

ANL-78-57

1h. 501
ANL-78-57

374
9-19-78
UC-79h

BILINEAR CYCLIC STRESS-STRAIN PARAMETERS FOR TYPES 304 AND 316 STAINLESS STEEL

by

P. S. Maiya

BASE TECHNOLOGY

MASTER

U of C-AUA-USDOE

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Prepared for the U. S. DEPARTMENT OF ENERGY
under Contract W-31-109-Eng-38

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Department of Energy, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona	Kansas State University	The Ohio State University
Carnegie-Mellon University	The University of Kansas	Ohio University
Case Western Reserve University	Loyola University	The Pennsylvania State University
The University of Chicago	Marquette University	Purdue University
University of Cincinnati	Michigan State University	Saint Louis University
Illinois Institute of Technology	The University of Michigan	Southern Illinois University
University of Illinois	University of Minnesota	The University of Texas at Austin
Indiana University	University of Missouri	Washington University
Iowa State University	Northwestern University	Wayne State University
The University of Iowa	University of Notre Dame	The University of Wisconsin

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights. Mention of commercial products, their manufacturers, or their suppliers in this publication does not imply or connote approval or disapproval of the product by Argonne National Laboratory or the U. S. Department of Energy.

Printed in the United States of America

Available from

National Technical Information Service

U. S. Department of Commerce

5285 Port Royal Road

Springfield, Virginia 22161

Price: Printed Copy \$4.50; Microfiche \$3.00

4, w

Distribution Category:
Structural Materials and
Design Engineering (UC-79h)

ANL-78-57

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

BILINEAR CYCLIC STRESS-STRAIN PARAMETERS FOR
TYPES 304 AND 316 STAINLESS STEEL

by

P. S. Maiya

Materials Science Division

July 1978

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

TABLE OF CONTENTS

	<u>Page</u>
ABSTRACT	7
I. INTRODUCTION	7
II. EXPERIMENTAL MATERIAL AND PROCEDURES	7
III. BILINEAR CYCLIC STRESS-STRAIN ANALYSIS	8
IV. RESULTS AND DISCUSSION	10
V. CONCLUSIONS	20
REFERENCES	21

LIST OF FIGURES

<u>No.</u>	<u>Title</u>	<u>Page</u>
1.	Bilinear Representation of Monotonic, Initial-loading Stress-Strain Curve	9
2.	Bilinear Representation of Initial and Tenth-cycle Stress-Strain Curves	9
3.	Schematic Representation of a Hysteresis Loop Used in Bilinear Cyclic Stress-Strain Analysis	9
4.	Variation of C with ϵ_{max} at Different Temperatures for Type 304 Stainless Steel	12
5.	Variation of E_m with ϵ_{max} at Different Temperatures for Type 304 Stainless Steel	12
6.	Variation of C with ϵ_{max} at Different Temperatures for Type 316 Stainless Steel	13
7.	Variation of E_m with ϵ_{max} at Different Temperatures for Type 316 Stainless Steel	13
8.	Variation of Parameter α with ϵ_{max} at Room Temperature for Type 304 Stainless Steel	16
9.	Variation of Parameter α with ϵ_{max} at 427°C for Type 304 Stainless Steel	16
10.	Variation of Parameter α with ϵ_{max} at 538°C for Type 304 Stainless Steel	17
11.	Variation of Parameter α with ϵ_{max} at 593°C for Type 304 Stainless Steel	17
12.	Variation of Parameter α with ϵ_{max} at Room Temperature for Type 316 Stainless Steel	17
13.	Variation of Parameter α with ϵ_{max} at 427°C for Type 316 Stainless Steel	18
14.	Variation of Parameter α with ϵ_{max} at 538°C for Type 316 Stainless Steel	18
15.	Variation of Parameter α with ϵ_{max} at 593°C for Type 316 Stainless Steel	18
16.	Variation of Parameter α_0 with Temperature and Strain for Type 304 Stainless Steel	19
17.	Variation of Parameter α_1 with Temperature and Strain for Type 304 Stainless Steel	19

LIST OF FIGURES

<u>No.</u>	<u>Title</u>	<u>Page</u>
18.	Variation of Parameter κ_s with Temperature and Strain for Type 304 Stainless Steel	19
19.	Variation of Parameter κ_0 with Temperature and Strain for Type 316 Stainless Steel	20
20.	Variation of Parameter κ_1 with Temperature and Strain for Type 316 Stainless Steel	20
21.	Variation of Parameter κ_s with Temperature and Strain for Type 316 Stainless Steel	20

LIST OF TABLES

<u>No.</u>	<u>Title</u>	<u>Page</u>
I.	Chemical Composition of Types 304 and 316 Stainless Steel	8
II.	Bilinear Stress-Strain Parameters E_m and C for Type 304 Stainless Steel	11
III.	Bilinear Stress-Strain Parameters E_m and C for Type 316 Stainless Steel	11
IV.	Bilinear Yield Strengths σ_0^Y , σ_1^Y , and σ_s^Y for Type 304 Stainless Steel	14
V.	Bilinear Yield Strengths σ_0^Y , σ_1^Y , and σ_s^Y for Type 316 Stainless Steel	14
VI.	Bilinear Cyclic Parameters κ_0 , κ_1 , and κ_s for Type 304 Stainless Steel	15
VII.	Bilinear Cyclic Parameters κ_0 , κ_1 , and κ_s for Type 316 Stainless Steel	15

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

BILINEAR CYCLIC STRESS-STRAIN PARAMETERS FOR TYPES 304 AND 316 STAINLESS STEEL

by

P. S. Maiya

ABSTRACT

This report describes the bilinear cyclic stress-strain parameters for Types 304 and 316 stainless steel. The bilinear properties of solution-annealed and aged Type 304 stainless steel (heat 9T2796) and solution-annealed Type 316 stainless steel (heat 8092297) under cyclic-loading conditions at a strain rate ($\dot{\epsilon}_t$) of $8.6 \times 10^{-5} \text{ s}^{-1}$, total strain range ($\Delta\epsilon_t$) between 0.2 and 0.8%, and temperatures from 22 to 593°C have been determined. The dependence of bilinear parameters on maximum strain ϵ_{\max} ($= \Delta\epsilon_t/2$) and temperature is discussed.

I. INTRODUCTION

Inelastic analyses of nuclear structural components subjected to creep and fatigue loadings are often required to establish the levels of stresses and strains in critical locations. Under the provisions of the ASME Boiler and Pressure Vessel Code Cases, both time-independent elastic-plastic and time-dependent creep behavior must be included in a detailed analysis of components operating at elevated temperatures. Generally, the elastic-plastic analysis is based on the von Mises or Tresca yield condition, the classical kinematic hardening rule, and the bilinear stress-strain relationships. The bilinear representation of the uniaxial stress-strain curve can be generalized to the multiaxial stress state using von Mises' yield criterion. Using the available procedures,^{1,2} the bilinear yield parameters have been described^{3,4} for Types 304 and 316 stainless steel and, more recently, for Incoloy alloy 800H.^{5,6} The bilinear material-properties data for Types 304 and 316 stainless steel reported in Refs. 3 and 4 are applicable to some loading variables, but the present report describes properties determined under cyclic-loading conditions that are different from previous work and of interest to designers. In addition, improved analytical techniques have been used to establish bilinear cyclic-hardening parameters.

II. EXPERIMENTAL MATERIAL AND PROCEDURES

The chemical composition of Types 304 and 316 stainless steel is given in Table I. The hourglass-shape specimens (6.35-mm minimum diameter) were

obtained from 15.5-mm-dia rod material of Type 304 stainless steel (heat 9T2796) and from 25.4-mm-dia rod material of Type 316 stainless steel (heat 8092297). The specimens of Type 304 stainless steel were solution-annealed at 1092°C for 0.5 h and aged at 593°C for 1000 h, and the Type 316 stainless steel specimens were solution-annealed at 1065°C for 0.5 h. The heat treatment of specimens (wrapped in tantalum foil) was carried out in evacuated quartz tubes that were backfilled with argon. The ASTM grain size of the heat-treated material is 2.5 for Type 304 stainless steel and 4.4 for Type 316 stainless steel, as determined by the intercept method.⁷ The cyclic tests were performed in air under push-pull conditions in the axial strain-control mode (continuous cycling without hold time) until stress saturation was achieved. The experimental procedure used for fatigue testing is similar to that described by Slot et al.⁸ The tests were conducted at a strain rate of $8.6 \times 10^{-5} \text{ s}^{-1}$, total strain range of 0.2 to 0.8%, and temperatures of 22-593°C.

TABLE I. Chemical Composition of Types 304 and 316 Stainless Steel

Type of Steel ^a	Heat No.	C	P	S	B	N	Si	Mn	Cu	Al	Cr	Mo	Ni	Cr	Fe
304	9T2796	0.059	0.033	0.016	-	-	0.44	1.26	0.25	-	-	0.35	9.50	18.60	Balance
316	8092297	0.06	0.024	0.019	0.005	0.032	0.58	1.85	0.09	0.023	0.02	2.35	13.70	17.10	Balance

^aMaterial obtained from rod.

III. BILINEAR CYCLIC STRESS-STRAIN ANALYSIS

The bilinear stress-strain analysis of the monotonic initial-loading stress-strain curves and hysteresis loops was performed using the procedure summarized in Figs. 1-3. (This procedure has also been described in Refs. 1 and 2.) The bilinear representation of monotonic, initial-loading stress-strain curves is shown in Fig. 1. The elastic line (with a slope equal to Young's modulus) is drawn from the zero origin. The elastic-plastic segment of the bilinear curve is determined by a straight line that connects the stress at the maximum strain, ϵ_{\max} , with the stress at strain $\epsilon_{\max}/2$. The bilinear yield stress σ_0^Y , defined by the intersection of the two straight lines OP and PQR, is related to the bilinear parameter κ_0 by^{1,2}

$$\sigma_0^Y = \sqrt{3\kappa_0}, \quad (1)$$

where κ_0 is a measure of the size of the yield surface for the first inelastic loading. Equation 1 is based on the von Mises yield condition; i.e., the second invariant of the deviatoric stress tensor at yield is equal to κ .

In the bilinear representation, C is defined as

$$C = \frac{2}{3} \frac{E E_m}{E - E_m}, \quad (2)$$

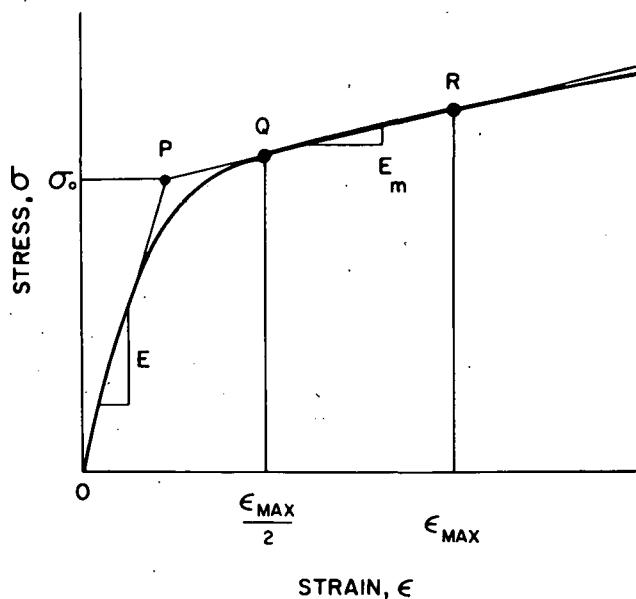


Fig. 1

Bilinear Representation of Monotonic, Initial-loading Stress-Strain Curve.
Neg. No. MSD-64007.

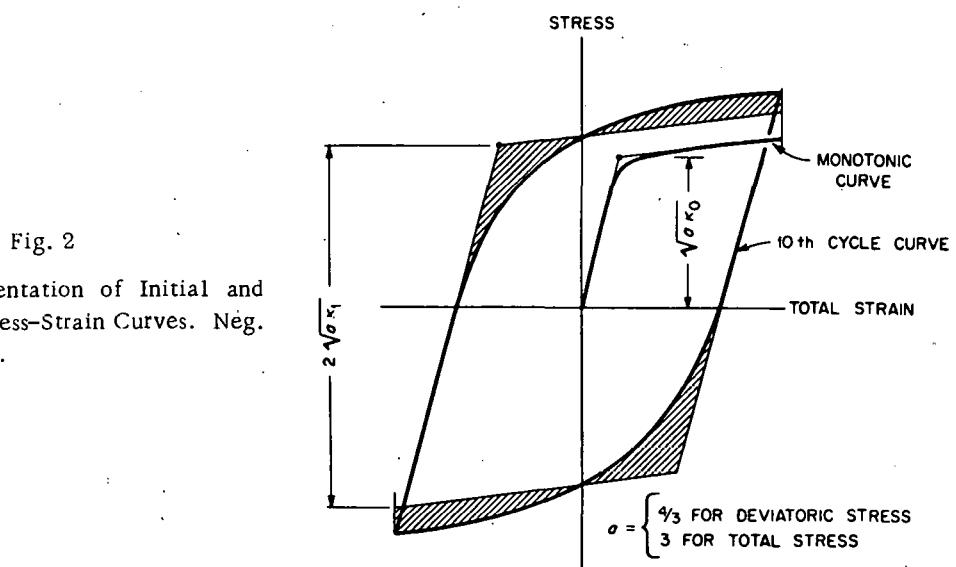


Fig. 2

Bilinear Representation of Initial and Tenth-cycle Stress-Strain Curves. Neg. No. MSD-64006.

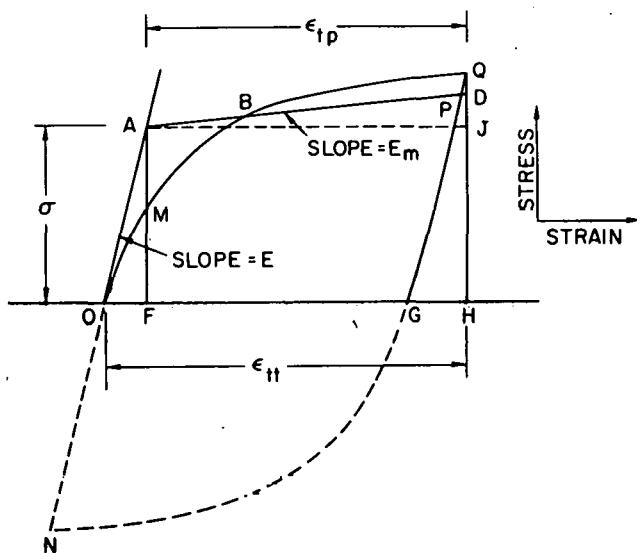


Fig. 3

Schematic Representation of a Hysteresis Loop Used in Bilinear Cyclic Stress-Strain Analysis. Neg. No. MSD-64794.

where E is Young's modulus and E_m is the slope of the elastic-plastic line (see Fig. 1). The parameter C is actually the slope of the elastic-plastic line in terms of deviatoric stress versus plastic strain ϵ_p (i.e., $C = d\sigma'/d\epsilon_p$, where σ' is the deviatoric stress). The bilinear parameters for the 10th cycle (κ_1) and the stress-saturation cycle (κ_s) are determined so that the value of C for any of the hysteresis loops is the same as the value established for the monotonic stress-strain curve. In design, K is assumed to reach a limiting value at the 10th cycle.² However, in Types 304 and 316 stainless steel, significant hardening occurs even beyond the 10th cycle.

The intersection of the elastic and elastic-plastic lines is located so that the shaded areas above and below the actual curve are equal for the tensile and compressive portions of the cyclic curve (see Fig. 2). This is accomplished by means of an analytical procedure described in Refs. 5 and 6 and briefly illustrated in Fig. 3, a schematic representation of a hysteresis loop. To determine the bilinear yield stress, a line ABPD with a slope equal to E_m must be drawn so that the area $O\Delta BO$ is equal to area $BQDB$. This is done by equating area $OAPDHO$ to area $OBQHO$. With reference to Fig. 3, defining $AF = \sigma$, $\epsilon_{tp} = \epsilon_{tt} - \sigma/E$, and $DJ = \epsilon_{tp}E_m$ and designating the area $OBQHO$ by A_t , we can show that, for the hysteresis loop i , the bilinear yield stress σ_i^y is expressed as

$$\sigma_i^y = \epsilon_{tt}E - \epsilon_{tt}E\{1 - [(2A_t/\epsilon_{tt}^2) - E_m]/(E - E_m)\}^{1/2} + \epsilon_{tp}E_m/2. \quad (3)$$

To determine σ_i^y , the value of A_t is required; this is obtained by means of conventional numerical-integration procedures. The parameters κ_1 and κ_s and the corresponding cyclic yield stresses σ_1^y and σ_s^y are related by

$$\sigma_1^y = \sqrt{3\kappa_1} \quad (4)$$

and

$$\sigma_s^y = \sqrt{3\kappa_s}. \quad (5)$$

For materials such as austenitic stainless steels that undergo cyclic hardening when cycled at constant strain ranges, $\kappa_0 < \kappa_1 < \kappa_s$.

IV. RESULTS AND DISCUSSION

The values for C and E_m at strains ϵ_{max} ($= \Delta\epsilon_t/2$) between 0.1 and 0.4% and four different temperatures are listed in Tables II and III for Types 304 and 316 stainless steel, and these parameters are plotted against ϵ_{max} in

TABLE II. Bilinear Stress-Strain Parameters E_m and C
for Type 304 Stainless Steel. Strain rate = $8.6 \times 10^{-5} \text{ s}^{-1}$.

Specimen Number	ϵ_{max} , %	$E_m, 10^3 \text{ MPa}$ (10^3 ksi)	$C, 10^3 \text{ MPa}$ (10^3 ksi)
<u>Room Temperature</u>			
T407	0.1	139.4 (20.22)	331.8 (48.13)
T406	0.2	24.24 (3.515)	18.47 (2.679)
T405	0.3	11.42 (1.656)	8.091 (1.173)
T404	0.4	5.097 (0.739)	3.490 (0.506)
<u>427°C (800°F)</u>			
T470	0.1	17.00 (2.465)	12.62 (1.831)
T466	0.2	2.431 (0.353)	1.645 (0.239)
T463	0.3	2.120 (0.307)	1.431 (0.208)
T461	0.4	7.106 (1.031)	4.950 (0.718)
<u>538°C (1000°F)</u>			
T424	0.1	34.12 (4.949)	29.15 (4.228)
T384	0.2	10.58 (1.535)	7.571 (1.098)
T422	0.3	4.441 (0.644)	3.048 (0.442)
T415	0.4	4.203 (0.610)	2.880 (0.418)
<u>593°C (1100°F)</u>			
T413	0.1	43.87 (6.363)	41.37 (6.000)
T412	0.2	13.90 (2.016)	10.22 (1.482)
T410	0.3	2.689 (0.390)	1.826 (0.265)
T408	0.4	4.881 (0.708)	3.364 (0.488)

TABLE III. Bilinear Stress-Strain Parameters E_m and C
for Type 316 Stainless Steel. Strain rate = $8.6 \times 10^{-5} \text{ s}^{-1}$.

Specimen Number	ϵ_{max} , %	$E_m, 10^3 \text{ MPa}$ (10^3 ksi)	$C, 10^3 \text{ MPa}$ (10^3 ksi)
<u>Room Temperature</u>			
P-30	0.2	50.76 (7.36)	45.86 (6.65)
P-29	0.3	6.43 (0.933)	4.44 (0.643)
P-28	0.4	3.40 (0.493)	2.31 (0.335)
<u>427°C (800°F)</u>			
P-25	0.1	92.03 (13.35)	137.81 (19.99)
P-15	0.2	8.62 (1.25)	6.06 (0.879)
P-14	0.3	4.58 (0.664)	3.14 (0.455)
P-18	0.4	2.70 (0.391)	1.83 (0.265)
<u>538°C (1000°F)</u>			
P-22	0.1	82.30 (11.94)	116.70 (16.93)
P-11	0.2	4.83 (0.700)	3.32 (0.482)
P-12	0.3	12.73 (1.85)	9.24 (1.34)
P-13	0.4	2.84 (0.412)	1.93 (0.280)
<u>593°C (1100°F)</u>			
P-17	0.1	55.93 (8.11)	59.52 (8.63)
P-9	0.2	15.95 (2.31)	11.90 (1.73)
P-5	0.3	3.50 (0.508)	2.39 (0.347)
P-1	0.4	3.65 (0.529)	2.49 (0.362)
P-3	0.4	5.00 (0.725)	3.45 (0.500)

Figs. 4-7. In all cases, both C and E_m decrease markedly at ϵ_{max} between 0.1 and 0.2%; beyond $\epsilon_{max} = 0.2\%$, the parameters are approximately independent of strain. Also, Type 316 stainless steel has approximately elastic behavior at room temperature when cycled at a total strain range of 0.2% (i.e., $\epsilon_{max} = 0.1\%$).

The values of bilinear yield parameters σ_0^y , σ_1^y , and σ_s^y for the two types of steel, determined at ϵ_{max} between 0.1 and 0.4% and for different temperatures, are listed in Tables IV and V. The values of parameter κ_i corresponding to the bilinear yield strength σ_i^y were calculated from Eqs. 1, 4, and 5, and are given in Tables VI and VII for Types 304 and 316 stainless steel, respectively.

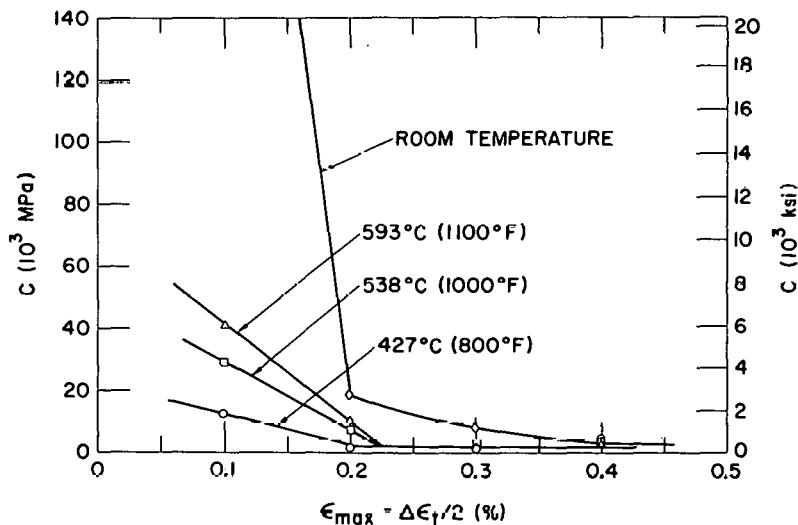


Fig. 4. Variation of C with ϵ_{max} at Different Temperatures for Type 304 Stainless Steel. ANL Neg. No. 306-78-264.

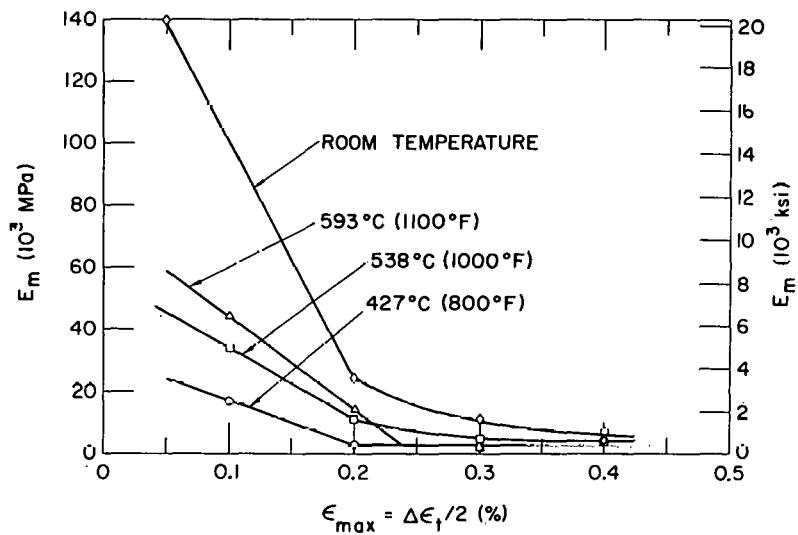


Fig. 5. Variation of E_m with ϵ_{max} at Different Temperatures for Type 304 Stainless Steel. ANL Neg. No. 306-78-265.

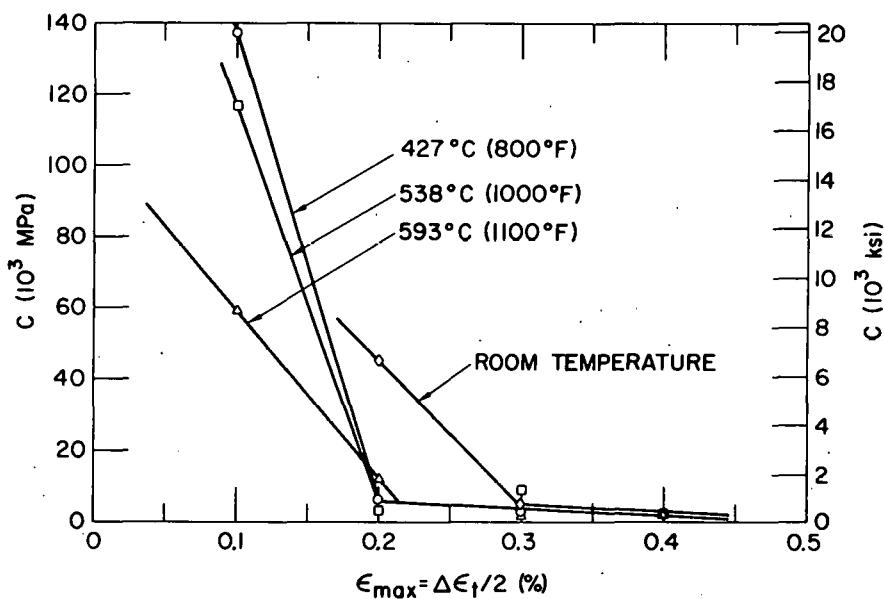


Fig. 6. Variation of C with ϵ_{max} at Different Temperatures for Type 316 Stainless Steel. ANL Neg. No. 306-78-240.

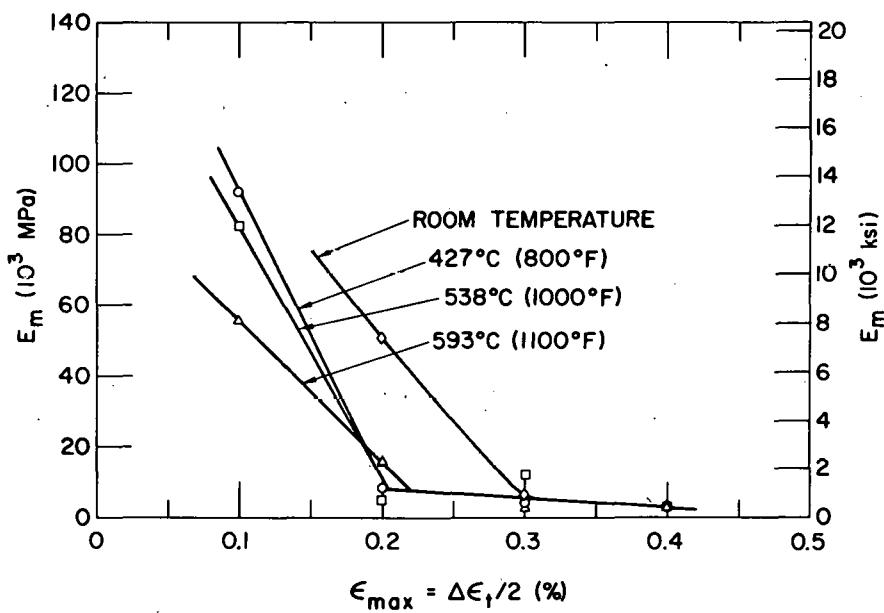


Fig. 7. Variation of E_m with ϵ_{max} at Different Temperatures for Type 316 Stainless Steel. ANL Neg. No. 306-78-241.

TABLE IV. Bilinear Yield Strengths σ_0^y , σ_1^y , and σ_s^y for Type 304 Stainless Steel. Strain rate = $8.6 \times 10^{-5} \text{ s}^{-1}$.

Specimen Number	ϵ_{max} , %	σ_0^y , MPa (ksi)	σ_1^y , MPa (ksi)	σ_s^y , MPa (ksi)
<u>Room Temperature</u>				
T407	0.1	75.51 (10.95)	119.7 (17.36)	119.7 (17.36)
T406	0.2	171.3 (24.85)	159.0 (23.05)	158.4 (22.98)
T405	0.3	189.8 (27.53)	180.9 (26.24)	182.7 (26.49)
T404	0.4	187.9 (27.25)	187.2 (27.15)	187.8 (27.2)
<u>427°C (800°F)</u>				
T470	0.1	51.86 (7.522)	53.42 (7.748)	70.08 (10.16)
T466	0.2	69.80 (10.12)	79.90 (11.59)	138.1 (20.03)
T463	0.3	70.90 (10.28)	95.60 (13.87)	161.3 (23.40)
T461	0.4	70.90 (10.28)	114.3 (16.58)	164.0 (23.79)
<u>538°C (1000°F)</u>				
T424	0.1	49.30 (7.150)	57.81 (8.384)	88.16 (12.79)
T384	0.2	76.96 (11.16)	82.43 (11.96)	115.2 (16.71)
T422	0.3	64.60 (9.370)	102.7 (14.90)	160.0 (23.21)
T415	0.4	95.04 (13.78)	136.2 (19.75)	193.3 (28.04)
<u>593°C (1100°F)</u>				
T413	0.1	56.18 (8.148)	72.79 (10.56)	95.51 (13.85)
T412	0.2	48.81 (7.079)	94.11 (13.65)	131.4 (19.06)
T410	0.3	55.63 (8.068)	108.8 (15.78)	156.7 (22.72)
T408	0.4	92.69 (13.44)	153.5 (22.26)	175.5 (25.45)

TABLE V. Bilinear Yield Strengths σ_0^y , σ_1^y , and σ_s^y for Type 316 Stainless Steel. Strain rate = $8.6 \times 10^{-5} \text{ s}^{-1}$.

Specimen Number	ϵ_{max} , %	σ_0^y , MPa (ksi)	σ_1^y , MPa (ksi)	σ_s^y , MPa (ksi)
<u>Room Temperature</u>				
P-30	0.2	178.2 (25.84)	172.6 (25.04)	173.0 (25.09)
P-29	0.3	218.0 (31.62)	195.6 (28.37)	190.8 (27.68)
P-28	0.4	231.2 (33.53)	213.4 (30.95)	214.3 (31.09)
<u>427°C (800°F)</u>				
P-25	0.1	59.99 (8.70)	62.31 (11.94)	-
P-15	0.2	118.3 (17.16)	105.2 (15.26)	146.2 (21.21)
P-14	0.3	125.9 (18.25)	131.8 (19.12)	182.8 (26.51)
P-18	0.4	125.5 (18.20)	145.3 (21.08)	205.7 (29.84)
<u>538°C (1000°F)</u>				
P-22	0.1	60.48 (8.77)	75.45 (10.95)	-
P-11	0.2	109.4 (15.86)	107.2 (15.55)	179.6 (26.05)
P-12	0.3	85.76 (12.44)	134.9 (19.56)	220.5 (31.99)
P-13	0.4	109.41 (15.87)	157.6 (22.86)	245.2 (35.57)
<u>593°C (1100°F)</u>				
P-17	0.1	63.53 (9.21)	85.87 (12.46)	-
P-9	0.2	84.32 (12.23)	115.6 (16.77)	182.7 (26.49)
P-5	0.3	106.3 (15.41)	151.0 (21.91)	213.0 (30.90)
P-1	0.4	111.3 (16.14)	177.2 (25.71)	261.2 (37.88)

TABLE VI. Bilinear Cyclic Parameters κ_0 , κ_1 , and κ_s for
Type 304 Stainless Steel. Strain rate = $8.6 \times 10^{-5} \text{ s}^{-1}$.

Specimen Number	ϵ_{max} , %	κ_0 , MPa ² (ksi ²)	κ_1 , MPa ² (ksi ²)	κ_s , MPa ² (ksi ²)
<u>Room Temperature</u>				
T407	0.1	1 901 (40.0)	4 774 (100.4)	4 774 (100.4)
T406	0.2	9 782 (205.8)	8 421 (177.2)	8 366 (176.0)
T405	0.3	12 010 (252.6)	10 910 (229.5)	11 120 (234.0)
T404	0.4	11 770 (247.6)	11 680 (245.7)	11 760 (247.4)
<u>427°C (800°F)</u>				
T470	0.1	896.5 (18.9)	951.2 (20.0)	1 637 (34.4)
T466	0.2	1 624 (34.2)	2 128 (44.8)	6 356 (133.7)
T463	0.3	1 675 (35.2)	3 046 (64.1)	8 678 (182.5)
T461	0.4	1 675 (35.2)	4 358 (91.7)	8 965 (188.6)
<u>538°C (1000°F)</u>				
T424	0.1	810.1 (17.0)	1 114 (23.4)	2 591 (54.5)
T384	0.2	1 974 (41.5)	2 265 (47.6)	4 425 (93.1)
T422	0.3	1 800 (29.3)	3 519 (74.0)	8 535 (179.6)
T415	0.4	3 011 (63.3)	6 181 (130.0)	12 460 (262.1)
<u>593°C (1100°F)</u>				
T413	0.1	1 052 (22.1)	1 766 (37.2)	3 040 (64.0)
T412	0.2	794.1 (16.7)	2 952 (62.1)	5 754 (121.0)
T410	0.3	1 031 (21.7)	3 948 (83.0)	8 182 (172.1)
T408	0.4	2 864 (60.2)	7 854 (165.2)	10 260 (215.9)

TABLE VII. Bilinear Cyclic Parameters κ_0 , κ_1 , and κ_s for
Type 316 Stainless Steel. Strain rate = $8.6 \times 10^{-5} \text{ s}^{-1}$.

Specimen Number	ϵ_{max} , %	κ_0 , MPa ² (ksi ²)	κ_1 , MPa ² (ksi ²)	κ_s , MPa ² (ksi ²)
<u>Room Temperature</u>				
P-30	0.2	10 581 (223)	9 930 (209)	9 976 (210)
P-29	0.3	15 838 (333)	12 753 (268)	12 135 (255)
P-28	0.4	17 811 (375)	15 179 (319)	15 311 (322)
<u>427°C (800°F)</u>				
P-25	0.1	1 200 (25.2)	2 258 (47.5)	-
P-15	0.2	4 666 (98.2)	3 688 (77.6)	7 126 (150)
P-14	0.3	5 279 (111)	5 794 (122)	11 137 (234)
P-18	0.4	5 251 (110)	7 037 (148)	14 110 (297)
<u>538°C (1000°F)</u>				
P-22	0.1	1 219 (25.6)	1 898 (39.9)	-
P-11	0.2	3 987 (83.9)	3 831 (80.6)	10 750 (226)
P-12	0.3	2 452 (51.6)	6 062 (128)	16 209 (341)
P-13	0.4	3 990 (83.9)	8 276 (174)	20 047 (422)
<u>593°C (1100°F)</u>				
P-17	0.1	1 345 (28.3)	2 458 (51.7)	-
P-9	0.2	2 370 (49.8)	4 454 (93.7)	11 121 (234)
P-5	0.3	3 764 (79.2)	7 605 (160.0)	15 125 (318)
P-1	0.4	4 128 (86.8)	10 471 (220)	22 739 (478)

The variation of parameter κ with ϵ_{\max} for the monotonic stress-strain curve (κ_0), the 10th cycle (κ_1), and the saturated hysteresis loop (κ_s) is described for Type 304 stainless steel in Figs. 8-11 and for Type 316 stainless steel in Figs. 12-15. In general, parameter κ increases with an increase in ϵ_{\max} . Figures 8 and 12 show that, at room temperature, cyclic softening occurs ($\kappa_0 > \kappa_1$ and κ_s) at $\epsilon_{\max} > 0.2\%$. Also, the parameters κ_1 and κ_s appear to reach a saturation limit at $\epsilon_{\max} = 0.4\%$ in Type 304 stainless steel, but they appear to increase continuously with strain in Type 316 stainless steel. This may be associated with the difference in heat treatment received by the two types of steels prior to fatigue tests. (Type 304 stainless steel is solution-annealed and aged, whereas Type 316 is solution-annealed only.)

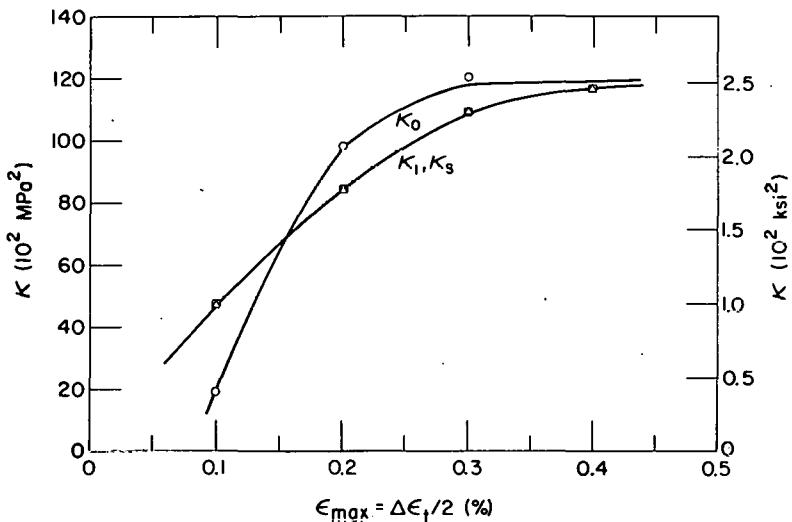


Fig. 8. Variation of Parameter κ with ϵ_{\max} at Room Temperature for Type 304 Stainless Steel. ANL Neg. No. 306-78-362.

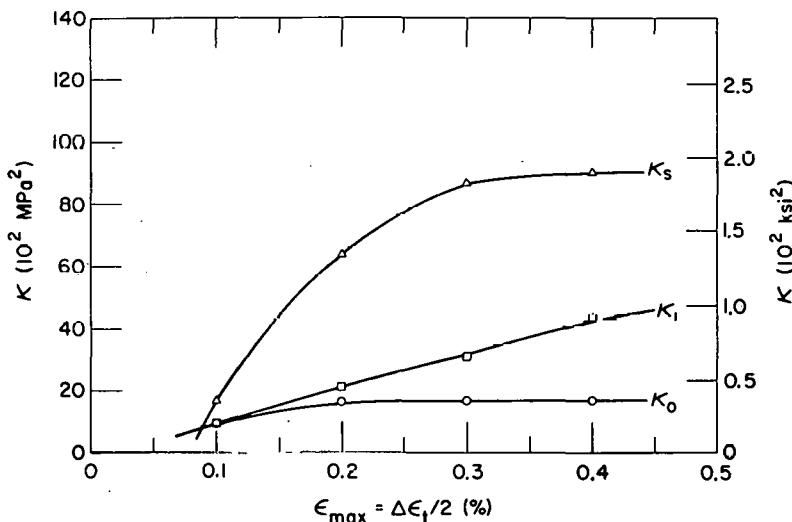


Fig. 9. Variation of Parameter κ with ϵ_{\max} at 427°C (800°F) for Type 304 Stainless Steel. ANL Neg. No. 306-78-263.

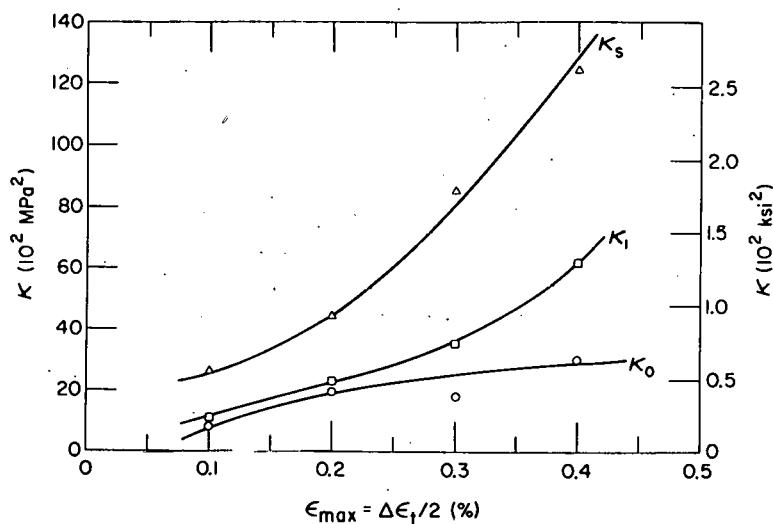


Fig. 10

Variation of Parameter κ with ϵ_{\max} at 538°C (1000°F) for Type 304 Stainless Steel. ANL Neg. No. 306-78-267.

Fig. 11

Variation of Parameter κ with ϵ_{\max} at 593°C (1100°F) for Type 304 Stainless Steel. ANL Neg. No. 306-78-275.

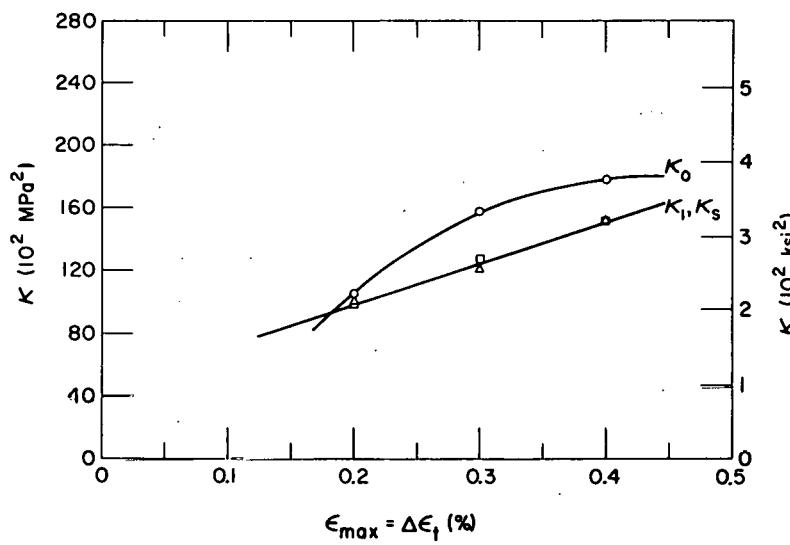
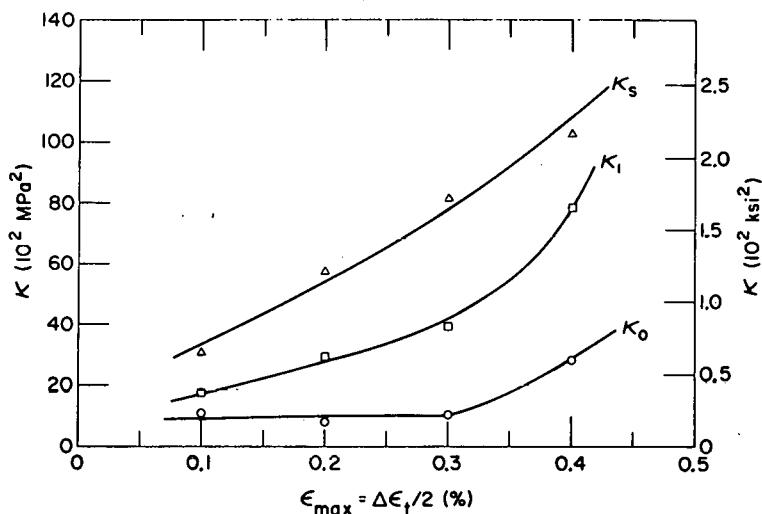



Fig. 12

Variation of Parameter κ with ϵ_{\max} at Room Temperature for Type 316 Stainless Steel. ANL Neg. No. 306-78-243.

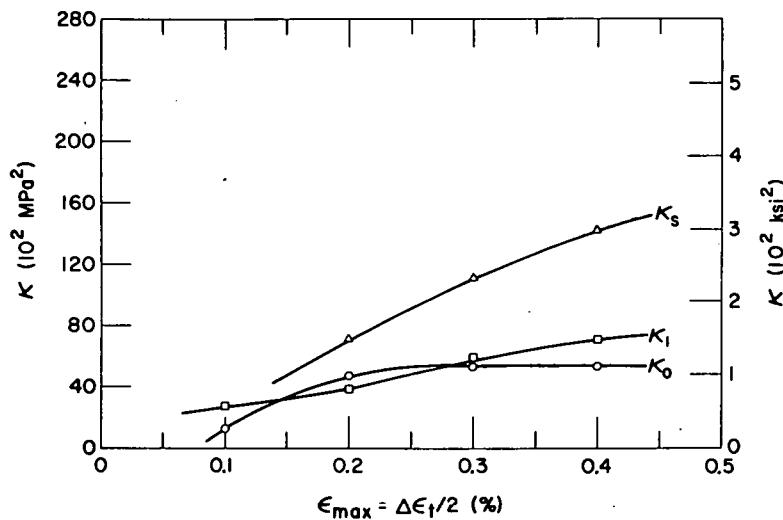


Fig. 13

Variation of Parameter κ with ϵ_{\max} at 427°C (800°F) for Type 316 Stainless Steel. ANL Neg. No. 306-78-242.

Fig. 14

Variation of Parameter κ with ϵ_{\max} at 538°C (1000°F) for Type 316 Stainless Steel. ANL Neg. No. 306-78-245 Rev.

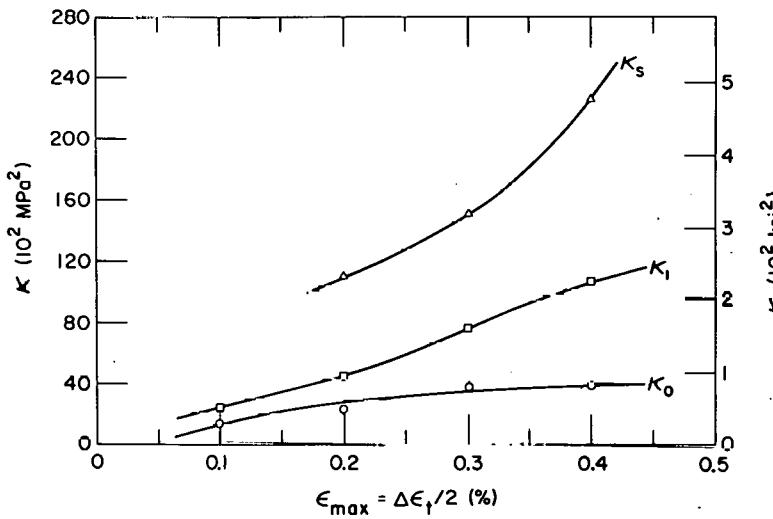
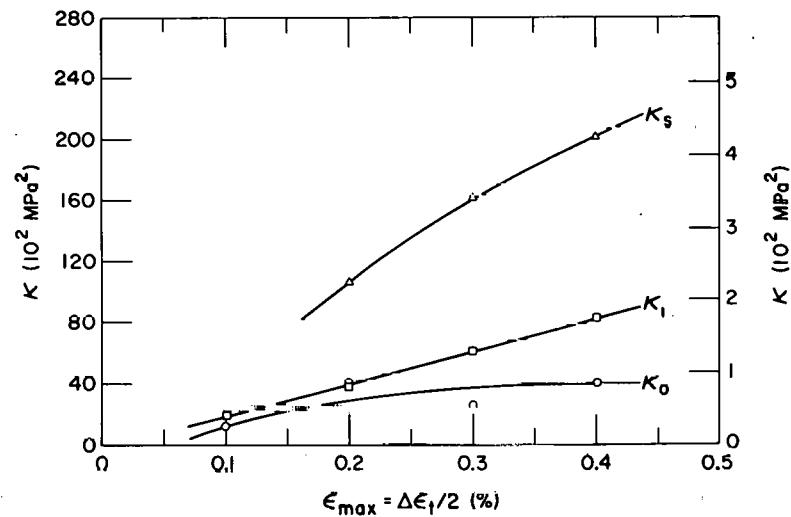



Fig. 15

Variation of Parameter κ with ϵ_{\max} at 593°C (1100°F) for Type 316 Stainless Steel. ANL Neg. No. 306-78-244.

The variation of κ_0 , κ_1 , and κ_s with temperature for Type 304 stainless steel is shown in Figs. 16-18, respectively; κ_0 is less sensitive to temperature than κ_1 and κ_s . In the temperature range of 427-593°C, there is a trend to suggest that κ_1 increases with temperature with a more rapid increase at higher strains. The variation of κ_s with temperature, however, is not systematically related to strain. Figures 19-21, which show the variation of κ with temperature for Type 316 stainless steel, indicate that the temperature dependence of

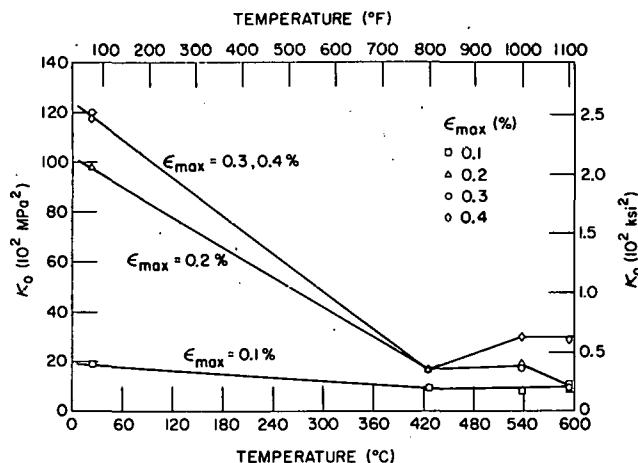


Fig. 16

Variation of Parameter κ_0 with Temperature and Strain for Type 304 Stainless Steel. ANL Neg. No. 306-78-266.

Fig. 17

Variation of Parameter κ_1 with Temperature and Strain for Type 304 Stainless Steel. ANL Neg. No. 306-78-269.

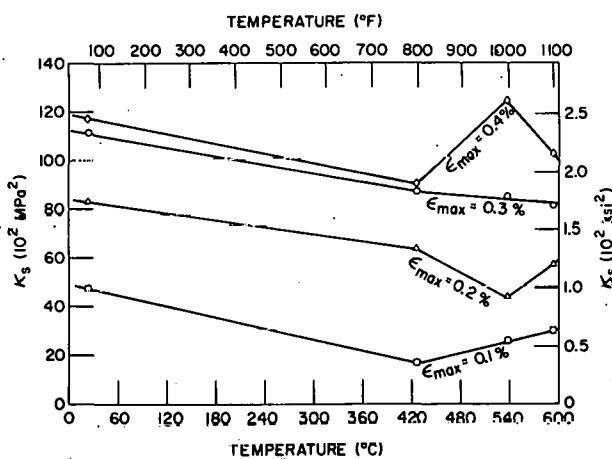
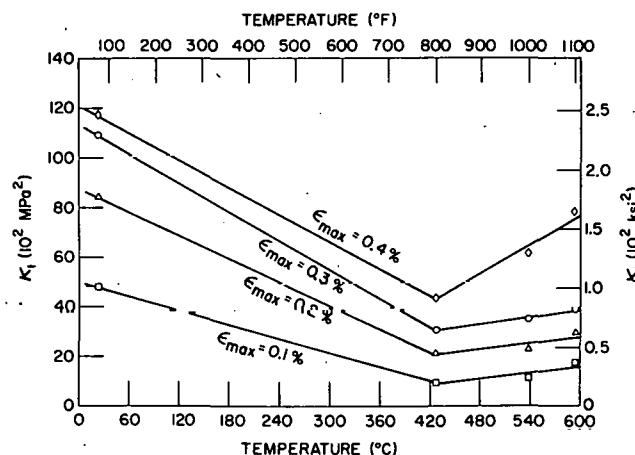



Fig. 18

Variation of Parameter κ_s with Temperature and Strain for Type 304 Stainless Steel. ANL Neg. No. 306-78-270.

Fig. 19

Variation of Parameter κ_0 with Temperature and Strain for Type 316 Stainless Steel. ANL Neg. No. 306-78-252.

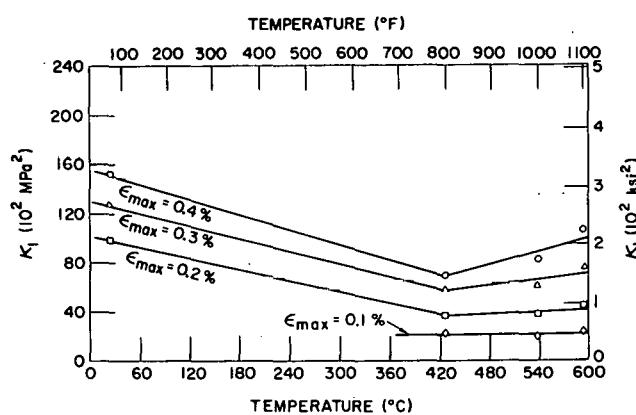
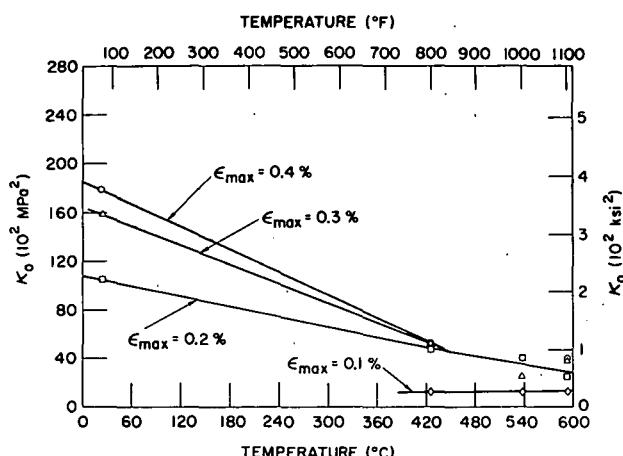
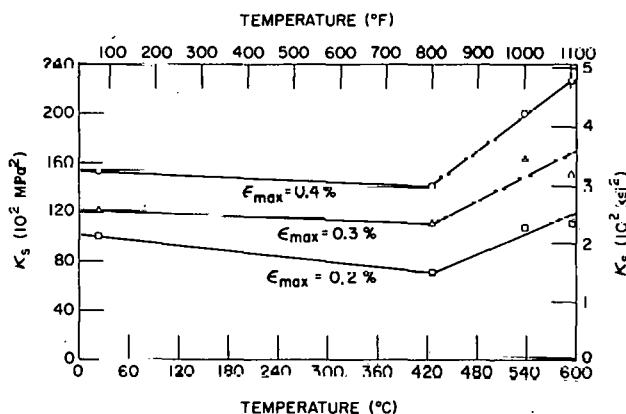




Fig. 31

Variation of Parameter κ_s with Temperature and Strain for Type 316 Stainless Steel. ANL Neg. No. 306-78-258.

Fig. 20

Variation of Parameter κ_1 with Temperature and Strain for Type 316 Stainless Steel. ANL Neg. No. 306-78-246.

κ at different strains is more consistent for Type 316 than for Type 304 stainless steel. The bilinear parameters κ_0 and κ_1 for Type 316 stainless steel are not significantly affected by temperature in the range 427-593°C, but κ_s shows a definite trend suggesting an increase with temperature at ϵ_{max} values between 0.2 and 0.4%; this is probably associated with precipitation of carbides at higher temperature and strain.

V. CONCLUSIONS

The bilinear cyclic stress-strain parameters for Types 304 and 316 stainless steel given in this report are of interest to designers concerned with inelastic analyses of structural components. These materials-property data are appropriate for incorporation into the Nuclear Systems Materials Handbook.

REFERENCES

1. J. M. Corum, W. L. Greenstreet, K. C. Lin, C. E. Pugh, and R. W. Swindeman, *Interim Guidelines for Detailed Inelastic Analysis of High-temperature Reactor Systems Components*, ORNL-5014 (Dec 1974).
2. RDT Standard F 9-5T (Sept 1974).
3. C. F. Cheng and C. Y. Cheng, "Bilinear Representations of Stress-Strain Behavior of Types 304 and 316 Stainless Steel Cyclically Deformed at 800-1200°F," *Proc. 2nd Int. Conf. on Structural Mechanics in Reactor Technology*, Berlin, Germany, Vol. V(M), pp. 1-11 (Sept 1973).
4. C. F. Cheng and C. Y. Cheng, *Bilinear Representations of the Cyclic Stress-Strain Behavior of Types 304 and 316 Stainless Steel from 800 to 1200°F*, ANL-8002 (Feb 1974).
5. P. S. Maiya, *Bilinear Cyclic Stress-Strain Analysis for Incoloy 800*, ANL-77-74 (Nov 1977).
6. P. S. Maiya, "Bilinear Representation of the Cyclic Stress-Strain Behavior of Incoloy 800," in *Inelastic Behavior of Pressure Vessel and Piping Components*, eds. T. Y. Chang and E. Krempel, PVP-PB-028, American Society of Mechanical Engineers, pp. 1-13 (1978).
7. J. E. Hilliard, *Estimating Grain Size by the Intercept Method*, Met. Prog. 85, 99 (1964).
8. T. Slot, R. H. Stentz, and J. T. Berling, in *Manual on Low-cycle Fatigue Testing*, ASTM STP 465, American Society for Testing and Materials, p. 100 (1969).