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ABSTRACT
MASTER

A method for detecting and identifying biases in the pressure and

level sensors of a pressurized water reactor (PWR) pressurizer is described.

The generalized likelihood ratio (6LR) technique performs statistical tests

on the innovations sequence of a Kalman filter state estimator and is capable

of determining when a bias appears, in what sensor the bias exists, and

estimating the bias magnitude. Simulation results using a second-order

linear, discrete PWR pressurizer model demonstrate the capabilities of the

GLR method.

Prepared for presentation at the 1981 Joint Automatic Control Conference,
Charlottesville, Virginia, June 17-19, 1981.

DISTRIBUTOR Qr TfliS OCCUftlErr. IS UNLIMITED



BIAS IDENTIFICATION IN PWP PRESSURIZER INSTRUMENTATION

USING THE GENERALIZED LIKELIHOOD-RATIO TECHNIQUE

]. INTRODUCTION

In a nuclear power plant, failures will occur and must be detected

and compensated for before a significant decrease in plant performance

results. Figure 1 schematically depicts a power plant. Here, a finite

set of sensors provides plant measurements to both an automatic controller

and an operator. T .e controller uses these measurements to compute

actuator settings which will provide a set of control inputs to the plant.

The operator also acts as a controller in that he uses his knowledge of

the plant operation, combined with the plant measurements, to determine

if any additional control is needed. If the plant measurements do not

coincide with the operator's idea of what those measurements should be,

it r'ust be assumed that a system failure has occurred. The operator then

has the difficult task of deciding whether the bad measurements are due

to a failed sensor, a broken actuator, or due to an unexpected change in

the plant Drocess dynamics. During the time needed to identify the failure,

plant performance may seriously degrade. Such degradation could perhaps be

avoided if some type of system failure monitor could be implemented.

A power plant, augmented with a failure monitor, is shown in Figure 2.

Such a failure monitor would most likely consist of an on-line digital

computer due to the relatively low cost and programming flexibility. Inputs

to the failure monitor include the available plant measurements, the controls

calculated by the automatic controller, and the operator controls. Based
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on these inputs, the failure monitor should be able to perform several

tasks. Its primary purpose is to continually check the system performance

and determine whether it is operating normally. If an abnormality is

detected, the monitor should identify and determine the extent of the

abnormality and 'nform the operator of the problem. Finally, the monitor

should be able to adjust or reorganize the plant actuators, sensors, and/or

controller to avoid severe performance changes. (Although t!:s problem of

system reorganization following a failure detection is important, in this

paper we will be concerned only with the detection and identification

of a system failure.)

Several failure detection schemes for failure monitors similar to the

one in Figure 2 have been researched in the past few years [l]. Ideas from

simple voting systems to elaborate multiple hypothesis probabilistic techniques

have been studied and many successful applications reported. An extremely

powerful class of detection schemes are those that perform statistical tests

on the innovations sequence of a Kalman filter designed for the operating

dynamic system. A Kalman filter is simply a set of mathematical algorithms

that generate optimal estimates of the plant measurements using knowledge of

the system dynamics. The filter innovations is then the difference between

the actual plant measurements and the Kalman filter estimates. One of the

more successful statistical tests on the innovations used to identify failures,

and the one described here, is known as the generalized likelihood ratio (GLR)

method [2]. Briefly, the GLR method employs mathematical descriptions of

various failure modes to perform multiple hypothesis testing and ascertain

if a failure has occurred. Furthermore, if a failure is detected, the GLR

method determines when the failure occurred, what kind of failure it is, and

estimates the magnitude of the failure. This information would be invaluable

to the plant operator trying to compensate for a failure.
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In this paper, a GLR failure monitor for a pressurized water reactor (PWR)

pressurizer is developed. The monitor is restricted to only identifying biases

in the pressurizer instrumentation. This restriction was made to demonstrate

the applicability of the GLR methods to nuclear components with a minimum of

computational complexity. Future modifications to the failure monitor include

the ability to detect changes in pressurizer dynamics, failures in pressurizer

control actuators, and complete failures of sensors. We first describe the GLR

equations, including the required plant dynamics and Kaiman filter formulations.

Next, a second-order model of the pressurizer dynamics for use in the failure

monitor is developed. Finally, the ability of the GLR method to identify

biases is investigated using simulated plant transient data.

2. GLR FAILURE MONITOR EQUATIONS

The GLR method employs two steps in the identification of failures.

The first involves using a Kalman filter, designed for the unfailed system,

to generate the innovations, or residuals sequence. In the second step,

using descriptions of various hypothesized failure modes (e.g., in this paper,

sensor biases) and the innovations, the log-likelihood ratio, is computed

and maximized. Comparing this maximum ratio to a predetermined threshold

value yields the failure decision.

Both the Kalman filter and log-likelihood ratio calculations require a

description of the plant dynamics. In this section, we present the required

form of the plant state and measurement equations, the filter equations, and

the log-likelihood ratio computational procedure.

2.1 Plant Dynamics Equations

In this work, we assume the plant dynamics can be modeled as a l inear,

time-varying, discrete system of the form:
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x(k+l)=*(k+l,k)x(k) + e(k)u(k) + w(k) (1)

where x(k) is the plant state vector at tirce k, u(k) a deterministic control

input, and w(k) s zero-mean, white disturbance vector. Also, $(k+l,k) is the

state transition matrix from k to k+1, and e(k) is the control matrix.

Similarly, a model of the plant measurements is required. This must be

a linear model of the form:

y(k) = C(k)x(k) + v(k) (2)

where v(k) is a zero-mean, white measurement noise, uncorrelated with the

process noise w(k), and C(k) is the required measurement system matrix.

Plant model statistics required by the Kalman filter include the covariance

of the two white noise processes w(k) and v(k), an initial estimate of the

state vector x(0) and the variance in the estimate of x(0).

2.2 Kalman Filter Equations

The mathematics of the Kalman filter have been derived in several

texts [3] and no attempt is made to reproduce such derivations here.

Instead, the equations are presented with a brief description of what

each one does.

At time k a plant measurement y(k) is taken and used to update the

current estimate of the plant state using:

x(kjk) = x(k)k-l) + K(k) [y(k) - C(k)x(k k-1)] (3)

where x(k|k-l) is the state estimatt at k based on measurements up to time

k-1. The matrix K(k) is the Kalman gain which simply weights the difference

between the actual measurement y(k) and the modeled estimate of y(k) given

by equation (2). K(k) is calculated using:
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K(k) = P(k|k-l)CT(k) [C(k)P(k|k-l)CT(k) + R(k)]"1 (4)

where R(k) is the covariance matrix of the measurement noise and p(k|k-l)

is the covariance of the error in the estimate of the state prior to the

measurement. The error covariance is updated using:

P(k|k) = [I - K(k)C(k)] P(kjk-l) • (5)

Prior to taking the next measurement at time k+1, both the state

estimate and estimate error covariance are propagated ahead in time using

the state dynamics equations:

x(k+l|k) = *(k+l,k)x(k|k) + a(k)u(k) (6)

P(k+l|k) = *(k+l,k)P(k|k)*T(k+l,k) + Q(k) (7)

where Q(k) is the covariance matrix for the process noise vector w(k).

Equations (3) through (7) are processed once for each measurement.

As mentioned earlier, the GLR failure detection method uses the

innovations frcm the Kalman filter to formulate a failure decision.

The unfailed system innovations y (k) are defined as the difference

between the plant measurement at k and the estimate of the measurement

at k, or using equation (2):

Y0(k) = y(k) - C(k)x(k|k-1) (8)

A fundamental property of the Kalman filter, and one that is the basis

for the GLR, is that for a linear system, the sequence yQ(k) will be

white, zero-mean with covariance:

j = V(k)6kJ (9)
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where: V(k) = C(k)P(k|k-l)CT(k) + R(k) (10)

(0, kfj
5k j = ( U )

K)J I l, k=j

We now develop the procedure required to detect and identify sensor

biases using the innovations described by (8)-(10).

2_._3_ Failure Decision Equations

The first step in detecting a sensor bias is to hypothesize the

existence of a bias and determine its effect on the Kalman filter innovations.

If a sensor bias were to occur, it would appear as an additive term in the

measurement equation, i.e., a bias of magnitude v at time k=o would be

modeled as:

y(k) = C(k)x(k) + v(k) + v o M (12)

where:

(0, k'O
Oy , = (13)

' ( 1 k»>

Due to the linearity of the Kalman filter equations, this bias in y(k)

will result in a failed system innovations sequence of the form:

•r(k) = G(k,e)y + Y0(k), k>e (14)

where recall y (k) is the unfaiied system innovations in (8).

Equation (14) is a basic equation of the GLR. G(k,e) is the failure

signature matrix at time k assuming a sensor bias occurred at time 6. To

evaluate G(k,o), we substitute equation (12) into the Kalman filter equations,

compute the effect of v on the innovations, and using (14), identify G(k,e).
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This procedure results in the recursive equations:

G(k,e) = I - C(k)*(k,k-l)F(k-l,e) (15)

F(k,e) = K(k)G(k,e) + *(k,k-l)F(k-l,e) (16)

G(ke) = F(k,e) = 0, k<e (17)

Now, we have two hypotheses to examine; the no-bias hypothesis, HQ:

Ho: Y(k) = yo(k) (18)

and a hypothesis corresponding to a sensor bias, H.:

Hy y(k) = G(k,o)v + Y0(k) (19)

The job of the GLR is to determine which of these hypotheses is most likely

to be true given the sequence of innovations, Y ( 1 ) , Y ( 2 ) , ..., Y(k), where

k is the current time. To make this decision, we assume a bias occurs at

all o, l<o<k, and for each o value compute a maximum likelihood estimate of

the bias magnitude v. Using this estimate, we can compute the log-1 ii'.el ihood

ratio for each o. The log-likelihood ratio, l(k,e), is simply a measure of

the probability of H. being true relative to the probability of the no bias

hypothesis H being true. The details of these computations are given in

[4] and the resulting equations are:

v(k,e) = J'1(k,e)d(k,e) (20)

l(k,o) = dT(k,e)v(k,o) (21)

where J(k,e) is the fa i lure information matrix:

k T ,
J(k,e) = 1 G l ( j ,e)V" i ( j )G( j ,9) (22)

j=o
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and d(k,e) is the matched filter response:

d(k,e) = z GT(j,e)V"1(j)Y(J) (23)

Deciding which hypothesis to accept is a relatively simple matter once

each of the log-likelihood ratios has been calculated using equation (21).

Since l(k,e) is a measure of how likely it is that a sensor failure occurred

at time 6 given data up to time k, we choose the largest value of l(k,e)

computed and specify the corresponding value of e to be the most likely

failure time eML. We then compare this maximum log-iikelihood ratio to a

predetermined threshold value e, and decfde whether to accept hypothesis

Hn or hypothesis H-,:

H l

eML)Kk,e M L) < t (24)
Ho

If we accept H , it is assumed that no failure has occurred. If we accept

H, however, we assume that a sensor bias has occurred at time 9M| with the

bias magnitude given by equation (20):

G(k,oML) = J-^k.a^ddc.G^) (25)

-9-



3. PUR PRESSURIZER MODEL

As seen in Section 2, both the Kalman filter and failure signature

matrix calculations require a plant model in the form of equations (1)

and (2). In this section, we develop such a model of a PWR pressurizer.

First, a nonlinear, continuous, second-order pressurizer model is derived

from first principles. Then this model is linearized and discretized about

a specified set of operating conditions to get the equations in the desired

form.

3.1 Nonlinear Pressurizer Model

A typical PWR pressurizer is shown schematically in Figure 3. The

pressurizer acts as a surge tank in maintaining pressure in the primary loop.

In this study, the steam and water in the pressurizer are assumed to be in a

homogeneous, saturated mixture. Applying mass and energy balances to this

mixture using X , the mixture quality, and P , the pressurizer pressure, as

state variables results in the two state equations [5J:

dX
S

dP

ah v

htr

Wsurge(hsurge " V + Wspray(hspray " V " Wrv(hg " V

3h
v p a T * "surge "spray

Wsurge(hsurge-

av r
ti A I

D [_

•]i

-v

(26)

(27)

where

3X
P

( 2 8 )
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The matrix fluid properties are defined by:

V
P -

 Vf + V V v f > (29)

h
P
 = hf + X

P
( hg- hf } (30)

where h^, h , v^, and v are the corresponding saturation enthalpies and

specific volumes dependent on P . J is a unit conversion constant.

In (26) and (27), we note ihere are four inputs in the pressurizer

model. The surge flow, W- , which is due tc expansion and contraction

of the primary loop fluid, is assumed to be available from plant data. The

pressurizer spray, W , which is tapped off from the cold leg, i: used to
spray

prevent overpressurization of the primary loop. The spray is an on-off

type control established by preset pressure setpoints. Similarly, the

pressurizer heater output, Q,,. , jnd relief valve flow, W , are on-off

controls governed by specific setpoints.

For this model, we assume two measurements are being made, one being

the water level in the pressurizer and the other being the pressurizer

pressure. From (27) we see the pressure is a system state, hence the pressure

measurement model is quite simple. The water level model is not quite as

simple, however. The water level L is described by:

where A is the cross-sectional area of the pressjrizer.

3.2 Linear Discrete Pressurizer Model

In functional form, the nonlinear pressurizer model can be summarized

as:

x = f(x,u) (32)

y = g(x) (33)

-12-



where the system vectors x, u, and y are:

x =
(34)

'surge

VI
spray

W
rv

(35)

y = (36)

Expanding (32) and (33) about a nominal operating point (x,u) in a

Taylor series (ignoring terms higher than first-order) results in continuous,

linear equations of the form:

5x = Aox + B6U

6y = C5x

(37)

(3S)

where:

ox = x - x

iu = u - u

6y = y - y

(39)

(40)

(41)

Then applying standard discretization methods [6] allows (37) and (38) to

be cast in the discrete form.

In order to perform simulation studies in Section 4, we need to specify

a pressurizer operating point (x,u") to obtain numerical values for *(k+l,k),

o(k), and C(k), the system matrices. In this study, we will use the geometry
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of the LOFT reactor pressurizer [5] and an operating point described by:

x =

y =

0.09591

2145.1

0.0

0.0

0.0

0.0_

41.73

2145 .1

(-)

(psia)

(lbm/s)

(Btu/sx

(lbm/s)

(Ibm/s)

( in)

(psia)

(42)

(43)

(44)

Using these values, applying the above described techniques, and adding in

process and measurement noise yields the linear, discrete pressurizer model

in the form of (1) and (2):

X (k+l)-0.09591

Pp(k+l)-214b.l

1 0

0 1

X (k)-0.09591

P (k)-2145.1

-2.898E-4 4.303E-7 -3.548E-4 1.019E-4

8.102E-1 1.OO7E-2 -7.1O2E-1 -5.208E0

"surge*k)

Hspray<k>

w(k)

L (k)-41.73

P (k}-2145.1

•195.2 337.3

0 1

X(k)-O.09591

Pp(k)-2145.1
+ v(k) (46)
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4. SIMULATION RESULTS

To demonstrate the capabilities of the GLR technique in identifying

pressurizer sensor biases, several simulation studies were performed. The

results of one such study are presented here.

Simulated pressurizer level and pressure measurements during a typical

PWR transient were obtained using the nonlinear pressurizer model described

in Section 3.1. The model was initialized at the steady state operating

point defined in (42), i.e.:

x =

L P P J

0.09591

2145.1
(42)

and then perturbed by fluctuations in the surge flow. The calculated level

and pressure measurements, which include some measurement noise, were then

used in the Kalman filter equations of the GLR scheme. The Kalman filter

and GLR bias detection equations were based on the linear, discrete pressurizer

model given by (45) and (46). Assumed process and measurement noise covariance

matrices were:

(47)

(48)

Figures 4 and 5 display the plant measurements as calculated using the

nonlinear pressurizer model and the measurements as estimated by the Kalman

filter. In this study, a +0.5 inch bias was added into the pressurizer

level measurement at t=50 seconds to see if the GLR technique could identify

the existence of such a bias. Examining Figure 4, we see the filter estimate

Q(k) =

R(k) =

2.

0.

30E-9

0

01

0

0

1.15

0

4.0
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of water level follows the plant measurement quite well prior to the

implementation of the bias at 50 seconds. After 50 seconds, the measurement

bias is seen to cause a corresponding bias in the Kalman filter estimate.

Similar effects are noted in the pressurizer pressure traces in Figure 5.

The maximum log-likelihood ratio, l(k,a), computed using the GLR equations

during this plant transient is shown in Figure 6. Prior to the bias at 50

seconds, the ratic stays relatively small. Following the bias implementation,

however, the maximum value of l(k,e) increases dramatically indicating a

failure, or sensor bias, has probably occurred. The time that such a bias

would be detected, and hence the estimated h-'is value and failure time, would

of course depend on the threshold value e applied to the curve in Figure 6.

As an example, using £ = 75 on this curve resulted in the bias being detected

at k=53 seconds. The failure time e, was estimated to be 50 seconds, and

the failure or bias magnitude estimate was v=0.54 inches. Hence, the GLR

scheme provided nearly exact bias identification in this case. Different

L values will yield different results. In practice, the choice of what -

to use would be made by considering tradeoffs between false alarm

probabilities and bias detection probabilities.

A final point to note in Figure 6 is that the maximum log-likelihood

ratio begins to decrease about 10 seconds after the bias implementation.

Recall from Section 2, the GLR requires that for each k, a value of

l(k,e) is computed for all o, l<e<k. This requires a growing bank of matched

filters and hence an ever-increasing amount of data storage. To eliminate

this problem, what is typically done is to restrict candidate e values to a

sliding data window of the form:

k-N <_ 6 <_ k-M (49)
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This simplification does not lead to serious difficulties as long as the

window length, N-M, is large enough to insure detection and identification

of all significant sensor Liases. Such a window was implemented in

calculating the values of l(k,e) shown in Figure 6; values of M=0 and N=10

were used in the window. This windowing has the effect of implementing the

GLR technique as a finite memory filter [2]. So once the failure time is

no longer in the data window, i.e., e<k-10, l(k,e) will decrease, and the

detection law will become less likely to select H,, the failure hypothesis.

5. CONCLUSIONS

With the recent incidents at Three Mile Island and other nuclear facilities,

there is a renewed interest in the protection and control of nuclear power

plants. Specifically, much attention is being paid to the problem of supplying

the plant operator with the information needed to properly ascertain the plant

status. The generalized likelihood ratio failure detection method described

in this paper could be a powerful tool in achieving that goal. We have shown

here that the GLR is capable of detecting biases in PWR pressurizer instruments.

Using straightforward extensions to the GLR scheme, we could also have the

capability of detecting complete sensor failures, failures of actuators such

as the pressurizer relief valves and heaters, or detecting inherent changes

in the plant dynamics and distinguishing between such dynamics changes and

sensor failures. Furthermore, implementing the GLR using a complete PWR

plant model such as that described in [5] would allow the development of a

total plant failure monitor. Before proceeding with such expansions, however,

some further work must be done using the existing pressurizer instrumentation

bias identification scheme.
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An obvious requirement for practical application of the GLR at a nuclear

facility is that it have the capability of real-time operation. To test this

capability, the bias detection scheme will be implemented on a PDP 11/55

minicomputer and connected to a real-time hybrid computer model of the LOFT

reactor plant. Using this model to provide simulated plant transient data,

the real-time performance of the GLR will be investigated.

To make the linear, discrete model of the pressurizer inherent in the

GLR more representative of the actual LOFT pressurizer, several modifications

must be made. In the actual presi>urizer, three level measurements are made;,

the linear model should be augmented to reflect this redundancy, A measurement

not used in this study, that being the temperature of the vapor space in the

pressurizer, should also be modeled. Also, it may be necessary to use a higher-

order dynamic model, perhaps using individual mass and energy balances on both

fluid regions, in order to be more representative of the actual pressurizer

dynamics.

Following these model modifications and the hybrid computer simulation

studies, a final test of the GLR failure monitor would be to install the

PDP minicomputer (which would have all the necessary GLR software) at the

LOFT facility. Using the GLR techniques during actual LOFT operation would

perhaps demonstrate the feasibility of commercial implementation.
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