 

settles slightly above the temperature of the sensor surroundings. The 

details of the test procedure for in-plant measurements are given in 

Appendix C. A typical loop current step response output is shown in 

Figure 4.1 for a heating transient. A cooling transient is obtained 

when the sensor current is suddenly decreased. This is shown in Figure 4.2. 

Experiments indicate that the heating or cooling transient of a loop current 

step response test carries the same information about the response char­

acteristics of a sensor (though the quality of the test data may differ).

A loop current step response test provides the response to an 

internal step change in temperature while the response to a temperature 

change outside the sensor is desired. An analytical transformation has 

been developed to convert the loop current step response data to give
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nine

Figure 4.1. A Typical LCSR Heating Transient.
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Figure 4.2. A Typical LCSR Cooling Transient.
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the response of a sensor to an external change in temperature. This 

transformation is valid for sensors with the following characteristics 

(see Chapter 3 of this report):

1. Predominantly one-dimensional heat transfer: This requirement

is often satisfied because all of the industrial temperature 

sensors are designed for a minimum axial heat conduction

in order to improve their steady state performance.

2. Negligible heat capacity between filament and the center of 

sensor assembly.

4.2.2 LCSR Test Procedure

The LCSR test equipment is a bridge with current switching 

capability. This is illustrated in Figure 4.3. The switch can be 

opened or closed to decrease or increase the current. A detailed 

typical test procedure for in-plant tests is given in Appendix C.

There are two basic methods for performing a LCSR test. One 

involves initial balancing of the bridge to give zero output at low 

current (switch open). The other involves initial balancing to 

give zero output at high current (switch closed). The balancing 

at low current is usually preferred because the data are taken 

during high current operation where the signal-to-noise ratio 

is higher. The steps in these procedures are outlined below.

4.2.2.1 Balance at Low Current

1. Adjust the decade box resistance to give a zero output 

with the switch open.

Adjust the power supply voltage to give the desired current 

when the switch is closed (usually 40 to 60 ma).

2.



65

Switch

Figure 4.3. Schematic of the Loop Current Step Response 
Test Equipment.
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3. Close the switch and monitor the sensor output. The 

response will be shown in Figure 4.1.

The interpretation follows from the bridge equation

E (4.1)

Since when E changes, AV remains zero at the instant of

switching. As the RTD resistance changes as a result of the heating, 

AV is given by:

E^ = impressed voltage at the high level.

If arrtd is small compared to Ra + RRjD> then C is essentially constant 

and AV a arrtd.

One can also assess the effect of imperfect initial balancing of 

the bridge on the output signal. If R^ ? RRjq> then Equation 4.1 shows 

that at the instant of switching to the high current the bridge output 

will change (instantaneously) by

av - c arrtd eh

where

C = (4.2)

(4.3)

where

E^ = impressed voltage at the low level
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Thus, the effect of imperfect balancing can give an output voltage 

of the type shown in Figure 4.4.

4.2.2.2 Balance at High Current

There are two approaches for initial balancing at high current.

One involves the following steps:

1. Adjust the decade box resistance to give a zero output 

with the switch closed and the power supply voltage set 

to give a current of 40 to 60 ma.

2. Open the switch and monitor the output. The output will 

be as shown in Figure 4.2.

Equation 4.1 can be used to interpret Figure 4.2. Since R . = R T
d RTD

when E changes, AV remains zero at the instant of switching. The output 

signal is given by

AV = C ARRTD El (4.4)

where

E|_ = impressed voltage at the low level.

The ARRyg change is the same as in the previous case except for a sign 

change. However, one should note that the output signal is proportional 

to E as well as the change in R^yp- Since the transient is measured in 

this case with E at the low level, the signal will be smaller than in 

the previous case. Therefore more amplification is required and noise 

may be a problem. Because of this difficulity, this method usually is 

not used.

Another procedure involving initial balancing at high current can 

be used. It involves the following steps:
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Initial Offset

Effect of RTD Heating

Switching Transient

Figure 4.4. Illustration of a Switching Transient Due to An 
Initially Imbalanced Bridge.
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1. Adjust the decade box resistance to give a zero output 

with the switch closed and the power supply voltage set 

to give a current of 40 to 60 ma.

2. Open the switch and let the output go to steady state. 

The bridge will now be out of balance.

3. Close the switch again and monitor the output signal. 

The response will be as shown in Figure 4.5.

The interpretation of this also follows from Equation 4.1. Since 

the bridge is out of balance, the output before the start of the test 

transient is:

AV (Rd ' RRTd) 

(Ra + Rd^Ra + rrtdj
(4.5)

where

Rd^ RTD*

At the instant the impressed voltage is switched the value of R^-j-q 

still essentially unchanged, and aV jumps to

... (Rd

is

RRTD^ Ra

(Ra + Rd^Ra + W H’
(4.6)

Then R^yp starts to change because of the heating effect. The output 

signal will return to zero since the bridge was set for a balanced 

condition at high current.

4.2.3 Steps in Implementing the LCSR Transformation

The plunge test response of a temperature sensor can be determined 

from a LCSR test by the following procedure:



Bridge Cutout % 0

Time (sec)

Figure 4.5. A Typical LCSR Output when Bridge is Balanced at a High Current Prior 
to Performance of the Test.
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1. Perform a LCSR test.

2. Fit the LCSR test data to Equation 4.7:

Pit P?t p t
T(t) = Bq + B^e + B2e ^ + . . . + Bne (4.7)

This provides the eigenvalues (p.) necessary for predicting 

the plunge test response. A number of methods are available 

for performing this fit. Graphical exponential stripping 

or computer optimization routines are often used.

3. Subsitute the eigenvalues in Equation 3.10:

Pnt p?t p t
T(t) = A + A-je + A2e + . . . + Ane (4.8)

where A^ are obtained from Equation 3.10:

A0 " (-P1)(-P2) • • • (-pn)

A = 1 ,
1 Cp^JIp-, - p2) • • • (p-| - Pn)

A = 1
2 P2(P2 ” P])•••(P2 “ Pp)

etc.

Equation 4.8 gives the response of the sensor to a sudden change in the 

surrounding fluid temperature.

Special problems in obtaining a good fit occur when the LCSR 

data are contaminated with noise. A special procedure has been 

developed for handling this case and is described in Appendix D.
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4.3 The Self Heating Test

The self heating test is a method of detecting the changes in the

response time of an RTD installed in a process. This method is based
2

on steady state measurement of temperature rise versus I R heating in

the sensing filament. The steady state relation between temperature 

2
and I R heating generated in the sensor is:

Q = UA (T-e) (4.9)

where
2

Q = heat generation rate in sensor by I R heating 

U = overall heat transfer coefficient 

A = heat transfer area 

T = sensor temperature 

e = temperature of surrounding fluid

For constant fluid temperature:

AQ = UA AT (4.10)

Therefore the temperature rise per unit power generated in the sensor is:

ai = _L 
AQ UA (4.11)

Since the resistance of a platinum filament is approximately proportional 

to its temperature (AR =G AT):

AR _ 1 _ Constant
AQ GUA “ U UA (4.12)



On the other hand, the response time of a sensor is approximately 

given by:
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(4.13)

where

M = mass

C = specific heat capacity

U = overall heat transfer coefficient (includes internal 

resistance as well as film resistance)

A = heat transfer area.

If the heat capacity C remains constant, then:

Constant 
T UA (4.14)

Comparing Equations 4.12 and 4.14 leads to the conclusion that:

x cc AR
AQ

(4.15)

Therefore, a change in the response time of a sensor can be identified 

by a change in the slope of the curve of AR versus aQ. This slope is 

called the self heating index and is usually expressed in ohms per watt. 

A procedure for evaluating the self heating index is explained in the 

following section.

4.3.1 Self Heating Test Procedure

A self heating curve is usually generated by the following 

procedures:
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1. Increase the sensor current incrementally from 1-6 milliampers 

to 20-60 milliampers.

2. Ifeasure the sensor resistance when the steady state is 

attained after each increment in current.

3. Calculate the amount of power generated in the sensor from:

2
P = TR

4. Plot the values of resistance as a function of electric 

power dissipated in the sensor (R versus P).

Experience indicates that the value of the self heating index (^p-) is 

quite different from one sensor to another, even when they are the same 

design. Therefore, each sensor must be identified by its own self 

heating index, i.e., the self heating index of a sensor should not be 

used to specify another sensor of the same type. Thus, the application 

of self heating method for monitoring the changes in response time of 

a RTD requires determination of its self heating index at the time of 

installation. Subsequent self heating measurements permit comparisons 

with respect to the as-new case.



5.0 LABORATORY RESULTS FOR LCSR AND

SELF HEATING TESTS

5.1 Introduction

In the course of the response time testing program six 

different reactor-type RTDs were tested. The instrumentation and 

data acquisition are described in Appendix E and the Equipment 

Specifications are given in Appendix F. A listing of these sensors 

and their characteristics were given in Table 2.1. The response 

characteristics of these sensors were determined by several plunge,

LCSR and self heating tests performed in a rotating tank at about 

3 ft/sec. The test results are listed in Tables 5.1 and 5.2. The 

results are the average value of about 10 tests per sensor. The 

standard deviation included in the self heating index is obtained 

using a standard propagation of error approach that relates fitting 

errors to the error in the slope.The time constant results are 

based on the following analyses:

1. Analysis of the plunge test response.

2. Graphical exponential stripping from the plot of the 

LCSR test data on semi-log paper (Appendix G).

3. Computer analysis of the LCSR test data (Appendix B).

The time constant estimates obtained by the graphical exponential 

stripping method are smaller than the pertinent plunge test time constant. 

This is apparently due to inaccurate determinations of the faster time 

constants and of the final steady state signal.



TABLE 5.1

RESPONSE TIME VERIFICATION RESULTS

Time Constant (sec)

RTD Manufacturer 
and Model Number Plunge TesttS.D.

LCSR Test
(Graphical Exponential 

Stripping)±S.D.

LCSR Test 
(Computer 

Analysis)±S.D.

Rosemount 176KF .37±.02 .31±.02 .34±.02

Rosemount 177GY 
Element #1

5.77± .13 4.17±.14 5.10±.10

Rosemount 177GY 
Element #2

6.07±.18 4.13±.H 5.20±.12

Rosemount 104^£ 
in Thermowell

5.44±.14 3.63±.03 4.54±.07

Rosemount 104VC 
without Thermowell

2.27±.04 1.73±.07 2.25±.14



TABLE 5.1 (continued)

Time Constant (sec)

LCSR Test LCSR Test
RTD Manufacturer 
and Model Number Plunge TesttS.D.

(Graphical Exponential 
Stripping)±S.D.

(Computer
Analysis)±S.D

Rosemount 104ADA 
in Thermowell**

7.44±.22 4.90±.04 5.94±.13

Rosemount 104ADA 
without Thermowell

3.12±.10 2.50±.09 3.17±.087

Sostman 8606 2.0U.09 1.97±.09 1.72±.05

Rosemount 104AFC 6.08 5.1 ****

Rosemount 104AFC 
without *** 
Thermowel1

3.00 3.10

*The 177GY is a dual element sensor. Separate measurements were made for each element

With air in thermowell.

Thermowell not available.
****

Data not available.



TABLE 5.2

SELF HEATING TEST RESULTS

RTD Manufacturer 
and Model Number

Self Heating
IndextS.D.
(ohms/watt)

Rosemount 176KF 6.089±.15

Rosemount 177GY* 7.634±.20

Element #1
*

Rosemount 177GY 8.778±.18

Element #2

Rosemount 104VC 6.148±.15
in Thermowell

Rosemount 104VC 
without Thermowell

4.675±.112



TABLE 5.2 (continued)

RTD Manufacturer 
and Model Number

Self Heating 
index ± S. D.
(ohms/watt)

Rosemount 104ADA 
in Thermowell

8.76±,11

Rosemount 104ADA 
without Thermowell

6.66±.ll

Sostman 8606 11.60+.02

Rosemount 104AFC 
in Thermowell

6.45

Rosemount 104AFC 
without Thermowell

5.64

Rosemount 177HW 
in Thermowell

7.320
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Table 5.1 shows that the time constant estimates from the 

computer program are within twenty percent of the plunge test result 

and that the time constant estimates obtained by transforming LCSR 

data are all too small. Figures 5.1 through 5.5 show computer plots 

that demonstrate the LCSR raw data, the result of the exponential fit, 

and the constructed plunge test estimate for several of the cases 

that provided data for Table 5.1. There are three curves on each 

figure, but the curves for raw data and the fitted curves are usually 

too close to be distinguished.

The self heating indices shown in Table 5.2 vary considerably 

for different sensors. This is due to the fact that the value of 

the self heating index depends on the details of the construction of 

the sensor. Typical self heating curves are shown in Figures 5.6 

through 5.10.

5.2 Self Heating Test for Measuring the Temperature Rise in An RTD

The amount of temperature rise per unit of electric power in an 

RTD is given by

AT _ aR . AT
ap ap ar

aR -
If the self heating index (-^p) is known, the temperature rise in the 

sensor per unit of input electric power (|p-) can be determined.

Table 5.3 gives the temperature rise per unit of electric power in 

the sensors tested in this work. The tabulated results are based on 

the self heating indices of Table 5.2.



t * .32 see

j t

LCSR Raw Data
and Fit

Constructed Step Response

Time (sec)

Figure 5.1. LCSR Raw Data, LCSR Fit and Step Response for Rosemount 176KF.



Figure 5.

LCSR FITTED RESULTSTBU» 5.052 0T» 0.020 FILE'R77CY.001

-Z.4*Z'£-1 - _-1.184 E0-i.zqi El

LCSR Raw Data and the Fit Superimposed

Predicted Step Response from Transformation of LCSR Data

TIME IN SECONDS

LCSR Raw Data, LCSR Fit and Predicted Step Response for Rosemount 177GY 
Filament No. 1.



Figure

L C 8 R FITTED RESULTS TRU»5.174 DT* 0.010 FILE-B77CY.008

.3. LCSR Raw Data, LCSR Fit, Predicted Step Response for Rosemount 177GY 
Filament No. 2.



LCSR FITTED RESULTSTBU» 5.931 DT» 0.010 FILE'RPR.007

■l iW £"J - _-8.281 E-l

TIHE IH SECONDS

Figure 5.4. LCSR Raw Data, LCSR Fit, Predicted Step Response for Rosemount 104ADA.
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Figure 5.5. LCSR Raw Data, LCSR Fit, Predicted Step Response for Sostman 8606
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SELF HEATING PLOT 

176 KF
SLGPE= (6. 151 +OR- 0.012) X 1 O'3

20.00 40.00 50.00
PQHER (MW) kIO

80.00 100.00

Figure 5.6. Self Heating Curve for Rosemount 176KF.
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Figure 5.7. Self Heating Curve for Rosemount 177GY Filament No. 1.
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SELF HEATING PLOT 

177 GT
SLOPE- (8.726 +GR- 0.036) ohms/watt

o.oo 80.00 160.00 240.00 320.00 400.00
POWER (MW)

Figure 5.8. Self Heating Curve for Rosemount 177GY Filament No. 2.
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SELF HEATING PLOT 

104 ADA
SLOPE- (8.792 +0R- 0.030) ohms/watt

20.00 60.00 ICO.CO40.00
POWER (MW) *10

80.00

Figure 5.9. Self Heating Curve for Rosemount 104ADA.
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Figure 5.10. Self Heating Curve for Sostman 8606.
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TABLE 5.3

TEMPERATURE RISE PER UNIT OF ELECTRIC POWER GENERATED IN RTDS

Sensor Manufacturer 
and Model Number

Temperature Rise Per Unit 
of Electric Power Input 

°C/watt

Rosemount 176KF 7.76

Rosemount 177GY
Element #1

19.45

Rosemount 177GY
Element #2

22.36

Rosemount 104VC 
in Thermowell

7.83

Rosemount 104VC 
without Thermowell

5.96

Rosemount 104ADD 
in Thermowell

11.16

Rosemount 104ADA 
without Thermowell

8.48

Sostman 8606 14.78

Rosemount 104AFC 
in Thermowell

8.22

Rosemount 104AFC 
without Thermowell

7.19

Rosemount 177HW 
in Thermowel1

18.65
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5.3 Effect of Thermal Bonding Material

The response time of well-type RTDs may be improved by using a 

thermal bonding material to fill up the air gap inside the thermowell. 

This was verified by using a thermal bonding material called Never-Seize 

inside the thermowell of a Rosemount 104AFC RTD. The sensing portion of 

the sensor was completely covered with a thin layer of Never-Seize before 

installation in its thermowell. As a result, the sensor time constant 

decreased from 6.08 sec to 4.65 sec for a water flow rate of 3 ft/sec 

and the self heating index decreased from 6.45 ohms/watt to 6.20 ohms/ 

watt for a water flow rate of 3 ft/sec.

5.4 Special Tests

5.4.1 Effect of Current on the LCSR Test Results

Experience based on numerous laboratory experiments indicates 

that the time constant obtained from a LCSR test is independent of the 

amount of electric current used for generating the test transient up 

to at least 90 ma.

5.4.2 Test for Degradation of RTD Caused by LCSR Test

The LCSR test was investigated to determine whether a failure or 

a degradation of response time can occur by the application of this 

method on an RTD. A typical laboratory type RTD was selected for this 

study. The response time and the self heating index of the sensor was 

carefully determined, then the following tests were performed:
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1. Test for Degradation or Failure of Sensor from Electric

Current Used to Perform a LCSR Test: A current of about

120 milliamperes was input for 48 hours to the sensing 

filament of the RTD immersed in still water at room 

temperature. No failure occurred (sensor was operating 

after the 48 hour period). Plunge and self heating tests 

were performed. The results indicated that no degradation

of response time had occurred.

2. Test for Degradation or Failure of Sensor from Sudden

Change of Current in the Sensing Filament: A signal

generator was used to produce pulses for actuating a 

relay to cause sudden changes of current through the 

sensing filament of the RTD immersed in still water. The 

system was adjusted to give signals of 40 second interval 

to step the sensor current from about 6 to 60 milliamperes 

and vice versa. This test was run for 12 hours to give 

more than 1000 step changes in current. The sensor did 

not fail as the result of this test (it was operating 

after the 12 hour test) and degradations were not observed 

(the time constant and self heating index were the same as 

before).

As a result of these investigations it appears that the LCSR 

test can not cause any failure or degradation of sensors unless current 

levels of much more than 120 milliamperes are used. However, exhaustive 

tests of all reactor-type RTDs have not been performed yet.
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5.4.3 Experimental Verification of the Affect of Fluid Velocity 

on Response Time of an RTD

The response of an RTD is affected by the fluid flow rate to 

which the sensor is exposed. The affect of flow velocity on the 

response time of a Rosemount 176KF RTD was investigated by per­

forming plunge tests in two different fluid flow rates in a rotating 

tank and by conducting a plunge test in a liquid metal bath. The 

results of these plunge tests are given in Table 5.4. The liquid 

metal (Galiurn-Indium eutectic) was used to achieve a high heat 

transfer rate to simulate a high flow velocity. A high heat transfer 

rate results from the high thermal conductivity of the liquid metal 

compared with water.

Table 5.4 shows that the response time of this sensor is signifi­

cantly affected by the surface resistance; however, this is not a general 

rule for all the sensors unless the surface heat transfer resistance is 

relatively large compared with the internal heat transfer resistance.
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TABLE 5.4

EFFECT OF FLUID FLOW VELOCITY OH THE RESPONSE TIME 
OF A ROSEMOUNT 176KF RTD

Fluid Flow Rate (ft/sec) Sensor Time Constant

2.5 .42

3.5 .34

*
CO .22

* Result from tests in liquid metal bath that

simulate high flow conditions for surface heat transfer.



6.0 USE OF LCSR AND SELF HEATING TESTS 

FOR MONITORING RESPONSE TIME 

DEGRADATION

6.1 LCSR Test for Monitoring Response Time Degradation

The LCSR transformation provides a quantitative estimate of 

the time constant of a sensor. However, in some cases it may be 

desirable to seek only an indication of change in the time constant.

In these cases, the need for computer analysis of the test data is 

avoided. The indication of change can be obtained by direct in­

spection of an LCSR test transient. A quantity called the LCSR 

time constant is defined to be used for diagnosis of RTD response 

time degradation. This quantity is denoted by and defined as

the time required for the sensor to respond to 63.2 percent of the 

final value following a step change in the sensor current. The 

definition is illustrated in Figure 6.1 using a typical LCSR test 

transient.

The LCSR time constant (as the plunge test time constant) depends 

on the heat transfer resistances and heat capacities of the sensor.

The same heat transfer resistances and heat capacities control the 

plunge test response and the LCSR test response. Therefore, a change 

in heat transfer characteristics of a sensor results in a change in the 

plunge test time constant and also a change in the LCSR time constant.

A change in the LCSR time constant indicates a change in the plunge 

test response resulting from a change in the heat transfer properties 

of the sensor. Thus, a measurement of the LCSR time constant can be 

used for diagnosis of sensor response time degradation. This method



Figure 6.1. Determination of LCSR Time Constant from Test Data.
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does not provide quantitative measurement of sensor response time, but 

it is presented as a simple technique for detecting sensor response 

time degradation.

Once an increase in the LCSR time constant is observed, response 

time degradation is indicated. The change in the LCSR time constant 

must be related to corresponding changes in the plunge time constant 

to determine whether the degradation is significant. The significance 

of a change in the LCSR time constant depends on the correlation between 

the response of a sensor to a step change in surrounding temperature 

and the response to a step change in internal heating of the sensor. 

Experimental results from laboratory tests of two RTDs (Rosemount 104AFC 

and Rosemount 176KF) indicated that a unique correlation exists between 

the LCSR time constant and plunge test time constant for a given sensor. 

An empirical correlation curve was established for each sensor to assist 

in relating the changes in the LCSR time constant to corresponding 

changes in the plunge test time constant to aid in estimating the amount 

of the response time degradation. The empirical correlation curves were 

constructed by performing several LCSR and plunge tests on each sensor 

for several different simulated surface heat transfer resistances. 

Different values of heat transfer resistances were achieved by varying 

the amount and/or position of insulating materials added to the surface 

of each sensor. The following procedures were used to establish the 

technique:

Tests were performed in a rotating tank at a fluid flow rate 
of about 3 ft/sec.



1. Perform a LCSR test and record the output on a strip 

chart recorder.

2. Determine the LCSR time constant (t|_q5r)-

3. Perform a plunge test.

4. Determine the plunge test time constant (xp^).

5. Plot xpL versus x^p on a cartesian coordinate system.

6. Add some form of insulating material (such as a portion 

of rubber tube or tape) around the surface at the sensing 

end (see Figure 6.2 ) of the sensor. This introduces an 

artificial degradation of the heat transfer and increases 

the plunge test time constant as well as the LCSR time 

constant.

7. Perform a new LCSR test and record the output on a strip 

chart recorder to determine the LCSR time constant of the

artificially degraded sensor.

8. Perform a new plunge test and determine the new time

constant.

9. Plot the new values of tp^ and tlqsr on the coordinate 

system of step 5.

10. Change the heat transfer resistance of the surface. This 

may by done by changing the position or the amount of the 

insulating material added to the surface of the sensor.

11. Repeat until enough data are obtained to yield an empirical 

correlation curve.

These procedures are illustrated in Figure 6.3.
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Figure 6.2

Sensor

Insulating Material 
Around the Sensor

Configuration of an RID with Augmented Surface Heat 
Transfer Resistance.



101

Sensor Configuration Plunge Test Output

trl XLCSR

LCSR Test Output

tlcsr

tlcsr

Figure 6.3. Illustration of Procedures for Establishment of an 
Empirical Correlation between Plunge and LCSR Time 
Constants.
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The empirical correlation of TpL versus tlcsr developed for the 

Rosemount RTD Model 104AFC is shown in Figure 6.4. The data for this 

correlation were obtained from tests on the sensor inside its thermowell 

as well as tests with the sensor out of its thermowell (bare). Figure 6.4 

indicates that the data from the bare sensor satisfy the same correlation 

as the in-well configuration and therefore, they are included in the 

empirical curve. Since the LCSR and plunge time constants of a sensor 

with no heat transfer resistance are expected to be zero, the empirical 

curve is extrapolated to zero to provide a range for monitoring the re­

sponse time degradation in high flow and temperature enviornments where 

the sensor response time is usually less than the minimum value of the 

response that can be measured in a laboratory environment. A similar 

curve for the Rosemount 176KF sensor is shown in Figure 6.5

In order to relate the changes in the LCSR time constant to 

corresponding changes in the plunge test time constant, the ratio of

the relative changes in these quantities ( 6tPL/tPL ) is determined.

6tLCSR/tLCSR

From Figure 6.4 (around the sensor time constant of Tp^ = 6 sec):

6x
—-------- £ 2.60 (Rosemount Model 104AFC)
<Stlcsr/tlcsr

For example, a 10 percent change in the LCSR time constant indicates a 

26% change in the plunge test time constant of this sensor. This ratio 

for a Rosemount RTD Model 176KF is (around the sensor time constant 

Trl =0.4 sec):
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Eiptrtcsl Corr«1atfon Curve

EMpfrtecl Data

ICSR Time Constant 5ec

Figure 6.4. Empirical Correlation Curve for TpL versus 

XLCSR ^or f,'0SerT10unt Model 104AFC).
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Figure 6.5. Empirical Correlation Curve for xpL versus

XLCSR ^0r ^oseniount Model 176KF).
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—PL' —--------- = .692 (Rosemount Model 176KF)
6tLCSR/tLCSR

Thus a 10 percent change in the LCSR time constant of this sensor 

corresponds to a 6.92 percent change in its plunge test time constant.

For a sensor installed in a process, response time changes may 

occur as a result of various response time degradation mechanisms.

The empirical correlation curve can be used to detect the response time 

degradation of installed RTDs. The following procedures may be used:

1. Determine the LCSR time constant shortly after the 

sensor is installed in the process.

2. Perform a LCSR test whenever the response of the 

sensor is required to be checked. Determine the 

LCSR time constant.

3. Compare the values of the new LCSR time constant 

with the LCSR time constant of the sensor that was 

recorded shortly after the installation of the 

sensor.

4. If the LCSR time constant is changed, use the empirical 

correlation curve of the sensor to estimate the signifi­

cance of the degradation.

5. If a significant degradation is shown or if the new value 

of the sensor response time is desired, the LCSR test 

data must be analyzed (using the LCSR transformation) to 

give the time constant of the sensor after degradation.
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6.2 Self Heating Test for Diagnosis of Sensor Response

Time Degradation

A self heating test can also be used as a method for diagnosis 

of response time degradation of RTDs. The parameters of interest in 

this method are the self heating index (^p-) and the plunge test time 

constant (Tp^)- An increase in the self heating index of a sensor is 

an indication of a response time degradation. (This is true if the 

heat capacity of the sensor has not changed since this would not be 

revealed by a self heating test.)

In order to determine the approximate change in the response 

time of a sensor by a measurement of its self heating index, one needs 

an estimate of the correlation between the plunge test time constant 

and the self heating index. Experimental results based on laboratory 

testing of two RTDs (Rosemount 104AFC and Rosemount 176KF) revealed 

that a unique correlation exists between the plunge test time constant 

and the self heating index. Empirical data were obtained by numerous 

plunge and self heating tests performed on the sensor with simulated 

heat transfer degradation at the surface (see Figure 6.6). The self 

heating indices and the corresponding plunge test time constants were 

measured and the results were plotted in a cartesian coordinate system 

to yield an empirical curve representing Tp^ versus . The empirical 

correlation curve of the Rosemount RTD Model 104AFC is shown in Figure 

6.7. The correlation curve may be extrapolated to zero because a 

self heating index of zero is expected for a plunge test time constant 

of zero. The extrapolation of the empirical curve to zero provides a 

range for monitoring the response time degradation in operating conditions



Sensor

1.

tpl Index
4->c
n4->
<S)
c
oCJ>

e

o
CD
cr>

Cu

•V—

Self Heatinn Index

Figure 6.6. Illustration of Procedures for the Development of 
Empirical Correlation between Plunge Test Time 
Constant and Self Heating Index.
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^ 14 .

Esrpirical Correlatisn Curve

Empirical Data

Extrapolate to Zero

Self Heating Index (ohms/watt)

Figure 6.7. Empirical Correlation Curve for TpL versus

Self Heating Index (for Rosemount RTD Model 104AFC).
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(high temperature and flow) where the sensor response time is 

usually less than a minimum value that can be measured in a laboratory 

environment. Similar results for the Rosemount 176KF sensor are shown 

in Figure 6.8.

In order to relate the changes in the slope of the self heating 

index to corresponding changes in the plunge test time constant,

the ratio of relative changes in these quantities ( 5tPL/tPL ) may

6aR/aP
aR/aP

be determined. From Figure 6.7 (around the sensor time constant of 

t pL = 6 sec):

<Sx PL/t PL
■ ■ ■ ■ = 5.38

6 AR/AP
AR/AP

Thus, a change of, for example 10 percent, in the self heating index 

indicates a change of about 54 percent in the plunge time constant of 

this sensor. This ratio for a Rosemount RTD Model 176KF is (around 

the sensor time constant of = 0.4 sec):

6tpl/tpl

<5AR AR 
AP ' AP

= 5.87

This indicates that a 10 percent change in the self heating index of 

this RTD is related to about a 59 percent change in the plunge test 

time constant. These results show that the plunge test time constant 

is very sensitive to the changes in the self heating index. Therefore, 

a small change in the self heating index is an indication of a signifi­

cant change in the plunge test time constant of an RTD.
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Figure 6.8. Empirical Correlation Curve for TpL versus

Self Heating Index (for Rosemount 176KF).
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The application of the self heating technique for monitoring 

the response time degradation of RTDs installed in a process requires 

an estimate of the empirical correlation of Tp^ versus self heating 

index prior to installation of the sensor in the plant. Once this 

empirical correlation is established for a sensor in laboratory 

conditions (limited temperature and flow velocity) it can be used 

to estimate the degradation of response time after the sensor is 

installed in a plant.



7.0 IN-PLANT TEST RESULTS

7.1 Introduction

In-plant implementation of the LCSR and self heating test 

methods has taken place in three plants as part of this program.

They are:

- Oconee (Duke Power Company)

- Turkey Point (Florida Power & Light Company)

- St. Lucie (Florida Power & Light Company)

Tests at Oconee and Turkey Point provided the initial in-plant 

experience that led to the standard testing and analysis procedures 

(See Appendix C and Chapter 4). The St. Lucie tests provided a 

full check-out of the standard testing and analysis procedures that 

were established in the earlier work.

7.2 Oconee Tests

LCSR tests were performed on three different control system RTDs 

(two in the cold legs and one in a hot leg), and two types of RTDs 

(Rosemount 177GY wet-type and Rosemount 177HW well-type). Figures 7.1 

through 7.3 show typical raw data, fitted curves, and predicted plunge 

test results for each sensor. In these tests, the heating current was 

40 ma. Clearly, the quality of the test data is good. The time constant 

estimates from the LCSR tests are given in Table 7.1.

Self heating tests were also performed on all three Oconee sensors. 

The self heating curves are shewn in Figures 7.4 through 7.6 and the 

self heating indexes are listed in Table 7.2.
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TABLE 7.1

LOOP CURRENT STEP RESPONSE TEST RESULTS FOR OCONEE 3 RTDS

Sensor Manufacturer: Rosemount

Plant Condition During Tests: Full Power

SENSOR IDENTIFICATION RESULTS

Sensor Model # Sensor Tag # Location in Plant
Number 

of Tests
Average Time 

Constant (sec) Standard Deviation

177-HW 3RC5A-TE4 Cold Loop 7 6.59 ±.77

177-GY 3RC5B-TE4 Cold Loop 8 3.26 ±.60

177-GY 3RC4A-TE2 Hot Loop 4 3.38 ±.27
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SELF HERTING PLOT 

177-HW
SLOPE- (7.851 +0R- 0.089) ohms/watt

80.00 160.00 240.
POWER (MW)

320.00 400.00

Figure 7.4. Self Heating Curve for Oconee 3 RTD
(Rosemount 177-HW, Tag #3RC5A-TE4).
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SELF HEATING PLOT 

177-GY
SL0PE= (77824 +GR- 0.075) ohms/watt

.00 80.00 160.00 240.00 320.00 400.00
P0HER (MH)

Figure 7.5. Self Heating Curve for Oconee 3 RTD
(Rosemount 177-GY, Tag #3RC5G-TE4).
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SELF HERTING PLOT 

177 GY
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cr

320.00240.0080.00 ISO.00
PONER 1MN)

Figure 7.6. Self Heating Curve for Oconee 3 RiD
(Rosemount T77-GY, Tag #3RC4A-TE2).



TABLE 7.2

SELF HEATING TEST RESULTS FOR OCONEE 3 RTDs

Sensor Hanufacturer: Rosemount

Plant Condition During Tests: 100% Power

SENSOR IDENTIFICATION RESULTS

Sensor Model # Sensor Tag # Location in Plant
Self Heating 

Index (ft/watt) Standard Deviation

177-HW 3RC5A-TE4 Cold Loop 7.851 ±.089

177-GY 3RC5B-TE4 Cold Loop 7.824 ±.075

177-GY 3RC4A-TE2 Hot Loop 6.165 ±.142

roo
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The Oconee results demonstrate the suitability of the test 

procedures in a plant environment.

7.3 Turkey Point

Two series of tests were performed at Turkey Point. The first 

Turkey Point test was the initial in-plant test in this project, and 

it was plagued by instrumentation problems. A voltmeter that was 

connected across a fixed resistor in the bridge caused spikes in 

the LCSR transient (see Figure 7.7). The effect of the voltmeter 

was discovered in the laboratory after the Turkey Point tests, so all 

of the data had this problem. Some effort was spent on analysis of 

the portion of the data record after the spike, but this was generally 

unsuccessful. Self heating tests had not been conceived at the time 

of the first Turkey Point test.

The second Turkey Point test also suffered from a testing pro­

blem, though not as serious. Through a procedural error, only 20 ma 

of heating current was used in the LCSR tests. This gave the expected 

LCSR transient, but the induced temperature rise was small and the 

variations in sensor output because of fluid temperature variations 

interferred significantly with the test results. A typical LCSR 

transient appears in Figure 7.8. There has not been a great effort 

to analyze the Turkey Point data (for example by using the averaging 

scheme of Appendix D ). This is because the problem due to inadequate 

heating is not likely to be encountered in future tests performed to 

satisfy NRC requirements. It was decided that it is more fruitful 

to expend project effort on other activities rather than on this 

abnormal case.
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Figure 7.7. LCSR Test Data Showing Spike Encountered at Turkey Point 3.
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Time (sec)

Figure 7.8. A Typical LCSR Data Set for Turkey Point 3 RTD (Rosemount 176KF).



124

The self heating tests at Turkey Point were not affected by 

the problem described above. The current determination error was 

corrected after it was discovered in post-test investigations. The 

resulting self heating curves are shown in Figures 7.9 through 7.11.

The self heating results are summarized in Table 7.3.

7.4 St. Lucie

The St. Lucie tests included LCSR and self heating measurements.

It was the final check of the testing procedures that evolved as a 

result of experience gained in earlier plant tests. Tests were made 

on four different control system sensors (hot leg and cold leg). All 

of the sensors were the Rosemount 104VC type. This is a well-type 

sensor and, at St. Lucie, the sensors had air in the gap between the 

sensor and the well.

Shortly after the start of the St. Lucie tests, a plant operational 

problem required a plant shut-down. LCSR tests were performed during 

plant cool-down and subsequently during cold stand-by (at approximately 

130°F). Self heating tests were performed during cold stand-by.

After the plant returned to approximately full power (96 percent), 

the test program was completed. Figure 7.12 shows typical LCSR raw 

data, fitted data and predicted plunge test results. The LCSR test 

results are shown in Table 7.4. (Analysis of LCSR tests during cool­

down were not reliable because the estimates are affected by the fluid 

temperature ramp.) One interesting point is the measured effect of 

ambient temperature on the response. Both of the sensors for which 

results were obtained at operating temperature and at cold stand-by 

temperature had shorter time constants at higher temperature.
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SELF HEATING PLOT 

ROSEMOUNT 176 KF
226 +GR- 0.093) ohms/watt

Oo

160.00 200.00120.000.00 40.00 80.00
P0NER (MW)

Figure 7.9. Self Heating Curve for lurkey Point 3 RTD
(Rosemount 176-KF located at loop B cold).
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SELF HEATING PLOT 

ROSEMOUNT 176KF
SLQPE= (5.174 +GR- 0.078) ohms/watt

o.oo 80.00 160.00 240.
PONER (MW)

320.00 400.00

Figure 7.10. Self Heating Curve for Turkey Point 3 RTD
(Rosemount 176-KF located at loop B hot).
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SELF HERTING PLOT 

176 KF
SLGPE= (4.858 +OR- 0.0401 ohms/watt

Oo

400.00320.000.00 240.00
PGNER (MW)

80.000.00

Figure 7.11. Self Heating Curve for Turkey Point 3 RTD
(Rosemount 176-KF located at loop C cold).



TABLE 7.3

SELF HEATING TEST RESULTS FOR THE RTDS INSTALLED IN TURKEY POINT 3

Sensor Manufacturer: Rosemount

Plant Condition During Tests: 100% Power

SENSOR IDENTIFICATION

Sensor Model # Location In Plant

176-KF Tcold, loop B

176-KF Thot, loop B

176-KF Tcold, loop C

Self Heating 
Index (ohms/watt)

5.23

5.17

4.86

RESULTS

Standard Deviation

.09

.08

.04

rooo
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Figure 7.12. Typical Results from a Loop Current Step Response Test at St. Luice Nuclear Station.
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TABLE 7.4

LOOP CURRENT STEP RESPONSE RESULTS FOR ST. LUCIE RTDS

Plant ID #
Location 
in Plant

Coolant 
Temp. °F

Number 
of Tests

Average Time 
Constant (sec.)

Standard 
Deviation (sec.)

TE 1125 Tcold 1B1 540 16 4.29 0.43

TE 1121Y Tcold 1B2 540 18 5.28 0.52

TE 1121Y Tcold 1B2 134 17 5.80 0.19

TE 1121X Thot, loop B 583 25 4.47 0.79

TE 1121 X Thot, loop B 135 13 4.94 0.24

TE HUY Tcold, 1A2 540 19 3.52 0.37
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Self heating test results are shown in Figures 7.13 through 

7.17. Table 7.5 gives a summary of the self heating test results.

The self heating index is lower at the higher temperature for both 

of the sensors that were tested at two different temperatures. This 

gives the same conclusion as the LCSR tests. (These sensors responded 

faster as temperature increased.)

7.5 Conclusions Regarding In-Plant Test Experience

The in-plant testing program along with the laboratory testing 

program has yielded experience that led to development of equipment 

and procedures that are completely adequate for in-plant testing of 

RTDs. These were fully demonstrated in the tests at St. Lucie.
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SELF HEATING PLOT
SLSH »5
R0SEMGUNT 104VC
SLGPE= (6.409 +GR- 0.082) ohms/watt

50.00 100.00 150.
POWER (MW)

200.00 250.00

Figure 7.13. Self Heating Curve for St. Lucie RID
(TE 1125 at 540°F).
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SELF HEATING PLOT
SLSH »6
R0SEM0UNT 104 VC
SL0PE= (5.591 +0R- 0.259) ohms/watt

o o

50.00 100.00 150.00 200.00
POWER (MW)

Figure 7.14. Self Heating Curve for St. Lucie RID
(TE 1121Y at 540°F).
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SELF HERTING PLOT
SLSH *3
R05EMQUNT 104VC

+ QR- 0.188) ohms/watt

80.00 160.00 240.
POWER (MW)

320.00 400.00

Figure 7.15. Self Heating Curve for St. Lucie RID
(TE 1121Y at 134°F).
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SELF HERTING PLOT 
SLSH *7
RGSEMQUNT 104 VC
SLGPE= 0.239) ohms/watt

Oo

0.00 50.00 100.00 150.
POWER (MW)

200.00 250.GO

Figure 7.16. Self Heating Curve for St. Lucie RID
(TE 1121X at 583°F).
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SELF HEATING PLOT
SLSH *4
RGSEMQUNT 104VC
SLOPE- (6.141 +0R- 0. 109) ohms/watt

80.00 160.00 240.
POWER (MW)

320.00

Figure 7.17. Self Heating Curve for St. Lucie RID
(TE 1121X at 135°F).



TABLE 7.5

SELF HEATING RESULTS FOR ST. LUCIE RTDs

Plant ID #
Location 
in Plant

Coolant 
Temp. °F

Self Heating 
Index (ohms/watt)

Standard
Deviation

TE 1125 Tcold 1B1 540 6.41 0.08

TE 1121Y Tcold 1B2 540 5.59 0.26

TE 1121Y Tcold 1B2 134 6.64 0.19

TE 1121X Thot, loop B 583 5.18 0.24

TE 1121X Thot, loop B 135 6.14 0.11
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8.0 SUMMARY AND CONCLUSIONS

Three methods for measuring the response time of installed 

platinum resistance thermometers have been developed. Experience 

with two of these methods (the loop current step response method 

and the self heating method) is described in this report. The 

methods have been tested in the laboratory and in four tests in 

three operating pressurized water reactors.

The loop current step response (LCSR) method involves analysis 

of the transient that occurs following a step increase in current 

through the sensor filament. Currents of 40 to 80 ma give temperature 

rises of 5 to 30 degrees Celsius. These values are suitable for 

in-plant testing and result in no deleterious effect on the sensor.

The loop current step response data gives the response of the 

sensor to an internal heating perturbation, but the response of 

interest is the one that results from a fluid temperature perturbation. 

An analytical transformation has been developed to predict the 

response to a fluid temperature perturbation by using information 

from the LCSR data record. Computer implementation of this procedure 

in the laboratory has been found to give time constant predictions 

within 10 to 20 percent of the true values. This is true for all 

sensors tested. This included sensors of the types commonly used in 

modern pressurized water reactors supplied by all PWR manufacturers.

Loop current step response testing procedures and analysis methods 

have been developed through laboratory tests and in-plant tests. The 

procedures and methods that evolved from this experience have1 been 

found to be suitable for practical in-plant measurements.
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Loop current step response data can be used along with the 

transformation to provide quantitative time constant estimates.

Also, the LCSR raw data can be used to detect changes in response 

characteristics from some reference condition. This may be accom­

plished by evaluating the LCSR time constant (different from the 

conventional plunge time constant) and comparing it with previous 

experimental evaluations on the same sensor.

The self heating method involves measurement of the steady state
2

temperature (resistance) increase as a function of I R power generated 

in the sensor filament. Increased time constants resulting from 

increased heat transfer resistance are indicated by a larger temperature 

rise for a given power generation. Implementation of this method involves 

measurement of the slope of the self heating curve (electrical resistance 

increase vs. power generation). The slope of the self heating curve is 

called the self heating index and is usually expressed in ohms/watt.

The self heating test may be used to detect changes in the heat transfer 

characteristics (and consequently the time constant) of sensors installed 

in an operating plant. Successful self heating tests were performed in 

three operating PWRs, indicating that the measurement is experimentally 

feasible in operating plants.

In general, the LCSR and self heating testing procedures provide 

methods for in-situ time response testing of platinum resistance ther­

mometers that are safe, reliable, and inexpensive. The methods may be 

used to monitor changes or to obtain quantitative time constant estimates 

by additional analysis of test data. Thus, the test engineer can match 

the test effort (and cost) to the needs of the test program.
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The research reported here provides the technology needed for 

in-situ response time testing of resistance thermometers. However, 

there are several different methods available that are capable of 

providing information of varying quality. Thus, the user must decide 

on the approach to time response testing that uses the available 

technology in the most reliable and efficient way. The experience 

of the authors in developing and implementing this technology has 

led to the following opinions on what constitutes a suitable test 

program.

1. The test program should be a mix of degradation monitoring 

and quantitative response time determination. Degradation 

testing provides adequate information on sensor response 

characteristics for less effort and cost than quantitative 

response time measurements.

2. The loop current step response method is the only suitable 

method for quantitative in-situ response time measurements 

for resistance thermometers. The data analysis should use 

a computer implementation of the transformation in order 

to obtain accurate time constant estimates.

3. Noise analysis (See Part B of this report) and self heating 

measurements are currently suitable only for degradation 

testing. They can indicate a change in sensor characterestics, 

but current technology does not provide a means to obtain 

reliable quantitative time response information from these 

methods.

4. The schedule for tests should not be set arbitarily. Rather, 

the test interval should be based on these factors:
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- the experience on the maximum rate of change 

that is likely for the sensor under test

- the margin between current sensor response 

time and the maximum allowable response time

This information should be used to set a test interval that will detect 

a loss of some fraction (say half) of the margin between current condi­

tions and maximum allowable conditions. This will help the industry by 

avoiding unnecessary testing, but will require industry cooperation in 

compiling information on degradation rates for typical sensors.
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APPENDIX A

DERIVATION OF EQUATION 2.25

This appendix provides the derivation of the result given 

in Equation 2.25. It gives the relation between the asymptotic 

response to a ramp input and the modal time constants. Consider 

the Laplace transform of the ramp response of a sensor (described 

by a transfer function with n poles and no zeroes):

Ka
x( s) = —o----------------------------------------------- (A.l)

s (s-s1)(s-s2) . . . (s-sn)

where

K = ramp rate

ao = (-s1)(-s2) . . . (-sn)

The partial fraction approach involves the use of the following form:

x(s) = ^ + ^ + _^3_ +

SC S S-S-| s-s.
(A.2)

The general problem in the partial fraction approach is to find all 

of the A.j.

The A.j are evaluated by setting Equation A.l equal to Equation

A.2:

A, A? A-
-4- + — + —-

s s s-s 1 s-s. S (s-s1)(s-s2) . . . (s-Sn) 

(A.3)
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A common denominator is introduced on the left hand side and can­

celled with the denominator on the right hand side.

A-j (s-s1)(s-s2) . . • (s-sn) + A2s(s-s1)(s-s2) . . . (s-sn)

2 2+ A3s (s-s2)(s-s3) . . . (s-sn) + A4s (s-s-jMs-s^ . . . (s-sn) + . .

= Ka0 (A.4)

First we identify all of the constant terms on the left hand side. All
?

of the factors with i>l for A. have s or s as a multiplier, so they 

contain no constant terms. The term involving A-j will have one con­

stant term. It is:

Ai (-Si) (-s2) . . . (-sn)

Setting this equal to the constant term on the right hand side and 

inserting the definition of aQ gives:

A-,(-s1)(-s2) . . . (-sn) = K(-s1)(-s2) . . . (-sn) 

or

A-j = K. (A. 5)

Now let us consider the terms involving s raised to the first 

power. When the factors in the coefficient of A-j in Equation A.4 

are multiplied out, the results are:
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constant term = (-s.|)(-S2) . . . (_sn)

coefficient of s 1
(-s1)(-s2) (-s2)

1

+ ]

Also, the coefficient of s^ in the term in Equation A.4 involving A2 

is

K(-s1)(-s2) . . . (-sn).

There are no terms involving s^ in any other terms in Equation A.4.

Since s^ does not appear on the right hand side of Equation A.4, 

we obtain:

^ [(-s1)(-s2)
+ Fsjr +

+ sA2 (-s1)(-s2) • . . (-sn) = 0 (A.6)

Therefore

Ai CT^T + ' + ^ + Az = 0 (A.7)

Since A^ = K and (^j-) = , we obtain

A2 = K [t-j + t2 + . . . + xn]. (A.8)



149

Now, we note that the terms in Equation A.3 containing A., for 

i>2 will all lead to terms in the inverse Laplace transform with 

negative exponentials. Therefore, they will die out with time and 

the remaining response is given by:

x(t) = L K(t1 + t2 + ’ ’ ' + Tn^
for t>>0

(A.9)

or

x(t) = K [ t - (t.| + t2 + . . . + xn)] for t»0 (A.10)

This is the result shown in Equation 2.25.



APPENDIX B

COMPUTER PROGRAM FOR ANALYSIS OF LOOP 

CURRENT STEP RESPONSE DATA

B.l Introduction

Analysis of the LCSR data requires that unbiased estimates 

of the approximating function be obtained. In particular, the 

expansion coefficients and the exponents (eigenvalues) of the 

function

x-,t kt
f(t) = aQ + a-| e +...+3^6

must be evaluated so that f(t) is the function which optimally

approximates the LCSR data. If the exponents are specified, the

expansion coefficients can be determined by using the linear least

squares method. However, if the eigenvalues are to be determined,

a method of nonlinear functional minimization is required.

It is important to note that if the data are equally spaced,

it is theoretically possible to estimate the eigenvalues by a linear 

(121method. ' This procedure was evaluated and found to be impractical 

for analysis of LCSR data apparently due to the need for a precise 

elimination of the constant bias (if this shortcoming could be overcome, 

this method should be used instead of the functional minimization approach). 

Consequently, the discussion in this appendix is limited to: 1) some

general comments on nonlinear minimization algorithms, 2) a method for 

estimating the variance of the unbiased parameter estimates, and 3) de­

tails regarding a computer program developed for analyzing LCSR data.



151

B.2 General Comments on Nonlinear Minimization Algorithms

Several nonlinear minimization algorithms commonly used for

(13)practical problems are. ‘ 1) steepest descent in conjunction

with a line search, 2) linearization of the functional or approxi­

mating function in conjunction with a variable stepsize (a general­

ization of Newton's method), and 3) Marquardt's method. The best 

algorithm for a particular application is usually not known a priori. 

Thus, three nonlinear minimization algorithms are evaluated for 

application to the LCSR data analysis: 1) linearization, 2) Marquardt's

method, and 3) a combination of Marquardt's method and linearization.

The linearization method is preferred to Marquardt's method or to the 

combined method for the LCSR data analysis since it is easier to 

implement and performs as well for the functional of interest.

Two basic problems associated with any iterative nonlinear 

search algorithm are: 1) determining a search direction vector, 

and 2) determining the optimal stepsize in the specified search 

direction. Most methods provide an implicit estimate of the stepsize 

in addition to determining the search direction. Nevertheless, it is 

frequently desirable to expend computational overhead to obtain an 

optimal (or suboptimal) estimate of the stepsize for at least two 

reasons: 1) to improve overall computational efficiency, and 2) to

ensure convergence properties.

B.3 Nonlinear Minimization Using Linearization

One advantage of the linearization method over some second order 

methods is that the coefficient matrix for determining the search 

direction (the matrix formed during the least squares solution of
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the equations specified by Equation B.8) is positive definite (at
(13)

least semi definite) ; consequently, the functional value decreases 

in the specified direction. Thus, if the optimal (or a suboptimal) 

stepsize is obtained for each iteration, the linearzation method is 

theoretically guaranteed to converge to a local minimum.In 

practice, guaranteed convergence cannot always be achieved.A 

disadvantage of the linearization method is that convergence is typically 

slow near the minimum compared to a second order methods. Some 

mathematical details follow.

The function which approximates the data is given by,

M x..t
f(t) = a + l a, e (B.l)

0 i=l 1

Typically, two exponential terms (M=2) are sufficient to approximate 

LCSR data adequately. In order to estimate the model parameters 

(a0, . . •» A.j, . . ., x^), the variance of the residual is 

minimized; in particular, the following functional is minimized:

®(o; Y^) N-K

N

A (k - 0er

where

Q — (aQ, • • ., a^ x.j, • • ., )» 0eR
M . t 

f. = a + y a. eAi k 
k 0 i=i 1

= vector of data points

(B.2)

(B.3)

(B.4)

(B. 5)
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If the approximating function is expanded in a first order 

Taylor series, one obtains.

(B. 6)

0/
Minimization of $ is equivalent to the linear least squares problem 

for the set of equations

N (B. 7)

Thus, minimization of the functional given by Equation B.2 is con­

verted into a sequence of linear least squares problems with a one­

dimensional search for each iteration. At each iteration, the 

optimum stepsize is calculated so that $(0. + p.60.; Y^) is minimized; 

in particular, $ is minimized with respect to p for each iteration.

The optimum stepsize is estimated by using: 1) the point where

the functional minimum occurred for the previous iteration, 2) a point

which reduces the functional value (this is found by halving the

interval), and 3) a point which increases the functional value (this

point is found by increasing the stepsize). A quadratic curve is

defined by these three points; thus, the optimum stepsize is easily

estimated. Since the search direction is obtained through the use
(13)

of a positive definite coefficient matrix, ' the functional can be 

reduced in the direction chosen.

Three criteria are used for terminating the minimization algorithm 

1) if the norm of the functional gradient is small with respect to 

the norm of the functional, 2) if the functional value cannot be
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reduced in the selected direction by halving the interval a selected 

number of times, and 3) if the specified number of interations is 

exceeded.

B.4 Nonlinear Minimization Using Marquardt's Method

Marquardt's method uses the Hessian matrix of the functional

(a matrix generated from the second partial derivative of the

functional) to calculate the search direction and stepsize. Since

this is a second order method, it has very good convergence properties

near a local minimum. On the other hand, the Hessian matrix may be

negative definite (and lead to a diverging sequence of functional

values) as well as positive definite; thus, a method based only on

the Hessian matrix could result in finding a maximum instead of a

minimum. Marquardt has devised a method to circumvent this problem

to ensure that the search algorithm always leads to decreasing the

(13)functional. Details of Marquardt's method are given by Bard.

Marquardt's method requires the calculation of the second partial 

derivatives with respect to the model parameters as a preliminary step. 

The appropriate derivatives are as follows:

Hr (as V N-K (B.8)

where

Rk Y ek

and

2a $
- 2 ?

r i
3f " 9f " + R

r 2f i 
9 Tk

ae.ae.
J i N-K M 30 .

L Jj
k

80i Kk

k

80.80.
J l

(B. 9)

(B.10)
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The second partials of the approximating function are specified by:

32f,

80 .90 .
0 ^

i <_ M+l, j > M+l and j = M+ i 

i > M+l, j > M+l and i = j
(B.ll)

32f,

90 .90 .
J 1

i > M+l, j < M+l and i M+j (B.12)

otherwise, the second partials of the approximating function with 

respect to the model parameters are zero. The first partials are 

easily computed. For example, if k = 5:

(B.l3)

3fk Vk 3fk Vk
5x7 = aitk6 ’ an<‘ = “zV

where

(01» 02’ ®3* ®5^ = (a » a-|5 ^29 ^-j > ^2^

(B.14)

(B.15)

B.5 Variances of Model Parameters and Response Time

Data obtained from a LCSR test are analyzed to obtain unbiased 

estimates of the model parameters. Some of the estimated parameters 

are subsequently used to estimate the time constant that characterizes 

a temperature detector plunge test.
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Uncertainty in the estimates of the model parameters that 

characterize the LCSR data arises from at least three factors:

1) noise contamination of the data, 2) the existence of modal 

responses in the data that are not included in the model, and 

3) sensitivity of the functional to functional parameters (e.g. 

data sampling interval and sampling frequency). A method for 

estimating the variance of unbiased parameter estimates due to
(15)

noise contamination has been discussed with Bayne' ' and is de­

scribed by Bard/^ If the variances of the parameter estimates 

are given, two methods for estimating the variance of the plunge 

test time constant are: 1) the propagation of error formula^^ in

conjunction with an analytical approximation for the time constant, 

or 2) the parameters used to obtain the "plunge test time constant" 

could be randomly varied in conjunction with a direct calculation 

of the time constant. Although the second method is preferred, the 

first method is used for computational convenience.

In terms of the model and the residuals (noise), the observed 

data are given by

Yj = f(Q,t.) + e. ; j = 1, . . ., N . (B.16)

where

9 = the unbiased parameter estimates

Y. = an observed datum
J

a residual.
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It is assumed that the expected value of the residual is near zero; 

in particular,

EfCj) = 0. (B.17)

Also, the best estimate of the variance of the residuals is used to 

estimate the true variance of the residuals,

E(e.2) = S2 (B.18)
J

and

c2 ^ 2 5 = cr (B.19)
2

where o is the unknown variance of the residuals.

In order to obtain the variances of the parameter estimates, it 

is necessary to calculate the variance-covariance matrix of (Var(e)). 

The diagonal elements of Var(0) are the variances of the elements of 

the vector 0 . The variance-covariance matrix is approximated by

Var (0) I
'9f ‘ 9f'

j=l 30
j

30

or

(B.20)

[ZTZ]
-1

Var (0) (B.21)
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where

3'f
3011

Z =

3f

30kl

(B.22)

3f

30lN

The first subscript denotes the position vector of 0 and the second

subscript denotes the observation number. The estimate of the 
o

variance (S ) is given by

N . 2
.1 [ Y - f(£, t.)]

S2 = ----------------------------------- (B.23)
N-K

It is of interest to point out that the elements of . are 

simple analytical expressions. Also, if the data are equally spaced, 

closed form expressions for the elements of ZTZ can be obtained. These 

closed form expressions are included in the computer program developed 

in this project.

An estimate of the plunge test response (obtained from the LCSR 

data) for a second order system is given by

YPi(t)

^t ^t

(_^1) (-^2) (^i -^2^ *2^2-*l ^ (B.24)
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The time constant t is defined through the expression

Ypl(T) = YP1(00) 0 " e_1)’
(B.25)

and is accurately approximated by

T = [ ’ * InO -
-1 (B.26)

The propagation of error formula is used to estimate the variance in 

f as follows:

B.6 Methods Evaluation and Computer Program Verification: Discussion

A number of test problems using theoretical data were studied 

during the computer program development. Several computer programs 

are available that analyze theoretical LCSR data correctly and also give 

the same results for experimental data. Some of the computational 

experiments performed while developing the program described were:^^

1. Survey calculations to evaluate the linearization method, 

Marquardt's method and a Marquardt-1inearization method.

2. Calculations to determine the effect of white noise and of

2
(B.27)a

T

where

60 Hz in theoretical LCSR data parameter estimates and a 

standard deviation of parameter estimates.
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3. Calculations for parameter estimates and for uncertainties 

of parameter estimates using experimental data.

Each of the three nonlinear minimization algorithms tested performed 

well. Although Marquardt's method (in theory) converges much faster 

than the linearization method near the minimum, the overall performance 

of the linearization method was better than Marquardt's method for the 

functional of interest (c.f. Eq. (B.2)). A combination of the two 

methods performed no better than the linearization method; consequently, 

the computer program listed uses only the linearization method.

Results (reported in Reference 17) relating to the effect of 

white noise and of 60 Hz on theoretical data illustrate that the 

parameter estimates are not affected by significant white noise or 

60 Hz data contamination. A quantative evaluation to verify the 

accuracy of the uncertainty estimates would require a detailed 

simulation study which has not been performed.

B.7 Analysis of Experimental Data: Discussion

Theoretical considerations indicate that identification of two 

eigenvalues should be adequate to obtain a good estimate of the plunge 

test time constant. However, experimental data has been found to be 

contaminated with other functions: 1) fast transients due to data

acquisition instrumentation, 2) significant process noise in the 

frequency range where the RTD spectral power is concentrated, and 

3) ramp process transients.
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Analysis of data contaminated with fast transients can be 

delt with in two ways: 1) use three to five exponentials in the

approximating function, or 2) use only two or three exponentials 

in the approximating function but skip an appropriate portion of 

the initial data record. The second method is preferred. However, 

several calculations must be made by skipping different lengths of 

the initial transient to determine the appropriate amount of data 

to be skipped. Some results to show the effect of skipping initial 

data points are given in Figures B.l and B.2. Note that more data 

must be skipped with the second order model than the third order 

model. Also, note that the time constant of interest (where the 

curve flattens out) is the same for the second and third order 

models. If too much data is skipped for a particular model, then 

information on a particular mode is discarded and again the time 

constant estimate will be incorrect.

If the data is contaminated with a ramp function, one needs only 

to include a ramp in the approximating function. Process noise can 

usually be delt with using appropriate filtering. However, frequencies 

in the range where the RTD spectral power is concentrated cannot be 

filtered.

B.8 Comments on the Computer Program Described Herein

An earlier version of this program is given in Reference 17. The 

version described herein has been modified to run on a PDP 11 and assumes 

that the data are equally spaced. Assuming that the data are equally 

spaced allows one to write closed form expressions for elements of the
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Figure B.l. Effect of Skipping Initial Data Points on the Time 
Constant Estimate (Second Order Model).
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Figure B.2. Effect of Skipping Initial Data Points on the.Tine 
Constant Estimate (Third Order Model).
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coefficient matrix used to determine the direction vector. This 

reduces the execution time by a factor of four to five.

Direction vectors are always calculated using the linearization 

method. However, two different methods are employed for the optimal 

line search. One uses the search direction as calculated and the 

other exploits the fact that the expansion coefficients can be 

obtained with a linear least squares technique.

Before any result is accepted, the influence of changing 

functional parameters (i.e. sampling frequency and data interval) 

should be evaluated since the uncertainty estimate does not take 

these variables into account. However, this evaluation is straightforward.

B.9 Sample Problem and Program Listing

The instructions for using the LCSR transformation program, 

the output of this program for a typical case, and the program listing 

are given in this section. Table B.l gives the listing of the inputs 

to the LCSR program. Explanations of these inputs are:

1. "DO YOU WISH TO GENERATE A LIST FILE?". This input provides the 

user with the option of storing the results of the LCSR test 

analysis on a computer disk. The user types "Y" to invoke this 

option or types "N" otherwise.

2. "ENTER 0 FOR NO PLOTS, 1 FOR PLOTS, 2 FOR PLOTS AND AUTO-COPIES". 

Results of the analysis may be obtained in graphical form on a 

CRT as well as digital form on a line printer. The CRT may be 

connected to a hard copy unit to give a copy of the results dis­

played on the CRT. The user may type "0" to avoid plotting the 

results (to save time) or type "1" to only observe the plots of



Table B.l Inputs to the Loop Current Step Response 
Computer Program

R LCFT2

DO YOU WISH TO GENERATE A LIST FILE? H

ENTER O FOR NO PLOTS, 1 FOR PLOTS, 2 FOR PLOTS AND AUTO-COPIES = 2

ENTER THE NAME OF THE FIRST DATA SET TO 'BE ANALYZED : OK1-PAUE.001

ENTER THE NUMBER OF DATA SETS TO BE ANALYZED = 1

ENTER 6 TO RUN SECOND ORDER CASES ONLY, ENTER 1 
TO RUN SECOND AND THIRD ORDER CASES.
1

ENTER THE NUMBER OF SAMPLES TO BE SKIPPED = 10 

ENTER DELTA T AND THAN = .602,2
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the LCSR results. If a "2" is entered a hard copy of the 

results can be obtained from the hard copy unit.

3. "ENTER THE NAME OF THE FIRST DATA SET TO BE ANALYZED". The 

LCSR program can analyze a sequence of LCSR data with a single 

set of inputs. This input specifies the name of the first data 

set to be analyzed. After the first data set is analyzed, the 

program will proceed to the next data set in the sequence and 

perform the analysis. This process will continue until all of 

the data sets specified by the inputs are analyzed.

4. "ENTER THE NUMBER OF DATA SETS TO BE ANALYZED". This input 

specifies the number of data sets to be analyzed in a sequence 

of LCSR data sets.

5. "ENTER 0 TO RUN SECOND ORDER CASE ONLY, ENTER 1 TO RUN SECOND 

AND THIRD ORDER CASES". This allows the use of a second order 

model or a third order model in analyzing of the LCSR data.

If "0" is entered, the LCSR data will be fitted to a second 

order model yielding two eigenvalues (poles). If "1" is entered, 

the LCSR data will be fitted to a third order model yielding 

three eigenvalues.

6. "ENTER THE NUMBER OF SAMPLES TO BE SKIPPED". It is usually 

required to skip the first few milliseconds of the data that 

include a very fast transient. This initial transient is 

characteristic of the instrumentation and of the sensor filament 

rather than the sensor heat transfer characteristics. The appro­

priate number of points that should be skipped to eliminate the 

transient may be determined by plotting the time constant versus 

the number of points skipped (c.f. section B.7).
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7. "ENTER DELTA T AND TMAX". The Delta T (T) is the reciprocal 

of the sampling frequency and TMAX is the duration of the 

data set to be analyzed.

The plot of LCSR data for a typical case is given in Figure B.3. 

The results of analysis of this data along with the plots of inter­

mediate and final results are shown'in Table B.2 and Figures B.4 and 

B.5. The program listing follows Figure B.5.
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Table B.2. Listing of The Results of Analysis of a Typical LCSR Data Set

32

RESULTS OF THE DIRECT SEARCH:

THE FUNCTIONAL UALUE
THE TIME CONSTANT
THE EXPANSION COEFFICIENTS =

THE El GENUALUES

8.57424E+00 
0.23608E+00 
0.893S8E+03

-O.4Q344E+01

THE FOLLOWING RESULTS PERTAIN TO AH 
APPROXIMATING MODEL WITH 2 EXPONENTIALS:

HEW AND OLD FUNCTIONAL 'VALUES FOR ITERATION 
ARE 8.52713E+00 AND Q.57424E+00

NEW AND OLD FUNCTIONAL UALUES FOR ITERATION 
ARE 0.52450E+80 AND 0.52713E+08

NEW AND OLD FUNCTIONAL UALUES FOR ITERATION 
ARE 0.52441E+00 AND 0.52450E+30

RESULTS FROM THE MINIMIZATION ALGORITHM--

TERMINATED BY.. NOPT = 0

-0.15314E+03 

-8.28240E+82

-0.47367E+

2
—p

69
 L



Table B.2 (Continued)

EXPECTED UALUE OF RESIDUAL 
STANDARD DEVIATION OF THE RESIDUAL = 
VARIANCE OF THE RESIDUAL 
THE NORMALIZED GRADIENT

6.51141E-04 
0.7241SE+00 
0.52441E+O0 
0.18788E-03

EXPANSION COEFFICIENTS 
8.89S8SE+03 + OR - 

-0.15050E+83 + OR - 
-8.47739E+02 + OR -

ARE ••
0.49306E-01 
0.70066E+00 
0.7u31 L'E+OO

EIGENVALUES ARE: 
-8.40037E+A1 + OR 
-8.23670E+02 + OR

0.1SS42E-01 
8.61314E+00

THE TIME CONSTANT 0.29685E+08 + OR 0.81241E-02



Table B.2 (Continued)

THE FOLLOWING. RESULTS PERTAIN TO AN 
APPROXIMATING MODEL WITH 3 EXPONENTIALS:

HEN AND OLD FUNCTIONAL UALUES FOR ITERATION 1 
ARE 0.46520E+0O AND 0.49715E+00

NEW AND OLD FUNCTIONAL UALUES FOR ITERATION 2 
ARE 8.41917E+00 AND 6.4S520E+80

NEW AND OLD FUNCTIONAL UALUES FOR ITERATION 3 
ARE 9.37S80E+Q0 AND 0.41917E+80

NEW AND OLD FUNCTIONAL UALUES FOR ITERATION 4 
ARE 0.37115E+88 AND 0.376S0E+80

NEW AND OLD FUNCTIONAL UALUES FOR ITERATION 5 
ARE 0.37836E+88 AND 8.37115E+00

RESULTS FROM THE MINIMIZATION ALGORITHM=

TERMINATED BY, NOPT = 8



Table B.2 (Continued)

EXPECTED UALUE OF RESIDUAL 
STANDARD DEVIATION OF THE RESIDUAL = 
VARIANCE OF THE RESIDUAL 
THE NORMALIZED GRADIENT

0.14722E-83
8.6AS57E+0A
0.37036E+00
0.39395E-05

EXPANSION COEFFIC 
8.30fi85E+03 + 

-0.13938E+03 + 
-U.44507E+82 + 
-8.18840E+02 +

EIGENVALUES ARE: 
-8.38248E+A1 + 
-0.13621E+82 + 
-8.88888E+82 +

THE TIME CONSTANT 
STOP —

ENTS ARE:
OR - 0.47649E-81 
OR - 0.18671E+01 
OR - 0.13774E+01 
OR - 8.15239E+01

OR - 8.29432E-81 
OR - 8.82742E+80 
OR - 8.83432E+01

= 8.3S843E+88 + OR 8.13444E-81



SS
H

SC
ft P

H
D

 HO
D

EL
 RE

8P
0H

SE
—

C
O

H
ST

R
U

C
TE

D
 ST

EP
 RE

SP
O

N
SE

LCSR PNPLYS1S BY LCFT2 FILE<OKI<PPUE.001 
NSKIP«10 THPX* 2.00 ORDER*2 DT«0.004 TPU* 0.30

0.0 0.2 0.4 O.S 0.8 1.0 1.2 1.4 1.6 1.8 2.0
TIKE <SECONDS)

CO

Figure B.4. Plot of Intermediate Analysis Result of a Typical LCSR Data Set



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
TIHE <SECONDS)

Figure B .5 . P lo t o f  F in a l A nalysis  R esu lt o f  a Typ ica l LCSR Data Set

SE
NS

OR
 R

ND
 H
OD
EL
 R
ES
PO
NS

E-
CO
NS

TR
UC
TE

D 
ST

EP
 R

ES
PO

NS
E 

68
07

00
 7

20
 7

40
 7

60
 7

80
 8

00
 8

20
 8

40
 8

60
 8

80
 3

00
 9

20

- 
1 

.

17
ZI

LCSR ANALYSIS BY LCFT2 FILE»DK1‘PAUE.Q01 
NSKIP*10 THAX* 2.00 0RP£R*3 PT«Q.004 TAU* 0.3S



FORTRAN TV V01G-03E+ PAGE 001

0001

0002
0003
0004 
0003 
0006 
0007
oooa 
0000 
00 10 
0011 
0012
0013
0014

0015
0016 
0017 
00111
0019
0020 
0021 
0022
0023
0024
0025
0026

C-T LCFT3.MUL 
C
C-N ROTE: THIS VERSION OF DR. MILLER’S PROGRAM HAS BEER MODIFIED TO
C RUN ON PDP 11 MINICOMPUTERS USING RT/11 FORTRAN. ALSO THIS 
C VERSION ASSUMES A CONSTANT SAMPLING RATE FOR THE DATA TO BE 
C ANALYZED. NO PLOTS ARE PRODUCED BY TOIS VERSION. SOME CORRECTIONS
C HAVE BEEN MADE TO THE ORIGINAL VERSION. THESE CORRECTIONS HAVE
C BEEN INCLUDED IN THIS VERSION. SUBROUTINE GTDAT HAS BEEN INCORPORATED
C INTO THIS VERSION SO THAT TOE PROGRAM WILL HANDLE LCSR DATA AS
C STORED ON THE PDP 11. THIS VERSION HAS BEEN MODIFIED TO RUN 
C MULTIPLE CASES V/HILE VARYING THE STARTING POINT AND KEEPING TMAX 
C CONSTANT. THE TIME CONSTANT, THE UNCERTAINTY IN TOE TIME CONSTANT,
C AND THE STANDARD DEVIATION OF THE RESIDUALS ARE OUTPUT TO A DISK
C FILE. THESE RESULTS MAY BE RETRIEVED AND PLOTTED BY TIWPLT.
C

C =i::K ^ ."i: ^ * >;■: ^ * * * * * 'K »* S: * * .K * * * >1: * * * :S X X XXXXXXXXXXXX
c -'i: * r.’; * XXX X '■:< X X X-‘1: X ^ '■!: ^ ^ ^  ̂^ ^ * * * * ^ ^ * :i:
C THIS PROGRAM IDENTIFIES PARAMETERS OF AN EXPONENTIAL MODEL THAT 
C APROXIMATES THE LOOP-CURRENT-STEP-RESPONSEI LCSR) DATA. THE OVERALL 
C PROGRAM LOGIC IS AS FOLLOWS:
C 1. CONDUCT A DIRECT SEARCH FOR A STARTING POINT 
C 2. MINIMIZE THE VARIANCE OF TOE RESIDUAL ERROR
C 3. ESTIMATE THE STANDARD DEVIATION OF THE 63% RESPONSE TUX FROM
C THE VARIANCE-COVARIANCE MATRIX
C * M: •!:£ H:M: & rj;:!: ‘I: ;i:S .-fc rS# :t- :l:t X S r!“K M: * :i: :>: # M::): * .-J:^ ;f: % *

DIMENSION Y0(2040),WOIU« 2048),X(7),Y(7),A(7,7),AIV(7,7),
1 ASAV( 7,7) , P( 7) ,G(7) ,W«7) ,DIR(7) ,PSAV(7)

INTOGER«2 JTEMPI 100)
LOGICAL*! DSNAMEC14),RSNAMEI 14)
WRITE (7,3000)

3000 FORHAT( ’ ENTER TOE LCSR DATA FILE NAME : ’,S)
READ (5,3010) DSNAME 

3010 FORMAT (14A1)
WRITE (7,2000)

2000 FORMAT (’ EN'IER THE FILE NAME FOR THE RESULTS : *,®)
READ (5,30 10) I ISNAME
CALL ASSICN(lO.lWNAME,(4,’OLD’,’NC’,1)
DEFINE FILE 10(100,6,U,JLOOK)
WRITE (7,3020)

3020 FORMAT (’ ENTER 0 TO RUN SECOND ORDER CASES ONLY,’
1 1 ENTER 1 TO RUN SECOND AND THIRD ORDER CASES : *,S)
READ (5,3030) NEXT 

3030 FORMAT (12)
WRITE (7.1080)

1080 FORMAT (’ EN'IER DTN, TMAX : ’,S)
READ (5,1090) DTN,TMAX 

1090 FORMAT (2F10.0)
WRITE (7.1020)

1020 FORMAT (’ ENTER TOE NUMBER OF CASES TO BE RUN : ’,S>
READ (5,1030) NCASES 

1030 FOFJ’IAT ( I6>
DO 10 1=1,NCASES 

30 WRITE (7,1040) I
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0027
0028 
0029 
0080 
0082 
0088

0034
0035 
0037 
0033
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050 
005 1 
0052

0053

0054
0055

0056
0057
0058
0059
0060 
6061 
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072

1040 FORMAT ( ’ ENTER JSKIP(’,13,’) : ’,S)
READ (5,1050) JTEHP(I)

1050 FORMAT (16)
IF (.JTEITPC I) .CE. 0) GO TO 20 
WRITE (7,1060)

1060 FORMAT ( ’ JSKIP MUST BE GREATER TRAN OR EQUAL*
1 ’ TO ZERO? TRY AGAIN?’)

GO TO 80
20 IF (JTEKP(I) .LT. 100) GO TO 10

WRITE (7,1070)
1070 FORMAT (’ JSKIP MUST BE LESS THAN 100? TRY AGAIN?’)

GO TO 30
10 CONTINUE

RCASE=0
100 NCASE=NCASE+1

JSKIP=J TEMP ( NCASE)
DT= DTN 
TL=TMAX 

ND= 7 
NOUT=50 
NMAX=10 
NSIUI= 16 
NGMX=2 
EPS=1.E-4 
TAU=1.0

C READ THE INPUT DATA FROM THE FILE SPECIFIED BY THE USER.
C NOMXi NUMBER OF OBSERVATIONS
C NEXPJ IF SET TO 1, A THREE EXPONENTIAL CALCULATION IS PERFORMED
D PAUSE ’CALL GTDAT’

CALL GTDAT(YO,WORK,NO,DT,TO,TL,DSNAME,JSKIP)
D PAUSE ’RETURN FROM GTDAT’
D TRITE (7,2010) NO
2010 FORMAT (2X,16)

NOMX= NO

C CONDUCT A DIRECT SEARCH TO ESTIMATE A STARTING POINT 
AR= 1.0 
I ()PT= 0 
NX=2 
1UI0= 0.0 
FMIN=1.0E+12 
NV=2»NX+1 
BU=TAUK5.0 
BL=TAU*©.2
RTO=(BU/BL)»*(1.G/FLOAT( NSRH-1))
NLP=N3RH 
DO 40 1=1,NLP 

CALL XSTOP 
P( 4) =-BU/AR.
P(5)=P(4)*7.0 
I ER= 0
CALL FUNCT(NO,NX,ND,A,X, Y,P,DT,YO,IOPT,IER,FVAL)
IF( I Ell. EQ. 0) GO TO 35
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0074
0075 
0976
0077
0078
0079 
0081 
0082
0083
0084

0085
0086
0087
0088
0089
0090
0091
0092

0093
0094
0095
0096

0097

0098
0099
0100 
0101 
0102 
0103

0104
0105
0107
0108
0 109
01 10 
0111 
0113 
01 14
0115
0116 
0118 
01 19

PRINT 1013, IER
1013 FORMAT! ’O’,’ ERROR IN THE COEFFICIENT CALCULATION, IER=’,15)

STOP
35 CONTINUE

AR=AR*RTO
IF(FVAL.GE.FMIN)GO TO 40 
FKIN=FVAL
CALL VECDP(HV,RHO,P,WK,DIR)

40 CONTINUE
CALL VECDP! NV, RHO, 'WK, P, DIR)

C PRINT RESULTS OF THE DIRECT SEiiRCH 
EIG1 = P ( 4)
EIG2=P!5)
CALL TAUA!TAU,EIG1,EIG2)
PRINT 1000 
FVAL=FHIN
PRINT 1001, FVAL,TAU,P!1),P!2),P!3),P!4),P!5)

1000 FORMAT! ’0’,’ RESULTS OF THE DIRECT SEARCH:’)
1001 FORMAT!’O’,’ THE FUNCTIONAL VALUE = ’,3X,E12.5/

1’ ’,’ THE TIME CONSTANT = ’,3X,E12.5/
2’ ’,’ THE EXPANSION COEFFICIENTS = ’,3! 3X,E12.5)/
3’ ’,’ THE EIGENVALUES = ’,2!3X,E12.5))

C MINIMIZE THE RESIDUAL VARIANCE 
NH=2

50 CONTINUE
PRINT 1003, NX

1008 FORMAT!’0’,’ THE FOLLOWING RESULTS PERTAIN TO AN ’/
1 ’ APPROXIMATING MODEL WITH ’,12,’ EXPONENTIALS:’/)

GALL LNU! NO,NX,ASAV,P,ND, MC,DIR,A,X,Y,YO,EPS,NMAX,NOUT,
1 NOPT,FMIN,FVAL,DT,NLOOPS)

PPMNT 1004
1004 FORMAT!’!)',’ RESULTS FROM THE MINIMIZATION ALGORITHM:’/)

PRINT 1010, NOPT
1010 FORMAT!’ ’,’ TERMINATED RY, NOPT= ’,12)
60 CONTINUE

GALL SWAP! NX,WK,P)

G CALCULATE 'HIE STANDARD DEVIATIONS OF THE ESTIMATED PARAMETERS AND OF 
C THE 43J5 TUNE CONSTANT

GALL LAM A,ASAV,AIV,X,Y,YO,P,ND,NO,NX,DT,TAU,JSKIP,NEXP)
1F! NEXi ’. NE. 1) GO TO 70 
P!NV+2>-3.0:!:P!NV)
P!NV+;)~P!NV)
P( NV)!’» N V- !)
NX= NX-:-1
IF!NX.GT.3)CO TO 70 
IOPT=0
CALL FUNCT!NO,NX,ND,A,X,Y,P,DT,YO,IOPT,IER,FVAL)
FMIN=FVAL
IF!IER.EQ.0)GO TO 65 
PRINT 1013,IER 

65 CONTINUE
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0120 GO TO 50
0121 70 CONTINUE
0122 IF (NCASE .NE.
0124 303 FORMAT (’0****
0125 STOP
0126 END

NCASES) GO TO 100 
EXECUTION COMPLETE ****’)



PAGE 001

6001
0002

0003
0004
0005
0006
0007
0008 
0010 
0012 
0013
0015
0016 
0017 
0010 
0020 
0022 
0023

if:*#**:!: *****:(::{:*:{:**:(::*:*:(:***
SUBROUTINE DRCHK(DIR,P,NX,RHO,NK, ITST)
DIMENSION DIR(1),P<1),WK( 1)

C************************************************************************
C THIS SUBROUTINE ENSURES THAT THE EIGENVALUES FOR THE SEARCH POINTS 
C ARE ALWAYS NEGATIVE.
C*****************************************************************************

NX2=NX+2
NV=2*NX+1
ITST=0
TST=ABS(RHO)
DO 10 K= NX2,NV
IF(RHO.GT.0.0.AND.DIR(K).LE.0.0)GO TO 10 
IF(RHO.LT.0.0.AND.DIRCK) .GE.0.0)GO TO 10 
TERM= ABS(P( K) /DIR( K) )
IF(TERM.GT.TST)GO TO 10 
TST= TERM 

10 CONTINUE
TEPJ'I= ABS C RHO)
IF(TST.LT.TERM)ITST=1
IF(ITST.Eft.1)RH0=RH0*0.7*TST/TERM
RETURN
END

vo
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0001 SUBROUTINE FUNGTCNO,NX,HD,A,X,Y,P,DT,YO,IOPT,IER.FVAL)
0002 DIMENSION A(ND.ND),Y(1),P( 1),Y0( 1),X<1) ,AE( 10),R( 10)

C y '■>■ >:< X X S: * :K * ^ ^ Ji". * * X X * :!'■ X tf. :K -1:W ^ •',': ;i: ¥ * * XXX:?.:;::;:]:S vi: -"K :f: * S ^ ^ * * «:
C THIS SUBROUTINE CALCULATES THE FUNCCTIONAL TO BE MINIMIZED TOICH IS 
C THE APPROXIMATE VARIANCE OF THE RESIDUALS.
C THE OPTIMUM EXPANSION COEFFICIENTS ARE CALCULATED.
C * X : i':K:i: # t- X Xt-Xt- .'K' X X * * S^* :i: :i: % -K * ^ ^ ^ * .“f:  ̂^ S: * ^ * * ^ ^ ^ ;f: ^ S: S:

0003 IF (IOPT .NE. 0) GO TO 40
C CALCULATE THE OPTIMUM EXPANSION COEFFICIENTS

0005 CALL CGF(NO,NX,ND,A,X,Y,DT,YO,P,IER)
0006 IF (IER .NE. 0) GO TO 30

C EVALUATE THE FUNCTIONAL
0008 40 CONTINUE
0009 NX1 = NX+ 1
0010 SUM= 0. G
0011 DO 20 1=1,NX1
0012 AE< I)=P( I)
0013 20 SUM=SUM+AE(I)
0014 FVAL= (YO( 1) -SUT-D **2
0015 DO 25 1=1,NX
0016 25 R( I)=EXP(imP(NXl + I) )
0017 DO 10 K= 2, NO
0018 SUM=AE( 1)
0019 DO 15 1=2,NX1
0020 AFX I) = AE( I) *R( 1-1)
0021 15 S UM= S UM+ AE(I)
0022 10 FVAL= FVAL+(SUM-YO(K))
0023 ANO= NO- ( 2>:=NX+ 1)
0024 FVAL=FVAL/ANO
0025 30 CONTINUE
0026 RETURN
0027 END
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C*tt*:?:*****:fctf:f:$*#*****:»:#***#**:fc*******#********tf****:S*5(::fc***S:i}:*5t:»:f::J'.***:|:****
C*#:fc**:f:*>!c*:i:*.%*:!"*:i:**:S#**:«**!|!*tf#:K#**:lt**#*****»*******#************!l:#*#*****:)t***

0001 SUBROUTINE C0F(NO,NX,ND, A,I£, Y,DT, YO,P, IER)
0002 DIMENSION A( ND,ND),X( 1>,Y( 1),YO( 1),P( 1)

C THIS SUBROUTINE EVALUATES THE OPTIMUM EXPANSION COEFFICIENTS BY A 
C LINEAR LEAST SQUARES ALGORITHM

C CALCULATE THE COEFFICIENT MATRIX
0003 A( 1, 1) =NQ
0004 NX1=NX+1
0005 DO 20 1=1,NX!
0006 DO 20 .1= I ,NX1
0007 EX=P(NX+I)+P(NX+J)
0003 IF(.J. EQ. 1)00 TO 20
0010 IFCI.EQ.1)EXSP( NX+J)
0012 R=KXP(EX*DT)
0013 AL=EXP( I'.X*1)T:::FL0AT( NO-1))
0014 A( I , .1) = (1W:A1 - 1. ) /( R- 1.0)
0015 20 CONTINUE
0016 DO 25 1=2,NX!
0017 DO 25 J=1,I
0010 25 A(I,J)=A(J,I)

C COMPUTE THE INHOMOGENEOUS VECTOR
0019 Y(1)=0.0
0020 DO 45 1=1,NO
0021 45i Y( 1) = Y( 1) +Y0( I)
0022 DO 30 1=2,NX!
0023 YC I)=0.0
0024 XM= P(NX+ I)
0025 FAC= 1.0
0026 R= F.XP ( XU'.’0)T)
0027 DO 30 K=1,NO
0023 XT:: FAC
0029 I’AC= KACiCIl
0030 30 Y( I) =Y( 1>+XT*YO<IO

C CHECK FOR A ZERO DIAGONAL ELEMENT
0031 IE 3=0
0032 DO 35 K=1,NXI
0033 IF( AUS( A( K,K)).GT.1.0E-12)GO TO 35
0035 1 ER= 1
0036 CO TO 50
0037 35 CONTINUE

C CALCULATE THE EXPANSION COEFFICIENTS
0030 CALL OAUS(A,Y,X,ND,NXI)
0039 DO 40 1=1,NXI
0040 40 •V II

0041 50 CONTINUE
0042 RETURN
0043 END
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0001
0002

0003
0004
0005
0006 
0007 
0003 
0009

C!fc#tf*#****:s:***4:*:(:*5ft*5C****5M::|i*.i;**#*5!:#***:t:*:lc**##****#**:ft*****#:fc*****!fc********  
c * ^ ^ ^::: XX •■!'.* -1; .1: ^ ^ *;); ^ ^ * ;(c ^ * :i: ri; ^ ^ if: ^ ^ ^

FUNCTION FAPR( P, NX, Til)
DIMENSION P(1)

C!|:**S:**5):*5|c******^^:5(:!(:*j|!#*!|!5|!***X!>|:>t:***!(!******>i!**>l:****!t:*!f:*:J:***:|c***#3:^:*5(:*******
C THIS FUNCTION SUBROUTINE EVALUATES THE APPROXIMATING FUNCTION AT 
C A SPECIFIED TIME

NX1 = NX+ 1 
FX=P( 1)
DO 10 1=2,NXI

10 FX= FX+P(I)*EXP(P(NX+1)*TM)
FAPR=FX
RETURN
END
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0001
0002

0003
0004
0005
0006

C%***%******%*x***xx*****x%******x**$****x*xxx***xx****#x*xyxx***x********x
SUBROUTINE VECDP(K,RHO,X,Y,DIR)
DIMENSION X( 1) ,Y( 1) ,DIR( 1)

C THIS SUBROUTINE CALCULATES THE COORDINATES OF A POINT THAT LIES A 
C SPECIFIED DISTANCE IN A SPECIFIED DIRECTION FROM A K-DIMENSIONAL 
C VECTOR

DO 10 1=1,K
10 Y( I) = X( I) +RHO*D IR( I)

RETURN
END

00
co
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C****fc****:|:;f:#tf*****:f::f:****##:!:*:f:**#:f:***#*#:fc#**#*****##***:f:***$****5t::»::f::»::fc**:|::t:*****!Mc

0001 SUBROUTINE TAUA<TAU,El,E2)

C THIS SUBROUTINE CALCULATES THE APPROXIMATE TIME CONSTANT!63£) FROM 
C AN ANALYTICAL EXPRESSION USING TWO EIGENVALUES.
c *:::X *^ * >:-. X :;c * ^ '.f. t- * :f; :f; >:< *■ X :!'■ X :t- :!■ XXX »:S :f; ^ W;  ̂X: ^ :(< * ^ * * * * * * ^; ^ ^ ^ :K

0002 TAU=(ALOG(1.00-E1/E2)-1.0)/El
0003 RETURN
0004 END

184
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0001

0002

0003

0004

0005
0006 
0007 
O00H 
0010 
00 1 1

0012

0013
0014
0015
0016
0017
0018

SUBROUTINE TSG(A,ASAV,AIV,X,Y,YO,P,RB,NO,NX,DT,TAU,
1 JSKIP,NEXP)

DIHENS ION A(ND,1),ASAV(ND,ND),AIV(ND,1),X( 1) ,YC1),Y0( 1) ,
1 PC 1)

C THIS SUBROUTINE CALCULATES THE FOLLOWING:
C 1. STANDARD DEVIATIONS OF THE MODEL PARAMETERS USING THE
C VARIANCE-COVARIANCE MATRIX
C 2. AN ESTIMATE OF THE TIME CONSTANT USING AN ANALYTICAL 
C EXPRESSION
C 3. AN ESTIMATE OF THE STANDARD DEVIATION OF THE TIME CONSTANT 
C USING THE VARIANCE-COVARIANCE MATRIX AND THE PROPAGATION OF
C ERROR FORMULA
c >:• # SOi';* * * * * iK S ^ * if. * *-1:M:XXXXXX^ * X^^ tf. ^ * M: ^*
C
c
c
c
c
c
c
c
c

INPUT DATA REQUIRED BY THIS SUBROUTINE ARE AS FOLLOWS:
1. THE NUMBER OF OBSERVARIONS
2. UNBIASED PARAMETER ESTIMATES FROM THE LCSR MINIMIZATION 

PROGRAM
CITEMS 1. AND 2. ARE READ UNDER THE FILENAME ’TVDAT’)

3. OBSERVATION DATA AND TIME VALUES ASSOCIATED WITH THE 
OBSERVATION DATA
(ITEM 3. IS READ FROM THE FILE SPECIFIED BY THE USER. THIS IS 
THE SAME FILE USED BY THE LCSR MINIMIZATION PROGRAM)

NV=2:::NX+1
C CALCULATE THE MATRX: Z TRANSPOSE Z WHICH WILL BE INVERTED TO
C OBTAIN THE VARIANCE-COVARIANCE MATRIX 

CALL y.TZC NO, NX, A, P, DT, ND)
C INVERT THE Z TRANSPOSE Z MATRIX TO OBTAIN THE VARIANCE- 
C COVARIANCE NAYRIX 

1 ()
iENv
CALL INV( A,AIV,ASAV,X,Y,ND,N, IER)
IFCIER.EQ.0)CO TO 30 
PRINT 1005, IER

1005 FORMAT!’ A ZERO DIAGONAL ELEMENT WAS ENCOUNTERED ’/
1’ I Ell = * , 15)

30 CONTINUE
C'-i:Z :!■ ^-f: ■'!< S :!< 3 -i'- * * X ■!: S 7 * S -V: i,': -'i:7 * ^ * X >!• X * 3 Xt-XX % * * *
C ESTIMATE THE STANDARD DEVI ATIN AND THE EXPECTED VALUE OF THE 
0 RESIDUAL ERROR. ALSO CALCULATE THE NORMALIZED GRADIENT.

CALL VARC F, NX, NO, DT. YO, NV.STJ), EXV)
AR=STD**2
CALL CRADC NO,NX,YO,P,DT,X, CRD)
GRD=CRD/AR
PRINT 1006, EXV,STD,AR,GRD

1006 FORFLATC ’ 0 ’ , ’ EXI'ECTED VALUE OF RESIDUAL = ’,E12.5/
1 ’ STANDARD DEVIATION OF THE RESIDUAL = ’,E12.5/
2 ’ VARIANCE OF THE RESIDUAL = ’,E12.5/
3 ’ THE NORMALIZED GRADIENT = ’,E12.S)

C CALCULATE THE STANDARD DEVIATIONS OF THE EXPANSION COEFFICIENTS

oo
on
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0019
0020 
0021 
0022
0023
0024
0025

0026 
0027

0020
0029
0030
0031
0032
0033 
0035 
0037 
0030
0039
0040

C AND OF TUT': EICF.NVALUF.S 
DO 40 K=1,NV 
Y(IO = A1V(K,K)*STD**2 
XA=ADS(Y( K))

40 Y(IO=SQRTCXA)
NX1 = NX+1
PRINT 1007, (P(K) ,Y(K) ,K=1,NX1)

1007 FORMAT!’O’,’ EXPANSION COEFFICIENTS ARE: '/
1 (’ ’,5X,E12.5,' + OR - ’,E12.5))

PRINT 1003, (P< NX1+K) , Y( NX1+K) ,K=1,NX)
1000 FORMAT!’O’,’ EICENVALUES ARE: ’Z 

1 !’ ’.5X.E12.5,’ + OR- ’,E12.5))C* '•p v’» *’> «•-* »}> *!> 0> «V ,«» <!• *.•* »>« 0< .{««(« s(« 41* «|> 44^ vf, v{> O* Sit »!»•&• «(>•#>\J^I* ^4 «|> *1% r, 4 4,4 4J4 « (4 4,4 4,4 4,4 4,4 4,4 «(4 4|4 4,4 4,4 4(4 4,4 4,4 4(4 4,4 4,4 4,4 4,4 4,4 4,4 4f4 4,4 4,4 4,4 4(4 4,4 4(4 4(4 4,4 4,4 4,4 4,4 4,4 4,4 4^4 4,4 4(4 4,4 4(4 ^4 4(4 4(4 4^ 4^ 4,4 4,4 ^4 ^4 4^ 4^4 4(4 ^4 4^4 4y4 4^4 4,4 ^4 ^4 4(4 4, 4 4  ̂4^4 ^4

C CALCULATE THE TIME CONSTANT AND THE STANDARD DEVIATION OF THE 
C TIME CONSTANT

SG1 = Y( NX1+1)
SG2=Y! NX1+2)
CALL TVAR! SCI,SG2,TAU,TSIG,P,NX)
PRINT 1009, TAU.TSIO

1009 FORMAT!’0’,’ THE TIME CONSTANT = ’,EI2.5,’ +011- ',E12.5)
IF (NX .EQ. 3) CO TO 50 
IF (NEXP . I’d. 1) RETURN 

50 IREG=JSKIP+1
WRITE! 10’IREC) STD,TAU,TSIG 

RETURN 
END oocn
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Cx#**##**#******##****#*****##*#**#*#*#***##*#*#*#***#**#****##*****
0001 SUBROUTINE GRAD(NO,NX,YO,P,DT,G,GRD)
0002 DIMENSION YO(1),P(1),G(1)

C THIS SUBROUTINE EVALUATES THE GRADIENT OF THE FUNCTIONAL WITH 
C RESPECT TO EACH PARAMETER AND EVALUATES THE NORM OF THE GRADIENT.
C :i: * * * * * * :.t * * -1: * :i: *.'!: * * * :|: ^: * * ***************************** ******** *****

0003 NV=2*NX+1
0004 DO 5 J= 1 ,NV
0005 5 C( J)=0.0
0006 DO 15 K=1,NO
0007 TM= FLOAT!K-1)*DT
0OOB R1D=FAPRCP.NX.TM)-YO( K)
0009 C( 1)=G( l)+nil)
0010 DO 10 1=2,NV
0011 Kl= I
0012 CALL DRV(K1.NX.TM.P.DIV)
0013 10 C(l)=G(I)+HID*DIV
0014 15 CONTINUE
0015 AT=2.0/FLOAT!NO-NV)
0016 1)0 20 K= 1, N V
0017 20 0(10 =0(10* AT
0018 GRD=0.0
0019 DO 30 K=1,MV
0020 30 GRD=GRD+G(K)**2
0021 RETURN
0022 END



PORTRAIT IV VOIC-03E+ PAGE 001

0001
0002

0003
0004 
0006 
0007 
0000 
0009 
0011 
0012
0013
0014
0015
0016 
0017

SUBROUTINE DRV( K,NX,T,P,FVAL)
DINEWS 1ON P(l)

C & * * * & * *:;: >;: :!: *:;: :f-.^ rf; >;-.:!-.:!: t-X :!'■ X *:t:.'(; :f; :f: ^
C THIS SUBROUTINE CALCULATES THE PARTIAL DERIVATIVES OF THE 
C APPROXIMATING FUNCTION WITH RESPECT TO EACH OF THE MODEL PARAMETERS 
C THE EXPANSION COEFFICIENTS ARE IN THE FIRST NXI ELEMENTS OF THE 
C P VECTOR AND THE EIGENVALUES ARE IN THE LAST NX ELEMENTS OF THE 
C VECTOR.

J!:**;.’:;!;*:!:
NX1=NX+I
IFCK.GT.1)GO TO 10 
FVAL=I.0 
GO TO 30 

10 CONTINUE
IF(K.GT.NXI)GO TO 20 
FVAL=EXP(T*P(NX+K))
GO TO 30 

20 CONTINUE
FVAL=P( K-NX) :!.T*EXP( T5l:P( K) )

30 CONTINUE
RETURN 
END
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OGGI SUBROUTINE INV(A,AIV,ASAV,X,Y,ND,N,IER)
0002 DIMENSION A(ND,ND),AIV(ND,ND),ASAV(ND.ND),X(1),Y(1)

C***************************************************************** 
C TIIIS SUBROUTINE CALCULATES THE INVERSE BY REPEATED CALLS TO A 
C LINEAR EOUATION SOLVER KHHICH USES DIRECT GAUSSIAN ELIMINATION.
C THUS, NONE OF THE DIAGONAL ELEMENTS CAN BE ZERO. A CHECK IS 
C MADE FOR ZERO DIAGONAL EI.ENEN'I'S EVEN THOUGH NONE SHOULD BE ZERO. C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C TEST FOR ZERO DIAGONAL ELEMENTS

0003 DO 2 K=1,N
0004 I F( AI5S( AC K, TO ) . GT. 1.0E-12) CO TO 2
0006 1 EU= 1
0007 CO TO 30
0000 o CONTINUE
0009 NN-0
0010 10 n:-’=ns+ 1

c GENERATE THE APPROPRIATE UNIT VECTOR
0011 DO 15 K=1,N
0012 YCK)=0.0
0013 IFCK.EQ.NS) YCK) = 1.0
0013 15 CONTINUE
0016 DO 16 1=1,N
0017 DO 16 J=1,N
0010 16 ASAVCI,J)=ACI.J)
0019 CALL GAUSC ASAV,Y,X,ND,N)
0020 DO 20 1=1,N
0021 20 AI VC I, NS) =XC I)
0022 IFCNS.LT. TOGO TO 10
0024 30 CONTINUE
0025 RETURN
0026 END
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0001 SUBROUTINE GAUS(A,Y,X,I»,N)
0002 DIMENSION A(ID,ID),Y( 1),X<1)

C * * * =!: * .“S t- * A :!: % * :•::;: X".:!: #:(: ^ :|::!; * ^ ^ ^ ^ :f: ^ ^ * * if: * ^ ^ .1; ^:!: ^; :>: :f::’: :fc :K S^ :K
C 'HUS SUBROUTINE SOLVES A SET OF LINEAR EQUATIONS BY DIRECT ELININATION
(];;< Z:}-. :■: ^ :■; ^ ^ ^ ^ .'J; O'. :l; X :>::!; S ^ >}: ^: :C ^ # :f: ^'c ;>: ;f::;: X * * * * & ^ :K * * * *

0003 M= N-1
0004 DO 10 1=1, M
0005 L= 1+1
0006 DO 10 J=L, N
0007 IF(A(J,I))6, 10,6
0008 6 DO 8 K=L,N
0609 8 A( J,K) = A(J,K)-A( I,K)5RA(J, I)/A( I, I)
0010 Y( J)=Y( J)-Y( I)*A( J, I)/A( I, I)
0011 10 CONTINUE
0012 X(N)=Y(N)/A(N,N)
0013 DO 30 1=1, M
0014 K= N- I
0015 L= K+ 1
0016 DO 20 J = L, N
0017 20 Y(IO = Y(IO-X( J)*A(K,J)
0010 X(IO=Y(K)/A(K,IO
0019 30 CONTINUE
0020 RETURN
0021 END
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0001
0002

0003
0004
0005 
0000 
0007 
0000
0009
0010 
0011 
0012
0013
0014
0015 
0010 
0017 
0010

SUBROUTINE VAR< P,NX,NO,DT,YO,NV,SUM,EXVAL)
DIMENSION P(1),Y0(1)

C THIS SUBROUTINE ESTIMATES THE VARIANCE OF THE DATA FROM THE RESIDUALS. 
C IT ALSO CALCULATES THE EXPECTED VALUE OF THE RESIDUALS
C****:;: :i:**:|;** *#**:;:*$***>(:******** *****:!;#:(:*:£

NX1=NX+1 
EXVAI.= 0.0 
SUM=0.0 
1)0 10 K= 1, NO 
TM=FLOAT!K-1)*DT 
St = P( I)
DO 5 J=1,NX

5 S1=S1+P(J+1)*EXP(P(NX1+J)#TM)
EXVAI.= EXVAI.+Y0( IO -S1 

10 8UM=SUM+< YOOO-S1)**2
ANO=NO
EXVA1,= EXVAL/ANO 
SUl'I=SUM/( ANO-NV)
SUM= SORT! SUM)
RETURN
END



FORTRAN XV V01C-03E+ PAGE ©01

©001 SUBROUTINE SWAP(NX,W,P)
C * * :|: * * % :f:.'^ :|: *:!; :f; :i: X ^’: -!: ^.'f; ^X X.'!: ^ >:c '■!: 5i: t- % :ft •-.'c :K £ :i: if.:!: .'K .‘i; :t. X;* >!: * * X: X
G THIS SUBROUTINE ORDERS THE EIGENVALUES AND ASSOCIATED EXPANSION 
C COEFFICIENTS. THE TIME CONSTANT CALCULATION AND TIME CONSTANT 
C VARIANCE CALCULATION ASSUMES ORDEREDD EIGENVALUES AND EXPANSION 
C COEFFICIENTS.

0002 DIMENSIONWKI 1),P(1)
0003 NX1=NX+1
6004 NV=2*NX+1
0005 DO 20 1=1,NX
0006 ETST=- I.E+12
0007 IU> 10 J = 1 , NX
oooa IF(P(NX1+J) .LE.ETS'DGO TO
0010 ETST= P( NX1+J)
0011 JSAV=J
0012 10 CONTINUE
0013 WK( I+NX1)=P(JSAV+NX1)
0014 P(JSAV+NX1)=-2.0E+12
0015 WK( I+1)=P( JSAV+1)
0016 20 CONTINUE
0017 DO 30 1=2,NV
0013 30 p< i)=ra« i)
0019 RETURN
0020 END



FORTRAN IV V01C-03E+ PACE 001

0001
0002

0003
0004 
0003
0005 
0007 
0000 
0010 
00 1 1 
0012 
0013 
0013 
0016 
0017 
0010
0019
0020

CXXXZXX-XXXXXXXXXZ'-CTXXXXXXXXXX-XXXX**-*******#***#******************#******

SUBROUTINE TVAR(SG1,SG2,TAU,TSIG,P,NX)
DIMENSION P( 1)

C THIS SUBROUTINE CALCULATES THE TIME CONSTANT USING THE FIRST TOO 
C (ORDERED) EIGENVALUES IN AN ANALYTICAL EXPRESSION. THE STANDARD 
C DEVIATION IS CALCULATED USING THE PROPAGATION OF ERROR FORMULA

NX1=NX+1 
X1=P(NX1+2)
X2=P(NX1+1)
X3-X1-X2
X4=X3/X1

IF (NX .NE. 3) GO TO 10
X5 = P( NXI i-3>
);->-x:j/x3

10 TA»J= ( ALOG( X4) - 1.) /X2
IF (MX .EO. 3) TAU=TAU+ALOG(1.0-X6)/X2 
l)Vl = -( ! ./X3-i TAU)/X2 
l)V2= 1 . / ( X(*X3)
S f 02" SO 1 M3)V 1 *:!:2+SG2*DV2M::I:2 
TS 10SQRT(SIG2)
RETURN
END

co



PORTRAIT IV V01C-O3E+ PAGE 001

C.'i:*:i:*^:**J(::;:#**St:.,:**5|:***>K*S:*^*^***5fc*#>|:i|:#!!!!C****5!:*****3|:*5C.'S**.'f:^*#!(:^:****!|:5C**

0001
p SUBROUT I NE GTDATT Y, IURK, NOP, DTN, T0, TMAX, DSNAI1E, JSKIP)
Vi

C-F THIS SUBROUTINE OBTAINS THE LCSR DATA FROM THE DATA FILE
C SPECIFIED BY THE USER AND PLACES IT THE PROPER ARRAY FOR
C ANALYSIS.

0002 LOGICAL*! LMW(9),THEADC64),DSNAMEC 14)
0003 1)I MENS 1 ON IWRICC 4096) , YC 2040)
0004 CALL ASSIGN!1,DSNAME,14,‘OLD’,’NC’,1)
0005 DEI’ INE F1LK 1C 1,629 1, U, 1 Wit)
0006 RE ADC 1 ’ 1, ERR= 20, END=20) THEAI), LMM, RL, NO, ITN,

? C imKCK) ,K= 1,4096)
0007 20 CONTINUE
O0OH DT=RL/FLOATC NO)
0009 T0= FLOAT(JSKIP)*DT
0010 IFCNO .GT. 4096) N0=4096
0012 CALL CLOSE(1)
0013 RL= FLOATCNO-1)*DT
0014 NP=IFIXC TMAX/DTN+0.99)
0015 IFC NP .LE. 2048) GO TO 100
0017 WRITE! 7,60)
0010 60 FORMAT!’0***** TOO MANY POINTS—TMAX MODIFIED *****’)
0019 TMAX= 2048.0*DTN
0020 NP=IFIXC TMAX/DTN+0.99)
0021 100 ISKIP=IFIXC DTN/DT+0.99)
0022 IFCISKIP .LE. 0) ISKIP=1
0024 DT0=FLOATCISKIP)*DT
0025 NPTSO=IFIXC TMAX/DTO)
0026 IFCNPTSO .GT. 2048) NPTS0=2048
0028 IFC NPTSO*ISKIP+19 .GT. NO) MPTSOsCNO-lOJ/ISKIP
0030 DO 200 1=1,NPTSO
0031 J=<I-1)*ISKIP+1+19+JSKIP
0032 200 YCI)= FLOATCIWRKCJ))
0033 DTN=DTO
0034 NOP=NPTSO
0035 RETURN
0036 END

«3-P»
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0001

0002

0003
0004
0005
0006 
0007
oooa
0009
0010 
0011

0013
0014
0015
0016
0017
0018
0019
0020 
0021 
0022
0023
0024

0025
0026 
0027 
©028

0029
0030
0031
0032
0033 
0035 
6036
0037
0038

SUBROUTINE LNIU NO, NX, ASAV, P, ND, NIC, DIR, A, X, Y, YO, EPS, NMAX,
1 NOUT,NOPT,FMIN,FVAL,DT,NR)

DI MENS ION ASAV( ND, ND) ,P( 1) , NTK( 1) , DIR( 1) , AC ND, 1) , X( 1) ,
1 Y( 1),YOC1),F(7),RC7)

C THIS SUBROUTINE USES THE LINEARIZATION METHOD IN CONJUNCTION WITH 
C A CONSTANT STEP SIZE. SINCE THE COEFFICIENT MATRIX FOR CALCULATING 
G THE SEARCH DIRECTION IS POSITIVE DEFINITE THE DIIRECTION VECTOR 
C SHOULD ALWAYS BE IN A DIRECTION THAT DECREASES THE FUNCTIONAL. BY 
C DETERMINING THE OPTIMUM STEP SIZE, THIS MINIMIZATION ALGORITHM 
C SHOULD ALWAYS CONVERGE.

NV=2*NX+I
NOLSS=0
FOLD=FVAL
zno=o.0

N0PT=-1 
NS=0

5 NS=NS+1
10PT= 0
IFC(NS/2)*2.EO.NS)IOPT=l

C CALCULATE THE SEARCH DIRECTION 
10 CONTINUE

CALL ZTZCNO,NX,ASAV,P,DT,ND)
DO 15 1=1,NV 

15 YC I) =0.0
DO 20 K=1,NO
TM= FLOATCK-1)*DT
RIB= YOC IO -FAPRC P, NX, TM)
DO 20 1=1,NV 
Kl= I
CALL DRVC K1,NX,TM,P,DR)

20 Y( I)=Y( D+RIDSDR
CALL GAUSC ASAV,Y,DIR,ND,NV)

C********>;:****>i:**>;:*****#***:fc*:|:#Wif::i:*:f::|:*:p**#*******$#*#***$S****#^*****5!:X**:M:  
C DETERMINE THE OPTIMUM STEP SIZE 

NFAIL=0 
ISA= 1 
RHO=1.0

25 CONTINUE
C VERIFY THAT THE SEARCH POINT DOES NOT INCLUDE A POSITIVE EIGENVALUE 

CALL DRCIIKC DIR, P, NX, RHO, WIC, I SET)
CALL VECDPC NV,RH0,P,WK.DIR)

30 IER= 0
CALL FUNCTCNO,NX,ND,A,X,Y,UK,DT,YO,IOPT,IER,FVAL)
IFCIER.EO.0)GO TO 40 
I0PT=1 
GO TO 30 

40 CONTINUE
FTST= FVAL*(1.+EPS)

<£5
tn
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0039
0041

0043
0045
0046
0047
0048
0049 
0051
0053
0054
0055
0056

0057
0058
0059
0060 
0061 
0062
0063
0064

0065
0066 
0068 
0069
0071
0072

0073
0074
0075 
0077
0079
0080 
0082
0083
0084

0085
0086 
0087 
0089 
0091
0093
0094
0095

IFCFTST.GE. FMIN. AND. ISA.EG. DGO TO 45 
IF (FVAL .GT. 1.01*FMIN .AND. ISA .NE. 3) GO TO 42 

C EXTEND THE LINE SEARCH UNTIL THE FUNCTIONAL VALUE IS INCREASED 
IF (FVAL .GE. FMIN) GO TO 41 
RSAV= RHO 
FHIN=FVAL
CALL VECDP(NV,ZRO,NK,R,DIR)

41 CONTINUE
IF(ISA.EO.3)GO TO 50

IF (ISET .EG. 1 .AND. ISA .NE. 1) GO TO 50 
ISA=2
mi0=niio*i.6i8
GO TO 25 

42 CONTINUE
C CALCULATE THE OPTIMUM STEP SIZE USING A QUADRATIC APPROXIMATION 

ISA=3
Yl = FI'IIN-FOLD 
Y2=FVAL-F0LD
DET= RSAV*RH0**2-RII0*RSAV>:c*2 
Al= ( Y1*RH0:::*2-Y2*RSAV**2) /DET 
B1 = ( RSAV*Y2-RII0>;:Y1) /DET 
RH0=-0.5*A1/B1 
GO TO 25

C IF THE FUNCTIONAL IS NOT LOWERED, THE INTERVAL IS HALVED NMAX 
C TIMES.
45 NFAIL= NFAIL+1

IF (NFAIL .GT. 2) IOPT=1 
RIIO= RIIOSO. 5
IF ( NFAIL.LE.NMAX)GO TO 25 

NOLSS^ NOLSS+1 
GO TO 60

C CHECK CONVERGENCE
50 CALL VECDP( NV,ZRO,R,P,DIR)

PCT=(FOLD-FMIN)/FOLD 
IF (PCT .LT. EPS) NOLSS=NOLSS+1 
IF (PCT .CE. EPS) N0LSS=0 
CALL CRADC NO,NX,YO,P,DT,X,CRD)

IF (CRD .LT. 10.0*EPS*FMIN) NOPT=0 
60 CONTINUE

PRINT 1000, NS,FMIN,FOLD
1000 FORMAT( ’ ’,* NEW AND OLD FUNCTIONAL VALUES FOR ITERATION ’,12/ 

1 ’ ARE ’,1012.5,’ AND ’.E12.5)
FOLD=FMIN 

CALL XSTOP
IF (N0I.SS .CE. 2) N()PT= 1 
IF (NS .CE. NOUT) N0PT=2 
IF (NOPT .LT. 0) CO TO 5 

70 CONTINUE
RETURN 
END

o
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0052 END
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0001

0002
0003
0005
0006 
0007

C#XZX%X%****:)'-XXX:{:%X%%*X%X*%%***$*X***#%X*%##*******#X#*%*XX*?-%*XXX%#***

SUBROUTINE XSTOP 
C-T SUBROUTINE XSTOP 
C
C-F THIS SUBROUTINE CHECKS TO SEE WHETHER A REQUEST TO HALT 
C THE RUN HAS BEEN MADE. IF THE REQUEST HAS BEEN MADE 
C THE OUTPUT LIST FILE IS CLOSED AND EXECUTION TERMINATES
C NORMALLY. THE REQUEST IS MADE BY TYPING THE CHARACTERS
C ST FOLLOWED BY A CARRIAGE RETURN ON THE TELETYPE.

CALL TTYABT( ISTOP)
IF (ISTOP .NE. 1) RETURN 
CALL CLOSE (10)
STOP ’ EXECUTION TERMINATED BY OPERATOR REQUEST’
END

VO
VO



APPENDIX C

A TYPICAL IN-PLANT TEST PROCEDURE

A typical test procedure for performing a combined self heating, 

loop current step response test program is presented below. Of course, 

it is not necessary to perform both tests. However, they both use the 

same test equipment and the test duration is short for both methods, 

so it is probably advisable to perform both types of test during this 

stage of implementing the technology. This makes it possible to com­

pare two independent results for each sensor and obtain added confidence

in the results. All tests should be made at identical flow, temperature, 

and pressure conditions.

The actual test procedure for a particular plant will depend on 

the format used by the utility and by its policy for special tests. 

Consequently, the test procedure will need to be tailored somewhat for 

a specific plant.

The procedure does not address the question of how to modify the 

safety system logic during the test or special instructions for plant 

operators during the tests. These will have to be specific to the plant 

being tested.

The procedure is:

1. Set up the equipment as near as possible to the cabinet

where the RTD leads are connected to the plant transmitters.

The equipment includes:

- The test instrument (bridge, switchable power supply, 

adjustable decade resistors, adjustable-gain amplifier 

to amplify the voltage drop across the bridge, and a
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digital voltmeter that can monitor the amplifier 

output or can be switched to measure the voltage 

drop across a fixed bridge resistor to provide the 

current).

- an oscilloscope connected to the bridge amplifier 

output.

- a strip chart recorder connected to the bridge 

amplifier output.

- a data recording system (analog or digital) connected 

to the bridge amplifier output and to the current 

switch status (open or closed) indicator output.

2. Connect a spare RTD to the test instrument. The RTD should 

be immersed in water (in a bucket) to within two inches of 

the top connector on the RTD.

3. Turn on the power supply with the current selector switch

set to LOW and the power supply voltage at its lowest setting.

4. Adjust the power supply to give 1-5 ma.

5. Balance the bridge (adjust the decade resistor until the 

bridge amplifier output goes to zero).

6. Check to be sure that the resistance is correct for the 

water temperature.

7. Switch the current selector switch to HIGH.

8. Adjust the power supply to give 60 ma (typical through the 

sensor).

9. Adjust the amplifier gain to give an output voltage that is 

suitable for the recording equipment.
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10. Switch the current selector switch to LOW.

11. Wait until the bridge amplifier output settles out.

12. Turn on the strip chart recorder.

13. Switch the current selector switch to HIGH.

14. Wait until the bridge amplifier output settles out.

15. Measure the time required for the output to reach 63.2 

percent of its total variation.

16. Compare this time with a reference value (obtained on 

previous tests on the same sensor in still water).

17. If the difference in times is more than fifteen percent, 

check equipment and procedure.

18. If the difference in times is less than fifteen percent, 

set the current selector switch to LOW.

19. Turn off the power supply.

20. Disconnect the spare RTD.

21. Remove the selected plant RTD leads from its in-plant 

transmitter.

22. Connect the in-plant RTD leads to the test instrument.

If the RTD has more than two leads, select only one 

from each side of the filament.

23. Turn on the power supply and adjust to give 1-5 ma 

through the RTD.

24. Balance the bridge.

25. Check the noise level at the bridge amplifier output.

26. Set the power supply to its lowest value.

27. Switch the current selector switch to HIGH.
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28. Start the self heating test. Increase the power supply 

voltage to give a current through the RTD of about 10 ma.

29. Wait until the bridge amplifier output settles out.

30. Rebalance the bridge.

31. Calculate the power dissipated in the RTD filament.

32. Record the resistance and power.

33. Repeat steps 23 through 32 for current values up to 

60 ma (typical).

34. Plot resistance versus power on linear graph paper.

If the data indicate a well-defined straight line, go 

to step 35. If the data indicate scatter, repeat steps 

23 through 32 for more data points.

35. Start the Loop Current Step Response (LCSR) tests. Balance the 

bridge at low current then set the current selector switch to 

HIGH.

36. Set the power supply voltage to give a current of 60 ma 

(typical) through the RTD.

37. Adjust the amplifier gain to give an input voltage that 

is suitable for the recording equipment.

38. Set the current selector switch to LOW.

39. Wait for the bridge amplifier output to settle out.

40. Start the strip chart recorder and the data recording 

equipment.

41. Switch the current selector switch to HIGH.

42. Wait until the bridge amplifier output settles out.

43. Switch the current selector switch to LOW.

44. Determine the time required for the bridge amplifier
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output from step 41 to reach 63.2 percent of its total 

variation from the strip chart recorder trace.

45. Plot the data from step 41 on semi-log paper and use 

the exponential peeling technique (see Appendix G) to 

estimate the time constant.

46. If the results obtained from steps 44 and 45 agree 

reasonably well with prior experience or with tests 

on other sensors of the same design, continue to 

step 47. If not, check equipment and procedures 

before continuing.

47. Repeat steps 38 through 43 at least five times (more 

for noisy or unstationary data).

48. Set the current selector switch to LOW.

49. Turn off the power supply.

50. Disconnect the sensor.

51. Repeat steps 22 through 50 for the next sensor to be 

tested.

52. Complete tests on all sensors.

53. Remove test equipment.



APPENDIX D

A METHOD FOR SMOOTHING THE LCSR TEST TRANSIENTS

A LCSR test transient is naturally smooth unless fluctuations 

in fluid temperature or flow occur during the collection of the test 

data. A method was developed to smooth the LCSR test transients that are 

contaminated with noise. Since small fluctuations in temperature and 

flow of the coolant of a nuclear power plant are expected, the LCSR 

test transients for installed RTDs may be contaminated with noise.

Plant data should be smoothed before analysis for prediction of response 

time if this occurs. The method is based on averaging a set of the LCSR
it

tests performed on a sensor. A program called LCSRAV is available that 

takes a set consisting of several noise-contaminated LCSR data sets and 

constructs a smoothed average transient. The program uses the following 

procedures:

1. Determine the average value (T^) of the steady state 

portion of the transient (the portion of the LCSR transient 

in which the output does not change with time). This is 

done by fitting a straight line through the data in the 

steady state region (see Figure D.l).

2. To compensate for the possible offsets that may occur from 

one test to another, an arbitrary level (T^) is selected, 

the difference (D) between T^ and T^ is determined

(D = Tq - and the transient is shifted by adding

ic

Program is written by Mr. J. E. Jones of the Nuclear Engineering 
Department of The University of Tennessee.
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Figure D.l. A Noise Contaminated LCSR Test Output (Hypothetical 
Data).
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D to each data point in the transient (see Figure D.2).

This forces the data sets to have the same T^. Since 

the correction is for possible offset rather than an 

amplitude scaling problem, an additive correction is used 

instead of a multiplicative factor.

3. Evaluate the average value of the response for each point 

on the reconstructed data sets. For example, if the value 

of the response at time = t + At from the first, second 

and third data sets are 601, 602 and 603 respectively, the 

average value of the response at t = t + At is equal to 

602 (see Figure D.3).

4. Construct a transient from the average of each data point 

obtained in Step 3.

The smoothing algorithm is applicable only if:

1. The temperature of sensor surroundings has not changed 

during the LCSR tests.

2. The fluctuation of output is random.

3. The data set is sufficiently long to provide adequate 

data for evaluating the T^.

4. Sufficient number of LCSR data sets are provided for a 

given sensor.

The capability of this procedure was evaluated by generating 

random noise on the LCSR test data and using the computer program to 

average a set of tests and provide a smooth transient. Figure D.4 

shows a sample of a LCSR transient (for a Rosemount 176KF RTD) obtained



Figure D.2. Correction of LCSR Transient 
(Hypothetical Data).

to Compensate for Possible Offsets

208
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Figure D.3. Illustration of the Average Value of the LCSR Transient 
at a Time = t + At (Hypothetical Data).
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Figure D.4. A LCSR Test Data with Simulated Fluctuations (for Rosemount 176KF RTD).
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by simulating random fluctuations on the data in the laboratory. The 

plot from the analysis of this data set is shown in Figure D.5. As 

indicated in this figure a time constant of .432 second is obtained 

from this data set for the sensor. This value compares with a time 

constant of .420 obtained from a plunge test in the same condition in 

the laboratory. Figure D.6 shows the smooth transient resulted from 

averaging 40 LCSR tests that had random fluctuations of the shape shown 

in Figure 0.4. The plot from analysis of the smooth data set is given 

in Figure 0.7. A time constant of about .422 second is obtained from 

this data set. This value compares with .432 second obtained from the 

contaminated data set and .420 from the plunge test.



Time Constant = .432 sec

Raw Data

LCSR Fitted Data

Predicted Plunge Test Response

Time (sec)

Figure D.5. Results of the Analysis of a Noise Contaminated LCSR Test Data (for Rosemount 
176KF RTD).
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Time (sec)

Figure D.6. A Smoothed LCSR Data Set (for Rosemount 176KF RTD).

213
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Time Constant ■ .422 sec

LCSR Raw Data
and the Fit

Predicted Step Response

Time (sec)

Figure D.7. Results of the Analysis of a Smoothed LCSR Test Data (for Rosemount 175KF 
RTD Tested at 2.5 ft/sec).



APPENDIX E

LABORATORY INSTRUMENTATION AND DATA ACQUISITION 

E.l Laboratory Facilities

A thermometry laboratory consisting of a rotating tank, response 

time test circuitry and recording facilities was established for 

evaluating the methods of in-situ response time testing of platinum 

resistance thermometers. The output signals from this equipment can 

be connected to a mini-computer system with remote access and control 

capability. A schematic of the response time test setup is given in 

Figure E.l. The components of this setup are described in the 

following sections.

E.1.1 Rotating Tank

The rotating tank consists of a drum of diameter = 22 inches and 

height = 13 inches. It is filled with water at room temperature to 

a depth of about 9 inches. A 1/12 HP motor rotates the drum to pro­

vide water velocities from zero at the center to 4 ft/sec at the edge 

of the drum. This system is shown in Figure E.2.

E.l.2 Measurement Circuit

A Wheatstone bridge with current switching capability is used 

for measuring the RTD response characteristics. The output of the 

bridge is amplified with a differential amplifier with adjustable gain. 

A potentiometer is included in the circuit to vary the output voltage 

of the power supply and provide a means for adjusting the current (see 

Figure E.3). For the variable resistance of the bridge, a seven- 

element decade box with a maximum resolution of .01 ohm is used. A



Measuring
CircuitRIO |

Tank

Figure E.l. Response Time Test Set Up.

Output

— Strip Chart Recorder

—* Multichannel Analyzer

— Analog Tape Recorder

— Digital Data Acquisition 
System



Figure E.2. Rotating Tank.
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Figure E.3. Response Time Measuring Circuit.
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fixed resistor with high current tolerance (high wattage resistor) 

is usually used in series with the decade box to avoid heating the 

elements of the decade box when large currents are passing through 

the bridge circuit. The fixed resistors of the bridge are 200 ohms 

with a rating of 25 watts to avoid heating due to high currents. A 

detailed diagram of the measuring circuit and specifications of its 

components are given in Appendix F.

E.1.3 Recording Devices

The transient data were recorded on one or more of the recording 

devices listed in Table E.l.

E.1.4 Miscellaneous Equipment

A list of miscellaneous equipment used during this work is given 

in Table E.2.

E.2 Data Collection Procedures 

E.2.1 Plunge Test

Experimental Setup. The experimental setup for a plunge test is 

shown in Figure E.4. The sensor is held in air before being plunged into 

the rotating tank of water in a location where a desired water velocity is 

maintained. A step change in temperature is introduced either by plunging 

the sensor from room temperature air into warm water or by using a warm 

air blower to heat the sensor prior to immersion into the water at room 

temperature. A system was designed for dropping the sensor into the 

water in a manner to insure a minimum vibration of the sensor. The 

sensor drop assembly consists of a steel rod 7/8 inches in diameter



TABLE E.l

RECORDING INSTRUMENTS

Recording Device Manufacturer Model Number Application In This Work

Strip Chart Recorder Hewlett-Packard 7402A Recording plunge and
LCSR test transients

Multichannel Analyzer Ino-Tech IT-5200 Recording and Monitoring 
LCSR test output

Magnetic Tape Recorder Ampex PR-2200 Field Data Acquisition

Mini-Computer Digital Equipment 
Corporation

PDP-11 Digital Data Acquisition



TABLE E.2

MISCELLANEOUS EQUIPMENT

Equipment Manufacturer Model Number

Power Supply 
(Adjustable Output)

Wanlass Maverick II

Amplifier University of Tennessee 100
University of Tennessee 200

Digital Multimeter Systron Donner 7004
Hewlett-Packard 3476A
Valhalla Scientific 4440
Sencore 37

Function Generator Hewlett-Packard 3310A

Filter Krohn-Hite 3323

Storage Display Unit Tektronix 613

Computer Display Terminal Tektronix 4006-1

Hard Copy Unit Tektronix 4631
Tektronix 4610

Computer Video Terminal Digital Equipment Corp, VT50



TABLE E.2 (continued)

Equipment Manufacturer Model Number

Line Printer Centronics 101
Digital Equipment Corp. Decwriter II
Versatec 1200A

Oscilloscope (with storage) Tektronix 7633
Hewlet-Packard 1220A

Teletype Teletype Corp. 33TU

Voltage to Frequency
Converter

University of Tennessee NE
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Strip Chart Recorder

Battery

Sensor Drop 
Assembly 
(see Figure 
E. 5) Timing Circuit

Lead (see Figure 
E.6)

Rotating Drum

Drum Wheels

Figure E.4. Plunge Test Set Up.
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and 20 inches in height with a holder to which the sensor is secured 

(see Figure E.5). The drop assembly falls into the water under 

gravitational force when a latch is removed. A cushion stop is used 

to reduce vibration. An adjustment can be made to stop the rod after 

a desired immersion depth is achieved. A timing circuit is provided 

in the setup to indicate the instant that the sensor touches the water. 

This circuit provides a timing signal using the conductivity of water 

to close a loop consisting of a battery and the recorder with connections 

to water and the body of the sensor (see Figure E.6).

Testing Procedures. The steps followed in performing a plunge 

test are:

1. Connect the RTD to the measuring circuit (keep the 

current switch on the low position).

2. Balance the bridge.

3. Adjust the output voltage of the power supply to give 

a low current level of 1 to 6 mil 1iamperes.

4. Adjust the gain of the bridge amplifier and the gain of
ic

the chart amplifier to obtain a useful output level.

5. Rebalance the bridge (if necessary).

6. Select a high chart speed (25 mm/sec or 125mm/sec) to be 

able to obtain an accurate measurement of response time.

ic
The strip chart recorder used in this study has a built-in 

amplifier with adjustable gain.
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Rotating
Tank

Rod
Hoider

Latch 

Cushion

Stainless Steel Rod

RTD

Water

Figure E.5. Plunge Test Drop Assembly.
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Battery

Recorder

Timing
Circuit
Lead

Water

Rotating Tank

Figure E.6. Schematic of Plunge Test Timing Circuit.
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7. Drop the sensor into the stirred tank and record the 

transient on the strip chart recorder until a steady 

state is attained.

A typical output of a plunge test is shown in Figure E.7.

E,2.2 LCSR Test

Experimental Setup. The equipment setup fora LCSR test depends 

on the method of recording the test data. Although the LCSR test data 

are usually stored on a mini-computer disk, a strip chart recorder and 

a multichannel analyzer also may be used to monitor the test output.

Field data from operating plants may be stored on a magnetic tape and 

then transferred to a computer disk through an analog to digital con­

verter (this is to avoid taking the computer for field data acquisition). 

The steps taken in recording the LCSR test data on each of these re­

cording devices follows:

1. Strip Chart Recorder: The LCSR test data can be recorded

directly on a strip chart recorder, i.e., no special equip­

ment or procedure is required.

2. Multichannel Analyzer: For recording the LCSR test data on

a multichannel analyzer a voltage to frequency (V to F) con­

verter is necessary. The output voltage from the bridge 

circuit goes through a V to F converter before it can be

recorded on the multichannel analyzer. The multichannel 

analyzer has the capability of converting the data into

digital form that can be printed on a teletype (see 

Figure E.8).
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Test
Output Teletype

Voltage to
Frequency
Converter

Multichannel
Analyzer

Figure E.8. Equipment Set Up for Recording the LCSR Test Data on a Multichannel Analyzer.
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3. Analog Tape Recorder: The equipment setup for recording

the LCSR test data on magnetic tape is shown in Figure E.9. 

Since the maximum limit of the voltage input to the tape 

recorder is about one volt, an attenuator system is used to 

drop the voltage to a value of less than one volt before it 

goes to the tape recorder. The output from the tape recorder 

is then amplified to provide desired voltage levels. The 

field data are usually contaminated with high frequency 

components that are not useful. A low pass filter is usually 

used to remove the unnecessary components of the data.

4. Mini-Computer: Figure E.10 shows the equipment setup for

collection of LCSR test data with the mini-computer. The 

output of the measuring circuit passes through an analog to 

digital converter (A/D) before it can be taken by the computer. 

A timing circuit is used to provide a signal to initiate the 

collection of data at the instant a test starts. After a test 

is completed the data are automatically stored on a disk, 

displayed on a storage display unit and copied with a hard 

copy system.

Test Procedures. A LCSR test may be performed in two different 

manners. One in which the bridge circuit is initially balanced when a 

low current is passing through the sensing filament and another in which 

the bridge is initially balanced when a high current is used. The

procedures for a LCSR test in which the bridge is balanced at a low 

current level are listed first:



Test - 
Output

Figure E.9. Equipment Set Up for Field Data Acquisition.



Test
Output

Timing
Signal

Analog to 
Digital 

Converter

PDP-11
Mini­

computer

Disk
Storage

Unit

Storage
Display
Unit

Figure E.10. Equipment Set Up for Collection of Data v/ith the Mini-Computer.
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1. Connect the sensor to the measuring circuit (keep the 

current on low level).

2. Place the sensor in the rotating tank at a location where 

a desired fluid flow rate can be obtained.

3. Balance the bridge.

4. Adjust the output voltage of the power supply to obtain
*

a high current level of about 40 to 60 mi I'M amperes.

5. Adjust the gain of the amplifier to give an output voltage 

of 5 to 10 volts when the high current is passing through 

the circuit.

6. Return the current to the low value.

7. Connect the measuring system to the recording device (if 

sampling the data with the mini-computer, connect the 

system to the analog to digital converter, set the timing 

signal, make certain that the input voltage to the analog 

to digital converter is less than 10 volts and run the 

sampling program).

8. Switch the current to the high level and record the output 

until a steady state is achieved.

A typical LCSR test transient is given in Figure E.ll for which the 

bridge has been balanced with a low current passing though the circuit.

This is a typical range of current used in the course of this 
study. Higher or lower current levels can also be used.



Time (sec)

Figure E.ll. /\ Typical LCSR Test Transient (for Rosemount 177GY RTD).



Another method of performing a LCSR test follows:

1. Balance the bridge while a high current is passing through 

the RTD.

2. Step the current back to its low level. This will give a 

negative output voltage.

3. Wait until a steady state output is obtained.

4. Switch the current to high level and record the transient.

The output of a LCSR test obtained by balancing the bridge at high current 

is given in Figure E.12.

£•2.3 Self-Heating Test

Experimental Setup. The experimental setup of Fiaure E.13 is 

used for a self heating test. The variable resistor Ry changes the 

voltage input to the bridge and gives different values of current 

through the circuit. Two digital voltmeters (DVM) are used, one to measure 

the voltage drop across a fixed resistor of the bridge and another for 

measuring the output of the system.

Testing Procedures. The following procedures are used to perform 

a self heating test in the laboratory:

1. Connect the RTD to the measuring circuit.

2. Place the RTD in the rotating tank at a location where 

It is exposed to a desired fluid flow rate.

3. Keep the current switch closed to have a high current level 

throughout the test.

4. Adjust the variable resistor Ry (potentiometer) to start with 

a minimum voltage input to the bridge.



Bridge Cutout !ti 0

Time (sec)

Figure E.12. A Typical LCSR Output when Bridge is Balanced at a High Current Prior 
to Performance of the Test.
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5. Balance the bridge and record the decade box resistance 

at which the bridge is balanced. This resistance is equal 

to the sensor's resistance (RRjq = Rq)-

6. Measure the voltage drop across one of the fixed resistors

of the bridge. Calculate the current from = ^Fixed Resistor .

RFixed
2

7. Calculate the power input to the RTD form: PRTD = R^ * I RjD-

8. Increase the voltage input to the bridge using the potentiometer 

(Ry). This increases the current through the sensor. Repeat 

from step 5 on. Use small voltage increments to allow 15 to 20 

measurements before the sensor current reaches its limit.

9. Plot the values of RRTD versus PRyD on a cartesian coordinate 

system.

The plot is called a self heating curve. A typical self heating curve is 

shown in Figure E.14.
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Figure E.14. A Typical Self Heating Test (for a Rosenount 176KF RTD).



APPENDIX F

COMPONENTS OF MEASURING CIRCUIT

*
A unit was built for response time testing of RTDs. This 

unit consists of:

1. A DC power supply with adjustable voltage.

2. A Wheatstone bridge circuit with current switching 

capability.

3. A differential amplifier with adjustable gain.

A complete schematic of the unit is given in Figure F.l. The components 

of the unit along with their specification and approximate price for the 

specified quantity are listed in Table F.l.

★
Unit was designed and built by Mr. J. T. Smith of Nuclear 

Engineering Department of The University of Tennessee.
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Figure F.l. Complete Schematic of the Response Time Testing Bridge 
and Amplifier.



TABLE F.l

COMPONENTS OF RESPONSE TIME TESTING UNIT

*
Component

Specification or
Part Number Quantity

Total
Price ($)

Transformer 50 volts, 1 Amp. 1 6.00
Power Supply ±15 volts 1 51.00
Diodes (Rectifier) IN4002 4 2.00
NPN Transistor (Ql) 2N, 3904 1 .50
Voltage Regulators (IC1, IC4) PA, 78 MG 2 3.50
Precision Amplifier (IC2) 605J 1 59.00
Operational Amplifier (IC3) 741 1 1.00
JK Flip Flop (IC6) 7473 1 1.50
Relay (ICS) W172, Dip 5 1 10.00
Switch (SW1) 10 poles Single Wafer 1 12.00
Switch (SW2) Double Pole Single Throw 1 2.50
Switch (SW3) Double Pole Single Throw 1 2.50
Switch (SW4) Triple Pole Triple Throw 1 2.50
Capacitor (Cl) 1000 MF, 50 V Electric 1 5.00
Capacitor (C2) 1500 MF, 50 V Electric 1 5.00
Capacitor (C3, C6) 33 pf 2 ,30
Capacitor (C4, C5) J MF 2 .30
Potentiometer (Rl) 10k, 10 Turn 1 3.50
Resistor (R2, R3) 200a , 3 percent 2 4.50
Mini-Potentiometer (R4)
Resistor (R5, RIO, R14)

10ka 1 2.00
Ika 3 .75

Resistors (R6, R7) 15kn 2 .50



TABLE F.l (continued)

•k
Component

Specification or
Part Number Quantity Price ($)

Resistor (R8) 5kn 1 .25
Resistor (R9) 3.5k 1 .25
Resistor (Rll, R12) 200ft 2 .50
Resistor (R13) 600ft 1 .25
Resistor (R15) 2.1 kft 1 .25
Resistor (R16) 8.5kft 1 .25
Resistor (R17) 13.5kft 1 .25
Resistor (R18) 36.5kft 1 .25
Resistor (R19) 163.5kft 1 .25
Bananna Plug - 1 .25
B&C Connector - 9 9.00
Voltmeter 7 1 150.00
Metal Box - 1 20.00
PC Board - 1 16.00
Probe Sockets 7 4.20

•k

The component number matching with schematic of Figure F.l are given in parenthesis.



APPENDIX G

LCSR DATA ANALYSIS BY EXPONENTIAL STRIPPING

The first few eigenvalues of the response of a sensor to an 

internal step change in temperature may be obtained by graphical 

exponential stripping to obtain estimates of the eigenvalues. The 

exponential stripping technique is based on fitting the LCSR 

test data into an equation of the form:

Pi < ?2 < P3 . . . < Pn ; Pis = eigenvalues of LCSR test

0(t) = output of the LCSR test

Aq = a constant which is zero if the test bridge is 

balanced at high current prior to collection 

of the LCSR test data. If the bridge is balanced 

at low current, AQ is equal to the final value of 

the response.

w(t) = process noise level.

If Aq is specified.

n -P. t
0(t) = Aq + J Aie + w(t) 

i=l
(G.l)

where

n -P.t
y(t) = 0(t) - A = t A.e + w(t). 

0 i=l 1
(G.2)
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If the eigenvalues are well separated and the noise level is not 

significant, the following approximation is valid 

-P^t
y-j(t) ^ A^e 1 for t >> p (G.3)

1

Thus, when the LCSR test data is plotted on semi-log paper, a straight 

line should be apparent when t is significantly greater than the 

slowest time constant. The slope of this line is equal to P-j. A 

second eigenvalue may be identified by subtracting the straight line 

from the remaining portion of the data:

n -P-t
y2(t) = y(t) - y-j(t) = \ Aie (G.4)

Again, if the eigenvalues are separated one can conclude that.

y2(t) = A2e
-P2t

t « (G.5)

The plot of Equation (G.5) on a semi-log paper is a straight line whose 

slope is equal to P2- The second mode may be subtracted from the rest 

of the data (if any) to provide a third eigenvalue. This process may 

be repeated as long as the subtraction is possible. Experience indicates 

that identification of more than tv/o eigenvalues by the exponential 

stripping technique is usually not possible. These eigenvalues are 

used to evaluate an approximate value of the plunge time constant.

The plunge time constant is identified from the eigenvalues of the 

LCSR test by the following equation:



246

i- [1 - In (1- p1) - In (1- . In (1- J-)]
K1 P2 p3 n

T plunge P

(G.6)

where

T
plunge the sensor time constant

P-j > ^2’ • * ” ^n = t*ie ei9enva^ues the LCSR test.

Equation (G.6) is derived in Section 2.4.2.

A LCSR data set for a Rosemount 176KF RTD tested in the laboratory 

is given in Table G.l. The data were obtained from a teletype used 

to furnish the LCSR data digitized by a multichannel analyzer. The 

plot of this data on a semi-log paper is shown in Figure G.l. A 

straight line is first fitted to the final portion of the data to give

The straight line is then subtracted from the rest of the data to 

furnish a new data set for obtaining the second eigenvalue. As shown 

in Figure G.l the eigenvalues are:

If P.j and ?2 are substituted in Equation (G.l) the plunge test time 

constant is obtained as

the eigenvalue corresponding to the slowest time constant (t = p-).

P, = 2.945 sec”^ -* t .34 sec

?2 = 36.125 sec 2 = .028 sec.

Tplunge 2.945 [ 1 - ln (1- §g-j|5- )] = .37 sec .
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TABLE G.l

LCSR TEST DATA FOR ROSEMOUNT 176KF*

At = .008 sec

Analyzer's Sensor's Analyzer's Sensor's
Channel Output Channel Output

89 7586 114 2326

90 5813 115 2264

91 5092 116 2215

92 4707 117 2149

93 4450 118 2110
94 4229 119 2043

95 4068 120 2012

96 3897 121 1944

97 3781 122 1923

98 3633 123 1855

99 3541 124 1838

100 3407 125 1770

101 3330 126 1757

102 3205 127 1688

103 3141 128 1679

104 3023 129 1611

105 2970 130 1606

106 2861 131 1542

107 2813 132 1537

108 2711 133 1481

109 2662 134 1470

no 2574 135 1422

111 2519 136 1403

112 2445 137 1365

113 2387 138 1336
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TABLE G.l (continued)

At = .008 sec

Analyzer's Sensor's Analyzer's Sensor's
Channel Output Channel Output

139 1307 153 957

140 1272 154 905

141 1252 155 916

142 1211 156 868
143 1200 157 876

144 1154 158 835

145 1149 159 837

146 1099 160 805

147 1098 161 796

148 1049 162 775

149 1050 163 758

150 1000 164 747

151 1004 165 723

152 951 166 722

*

Data are obtained by balancing the bridge at high current.
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LCSR Raw Data

3000 --
First Fit to the LCSR Data

Data Remained after 
Subtracting the First 
Fit from the Raw Data

Fit to the Remaining Data
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Figure G.l Graphical Exponential Stripping for Identification of 
LCSR Eigenvalues (for Rosemount 176KF RTD).
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This compares well with a time constant of .33 sec obtained from a 

plunge test performed under the same conditions as this LCSR test.

If the test bridge is balanced at a low current prior to collection 

of the LCSR test data, the final value of the response must be subtracted 

from the data before plotting on semi-log paper. A LCSR data set for 

which the bridge was balanced at a low current is given in Table G.2.

The data were obtained from the strip chart recorder for a Rosemount 

177GY RTD tested in the laboratory. The eigenvalues of the LCSR test 

obtained from the plot of the data in Figure G.2 are:

P1 = .233 sec-1

P2 = 1.20 sec-1 .

The plunge test time constant is:

Tplunge = 7258 ^ “ 1n ^1_ TTM ^ = 5*13 sec *
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TABLE G.2

LCSR TEST DATA SET FOR ROSEMOUNT 177GY RTD*

Tfi nal = Ao = 715 

At = .2 sec

T (sensor's output) T^-T T (sensor's output) T^-T

293 422 589 126

433 282 595 120
457 258 602 113

474 241 607 108

489 226 612 103

502 213 617 98

513 202 620 95

525 190 625 90

534 181 629 86
545 170 633 82

554 161 638 77

562 153 641 74

570 146 645 70

576 138 648 67

583 132 650 65

•k

Bridge v/as balanced at low current prior to collection of 
this data set.

**
T^ is an abbreviation of T^^nai
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Figure G.2. Identification of LCSR Eigenvalues by Graphica 
Stripping Technique (for Rosemount 177GY RTD).
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