

**ULTRASENSITIVE MOLECULAR FLUORESCENCE SPECTROSCOPY
IN LEVITATED MICRODROPLETS**

J. M. Ramsey and W. B. Whitten
Analytical Chemistry Division
Oak Ridge National Laboratory
P. O. Box 2008
Oak Ridge, Tennessee 37831-6142

CONF-901110--3

DE91 000621

S. Arnold
Polytechnic University of New York
Brooklyn, New York

and

B. V. Bronk
U.S. Army Chemical Research and Development
Engineering Center
Aberdeen Proving Ground, Maryland

The extreme sensitivity of fluorescence spectrophotometry results from the fact that a molecule can undergo many excitation-emission cycles before destruction by photochemical degradation. For example, Rhodamine 6G (R6G) can emit in excess of 10^5 photons before photolysis takes place (1). The fraction of emitted photons collected and converted to countable pulses can be as high as 10^{-3} , although 10^{-4} is more readily attainable. Therefore, sufficient signal exists for single molecules to be detectable. Detection limits for molecules in solution have been limited by background signal from solvent Raman scattering and fluorescence. This background signal adds noise to the measurement and has effectively restricted the detectable concentration to about $10^{-13} M$. Over the past decade, advances in detection of fewer molecules have all been made by reducing the measurement volume and/or increasing the measuring time. Given the above concentration detection limit a reduction of the measurement volume to 1 pL leads to a minimum observable quantity of ≈ 1 molecule. The ability to detect a single molecule in condensed phase could have many important applications in addition to being an interesting problem. The obvious application of this approach is to situations where small quantities of material are available for analysis. The capability to reliably detect a single fluorophore might also allow the screening and/or sorting of a collection of molecules. Such abilities would have application to many biological problems such as DNA sequencing and detection of DNA adducts.

The submitted manuscript has been
authorized by a contractor of the U.S.
Government under contract No. DE-
AC05-84OR21400. Accordingly, the U.S.
Government retains a nonexclusive,
royalty-free license to publish or reproduce
the published form of this contribution, or
allow others to do so, for U.S. Government
purposes.

Research sponsored by U.S. Department of Energy, Office of Energy Research, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc., and the U.S. Army Chemical Research and Development Engineering Center.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
MASTER

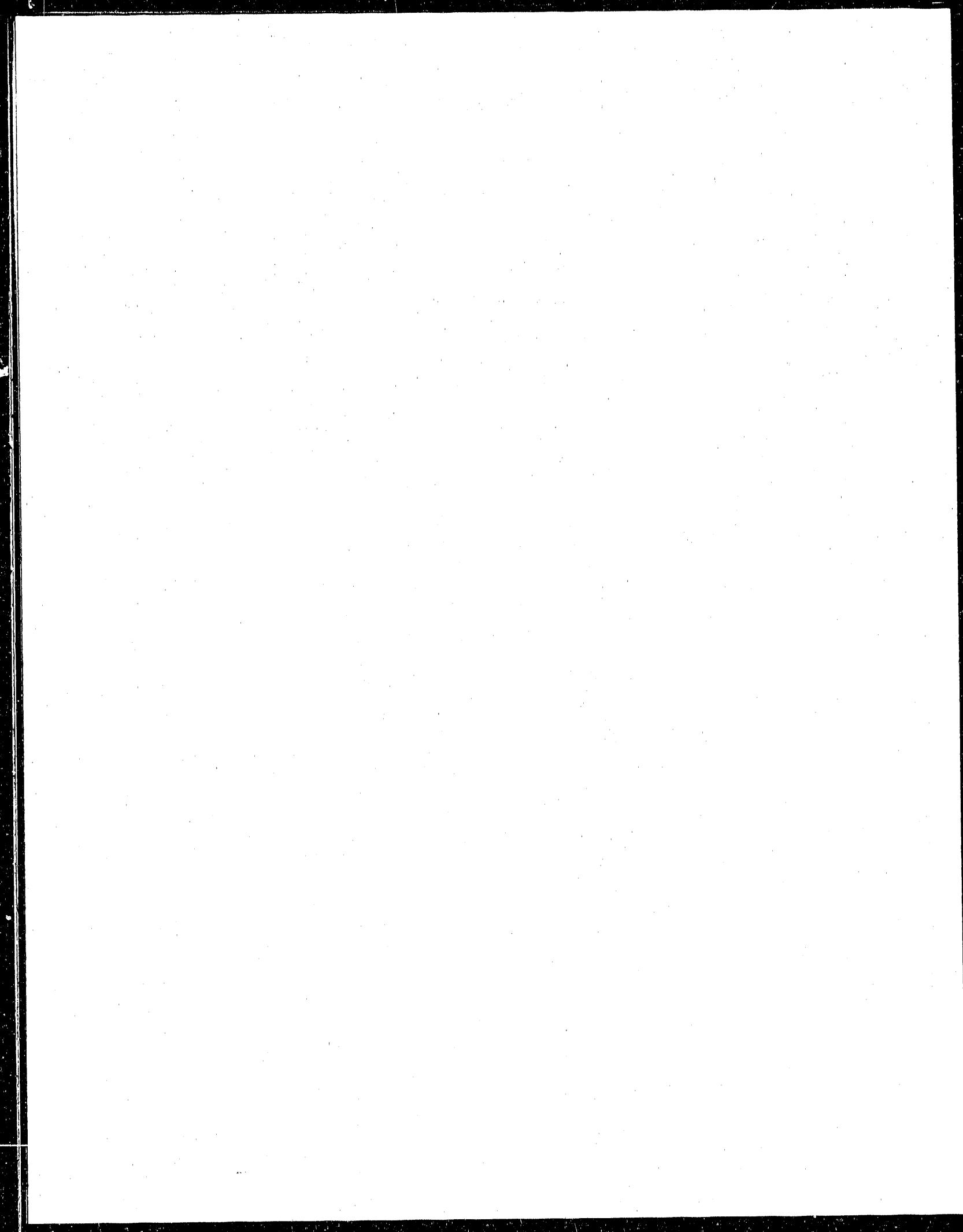
Measurement volumes have been reduced to date by modifying a flow cytometry apparatus (2). A sheath flow cuvette is used to hydrodynamically focus sample solution to a narrow ($10\text{-}\mu\text{m}$ diam.) stream. This narrow stream of sample can be crossed with a focused laser beam to define an analysis volume of a few picoliters. This approach has made it possible to observe as few as 800 R6G molecules (3). In an attempt to minimize solvent background, Kirsch evaporated samples on $10\text{-}\mu\text{m}$ silica spheres and observed them with a fluorescence microscope (4). Their technique allowed the detection of 8000 R6G molecules. Keller more recently reported single molecule detection in condensed phase using the sheath flow cuvette, by use of a protein molecule ($\text{MW} \approx 250,000$) which has a fluorescence yield equivalent to 25 R6G molecules (5).

In our experiments the measurement volume is reduced by observing a single microdroplet of solution (6). A $10\text{-}\mu\text{m}$ diameter spherical droplet has a volume of $0.5\text{ }\mu\text{L}$. Such a droplet of sample solution can be generated on demand for fluorescence analysis. These droplets contain a large number of elemental charges on their surface and thus can be influenced by an electric field. The charged droplets are trapped in an electrodynamic trap that holds them stationary in space to within a fraction of a diameter. A laser is then used to excite fluorescent molecules contained within the droplet. There are a number of potential advantages of this approach over the sheath flow cuvette technique. The measurement time can be independently controlled in the case of the trapped droplet. The velocity and measurement volume determine the measurement duration for flowing streams. Diffusion of the analyte from the analysis volume is less likely for a levitated droplet. In addition, sorting at the molecular level is possible with the individual droplets.

In our initial experiments, solutions of R6G in glycerol have been studied. Sample solutions are made by diluting stock R6G/Methanol solutions in 99.8% glycerol which are then further diluted 9:1 with HPLC grade H_2O . The water is added to improve droplet formation and is assumed to completely evaporate in a few seconds reducing the droplet volume. The water is neglected in determining the solution concentrations and number of molecules in a droplet although the droplets contain several percent H_2O at equilibrium with the laboratory atmosphere. Experiments have been performed with as few as 11 ± 3 analyte molecules in $13\text{-}\mu\text{m}$ diameter droplets of glycerol. An average of 340 photons are detected per R6G molecule. Detection is limited by blank fluorescence signal. Presently, the blank corresponds to a signal of $\approx 0.8\text{ pM}$ R6G or ≈ 0.5 molecules per droplet. The detection limit (figure of merit) is defined as the noise in the blank counts divided by the counts per molecule giving ≈ 0.4 R6G molecules for these experiments.

REFERENCES

1. E. P. Ippen, C. V. Shank, and A. Dienes, *IEEE J. Quantum Electron.* QE-7, 178 (1971).
2. N. J. Dovichi, J. C. Martin, J. H. Jett, M. Trkula, and R. A. Keller, *Anal. Chem.* 56, 348 (1984).
3. D. C. Nguyen, R. A. Keller, and M. Trkula, *J. Opt. Soc. Am.* B-4, 138 (1987).
4. Kirsch, B., Voightman, E., Winefordner, J. D., *Anal. Chem.* 57, 2007 (1985).
5. D. C. Nguyen, R. A. Keller, J. H. Jett, and J. C. Martin, *Anal. Chem.* 59, 2158 (1987).
6. W. B. Whitten, J. M. Ramsey, S. Arnold, and B. V. Bronk, "An Approach to the Ultimate Detection Limit by Fluorescence Measurements in Microdroplets," *Proceedings, CRDEC Conf. on Obscuration and Aerosol Research*, 1989, in press.


DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

-FIND-

DATE FILMED

11/11/90

