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. . . . .  . . . - 
H e l d  exper iments ,  p e r f  armed a t  Keatlole P o i n t ,  . ~ a w a i i  arrd in the'  Gulf o f  ~ e x i c o .  

. . 1 .  

were designed t o  de te rmine  t h e  r e l a t i o n s h i p  between decreased h e a t  t r a n s f e r  

. . 
' 

, e f f i c i e n c y  and . .  t h e  . accumulation, of . . c o r r o s i o n  and/or  . . b io fou l ing  . . f i l m s  on h e a t  
. . . . 

. . .. . . 

exchanger s u r f a c e s .    he sample tubes  were main ta ined  under c o n d i t i o n s  s i m u l a t i n g  . 

t h o s e  of an Ocean Thermal ~ n e r ~ y  Conversion (OTEC) sys t e r .  znd d a t a  from t h e  two 

s i t e s  have been compared. Seawater  flowed through 2.54 ( i n t e r n a l  'd iameter)  me ta l  ' 
. 

. . 

t ubes  a t  approximately 1 . 8 i  sec-'. Four t ypes  of t ubes  were used: 5052. Aluminum 

(Al) ,  Grade 2  t i t a n i u m  ( T i ) ,  90-10 copper -n icke l  (Cu-Hi) and Allegheny-Ludlum 6X 
. . 

s t a i n l e s s  s t e e l  (SS) . 
A l l  s u r f a c e s  were coloni'zed by microorganisms, though c o l o n i z a t i o n  of t h e  

Cu-Mi s u r f a c e  was i n i t i a l l y  r e t a r d e d .  Total.  f i l m  weight  w a s  ' g r e a t e s t  f o r  t h e  A l  
. . C 

and Cu-Wi s u r f a c e s  which were c h a r a c t e r i z e d  by c o r r o s i o n  as w e l l  a s  m i c r o 5 i a l  f o u l i n g .  
1 :  
I 

The t o t a l  o rgan ic  c a r b o n : t o t a l  n i t r o g e n  r a t i o s  of t h e  f o u l i n g  f i l m s  from T i ,  81, 

SS and Cu-Xi, 4.2,  4.0, 4.8 ,,znd 7.9 r e s p e c t i v e l y ,  remained coris tant  throu.ghout 

t h e  experj.zcnt. The degradai:ion of >eat t r a n s f e r  e f f i c i e n c y  due t o  t h e  format ion  

of fou l ing  l a y e r s  on T i  and SS is n e i t h e r  l i n e a r  n o r  a  s imple  e q d n e n t i a l  func t ion .  

A microfoul ing  model i s  proposed f o r  c o r r o s i o n - r e s i s t a n t  s u r f a c e s  t h a t  j.s c o n s i s t e n t  



.. ' 
. . . . ;  

Ocean Thermal Energy Cdnversion (OTEC) i s  a concept  which kmp!bys t h e  dif-• .I: 

1,. 
$ 

. . . .  f e r e n c e  i n  tempera ture  between warm s u r f a c e  ' w a t e r s  and co ld  deep h a t e r s  t o  g e n e r a t e  . 

, .  . - . I  
.. . . ,  

energy. I n  marine envj.'rotmeats, t h e  tempera ture  d i f f e r e n t i a l  i s  0'11ly about  20°C, , . . .  I 
. . . .  . .  . . . . . . f  

thus, t h e  e f f i c i e n c y  of such a system is q u i t e  low. o p e r a t i o n  of a n  OTEC system 
. .  . . . .  

.. . 

r e q u i r e s  t h e  maintenance of e f c i c i e n t  h e a t  exchangers .  I n s u l a t i n g  m a t e r i a l  i n  $ I 
t h e  form of f o u l i n g  l a y e r s  l e s s  t han  100 pm t h i c k  can r e n d e r  such a system in -  

ope ra t ive .  S e v e r a l  p rocesses  can  c c n t r i b u . t e  t o  t h e  format ion  of such l a y e r s :  
. . 

formation of c o r r o s i o n  p roduc t s ,  d e p o s i t i o n  of i n o r g a n i c  sal ts ,  a d s o r p t i o n  of 
. .  . . . 

d.issolved o r g a n i c  m a t e r i a l ,  c o l o n i z a t i o n  6y microorganisms an3  t h e  accumulat ion 

of  t h e i r  metabol ic  products ,  and t h e  adhes ion  of d e t r i t u s .  'The  c o n t r i b u t i o n  of 

t h e  va r ious  f a c t o r s  is dependent on t h e  t y p e  o f . m e t a l  used i n  t h e  h e a t  exchanger,  
'I 

f low cond i t i ons ,  geograph ica l  l o c a t i o n  of  exposure and env i ro~ lmen ta l  parameters .  

OTEC experiments were condacted i n  t h e  Gulf of Mexico (GOH)' and Hawaii (HI ) .  t o  

c d l l e c t  fouling. d a t a  and t o  .:ccorrelaie t h c s e  d z t a  w i t h  h e a t  t r a n s f e r  e f f i c i e n c y .  



,#. 
METHODS MID MATERIALS 

. . .  . . . .  

'' D e t a i l s  o£ t h e  c o n s t r u c t i o n ,  ope ra t ibn ,  s a m p l e  c o l l e c t i o n ,  and a n a l y t i c a l  '. . . i .' .I 
. : I .  . . . i  

procedures  of t h e  GOM and H I  experiments  have been p rev ious ly  presented  ( L i e b e r t ,  . 
I 

1 
I 

' : I  
e t  a 1  '1979; L i t t l e ,  e t  a l . ,  1979).  The H I  experiments  took p l a c e  300 meters  o f f  , I 

. . -- 9 -- i 
5 

' 

the coas t  of Keahole p o i n t ,  H I ;  t h e  GOM experiment  257 lan due west  o f  Tampa, FL. . i 
. . . 

The a l l o y s  used f o r  t h e  h e a t  exchangers  were 5052 a luminu~l  ( A l ) , G r a d e  2 t i t a n i u m  

( T i ) ,  Allegheny-Ludlum 6X s t a i n l e s s  s t e e l  (SS) and CDA 706 copper-nickel  (Cu-Ni),. 

Except f o r  o c c a s i o n a l  mal func t ions ,  s eawa te r  f r o m . t h e  upper mixed l a y e r  flexed 
. . .  . . . . 

- .  . thrdugh 2.5 cm ( i . d )  t ubes  cont inuous ly '  a t  a nominal. f l ow r a t e  of 2 me te r s  p e r  . . . . .  

second. 

The ins t ruments  used f o r  tihe measurement of h e a t  t r a n s f e r  r e s i s t a n c e  (8 ) 
f 

were designed a t  Carnegie-Mellon U n i v e r s i t y  (Fetkovich,  1977) .and modif ied by 

~ r ~ o n n e  Nat iona l  Gaboratory.  Rc is expressed  as h i .  f t . *  OF/BTU u n i t s .  To 
I; 

2 9.1) conver t  t o  i n t e r n a t i o n a l R  . u n i t s  (OC m w  m u l t i p l y  R v a l u e s  by 0.176. R 
f :: f f  

is defined a s  t h e  d i f f e r e n c e  between l / h  where h is t h e  measured h e a t  t r a n s f e r  

c o e f f i c i e n t  a t  any g i v e n  t ime And t h e  i n i t i a l  v a l u e  of l / h .  Reference 2 d i s c u s s e s  

t h e  co r r ec t ions ,  based on water  tempera ture  and f low r a t e ,  used t o  ca l c .u l a t e  t h e  

h e a t  t r a n s f e r  c o e f f i c i e n t  and f o u l i n g  f a c t o r .  

A. modified M.A.N. b rush  ( ~ G b e - i , ~  ,7377) was passed through t h e  tubes  of t h e  

HI exper iment  du r ing  f low t o  c l e a n  t h e  f o u l i n g  l a y e r s  from t h e  tube  s u r f a c e s .  ' 

Cleaned tubes were allowed t o  r e f o u l .  S e c t i o n s  from t h e  f low systems of t h e  two' 

experiments were removed p e r i o d i c a l l y  .and t h e  fo l lowing  c o n s t i t u e n t s  and p r o p e r t i e s  

of t he  f o u l i n g  l a y e r s  q u a n t i f i e d :  t o t a l  o rgan ic .  carbon,  t o t a l  n i t r ~ g e n ,  d ry  f i l m  .. 

weight,  wet f i l m  t h i c k n e s s  and s u r f a c e  topography. 



. t  RESULTS AND DISCUSSION . . 
. . 

Increased  h e a t  t r anBfe r  r e s i s t a n c e  (R ) '  a s  a .func tZoii of t ime and a l l o y  f o r  
f 

both exposure s i t e s  i s  g iven  i n  F i g u r e  1 (,a-d). , 'The re  was a  b r i e f e r  l a g  p e r i o d  

be fo re  i n c r e a s e s  i n  R could  b e  measured f o r  a l l ' s a r f a c e s  exposed a t  t h e  H I  site 
f 

a s  compared t o  t h e  l a g  pe r iod  exper ienced  by the '  s u r f a c e s  exposed i n  t h e  GOM. 

There was no a p p a r e n t  l a g  ' pe r iod  f o r  t h e  Cu-Ni s u r f a c e s  a t  e i t h e r  s i t e . .  Ti tanium 

s u r f a c e s  c o n s i s t e n t l y  e x h i b i t e d  t h e  l o n g e s t  l a g  pe r iod  b e f o r e  t h e r e  was measurable  

l o s s  of h e a t  t r a n s f e r  e f f i c i e n c y  due t o  f o u l i n g .  

Heat t r a n s f e r  r e s i s t a n c e $ .  t o t a l  o r g a n i c  carbon (TOC) and t o t a l  n i t r o g e n  (TN),, p l o t t c  
.. . . . . 

a g a i n s t  exposure t ime f o r  a l l  a l l o y s  ir .  F igu re  2 (a-d) . The s c a l e s  of t h e  o r d i n a t e  w e r e  

chosen such t h a t  t h e  TOC and TN d a t a  f o r  t h e  t i t a n i u m  tube 'would superimpose on 

t h a t  of R f .  T i  and SS have s i m i l a r  chemical  p r o p e r t i e s ;  n e i t h e r  co r rodes  v i g o r o u s l y  . 
~ 

i n  seawater  (LaQue, 19791, no r  i s  e i t h e r  t o x i c  t o  microorganisms (Marszalek, 1979).  
I 

One would t h e r e f o r e  expec t  t h e  two m a t e r i a l s  t o  e x h i b i t  n e a r l y  i d e n t i c a l  f o u l i n g  

I '  and l o s s  of h e a t  t r a n s f e r  e f f i c i e n c y .  The r e s u l t s .  shown i n  F i g u r e  2 i n d i c a t e  t h a t  

d i f f e r e n c e s  d i d  e x i s t .  

One macroscopic d i f f e r e n c e  was t h e  topography of t h e  two s u r f a c e s  a s  r ece ived  

from t h e  manufac turer .  The i n n e r  s u r f a c e  of t h e  SS tubes  was marked wi th  deep 
. . - 

e x t r u s i o n  l i n e s ;  t h e s e  were absen t  i n  t h e  t i t a n i u m  tubes  ( F i g u r e  3a and b ) .  I t  

i s  u n l i k e l y  t h a t  t h e  c a t u r e  of t h e  m i c r o f l o r a  on . the  two me ta l  s u r f a c e s  i s  resp.on- 

sib1.e f o r  t h e  d i f f e r e n c e s  observed i n  t h e  R d a t a .  D i f f e rences  were n o t  d e t e c t e d  
f  

i n  SEM micrographs of t h e  two fou led  s u r f a c e s .  The b i o f i l m  on t h e  s t a i n l e s s  s t c e l  

su r f ace  d id  obscure the  s u r f a c e  roughn.ess a f t e r  78 days (F igure  4 ) .  

Wet f i l a  t h i c k n e s s  measurements were comparable f o r  t h e  per iod  of i n v e s t i g a t i o n  

( L i t t l e ,  -- e t  a l . ,  1979) .  TN:TOC r a t i o s  ' (F igure  5) and d ry  f i l m  weight:TOC r a t t o s  

(Figure 6 )  i n  t h e  f o u l i n g  l a y e r s  from t h e  T i  and SS s u r f a c e s  a r e  very s i m i l a r .  

The r a t i o  of TOC t o  dry f i l m  weight was .approximatc ly  1:8 f o r  both T i  and SS (Table 

. . . - . ..- .- -.. 1) i l ~ d i c a t i n g  t l ~ a l :  s u b s t a n t i a l  anlounts of i no rgan ic  m a t e r i a l s  a r e  p re sen t  i n  t h e  

f o u l i n g  films. As s t a t c d  p rev ious ly ,  n e i t l ~ e r  of those  m a t e r i a l s  co r rodes  



. . . . 
\ . ,  

.I 
. , app rec i ab ly  i n  seawater .  The mucopolysaccharide s e c r e t i o n s  and microorganisms do I 

.r 

c h e l a t e  s u b s t a n t i a l  amounts of i n o r g a n i c  sal ts  from seawater  (S i ege l ,  1971).  , 
. . 

' -  . '  ' . ' . '  . I 

. . One e x p l a n a t i o n  f o r ' . t h e  d i f f e r i n g  h e a t  t r a n s f e r  responses  observed f o r  t h e  I 

two meta ls  may be . r e l a t e d  t o  t h e  s u r f a c e  roughness observed f o r  t h e  s t a i n l e s s  s t e e l .  . , ' ~ 
I . . 

Water may become ent rapped  i n  t h e  grooves of  t h e  s t a i n l e s s  s t e e l  s u r f a c e  a s  t h e  . ' , 
.. . i 

overJying b i o f i l m  develops ,  p rov id ing  g r e a t e r  i n s u l a t i n g  e f f e c t s .  Thus, f i l m s  

wi th  i d e n t i c a l  TOC, TN and wet f i l m  t h i c k n e s s  would e x h i b i t  d i f f e r i n g  h e a t  t r a n s f e r  

. . 
responses.  

P l o t s  of Rf v s .  dry f i . h  weight  (F igu re  7) and fi vs, t o t a l  o rgan ic  carbon 
. . f  

. . .. . .. . . . 
. . ' 

(F igure  8) f o r  SS, T i  and ~1 i n d i c a t e  a l i n e a r  r e l a t i o n s h i p  betwekn t h e  'two. 

There a l s o  appea r s  t o  be  a l i n e a r  r e l a t i o n s h i p  between Rf and  TOC f o r  SS and T i .  I 
Such a c o r r e l a t i o n  i s  n o t  a p p a r e n t  f o r  A 1  and Cu-Ni d a t a .  It appea r s  (F igu re  1) - 
t h a t  f o r  approximately t h e  ... first  20. days t h e  R . of t h e  A 1  su r f  ace  is. independ.ent 

f  

of both TOG and Ill. It is du.r ing t h i s  pe r iod  t h a t  t h e  c o r r o s i o n  l a y e r  i n c r e a s e s  
. . 

r a p i d l y  ( L i t t l e  & Lavoie,  1979).  'Af te r  about  t h r e e  weeks, t h e  i n c r e a s e  i n  Rf 

. can be p a r t i a l l y  a s c r i b e d  t o  TOC, and hence, b i o f i l m  format ion .  Corrosion. o5 

t h e  A 1  s u r f a c e  d u r i n g  t h e  f i r s t  t h r e e  weeks does a d v e r s e l y  e f f e c t  h e a t  t r a n s f e r  

e f f i c i e n c y .  

The dry f i l m  weight of t h e  Cu-Ni is  an o r d e r  of magnitude . g r e a t e r  than  t h a t  

f o r  t he  o t h e r  me ta l  s u r f a c e s  (F igu re  7 ) .  The i n c r e a s e  i n  R w i th  t ime f o r  t h e  
f  

Cu-Ni s u r f a c e  i s  l a r g e l y  due t o  t h e  f c rma t ion  0 f . a  c o r r o s i o n  f i lm .  No c o r r e l a t i o n  

can be made between Rf and TOC o r  TN (F igu re  9d) .  . T0C:TN r a t i o s  f o r  t h e  Cu-Ni 

i s  s u b s t a n t i a l l y  g r e a t e r  (Table 2 )  than  t h a t  f o r  t h e  o t h e r  m a t e r i a l s  (F igu re  9 a-1)). 

This  is  c o n s i s t e n t  wi th  t h e  hypo thes i s  t h a t  microorganisms c o l o n i z i n g  copper and 

o t h e r  t o x i c  me ta l s  s e c r e t e  polymeric m a t e r i a l s  which c h e l a t e  me ta l  s a i t s  (EIarszalek, 

1979).  Comporlnds such a s  polyuronic  a c i d  f'ound i n  such s e c r e t i o n s  i n  t he  primary 

l a y e r  w i l i  r a i s e  the  T0C:TN ra t i .0  f o r  the e n t i r e  f i l m .  F igu re  10 i s  a micrograph 

of t h e  colonized Cu-Ni h e a t  exc i~anger  s u r f a c e  showing both rod- and f i lamentous-  

type o rg ;~n i sms .  



t CONCLUSIONS 

There were no l a r g e  changes i n  t h e  T0C:TN r a t i o s  of t h e  f o u l i n g  f i l m s  i n  ,.' . . 

. . 

each of t h e  tube  types  d u r i n g  t h e  e x p e r h e n t a l  pe r iod .  The r a t i o s  f o r  T i ,  SS, 

and A l  were e s s e n t i a l l y  t h e  same (4.2, 4.8 and 4.0 . . r e s p e c t i v e l y )  w h i l e  t h a t  of 

Cu-Ni was 7,9. 

.. I n c r e a s e s  i n  h e a t  t r a n s f e r  r e s i s t a n c e  (R f  ) f o r  T i  and SS s u r f a c e s  w e r e  

r e l a t e d  t o  t h e  TOC and TN i n  t h e  f o u l i n g  f i l m s .  However., t h e  impacts  of e q u i v a l e n t  

f i l m s  w e r e . d i ' f f e r e n t  on t h e  two s u r f a c e s .  A f i l m  cove r ing  t h e  roughened SS 

- su r f ace  may t r a p  a f i l m  of water  and provide  a g r e a t e r  i n s u l a t i n g  e f f e c t  . . t han  
. . 

t h a t  observed on t h e  smooth T i  s u r f a c e .  Rf was p r o p o r t i o n a l  t o  TOC and TN f o r  . :  

: A 1  s u r f a c e s  only  a f t e r  prolonged exposure (>3  weeks). The f o h a t i o n b f  a c o r r o s i o n  

f i l m  appeared t o  i n h i b i t  h e a t  t r a n s f e r  e f f i c i e n c y  du r ing  t h e  f i r s t  3 weeks. Cor- 
. . ' V  

r o s i o n  appeared t o  be  r e s p o n s i b l e  ' f o r  i n c r e a s e d  Rf i n  t h e  Cu-Ni t u b e s .  The Cu-Ni 

w a s  colonized by microorganisms, b u t  t h e i r  c o n t r i b u t i o n  t o  t o t a l  d ry  f i i m  weight  

w a s  small .  The l a r g e  film weights  on a l l  tubes ,  i n c l u d i n g  t h e  c o r r o s i o n - r e s i s t a n t  , 

T i  and SS, sugges ted  t h a t  t h e  f o u l i n g  f i l m s  c o n t a i n  s u b s t a n t i a l  amounts of in-  . . 
0 .  

organics  t h a t  may e f f e c t  R 
f' 

c l ean ing  w i t h  a M.A.N. brush removes most,  b u t  no t  a l l  of t h e  b i o a a s s  in t h e  

f o u l i n g  f i l m s . .  The f i r s t  and second c l e a n i n g s  of t h e  A 1  t ubes  3:reduc:ed R  f  t o  zero .  

Subsequent c l ean ing  a f t e r  100 days appeared l e s s  e f f e c t i v e .  Tne r a t e  of f o u l i n g  

increased  a f  t e r  k l ean ing .  



. .. 
3 .  

. .  . . . . . . . 
. . . .  . . 

A model is proposed f o r  t h e  k i n e  t i c s  of  biof  o u l i n g  on c o r r o s i o n - r e s i s  t a n t  t ubes  

' s u c h ' a s  T i  and SS main ta ined  under t h e  OTEC c o n d i t i o n s  desc r ibed .  

Sea water  flowed through tubes  (ID 2.5cm) a t  approximately 2 me te r s  p e r  : . . 

. .. 
second. Heat t r a n s f e r  r e s d s t a n c e  (Rf)- was measured p e r i o d i c a l l y  and samples of . .  

t h e  p ipe  were removed f o r  a n a l y s i s  o f  t h e  b i o f o u l i n g  l a y e r .  ,  foulin in^ was assumed 

t o  be t h e  cause  of t h e  i n c r e a s e  i n  R f o r  t h e  c o r r o s i o n - r e s i s t a n t  meta ls .  The r a t e  
f . . 

of r e f o u l i n g  a f t e r  c l ean ing  on such t u b e s  i s  a l s o  ccns ide red  i n  t h e  model. The 

model is l i m i t e d  t o  e a r l y  f o u l i n g  i n  open ocean w a t e r s  i n  which f low r a t e s  and . 
. . 

water  q u a l i t y  areassumed t o  remain c o n s t a n t  du r ing  t h e  experimen.::,. 

Desc r ip t ion  of t h e  B io fou l ing  Model 

1. The r a t e  o f '  primary c o l o n i z a t i o n ,  dC/dt depends on available'uhco.lor,i;zed space ,  

A ' ,  and t h e  d e n s i t y  of c o l o n i z a t i o n  pe r  u n i t  of space ,  a ' .  S i n c e  experimenta.1 d a t a  

f o r  A'  and a' i r e  l a c k i n g  i n  t h e  c u r r e n t  s t u d i e s  only t h e i r  A ,  (A = A t  ' a' ) 
. . . -  . . . 

is considered. The r a t e  i s  a l s o  dependent on a v a r i e t y  o f  p h y s i c a l  and chemical  

f a c t o r s  c h a r a c t e r i s t i c  of t h e  p a r t i c u l a r  system. These f a c t o r s  a r e  lumped t o g e t h e r  

i n  a cons t an t ,  K 

rear ranging:  

I n t e g r a t i n g  ( l b )  between t = O  an5 rn, ( equa t ion  form: dy = d x / ( a  -k bx) ) 

g ives  : 

C = A -- A (exp -Kt) (2b) 

2. The growth of t h e  primary c o l o n i z e r s  (and/or  ,product ion of  metabol ic  .p roducts ) ,  

S, is p ropor t iona l  t o  t h e i r  number, t h e  t ime,  and a  growth ( o r  s l ime-product ion)  

cons t an t ,  K1. I n  t h e  s in lp les t  form, 



. , I .  . . '. 
- 3 . .  'Secondary m i c r o b i a l  c o l o n i z a t i o n ;  i. e., b j .of .0~1 i n g  by o t h e r  organisms, N ,  

1 depends upon t ime,  S ,  and a n  adhes ion  c o n s t a n t ,  K2: K2 a l s o  i n c l u d e s  a  c o n c e n t r a t i o n  

f a c t o r ,  i . e . ,  number of ce l l s /vo lume  of water .  : 
~. 
I . . N = s 0 K 2  t .(4) 
! 
I .  
I - - . .  4. F i n a l l y ,  t o t a l  biomass, R ,  of t h e  b io fou led  l a y e r  i s  
I 

i 5. '  S u b s t i t u t i o n  of e q u a t i o n s  1, 2, 3, 4, i n t o  5 . g i v e s  

It becomes e v i d e n t ' t h a t  A is a l s o  a  " sca l ing  f a c t o r "  dependent on  t h e  u n i t s  used. 

' 

When Kt ,>> K1, t h e  equa t ion  becomes l a r g e l y  dependent on t h e  f i n a l  term e s p e c i a l l y  

I , , '  
when t. i s  n o t  s m a l l  and when K i s  s m a l l  compared t o  K1 and Ki. 

. . 
1. The model i gnores  t h e  v a r i o u s  r e a c t i o n s  which occur  d u r i n g  t h c f i r s t  minutes  

o r  hours  fo l lowing  i n i t i a t i o n  of t h e  f low of  water .  The f i r s t  even t  cons idered  i n  

t h e  model is t h e  'a t tachment  ( c o l o n i z a t i o n )  of t h o s e  b a c t e r i a  which have v e r y  h igh  

adhes ive  a f f i n i t y  f o r  t h e  tube  s u r f a c e .  Cc lon izz t ion  i s  random as t h e  organisms 

I , , -  

come i n t o  c o n t a c t  w i th  . t h e  s u r f a c e  from t h e  se2,water. ~ i l e i r  rate of 'adhesion on 
. .. 

1 t h e  tube, however, depends on many f a c t o r s :  
. . 

a.' t h e i r  numbers p e r  u n i t  volume of wa te r  . 

I .  

b. t h e i r  k ind  ( i .  e . ,  t h e i r  degree  of " s t i ck ines s" )  
1 1  

c.  t h e  f low r a t e  of t h e  w a t e r . a n d  t h e  hydrodynamic p r o p e r t i e s  of f low 

d. t h e  smoothness of t h e  tube  s u r f a c e  

e.  o t h e r  f a c t o r s  such a s  tempera ture ,  o rgan ic  c o n t e n t  of t h e  water ,  e t c .  , 

I f .  t h e  l i m i t e d  a r e a  f o r  c o l o n i z a t i o n  

2. The i n i t i a l  c o l o n i z e r s  a r e  r e s p o n s i b l e  f o r  making t h e  tube "s t icky"  f o r  o t h e r  

groups of f o u l i n g  b a c t e r i a .  Growth of t h e  primary c o l o n i z e r s ,  i f  i t  occu r s ,  and . 

I s l ime product ion  a r e  assumed t o  be i n  d i r e c t  p ropor t ion  t o  c e l l  number and t ime;  

n u t r i e n t  concen t r a t ion  l i m i t s  growth and metabol ic  product  fo'rmation. 

3 .  Other b a c t e r i a ,  secondary c  l o n i z c r s ,  adhere  randomly t o  t he  ' sur face  a t  a  

r a t e  p ropor t iona l  t o  t h e i r  numbers and a f f i n i t i e s  a s  w e l l  a s  t o  t h e  arnount of 
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, . 
. . 

L 

g r ; o w t h . o r  s l i m e  a l r e a d y  adhe r ing  t o  t h e  'tube s u r f a c e . '  I n  t h e  t ime frame cons idered  
. , 

no l i m i t a t i o n  of c o l o n i z i n g  space  ' is  assumed f o r  t h e  secondary c o l o n i z e r s .  
' 

4 .  During t h e  c l e a n i n g  of t h e  tubes '  i t  is assumed t h a t  t h e  pr imary c.610nizers,  

. .. 
t h e i r  progeny and/or  t h e i r  macromoleculat p roduc t s  are n o t  removed, I4 c o n t r a s t  

. . 

most o r  a l l  of t h e  secondary c o l o n i z e r s  a r e  assumed removed. Reco lon iza t ion  then  

occurs  a t  a r a t e  dependent on t h e  amounts of adher ing  m a t e r i a l s . s t i l 1  on t h e  p ipe .  

Analysis  of Riofoul ing  Modef 

F igure  9adlovs t h r e e  superimposed t h e o r e t i c a l  curves  drawn ove r  t h e  R.g 

t o t a l  o rgan ic  carbon and t o t a l  n i t r o g e n  d a t a  from T i  i n  t h e  H I  experiment .  The 
. . 

cons t an t s  used i n  t h e  mddel equa t ion  a r e  g iven  i n  Table 3.: S i n ~ e  ' t h e  magnitude . . 

and u n i t s  o f .  t h e  3 d a t a  sets a r e  d i f f e r e n t ;  t h e  c o n s t a n t  A is  s c a l e d  t o  g i v e  

comparable numer ica l  v a l u e s .  f o r  t h e  T i  d a t a .  These same v a l u e s  of- A a r k  used f o r  

t h e  SS da t a .  The same v a l u e s  I< and K1 a r e ' u s e d  t o  g e n e r a t e  a l l  of t h e  T i  curves .  

K,2 , i s  chosen t o  make. e a ~ h  cu rve  fit t h e  exper imenta l  d a t a .  For  a l l  T i  curves ,  

K2 v a r i e s  l i t t l e .  F igu re  I1 shows a  cu rve  c o n s t r u c t e d  through t h e  d a t a  ob ta ined  , 
-A 

i n  t h e  Gulf of Mexico. Note from Table  3 t h a t  K2 is only  s l i g h t l y  lower than  i n  

t h e  H I  curves.  , 

A ' l a r g e r  v a l u e  of K f o r  SS (0.06) is  r e q u i r e d  compared t o  t h a t  f o r  T i  (0 .01) .  

This  may r e s u l t  from t h e  rougher  s u r f a c e  of t h e  SS o r  d t h e r  i-ae.:;ors .Ghich per- 

mi t t ed  the  SS s u r f a c e  t o  be co lonized  more r a p i d l y  than  t h a t  of T i .  Curves 3 

through 10 i n  F i g u r e 9 b  f o r  SS mimic t h e  i n c r e a s e  i n  t h e  f o u l i n g  parameters  a f t e r  

c l ean ing  of t h e  tub?. Except f o r  curves  1, 3 and 6,  (Figure b) v a l u e s  of K2 a r e  

r e l a t i v e l y  c o n s t a n t  f o r  each parameter .  No e x p l a n a t i o n  is  o f f e r e d  f o r  t h i s  appa ren t  

temporary i n c r e a s e  i n  "secondary co lon iza t ion"  i n  curves  1, 3 and 6. S i m i l a r  

anomalies were no t  observed on any o t h e r  t ube  o r  ,parameter measured. 

For both t h e  T i  and SS sys tems,  t h e  "secondary co lon iza t ion"  term i s  s e t  

back  t o  n time va lue  e q u i v a l e n t  t o  t he  s t a r t  of t h e  experiment ( z e r o  t o  3.5 days ) .  



. . T'his  supdor t s  t h e  premise made i n  d e r i v i n g  t h e  model., I t  f u r t h e r  i n d i c a t e s  t h a t  
.. . . . . . . . 

- t h e  model may be .used to-p-r-edi.c.t-f.o.uling.-rates-a£-t e-r-rep ea-t-ed--cl-can-i-ng--&-me~a-I--* ' . - 

. ' s u r f a c e s .  The g r a d u a l  r i s e  i n  t h e  s t a r t i n g  v a l u e  of R fo l lowing  r epea t ed .  c l e a n i n g  
f . . 

can  be a t t r i b u t e d  t o  t h e  combined C and S terms of t h e  model: the.se are s m a l l  

numer ica l ly  and u n a f f e c t e d  by c l ean ing .  They c o n t i n u e  t o  i n c r e a s e  w i t h  t h e . ,  

The model c u r v e s  genera ted  f o r  T i  and SS f o r  Gob1 data. ,  F igu re  11, only  f i t  

i n  t he  e a r l y  p a r t  of t h e  experiment.  I t  appea r s  t h a t  t h e  nex t  s t a g e  of f o u l i n g ,  

t h a t  which l i m i t s  f u r t h e r  r a p i d  i n c r e a s e  i n  R , w a s  reached e a r l i e r  than  i n  t h e  
f  

H I  experiment. . T h e  model does n o t  app ly  t o  t h i s  s t a g e .  

A s i n g l e  v a l u e  of K w a s  used t o  g e n e r a t e  a l l  cu rves  p re sen ted  i n  F igures  9 (a'b) I 

. and 11. Thi s  v a l u e ,  0.03, is  a r b i t r a r y .  The magnitude of K is i n v e r s e l y  r e l a t e d  
2 

t o  K1. An independent  measurement of e i t h e r  "primary co lon ize r s " ,  C ,  and t h e i r  
* 

products ,  S,  o r  of,  "secondary co lon ize r s " ,  N, would p e r n i t  a s s i g n i n g  absol-uce 

v a l u e s  t o  K and K 1 2 

The lower v a l u e s  g iven  fcrr K i n  t h e  0rgani.c carbon and n i t r o g e n  curves  on 
2 

SS compared t o  t h e  R curves  may n o t  be  due t o  d i f f e r e n c e s  i n  t h e  r a t e s  of 
f  

. .. 

secondary c o l o n i z a t i o n ,  b u t  t o  d i f f e r e n t  c o l o n i z i n g  d e n s i t i e s  on T i  and SS s u r f a c e s .  

These should b e - d i s t i n g u i s h e d  i n  t h e  c o n s t a n t  A r a t h e r  than  i n  K 2 "  ' 

The p r e c i s i o n  of t h e  f i e l d  d a t a  makes a more d e t a i l e d  a n a l y s i s  of t h e  model 
< : .  

i m p r a c t i c a l .  It i s  e v i d e n t  t h a t , t h e  f o u l i n g  l a y e r  does  n o t  form i n  a n  exponen t i a l  

manner. This  could occur  under c o n d i t i o n s  i n  which n u t r i e n t  1evel:s a r e  h i g h e r  than  

those  found i n  t h e  p r e s e n t  experiment .  The model proposed b y  Bryers ,  -- e t  a l .  (1979),  

f o r  b io fou l ing  was de r ived  f o r  a  system exposed t o  l i g h t  and i n  which n u t r i e n t s  

were added. The p r e s e n t  model does n o t  i nc lude  a  term t o  l i m i t  t h e  i n c r e a s e  i n  

t h e  fou l ing  r a t e .  
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TABLE 1; 

RATIOS OF TOTAL ORGANIC CARBON TO Rf AND DRY FILM 
. . 

WEIGHT FROM STAINLESS STEEL ti TITANIUM TUBES 

, . 
.r 

: SITE . M A 1  I GULF OF. MEXICO 

'. T i  SS T i  S S 

Organic  C 
. , (ug ~ r n - ~ )  ,25.2 1 3 . 1  4.6 . . 4.7 

Fi lm Dry Weight 
(mg 3 . 1  1.8 - - 

. - 
R£ l o 4  
( O F  f t 2 m i n  BTU-') 1 .6  2 .3  0.50 0.93 

R a t i o  ' 

C/Rf . 15 .8  5.7 9.2 5.1 

Rat i o  . . 

C/Dry Weight 8.1" 7.3 - - 
. .. 

,' . . '.......'.-:.+..:,: . .. . . . . .  

" ' 

Data f o r  Gulf of Mexico are t a k e n  a t  4 8  d a y s ;  t h o s e  f o r  Hawaii  are t h e  
a r i t h m e t i c  mean t a k e n  b e f o r e  t h e  . f i rs t .  c l e a n i n g .  

. . 

I 
1, 



. .  TABLE 2 
0 ' 

TOTAL ORGANIC CARBON T O  TOTAL NITROGEN R A T I O S  
I N  FILi4S ON VARIOUS ,TUBE TYPES . . 

( H I  Data) 

T u e e  Type 

C u - N i  

TOCITN Rat io* 

4.2 t 0.9 

4.8 k 0.7 

I . ir 
8 .  

. 1.. Zero-values s u b s t r a c t e d  f o r  all. b e t  Al.. 
2 .  Average of 2 v a l u e s  f o r  most t imes.  
3 -  Values  taken  1 day after cleaning o r  removal. 
4 . .  Wildly abbe ran t  v a l u e s  d e l e t e d . '  
56 Each r a t i o  based on 1 2  o r  more values. 



I :  RIOF0UL;IWG MODEL: 

CONSTANTS GIVING GOOD FITTING'. CURVES T H ~ O U G H  PLOTS OF THE EXPERIMENTAL 
DATA %OR 4 0 U L I X G  BEFORE AND REFOULING OF T U E E S  AFTER C L E L Y I N G  

.- 

S I T %  ': .:, ' T U B E  MEASURED . FOLLOWING MODEL CONSTANTS* .. . CAY K2 PUSHED 
' : I 

SEE 
A . T Y P E  PARAEIETER CLEANING K K 1  ' . K 2  ' S E R I E S  BACK TO FIG. Ci'JRVE 

i: BEGUN DAY !I I't 

GULF FIEXICO T i  
f H A W A I I  T i  

Rf  
H A W A I I  T i  Rf 
HAWAII  T i  Org. C 
H A W A I I  Ti O r g .  C 
KI~JAII . - ~i N 
HAWAIL T i  N 

G U ~ F  FIEXICO s s 
Rf 

HAWA I I S S 
Rf H A W A I I  S S T'f 

HANA I I SS . f 
UrS.WXII SS 

Rf 
'&iWAIl: ' '  . SS 

Rf 
fbl:~!tlI x S S Rf 

. '  HiiLJAII  " SS Org. C 
HAWAII S S Org. C 
H A W A I I  S S Org. C . 

\Jrl I I S S N 
HE..\\rAII . SS N 
HAIJAI I S S N 

1 

ASee text  for explanat ion of symbols'. 

'F 

9 

0 
0 
1 
0 
1 
0 
1 

0 
0 
1 
2 
3 
4 

5 
0 
1 
2 .  
0 
1 
2 

.00505 - 0 1  , . 03  5 .O 

.00505 . O l e  ' .03 6,5 

.00505 .01 .03 . 6.5 

.,06 3,13 .01 . 0 3 .  7.5 
5 "-06313 i: .01 .03 6.5 . 

.01683 ' . O 1  .03 6.5 

.01683 ' . O 1  -03  6 .O 

.00505 -06 -0'3 5.5 

.00505 .06 .03 6.0 

.00505 -06 .03 11.0 

.00505 -06 .03 17 .O 

.00505 .06 .03 6.0 

.00505 .06 -03 7.5 

.00505 .06 -03  7 .O 

.06313 -06 -03  . . 4.5 

.06313 -06 . .03 . .  5.5 

.06313 . -06  .03 4.5 

.016.83 .06 .O 3 4.0 

.01683 .06 -03 4.5 

.01683 .06 .03 4. d 

0 - - 
0 - - 

94 0 
11: 9 1 

2 
0 -- 9 - 1 

94 o ' 9 2 
0 :  -- 9 1 

94 0 9 .2 

0 -- 10 
0 9 1 

59 1 9 3 
9 4 0 9 6 

249 2 9 8 
263 3 9 9 
277 3.5. 9 10 
0 -- " 2 

5 9 1 9 4 
94 0 9 7 
0 -- 9 2. 

5 9 1 4 5 
94 0 9 7 



TITANIUM 

F i g u r e  l a .  R vs. time f o r  data from-the two experimental s i t e s  f o r  T i .  
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Figure  2a. Total. o rgan ic  carbon, t o t a l  n i t r o g e n . a n d  Rf vs. time f o r  T i .  



F i g u r e  2b. T o t a l  o rgan ic  c a r b o n ,  t o t a l  nitrogne;'and Rf vs. time f o r  SS. 
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F i g u r e  2 c .  Total organic carbon, to ta l  n i t rogen,  and Rf vs. time for A l .  



Figure  2d.  T o t a l  organic  carbon, t o t a l  n i t rogen,  and Rf vs. time f o r  Cu-NI. 
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Figure 5. ToCal niLzogen vs. total orga::'.; carbon in the fouling films. 
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F i g u r e  6 ,  Dry f i l m  weight vs. t o t a l  organic carbon in the fouling f i l m s .  
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F i g u r e  8 .  Rf vs. total organ ic  carbon. -  



F i g u r e  9a. Total organic carbon, total nitrogen, and Rf for Ti. 
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' F i g u r e  Ob. T o t a l  o r g a n i c  carb'on.  t o t a l  nitrogen, and Rf f o r  SS. 
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Figure 10. Cu-Ni surf ace fouled with rod- and filamentous- typo? microorganisms. 
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