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ABSTRACT
Khachaturyan's expression for the elastic strain energy of a

coherent inclusion of arbitrary shape in an anisotropic medium is derived
from both macroscopic and microscopié theoretical approaches. This
expression can be simplified for the case of a very thin disk-shaped
inclusion, which enables one to analytically calculate the preferred
orientations of Guinier—Preston (G.P.) zones in aluminum-copper alloys
and carbide precipitates in iron-carbon martensite. The results are
in good agreement with the experimental data. However, this thin plate
theory breaks down badly when it is_app11ed to the case of thick plate
inclusions, such as the nitride precipitate (FefGNZ) in iron-nitrogen
~ martensite. A method which takes thevthickness effects into account
has been developed in order to solve this problem. The calculated
minimum strain energy orientation of the disk-shaped nitride precipitate

in iron-nitrogen martensite, obtained with this method shows excellent

agreement with experimental observation.






I. INTRODUCTION
Supersaturated solid solutions usually decompose by a complex
precipitation sequence. For example, in aluminum containing a few

percent of copper, the generally accepted sequence is:

Solid solution + Guinier-Preston (G.P.I) zones > 8" (G.P.II) zones -

' »> 0 (CuA]z)

The term Guinier-Preston (G.P.) zones refers to thin platelets of

solute atoms which form during the initial stages of solid solution
decomposition in age-hardenable alloys. These solute-rich clusters

are usually only several atom layers in thickness and about 20-40A in
dfameter. Hence, the initial stages of precipitation are the most
difficult to analyze because of the extremely small size of the pre- -
cipitate particles. The G.P.II zones are only slightly larger than

the G.P.I zones and represent a coarsening of the G.P.I zones. These
precipitates (G.P.I,II) are coherent with the surrounding matrix, and

" the strain fields around the precipitates depend on the differences

in lattice spacing between the matrix and the precipitate. An additional
interphase boundary energy (surface energy) must be associated with
these coherent precipitates because of the composition variation

across the precipitate-matrix interface. Thus, the orientation and the
optimum shape of the precipitate are determined by elastic strain energy
and interphase boundary energy. However, in most cases where coherent
coupling occurs between the matrix and the precipitate, it is valid to
neglect the interphase boundary energy in comparison with that associated

with the elastic deformations.
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The elastic strain energy of a solid containing precipitates

can be divided into two parts: the self energy associated with each
precipitate particle, and the interaction energy representing the inter-
action between the strain fields of nefghboring particles. This
interaction energy causes the precipitates to lie in periodic arrays,
instead of distributing themselves randomly throughout the matrix.1'9
fhe self enerqy of the precipitate depends on the shape, size, orientation
of the precipitate, the elastic anisotropy of the system, and the
orientational relationship between the lattices of the two phases.

10-12

Under the assumption of isotropic elasticity, Eshelby was able

to calculate the elastic strain energy associated with a coherent
ellipsoidal precipitate. In subsequent papers, several au‘thors]?"]6
extended Eshelby's work to account for anisotropic media. In 1967,
the elastic strain energy of a coherent inclusion with arbitrary shape

7 using Fourier

in an anisotropic medium was solved by Khachaturyan
Transform techniques under the assumption that the elastic modulus
tensors of both the matrix and the precipitate are the same.

For the case of a very thin disk-shapéd inclusion, Khachaturyan's
formula for the elastic strain energy of én inclusion can be greatly
simplified. This simplified form correctly predicts the orientation
of thin-plate preciﬁitates in both fcc and bec lattices, including
G.P. zones in aluminum-copper alloys and carbide precipitates which
form in iron-carbon martensite during room temperature temhering.
There are, however, some cases in which the thin plate theory appears

to break down badly. The most important of these, from the engineering

point of view, is the case of nitride (Fe]6N2) precipitates in
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iron-nitrogen martensite. Recent high resolution Transmission Electron
Microscopy (TEM) studies reveal one possible source of the discrepancy:

the Fe.'6N2 are observed to formin relatively thick plates. The predictions
of the Khachataryan formulation for inclusion of finite thickness have

not previously been explored. In the following these equations are

shown and compared with expem’mentz4 for the particular case of Fe]GN2

in martensite.
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II. THEORETICAL FORMULATION
Khachaturyan's expression for the elastic strain energy can be
obtained either from the macroscopic elastic theory (continuous
med'ium)17 or the continuum 1imit of the microscopic linear elastic

18 1he macroscopic theory will be discussed

theory for a discrete lattice.
first.
A. Macroscopic Theory

The elastic strain energy per unit volume in a continuous medium

can be expressed in the general form

{. su(r) |
f(r)=f<{u(r)} , ’ = D | (2-1)

> . . :
where u(r) is the displacement vector, assumed to be a continuous

function of r. Thié form for the free energy is obtained by expanding
the vector field u (f') about the point r and neglecting derivatives
of second order or higher.

The elastic strain energy f must be invariant under infinitesimal

translation, thus

N u(r) N N 3(u(r) +3)
f {u(f)} R %—-1—-t = f {u(r) + at , 3 5 ‘ (2-2)

~ r

where 3 is an arbitrary vector. From this it follows that f is
independent of u(r). To simplify the notation, define a tensor

”ij(f)’ where

aui(r)
us +(r) = =

~ or .
J Y‘J

(2-3)



and a reference state based on the undistorted materials, i.e., £({0})

= 0. Then the total elastic strain energy F can be written

F = ff(uij(‘r))d3r : (2-4a)
whole
system

Assuming that the function f(“ij(f)) is continuous in uj 50 it can be

vexpanded about the reference state u1.j = 0 to give

flu,.(r)) = a,.u, . (r) + %'Aijzmuij(r) uzm(r) (2-4b)

uij ~ ijij~
where aij
than two have been neglected.

and Ai are material constants and terms of order higher

jm

The elementary symmetry properties of o and A, can be obtained

J ijam
by considering the invariance of f under infinitesimal rotations, i.e.,

f(uij) = f(uij + wij) (Appendix 1) (2f5)

where Wy 5 is an antisymmetric tensor and (I + wij) is an infinitesimal
rotational operator. Equation (2-5) can be written explicitly as

1

- 1

@395 7 Mgam Yigten T %130y T i) T2 Miam(Y 5105 5) (g *ogn)

Rearranging terms, we get
1, 1 _ )

o955 * 7 MgantYiPem T i3t T2 Mgen®iPem T O (2-6)

Since Eq. (2-6) must be valid for any arbitrary U5 and Wy it
follows that:

095 = 0 (2-7)
and

A =0 . (2-8)

i3em®i3%am
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Since W; 5 is antisymmetric, from Eq. (2-7), it can be concluded that

%45 must be symmetric, i.e.,

aij = aji . (2-9)

By the same argument, it is also clear that

Mitm T Aiim T Mgt T Mmij (2-10)
The tensor uij may, as is well known, be split into symmetric and
antisymmetric tensors:

U, = E.. + Xos . (2-11)

where Eij = 1/2(uij + uji) is the symmetric tensor and is usually called
the strain tensor, and Xij = 1/2(u1j - uji) is the antisymmetric tensor.

With the substitution of Eq. (2-11) into Eq. (2-4b), we obtain

- 1 -
f(uij) = aij(sij + Xij) * xij]m(eij + X.-)(S]m + X]m) . (2-12)

- Using the properties of the symmetric tensor a.., €.., and A; d

ij’ ~ij ijim gn

the antisymmetric tensor x.., i.e.,

1]
av'ijxij = R
M 0
and
Mi¥ii¥e 0 e

it follows that Eq. (2-12) can be rewritten in the simplified form:

- 1 -
fluiy) = 055845 ¥ 7 M5 (2-13)



A second order stress tensor can be defined from the above equation;

i3 % %eas - %3 Y MjteCim (2-14)
Now, the elastic strain energy for a coherent inclusion of arbitrary

shape in an arbitrary anisotropic medium can be obtained by the method

above. For convenience, the diagrams which conceptualize the transformation

process are shown in Appendix 2. Following E'she'iby,,]O we shall solve

this problem with the help of a simple set of imaginary cutting, straining

and welding operations. Cut round the region which is to transform

and remove it from the matrix (step 1). Allow the unconstrained trans-

formation to take place (step 2). Apply surface tractions chosen so

as to restore the region to its original form (step 3). Put the

transformed region back in the hole in the matrix (step 4) and let

it relax (step 5). From Appendix 2, we see that the total elastic

strain energy consists of two terms,

_ 1 .(inclusion) o _o '

and a relaxation energy term (step 5), where V is the volume of the
inclusion. For step 5, we consider the elastic strain energies inside
the matrix and the inclusion separately. The elastic strain energy

inside the matrix can be expressed as

(matrix) _ 1, (matrix) 3

matrix



s

In this case, ag?atr1x) vanishes. Inside the matrix, o = 0 when
e = 0. Therefore, from Eq. (2-14), it is clear that o5 = 0. For the

elastic strain energy inside the inclusion, we can write

Féinc'lusion) - Jf [aijs,.(r)

ijt. (2-16)
inclusion
1 ,(inclusion) 3
* 7 A5m e;5(r) €1m(f)] dr .

Inside the inclusion,

. . inclusion)
- _ _,(inclusion) o _ olinc =
Thus, from Eq. (2-14), it follows that
(inclusion) . . ’
- .0 - (inclusion) o
%3 = %43 == A iim Im (2-17)

Under the assumption that the elastic moduli of both phases are

the same, Egs. (2-15) and (2-16) can be combined into a single equation:

_ ~(matrix) (inclusion)
5 = Fs * g

f[_o?je(f) 81-‘]-(\:) + -;- }‘ij'lmgij(r) Elm(f)] S (2-18)

To obtain Eq. (2-18), Eq. (2-17) was used and a new function called the

shape factor 6(r)was defined such that

1 inside the inclusion

o(r) = (2-19)

~

0 otherwise
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B. Microscopic Theory

_ Having surveyed the macroscopic theory, it is interesting to
study the elastic strain energy from the microscopic (discréte lattice)
approach. As argued in Refs. 18-20, the pairwise interaction energies

due to elastic deformations can be expressed as

oot iG], @ (2-20)
u
~ ~ R)=0
> [ T )32®j( )] u(R) W(R")
v {3u (R) duY(R' . - -
B’B Uiz wiz UT(B)=0.
uw (R*)=0

where @O is the energy of the undeformed solvent lattice containing
interstitial atoms. The function ﬁ(g) is the displacement measured
from the position of the lattice site of the pure solvent, and B
determines the position of the primitive cell. Due to the existence of
 the interstitial atoms , the pure solvent lattice sites will no longer
be equilibrium positions. It is assumed that the force at position R
js proportional to the surrounding interstitial atom concentration

(an implication of Vegard's Law), i.e.,

Wl st (2-21)
~ U1(R)=0 Nos

~

where P denotes the interstitial position in one primitive unit cell
of the solvent lattice. For convenience, define a tensor A‘J(B,R'),

such that
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) |
AURR) = =22 | (2-22)
== 0l (R) aud(RY)]
~. -~ u (5)30
ul(R')=0
Using Eqs. (2-21) and (2-22), Eq. (2-20) can be rewritten as
p0 ooy , |
Mo=0-0 = 3 (Fp(g,g ) w'(R) c (R )) (2-23)
P.R,R! ‘
7 2 MIRRD VR (R

For crystals having the symmetry property cP(B) = cP(—R), it

can be shown (based on work giveh in Refs. 21 and 22) that

(2-24)
AY(R,RY) = ATI(R-R")
and
AR = AT (R = AMRY-R)
FRR-R') = -F(R'-R) (2-25)

%A =0
R

For the continuum approximation, we consider a smooth continuous
function G(r) which is equal to the discrete function E(B) when r = R.
If ﬁ(f) varies 1ittie over the range of Aij(g-g’), then to an exceT1ent
approximation (which becomes exact in the Timit of very Tong-wavelength

disturbances) we can make the replacement



© emomn

UR') = U(R) + [(R' = R) - Y1 U(Y)]y . . (2-26)

Similariy for Cp(r), we have

cp(R') = Cp(R) + [(R* - R) - VI Cp(y)
o P Y =R (2-27)
With the aid of Eq. (2-25), Eq. (2-23) can be rewritten as
200 - 9 FAR-E) (' (R)-u' (R')) CP(R')
PLR,R
(2-28)

) %’ZEZZ (u'(R) - ui(B))Aij(B-g')(uj(B') - )
R.R' _

Substituting Eqs. (2-26) and (2-27), and again using Eq. (2-25),
Eq. (2-28) can be transformed into

F (R')R'J-—v u (R) Cp(R)
aRY

Ad =

vr X "
= 1J 12 TJ,Q,m
£es ap” u;5(R) CP(R) vg * 3 (R u 0 (R) vy
” (2-29)
where
e ~1~Z§:Z i 3 2-30
o =9 2 By B R (2-30)
R
AL o 2 e R (2-31)
\)0 o ~

and Vg i{s the volume of the primitive cell. For the continuum 1imit,

we have
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_ 1 ijam ij 3

AD j[z A uji(r) uml(r) + o uij(r) Cp(r)] d’r  (2-32)
p

For the problem of the inclusion inside the matrix, Cp(r) can be

defined in the same manner as the e(g) function, i.e.,

1 inside the inclusion

Cp(r) =
0 otherwise

Using the same argument as before (from Eq. (2-4a) to Eq. (2-18), the
equivalence between Eq. (2-18) and Eq. (2-32) can be established.
Demonstrating the equivalence between the microscopic and the macro-
scopic approaches enables us to better uhderstand the meaning of the
assumptions and the extent of the validity of the application.

Taking the sum of the elastic strain energies in steps.3 and 5
(Appendix 2), the total elastic strain energy associated with formation

of the elastic inclusion is

. 0 1 3
F=F, 4}0 “Oije(f)eij(f) * 5 Xijzmeij(r)ezm(r) d7r (2-33)
matrix + N
inclusion
where
1 00 i
Fo =7 MjamCijCam (2-332)

Using the equilibrium condition that the free energy is minimal, hence
that §F = 0 for arbitrary variation of state at constant temperature, we
get
. 0 1
oF = f’["’ije(f)‘s(eij(f)) o Ay yamdleg(r))egy(r)

¥ % Mian€ig ()8 (egn(r))] ¢r



g
Sad
s

g

«}3-
f[-dije(?) ary (8uy(r)) + Ay 5 3,, (8us(r))e, (g)]d?’r
j{aij[ g D180 (0) = N [ 52 oo €4 () Jou (1) 1%

Jg’{ [°Gij r)Sui(?) + Aijz Gui(r)e (f)]}d3r

By Gauss' theorem and by the boundary condition that the displace-
ments on the surface equal zero, the second term can be proved to be

zero. This allows us to reduce the above equation to the form

o f{(aijt - 80091 - gl 38 S DY (1) 1% .

For an arbitrary Gui(r), the validity of &6F = 0 can only hold when

0
o, [ 5 o(n)] -

1 Lm
j J

[ 57 equ(v)] = 0.
J
The above equation can be rewritten as

(52 ;’ [y, ()]) = o35 arJ o(r) . (2-38)

w
13 j

By utilizing the fourier transformation to k-space, Eq. (2-34), as

shown in Appendix 3, takes the form

B(Aijlm j E)U (K) = 1GiJK G(K) (2-34a)
If we denote
D. =2 (2-35)

im - Mgan<ie
Eq. (2-34a) can be rewritten as

Dim m(K) '?jKJ 6(5) (2-36)
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or

glu(f)) = -—‘igolk) 6(5) . (2-36a)

From this it follows that the displacement vector in x-space will
be

Iu(ns)) = - 4 go lk) o(x)

=-{ G 60 1) o(x)
3 ~ /

where

-1

G =D is Green's function. . (2-37)
ag =

By the convolution theorem (Appendix 4), Eq. (2-33) can be

rewritten as

3
" a3 0
= + -
S Fee [ -85 00IeT5000 + F 2y g3 |
r';('.1314 . 0 ¥ . 1
=Fp* J ZE;;§' 1Uije(f) Kiuj(f) + ?'A1Jlm iY%3 (K)K (f)]
(see Appendix 5)
= F, ¥ f—g35§ Pie(m) (KIGOIU*) . (ul D|u*)]
0 Jen?l - = z s
0 2 .
= g 6g | Je(x)] (see Appendix 6)
21’r)
Sl 00y 1]k ¢n]o® @ o%n> |6(x) |2 (2-38)
2 'ijlm "IJ Ln 2 (271’)3 N xR ~
where
k
Q= IKIZG,andn—T’T
23 ~ =3 k

Thus, a very brief and beautiful expression for the elastic strain

energy has been obtained which, in k-space, separates the shape factor
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6(«), and the function ¢n| go Q go_|n> which contains the other relevant
parameters, such as the stress-free strain e?j and the e1asticvmodu11.
Under the assumption that the elastic moduli of both phases are the
same, the formula given by Eq. (2-38) can be applied to any system with
any structure as a means for calculating the elastic strain energy
increase when a coherent inclusion of a new phase possessing arbitrary
shape forms in an anisotrobic medium.
C. Specific Examples

Now, it is interesting to elucidate some specific applications of
this theory. |

(1) First, we consider the case in which the matrix has a cubic
structure and the stress-freevstrain tensor is a pure di1ation,‘i.e.,

0 - 805 For a cubic crysta1,25 the components of the elastic

€ij i
modulus tensor are

My11 = Mooz T Ag3zz = O
Mi22 = M133 = Moz = 012 (2-39)
= 44

M2tz = M313 T Y2323
with all other components being equal to zero. From Eq. (2-35), and

with the substitution of Eq. (2-39), we get

“ g [n?(C11—C44) + Ca8]c° i j 2ot0)
D.. (k) = A., .k, K_= ' when 2-40
it Tt [ninj(c12+c44)]K2 P43

It is known that Green's function G = 2'1, and that @ = lk|2 G. There-
fore, the explicit expression for £ can be obtained by straightforward

calculation of Q'].
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c11~(c11~c44)n$+A(c11+c12)n§n§

fy ® C440(n)
(2-41)
-(€124C44) (1405 )y
he * Ca4D(n)
wheve

D(n) = CT1+a(C114C12) (nénenans+nans )+a(C11+212+4C48)n3nan g (2-41a)
and

A= C1- glﬁ"zcaa is an anisotropic factor. (2-42)

The other components of 2 (g) can be obtained from the above equations
by cyclic permutation of the cartesian indices.

in this case, 00
23

given by Eq. (2-17) can be expressed explicitly
as

oi = X1ng = (C11+2€12) ¢ 6 i] - (2-43)

For convenience, we can define B1(Q) = (nlgp o go|n). Then
- 2, 0,2 2 2 2
BY(Q) = (C11+2C12)°(e”) [911n1+922n2+933n3+2912n1n2+2923n2n3
+2931n3n1] | (2-44)

Substituting Eqs. (2-41) and (2-41a) into Eq. (2-44), Bi(n) becomes

B, (n) = (c11+2¢12) (%)
~ (2-45)
1+2A(n$n§+n§n§ g $)+3A2n$ g §
77,77, 2 . 777

C11+(C11+C12)A(n]n2+n2 3 )+(C11+2C12+C44)A 2n3
In this case, F, given by Eq. (2-33a) can be expressed as
FD w1 paensaci2) (€921 (2-46)

Thus, the elastic strain energy of case (I) is now
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3,
Ferl) - %—jé—ﬁ% By(n) la(x)|? (2-47)

where Féi) and B](Q) are given by Eqs. (2-46) and (2-45) respectively.
(11) As a second example, the matrix is again assumed to have a
cubic structure, but the stress-free strain tensor is now assumed to

be tetragonai, i.e.

(2-48)

Egs. (2-39-42) are still applicable in this case, but go has a different

form:
7 (c11+¢12)e. +¢12¢2 0 0
_ g 1 33
0 _ 0 _1i 0 0
oij = Aijlm o % 0 (c11+c12)en+(‘:‘12e33 0
? 0 0
0 0 2C12€11+C11e33 A
(2-49)

Furthermove, d?j

a deformation part, such that

can be divided into two parts: a dilatation part and

1
1 0 -5 0
0o _ 0 1 -
d‘ij =0 0 1 0 "é' (2 50)
0 0 0 0
where

0 _ Cii2Ci2 0,0 ‘ _
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and

._LQJJ_jZEEL (-e ]1 33) (2-51b)

Using Eqs. (2-41) and (2-49), BZ(Q) defined by (nlgo Q go|n> can

be expressed as

c 20 0 4200 0 . 20 0 0o 0
By(n) = nyoy 909y # n2"22 22022 ¥ N303333033 * 2nNy0y 185059
0. 0 0. 0
* 20yN50998094035 + 2NgNy 035037077 -

With the substitution of Eqs. (2-50), (2-51a), (2-51b), (2-41) and
(2-41a), Bz(n) becomes

2
B,(n) = i-%%go [y2 + Ang—Bng + atnn 202 (2-52)
where n 00—%60
"7 050
Y o o
B= (S +AGE - - e (G2
¢ = SIZ o2 (G 1) ar (G2 e 1) .

(Note: coefficient C in Reference 17, Eq. 20 was misprinted.)

Similariy,
(11) - 1 0 0
Fo " %7 Msom €ij Cam ¥
2 2 2
1 vi0 0 0 0 00
= 5 [{2(eqy) +(eg3) } C11 + {(eq) +2eqje5532C12]v . (2-53)

Therefore, the elastic strain energy of case (II) is

; |
FZ%H)'%géF%BﬂNM%HZ O (25)
‘ s



_]Vg..

where FSII) and Bz(n) are given by Egqs. (2-53) and (2-52) respectively.
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III. DISK-SHAPED INCLUSIONS
The occurrence of solute atoms clustering during the early stage

of solid solution decomposition has been observed in many systems.9’24’

26-33 The shape of the clusters in some systems is spherical, in which
case the interphase boundary energy (surface free energy) plays the
‘dominant role. However, the shape of the clusters in some other systems
is disk-like, which indicates predominance of the elastic strain energy.
The theories discussed in section II can be applied directly to calcu-
late the elastic strain energies and to predict the orientation of
these disk-shaped clusters. The displacements around the clusters can
also be calculated by using the same theory.

Disk-shaped inclusions with very thin thickness (0-thickness
approximation) will be discussed first. ‘The thickness effects will be
considered later. |
A. 0-Thickness Approximation

If the inclusion is considered to be arbitrarily thin, Eq.‘(2-38)
is found to reduce to a very simple form. For this condition, e(g),
the Fourier transform of the shape factor e(f) becomes a Dirac

S-function i.e., 9(k) has considerable values only when Ko n,
K

~

~

where n is the normal to the thin disk-shaped inclusion. Therefore,

Eq. (2-38) becomes

3
.1 060, 1,,0.0 a3k 2
Fs o AianfiiCan’ - 2¢0IC 29 l"’j 3 e(k)|
(2m)
= %'xijlmegjegm V- %—(nlgo Q gO|n> v (3-1)
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where

; _
j(: 5)< |9(l§)|2 = fd3r[e(r)]2 =jd3re(t) = V. (see Appendix 4)
™

Following the same argument, the elastic strain energies associated
with case I and II in section II (i.e., Eqs. (2-47) and (2-54)) can

be simplified respectively to

F = F(()I) - 17 B, (n)V | (3-2)
and
F=F - S ey (my . (3-3)

With the help of Egs. (3-2) and (3-3), many features of the
nucleation of disc-shaped particles can be explained. For a given
system, the orientation of the normal of the disk-shaped inclusion is
a function of the elastic moduli and the stress-free strains, and the
preferred orientation is determined by minimization of the elastic

strain energy. The theory can be further used to calculate the dis-
‘p1acements around the inclusion, thus providing some comparison with
experimental observation.

The thickness effects which influence the preferred orientation
and the alignment of the precipitate among the matrix will be discussed
below. |
B. Finite Thickness Consideration

For the disk-shaped inclusion, 6(k), the Fourier transform of
the shape factor 8(r), is given as (Appendix 7)

. Zy .
s1n(|§l-cosa-7r) ‘ J](|§|-51na-Ro)

S (3-3)
PR I R L

6(k) = 2V
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where V is the volume of the inclusion; I is the Bessel function of
the first kind of order 1; R0 and 26 are the radius and tﬁickness of
the disk-shaped inclusion respectively; and a is the angle between k and
o the normal to the disk. In order to illustrate Eq. (3-4), several
plots are shown in Figure 4 giving 9%%l-vs. a for various values of
k1, R,» and z.

Since it is impossible to analytically integrate Eqs. (2-47) and
(2-54) after inserting Eq. (3-4), the computer has been used to obtain
a numerica1 solution. A survey of the equations of the numerical
methods used in the computer ca1cu1ation is given below.

The general formula by which the elastic strain energy can be

obtained has been in Eq. (2-38):

, |
] —jjj<n|o 2 o’ Je(k)|? ’(‘ & sinedods. - (3-5)

2m)

In this equation, (n]g Qg |n> is a function of 6 and ¢; |6_(k)|2
function of |El and a for disk-shaped inclusion; cosa = C0sBycos6 +
sineo sind cos(¢0-¢) (Appendix 8); and (80,¢0) determines Nge the
normal to the disk.

The calculation can be simplified by choosing the coordinate

(k;, k&, k!) such that ké I n,. This allows Eq. (3-5) to be rewritten

z
as
T pln
1 1
F=Fy-7 —(—Zﬂ—)g(nlg gg [n) sinadadB le(k)l k dk
0 0 (3-6)

where o and B are the polar angle and the azimuth angle, respectively,

- ] ] ]
in (kX9 ky, kz) system.
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Denoting -
_ 2.2
£la) :i |8 (k)| “k“dk (3-7)
and
B(a.8) = (nl® g °Im (3-8)
Eq. (3-6) becomes
2w
F=F, -4 1 B(a,8)f(a)sinodads . (3-9)
0 ‘g \°T

The transformation between (k, 8, ¢) and (k, a, B) can be accomplished
by the Euler angles method,34 i.e.,

E = 5(eos¢o) i ’ (3—103)

or more explicitly

K; coseocos¢0 coseosin¢0 -sineo
K& = -sind cosdy 0 (3-10b)
Ké sineocos¢0 sineosin¢o cose0
Since |
R =g,
K12 =t KR R K

i.e., norm of the vector is unchanged during the coordinate transforma-
tion. Dividing Eq. (3-10a) by |K|, we get an expression in terms of
unit vectors:

EI = 5 (603¢0) D (3’]])
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k! K

~

where Q' = TET-and n= TﬁT-.

~ ~

The computér calculations used in the following sections are based
on the numerical procedures which have been presented above. The
elastic strain energy is determined by Eq. (3-9). From the profile of
the plot of elastic strain energy vs. orientation, the preferred orien-
tation of a disk-shaped inclusion with considerable thickness can be
determined. Specific examples of various precipitates which can be
modelled by this approach and comparisons of the model precipitations

with experimental data will be discussed in the following two sections.
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| IV. CUBIC CASE (DISK-SHAPED INCLUSIONS)

In this section, we consider the physical system in which the
matrix has & cubic structure and the stress-free strain tensor is a pure
dilatation (ie., e?j s eosij)' G.P. zones in Al-Cu and Cu-Be alloys are
typical examples of thin disk precipitates, which form in a cubic matrix.

it is impossible to measure the stress-free strain e?j of these
thin G.P. zones. It is known that the G.P. zones in A1-Cu and Cu-Be
alloys are solute-atom-vich regions which are not an equilibrium and
ordered phase. Based on these charvacteristics, it is reasonablie to set
9, to be cubic rather than tetragonal. The

J
choice of the cubic e?j can be demonstrated to be appropriate by com-

up the stress-free strain €

paring the calculated results such as the strains eﬁj and the displace-
ments around these G.P. zones with the experimental observations.

One must note the differences between the stress-free strain e?. and

, J
the real strains eij' Eij depends on the shape, size and orientation of
the inciusion, the function e?j and the elastic moduli while e?j depends

only on the diffevences in lattice spacing between matrix and inclusion.
Utilizing the séme argument as in Appendix 12 and assuming e?j to be
cubic, the strains Gij inside these thin disk-shaped G.P. zones can be
shown to be tetragonal. Consequentiy, the displacements around these
G.P. zones can be obtained and are found to be in good agreement with
the experimental data.28
By using Eshelby's model and assuming that the platelet of cubic
crystal structure and the cubic matrix are 1n€inif@ in two dimensions
and coherently connected, Schwellinger, et 3123 have been able to obtain

the preferred orientation of the platelet. By a sequence of piots of
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the orientation dependence of the e1ast1c‘strainvenergy density, they
~indicate that plates will lie on the (100) plane when the anisotropic
factor A givén by Eq. (2-42) is less than zero; on the (111) plahe when
A is greater than zero. Using the O-thickness consideration, Khachaturyan
has beén able to predict the same results.5 |

A detailed and thorough algebraic calculation based on O-thickness
consideration is giVeh below. From this derivation, it is possible to
| analytically solve the fe]ationship between the preferred orientation of
the thin plate and the anisotropic factar A. Furthermore and importantly,
this approach can be extended to the case of disk-shaped inclusions with
finite thickness. It is found that the results of the O-thickness
consideration are still valid in these‘more generalized cases. The
elastic strain energies and strain fields around the inclusions can also
be étudied by using the results discussed in Sections II and III.

With the aid of Egqs. (3-2), (2-45) and (2-46), the elastic strain

energy in the cubic, 0-thickness case can be computed to be
F = 3 v [3(c11+212) ()2

0)2

22 .22, 2
1+2A(n]n2+n2n3+n3
2
2

vV (C11+2€12)% (e

D] —

n )+3A2n$n§n§

2
1
> (4-1)
3

n$)+(c11+zc12+c44)A2n$

W N

c11+(c11+c12)A(n$n§+n n§+n n%n

It can be easily demonstrated that in this case F is a function of the
elastic moduli, the volume of the inclusion, the stress-free strain, and
the normal (n1n2n3) to the disk-1ike inclusion. Furthermore, the

direction of the normal giving the minimum elastic strain energy depends
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only on the elastic moduii. In fact, 1% can be shown that the determina-
tion of the nowrmal depends only on the sign of the anisotropic factor A
given by Eq. (2-42). The derivation is given in the following algebraic
calculations. |

To begin with, define a function AI(Q) such that

1 s2a(n2n2ennen2n) 430202020
A(n) = 1Ng Nz N3Ny 1NpMy - (4-2)
D CT1+(C114C12) A(nenl+nnl+nZnl) +(C11+2C1 2+C44) A%nn2n’
g *Nghgtnany 1"2"3
Substituting this expression into Eq. (4-1); we get
Fln) = 3 ¥ (C11+2012) (%) 2[3-(C11+2C12)A (m)] (4-3)

Since the preferved orientation n will give a minimum value for F(QO),
it readily follows from Eq. (4-3) that AI(QO) will be a maximum. From

the relation

2 2 2 _ -
nj 4 ny + a3 =1, | (4-4)

it is clear that there are only two independent variables inside AI(Q),
i.e., ny and fy. Since AI(Q) is fully symmetric with respect to fys My
and ys any two of them can be chosen as independent variables.

Writing a Taylor expansion for Ai("1°"2) around fgs Af(n1,n2) can

be expressed as
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Aytnyang) = Aglng) + (my=(ng)y ny=(ng),) (o4 \

8n1
on =
2/ n=n,
+ 1 (nem(n)es no=(n).)/ 28 328 ny-(n.)
2\ 0’1 "2 V0’2 I i 1 01
Z)n.i E"13"2 '
2 2 t..
3N, on 9.2
1772 n -
2 /n=ng
(4-5)

The criteria for determining the extrema of AI(n) are as follows:

P AI ] AI
. 2 an, on
o, oA, ony 172
for T = 0, T = 0 and det
1/ 2/ 1o o2, oA
X,
2%A
if | —5— >0 = Ai(no) is a lTocal minimum
an1 : -
=g
and azAI
if | — <Q= AI(QO) is a local maximum.
aln.i n=90

Taking the partial devivatives of £q. (4-2) with respect to h1 and’nz.

the following expressions can be obtained
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oA . 2A c44 ny (1= 2n )f(n )

I ny)fin, (4-72)
My LC1T#(CT14C12)a(ndn5+ 2n2+n2 2)+(C]1+2C12+C44)A2n2n2 242

nyNgtn3ny 1"a"3

and
5A 2n%caa n (1-2n2- 2)f(n )
anI = 75 g 2, 2 7 272727272 (4-7b)

2 [C11+(C11+C12)A(n5n%+n £)y+(C11+2012+044)8%n 203 ]

Ng*nangtn 123
where |
() = - (003 ¢ (D)2 + 2T (2 C11-C12 (2-8)

r2caa a3caa

Based on the criteria given by Eq. (4-6), it follows necessarily that

1('I 2n )f(nz) 0 (4-9a)

and

2(1 2n2 )f(n1) 0. (§-9b)

The possible solutions for the extrema of AI(n) are

ny = 0
(a) g i.e., n = {001}, (4-10)
n, = 0 ¥
ny = 0 _
(b) % i, ng = Lo, (4-11)
n, = — V2 :
V2
n1=l
/3 1
(c) i.e., Ny = — {111}, - (4-12)
/3

~No
o3 |—
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1 - 2"1 - n2 =0
(d) - (4-13)
: f(n1) =0 .
and
f(n]) =0
(e) : (4-14)
f(nz) =0 :

The specific cases indicated by Eqs. (4-13) and (4-14) are discussed
in Appendix 9. It is shown there that in those speéific cases, there
are no other possible solutions for the mathematical extrema other than
{111}, {001}, and {O11}. -

The criteria given by (4-6) can be used to explore the maximum
and minimum orientations for F(n).

(a) For ng = {001}

2
A o pp. C11-C12
an.]z (C”)Z 3 (4"]56)
ng = {001} N
' positive number
2
9"A
I _ C11-C12
g - 2. G1=CI2 (4-15b)
on, (C11)
n. = {001}
~0
and
3°A,
=0 . . (4-15¢)
an.lanz

Ny = {001}
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Therefore, for A # O
2 2
det = |2a . QLCIZE S o, (4-16)
2 2 ‘ (C11)
2
N, on on
172 2 g = {001}
From this it follows that
2
2R, | |
if4> 0% —x > 0= AI ({001}) is a Vocal minimum
on '
! lng = fo01} (4-17a)
j.e., F({001}) is a Tocal maximum,
and
2
P AI
ifA<O0=? —y <0= AI({001}) is a Tocal maximum
M (8-17b)
g = 001} ) o
~ i.e., F({001}) is a Tocal minimum.
= L
(b) For Ny —/f {011}
32A 2 _
1 - (C11-C12) [(C11-C12)+2C44)
— = A 5 Ao? (4-18a)
8n1 1 8(c44) [C11+(C11+C12)Eﬂ
positive number
and
22A
an’ 5 [C11+{C11+C12)7]
n. = — {011} — g i

positive number
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Based on the above resuits, it dirvectly follows that

2 2

9"y 37,
aw$ 8n1an2 _
det _ <0 . (4-19)
o’n,  OA
3n13n2 ang

n

.1
ny = (0113

Therefore, for any system, F(j%ﬂ011}) is a saddie point of the profile .

obtained by plotting elastic strain energy vs. orientation.

1
(¢) For n, = — {111}
0 5

oA, aA

oy 1 ) 1
ng = = {111 ng = = (111}
v /3 ~Y /3

8 4 ]
AT CA4 f(—)
3 /3

2 ¥4
[c11+(c11+c12) %+ (C1142C12+C44) %7-]

8
°A° °
81'(C44)§

(C11-C12) - [6(c44),+5(c11 c12)c44+2(c11 c12)%7+2(ca8)3 (4-20)
{c11+(c11+c12) A- —+(c11+2c12+c44) AC. ﬁ??, G

positive number
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4 .4 i
g% -3 8 maﬂE9
3. 9 T A 4 (4'2])
“ n . A
172 ng x {111} [C114‘(C11<’C12) g+ (Cit+2Ci2+C44) -2-7]
~ V3
and
[ .2 2
/ 9 AK 9 Al\x
; 2
| i)wmi an13n2
detg '
2 2
‘ P RI o ﬂ%
\ 5n,3n, O
\ | ¢ g =L i
~ 3
2
22% caa #(1)
/3

- . 50 - (2 - ) >0 . (4-22)
[C11+(611+C12) + (C1142C124C44) %7]

wi >

Therefore, we see that

2
3°A ,
iFA>0$:ﬁ- <0 = A ({1113) is a local maximum
W ong = L
~ /3 i.e., F({111}) is a local minimum,
and
2 A
Y
iFA<O= —;;? >0 = AI ({111}) is a local minimum
1 ng = L om
~ /3 j.e., F({111}) is a local maximum.

As a result of this type of thorough algebraic calculations, it is

possible to derive the following results analytically:
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(1) for A >0, {111} is the minimum orientation,

(2) for A < 0;'{001} is the minimum orientation, and

(3) {011} is the saddle point of the elastic strain energy vs.
orientation profile in all cases.

23 which were

These results agree with those of Schwellinger, et al
obtained diagrammatically using Eshelby's theory.

Now Tet us Took at the more general case of a disk-shaped inclusion
of finite thickness. By examining Eqs. (4-1) and (3-4), it is clear
that <n]go 2 goln> is fully symmetric with respect to the minimum
orientation, f.e., {111} for A > 0 and {001} for A < O as shown in
Figure 5 and that |e(k)|2 is symmetric with respect to the normal of
the disk-shaped inclusion (Figure 4). In view of this symmetry'about
the minimum energy orientations for the O-thickness case, there is no
reason to expect that the orientation would be different when finite

thickness is considered. So the predicted orientation of the disk normal

will still be {111} for A > 0, or {001} for A < 0.
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V. TETRAGONAL CASE

The physical system in which the structure of the matrix is cub{c
and the stress-free strain is tetragonal is studied in this sectién. An
example of such a system is the formation of carbon (or nitrogen) atom
clusters in iron-carbon (or iron-nitrogen) martensite during the early
stages of precipitation.

It is known that the martensite matrix has a tetragonal structure.
During precipftation, segregation of the interstitial atoms occurs. This
leads to thé formation of regions having a»high degree of tetragonality.
In other words, the concentration of carbon (or nitrogen) atoms inside
the matrix is reduced by precipitation. This reduction in the concenffa-
tion of carbon (or nitrogen) atoms leads to a reduction in the tetragon-
ality of the matrix. Hence, it is reasonable fo assume that the structure
of the matrix is now cubic. |

Since no experimental data is available for exactly determining
the stress-free strain e?j either for the nitride (Fe16N2; Figure 6) in
the Fe-N martensite matrix or for the finely dispersed carbide in the
Fe-C martensite matrix, the choice of the stress-free strain must be

37 35 To better

inferred from the results of Bell, Owen™" and Roberts.
understand the implications of this choice, a discussion of the deriva-
tion is given below.

In Section II Part B--given the micréscopic theory approach--we had
to assume the validity of Vegard's law in order to derive the continuum
limit of the fundamental microscopic theory. Based on this assumption,
it is possible to extrapolate the plot of the variation of ¢ and a lattice

’parameters with changes in carbon (or nitrogen) atom content to include
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a broad range of concentrations. It is assumed that this extrapolation
is va]idvin those regions which represent the solute atom concentration
inside the precipitate. The appropriateness of this assumption is indi-
cated by the excellent agreement of the normal of the disk-shaped carbide
(or nitride) precipitate predicted by this model with that determined by
experimental observation. Further confirmation of this assumption can be
obtained by comparing the calculated crystal lattice parameters of the
ordered (Fe16N2) phase with those based on experimental data (see
Appendix 12).

Based on the above discussion and from References 35-39, the follow-
ing results can be obtained:

For the Fe-C system, the stress-free strain is of the form

-0.091 0 0
0 .
€45 ~ 0 -0.091 0 XC (5-1)
0 0 0.858

The observations and characteristics of these carbon atom clusters are
discussed in more detail in References 9, 36, 44-47. For the Fe-N

system, the stress-free strain is given as

-0.095 0 0
LU - ‘ -
€3y = 0 0.095 0 Xy , (5-2)
0 0  0.855

In this system, the nitrogen atom cluster inside the Fe-N martensite

matrix is found to be an ordered phase (Fe16N2, Figure 6) with the

39

tetragonality along the c-axis. Here, XC and XN correspond respectively

to the atom fraction of carbon and nitrogen atoms.
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As discussed above, the martensite matrix is assumed to have an
approximately cubic structure. With this cubic matrix and the stress-
free strains given by Eqs. (5-1) and (5-2), we are able to use the
results in Section II Part_C Case (II) to explore the features of the
early stage precipitation in Fe-C (or Fe-N) martensite.

For the Fe-C system, a simplified form of Khachaturyan's solution
for the elastic strain energy of a thin plate based on O-thickness con-
siderations can be applied to analytically calculate the preferred
orientation of the carbide precipitates in this martensite matrix. The
results are in good agreement with the experimental data. However this
thin plate theory breaks down badly when it ié applied to the Fe-N
system. The nitride (Fe16N2) precipitates have been observed experi-
mentally in recent high resolution Transmission Electron Miscoscopy

24 Therefore, in order to

studies to form in relatively thick plates.
compute the preferred orientation of a thick Fe-N p1afe, it is necessary
to solve the anisotropic elastic model for the case of a plate of finite
thickness. The formulations and the computation procedures used to
carry out the required numerical integrations are described in Section
I11. Based on the caiculated results, the preferred orientation is |
found to be a function of the aspect ratio (ZO/ZRO), where Z, and Ry are
the thickness and radius of the disk-shaped inclusion respectively. The
results of the thicker plate calculation are in agreement with experi-
mental observation.z4
Now, let us study the precipitation in the Fe-C system by using

0-thickness approximation and that in the Fe-N system by considering

finite thickness effects:
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(1) Fe-C system
In the Fe-C system, the elastic strain energy given by Egs. (3-3),
(2-52), (2-52a) and (2-53) under O-thickness consideration has the form

1 012,,.0 2. , 2
F= 5 [(2(e]y) +(e33)7) -C11+2-((e 0 +2e 3) c12]-v
1 (or + 302 AL (m)V (5-3)
7 4% T %/ A\l
where
r2+ An%-Bn§+ACn$n§ §+2Ar2n$n§ (5-3a)
Apg(n) = IR I
¥ C11+(C11+C]2)A(n1n2+n2n3+n3n1)+(C1]+2012+C44)A n n2 3

From Eqs. (5-3) and (5-3a), it readily follows that the preferred orien-
tation ny will minimize F(n), when n = ng and will maximize AII(Q), when
27 To-

The problem of maximization of AII(n) is more complicated than the
maximization of AI(Q). Therefore, a special techn1que must be used to
deal with this problem. For a fixed value of N3s AII(Q) is the function

2,2

of ny and ny. Using the relation n$+n2 ng = = T, we can reduce the number

independent variables in AII(Q) to one. By defining

_ 5 2 - 2, 2
H(n,) = 1an3 = ny+n; | (5-4)

3)

and by setting

- 2 2)
a(n,) = C11 + A(C11+C12) ng (1-nj
b(ny) = A(CTT+C12) + A2 (c11+2c12+c44)n§ |
: : (5-5)
2. 2 4
e(n3) =r" + Ang - Bng
f(n3) = A'C-n§ + 2A°r2
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the expression for AII(n) can be rewritten as

e+ fH n]z - f n?
Apy(n) = 7 8 (5-6)
a+bH ny - b'n1
The first derivative of AII (n];n3) with respect to n, is
] 2
dAII(n1,n3) _ Zn](H-2n1)(af-eb) (5.7)
dn [a+an2-bn4]2
1 11
The condition for determining the extrema is
dA ‘ :
-0, ~ (5-8)

1

Evaluating Eq. (5-8), it follows that two solutions exist, either ny = 0

or n% = gu 0f course, this is based on the condition that af-eb # 0.

Here, it should be noted that either (ohl) or (hol) corresponds to the

2

n, = 0 case and that (hh1) corresponds to the ny = g-case. From Eq.

1
(5-3a), it readily follows that AII(n) is symmetric with respect to n,

and Ny. The minimum or maximum conditions can be determined only after
the second derivative is examined. The second derivatives of AII(n1)

for ny = 0 and n% = g-are respectively,

2
dA..(ny3n,) L
13 =<3l}> (af-eb) (5-9)
dny a »
n, =0

and
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2
d“A;{n;5ny)
I1YV7'1°73 2H
= 5 77 [-(af-eb . 5-10

_H
=72

From Eqs. (5-9) and (5-10), it follows that

(I) if (af-eb) > 0, then (hh1) maximizes AII(Q) and as a consequence
minimizes F(n); (5-11)

(I1) by the same argument, if (af-eb) < 0, then either (ohl) or (hol)
will minimize F(Q). ‘ (5-12)

From the above discussions, it is agreed that it is extremely
important to examine the properties of (af-eb). For this purpose, define

a function w(n3) z af-eb. Substituting Eq. (5-5) for (af-eb), we have

W(n

3) = [arf(C11-12) H[A5e* (C11-Ca4) +A(C - CTT-A(CTT+C12) ) In

AZ[(C11+C12)~(C—2r2+%Q-A(Cl1+2C12+C44)]n§

+

AZ[B(C11+2C12+C44)-C(C11+C12)]ng . (5-13)

+

With the aid of Eqs. (5-1) and (2-52a) as well as Appendix 10 and by
setting y equal to ng; Eq. (5-13) can be rewritten numerically for the
Fe-C system, where

W(ng) = W(y) = -0.254 + 1.461 y - 0.691 y° - 4.593 y> (5-14)
and

o<y<1.
From Figure 7, we see that W(y) < 0 in the range 0 <y < 1. The plot as

3

shown in Figure 7 is accurate to within a factor of 10°°. Therefore,

from (5-12) and (5-14) it clearly follows that either (hol) or (ohl) is
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the minimum orientation. Furthermore, the numerical values of h and 1

can be obtained by considering the case in which

r2 + A ng - Bng

AII(hol) = AII("10n (5-15)

) =
3 oo+ (C11+C12)A(1-n§)n§

Here, the relation n? + ng
dA

1 is used. To determine the extrema of

AII(n)’ set 75%1 = 0. Solving for this case, we find that either
h 3
g = 0 (5-16a)
or
. 2 2 .. 2
[C11°A-A-(C1T+C12) - ¥ TJ+2[A(C11+C12)r"-B Cl]]n3
+ [A(C11+12) (A-B) Ing = 0 | (5-16b)

Examining the second derivative of AII(n10n3) when ng = 0, we obtain

for the Fe-C system:

dzAII - CIT-A - A-rl-(C11+C12) (
= = >0 . 5-17)
dng (c11)2
ng =0 :

Therefore, AH(n3 = 0) is a minimum and consequently F(n3 = 0) is a
maximum. Thus, the solution obtained in Eq. (5-16b) will minimize F(Q)
and for the Fe-C system, Eq. (5-16b) can be rewritten in numerical form

as

~3.356 ng +1.953 ng +0.86=0 . (5-18)

By solving this equation, we find that ng = 0.87 (i.e., ng = 0.933)
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and that n$ = 0.13 (i.e., ng = 0.361).

Using the O-thickness approximation, the theoretical prediction
for the normal of the clusters in the Fe-C systém is Ny = (0.361, 0,
0.933). Within experimental error, the result is in good agreement with
the experimental data.9 Furthermore, the elastic strain energy and
fields associated with the carbon atom clusters inside the Fe-C
martensite can be easily calculated by the O-thickness consideration.
(2) Fe-N system

In comparison, based on experimental evidence, it is not appropriate
to apply O-thickness approximation to the Fe-N system. The thickness
effect must be taken into account. For disk-shaped inclusions, the
problem can be solved numerically with the aid of a computer. The cal-
culation procedure has been described in section III, Part B. The
results are presented in Table I. It is found that the aspect ratio
ZO/ZRO, plays an important role in determining the preferred orientation
of the disk normal. The normal itself is found by minimizing the
elastic strain energy function F(g). When ZO/ZR0 > 1/11.34 the disk
normal is the [001] direction. However, when ZO/2R0 < 1/11.34, this
orientation changes.

In the Fe-N system, the normal obtained using the O-thickness _
approximation is found to be (0;382, 0, 0.924) [Appendix 11]. However,
fhe observed normal is (001). This normal can be obtained by including
the finite thickness consideration (ZO/ZR0 > 1/11.34). This claim can
be readily demonstrated by examining Figures 4 and 8 and Eq. (3-5).
Figure 8 is a plot of B(6,9) = (nlg? o go|n) vs. 0 for the Fe-N system.

Ie(k)l2 is symmetric with respect to the normal of the disk and the



IR T
i R wd Bt

~43-

width of the curve becomes increasingly broader as the disk thickens.
B(9,4) is asymmetric with respect to the minimum point (0.382, 0, 0.924),
and smaller values of the function occur near (001). Therefore, for

the very thin disk with the §-function [e(lf)l2 the orientation for the
minimum energy lies near (0.382, 0, 0.924), while for the thicker disk
with the broader width of the function le(g)lz, the orientation for

the minimum energy will be shifted to (001). This normal (001) is in

complete agreement with the experimental observation.24
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VI. DISCUSSION
Comparing with the other theories of elastic strain energy,
Khachaturyan's approach provides a brief and simple method with‘very
clear physical concepts. In the k-space calculations, the formula
separates the shape factor e(E) from the other relevant parameters,
such as the elastic constants, the stress-free strain, etc. The formula
is also very powerful. It can be applied té any shape of inclusion
inside any arbitrary anisotropic medium. For most of the comp]icatéd
systems, the analytical solutions ére almost impossible. However, the
results can be obtained numerically via computer calculation.
Khachaturyan's formula also makes it possible to study the interaction
between the strain fields of neighboring inclusions. The applicability
of this approach is limited, however, by the assumption that the elastic
moduli of both phases are the same. Therefore, the extending of |
Khachaturyan's theory to remove this assumption is an important task.
In Reference 18, Khachaturyan already mentioned briefly the result

of the continuum Timit of the microscopic linear elastic theory. In
Section II Part B, we give a detailed and thorough derivation of the
continuum 1imit from the fundamental elastic energy expression given by
Eg. (2-20). From this derivation, we have the better understanding on
the assumptions made in Khéchaturyan's approach.

| Based on elastic strain energy expression given by Eq. (2-38), we
are able to derive analytically the preferred orientations of very thin
disk-shaped inclusions in the cubic case (Section IV) or the tetragonal
case (section V). These results can be obtained by the other theories,

but not analytically. Furthermore, we are able to calculate the
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preferred orientations and the elastic strain energies of the thick
disk-shaped precipitates: For the cubic case, the preferred orientations
of these thicker plates can be predicted by symmetry argument on Eq.
(3-5). For the tetragonal case such as nitride precipitates in the
Fe-N martensite, the preferred orientation is found to be a function of
the aspect ratio (ZO/ZRO) and the normal (001) can be obtained when the
aspect ratio is larger fhan some critical value. The features of thick
disk-shaped precipitates obtained in this work have not been done before.

From the discussions-in Section V, an interesting and significant
experiment can be proposed. By controlling the aging temperature and
the aging time, a series of different thickness of disk-shaped nitride
precipitates can be produced. The orientations and thicknesses of those
precipitates may be revealed by high reso1ution transmission Electron
Mi;roscopy studies. If results can be obtained in this manner, not only
can the phenomena associated with the early stage of nitride precpipta-
tion in a martensite matrix be more fully understood, but also these
results will provide a further prolative test for the anisotropic elastic
model (Khachaturyan's approach) as a theoretical tool for predicting and
understanding precipitation processes in solids.

Further refinements of the theory should include 1) incorporation
of variations in elastic moduli, 2) sdme accounting for the interactions
between the strain fields of neighboring inclusions, and 3) application
of the microscopic theory (especially where the precipitates are so
small as to approach inter-atomic dimensions). It is anticipated that
improvements both in the theory and in experimental observation will lead

to even stronger agreement than is demonstrated here.
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4. Convolution Theorem

¢ 3 __i{ iy -ikyj ) 1KY
j(v;)g(z)dv VI — (W) (k) 1L (—2;)—3:9( e~ 1]

3, 3.~ -
gj}dkdg H) g(E.)J[i(km )Y gy
(217) Ty p

(2m)° (k')
3
(—'“-)—3? ‘F(k) 9( k)
9§K—§ (k) g*(k)
(2r)” 7 )

s .
5. €55 =7 (ujy +uyy)
In k-space, the above equation becomes
- 1
The complex cenjugate of €, (k) is

et (k) = ~glkgus(k) + kgu¥(k))

0 o 0 %
G1J€13(k) 1Jk1uJ(k)
A132m 1J(k) €y (k) = X1J£m kiuj(E)kzu;(E)
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6. |uw =-160° [k a(k)
R B ~
. 0
lu¥) = 1 G g [k) e*(k)
0 0,0
to(k) (klg |u*> = ie(k) (klg™ 8 g [k *(k)

0

= k|g ggolk> |9(|j)|2

] 1 0 .0 0
7 (ulDlusy = 5ak|(-i)g” 6 8(k) D (1) G g o*(k)|k)

_ 1 0.0 0 2
= ﬁ-(klg & o [k> |o(k)]

7. The expression for e(g)g the Fourier transform of shape factor
8(r), for the disk-shaped inclusion with radius Ro and thickness Z0
(Figure 1) will be derived here.

For primed system (x', y', z') (Fiqure 2),

o = foT ) oy
where

o(y') = g

i inside the inclusion
0 otherwise

To simplify the calculation, it is better to use the Euler angle

A in order to transform the coordinates from the (x', y', z')

method
system to the (x, y, 2) system (Figure 3). As a result the z-axis lies
parallel to n the normal of the disk.

In unprimed system (x, y, z) or (R, 6, Z),

vy = Rcose X + Rsine § + Z 2 ,

and



O 0oy s U e dy
-5]=

E'X = kacose + kyRsine + KZZ

= |k|sinacosgy Rcose + |k|sinasing; Rsiné + |k|cosa-Z
= |k|Rsina cos(e-B;) + |k|cosa z

and

Ry Ly
7
o(k) jfﬁze Y dr Rd® dz

-
R T+8 0
0 1,02
= 2 J{ J{ exp[ilk]Rsinacos(e-B1)+iIklz-cosa]Rdeedz
7 ~
0 By -%1 (by symmetry
argument)

setting 8' = 6-8ys we have

R L . ' z
foj e'iH_gle*macose -2-51’n(|k|cos<x--ég)
2 ad ‘

|k|cosa

6(k) RdRde'

3

Zo, A0 |

sin(|k|cosa-5")

4 — WIO(i[kIRSina) RdR
[k|cosa -

L, Ro
sin(|k|cosa j?)
= ZﬁZO = i Jo(lklRSina) RdR

(lglcosa-jg) 0

Z

2 (xi22.) s1n(|k|c05a 7?) Ji(lklsina-Ro)
o {wR =
070
N (|k|cos@3r) (‘5131naR0)

volume

of the

inclusion

8
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In the above derivations, we have used the following properties

of Bessel functions:

w
)? ePCOSXgy = w1g(p)
0

Io(ix) = JO(-x) = Jo(x),

and

}{xndn_idx = xﬁJn .
It is clear that 6(5) is independent of the coordinates chosen.
8. In k-space,
ng = (sineocos¢0, sinecsin¢0, coseo)
and
n = (sindcos¢, sinbsing, cosd).

Therefore, we have

cosa = Ngen = cosecosg +sindsing, cos(¢0—¢) .

9. 1In order to solve Egs. (4-13) and (4-14), f(n) = 0 (see Eq.
(4-8)) must be solved. To simplify the problem, several systems will

be discussed.

that

(1) A1 [40] ¢y = 1.082 x 10'2 ergs/cn’
Cyp = 0.613 x 10]2 ergs/cm3
- : 12 3 L
Cgq © 0.285 x 10 = ergs/cm A = -0.354
2, it follows directly from the range for n2

[fwesety =n
0<y=1. For f(y), we get the expression
fy) = f(n) = -y® + y% + 18.388y - 37.095,
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from which it is easy to show that
fly) <O for0<sy=<1.

(2) Cu [41] ¢y = 1.686 x 1 3

012 ergs/cm

Cyp ® 1.214 x 1012 e?gs/cm3

Cgq = 0.754 x 1012 ergs/cm3

fly) = -y3 + y2 + 0.13y - 0.239

fly) <0 for0<ys<1l.

(3) Ni [41]  cqq = 2.465 1012 ergs/cm®
¢yp = 1.473 x 10'2 ergs/cm’
Cag © 1.247 x 1012 ergs/cm3

f(y) = -y3 + y% + 0.408y - 0.456
fly) <O for0<y<1.

(4) Nb[42] Cyq = 2.46 X 1012 ergs/cm3
11
Cyp = 1.34 x 10]2 ergs/cm3
a4 0.287 x 10]2 evgs/cm3
e 3 eyl 567

fly) ==y~ +y + 1.881y + 0.

fly) >0 for0<y<1.
(5) cr[43]  cyy = 3.5 x 10'2 ergs/cm’

0.678 x 1012 ergs/cm’
12

€12
1.008 x 10

1]

3
a4 ergs/cm

fly) = -y> + y® + 7.186y + 5.468
fly) >0 for0<y<1i.

A

A

-1.377

-1.204

1.902

0.8



-58w

Based on the results derived for the five cases above, it is very
clear that in these cases, there are no other possible solutions for the
mathematical extrema other than {111}, {001} and {011}.

8. For the Fe-C system, the elastic moduli are

= 2.335 x 1012 ergs/cm3 s

N
¢yp = 1.385 x 10'% ergs/cn® ,
and Caq © 1.180 x 10]2 ergs/cm3

The following parameters can be obtdined from Eqs. (2-42), (2-51a),

(2-51b) and (2-52a) by substituting the values of the elastic constants:
A =-1.169

= 1.137 x 'IO‘I2 (xc) ergs/cm3 .

%
60 = 0.62 x 1012 (xc) ergs/cm3 .
A=-0.05,
B =-0.828 ,
C =-0.486 ,
and v = 0.471 .

11. The orientation of the disk normal (0.383, 0, 0.924) with
r@spect to the minimum elastic strain energy in the Fe-N system was

obtained with the same method as that used for the Fe-C system
8u1 (r)) is
Ny

i12. The Fourier transform of “ij(f) (=

g4 () = ikguy (K)

ik (-1)(6 g1 Ky (k)

ng (2 g my 00K)
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Transforming uij(k) back to real space, ”ij(Y) can be expressed as

For a thin plate with a normal equal to Ng> the following approximation

can be made.

3, .
_ 0,0 0y 0 fdk ikey
u; < (y) nj(gg )” n'lf )ge ~ "L a(k)

For the Fe-N system, (001) has been proved to be the orientation of the
disk-shaped inclusion normal with respect to the minimum elastic strain

energy. From Eqs. (2-41) and (2-42), we have

or O 0
Q -1 0 4 0
£(001) ca
1
0 (-

From Eq. (5-2), we get

~0.095C11+0.76C12 0
0 _ 0 _ i
%5 = M Sam = MW 0  -0.095C11+0.76C12 0
0 0  0.855C11-0.19C12

Therefore, inside the inclusion



-56-

0 0.855-0.19%%%

o 1.355, 1 _
U33 633 = (0.855 - 0.19 m) § = 0.093.
Upp = Upp = By = €5p = 0

From this it follows that the crystal lattice parameters of the tetragonal
a" (Fe]6N2) phase, which is itself a superlattice in the BCC lattice of

aFe phase, are (see Figure 6)

1]

2a0 + AC

(@]
it

2a0 + 2a-e33 = 6.263 A

n

2a, + 2a~-€,y = 5.73 A

2a) + Aa = 23 + 2a5° €y,

0

[sV)
it

These results are in good agreement with experimentally determined

crystal lattice parameters of the o phase,38
caw=06.294A
(04
a,.=b, =5.73 A
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TABLE I: Fe-N System. 0.
Z0 R0 20/2R0 60 Orientation
1 10 50 1/10 0 [001]
2. 9.5 51.299 1/10.8 0 [oo1]
3. 9.25 51.9875 1/11.24 0 [001]
4, 9.2 52.1286 1/11.34 0 [o001]
5 9.1 52.4142 1/11.52 1.65° [0.029, 0, 0.996]
6. 9.0 52.704 1/11.71 2.95° [0.051, 0, 0.999]
7. 7.5 57.735 1/15.38 10.35° [0.180, 0, 0.984]
8. 5.0 70.71 1/28.28 15.94° [0.275, 0, 0.962]
9 2.5 100. 1/80 19.47° [0.333, 0, 0.943]
10. 0 0 22.5 [0.382, 0, 0.924]

*Cases with ¢, # O were calculated, and they showed the
0 _

similar results.
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FIGURE CAPTIONS
Disk-shaped inclusion with_radius RO’ thickness ZO’ and
normal DO;
Disk-shaped inclusion sitting in the primed system (x', y', z').
The coordinates are transformed by the Euler angle method
from the (x', y', z') system to the (x, y, z) system in
which n, is parallel to Z. |

K
Plotting of —%fl vs. a for

(1) Ikl =1, Z, = 2.5, Ry = 100,
(2) k| =1, 2y =5, Ry = 70.71,
(3) k| =1,z =10, Ry = 50.

0
Plotting of B(6,4) vs. & for A1-Cu system shows the minimum
at 8 = 00.

Ordered structure of Fe]GNZ'

Plotting of function w(n3) defined in Eq. (5-14).

:- Plotting of B(6,6) vs. 6 for Fe-N system.
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