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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.



Abstract:

‘An original computational technique to generate close-to-equilibrium dense
polymeric structures is proposed. Diffusion of small gases are studied on the
equilibrated structures using massively parallel molecular dynamics simulations
running on the Intel Teraflops (9216 Pentium Pro processors) and Intel Paragon
(1840 processors). Compared to the current state-of-the-art equilibration methods
this new technique appears to be faster by some orders of magnitude. The main
advantage of the technique is that one can circumvent the bottlenecks in
configuration space that inhibit relaxation in molecular dynamics simulations. The
technique is based on the fact that tetravalent atoms (such as carbon and silicon) fit
in the center of a regular tetrahedron and that regular tetrahedrons can be used to
mesh the three-dimensional space. Thus, the problem of polymer equilibration
described by continuous equations in molecular dynamics is reduced to a discrete
problem where solutions are approximated by simple algorithms.

Practical modeling applications include the construction of butyl rubber and
ethylene-propylene-dimer-monomer (EPDM) models for oxygen and water
diffusion calculations. Butyl and EPDM are used in O-ring systems and serve as
sealing joints in many manufactured objects. Diffusion coefficients of small gases
have been measured experimentally on both polymeric systems, and in general the
diffusion coefficients in EPDM are an order of magnitude larger than in butyl. In
order to better understand the diffusion phenomena, 10,000 atoms models were
generated and equilibrated for butyl and EPDM. The models were submitted to a
massively parallel molecular dynamics simulation to monitor the trajectories of the
diffusing species. The massively parallel molecular dynamics code used in this
paper achieves parallelism by a spatial-decomposition of the workload which
enables it to run large problems in a scalable way where both memory cost and
per-timestep execution speed scale linearly with the number of atoms being
simulated. It runs efficiently on several parallel platforms, including the Intel
Teraflops at Sandia.

There are several diffusion modes observed depending if the diffusion is probed at
short time scale (anomalous mode) or long time scale (normal mode). Ultimately,
the diffusion coefficient that need to be compared with experimental data
corresponds to the normal mode. The dynamics trajectories obtained with butyl and
EPDM demonstrated that the normal mode was reached for diffusion within one
nanosecond of simulation. In agreement with experimental evidences, the oxygen
and water diffusion coefficients were found larger for EPDM than butyl.
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Many technological processes depend on the design of polymers with desired permeation
characteristics of small molecules. Examples include gas separation with polymeric
membranes, food packaging, and encapsulant of electronic components in polymers that
act as barriers to atmospheric gases and moisture. To solve the polymer design problem
successfully, one needs to relate the chemical composition of the polymer to the
diffusivities of the the penetrants molecules within it. One way of establishing
structure-property relationships is the development of empirical relationships (namely
QSPRs - quantitative structure property relationships). A more sophisticated approach is
the application of simulation techniques that rely directly upon fundamental molecular
science. While QSPRs can generally be established from the the monomers
configurations, simulations involve the generation of configurations representing the
whole polymer. From these configurations, structural, thermodynamics, and transport
properties are estimated. In principle, simulations can provide exact results for a given
model representation of the polymer/penetrant system. In practice, computer time
consideration necessitates the introduction of approximation, and particularly for
polymeric systems, the use of high performance computing.

In this paper, we propose an original technique to generate close-to-equilibrium
polymeric structures. We are presenting data that suggest our technique is some orders of
magnitude faster than the current state-of-the-art methods used to prepare and equilibrate
dense polymeric systems. The technique is used to generate initial model structures for
polymers present in O-ring systems. Oxygen and water diffusions though the O-ring are
then probed using massively parallel molecular dynamics. Results are compared with
similar simulations and experimental data.

Methodology

As pointed out in the introduction, the ability to represent the molecular level structure
and mobility of polymeric structures is a prerequisite for simulating diffusion in them.
One fundamental parameter characterizing molecular structures is the potential energy.
Polymer chains in a equilibrium melt or amorphous glass remains essentially at minimum
energy configurations. The potential energy is the sum of bond and bond angle distortion
terms, tortional potentials, as well as intermolecular and intramolecular repulsive and
attractive interactions (i.e., van der Waals), and electrostatic (i.e., Coulombic)
interactions. These energy terms are expressed as a function of the atoms coordinates
constituting the polymer and a set of parameters computed from experimental data or
quantum mechanics calculations. The functional forms of the energy terms and their
associated parameters is called a forcefield. In the present study, we are making use of
the commercially available CHARMm forcefield [1], as well as forcefield parameters
taken from Muller-Plathe et al. [2]



Molecular mechanics and molecular dynamics. Molecular mechanics is the procedure
by which one locates local minima of energy. Molecular mechanics simply consists of a
minimization routine (conjugate gradient, steepest descent, etc..) that finds the first
energy minimum from a starting configuration. In the present paper, a parallel
implementation of conjugate gradient is utilized [3]. The main disadvantage of molecular
mechanics is that thermal fluctuations are not explicitly taken into account, and therefore
cannot be used for diffusion calculations. Moreover, the procedure followed in generating
minimum energy configurations does not correspond to any physical process of polymer
formation. Nonetheless, static minimum energy structures provide satisfactory starting
configurations for molecular dynamics simulations.

Molecular dynamics (MD) follows the temporal evolution of a microscopic model system
through numerical integration of the equations of motions for all the degrees of freedom.
MD simulations can be performed in the microcanonical ensemble (constant number of
molecules, volume, and total energy, or NVE), the canonical ensemble (constant number
of molecules, volume, and temperature, or NVT), as well as the isothermal-isobaric
ensemble (constant number of molecules, pressure, and temperature, or NPT). The major
advantage of MD is that it provides detailed information of short-time molecular motions.
Its limitation resides in computer time consideration. Hundreds of CPU hours on a vector
supercomputer are required to simulate a nanosecond of actual atomistic motions.
However, computer time can be decreased by making use of massively parallel
processing. In the present work we are using a large-scale atomic/molecular massively
parallel simulator (LAMMPS) [4]. LAMMPS is a new parallel MD code suitable for
modeling large molecular systems. LAMMPS has been written as part of a CRADA
(Cooperative Research and Development Agreement) between two DOE labs: Sandia and
Lawrence Livermore, and three industrial partners: Bristol-Myers Squibb, Cray Research,
and Dupont. LAMMPS is capable of modeling a variety of molecular systems such as
bio-membranes, polymers, liquid-crystals, and zeolites. The code computes two kinds of
forces: (1) short-range forces such as those due to van der Waals interactions and
molecular bond stretching, bending, and torsions, and (2) long-range forces due to
Coulombic effects. In the latter case, LAMMPS uses either Ewald or particle
particle/particle-mesh (PPPM) techniques to speed the calculation [5].

LAMMPS achieves parallelism by a spatial-decomposition of the workload which
enables it to run large problems in a scalable way where both memory cost and
per-timestep execution speed scale linearly with the number of atoms being simulated
[6]. It runs efficiently on several parallel platforms, including the Intel Teraflops at
Sandia (9216 processors), the large Intel Paragon at Sandia (1840 processors) and large
Cray T3D machines at Cray Research.



- Generate initial structure: Creating an atomic-level model of a completely equilibrated -
dense polymer melt is a challenging task, given current computational capabilities. van
der Vegt et al. [7] discuss the various approaches to this problem. The common
techniques used in simulations of liquids which consists of melting an idealized structure
generally takes tens of picosecond of equilibration using MD. Unfortunately, the
equilibration time for dense polymers is many orders of magnitude larger than are
feasible with MD [8]. Consequently, one needs other efficient ways of preparing initial
polymer structures, that resemble the equilibration structure. One of the most common
methods has been to pack chains into the simulation box at the experimental density,
either by random placement followed by energy minimization or with Monte Carlo chain
growth techniques. However, these methods have tended to produce structures which are
rather inhomogeneous and which lead to an overestimation of solubility values for small
permeants. In the present paper, we are proposing and comparing two alternative

construction methods: the compression box technique and the lattice construction
technique. ’

Compression box technique. van der Vegt et al. [7] suggest that a more efficient way of
producing near-equilibrium structures is by starting with a dilute model polymer and
compressing it slowly until the target experimental density is reached. A set of chains is
built with the correct dihedral angle distributions, at about 1/8 of the experimental
density. Using an NPT MD technique with a pressure ramp, the model system is
compressed to the desired density over ~ 500 picoseconds. During this compression, only
the repulsive part of the nonbond (van der Waals) interaction is used, to avoid
"clustering” of the polymer. Then the structure is further equilibrated with the full
nonbond interactions at the new density, for ~ 1000 picoseconds. van der Veget al. [7]
observed that a model of poly(dimethylsiloxane) built with this "slow-compression"
technique had significantly less stress in the dihedral angles than a model built with a
"random packing" method. Furthermore, the slowly compressed model yielded
small-permeant solubility results which were in much better agreement with experiment.

Lattice construction technique. Many natural and synthetic polymers including all
structures considered in this paper are formed with hydrocarbon chains. More precisely,
these polymers are composed of linear chains of tetravalent carbon atoms to which are
attached molecular groups (methyl, phenyl,...). The lattice technique is based on the fact
that any tetravalent atom (such as carbon and silicon) fits in the center of a regular
tetrahedron where its four bonds are perpendicular to the faces of the tetrahedron (cf.

Figure 1a). It is well known that regular tetrahedrons can be used to mesh the
three-dimensional space.
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Figure 1. Tetrahedron meshing. a) Carbon atom in center of tetrahedron. b) Two
dimensional projection of meshed space.

Using the previous observation, the experimental polymer volume is meshed and the
polymer chains are constructed by generating random walks following adjacent
tetrahedrons (cf. Figure 1.b). One may notice from Figure 1 that the distance between two
adjacent tetrahedrons is equal to a carbon-carbon bond length, and the angle between
three adjacent tetrahedrons is equal to a carbon-carbon-carbon angle. Therefore, bond and
angle energy terms are directly minimized by the lattice construction procedure.
Excluded volume interactions are treated by keeping track of the occupancy of each
tetrahedron. As the chain construction progresses the next atom position is always chosen
in a non occupied tetrahedron. In the unprobable event where all adjacent tetrahedrons
are already occupied the construction routine back-tracks to the previous position. In
order to keep homogeneous density the first atom of the chain is chosen at random in the
least occupied region of the volume box. The goal of above excluded volume procedure
is to keep the intermolecular and intramolecular repulsive forces to a minimum value.

The lattice construction technique can be used with cubic cells instead of tetrahedrons. In
such a case, each cell represents a monomer, and the cell length, width, and height are
those of the boundary box of the monomer. The advantage of the cubic cells lattice is a
reduction of the computational complexity since the objects manipulated are monomers
instead of atoms (for instance, for butyl, there are 12 atoms per monomer). The
disadvantage of the cubic lattice is that bond lengths and bond angles between monomers
are no longer necessarily valid. Therefore, structures generated with cubic lattices must
be energy minimized prior using MD simulations in order to restore the correct bond
lengths and bond angles.

An important parameter characterizing equilibrium melts or amorphous glasses is the



mean square end-to-end distance of the polymer chains. According to Flory "random coil
hypothesis", for which there is ample experimental support [9], at equilibrium the mean
square end-to-end distance of any polymer chain in the bulk is related to the number n of
skeletal bond lengths / as %P2, where Ciis the characteristic ratio of the polymer.
It is also known that the correct end-to-end distance starting from any random initial
configuration can be reached by MD using a simulation time proportional to O(x?) [10].
Our lattice construction technique makes use of Flory’s result while avoiding the
computational complexity of MD simulations. For each chain to be constructed the initial
atom position is chosen at random (in the least occupied region) and the final atom
position is chosen within a distance equal to the value given by the Flory equation. Then,
a path is constructed between the two chosen positions. At each step of the construction
the non-occupied adjacent tetrahedrons are ranked using their respective distance to the
final position. The tetrahedron or cubic cell corresponding to the shortest distance is
chosen as the next position. When the last position is reached, if the path length is greater
than n, then the chain is deleted and two new positions are chosen. Note that this situation

is unlikely to occur r~n'2.<n. However, in the likely event where the path length is
smaller than n, additional atoms are added to the chain until the correct length is reached.
As illustrated in Figure 2, the addition of new atoms is carried out by deleting at random
a bond along the chain, thus creating two non-bonded atoms from which the chain is
extended. Thus, the chain extension is grown using the same path construction as above
with the exception that the initial and final positions are not chosen at random but are the
location of two non-bonded atoms.
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Figure 2. Increase of polymer chain length. a) Bond i-j is deleted. b) Chain extension
is carried out by growing a new chain from position i and j.

Note that the lattice construction procedure allows one to construct cross-linked polymers



since the basic operation is to generate a chain between two given positions. Hence,
cross-linking chains are constructed by generating chains between pairs of branch-points.

Once the polymeric structures have been constructed, minimization followed by NVT
MD simulations are used to further equilibrate the structures. While minimization is
carried out using the aforementioned conjugate gradient algorithm, MD is performed
using the massively parallel LAMMPS code.

Diffusion calculations. Once polymeric structures have been generated and equilibrated
using the compression box or lattice construction technique, diffusion calculations can be
carried out. Microscopically, the diffusion coefficient can be calculated from the motion
of the diffusing particles, provided they have been traced long enough so that they
perform random walks. There are several formulations to derive coefficients of diffusion.
With MD simulations the most often used expression is the so called Einstein relation

24 D=lim,,. dd <) - 1O > . )

where D is the diffusion coefficient, d = 3 is the number of spatial dimension, ¢ is the
time, and r(#) is the position vector of a particle at time ¢. The angle brackets denote the
ensemble average, which in MD simulations is realized by averaging over all particles of
the diffusing species. The calculation of diffusion coefficients rests on the fact that for
sufficiently long times the mean-square displacement of a diffusing particle increases
linearly with time. There are however, cases in which the mean-square displacement is
not linearly proportional to time, but obeys a different power law

<EQ-@P>~e

where n is lower than 1 (normal diffusion). This process is called anomalous diffusion. It
is caused by some mechanism which forces the particles onto a path that is not a random
walk. These can be obstacles in the way of the diffusant and thus inhibit random motion,
such as to force the diffusant to remain inside a cavity. Anomalous diffusion persists only
on short time scales. At long enough time scales (and hence length scales) the trajectory
of the diffusant becomes randomized and a change to normal diffusion occurs.

Results and discussion

The main goal of our study is to measure oxygen and water diffusion coefficient in two
polymeric materials, butyl rubber and ethylene-propylene-dimer-monomer (EPDM).
Butyl and EPDM are used in O-ring systems and serve as sealing joints in many



manufactured objects. Butyl rubber is a copolymer of isobutene and isoprene (Figure 3).
EPDM is a terpolymer of ethylene, propylene, and 1,4 hexadiene (Figure 3). The
experimental density for both butyl and EPDM is 0.91 g/cm3. Small gases diffusion
coefficients have been measured experimentally on both polymeric systems, and in
general the diffusion coefficients in EPDM are an order of magnitude larger than in butyl.
Presently this decrepency is poorly understood.

Butyl rubber:
-[CH:2-C(CH3)2]-,-[CH2-C(CH3) =CH:2 ] -
isobutylene (98 %) isoprene (2%)
EPDM:
-[CHz-CH:]-[CHz2-CH (CHs3)] -, [ CH2=CH - CH2 - CH = CH (CH:) ]
ethylene-propylene (97%) 1,4 hexadiene (3%)
Figure 3. Butyl rubber and EPDM structural formulas.

The results outlined in this section were obtained using the lattice construction code and
the energy minimization program both running on a SGI R10000 platform. MD
simulations were carried out using the MD LAMMPS code running on both the 9216
processors Teraflops Intel and 1840 processors Intel Paragon. All butyl MD runs were
carried out on the Paragon using 216 nodes, EPDM and polyisobutylene MD runs were
performed on the Teraflops using 125 nodes. We observed a speed up factor of 7 between
the Teraflops and the Paragon for the same number of nodes.

Polymer construction. In prior calculations of diffusion coefficients we probed the
performances of the lattice construction code for dense polymeric systems. It has been
suggested by van der Vegt et al. [7] that polymer building techniques which create
models directly at the experimental density may introduce significant nonequilibrium
strain in the angle bending and dihedral torsion degrees of freedom. Furthermore, the
time required to anneal this strain may be beyond MD time scales, thus prohibiting the
generation of true equilibrium polymer structures. van der Vegt ez al. [7] showed that
model polymers built by slow compression from a low density initial state exhibit less
strain in the angle and dihedral degrees of freedom, and they suggest that these structures
may be more representative of an equilibrated polymer. Since the lattice construction
technique we introduce here is novel, and it creates models directly at experimental
densities, we thought it appropriate to compare it to the "slow-compression" building
method. The polymer used in this study was poly(isobutylene), or PIB, this polymer is
enssentially an non cross-linked butyl rubber. The (full-atom) forcefield parameters were
taken from Muller-Plathe ez al. [2] The Lorenz-Berthelot mixing rules were used for

nonbond interactions between different atomic species, and all studies were performed at
300K.

PIB Model A was built with the slow-compression method described in the Methodology



section. First,-a set of polymer chains was built at a density of 0.11 g/cm?3, which is -
approximately 1/8 of the experimental density. There were 21 chains with lengths
distributed randomly between 80 and 120 monomer units. The full-atom model consisted
of 25104 atoms, 25076 bonds, 50040 angles, and 74594 dihedrals. To anneal out
nonbond (van der Waals) overlaps in the initial configuration, an MD simulation with a
small timestep was run for a few picoseconds (ps). We then performed two MD stages as
suggested by van der Vegt ez al. [7] The first stage was a compression using only the
repulsive part of the nonbond potential (i.e., the Lennard-Jones interaction between
species i and j was truncated at f§5ij) but full bonded interactions (bonds, angles,

dihedrals). The model was compressed from its initial density to the experimental
density, 0.91 g/cc, over 525 picoseconds, using constant-temperature MD with a pressure
ramp. The Nose-Hoover method was used to control both temperature and pressure, with
time constants of 0.1 and 0.5 ps, respectively. The second stage was initiated from the
last configuration of the first stage, with the attractive nonbond interactions turned on by
increasing the Lennard-Jones cutoffs to 74.5 nm. A constant pressure MD simulation was
performed such that the experimental density (0.91 g/cm?) was maintained. This run
lasted for about 120 picoseconds. About 20 picoseconds into the second stage, the
polymer seemed to be equilibrated; changes in the various components of potential
energy were not significant or systematic.

PIB Model B was built at the experimental density of 0.91 g/cm? using the lattice
construction technique described earlier. It was created to be close in size to Sample A,
although it ended up 2.8% smaller. It contained 21 chains with lengths distributed
randomly between 80 and 120 monomer units. It was a full-atom model consisting of
24408 atoms, 24387 bonds, 48690 angles, and 72658 dihedrals. Prior to running dynamic
simulations, this model was minimized to reduce nonbond overlaps using the procedure
described in the Methodology section. A MD run at constant volume and temperature
was then performed for 380 picoseconds. The Nose-Hoover method with a time constant

of 0.1 ps was used to maintain temperature at 300K. Equilibration was reached within the
first 10 picoseconds.

Our first comparison of the two polymer models (i.e, PIB A and B) is given in Table I,
which shows the various contributions to potential energy in the systems. The averages
and standard deviations were taken over the last 10 ps of the dynamics for Model A and
for the last 80 picoseconds of the dynamics for Model B. All values represent total
amounts for each contribution; since the two models were approximately the same size,
we did not normalize the values. Interestingly, we observe differences between the two
models in the van der Waals, angle, and dihedral contributions; in each case the model
created with the lattice contruction technique (Model B) has a higher energy. The total
potential energy difference between the models is 8650 kJ/mol, or 0.14 kT per atom. The

largest differences are found in the angle and dihedral energies, accounting for about 80%



of the total difference. Both of these observations are consistent with those of van der
Vegt et al. [7] for poly(dimethylsiloxane) polymer models. They observed a total
difference of 0.16 k,T per atom between models made by direct packing and slow

compression methods, with about 70% of that due to angle, dihedral, 1-4 nonbond, and
1-5 nonbond contributions.

Table . Potential energy contributions in PIB models (kcal/mol)

PIB Model [ van der Waals bonds angles dihedrals
A -5240 + 80 § 10150+ 110 | 30150 £ 140 | 14770 + 90
B -4290 £ 80 | 10740+ 80 | 33450 +90 | 18580 + 90

Since the concern of this paper is the calculation of diffusion coefficients of small
molecules in polymers, we are interested in how the differences between Models A and B
will affect such calculations. We studied the diffusion of helium (He) through each of the
polymer models, using the Lennard-Jones parameters given by Muller-Plathe ef al. [2] for
He. In the case of Sample A, a polymer configuration with a density of exactly 0.91

g/cm3 was taken from the end of the second-stage runs. Then 100 He atoms were added
to the configuration. In the case of sample B, 100 He atoms were added to the final
configuration. The overlaps of the new He atoms with the polymer were relaxed using
constant volume and temperature MD with a small time step. Diffusion MD runs were
then performed with constant volume and temperature (300K) for 360 picoseconds for
model A and 770 picoseconds for model B. Figure 4 visualizes the mean-square
displacement of He molecules in samples A and B. The straight lines are drawn with
slopes of exactly unity and one can see that at long times eq. 2 is valid forn = 1. The
normal mode is reached for both systems within 1000 picosecond. The diffusion

coefficient for model A is 24.09 10 cm?/s and 25.25 106 cm?/s for model B. Both
diffusion coefficients are close to the value found by Muller-Plathe et al. [2] (30.1 107

cm?/s) this is due to the fact we are using the same forcefield. Most importantly the
diffusion coefficients differences between systems A and B are not significant. Hence,
the lattice construction technique appears to generate equilibrated polymer structures that
have the same behavior that those created by the slow compression method in so far as
diffusion calculations are concerned.
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Figure 4. Trajectories of helium particles versus time in PIB models A & B (cf. text).
The straight line y = x represents the normal diffusion regime.

We further probed the performances of the lattice construction technique with PIB
systems of increasing sizes. As shown in Figure 5, the computational complexity appears
to scale linearly with the number of atoms. This is a substantial gain compare to other
MD techniques in which the number of steps of the simulation must be at least n?, where
n is the number of atoms of the polymer chains (cf. Methodology section). As a
consequence, we were able to generate PIB structures up to 1,380,000 atoms. To the best
of our knowledge, these models are the largest non-crystalline bonded atomic systems
ever generated and in general are several orders of magnitude larger than the current
models used in polymer science. It is also important to note that the structures generated
by the lattice construction program are equilibrated using, at most, ten picoseconds MD
simulations, rather than several hundred picoseconds with other techniques.
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Figure 5. Computational running time of the lattice construction code versus
number of atoms and number of monomers.

Oxygen and water diffusion calculations. The lattice construction code was used to
generate initial structures for butyl and EPDM. Both structures contained approximately
10,000 atoms and were generated in a cubic box of 4.5 nm size, which lead to a density

of 0.91 g/cm3. In both systems, oxygen molecules were added up to 3% of the total
weight, while water molecules were added up to 9% weight. Although 3% weight is the
experimental value for both oxygen and water in butyl and EPDM, a higher value for
water was chosen to obtain a better statistical average when calculating diffusion
coefficients. Once the diffusing species were added, the two resulting structures were
energy minimized and equilibrated with MD simulations. The simulation time used for
equilibration did not exceed 10 picoseconds.

In order to compute diffusion coefficients using eq. 1, MD was run up to a 1000
picoseconds simulation. This large simulation time was chosen with the hope of being
able to reach the normal diffusion mode (cf. eq. 2 and discussion below). Figures 6 and 7
visualize the mean-square displacement of oxygen and water molecules in butyl and
EPDM as a function of time. With the exception of water in EPDM the normal mode was
reached in all cases. The diffusion coefficients D were evaluated from the positions of
these lines.
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Figure 6a. Trajectories of oxygen particles versus time in butyl rubber. 6b.
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the normal diffusion regime.
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Figure 7a. Trajectories of water particles versus time in butyl rubber. 7b.
Trajectories of water particles versus time in EPDM.

The non convergence for diffusion calculations of water in EPDM may be attributed to
the fact that several diffusing molecules can eventually fit into EPDM cavities. Indeed,
when visualizing the solvated EPDM model it was observed that some cavities contained
several water molecules. Because of the electrostatic attractions between water
molecules, one can hypothesize that when several penetrants are present in one cavity, it
is energetically favorable for the penetrants to remain inside the cavity rather than
jumping to neighboring cavities. Since 9% weight for water is overestimated compared to
the corresponding experimental value, a new EPDM model was constructed containing
only 3% water. With this new model, the normal mode was reached in less than 1000
picoseconds. The diffusion coefficient values are listed in Table L.



Table II. Diffusion coefficients for O, and water (10'6cm2/s)

Model system | Diffusion coef. (this work) |Diffusion coef. (experiment) [11]
O, in rubber 0.285 0.081

H,0 in rubber 0.159 not reported

O, in EPDM 0.781 0.177

H,0 in EPDM 1.921 not reported

The diffusion coefficients for EPDM are larger than for butyl as expected from
experiments. A tentative explanation was provided when visualizing the free volumes of
the equilibrated polymers. Free volumes are void spaces in model structures that are
accessible by penetrant molecules. The free volumes were computed using a program
developed by one of the authors of this paper. [12] The determination of the free volume
within a given model system is conducted as follows. The radii of all the polymer atoms
are augmented by the length equal to the penetrant radius, and the unoccupied volume of
the resulting model system is then calculated. For both butyl and EPDM it was observed
that the free volumes did not percolate for penetrant having a diameter greater 0.30 nm
(diameter of atomic oxygen is 0.35 nm). In other words, all cavities having an entrance
size greater than 0.30 nm were not connected. This observation is consistent with the
hoping mechanism picture proposed by some authors. [13][14][15] Penetrant molecules
spend relatively long times in cavities before performing infrequent jumps between
adjacent cavities. The same authors have performed visual inspection of polymer models
in the vicinity of penetrants, and it appeared that jumping events occur after channels
between neighboring cavities are formed. Once the channels are formed, the penetrants
slip through it without much effort. If such a picture is true, since EPDM has higher
diffusion coefficients than butyl, EPDM should have a greater number of chanrels than
butyl. We probed the free volume distribution for butyl and EPDM versus the cavity
entrance size. As shown in Figure 8, butyl and EPDM have a different free volume
distribution. EPDM contains significantly more free volumes having an entrance size
smaller than 0.30 nm than butyl. It is important to note that these small free volumes
provide links between larger cavities since the free volume network percolates for
entrance sizes smaller than 0.30 nm. Consequently, the curves presented in Figure 8 are
consistent with the hoping mechanism picture, and according to this picture, EPDM has
higher diffusion coefficients because it comprises more channels between cavities.
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Figure 8. Free volume distribution in butyl rﬁbber and EPDM.

Conclusion

We have proposed a new technique to generate close-to-equilibrium dense polymeric
structures. This technique leads to diffusion results that are similar to results obtained by
previously published methods, while being several order of magnitude faster. We have
shown the new technique to scale linearly with the number of atoms, and have used it to
generate dense polymer models comprising up to 1,380,000 atoms. To the best of our
knowledge these models are the largest non-crystalline bonded atomic systems ever
generated and are many times larger than the current models used in polymer science.

We have used the new technique to construct 10,000 atoms models of butyl rubber and
EPDM for the purpose of simulating the diffusion of oxygen and water molecules. The
simulations were carried out using LAMMPS molecular dynamics code, and were run on
Sandia’s Intel Teraflop and Sandia’s Intel Paragon. In agreement with experimental
results the diffusion coefficients in EPDM were found an order of magnitude larger than
in butyl. A tentative explanation of the differences between the coefficients was advanced
when comparing the free volume distributions of the two polymer models: diffusion is
facilitated in EPDM due to a larger number of channels between cavities than in butyl.
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