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A method for detecting and identifying biases in the pressure and

ABSTRACT

level sensors of a pressurized water reactor (PWR) pressurizer is described.

The generalized likelihood ratio (GLR) technique performs statistical tests

on the innovations sequence of a Kalman filter state estimator and is capable

of determining when a bias appears, in what sensor the bias exists, and
estimating the bias magnitude. Simulation results using a second-order
linear, discrete PWR pressurizer model demonstrate the capabilities of the

GLR method.

Prepared for presentation at the 1981 Joint Automatic Control Conference,
Charlottesville, Virginia, June 17-19, 1981.
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BIAS IDENTIFICATION IN PWR PRESSURIZER INSTRUMENTATION
USING THE GENERALIZED LIKELIHOOD-RATIO TECHNIQUE

1. INTRODUCTION

In a nuclear power plant, failures will occur and must be detected
and compensated for before a significant decrease in plant performance
results. Figure 1 schematically depicts a power plant. Here, a finite
set of sensors provides plant measurements to both an automatic controller
and an operator. T.e controller uses these measurements to compute
actuator settings which will provide a set of control inputs to the plant.
The operator also acts as a controller in that he uses his knowledge of
the plant operation, combined with the plant measurements, to determine
if any additional control is needed. If the plant meacurements do not
coincide with the operator's idea of what those measurements should be,
it rust be assumed that a system failure nas occurred. The operator then
has the difficult task of deciding whether the bad measurements are due
to a failed sensor, a broken actuator, or due to an unexpected change in
the plant process dynamics. During the time needed to identify the failure,
plant performance may seriously degrade. Such degradation could perhaps be
avoided if some type of system failure monitor could be implemented.

A power nlant, augmented with a failure monitor, is shown in Figure 2.
Such a failure monitor would most likeiy consist of an on-line digital
computer due to the relatively low cost and programming flexibility. Inputs
to the failure monitor include the available plant measurements, the controls

calculated by the automatic controller, and the operator controls. Based
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on these inputs, the failure monitor should be able to perform several
tasks. Its primary purpose is to continually check the system performance
and determine whether it is operating normally. If an abnormality is
detected, the monitor should identify and determine the extent of the
abnormality and ‘nform the operator of the problem. Finally, the monitor
should be able to adjust or reorganize the plant actuators, sensors, and/or
controller to avoid severe performance changes. (Although t!2 problem of
system reorganization following a failure detection is important, in this
paper we will be concerned only with the detection and identification
of a system failure.)

Several failure detection schemes for failure monitors similar to the
one i» Figure 2 have been resea--hed in the past few years [1]. Ideas from
simple voting systems to elaborate multiple hypothesis probabilistic techniques
have been studied and many successful applications reported. An extremely
powerful class of detection schemes are those that perform statistical tests
on the innovations sequence of a Kalman filter designed for the operating
dynamic system. A Kalman filter is simply a set of mathematical algorithms
that generate optimal estimates of the plant measurements using knowledge of
the system dynamics. The filter innovations is then the difference between
the actual plant measurements and the Kalman filter estimates. One of the
more successful statistical tests on the innovations used to identify failures,
and the one described here, is known as the generalized 1ikelihood ratio (GLR)
method [2]. Briefly, the GLR method employs mathematical descriptions of
various failure modes to perform multiple hypothesis testing and ascertain
if a failure has occurred. Furthermore, if a failure is detected, the GLR
method determines when the failure occurred, what kind of failure it is, and
estimates the magnitude of the failure. This information would be invaluable

to the plant operator trying to compensate for a failure.
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In this paper, a GLR failure monitor for a pressurized water reactor (PWR)
pressurizer is developed. The monitor is restricted to only identifying biases
in the pressurizer instrumentation. This restriction was made to demonstrate
the applicability of the GLR methods to nuclear components with a minimum of
computational complexity. Future modifications to the failure monitor include
the ability to detect changes in pressurizer dynamics, failures in pressurizer
control actuators, and complete failures of sensors. We first describe the GLR
equations, including the required plant dynamics and Xalman filter formulations.
Next, a second-order model of the pressurizer dynamics for use in the failure
monitor is developed. Finally, the ability of the GLR method to identify

biases is investigated using simulated plant transient data.

2. GLR FATLURE MONITOR EQUATIONS

The GLR method employs two steps in the identification of failures.
The first involves using a Kalman filter, designed for the unfailed system,
to generate the innovations, or residuals sequence. In the second step,
using descriptions of various hypothesized failure modes (e.g., in this paper,
sensor biases) and the iruovations, the log-likelihood ratio, is computed
and maximized. Comparing this maximum ratio to a predetermined threshold
value yields the failure decision.

Both the Kalman filter and log-likelihood ratio calculations rcquire a
description of the plant dynamics. In this section, we present the required
form of the plant state and measurement equations, the filter equations, and

the log-likelihood ratio computationa: procedure.

2.1 Plant Dynamics Equations

In this work, we assume the plant dynamics can be modeled as a linear,

time-varying, discrete system of the form:




x(k+1)=a(k+1,k)x(k) + o(k)u(k) + w(k) (1)

where x(k) is the plant state vector at time k, u(k) a deterministic ccntrol

input, and w(k) & zero-mean, white disturbance vector. Also, ¢(k+1,k) is the

state transition matrix from k to k+1, and ©{k) is the control matrix.
Similarly, a model of the plant measurements is required. This must be

a8 linear model of the form:
y{k) = C(k)x(k) + v(k) (2)

where v(k) is a zero-mean, white measurement noise, uncorrelated with the
process noise w(k), and C(k) is the required measurement system matrix.
Plant model statistics required by the Kalman filter include the covariance
of the two white noise processes w(k) and v(k), an initial estimate of the

state vector x(0) and the variance in the estimate of x(0).

2.2 Kalman Filter Equations

The mathematics of the Kalman filter have been derived in several
terts [3] and no attempt is made to reproduce such derivations here.
Instead, the equations are presented with a brief description of what
each one does.

At time k a plant measurement y(k) is taken and used to update the

current estimate of the plant state using:
x(klk) = x(k[k-1) + K(k) [y(k) - C(k)x(k k-1)] (3)

where x(k|k-1) is the state estimate at k based on measurements up to time
k-1. The matrix X(k) is the Kalman gain which simply weights the difference
between the actual measurement y{k) and the modeled estimate of y(k) given

by equation (2). K(k) is calculated using:



K(k) = P(k[k-1)CT(k) [C{K)P(k|k-1)CT(K) + R(K)]

where R(k) is the covariance matrix of the measurement noise and P(k|k-1)
is the covariance of the error in the estimate of the state prior to the

measurement. The error covariance is updated using:
P(klk) = [I - K(k)C(k)] P(k]k-1)

Prior to taking the next measurement at time k+1, both the state
estimate and estimate error covariance are propagated ahead in time using

the state dynamics equations:

x(k+1]k) = »(k+1,k)x(k]k) + 3(k)u(k)

Bk 1, K)P(K K)o T (k+1,k) + Q(K)

P(k+1{k)

where Q(k) is the covariance matrix for the process noise vector w(k).
Equations {3) through (7) are processed once for each measurement.

As mentioned earlier, the GLR failure detection method uses the
innovations frcm the Kalman filtter to formulate a failure decision.
The unfailed system innovations yo(k) are defined as the difference
between the piant measurement at k and the estimate of the measurement

at k, or using equation (2):
vo(k) = y(k) - C(k)x(k[k-1)

A fundamental property of the Kalman filter, and one that is the basis
for the GLR, is that for a linear system, the sequence yo(k) will be

white, zero-mean with covariance:

Lo (Kvg(d)] = V(KIS
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where:  V(k) = C(k)P(k|k-1)CT(K) + R(k) (10)

§, . o= (11)

0, k#j
kyJ

1, k=]

We now develop the procedure required to detect and identify sensor

biases using the innovations described by (8)-(10).

2.3 Failure Decision Equations

The first step in detecting a sensor bias is to hypothesize the
existernce of a bias and determine its effect on the Kalman filter innovations.
If a sensor bias were to occur, it would appear as an additive term in the

measurement equation, i.e., a bias of magnitude v at time k=¢ would be

modeled as:
y(k) = C(Ix(K) + v(k) + vo, (12)
where:
0, k=
Oy 4 T (13)
b 1, k=n

Cue to the linearity of the Kalman filter equations, this bias in y(k)

will result in a failed system innovations sequence of the form:
¥(k) = G(k,8)v + v (K), k>0 (14)

where recall Yo(k) is the unfailed system innovations in (8).

Equation (14) is a basic equation of the GLR. G(k,8) is the failure
signature matrix at time k assuming a sensor bias occurred at time 8. To
evaluate G(k,n), we substitute equation (12) into the Kalman filter equations,

compute the effect of v on the innovations, and using (14), identify G(k,e).




This procedure results in the recursive equations:

G(k,6) =1 - C{k)o(k,k-1)F(k-1,8) (15)
F(k,8) = K(k)G(k,0) + o(k,k-1)F(k~1,8) (16)
G(k.e) = F(k,8) = 0, k<o (17)

Now, we have two hypotheses to examine; the no-bias hypothesis, HO:

and a hypothesis corresponding to a sensor bias, le

Ho: o v(k) = G(k,0)v + yu(k) (19)

The job of the GLR is to determine which of these hypotheses is most likely
to be true given the sequence of innovations, v(1), v(2), ..., y(k), where

k is the current time. To make this decision, we assume a bias occurs at

all 6, l<a<k, and for each 9 value compute a maximum likelihood estimate of
the bias magnitude v. Using this estimate, we can compute the log-liielihood
ratio for each o. The log-likelihood ratio, 1(k,e), is simply a measure of

the probability of H., being true relative to the probability of the no bias

1
hypothesis Ho being true. The details of these computations are given in

[4] and the resulting equations are:

3(k,0) = 9"k, 0)d(k,8) (20)

1(k,0) = d (k,0)%(k,0) (21)

where J(k,e) is the failure information matrix:

J(k,0) = “1(5)6(5.0) (22)
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and d(k,8) is the matched filter response:

d(k,6) = 3 6 (5,0)V71(3)v(d) (23)

Deciding which hypothesis to accept is a relatively simple matter once
each of the log-likelihood ratios has been calculated using equation (21).
Since 1(k,6) is a measure of how likely it is that a sensor failure occurred
at time 8 given data ub to time k, we choose the largest value of 1(k,e)
computed and specify the corresponding value of 8 to be the most likely
faijure time Oy - We then compare this maximum log-iikelihood ratio to a
predetermined threshold value ¢, and decide whether to accept hypothesis
H0 or hypothesis le

1

koo ) 2 e (24)

Ho

If we accept Ho’ it is assumed that no failure has occurred. If we accept

Hl however, we assume that a sensor bias has occurred at time eML with the

bias magnitude given by equation (20):

Sk ) = 378y V(L0 ) (25)




3. PWR PRESSURIZER MODEL

As seen in Section 2, both the Kalman filter and failure signature
matrix calculations require a plant model in the form of equations (1)
and (2). In this section, we develop such a model of a PWR pressurizer.
First, a nonlinear, continuous, second-order pressurizer model is derived
from first principles. Then this model is linearized and discretized about
a specified set of operating conditions to get the equations in the desired

form.

3.1 Nonlinear Pressurizer Model

A typical PWR pressurizer is shown schematically in Figure 3. The
pressurizer acts as a surge tank in maintaining pressure in the primary loop.
In this study, the steam and water in the pressurizer are assumed to be in a
homogeneous, saturated mixture. Applying mass and energy balances to this
mixture using Xp, the mixture quality, and Pp, the pressurizer pressure, as

state variables results in the two state equations [5]:

dX v sh v av
P Py (v + Y - =L R) o+ 2 g
dat Vpl p'surge spray rv ch J qu htr
(26)
VourgeMsurge = M) # Wopray(ispray = M) = My (hg - np)]}
dP v 3h v
A V:-P—(W + W -W)+.—‘B Q
dt Vpr p oXp surge spray rv JXD htr
(27)
¥ wsurge(hsurge— hp) ¥ wspray(hspray B hp) - wrv(hg B hp)] }
where
v, oh oV dh v
peop 2 S [Tp-p ) (28)
aPp aXp aXp 9P P J



.

Wspray
Volume, Vp
Fluid mass, Mp
st Pressure, P
M.......,.,. . Entha|pyvhp
Water Specific volume, vy,
Quality, Xp
L |
p
Qntr
Wsurge
Hot teg
+
INEL-A-13 491
Figure 3. Pressurizer Schematic
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The matrix fluid properties are defined by:
Voo v ¥ Xp(vg-vf) (29)

hp = he + Xp(hg-hf) {30)

where hf, hg’ Ve and vg are the corresponding saturation enthalpies and
specific volumes dependent on Pp. J is a unit conversion constant.
In (26) and (27), we note Lhere are four inputs in the pressurizer

model. The surge flow, wsuroe, vhich is due tc expansion and contraction

=

of the primary loop fluid, is assumed to be available from plant data. The

pressurizer spray, W , which is tapped off from the cold leg, i3 used to

“spray
prevent overpressurization of the primary loop. The spray is an on-off

type control established by preset pressure setpoints. Similariy., the
pressurizer heater output, thr’ and relief valve flow, wrv' are on-of f
controls coverned by specific sztpoints.

For this model, we assume two measurements are being made, one being

the water level in the pressurizer and the other being the pressurizer
pressure. From (27) we see the pressure is a system state, hence the pressure

measurement model is quite simple. The water level model is not quite as

simple, however. The water level L _ is described by:

P
'p
= ..X 31
L, Ap(l p) S Ve (31)
p
where Ap is the cross-sectional area of the pressurizer.
3.2 Linear Discrete Pressurizer Model
In functional form, the nonlinear pressurizer model can be summarized
as:
x = f(x,u) (32)
y = g{(x) (33)

-12-




where the system vectors x, u, and y are:

X = (34)

u [‘htr (35)

y - p (36)

Expanding (32) and (33) about a nominal operating point (x,u) in a
Taylor series (ignoring terms higher than first-order) results in continuous,

linear equations of the form:

5% = Aéx + Béu (37)
gy = Céx (35)

where:
X = A = X (39)
W=u-u (40)
8y =y -V (41)

Then applying standard discretization methods [ 6] allows (37) and (38) to
be cast in the discrete form.

In order to perform simulation studies in Section 4, we need to specify
a pressurizer operating point (x,u) to obtain numerical values for ¢(k+l,k),

o(k), and C(k), the system matrices. In this study, we will use the geometry
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of the LOFT reactor pressurizer [5] and an operating point described by:

-
0.09591 -

X = (-] (42)
2145.1 (psia)
—0.01 (Ybm/s)

- 0.0 (Btu/s) (43)
0.0 (1bm/s)
[0.0] (1bw/s)

;. 41.73 (in) (34)
2145.1 (psia)

Using these values, applying the above described techniques, and adding in
process and measurement noise yields the linear, discrete pressurizer model

in the form of (1) and (2):

Xp(k+1)-0.09591 _ 1 0 Xp(k}-0.09€91 (45)
Pp(k+1)-2145.1 0 1 Pp(k)-2145.1
[HSUrge(k)
i - - -3.548E-4  1.019E-4 Q,, (k)
. 2.898E-4  4.303E-7 3.548 htr . W)
8.102E-1 1.007E-2 -7.1026-1  -5.208E0 wspray(k)
-wwv(k) |
L (k)-41.73 -195.2  337.3 X _{k)-0.09591
p - P + v(k) (46)
Pp(k)—2145.1 0 1 Pp(k)-2145.1
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4. SIMULATION RESULTS

To demcnstrate the capabilities of the GLR technique in identifying
pressurizer sensor biases, several simulation studies were performed. The
results of one such study are presented here.

Simulated pressurizer level and pressure measurements during a typical
PWR transient were obtained using the nonlinear pressurizer model described
in Section 3.1. The model was initialized at the steady state operating

point defined in (42), i.e.:

X 0.09591
Pl = (42)

P 2145.1
and then perturbed by fluctuations in the surge flow. The calculated level
and pressure measurements, which include some measurement noise, were then
used in the Kalman filter equations of the GLR scheme. The Kalman filter
and GLR bias detection -quations were based on the linear, discrete pressurizer

model given by (45) and (46). Assumed process and measurement noise covariance

matrices were:

(2.306-9 0 ]
Q(k) = (47)
0 1.15
0.01 0
R(k) = (48)
0 1.0,

Figures 4 and 5 display the plant measurements as calculated using the
nonlinear pressurizer model and the measurements as estimated by the Kalman
fiiter. In this study, a +0.5 inch bias was added into the pressurizer
level measurement at t=50 seconds to see if the GLR technique could identify

the existence of such a bias. Examining Figure 4, we see the filter estimate
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of water level follows the plant measurement quite well prior to the
implementation of the bias at 50 seconds. After 50 seconds, the measurement
bias is seen to cause a corresponding bias in the Kalman filter estimate.
Similar effects are noted in the pressurizer pressure traces in Figure 5.

The maximum log-likelihood ratio, 1(k,s), computed using the GLR equations
during this plant transient is shown in Figure 6. Prior to the bias at 50
seconds, the ratic stays relatively small. Following the bias implementation,
however, the maximum value of 1(k,e) increases dramatically indicating a
failure, or sensor bias, has probably occurred. The time that such a bias
would be detected, and hence the estimated b31s value and failure time, would
of course depend on the threshold value ¢ agplied to the curve in Figure 6.
As an example, using <=75 on this curve resulted in the bias being detected
at k=53 seconds. The failure time ¢, was estimated to be 50 seconds, and
the failure or bias magnitude estimate was v=0.54 inches. Hence, the GLR
scheme provided nearly exact bias identification in this case. Different
¢ values will yield different results. In practice, the choice of what .
to use would be made by considering tradeoffs between false alarm
probabilities and bias detection probabilities.

A final point to note in Figure 6 is that the maximum log-likelihood
ratio begins to decrease about 10 seconds after the bias implementation.
Recall from Section 2, the GLR requires that for each k, a value of
1(k,8) is computed for all 0, l<e<k. This requires a growing bank of matched
filters and hence an ever-increasing amount of data storage. To eliminate
this problem, what is typically done is to restrict candidate & values to a

sliding data window of the form:

K-N < 8 < k-M (49)
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This simplification does rat lead to serious difficulties as long as the
window length, N-M, is large enough to insure detection and identification
of all significant sensor Liases. Such a window was implemented in
calculating the values of 1(k,8) shown in Figure 6; values of M=0 and N=10
were used in the window. This windowing has the effect of implementing the
GLR technique as a finite memory filter [2]. So once the failure time is
no longer in the data window, i.e., 0<k-10, 1{k,8) will decrease, and the

detection law will become less likely to select Hl’ the failure hypothesis.
5. CONCLUSIONS

With the recent incidents at Three Mile Island and other nuclear facilities,
there is a renewed interest in the protection and control of nuclear power
plants. Specifically, much attention is being paid to the problem of supplying
the plant operator with the information needed to properly ascertain the plant
status. The generalized Tikelihood ratic failure detection method described
in this paper could be a powerful tool in achieving that goal. We have shown
here that the GLR is capable of detecting biases in PWR pressurizer instruments.
Using straightforward extensions to the GLR scheme, we could also have the
capability of detecting complete sensor failures, failures of actuators such
as the pressurizer relief valves and heaters, or detecting inherent changes
in the plant dynamics and distinguishing between such dynamics changes and
sensor failures. Furthermore, implementing the GLR using a complete PWR
plant model such as that described in [5] would allow the development of a
total plant failure monitor. Before proceeding with such expansions, however,
some further work must be done using the existing pressurizer instrumentation

bias identification scheme.
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An obvious requirement for practical application of the GLR at a nuclear
facility is that it have the capability of real-time operation. To test this
capability, the bias detection scheme will be implemented on a PDP 11/55
minicomputer and cornected to a real-time hybrid computer model of the LOFT
reactor plant. Using this model to provide simulated plant transient data,
the real-time performance of the GLR will be investigated.

To make the linear, discrete model of the pressurizer inherent in the
GLR more representative of the actual LOFT pressurizer, several modifications
must be made. In the actual pressurizer, three level measurements are made:
the Tinear model should be augmented to reflect this redundancy. A measurement
not used in this study, that being the temperature of the vapor space in the
oressurizer, should also be modeled. Also, it may be necessary to use a higher-
order dynamic model, perhaps using individual mass and energy balances on both
fluid regions, in order to be more representative of the actual pressurizer
dynamics.

Following these model modifications and the hybrid computer simulation
studies, a final test of the GLR failure monitor would be to install the
PDP minicomputer (which would have all the necessary GLR software) at the
LOFT facility. Using the GLR techniques during actual LOFT operation would

perhaps demonstrate the feasibility of commercial implementation.
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