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The cu r ren t l y  accepted p rac t i ce  o f  using incons is ten t  representat ions 

o f  creep and rupture behaviors i n  the p red i c t i on  of. creep-fat igue l i f e  i s  

shown t o  introduce a f a c t o r  o f  sa fe ty  beyond t h a t  spec i f i ed  i n  cur ren t  ASME 

Code design ru les  f o r  304 s ta in less .  s tee l  Class I nuclear components. 

Accurate pred ic t ions  of creep-fat igue l i f e  f o r  un iax ia l  tes ts  on a 

a given heat o f  mater ia l  are obtained by using creep and rupture proper t ies 

f o r  t h a t  sanie heat o f  mater ia l .  The use o f  a consis tent  representat ion 

o f  creep and rupture proper t ies f o r  a minimum s t rength  heat i s  a lso shown 

t o  prov ide adequate predic t ions.  

The v i a b i l i t y  of using consis tent  proper t ies ( e i t h e r  actual o r  those 

o f  a minimum heat) t o  p r e d i c t  creep.-fatigue 1 i fe thus i d e n t i f i e s  s i g n i f i c a n t  

design uses f o r  the r e s u l t s  o f  character izat ion '  t es t s  and improved creep 

and ruptulPe cor re la t ions .  

INTRODUCTION 

The cu r ren t l y  accepted p rac t i ce  fo r  creep-fat igue evaluat ion o f  

nuclear components i s  based on the use o f  a combination of creep proper t ies  

t h a t  a re  representat ive of average behavior,and rupture proper t ies t h a t  

a re  representat ive o f  minimum behavior. A purpose of t h i s  paper i s  t o  

show t h a t  t h i s  conibination o f  proper t ies j s  n o t  representat.ive o f  actual 

304 s ta in less  s tee l  behavior., It i s  fu r ther  intended t o  demonstrate t h a t  a 

! . , .d i rect  r e s u l t  of the use of t h i s  combination of proper t ies i s  the in t roduc-  

t i o n  of a fac tor  of safety beyond t h a t  spec i f ied  i n  current  ASME'Code design 
-- -1 I.& 
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: ,  r u l e s  f o r  e leva ted  Class 1  nuclear' components. I n  add i t i on ;  

I i t i s  in tended .  t o  show. t h a t ,  the use of c o n s i s t e ~ i t  ci-eep and rup tu re  

p rope r t i es  r e s u l t s  i n  c reep - f a t i gue  l i f e  t h a t  a re  more 
reasonable than those o f  t h e  c u r r e n t l y  accepted p r a c t i c e .  . '  

General ru l 'es f o r  c reep- fa t igue  e v a l u a t i o n  o f  Class 1  , i u c l ea r  

components are prov ided i n  Appendix T o f  Code case '1 592 of t he  ASME B o i l e r  
. . 

and Pressure Vessel code( ' ) . .  These r u l e s  l i m i t  the accumulated creep- 

f a t i g u e  damage on t he  bas is  o f  independent ly determined   accumulated f a t i g u e  ' 

damage and accumulated .creep damage. The accumulated f a t i g u e .  damage i s  

' deterniined'.on th.e bas is  of the  l i n e a r  cumulat ive dahage"mode1. The 
! 
I .  

accumulated creep damage i s  .based on the  t in ie - f rac t ions  1 i n e a r  damage model. 
I , .  

, .  The i n t e r a c t i o n  o f  creep damage and f a t i g u e  damage ' i s  considered by 1  i m i  t i n g  
. . 

t he  conibined c reep- fa t igue  'damage through the  u s e  o f  t h e  b i l i n e a r  damage 

envel'ope o f  F igure  T-1420-2 , o f  Code Case 1592. 

o The Code Case provides conservat ism i n  the  s p e c i f i c a t i q n  of t he  

design f a t i g u e  . . curves by reduc ing the  average continuous: cyc l i ng  'fatigue 
data by a  f a c t o r  o f  2  on t o t a l  s t r a i n  ra'nge or a  f a c t o r  of .  20 on l i f e ;  

whichever prov ides the ni in i~i iu~l i  r e s u l t .  ~ d d i t i o n a l  conservat isni  i s  prov ided 

by s p e c i f y i n g  . . t h e  use o f  t he  minimum -- expected s t r ess - t o - rup tu re  curves 

(F igures 1-14.6 o f  ~ o d e  Case 1592) .  F i n a l l y ,  conservat ism i s  in t roduced 

by r e q u i r i n g  t h a t  the s t r ess  be d i v i d e d  by the  f ac to r  K' ('0.9 f o r  304' 

s t a i n l e s s  s t e e l  ) be fo re  e n t e r i n g  t h e  minimum st ress- to- rup. ture curves. 

The use' o f  the t ime - f r ac t i ons  model t o  ' es t imate  t he  creep damage 

requ i res  a  d e t a i l e d  t i ~ i i e  h i s t o r y  o f  t he  s t resses.  When . i ' ne las t i c  ana lys is  

i s  used t o  determine t h i s  t ime h i s t o r y ,  the  ca l cu l a ted  secondary and peak 

s t resses a re  q u i t e  dependent on the  assumed 'creep behav ior  o f  t he  ma te r i a l .  

For example,' the ,assumption o f  low, res is tance  t o  creep w i l l  r e s u l t  i n  the  

p r e d i c t i o n  o f  r a p i d l y ,  decreasing' secondary and peak stresses'. Convers.ely , 
t h e  assumption o f  a  h igh  res is tance  t o  creep resu l t s  i n '  t he  pr.edic.t ion o f  

nio're s l o w l y  decreasing secondary and peak stresses. Thus, when' secondary 

and peak' st,resses a re  s i g n i f i c a n t ,  the.. ca l cu l a ted  creep damage can be 

q u i t e  dependent on the  assunied'creep behav ior : .  I n  view o f  t h i s  s i g n i f i c a n t  

dependence o f  t he  c a l ~ u l a t e d ' c r e e ~  damage on the  assumed represen ta t ion  of 
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creep behav io r  and t h e  obv ious dependence on the  assullied s t r e s s  r u p t u r e  

1 behav ior ,  i t  i s  i n p o r t a n t  t o  adequi t te ly  r e p r e s e n t  b o t h  o f  the'se responses. 
i 

1 The Code r u l e s  s p e c i f y  t h a t  t h e  minimum expected s t r e s s  r u p t u r e  

behav ior  s h a l l  be t h e  b a s i s  f o r  c a l c u l a t i n g  creep damage. However, t h e  
I 

Code r u l e s  do n o t  p r o v i d e  any guidance as t o  t h e  c reep behav io r  t o  be 

assunled i n  t h e  d e t e r n ~ i n a t i o n  o f  t h e  d e t a i l e d  t i m e  h i s t o r y  o f  t h e  s t resses .  

Accepted c u r r e n t  p r a c t i c e  d i c t a t e s  t h e  assumpt ion o f  c reep behav io r  t h a t  

i s  r e p r e s e n t a t i v e  of  average behav io r .  

i An e v a l u a t i o n  o f  1  i m i  t e d  c reep a n d  r u p t u r e  d i t a  f o r  304 s t a i n 1  ess 

s  tee1 i n d i c a t e s  t h e  p o t e n t i a l  e x i s t e n c e  o f  a  s imp le  one- to-one re1  a t i o n s h i  p 
, between t h e  creep d e f o r ~ i i a t i o n  and s t r e s s  r u p t u r e  behav iors .  S p e c i f i c a l  ly, 

low res i .s  tance . tb creep de fo rma t ion  i s  u s u a l l y  acconipanied by l ow  r e s i s t a n c e  

t o  rupture;  and hi.gh r e s i  s tance t o  creep deforn la t ion  i s  usual  ly accompanied 

by h i g h  r e s i s t a n c e  t o  r u p t u r e .  Thus, t h e  c u r r e n t l y  accepted p r a c t i c e  

i r e s u l t s  i n  t h e  assumpt ion of  p o t e n t i a l  l y  i n c o n s i s  t e n t  r e p r e s e n t a t i o n s  o f  . . 

c reep and s t r e s s  r u p t u r e  behav io rs .  The use o f  t h i s  i n c o n s i s t e n t  representa-  

t i o n  i m p l i c i t l y  i n t r o d u c e s  an unde f ined  f a c t o r  o f  s a f e t y .  bejlond t h a t  

s p e c i f i e d  i n  ' t h e  Code r u l e s .  . . . 

Two approaches t o  e l i n l i n a t i n g  t h i s  use o f  i n c o n s i s t e n t  r e p r e s e n t a t i o n s  

o f  creep and r u p t u r e  behavi,ors a r e  considered.  T h e . f i r s t  approach i s  based 

on the assumption o f  t h e  .ex i s tence  o f  t h e  above desc r ibed  s imp le  one-to-one 

r e 1  a t i  onsh i  p  between t h e  creep de fo rma t ion  and s t r e s s  r u p t u r e  behav iors .  

To e v a l u a t e  t h i s  approach, l i f e  p r e d i c t i o n s  a r e  made f o r  s imp le  u n i a x i a l  

s t r a i n - c o n t r o l  l e d  f a t i g u e  t e s t s ,  w i t h  t e n s i l e  ho ld -pe r iods ,  u s i n g  the  . . 

combinat. ion o f  min'imuni creep deforn la t ion  behav io r  and n i i  nimunl s t r e s s  r u p t u r e  

behav io r .  A  comparison t o  pub1 i s h e d  exper in ien ta l  r e s u l t s  i n d i c a t e s  t h a t  

t h i s  approach p rov ides .  conse ' rva t i  ve 1  i f e  es t ima tes  . t h a t  are.  w i t h i n  a  f a c t o r  

. o f  about  5 o f  t h e  observed l i f e .  

The second approach assullles t h e  a v a i l a b i ' l i  t y  o f  b o t h  creep and 

r u p t u r e  data  f o r  t h e ' a c t u a l  hea t  o f  m a t e r i a l  t o . b e  used i n  c o n s t r u c t i o n .  

To e v a l u a t e  t h i s  approa'ch, l i f e  p r e d i c t i o n s  a r e  made f o r  t h e  same u n j a x i a l  

' s t r a i n - c o n t r o l  l e d  c y c l  i c t e s t s  as above. Hbwever., p r e v i o u s l y  observed 



. . 
i,. :.,&' 

creep and rup tu re  data f o r  these sal.ne heats a re  u t i l i z e d  i n  t h e . 1 i f e  

p red i c t i ons .  Th is  approach prov ides '  1 i f e  p r e d i c t i o n s  t h a t  a re  w i t h i n  a 

f a c t o r  o f  about 2 2 of  the  obsei-ved ? i ves. 

RELATIONSHIP BETWEEN THE CREEP AND RUPTURE BEHAVIORS 

Creep and s t r ess - rup tu re  da ta  f o r  severa l  heats o f  304 s t a i n l e s s  

s t e e l  a re  exami,ned t o  determine if a r e l a t i o n s h i p  e x i s t s  between t he  creep ' 

. . 

and rup tu re  behaviors.  Consi.deration 'of t h i s  r e l a t i o n s h i p  i s  n o t  new. 

For  example, Monkman and m rant") considered t h i s : " s a m ~ , r e l a t i o ~ s h i p .  

However, t h e i r  ' i n t e n t  was t o  est imate r up tu re  1 i f e  on t he  bas is  o f  minimum 

creep ra te .  data.    he bas is  of t he  present  eva lua t i on  i s  a conlparison 

, o f .  the creep streng,th ( s t r ess  r equ i r ed  t o  a t t a i n  a , spec i f i ed  minimum creep 

r a t e )  and the s t r ess  r up tu re  s t r eng th  ( s t r ess  r equ i r ed  f o r  r up tu re  i n  a 

s p e c i f i e d  t i m e )  a f t e r  n o r ~ n a l i  z a t i o n  w i t h  respect  t o  publ  i shed  averages. 

The average minimunl creep r a t e  i s  as def ined i n  t h e  Nuclear Systems   ate rials 
. . 

Handbook (NSMH) ( 3 ) .  The average s t ress - rup  t u r e  'curves were der i ved  from 

the  same data base(4). used t o  develop the  n~inimu~n expected s t r ess  r up tu re  

curves o f  code Case 1592. . . . . 

Previ.ously pub l i shed  creep and s t r ess  r up tu re  da ta  f o r  f o u r  heats 

of 304 s t a i n l e s s  ' s t e e l  a re  considered. Th is  data i s  f o r  heats 

55697(5),  346845(6), 9 ~ 2 7 9 6 ( ~ ) ,  . . and 804331 3(* ) .  P r e v i o u s l y  publ ished ho ld -  

t ime f a t i g u e  data i s  a l s o  a v a i l a b l e  f o r  each o f  these f o u r  heats. Creep 

and s t r ess  r up tu re  data from e i g h t  a d d i t i o n a l  heats .prev ious l 'y  t es ted  a t  

the Babcock & W i  1 cox Company a re  a l s o  considered. Ho ld - t i%  f a t i g u e  data 

i s  n o t  a v a i l a b l e  f o r  any of these .heats. 

. . . . 

I n  F igures 1 through 4 ,  s t r ess  r up tu re  and nl in in~umcreep ratO..data 
, 

a t  1100°F (593°C) . f o r  heats 55697. 347845, 9T2796, and 8043813 a re  compared 

. to  average data.  St ress r up tu re  ,and ~aininlutil creep r a t e  data a t  1 2 0 0 ' ~  

(649°C) f o r  hea t  55697 i s  con~pared t o  average .data i n  F igure  5 .  This  data 

and s i m i l a r  data a t  120O0F (6490~) f o r  the' e i g h t  h ,eat i  t es ted  by the  

Babcock & Wi lcox Conipany was.used t o  develop F igures 6 through 8; F igures 

6 through 8 present  a c'onlparison o f  creep s t r eng th  t o  t he . r up tu re '  s t r eng th  . . 

f o r  each heat  a f t e r  nonnal i z a t i o n  w i t h  respec t .  t o  t he  publ ished averages. 
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. . . L "kd - .  - .  I n  .F igure 6, the creep s t r eng th  i s  def ined as ' t h e  s t ress  requ i red  t o  o b t a i n  
2 a  lllinill~unl creep r a t e  of 1  percent  per 10 ,. .hours; and the  rup tu re  s t r eng th  

3 i s  de f ined  as the  s t r e s s  f o r  r up tu re  i n  10 hours. I n  Figures 7 and 8 

1 onger t ime s t reng ths  a re  compared. as. de f ined  i n  those f i gu res .  Note t h a t  
the '  d e f i n i t i o n s  o f  creep s t r eng th  and rup tu re  s t r eng th  used i n  each ' o f  

F igures 6. t o  8 r e s u l t  i n  a  .comparison o f  'c reep.and rup tu re  behaviors a t  

approximately equal s t resses f o r  the publ ished average behavi 'or..   hat i s ,  

the deformat ion 'and f a i l u r e  responses a re  being'-compared a t  coriiparabl e  

s t r e s s  1  eve1 s  . 

Also shown i n  each o f  F.igures 6 through 8 i s .  the combination o f  

average 'creep s t r eng th  and. minimuni r up tu re  s t r eng th  t h a t  . represents t he  

c u r r e n t l y  accepted creep- fa t igue eva lua t i on  procedure. . ' 

The s o l i d  l i n e ,  shown ' i n  each o f  F igures 6  through 8, represents  

a  s i m p l e  one- to-one r e l a t i o n s  h i p  between the creep, and rup tu re  s t rengths.  

The data ' o f  those f i g u r e s  i nd i ca tes  t h a t  t h i s  s t r a i gh t f o rwa rd  r e l a t i o n s h i p  

i s  a  reasonable approxiniat ion f o r  304 s t a i n l e s s -  s t e e l .  Wi th  respec t  t o  

the ca l cu l a ted  creep damage, most of t he  data. f a l l s  t o  the. conservat ive 

s ide  o f  the one-to-on? l i n e .  T,h,us, f o r  t he  present  purpose, i t . a p p e a r s  

reasonable t o  assume t h a t  an "ave.ragen heat may be represented by us ing 

100 percent  o f  the average creep s t r eng th  and 100 percent.  o'f the.average 
. . 

r up tu re  s  t r eny th .  S i m i l a r l y ,  a  m i  nimuli~ s t r eng th  heat  can be' represented 

by 100 percent  o f  the minilnuill creep s t r eng th  and 100 percent 'o f  t h e  minimum 

rup tu re  s t reng th .  

The NSMH doesn ' t  prov ide a  represen ta t ion  . o f  . niini.mum creep behavi,or; .' 

thus, i t  i s  necessary t o  de f i ne  the minimurn creep s t r eng th  as a  percentage . ,  

o f  the  average creep s t reng th .  A comparison o f  the minimum and average 

rup tu re  s t rengths i nd i ca tes  t h a t  the  niininlu~n rup tu re  s t r eng th  i s  approxi-  

iuately 75. percent  o f  the average rup tu re  s t r eng th  ( t t i i s  percentage does 

' va r y  as a  f unc t i on  o f  r up tu re  t in le) .  The ni in i l l~ l i i~ i  creep s t r eng th  i s  then 

considered t o  be represented as 75 percent  o f .  the  average creep s t reng th .  



Fat igue l i f e  r educ t i on  fac to rs  a re  commonly used' t o  i l l u s t r a t e .  
' 

the e f f e c t  o f  ho ld - t ime on f a t i g u e  l i f e .  The f a t i g u e l i f e  i e d u c t i o n  (FLR) 
' 

- f a c t o r  i s  de f i ned ' as  t he  r a t i o  o f  t he  l i f e  (measured . . . i n  cyc les )  f o r  
cont inuous c y c l i n g  cond i t i ons  t o  the  1 i f e  (measured " i n  cyc l es )  f o r  ho ld-  

t ime cond i t i ons  a t  the sanie s t r a i n  range. 

. . A n a l y t i c a l l y  p red i c t ed  FLR f a c t o r s  a re  compared t o  publ ished 

exper in iental  r e s u l t s  f o r  . un i ax i a l  s t r a i n - c o n t r o l l e d  c y c l i c  t e s t s  w i t h  

t e n s i l e  'hold-per iods.  The exper imental  r e s u l t s  considered' a re  f o r  heat  . 
5,5697 ' tes ted  a t  l;20O0F (649°C) \ v i  t h  a s t r a i n ,  range o f  1 / 2  .percent; and 

heats 346845, 9T2796, and 804381 3, a1 1 tes ted  a t  1 100°F (593°C) w i t h  a 

s t r a i n  range o f  1. percent.  A1 1 exper imental  ' r e s u l t s  were obta ined froni 

a tabu la ted  sunimary i n  re ference 9. 

. . 
9 Basis o f  FLR '.Factor p red i c t i ons  

~ n a l ~ t i c a l  p r e d i c t i o n s  a re  based on the  f o l l o w i n g  coinbinations o f  , 

c r eep  defontiation and s t r ess  r u p t u r e  behaviors:  

o Creep deforniat ion and s t ress  r up tu re  behaviors observed 
. . fo,r t h e  ac tua l  heats subseq"ently tes ted  in ho ld - t ime 

f a t i gue .  

o . b l i  nimum expected creep deforniation and s t r ess  r up tu re  

behaviors.  

o Cu r ren t l y  acc,epted p rac t i ce ;  ' i ,e. , average creep 

defon i ia t ion behav ior  and the  niiniiiluin expected s t r ess  

r up tu re  behavior. ' 

. . 

Tt~e representa. t ion o f  average creep behavior was obta ined from the . . 

.IJSMH. Tlie forni o f  t h i s  represen ta t ion  i s  
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I n  the  above  equat ion ,  E~ i s  de f ined as a func t ion ,  o f .  i M ; w h i l e  r, s ,  E 
x ' 

and iM are ' d e f i n e d  as f u n c t i o n s  of  s t r e s s  and temperature.  F o r  convenience. 
i t  i s  ass,umed..tllat t h e  form o f  r e p r e s e n t i n g  b o t h  t h e  observed and mininlum 

creep behav io rs  i s '  the' same as above.. 

To simp1 i f y  t l i e  r e p r e s e n t a t i o n  of  t h e  minimum creep behav io r  ( i  .e. , 
creep s t r e n g t h  o f  75 p e r c e n t  o f  average),  t h e  NSNH average mininiun~ creep 

r a t e  iss f i r s t  approxi inated. Fo r  example, . a t  1200°F (64g°C) 

The minimum creep r a t e  cor respond ing t o  75 pe rcen t  o f  t h e  average creep 

s t r e n g t h  . a t  1200°F (649°C) i s  t hen  

. ' 

T h i s  r e p r e s e n t a t i o n  .of €11 ' i s  then s u b s t i t u t e d  i n t o  t h e  ~ M H  creep equa t ion  
nii n  

w i t h o u t  f u r t h e r  a1 t e r a t i o n s .  Thus, t h e  f i r s t  p r i m a r y  creep te rm i s  

u n a f f e c t e d ,  and t h e :  second p r imary  c reep tenn  i s  a f f e c t e d  o n l y  i n  t h a t  eM 

i s  n lod i f i ed .  

The observed niininlum ,creep r a t e  f o r  each h e a t  t e s t e d  i n  ho ld - t ime  

f a t i g u e  i s  represented as 

. . 

As i n  t h e  case o f  t h e  r e p r e s e n t a t i o n  o f  t h e  n~inimuln behav ior ,  t h e  NSMH . 

c r e e p  equa t ion .  i s  mod i f i ed  by s imply .  r e p l a c i n g  iM as above. 

  he s p e c i f i c a t i o n  o f  t h e  s t r e s s  range p resen ts  'some d i f f i c u l t y .  

Data o f  re fe rence  9 i n d i c a t e s  th.at t h e  s t r e s s  range i s  dependent' on t h e  

d u r a t i o n  o f  t he  ho ld- t i lne .  Sotne. o f  t h i s  data  i s  shown i n '  ~ i j u r e '  9 t o  

i 1lus t ra t ;e  t h i s  v a r i a t f o n .  An a d d i t i o n a l  v a r i a t i 0 . n  f r o l ~ i  hea t - to -hea t  i s  

a l s o  apparer i t  i n  F i g u r e  9.. These v a r i a t i o n s  w i t h  b o t h  h o l d - t i m e ' a n d  h e a t  

a r e  n o t  adequate ly  understood t o  p e r m i t  t h e i r  cons i 'dera t ion .  . I t  i s  

assumed t h a t  t h e  c y c l i c  harden ing c h a r a c t e r i s t i c s  p r o v i d e d  i n  t h e  NSMH 
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. . permi ts  an adequate represen ta t ion  of the  s t r ess  range f o r  a l l  heats. 

. . 

and f o r  a l l  hold-ti111e dura t ions .  , I n  some cases, where a v a i l a b l e  data 

i n d i c a t e s  a  s i g n i f i c a n t  d i f f e r e n c e  from t h e .  NSMH data, ac tua l  s t r ess  range 

data i s  a l s o  considered. A f i n a l  s i m p l i f i c a t i o n  i s  t h a t  the s t r ess  

range w i  11 be, assi~~riei l  constant  f rom cyc l e  t o  cyc le .  

The minimum r u p t u r e  data and the i n t e r a c t i o n  of creep damage and 

f a t i g u e  damage a r e  assumed as s p e c i f i e d  i n  Code, Case '1592. The f a t i g u e  

1 i ves f o r  'continuous c y c l  i.ng cond i t i ons  a re  assumed as repor ted  i n  

re fe rence  9. - A t  1200°F (649°C) w i t h  a  s t r a i n  'rang'e o f  1/2 percent,  t he  

continuous cyc l  i n g  f a t i g u e  1 i f e  was repor ted .  as 13,624 cycles.. A t  llOO°F 

(593°C) w i t h - a  s t r a i n  range o f  1  percent ,  t h e ' l i f e  was repor ted  as  3,225 

cyc 1  es .. 

Co~nparison o f  P red ic ted  and Observed L ives  

Heat 55697. Th is  heat was. tes'ted a t  1200°F ,(64g°C)' wi ' th a  s t r a i . n  . 
-- , 

range o f  112 percent .  P red ic ted  FLR f a c t o r s  are,c.onipared t o  t he  exper i -  

n i en ta l l y  detenil ined FLR f a c t o r s  i n  F igure  10. The FLR fac to rs  p red i c t ed  

on the b a s i s o f  the p rev i ous l y  observed creep and r u p t u r e  behaviors(5) (see 

F igure 5 )  prov ides excel  1  e n t  agreement w i t h  the observed FLR' f ac to r s .  Note 

t h a t  maximum st resses ( h a l f  o f  the  s t r ess  range near h a l f - l i f e )  o f  

20,500 p s i  (141 IdIPa) and 23,000 p s i  (159 BPa) were considered. The lower  

value represents the  NSHH c y c l i c  hardening data. , The h igher  value 

represents observed data'(9) a t  sho r t  ho ld- t imes (1 m inu te ) .  The FLR 

f a c t o r s  p red i c t ed  on the bas is  o f  cons i s t en t  ,proper t ies  o f  a n~inimum 

s t r eng th  heat  ( i  . e., m i  n,inium creep and ~ n i  ninluni r up tu re )  a re  seen. t o  p rov ide  

consi~derablk 'conservatis~i~ throughout the  range o f  hold-t imes f o r w h ' i c h  

data i s  ava i l ab l e .  The FLR fac to r s  p red i c t ed  on the  b a s i s . o f  c u r r e n t  

p r a c t i c e  (i .e., average creep and mininiuni r up tu re )  p r o v i d e  considerably 

more conservatisnl, e s p e c i a l l y  a t  the  l onge r .  hold-t imes. 

I n  ~ i ~ u r e  11, the Code-speci f ied f a c t o r  o f  1-/0.9 on s t r ess  has 

been considered i n  the  p red i c t ed  FLR fac to r s .  Th is  f a c t o r  on s t r ess  

r e s u l t s  i n  inc reas ing  the. p red i c t ed  FLR f a c t o r s  by a f a c t o r  o f  approxiniately 
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Ttie p r e d i c t e d  ,FLR f a c t o r s  shown i n  F i g u r e  12 cons ide r  . the f u l l  , 

. 

I conse rva t i sm s p e c i f i e d  i n  code Case 1592. S p e c i f i c a l l y ,  t he  f a t i g u e  

damage i s  determined u s i n g  the  d e s i g n . f a t i g u o  curves o f  t h e  Code Case 

i n  a d d i t i o n  t o '  the. use of the  f a c t o r  p f '  1/0.9 on'stress. 

Tab le  1  c o n i P a r e s t h e  observed and p r e d i c t e d  FLR f a c t o r s  f o r  many 

o f  t h e  data p o i n t s  r e p o r t e d  i n  F igu res  10 t o  12.   he p r e d i c t e d  FLR 

I f a c t o r s  were determined u s i n g  t h e  observed s t r e s s  range, as w e l l  as t h e  

p r e v i o u s l y  observed creep and r u p t u r e  behav io rs .  I t  shou ld  aga in  be 

n o t e d  t h a t  t h e  observed s t r e s s  range was assunled ;onstant throughout"each 

1 t e s t  and i s  r e p r e s e n t a t i v e  o f  t h a t  observed near  ' the ,  ha1 f-l i f e  of  each 

t e s t .  

I t  i s  o f  i n t e r e s t  t o  n o t e  t h a t  t h e  d a t a  fio111 t h i s  heat  (55697) 

( l o )  i n  t h e  development o f  t he  Code damage , , was t h a t  used by 
. . 

i n t e r a c t i o n  envelope ( F i g u r e  T-1420-2 o f  Code Case 1592). T h i s  p a r t i a l l y  
. -,. - 

I e x p l a i n s  t h e  success of  t h e  p r e s e n t  p r e d i c t i o n s  , s i n c e  Campbell 's damage 
I 

i n  t e r a c t i  01-i e n v e l o p e  was used i n  the ,  de termi  n a t i o n  of these FLR fac to rs .  

Heat 346845. T h i s  hea t  was tes ted '  a t  llOO°F ' ( 5 9 3 ' ~ )  w i t h  a. 

s t r a i n .  range .o f  1 pe rcen t .  The FLR f a c t o r s  shown i n  F i g u r e  13 a r e  b e s t  

es t ima tes ;  i .e .  , no c o n s e r v a t i s n  i s  e x p l i c i t l y  in t roduced;  Ttie p r e d i c -  

t i o n s  based on p r e v i o u s l y  observed creep and r u p t u r e  behav io rs (6 )  (see  

F i g u r e  2 )  and t h e  NSMH harden ing c h a r a c t e r i s t i c s  show e x c e l l e n t  agreement 

w i t h  t h e  exper imenta l  da ta .  FLR f a c t o r s  a r e  a l s o  p r e d i c t e d  u s i n g  maximum 

s t resses  o f  36,750 p s i  (253 M P ~ )  and 28,400 p s i  (136 MPa). The h i g h e r  

s t r e s s  i s  r e p r e s e n t a t i v e  of  t h a t  observed d u r i n g  t h e  t e s t  w i t h  a  ho ld- t ime 

o f  1  minute .  The lower  s t r e s s  i s  r e p r e s e n t a t i v e  o f  t h a t  obseried d u r i n g  

t h e  t e s t  w i t h  a  1  hour 'ho ld- t ime.  The FLR f a c t o r s  p r e d i c t e d  on t h e  b a s i s  

o f  cons i s ' t en t  p r o p e r t i e s  f o r  a  n~ininlum s t r e n g t h  hea t  (i .e., 'minimum creep 

and n i i n i n ~ u ~ ~ i  r u p t u r e  behav io rs )  aga in  p r o v i d e s '  c o n s e r v a t i s ~ ~ i  , throughout t h e  

range of condi  t i  bns tes ted .  Sini i  l a r l y ,  t h e  PI-edict ions 'based on c u r r e n t  

p r a c t i c e  ( , average creep and n~ini~iiu. r u p t u r e )  ~ r o v i d e s  c o n s i d e r a b l e  

c o n s e r v a t i  sin th roughout .  
. . 

I n  F i g u r e  14 the  f a c t o r  o f  1/0.9 on s t ress '  i s  i n t r o d u c e d  i n  t h e  

p r e d i c t i o n  o f  a l l  FLR f a c t o r s .  I n  F i g u r e  15. b o t h  o f  t h e  Code-intended 

f a c t o r s  f o r  conservat ism a r e  i n t r o d u c e d  i n  t h e '  p r e d i c t e d  FLR facto.rs.  
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Table 2 compares the  observed and p red i c t ed  FLR fac to rs  f o r  most 

o f  the data p o i n t s  repor ted  i n  F igures 13 t h rough  15. ' These p r e d i c t i o n s  

are based on the s t r ess  range. observed near m i d - l i f e  f o r  each i n d i v i d u a l  

t e s t .  

Heat 9~2796 .  - This h e a t  was a1 so t es ted  a t  11 '000~ ( 5 9 3 0 ~ ) w i  t h  a 
s t r a i n  range o f  i percent.  The FLR f a c t o r s  o f  F igure  16, p red i c t ed  on the 

b a s i s  of p rev i ous l y  observed(7) (see ~i & r e  3) creep a i d  r up tu re  ,behaviors., 

a re  i n  general  non-conservat ive by a  f ac to r  o f  about 1  ;5. The i n t r o d u c t i o n  

o f  t he  f ac to r  o f  110.9 on s t r e s s  resu l t s  i n  .a. reasonable upper bound t o  

the data, as shown i n  .Figure 17. The represen ta t ion  of ' a  heat  o f  miniinum 

s t r e n g t h  prov ides marginal  conservat ism f o r  a1 1. except the  t e s t  w i t h  a  

3-hour ho ld- t ime,  as shown i n  F igure  16. As seen i.n' F igure  17, ' t he  use . . 

o f  t he  f a c t o r  o f  .1/0.9 on s t ress  w i t h  the  lllinimum heat  represen ta t ion  

prov ides conservat ism throughout t he  t e s t  range. When the  f u l l  Code- 

in tended conservat i  sn~ i s  in t roduced,  as shown i n  F igure .  18, the  .conservatism 

i s  q u i t e  considerable.  As demonstrated i n  Ta.ble 3, t he  use, o f  . the observed . . 

s t r ess  range resu l  t s  i n  . v e k g o o d  c o r r e l a t i o n  w i  tli t he  except.ion o f  the  

data w i t h  .hold-t imes , o f  1 a'nd 3  hours. 

Heat 804381 3. Th is  heat  .was a l s o  tes ted  a t  11 00°F ( 5 9 3 0 ~ )  b w i  t h  a  

s t r a i n  range o f  1  .percent .  As seen i n  F igure  19, the hold-' t ime f a t i g u e  

response o f  t h i s  heat  i s  a t y p i c a l  i n  t h a t  the observed FLR fac to r  does n o t  

e x h i b i t  the expected increase w i t h  inc reas ing  hold-t ime. When the  FLR 

f a c t o r s  a re  p red i c t ed  us ing the  observed s t ress  range, conservat ive,  

r e s u l t s  are obta ined throughout t h e  t e s t  range, as shown in ' ,Table  4.  The 

use o f  the NSI4H hardening c h a r a c t e r i s t i c s  and the  p rev i ous l y  observed 

creep and r u p t u r e  bet)aviors(') r e s u l  t s  i n  the general ly non-conservati ve 

p r e d i c t i o n s  o f  F igure  19. I n t r o d u c t i o n  o f  the  f a c t o r  o f  1:/'0.9.on ' s t ress  

s t i l l  resu l ts '  ' i n  a  non-conservative p red i c t i on ;  as seen i n  F igure  20. 

  he mini inu~!~ heat represen ta t ion  and t he  cur i -ent ly  accep'te.d p r a c t i c e .  bo th  

p rov ide  conservat ive r e s u l t s  w i t hou t  the i n t r o d u c t i o n  of e i t h e r  o f  the  

Code-intended f a c t o r s  o f  'safety,  as i l l u s t r a t e d  i n  F igure  19. I n  F igure 21 

the f u l l  code-.i ntended conservat ism has been considered. 
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Code S a f e t y  Fac to rs  . . 

F i g u r e  22 i l l u s t r a t e s  t h e  r e l a t i v e  e f f e c t s  o f  t h e  Code-spec i f iqd  
. . 

f a c t o r s  o f  sa fe ty  a t  lIO0,OF (593OC) a$ a s t r a i n  range o f  1  percent .  I n  
t h a t  f i g u r e  t h e  p r e d i c t e d  FLR . f a c t o r s  a r e  base4' on .cons. is tent  p r o p e r t i e s  

. . f o r  a  minimum s t r e n g t h  hea t .  

R e l a x a t i o n  

Curve fi t s  o f  t h e  r e l a x a t i o n  behav io r  observed d u r i n g  -the ho ld - t ime  

f a t i g u e  t e s t i n g  o f  ' .heats 55697 O) and 346845(11 have been pub1 i shed .  

These cu rve  f i t s  r e p r e s e n t  t h e . b e h a v i o r  observed n e a r  h a l f - l i f e .  F igu res  

23 and 2 4  i 1 l u s t r a t e  t h i s  observed r e l a x a t i o n  behav io r  as d e r i v e d  f rom 

t h e  r e p o r t e d  cu rve  f i t s .  l n c l u d e d  i n  those f i g u r e s  a r e  f i r s t  c y c l e  and 

near h a l f - l i f e  p r e d i c t i o n s  based on t h e  NSMH creep equa t ion  and a l s o  t h e  

m o d i f i c a t i o n  o f  t h a t  e q u a t i o n  t o  rep resen t  the' a c t u a l  observed mininlum 

creep r a t e  ( i  ,e. , t h e  e q u a t i o n  as mod i f i ed  t o  p r e d i c t  t h e  p r e v i o u s l y  

d iscussed FLR f a c t o r s ) .  The i n i t i a l  ( t i m e  = 0 )  s t r e s s  o f  each o f  the' 

curves j n ' b o t h  F igu res  23 and ,24 rep resen ts  t h e  a c t u a l  observed maximum 
. . 

s t r e s s  ( i . . ,  h a l f  o f  t h e  s t r e s s  range near  h a l f - l i f e ) .  ' '  

The poor  conlparison between observed and p r e d i c t e d  s t r e s s  h i s t o r i e s  
. . 

i n d i c a t e s  t h a t  t he  c l a s s i c a l .  c reep s t r a i n  harden ing model g r o s s l y  ove r -  

e i t i m a t e i  t h e  h a r d e n i n g , a n d / o r t h e  NSIlH t r e e p  equa t ion  ( b o t h  o r i g i n a l  and 

m o d i f i e d  forms) i s  unab le  t o  p r e d i c t  r e l a x a t i o n  behav io r .  ' Note t h a t  i n  

t h e  case o f  hea t  346845 'the l i n i i  t s  of a p p l i c a b i l i t y  of t h e  NSMH equa t ion  

have been exceeded by  a  considerab. le margin.  ' However, 'as *a r e s u l t  of 

creep hardening,  t h e  e f f e c t  o f  p r imary  .creep shou ld  be n e a r l y  exhausted 

a t  ha l f - '1  i f e ,  such t h a t  t h e  secondary creep r a t e  shou ld  .be completely 

govern ing.    his b e i n g  t h e  case, t h e  m o d i f i e d  .NSMH e q u a t i o n  shou ld  be Q u i t e  

:adequate, even a t  t h e  h i g h  s t resses  exper ienced i n  h e a t  346845. 
' 

. . 

L i f e  p r e d i c t i o n s  tiave been tilade f o r  heats  55697 and 346845 based 

on t h e  a c t u a l  observed s t r e s s  . h i s t o r y  and t h e  ac tua l .  t ime- to - rup tu re  data.  

These p r e d i c t i o n s  a r e  co r~ ipa red ' to  t h e  a c t u a l  da ta  i n  Tab le  5 .  A t  s h o r t  

hol 'd- t imes,  these p r e d i c t i o n s  a r e  q u i t e  good; b u t  a t  l o n g e r  ho ld- t imes,  
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the p r e d i c t i o n s  beconie q u i t e  non-cc!iserva t i  ve. A graphica l  comparison of 

t he  predic, ted and observed . l ' i ves i s  shown i n  F i gu re  25. The broken l i n e s  

represent  f a c t o r s  o f  - + 2 .  The . indication t h a t  the  .p red ic ted  '1 i f e  i s '  
r e l a t i v e l y  indepenbent o f  the d u r i t i o n  o f  t he  ho ld- t ime r e f l e c t s  the  

observed' r a p i d  s t r ess  r e l axa t i on .  
. . 

DISCUSSION 

I t  i s  thought t h a t  any procedure t o  p r e d i c t  c reep- fa t igue  1. i fe  

should focus on j u s t  t h a t  goal.,  1.n add i t i on ,  i,t i s  thought t h a t  any and 

a1 1 necessary . fac to rs  o f  s a f e t y  should be expl  i c i  t,ly prov ided w i t h i n  

Code. design ru l es .  

The c o r r e l a t i o n s  . . presented i n  t h i s  paper adequately demonstrate 
t h a t  the  c u r r e n t l y  accepted p r a c t i c e  o f  p r e d i c t i n g  c reep- fa t igue  1 i f e  . 

inipl i c i  t l y  resu.1 t s  i n  an add i t i ona l '  margin o f  .safe ty  n o t  s p e c i f i e d  i n  

t h e  Code design ru l es .  F igure 26 a d i r e c t  comparison o f  p red i c t ed  

and observed h o l  d - t i r e  f a t i gue  1 i v e s  f o r  the  f ou r '  heats o f  304 s t a i n l e s s  

s t e e l  under d iscuss ion.  I n  t h i s ,  comparison ,. t he  c u r r e n t l y .  accepted 
. . 

p r a c t i c e  ( i . .  average creep behavior and t i ini~num ' rup tu re  behav' ior) has 

been a p p l i e d w i t h  no e x p l i c i t  margins o f  safe ty  introduced. Note t h a t  

t h i s  p r a c t i c e  i m p l i c i t l y  in t roduces a f a c t o r  o f ' s a f e t y  that , , ranges'  from 

2 t o  10. . . 

As observed i n  Figures 1 through 5, the  four  subjec:t heats o f  3'04 

s t a i n l e s s  s t e e l  represeit r a t h e r  d ive rse  s t r e n i t h s  dur ing  standard 

constant - load creep-rupture t e s t s .  ~ i h i  l a r l y ,  r a t h e r  cons iderab le  

d i f f e rences  i n  res is tance  t o  ho ld- t ime f a t i g u e  f a i l u r e  a re  seen i n  

F igures 10, 13, 16, and' 19. . I n  Figures 27 and 28, d i r e c t  coniparisons' a re  

made of p red i c t ed  and observed ho ld- t in ie  . . f a t igue  l i v e s .  In  both f i 'gures 

the  p r e d i c t i o n s  'are based on tt ie obser.v.ed .creep and rup tu re  behaviors 

w i t h o u t  the assutt~pti 'on o'f any e x p l i c i t  f.actors o f  safe ty .  I n  F igure  27 
. . 

the observed s t ress  range was used . i n  the p red i c t i ons .  F igure 28 

r e f l e c t s  the use o f ' t h e  NSMH hardening c h a r a c t e r i s t i t i .  I n  e i t h e r  case, 

t i l e  p red i c t i o t i s  a re  v j i t h i n  a  f a c t o r  o f  roughly  2 2 of  the observed data. 

Consider ing the d ive rse  strengths,  of t he  four heats, t h i s  i s  thought t o  
. . 



r e p r e s e n t  exce l  l e n t  c o r r e l a t i o n .  O f  even rnore i n t e r e s t '  i s  t h e .  apparent  

capabi 1 i ty .to pnedi c t  t h e  d i ve rse ,  dependence o f  t h e  FLR f a c t o r  on ho ld -  

t ime d .ura t ion ,  as de~iion'strated i n '  F igu res  .lo,. 13, and 16. The f l a t  
response o f  h e a t  8043813 seen i n  F i g u r e  19 was n o t  p r e d i c t e d .  I t  would 
be o f  cons ide rab le  i n t e r e s t  t o  see data  f o r  l o n g e r  h o l d - t i m e s  f o r  t h i s  

h e a t  t o  d e t e r l ~ l i n e  a t  what p o i n t  t h e  FLR ' f a c t o r  would b e g i n  t h e  c h a r a c t e r i s t i c  

i nc rease .  

T h i s  demonstrated capabi  1  i ty  t o  p r e d i c t  c reep - fa t i gue  1 i f e  on t h e  
. . 

b a s i s  o f  observed creep and r u p t u r e  behav~ io rs  appears t o  s a t i s f y .  t h e  goal  
. . 

o f  a  p r e d i c t i v e  method much more adequate ly  than d.oes t h e  c u r r e n t l y  

accepted p r a c t i c e .  I n  p a r t i c u l a r ,  t h i s . a p p r o a c h  assures t h e  use o f  

cons i s t e n  t r e p r e s e n t a t i o n s  o f  creep and r u p t u r e  behav iors .  T h i s  approach 
. . 

t h e n  a f f o r d s  t h e  o p p o r t u n i t y  t o  s p e c i f y  'we1 1  defined, meaningful  f a c t o r s  , 

o f  s a f e t y  t h a t  a r e  c o n s i s t e n t  from heat' t o  heat .  

  he r e q u i r e d  l o n g  t ime  and h i g h  c o s t  o f  deve lop ing .creep and r u p t u r e  

data  f o r  t h e  a c t u a l  h e a t s  o f  n i a t e r i a l  t o  be used i n  c o n s t r u c t i o r )  would 
. . 

u s u a l l y  p r o h i  b i ' t  t he  use o f  t h i s  approach. t o  c r e e p - f a t i g u e ,  eva l  u a t i o n .  

However, t h i s  approach c o u l d  become v i a b l e  if the  c u r r e n t  e f f o r t s  . to 

deve lop procedures t o  c h a r a c t e r i z e  the  1  ong- t i m e  e1,evated temperature  

p r o p e r t i e s  o f  i n d i v i d u a l  heats  o f  m a t e r i a l  by s h o r t - t i m e  t e s t  r e s u l t s  a r e  

s u c c e s s f u l .  The, p o t e n t i ' a l  usefulness o f  t h i s  approach t o  c reep- fa t i gue  

e v a l  u a t i  on i s  thus cons' idered t o  p r o v i d e  s i g n i - f i c a n t  j u s t i f i c a t i o n  f o r  

t h e  con t inued  developriient o f  these so-ca1 l e d  c h a r a c t e r i z a t i o n  t e s t s  

A reasonable a l t e r n a t i v e  t o  t h e  requirement o f  & i n g  t h e  a c t u a l  

c reep and r u p t u r e  data  appears t o  be t h e  use o f  c o n s i s t e n t '  r e p r e s e n t a t i o n s  

o f  c reep and r u p t u r e  behav iors  f o r  a rninilnum s. t rength heat .  The data  

shown i n  F igu res  6 th rough 8 a t  l e a s t  appears t o  suppor t  t h e  e x i s t e n c e  o f  

a  c o n s i s t e n t  c o r r e l a t i o n  between' creep arid r u p t u r e  s t r e n g t h s .  The 

e x i s t e n c e  o f  t he  c ' o r r e l a t i o n  o b v i a t e s  t h e  n e c e s s i t y  t o  ioad-up t h e  f a c t o r  

o f  s a f e t y  w i  t h i n  the  p r e d i c t i v e  procedure by u s i n g  i n c o n s i s t e n t  creep 

and r u p t u r e  p r o p e r t i e s .  The' p r e v i o u s l y  d iscussed p r e d i c t i o n s  based on 

c o n s i s t e n t  p r o p e r t i e s  f o r  a niinimuln s t r e n g t h  h e a t  a r e  i 11 u s t r a t e d  i n  

F i g u r e  29 as a  d i r e c t  coniparison of  p r e d i c t e q  and observed h o l d - t i m e  



, . .b.' ' 'W '  . . ,  

f a t i g u e  1  i ves .  . Wi th  the  except ion o f  t he  datum p o i n t  represent ing ' t he  

I 3-hour ho l  d-t ime t e s t  f o r  heat  9T2796, t h i s  approach prov ides conservat ive 

p red i c t i ons  t h a t  a re  w i t h i n  a  f ac to r  o f  about 5 of t h e  observed. data. 

. . 

This l a t t e r  approach t o  'c reep- fa t igue eva lua t i on  i s  perhaps more 

a t t r a c t i v e  than t h a t ,  based on the  u s e  of a c t u a l  p r o p e r t i e s  s i n p l y  i n  t h a t  

I t he re  i s  no need t o  a t tempt  t o  charac te r i ze  i n d i v i d u a l  heats., 'It i s  

I thought t h a t  t h e ,  p o t e n t i a l  of t h i s  approach i s  s u f f i c i e n t  t o  j u s t i f y  a  

niore in-depth eva l  ua t i on o f  the re1  a t i onsh ip  between creep behav ior  and  . .. 

r u p t u r e  behav ior  f o r  a11 ma te r i a l s  approved f o r .  use i n  Code case 1592. 

CONCLUSION 

No at tempt  has been made t o  make the judgement as t o  what s p e c i f i c  

f a c t o r s  o f  s a f e t y  should be enibodied i n  Code design r u l e s  f o r  the  creep- 

f a t i g u e  eval  ua t i on '  o f  Class 1  nuc lear  components. Instead, the  i n t e n t  

has s  i nlply been t o  demonstrate t h a t  the  c u r r e n t l y  accepted p r a c t i c e  f o r  

p r e d i c t i n g  c reep- fa t igue  l i f e  i n  304 s t a i n l e s s  s t e e l  components in t rqduces 

a  f a c t o r  o f  sa fe ty  beyond t h a t  s p e c i  f i e d  i n  c u r r e n t  ~ o d e ' d e s i g n  rules.. 

It has been shown t h a t  t h i s  a d d i t i o n a l  f ac to r  o f  sa fe ty  i s  t h e  d i r e c t  , . . . 

i e s u l  t of the use o f  i n cons i s t en t  representat ions o f  creep. and rup tu re  

behaviors.  

I n  a d d i t i o n , .  i t  has been demonstrated t h a t  the  use o f  e i t h e r  ac tua l  

creep and rup tu re  da ta ,  f o r  the  p a r t i c u l a r  heats o f  ma te r i a l  . t o  be used i n  

cons t ruc t i on  o r  a  cons i s t en t  represen ta t ion  f o r  a  nii nimuni s t r eng th  heat  
. . .  

p rov ides an adequate bas is  f o r  p r e d i c t i n g  t he  c reep- fa t igue  l i ' f e  .of;304 

s t a i n l e s s  s  tee1 components. 

, 
I .  i t  i s  thus concluded t h a t  t he  use .of cons i s t en t  p rbpe r t i es  ( e i t h e r  

I 
, ac tua l  p rope r t i es  o r  those o f  a  mininiu~n heat )  provi.des a  'base t o  which 

I 

I .  Code-speci f i  ed f a c t o r s  o f  safe ty  nay illore reasonably be appl i 'ed. 

I 

I t  i s  fu r the , r  c h c l u d e d  t h a t  the v i a b i l i t y  o f  us ing  ac tua l  

p rope r t i es  o r  those  o f  a minin~uni heat  prov ides s i g n i f i c a n t  j u s t i f i c a t i o n  

f o r  the cont inued development o f  procedures f o r  cha rac te r i za t i on  t e s t i n g  



. . . . . ~ 

'LJ b 
and f o r  ,an in -dep th  e v a l u a t i o n  o f  the r e l a t i o n s h i p  betweeti the  creep a'nd 

r u p t u r e  behav iors  f o r  a l l  mater ' ia ls  approved f o r  use i n  'Code 'case 1592. 
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TABLE 1. COMPARISON OF PREDICTED AND OBS'ERVED FATIGUE 
. .  . 

LIFE REDUCTION FACTORS ANB CYCLIC LIVES FOR HEAT 55697TESTED AT 1 2 0 0 0 ~  (64g°C) 

1 

P r e d i c t i o n s .  Based on Observed Creep and Rupture  Data 

. , 

Observed'. P r e d i c t e d  - 
Hold S t r a i n  S t r e s s  ) Fa t i gue  L i f e  c y c l e s  Fa t igue  L i f e  Cycles 
Time Ran e  . .  . A l i i p l i t u d e  Reduct ion : t o .  . Reduc t ion . .  t 0 
(min)  ( % y  p s i  (FiiPa) F a c t o r  Fa i  1 u r e  - F a c t o r  

. . 
F a i l u r e  

. . . . .  

. .  . 

I . .  

( I  'Data from re ference 10. 



TABLE 2. COMPARISON OF PREDICTED AND OBSERVED FATIGUE 

LIFE REDUCTION FACTORS AND CYCLIC LIVES FORHEAT 346845 TESTED AT llOO°F (593OC) 

  re dictions Based on observed Creep and Rupture Data 

Hold 
Time 
(min)  

u .  

S t r a i n  St ress ( 1  
Range A~lipl i tude 

(%)  ' p s i  (MPa) 

- 

( " ~ a t a  from reference 11. 

Observed - . . 

Fat igue L i f e  Cycles 
Reduction t o 

Factor  --- F a i l u r e  

- Pred ic ted  

F a t i g u e L i f e  Cycles 
Reduction t 0 

Factor  F a i l u r e  



. 
. .  . T A B L E  3.  ' ~ R I S O N  OF PR~~~ICTED AND OBSER'M F A T ~ U E  ,. 

LIFE REDUCTION FACTORS A N D  CYCLIC L I V E S  FOR HEAT  9T2796 TESTED AT 11 0 0 0 ~  ( 5 9 3 0 ~ )  ' 

P r e d i c t i o n s  Based on Observed Creep and ~ u p t u r e  Data 

Hol d  
T i  me 
( m i  n )  

S t r a i n  , 

Range 

( 1  S t .ress 
Amp1 i tu'de 
p s i  (MPa) 

Observed ---- P r e d i c t e d  
Fa t igue  L i f e  Cycles .Fat igue L i f e  Cycles 

Reduct ion  - to  Reduc t i on t o  
. . F a c t o r  Fa i l u r e  F a c t o r  Fa i  1 u r e  

q a t i g u e  ~ i f e & ' d u c t i o n h c t ~ ~ ~ u l a t 6 d  on the  b a s i s  o f  t h e  peak s t r e s s  r e p r e s e n t i n g  
t h e  average o f  t h e  r e p o r t e d  peak s t r e s s e s .  



TABLE 4. .COMPARISON OF PREDICTED AND OBSERVED FATIGUE 

LIFE REDUCTION FACTORS AND CYCLIC LIVES FOR HEAT 8043813 TESTED AT 1100°F (593 '~ )  ., 
. . . .:. . . . .  , 

. . 
P red i , c t i  ons ~ a s e d  on Observed Creep arid Rupture ~ a t a  , 

Observed - Pred ic ted  
Hold S t r a i n  St ress Fat igue L i f e  Cycles ~ a t i g u e  L i f e  Cycles 
Time t.0 Range Atlip 1 i t u  de Reduction Reduction t 0 
(rnin) (%)  p s i  (MPa) Factor  . Fa i  1 u re  - -- Factor  Fa i  1 u re  



TABLE 5. ' PREDICTED FATIGUE LIFEREDUCTIOR FACTORS 

AND CYCLIC; LIVES BASED ON OBSERVED AND PREDICTED RELAXATION' . 

P r e d i c t i o n s  Based on Observed Rupture Data 

Heat 55697 Tested a t  1 200°F ( 6 4 9 0 ~ )  and Hea t .  346645, . Tested a t  11 OO°F ' ( 5 9 3 " ~ )  

Ho ld  S t r a i n  
Time Range 
(min)  (%)  

HEAT 5,5697 

- -  P r e d i c t e d  , 

Observed P r e d i c t e d   ela ax at ion") Observed ~ e 1 a x a t i o . n  - 
F a t i g u e  L i f e  Cycles F a t i g u e  L i f e  -Cycles Fa t igue  L i f e  Cycles 
Reduct ion  t 0 Reduct ion  t 0 Reduct ion  t o  . ' 

F a c t o r  F a i  l .ure 
. . Factoi- , F a i  1 u r e  F a c t o r  F a i  1 u r e  

HEAT 346842 

1 1 .OO 1.06 3,304 1.81 1 ,785 1.31. , 2,468 

5 1.04 1.45 2,225 

1.03 .1.45 2,222 2.95' 1,093 1.48 2,184 

10 0.99' 1.77' 1,826 3.04 1,061 1 .50' 2,147 

60 1 .OO .4 .,20 767 3.20 .I, 009 1.17 2,753 

-- --- 

( I  ' ~ r e d i c t i o n i  based on observed creep data.  

1 



FIGURE TITLES -. . 

1. Co~ i~par i son  o f  Observed and ,Average Flinimum Creep Rate. Data and 

1 S t ress  Rupture Data.  Heat  55697 Tested a t  1100F (593C). 

! 
2. 

. . 
Coniparison o f ' o b s e r v e d  and Average Minimunl Creep, Rate Data and 
S t r e s s  Ruptore Data. Heat  346845 Tested.  a t  1100F .(593C). 

3 .  Coniparison 0.f Observed and Average Plinimulii Creep 'Rate  Data and 
S t ress  ~ u p t u r e '  Data. Heat 9T2796 Tested a t  1 lOOF (593C). 

4. Compari,son o f  Observed an.d Average Minimum Creep Rate Data and 
Str.ess Rupture Data. Heat 8043813 Tested a t  l lOOF (593C). 

5. Co~npar ison 'o f  Observed and Average Minimum Creep Rate Data and 
S t r e s s  Rupture  Data. Heat 55697 Tested a t  1200F (649C). 

6. I! 
3 ~ e f a t i o n s h i p  Be ween Rupture  s t r e n g t h  (10 Hours)  and Creep 

S t r e n g t h  (1%/.10 Hours). I 

7. R e l a t i o n s h i p  Be ween Rupture S t r e n g t h  ( l o 4  Hours) and creep 5 S t r e n g t h  ( \ % / I 0  Hours) .  

8. 4 
5. R e l a t i o n s h i p  Be ween Rupture s t r e n g t h  (10 H o u r s )  and Cregp 

S t r e n g t h  (1%/10 Hours) .  

9. S t r e s s  Range a s ' a  F u n c t i o n . o f  .Hold-Time. 'De temi ined  Near H a l f - ~ i f e  
Dur ing  Hold-Tiale Fa t igue  Tests.  Tested a t .  1lOOF (593C) w i  th:a 
S t r a i n  Range o f  1%. 

10. Fa t i gue  L i f e  Reduct ion  F a c t o r  as a F u n c t i o n  o f  Hold-Time. No 
E x p l i c i t  F a c t o r  o f  Sa fe ty .  Heat 55697 Tested a t  1200F (649C) and 
a S t r a i n  Range o f  1/2%. 

.I 1 .. F a t i g u e  ~i f e  ~ e d u c t i o n   actor as a Funct ion.  o f  Hold-Time. F a c t o r  
of  1/0.9 on S t r e s s .  Heat 55697 Tested a t  1200F (649C). and a . . 
S t ra i , n  Range o f  '112%. 

12. Fa t i gue  L i f e  Reduct ion  F a c t o r  as a Func t ion  o f  Hold-Time. F u l l  
Code-Intended Fac to rs  o f  Safety. Heat 55697 Tested a t  1200F ( 6 4 9 ~ )  
and a St ra in .Range o f  1/22. 

13. Fa t i gue  L i f e  Reduct ion  F a c t o r  as a  unction o f  Hold-Time. No 
Expl i . c i  t F a c t o r  o f  Safety. Heat 346845'Tested a t  1 lOOF (593C) 
and a ' S t r a i n  Range o f  1%. . . . 

14. Fa t i gue  L i f e  Reduct ion  Fa'ctor 'a 's  a Func t ion  o f  Hold-Time. F a c t o r  
. . o f  1/0.9 on S t ress .  Heat  346,845 Tested ' a t  l lOOF (593C) and a 

S t r a i n  range o f  1%. 

15. Fat igue.  L i f e  Reduct ion  F a c t o r  as a Funct ion .  o f .  Hold-Time. F u l l  
Code- In tended Fac to rs  o f  Sa fe ty .  Heat 346845 Tested a t  1.1 00F ('593C) 
and a S t r a i n  Range o f  1%. 



hi '4 
F a t i g u e  L i f e  Reduct ion.  F.actoi- as a Func t i on  o f  Hol d-Ti~ i le .  No 
Expl  i c i  t ' F a c t o r  o f .  Safety.  Heat 9T2796 Tested a t  '1 1 0 0 ~  (593C) 
and a S t r a i n  Range o f  1%. 

F a t i g u e  L i f e  Reduct ion  F a c t o r  as a F u n c t i o n  o f  Hold-Time. F a c t o r  
o f  1/0.9 on S t ress .  Heat  9 ~ 2 7 9 6  Tested a t  l lOOF (5gb3C) and a 
S t r a i n  Range o f  1%. 

F a t i g u e  L i ' f e  ~ e d u c t i o n  F a c t o r  as a F u n c t i o n  o f  Hold-Tiri ie. F u l l  
Code-Intended F a c t o r s  o f  Safe ty .  Heat 9T2796 Tested a t  1 lOOF (593C) 
and a S t r a i n  Range o f  1%. 

19. F a t i g u e  L i f e  Reduct ion  F a c t o r  as a F u n c t i o n  of '  Hold-Time. No 
E x p l i c i t  F a c t o r  o f  .Safety. . Heat 8043813 Tested a t  l'lOOF (593C) and 
a S t r a i n  Range o f  1%. 

20. F a t i g u e  L i f e  Reduct ionFactor  as a F u n c t i o n  o f  Hold-Time. . F a c t o r  
o f  1/0.9 on S t r e s s .  Heat 8043813 Tested a t  1 lOOF (593C) and a 
S t r a i n  Range o f  1%. 

21. F a , t i g u e L i f e R e d u c t i o n F a c t o r a s a F u n c t i o n o f H o l d - . T i m e . '  F u l l  
Code- Imtended Fac to rs  o f  Sa' fety.  Keat  8043813 Tested a t  1 lOOF (593C) 

i and a S t r a i n  Range o f  1%. . . 

22. E f f e c t  o f  Code-Intended Fac to rs  o f  Safe ty  on P r e d i c t e d  F a t i g u e  
I L i f e  Reduct ion  F a c t o r s  a t  .1100F (593C) and a , S t r a i n  Ran.ge o f  1%. 

23. Coniparison o f  ' p r e d i c t e d  and Observed S t r e s s  Re1axatio.r i  D u r i n g  
. Hold-Time Fati .gue T e s t i n g  o f  Heat 55697. Tes ted a t .  l 200F .  ( 6 4 9 ~ )  
w i t h  a S t r a i n  Range o f  112% and a Hold-Time o f  60 Minutes .  

I 24. Comparison o f  P r e d i c t e d  and Observed S t r e s s    el a x a t i o n  Dur ing '  

I Hol d-Time F a t i g u e  T e s t i n g  o f  Heat  346845. ' Tes ted.  a t  1'100F (593C) 
w i t h  a S t r a i n  ' ~ a n g e  o f  1% and a Hold-Time o f  60 Minutes .  

25. Coliipari son o f .  P r e d i c t e d  and Observed   old-'~i'rne F a t i g u e  L i v e s .  
L i f e  P r e d i c t i o n s  Based on Observed S t ress  R e l a x a t i o n  H i s t o r y  (Near 
Hal f - L i  f e )  and Observed Rupture S t reng ths .  No e x p l i c i t  Fac to rs  o f  
S a f e t y .  

. ' 26. C o ~ ~ i p a r i s o n  o f  'P red i c ted  and Observed Hold-Time F a t i g u e  ~ i v e s .  
L i f e  P r e d i c t i o n s  Based on C u r r e n t l y  Accepted P r a c t i c e .  No 
E x p l i c i t  Fac to rs  o f  Sa fe ty .  

27. Coriiparison o f  P r e d i c t e d  and 0bse.rved H o l d - ~ i ~ e  F a t i g u e  ~ i v e s .  ' 

L i f e  P r e d i c t i o n s  Based on Observed Creep and Rupture S t reng ths  and 
Observed Stres.s Range. No E x p l i c i t  Fac to rs  o f  Sa fe ty .  

28. Coniparison o f  P r e d i c t e d  and Observed Hol d-Time F a t i g u e  L i  ves. 
. L i f e  P r e d i c t i o n s  Uased on Observed Creep and Rupture  S t reng ths  

and' t he  NSMH E s t i ~ i l a t e d  S t r e s s  Range. No E x p l i c i t  F a c t o r s  o f  S a f e t y .  

29. Conipari son o f  P r e d i c t e d  and Observed Hold-Time 'Fa t i gue  Liv.es'. L i f e  
P r e d i c t i o n s  Uased on Con.s is tent .Creep and' Rupture  S t reng ths  f o r  a 
I*linimum S t r e n g t h  Heat; No Expl  i c i  t F a c t o r s  o f  Safe ty .  
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