

UCRL-15343

P.O. 8947803

MASTER

SALTON SEA SAMPLING PROGRAM:
BASELINE STUDIES

R. E. Tullis

J. L. Carter

G. W. Lanlois

California State University, Hayward

April 13, 1981

 Lawrence
Livermore
Laboratory

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

UCRL- 15343

Salton Sea Sampling Program: Baseline Studies

Submitted by:

Dr. Richard E. Tullis, Project Director,

James L. Carter and Gregg W. Langlois

**Department of Biological Science
California State University, Hayward
Hayward, Cal. 94542**

UCRL # UCRL- 15343

Contract:

Period: October 1, 1977-September 30, 1977

P.O. # 8947803

Imperial Valley Environmental Project

Environmental Sciences Division

Dr. Joseph H. Shinn/Robert R. Ireland

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

NOTICE

Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore Laboratory under contract number W-7405-ENG-48.

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

INTRODUCTION

This report provides baseline data on three species of fish from the Salton Sea, California. The fishes considered were the orange mouth corvina (Cynoscion xanthulus), gulf croaker (Bairdiella icistius) and sargo (Anisotremus davidsonii). Morphometric and meristic data are presented as a baseline to aid in the evaluation of any physiological stress the fish may experience as a result of geothermal development. Analyses were made on muscle, liver, and bone of the fishes sampled to provide baseline data on elemental tissue burdens. The elements measured were: As, Br, Ca, Cu, Fe, Ga, K, Mn, Ni, Pb, Rb, Se, Sr, Zn, and Zr. These data are important if an environmentally sound progression of geothermal power production is to occur at the Salton Sea.

MATERIALS AND METHODS

The fishes studied were collected from four different locations in the Salton Sea. The most northern station was 50 m off shore of Salton Sea State Park (SP). The next southern station was 100 m off the inflow of Salt Creek (SC). Our southern most station was between Red Hill Marina (RH) and Obsidian Butte. The distance from shore was approximately 1 km. In addition we sampled one deep water (11 m) station located 5 km SSW off Bombay Marina (BB).

Fish were collected on four sampling trips of approximately one week duration each. These were initiated on: December 19, 1977; April 3, 1978; July 10, 1978; and October 1, 1978.

Fish were collected with 125 ft. sinking gillnets graded from 2-in. to 5-in. stretch. The procedure for the collection and handling of gillnetted fish was as follows: gillnets at SP, SC, and RH were set in shallow water

(-2 to 4 m); gillnets at BB were set on the bottom at 11 m; the nets were set in the evening and retrieved the next morning; the set time ranged from 12-18 h.

After retrieval, fish were removed from the nets and morphometric and meristic data were recorded. If more fish were collected than needed, fish were selected to provide a representative size range of the catch. The fish were then individually placed in separate polyethylene bags and frozen on dry ice for transport to California State University, Hayward.

Acid washed plastic utensils were used to excise portions of the muscle, liver, and bone. The tissue samples were placed in acid washed beakers and weighed, then dried at 60°C for at least 48 h, cooled in a desiccator and weighed a second time. The samples were then taken from less than 200°C to 450°C in increments of 50°C/h in a muffle furnace. They remained in the muffle furnace until all organic material was ashed. For some samples (liver) it was necessary to pool the tissue from several fish to provide adequate material for analysis.

Upon completion of the ashing process each sample was transferred to an acid washed glass vial and sent to Lawrence Livermore National Laboratory for elemental analysis by x-ray fluorescence.

RESULTS AND DISCUSSION:

1. Morphometrics and Meristics

Dorsal fin ray counts were made to determine if there were any deviations from normal counts (Tables 1-4). Few abnormal dorsal fin ray counts were observed for the corvina or gulf croaker. Data from the first year's sampling indicated that abnormal fin ray counts existed in the sargo. To test if there was a significant difference in the sargo fin ray numbers, we counted fin rays from specimens in the collection at the California Academy of Sciences (CAS). The sargo in the CAS collection are from two different locations, coastal California and the Gulf of California.

Miller and Lea¹ report the range in dorsal soft rays of sargo to be 14-16. The sargo from the CAS collection had a range of 14-16 ($\bar{x}=15.59$, $S^2=0.4186$, $n=34$). The sargo from the Salton Sea had a range of 11-16 ($\bar{x}=14.02$, $S^2=0.9524$, $n=63$). The calculated t value (9.06, d.f. =95) was larger than the critical t value (1.988, $p < .05$) indicating a significant difference in the mean number of dorsal soft rays between these two populations.

Variations in the number of intraspecific meristic characters has been attributed to a number of physical parameters. These include temperature^{2,3,4,5}, salinity⁶, and light^{7,8}. In addition it has been recognized that variation in meristics may also be a function of productivity⁹.

The Salton Sea is physically different from the ocean waters of coastal southern California and the Gulf of California. Temperatures range from 13°C to over 35°C¹⁰. Hubbs² and Weisel⁵ both observed negative correlations

between temperature and the number of dorsal fin rays in populations studied in the field. The salinity of the Salton Sea in 1977 was 37-38 $^{\circ}/oo$. Heuts⁶, studying fresh water and sea water populations of Gasterosteus aculeatus, found differences in the population means of dorsal fin spine and ray counts. Taning³ suggested that the role of salinity may be obscured by the relative impermeability of the vitelline membrane. Another, though indirect, result of salinity is the buoyancy of the sargo eggs. Lasker, Tenza and Chamberlain¹¹ found that the eggs of sargo sank in sea water but floated in Salton Sea water. This would imply that the eggs are exposed to more light in the Salton Sea than in the ocean environment. Lindsey⁸ found decreasing vertebrae and anal fin ray counts in Oncorhynchus nerka with increased light. The Salton Sea is an extremely eutrophic environment. Johnson and Barnett,⁹ studying midwater fishes from different parts at the Pacific Ocean, showed highly negative correlations between productivity and meristic number.

Gonado-somatic indices were calculated for corvina, gulf croaker, and sargo (Figures 1a, b, & c). Corvina gonad weight increased in April to a maximum in July. The large range in the gonado-somatic index of corvina indicate that spawning is not strongly synchronized¹². In addition we observed several individuals that appeared to be reabsorbing the gonadal tissue. The sargo gonado-somatic indices reached a maximum in April, indicating late spring as the reproductive period. Gulf croaker gonado-somatic indices reached a maximum in April, indicating late spring as the reproductive period. Gulf croaker gonado-somatic indices showed temporal characteristics similar to sargo.

Liver indices are represented in Figures 2a,b and c. Liver indices were lowest in October for gulf croaker and sargo and lowest in July-October for corvina. These periods represent post-spawning times for all species. In addition the later periods may represent post summer temperature stress.

Macroscopic examination of stomach contents were made on corvina, gulf croaker, and sargo (Table 5). Corvina fed on fish most of the year with their diet consisting of mollies (Poecilia latapinna), gulf croaker, and sargo. In April 92% of the corvina with food present in their stomachs contained Neanthes succinea. This may indicate a shift in the diet due to the disappearance of gulf croaker and sargo during spawning. Sargo fed on barnacles (Balanus amphitrite) most of the year but switched exclusively to N. succinea in April. The gulf croaker fed almost exclusively on worms (N. succinea). However, 57% of its stomach contents in July consisted of juvenile sargo, supporting the estimate of late spring as the spawning period of sargo.

Major and Trace Elements

Mean levels of the major and trace elements detected in muscle, liver, and bone for the three species tested are listed in Table 6. Most concentrations are within the ranges reported by other researchers. There appear to be higher values in some of the major elements, ie. Ca, Sr, and K.

Patterson and Settle¹³ found Ca concentrations in tuna muscle, liver, and bone to be 78 ppm, 444 ppm, and 157,746 ppm respectively (values adjusted to dry weight). Concentrations in Salton Sea fishes were higher in all tissues except corvina liver. Sargo had the highest Ca values of all Salton Sea fishes. The diet of sargo consists predominately of the barnacle Balanus amphitrite. The stomachs of sargo are frequently full of barnacle remains.

Strontium follows a similar pattern of being much higher in muscle and liver of Salton Sea fishes, though bone concentrations are lower then reported for tuna¹³.

We found K values in muscle ($x = 21,936 \text{ ppm}$) to be higher than the concentrations Young¹⁴ found in Salton Sea fish ($x = 14,480 \text{ ppm}$, value adjusted to dry weight). His values were similar to those found by Patterson and Settle¹³ in tuna.

Rubidium values in our samples were also higher then the values found by Patterson and Settle¹³ in tuna and Young¹⁴ in Salton Sea fish.

Arsenic concentrations in Salton Sea fish muscle were within the range reported by Heit¹⁵ for striped bass. These values are low compared to values found in shorthorn sculpins by Bohn and Fallis¹⁶.

Copper values are conspicuous in that they are much lower in all tissues than those found by Cross et. al.¹⁷ in bluefish and Bohn and Fallis¹⁶.

Zinc concentrations are the same or lower than those found by other researchers^{15,16,17}.

Lead values are higher than those reported by Patterson and Settle¹³ but lower than found by Heit¹⁵. One should be careful in interpreting Pb analyses because of the difficulty in obtaining uncontaminated samples¹⁸.

In general the frequency of highest concentration for an element per tissue is sargo > gulf croaker > corvina. Patrick and Loutit¹⁹ found that fish fed metal contaminated tubificid worms had higher metal body burdens than those fed un-contaminated worms. In addition it was shown that the body burden of fish fed metal contaminated worms increased with time. Table 5 shows that corvina fed predominately on fish while the gulf croaker and sargo fed mainly on the worm, Neanthes succinea, and the barnacle, Balanus amphitrite, respectively.

Tables 7, 8, and 9 present mean element concentrations per tissue per station for corvina, gulf croaker, and sargo. There appears to be no obvious spacial variation in elemental concentrations. Young¹⁴ also found the Salton Sea to be relatively homogeneous.

Tables 10 through 18 present elemental concentrations of the sampled tissues relative to sampling period. There appears to be no temporal variation in elemental concentrations.

Summary:

1. There appeared to be no significant variations in observed meristic characters for corvina or gulf croaker.
2. Sargo showed reduced dorsal soft ray frequencies that were significantly ($p < .05$) lower than fish analyzed from other locations.
3. Major elements were generally higher in concentration than reported by other researchers.
4. In general, most trace elements were within the same concentration range, or lower, when compared to other studies on fish.

References

1. Miller, D.J. and R.N. Lea. 1972. Guide to the coastal marine fishes of California. Calif. Fish and Game, Fish Bull. 157.
2. Hubbs, C.L. 1922. Variations in the number of vertebrae and other meristic characters of fishes correlated with temperature of water during development. Amer. Naturalist, 56:360-372.
3. Taning, A.V. 1952. Experimental study of meristic characters in fishes. Biol. Rev. 27:169-193.
4. Lindsey, C.C. 1954. Temperature controlled meristic variation in the paradise fish Macropodus opercularis (L.). Canadian Jour. Zool., 30:87-98.
5. Weisel, G.F. 1955. Variations in the number of fin rays of two cyprinid fishes correlated with natural water temperatures. Ecology, 36:1-6.
6. Heuts, M.J. 1949. Racial divergence in fin ray variation patterns in Gasterosteus aculeatus. J. Genetics, 49:183-191.
7. McHugh, J.L. 1954. The influence of light on the number of vertebrae in the grunion, Leurethes tenuis. Copeia: 23-25.

8. Lindsey, C.C. 1958. Modification of meristic characters by light duration in Kokanee, Oncorhynchus nerka. Copeia: 134-136.

9. Johnson, R. K. and M. A. Barnett. 1975. An inverse correlation between meristic characters and food supply in mid-water fishes: evidence and possible explanations. Fish Bull., 73 (2):284-298.

10. Carpelan, L.H. 1961. Physical and Chemical characteristics, p. 17-32. In Boyd W. Walker (ed.) The ecology of the Salton Sea, California, in relation to the sports fishery. Calif. Dept. Fish and Game, Fish Bull. 113.

11. Lasker, R., R. H. Tenaza and L.L. Chamberlain. 1972. The response of Salton Sea fish eggs and larvae to salinity stress. Calif. Fish and Game, 58 (1):58-66.

12. Walker, B.W., R.R. Whitney and G.W. Barlow. 1961. The fishes of the Salton Sea, p. 77-91. In Boyd W. Walker (ed.). The ecology of the Salton Sea, California, in relation to the sports fishery. Calif. Dep. Fish and Game, Fish Bull. 113.

13. Patterson, C. and D. Settle. 1977. Comparative distributions of alkalies, alkaline earths and lead among major tissues of the tuna, Thunnus alalunga. Marine Biol. 39:289-295

14. Young, D.R. 1970. The distribution of cesium, rubidium, and potassium in the quasi-marine ecosystem of the Salton Sea. PhD. Dissertation, University of California, San Diego. 213 p.

15. Hert, M. 1979. Variability of the concentrations of seventeen trace elements in the muscle and liver of a single striped bass, Morone saxatilis. Bull. Environm. Contam. Toxicol. 23:1-5.

16. Bohn, A. and B.W. Fallis. 1978. Metal concentrations (As, Ca, Cu, Pb, and Zn) in shorthorn sculpin, Myoxocephalus scorpius (Linnaeus), and Arctic char, Salvelinus alpinus (Linnaeus), from the vicinity of Strathcara Sound, Northwest Territories. Water Research 12:659-663.

17. Cross, F.A. , L.H. Hardy, N.Y. Jones, and R. T. Barber. 1973. Relation between total body weight and concentrations of manganese, iron, copper, zinc, mercury in white muscle of bluefish (Pomatomus saltatrix) and a bathyl-demersal fish(Antimora rostrata). J. Fish. Res. Bd. Can. 30:1287-1291

18. Settle, D.M. and C.C. Patterson. 1980. Lead in albacore: Guide to lead pollution in Americans: A report. Science 207 (4436):1167-1176

19. Patrick, F. M. and M.W. Loutit. 1978. Passage of metals to freshwater fish from their food. Water Research 12:395-398

Table 1. Morphometric and meristic data for first sampling period (12-19-77).

Fish species	Location	Fish No.	Body Wt. g	Std Length cm	Go-So Index	Liver Index	Fin-Ray Count
<u>Cynosion xanthulus</u>	SSSP	A	603.5	33.0	-	0.027	DX+I, 20
	SSSP	B	621.3	33.5	-	0.031	DIX+I, 20
	SSSP	C	687.8	34.5	-	0.029	DIX+I, 21
	SSSP	D	730.4	34.5	-	0.032	DVIII+I, 20
	SSSP	E	785.7	35.0	-	0.042	DIX+I, 20
	S-SSSP	F	844.7	35.5	0.001	0.038	DIX+I, 20
	S-SSSP	G	906.5	38.0	0.001	0.024	DIX+I, 22
	S-SSSP	H	1142.9	41.0	0.003	0.021	DIX+I, 20
	S-SSSP	I	1202.5	44.5	0.007	0.014	DIX+I, 21
	S-SSSP	J	1315.2	44.5	0.001	0.017	DIX+I, 20
	S-SSSP	K	1422.7	45.0	0.001	0.022	DIX+I, 20
	S-SSSP	L	1469.7	45.5	0.001	0.018	DIX+I, 20
	S-SSSP	M	1515.0	47.0	0.001	0.013	DIX+I, 20
	SC	N	1738.6	40.5	0.001	0.012	DVIII+I, 22
	S-SSSP	P	1879.0	49.5	0.001	0.017	DIX+I, 20
	S-SSSP	Q	1973.2	50.5	0.001	0.017	DIX+I, 20
<u>Anisotremus</u> <u>davidsonii</u>	SSSP	A	296.6	20.5	0.014	0.021	DXI, 13
	SSSP	B	289.8	21.0	0.003	0.011	DXI, 14
	SC	C	247.1	19.5	0.010	0.011	DXI, 12
<u>Bairdiella</u> <u>icistius</u>	SSSP	A	106.6	17.0	0.013	0.016	DX, 28
	SSSP	B	108.3	17.0	.005	.012	DXI, 26
	SSSP	C	189.6	21.0	.003	.019	DX, 28
	SSSP	D	221.1	22.0	.012	.018	DXI, 29
	SSSP	E	231.1	22.0	.011	.020	DXI, 28
	SSSP	F	232.8	21.0	.014	.017	DXI, 27
	SSSP	G	252.0	22.5	.014	.019	DXII, 28
	SSSP	H	317.3	24.5	.013	.018	DXI, 28
		I	105.4	16.5	.005	.018	DXI, 27
		J	115.2	17.5	.008	.018	DXI, 28
		K	138.1	18.0	.011	.012	DXI, 27
		L	210.0	21.0	.002	.012	DXI, 25
		M	246.3	22.0	.005	.025	DXI, 28
		N	249.1	22.5	.013	.019	DXI, 23
		P	274.9	23.5	.017	.023	DXI, 25
		Q	344.1	23.5	.014	.013	DXI, 25

Table 2. Morphometric and meristic data for second sampling period (4-3-78).

Fish species	Location	Fish No.	Body Wt. g	Std Length cm	Go-So Index	Liver Index	Fin-Ray Count
<u>Cynosion xanthulus</u>		SSSP	A 1032.5	42.0	0.004	.037	IX+I, 19
		SSSP	B 1430.8	46.0	0.019	.020	IX+I, 20
		SSSP	C 1871.9	50.0	.011	.015	IX+I, 21
		SSSP	D 2326.8	52.0	.010	.014	IX+I, 20
		SSSP	E 3690.0	66.5	.003	.001	IX+I, 18
		SC	F 752.1	35.5	.002	.027	IX+I, 21
		SC	G 788.2	26.0	.003	.032	IX+I, 19
		SC	H 987.3	39.0	.003	.041	IX+I, 22
		SC	I 1609.2	47.0	.012	.019	IX+I, 22
		SC	J 1701.2	48.0	.012	.015	IX+I, 21
		SC	K 2823.0	50.0	.023	.011	IX+I, 20
		RHM	L 1120.7	40.0	.004	.036	IX+I, 20
		RHM	M 1272.1	42.5	.012	.014	IX+I, 21
		RHM	N 1411.2	43.0	.012	.024	IX+I, 20
		RHM	P 1578.8	47.0	.013	.024	IX+I, 20
		RHM	Q 1914.2	51.0	.009	.017	IX+I, 9
<u>Anisotremus</u> <u>davidsonii</u>		SSSP	A 100.2	14.0	.057	.015	DXII, 12
		SSSP	B 76.3	12.5	.088	.006	DXII, 13
		SSSP	C 75.0	13.5	.056	.005	DXII, 13
		SSSP	D 319.3	20.5	.089	.019	DXII, 13
		SSSP	E 390.0	21.5	.085	.028	DXII, 12
<u>Bairdiella</u> <u>icistius</u>		SSSP	A 140.9	17.5	-	.006	XI, 29
		SSSP	B 209.1	21.0	.068	.024	XI, 26
		SSSP	C 316.0	23.5	.069	.029	XI, 25
		SSSP	D 431.9	25.5	.085	.027	XI, 27
		SC	E 98.6	16.0	.055	.010	XI, 24
		SC	F 253.9	22.0	.083	.028	XI, 30
		SC	G 384.0	25.5	.094	.041	XI, 26
		SC	H 443.0	26.5	.099	.026	XI, 27
		BBAY	I 37.2	11.2	-	.010	XI, 25
		BBAY	J 204.8	20.5	.067	.020	XI, 27
		BBAY	K 344.5	24.0	.088	.025	XI, 26
		BBAY	L 442.2	26.0	.079	.030	XI, 25
		RHM	M 99.8	16.0	-	.013	XI, 25
		RHM	N 160.3	18.0	.051	.018	XI, 26
		RHM	P 243.9	21.0	.061	.022	XI, 28
		RHM	Q 423.0	25.5	.079	.047	XII, 26

Table 3. Morphometric and meristic data for third sampling period (7-10-78).

Fish species	Location	Fish No.	Body Wt. g	Std Length cm	Go-So Index	Liver Index	Fin-Ray Count
<u><i>Cynosion xanthulus</i></u>		SSSP	A 1609.0	47.5	.041	.019	IX+I, 21
		SSSP	B 2184.0	51.5	.024	.021	IX+I, 21
		RHM	C 166.0	20.5	.002	.015	IX+I, 19
		RHM	D 214.0	22.0	.004	.011	IX+I, 20
		RHM	E 252.0	22.5	.004	.006	IX+I, 20
		SC	F 955.0	39.0	.027	.023	IX+I, 20
		SC	G 1550.0	46.5	.039	.013	IX+I, 20
		SC	H 1633.0	49.0	.030	.015	VIII+I, 21
		SC	I 1640.0	45.0	.109	.022	IX+I, 21
		SC	J 2002.0	50.5	.026	.023	IX+I, 20
		SC	K 2078.0	50.0	.033	.020	IX+I, 19
		RHM	L 5100.0	70.0	.054	.011	IX+I, 21
<u><i>Anisotremus</i></u>							
<u><i>davidsonii</i></u>		SSSP	A 432.0	22.5	.013	.016	XI, 12
<u><i>Bairdiella</i></u>							
<u><i>icistius</i></u>		SSSP	A 69.0	15.0	.003	.003	X, 25
		SSSP	B 125.0	17.0	.005	.006	X, 25
		SSSP	C 194.0	20.5	.023	.007	X, 27
		SSSP	D 271.0	22.0	.030	.017	X, 29
		SSSP	E 394.0	26.0	.053	.016	X, 26
		RHM	F 81.0	15.0	-	.001	X, 27
		RHM	G 213.0	19.0	.023	.005	XI, 26
		RHM	H 230.0	20.0	.008	.008	X, 28
		RHM	I 289.0	21.0	.012	.008	XI, 27
		RHM	J 415.0	25.0	.036	.013	XI, 28
		SC	K 79.0	14.5	.002	.009	XI, 26
		SC	L 93.0	15.5	.006	.007	XI, 26
		SC	M 161.0	19.0	.008	.003	XI, 27
		SC	N 252.0	22.0	.044	.004	XI, 25
		SC	P 352.0	24.5	.031	.013	X, 28

Table 4. Morphometric and meristic data for fourth sampling period (10-1-78).

Fish species	Location	Fish No.	Body Wt. g	Std Length cm	Go-So Index	Liver Index	Fin-Ray Count
<u><i>Cynosion xanthulus</i></u>		SC	A 501	31.5	.001	.017	IX+I, 19
		SC	B 600	33.5	.001	.010	IX+I, 19
		SC	C 785	35.0	.004	.020	IX+I, 20
		SC	D 2700	56.0	.006	.010	VIII+I, 20
		SC	E 5700	75.0	.010	.009	IX+I, 20
		SSSP	F 436	30.5	.003	.017	IX+I, 20
		SSSP	G 604	32.0	.001	.019	IX+I, 20
		SSSP	H 724	33.5	-	.014	IX+I, 21
		SSSP	I 1402	40.5	-	.013	IX+I, 21
		SSSP	J 1776	49.5	.004	.013	IX+I, 18
		SSSP	K 2450	56.5	.011	.016	IX+I, 20
		RHM	L 338	26.5	.007	.031	IX+I, 18
		RHM	M 372	27.5	.010	.025	IX+I, 20
		RHM	N 508	31.0	.011	.017	IX+I, 20
		RHM	P 517	31.0	.014	.016	IX+I, 21
		RHM	Q 536	32.5	.010	.020	IX+I, 20
<u><i>Anisotremus</i></u> <u><i>davidsonii</i></u>		SC	A 160	17.0	.027	.021	XI, 13
		SSSP	B 294	21.0	.015	.013	X, 14
		SSSP	C 354	23.5	.002	.011	XII, 14
		SSSP	D 394	21.5	.003	.012	XII, 13
		RHM	E 111	15.0	.011	.013	XII, 13
		RHM	F 282	21.0	.007	.009	XI, 14
		RHM	G 292	20.9	.005	.017	XI, 14
		RHM	H 350	22.5	.018	.006	XI, 14
		RHM	I 401	23.0	.017	.011	XI, 14
		RHM	J 472	24.5	.004	.017	XI, 13
<u><i>Bairdiella</i></u> <u><i>icistius</i></u>		SC	A 110	18.0	.001	.011	XI, 28
		SC	B 230	22.5	.002	.001	X, 29
		SC	C 246	23.5	.012	.006	XI, 28
		SC	D 262	23.5	.012	.006	XI, 27
		SC	E 318	25.0	.014	.008	XII, 26
		SC	F 416	27.0	.016	.006	XI, 26
		SSSP	G 112.5	18.5	-	.006	XI, 27
		SSSP	H 166	20.5	.011	.005	XI, 24
		SSSP	I 221	22.5	.004	.009	XI, 29
		RHM	J 180	19.5	.012	.006	X, 27
		RHM	K 188	20.0	.001	.009	XI, 26
		RHM	L 193	19.5	.001	.004	X, 29
		RHM	M 274	23.5	.010	.006	XI, 26
		RHM	N 284	24.0	.010	.004	XI, 26
		RHM	P 301	25.5	.014	.008	XI, 27
		RHM	Q 309	24.0	.010	.006	XI, 25

Table 5. Percent frequency of food items in stomach of corvina, gulf croaker, and sargo.

Fish species	Sample date	Total # of fish sampled	(n) food in stomach	Percent of food type in stomachs with food		
				(n) w/o stomach	Balanus amphitrite	Neanthes succinea
Corvina	DEC	16	12	93	-	7
	APR	16	19	8	-	92
	JUL	12	8	100	-	-
	OCT	16	37	100	-	-
Gulf croaker	DEC	16	6	-	-	100
	APR	16	19	-	-	100
	JUL	15	66	57	29	14
	OCT	16	94	-	-	100
Sargo	DEC	3	33	-	100	-
	APR	5	60	-	-	100
	JUL	1	100	-	-	-
	OCT	10	30	-	100	-

Table 6. Mean concentration of elements, in muscle, liver, and bone of corvina, gulf croaker, and sargo.

CORVINA			GULF CROAKER			SARGO			
Muscle	n	mean	Std. Dev.	n	mean	Std. Dev.	n	mean	Std. Dev.
AS	59,000	0.390	0.146	63,000	0.572	0.241	17,000	0.648	0.192
BR	59,000	2.613	1.113	63,000	3.087	1.005	17,000	3.918	1.576
CA	59,000	254.933	197.491	63,000	585.170	319.582	17,000	2693.781	7228.680
CH	59,000	0.435	0.216	63,000	0.603	0.247	17,000	0.639	0.261
FE	59,000	13.219	7.644	63,000	18.311	6.574	17,000	17.705	3.674
FISHWEIGHT	60,000	1406.012	1036.851	63,000	231.802	104.574	19,000	280.858	122.976
GA	11,000	0.101	0.028	19,000	0.094	0.027	5,000	0.097	0.014
K	59,000	22692.237	4011.819	63,000	21903.958	3938.390	17,000	19436.176	5816.478
MN	18,000	0.302	0.083	1,000	0.000		1,000	3.132	
PB	11,000	0.396	0.525	15,000	0.316	0.156	3,000	0.229	0.020
RB	59,000	6.207	1.934	6,000	0.176	0.129	1,000	0.155	
SE	57,000	0.136	0.009	63,000	5.281	1.136	17,000	5.662	1.806
SR	59,000	1.780	1.136	63,000	0.180	0.118	17,000	0.145	0.111
WEIGHT:D/A	50,000	19.554	5.768	63,000	4.775	2.418	17,000	11.978	22.817
ZN	1,000	12.670	2.764	61,000	18.068	1.929	19,000	17.709	2.098
ZR	1,000	0.069		63,000	16.148	2.774	17,000	14.814	3.325
				2,000	-0.243	0.197	1,000	0.233	
Liver									
AS	49,000	0.268	0.141	11,000	0.718	0.551	6,000	0.773	0.388
BR	47,000	2.340	2.272	10,000	5.809	5.009	9,000	2.244	1.171
CA	19,000	261.403	218.889	11,000	1111.521	1280.325	6,000	6284.458	14212.613
CU	49,000	11.884	11.570	11,000	4.520	2.363	6,000	1.991	1.488
FE	49,000	354.340	301.390	11,000	978.691	1078.596	6,000	365.995	287.933
FISHWEIGHT	60,000	1406.012	1036.851	63,000	231.802	104.574	19,000	280.858	122.976
GA	28,000	0.108	0.066	6,000	0.125	0.030	3,000	0.112	0.065
K	49,000	5574.776	2990.533	11,000	9364.182	2486.480	6,000	4677.667	2490.588
MN	49,000	1.792	1.522	11,000	3.583	2.094	6,000	3.250	3.178
NI	1,000	0.234		2,000	0.323	0.135	1,000	0.350	
PB	18,000	0.222	0.243	2,000	0.136	0.014	1,000	0.128	
RB	49,000	1.501	0.962	11,000	2.642	0.630	6,000	1.327	0.946
SE	43,000	0.038	0.041	10,000	0.104	0.122	6,000	0.211	0.245
SR	49,000	3.315	2.780	11,000	12.987	12.081	6,000	23.359	42.788
WEIGHT	66,000	26.179	14.766	75,000	6.266	8.071	23,000	5.775	5.109
WEIGHT:D/A	50,000	59.561	31.316	12,000	23.255	7.572	6,000	34.513	15.600
ZN	49,000	64.585	45.105	11,000	46.986	10.026	6,000	40.400	33.811
ZR	9,000	0.055	0.054	5,000	0.291	0.218	4,000	0.396	0.517
Bone									
AS	59,000	1.308	0.250	62,000	2.645	0.461	19,000	3.025	1.519
BR	60,000	3.484	0.749	62,000	2.455	0.583	18,000	4.162	5.001
CA	60,000	158993.333	17483.279	62,000	150308.548	27160.774	19,000	165647.313	62177.727
CU	7,000	0.981	0.116	22,000	13.130	55.944	9,000	3.793	5.406
FE	60,000	34.697	13.262	62,000	101.338	52.774	19,000	276.215	316.212
FISHWEIGHT	60,000	1406.012	1036.851	63,000	231.802	104.574	19,000	280.858	122.976
GA	50,000	0.629	0.156	53,000	0.731	0.196	16,000	0.818	0.214
K	60,000	5473.417	2559.945	62,000	13370.016	3092.051	19,000	23406.368	34133.499
MN	60,000	19.460	5.924	62,000	12.316	3.702	18,000	24.377	5.798
NI	12,000	1.353	0.218	20,000	1.747	0.518	7,000	1.953	0.380
PB	3,000	12.265	17.317	1,000	1.004		19,000	4.618	7.770
RB	60,000	1.002	0.645	62,000	2.050	0.622	19,000	1.446	0.422
SE	60,000	1.051	0.334	62,000	2.368	0.889	19,000	580.567	235.589
SR	60,000	413.315	27.674	62,000	572.544	119.774	19,000	2.916	0.318
WEIGHT:D/A	60,000	3.573	0.381	63,000	3.240	0.368	19,000	65.633	107.377
ZN	60,000	33.376	5.856	62,000	42.778	19.312	6,000	2.306	2.410
ZP	60,000	2.043	1.711	13,000	4.346	2.073			

Table 7. Mean concentration of elements in corvina muscle, liver, and bone relative to station sampled.

SP	MUSCLE			LIVER			BONE		
	n	mean	Std. Dev.	n	mean	Std. Dev.	n	mean	Std. Dev.
AS	28,000	0.325	0.146	24,000	0.227	0.111	28,000	1.219	0.234
BR	28,000	2.431	1.363	22,000	2.034	2.235	28,000	3.632	0.473
CA	28,000	305.979	215.245	24,000	217.365	172.536	28,000	154060.714	15466.203
CU	28,000	0.497	0.233	24,000	6.983	5.470	28,000	0.636	0.012
FE	28,000	13.987	10.274	24,000	268.693	192.123	28,000	31.274	11.144
FISHWEIGHT	28,000	1379.896	724.878	28,000	1379.896	724.878	28,000	1379.896	724.878
GA	6,000	0.090	0.033	9,000	0.073	0.039	25,000	0.635	0.151
K	28,000	22309.286	3963.807	24,000	4866.251	2903.974	28,000	4014.500	1360.427
NI	7,000	0.319	0.120	24,000	1.575	1.601	28,000	18.451	3.255
PB	13,000	0.419	0.538	11,000	0.317	0.270	1,000	2.178	
RB	28,000	5.647	1.710	24,000	1.248	0.883	28,000	0.775	0.393
SE	27,000	0.130	0.094	22,000	0.044	0.055	28,000	1.028	0.213
SR	28,000	1.861	1.440	24,000	2.743	2.374	28,000	420.554	92.090
WEIGHT:D/A	28,000	19.307	3.256	20,000	28.532	14.223	28,000	3.661	0.414
ZN	26,000	12.687	2.974	25,000	68.010	31.214	28,000	31.126	3.530
ZR	1,000	0.089		24,000	46.717	31.930	16,000	2.637	1.680
SC				7,000	0.030	0.014			
AS	18,000	0.458	0.128	17,000	0.313	0.153	18,000	1.344	0.245
BR	18,000	2.712	0.610	17,000	2.684	2.640	19,000	3.525	1.073
CA	18,000	230.970	106.850	17,000	298.400	255.154	19,000	166321.053	21493.554
CU	18,000	0.409	0.102	17,000	19.129	14.716	19,000	1.050	0.101
FE	18,000	14.809	4.703	17,000	522.129	396.809	19,000	34.939	11.526
FISHWEIGHT	19,000	1875.979	1409.981	19,000	1875.979	1409.981	19,000	1875.979	1409.981
GA	4,000	0.118	0.010	14,000	0.140	0.072	13,000	0.693	0.192
K	18,000	23990.000	2841.180	17,000	6635.000	3284.139	19,000	5011.526	2546.337
NI	8,000	0.288	0.050	17,000	2.302	1.611	19,000	18.997	4.783
PB	1,000	0.089		1,000	0.294		6,000	1.402	0.292
RB	18,000	6.719	1.478	4,000	0.084	0.075	2,000	17.308	21.145
SE	16,000	0.156	0.093	17,000	1.843	1.058	19,000	0.938	0.531
SR	18,000	1.660	0.685	14,000	0.035	0.017	19,000	0.954	0.196
WEIGHT:D/A	19,000	18.223	1.320	17,000	4.032	3.297	19,000	457.521	104.343
ZN	18,000	13.007	1.046	20,000	30.049	13.921	19,000	3.440	0.386
ZR				17,000	46.539	27.969	19,000	32.566	5.052
				17,000	95.268	52.607	16,000	3.468	1.641
				1,000	0.171				
RH									
AS	13,000	0.438	0.115	8,000	0.293	0.176	13,000	1.385	0.280
BR	13,000	2.856	1.052	8,000	2.260	1.414	13,000	3.107	0.554
CA	13,000	350.980	233.261	8,000	314.890	261.935	13,000	156931.231	11953.757
CU	13,000	0.726	0.143	8,000	11.192	8.664	1,000	0.959	
FE	13,000	9.498	2.901	8,000	254.775	191.941	13,000	41.713	17.471
FISHWEIGHT	13,000	764.615	593.122	13,000	764.615	593.122	13,000	784.615	593.122
GA	1,000	0.098		5,000	0.080	0.041	12,000	0.547	0.078
K	13,000	21720.154	5200.880	8,000	5344.750	2089.129	13,000	7996.462	3030.031
NI	1,000	0.286		8,000	1.360	0.728	13,000	22.311	10.141
RB	13,000	6.702	2.648	3,000	0.057	0.046	6,000	1.304	0.117
SE	12,000	0.120	0.071	8,000	1.533	0.851	13,000	1.553	0.879
SR	13,000	1.816	0.934	7,000	0.028	0.020	13,000	1.243	0.577
WEIGHT:D/A	13,000	22.215	11.289	8,000	3.510	2.699	13,000	360.946	73.459
ZN	13,000	13.074	3.914	16,000	16.926	13.620	13,000	3.576	0.240
ZR				8,000	60.831	32.673	13,000	28.922	7.872
				1,000	0.116	27.132	7,000	2.065	1.167

Table 8. Mean concentration of elements in gulf croaker muscle, liver, and bone relative to station sampled.

SP	MUSCLE			LIVER			BONE		
	n	mean	Std. Dev.	n	mean	Std. Dev.	n	mean	Std. Dev.
AS	20,000	0.575	0.250	4,000	0.924	0.792	20,000	2.651	0.492
BR	20,000	3.142	0.691	4,000	5.080	2.620	20,000	2.387	0.723
CA	20,000	585.535	200.973	4,000	1832.150	1832.75	20,000	150935.000	19824.846
CU	20,000	0.662	0.250	4,000	6.210	2.678	20,000	33.901	92.810
FE	20,000	17.961	6.003	4,000	795.225	592.108	20,000	118.127	71.225
FISHWEIGHT	20,000	215.460	96.511	20,000	215.460	96.511	20,000	215.460	96.511
GA	4,000	0.096	0.010	1,000	0.174	0.100	18,000	0.671	0.189
K	20,000	22036.000	2613.242	4,000	10274.000	1868.529	20,000	13682.500	2575.301
NI	3,000	0.356	0.232	4,000	3.401	1.574	20,000	11.421	3.551
PB	4,000	0.168	0.165	1,000	0.227	0.227	6,000	1.036	0.735
RB	20,000	5.312	1.046	4,000	2.942	0.439	1,000	1.004	
SE	20,000	0.162	0.117	3,000	0.076	0.041	20,000	1.990	0.535
SR	20,000	4.106	1.687	4,000	18.899	16.756	20,000	2.421	1.032
WEIGHT:D/A	20,000	15.050	1.506	24,000	6.102	7.644	20,000	563.515	108.919
ZN	20,000	1.311	1.640	4,000	20.955	5.342	20,000	3.250	0.326
				4,000	53.085	6.830	20,000	48.624	33.134
				2,000	0.464	0.240	15,000	3.516	1.134
SC									
AS	23,000	0.543	0.214	4,000	0.642	0.432	23,000	2.650	0.373
BR	23,000	2.142	0.623	3,000	7.889	7.927	23,000	2.494	0.464
CA	23,000	585.535	295.623	4,000	777.050	910.141	23,000	154050.870	29774.372
CU	23,000	0.546	0.232	4,000	5.031	2.006	9,000	1.276	0.233
FE	23,000	17.742	5.974	4,000	1096.800	1484.053	23,000	85.987	26.819
FISHWEIGHT	23,000	233.983	108.605	23,000	233.983	108.605	23,000	233.983	108.605
GA	7,000	0.066	0.043	3,000	0.108	0.095	23,000	0.108	0.095
MM	23,000	22103.217	5246.879	4,000	8119.000	3351.093	23,000	12747.130	3065.895
NI	1,000	0.000	0.000	4,000	3.212	3.133	23,000	12.892	3.732
RB	23,000	5.268	1.463	1,000	0.146	0.146	23,000	2.060	0.772
SE	23,000	0.175	0.099	4,000	2.403	0.838	23,000	2.449	0.862
SR	23,000	5.290	2.771	4,000	1.821	0.664	23,000	578.978	133.637
WEIGHT:D/A	23,000	17.780	1.384	27,000	10.624	10.614	23,000	1.248	0.468
ZN	23,000	15.963	4.055	6,240	8.556	8.556	23,000	40.323	4.465
ZR	1,000	0.104	0.221	4,000	24.437	10.632	15,000	4.564	2.394
				4,000	44.532	11.960			
				1,000	0.241				
BB									
AS	4,000	0.604	0.524						
BR	4,000	3.745	0.833						
CA	4,000	434.975	189.593						
CU	4,000	0.855	0.431						
FE	4,000	26.932	12.858						
FISHWEIGHT	4,000	257.175	176.081						
K	4,000	22015.070	5246.539						
RB	4,000	4.000	0.091						
SE	4,000	0.026	2.365						
WEIGHT:D/A	4,000	17.272	1.995						
ZN	4,000	15.707	0.786						
ZR	1,000	0.302							
RU									
AS	16,000	0.553	0.161	2,000	0.684	0.441	15,000	2.732	0.520
BR	16,000	3.294	1.241	2,000	3.956	6.622	15,000	2.623	0.553
CA	16,000	619.634	412.902	2,000	753.900	628.052	15,000	151483.933	23775.871
CU	16,000	0.517	0.130	2,000	3.594	1.627	15,000	0.890	0.042
FE	16,000	17.409	5.118	2,000	1432.700	1718.694	15,000	67.807	23.332
FISHWEIGHT	16,000	242.750	96.130	16,000	242.750	96.130	16,000	242.750	96.130
GA	8,000	0.100	0.012	1,000	0.200	0.197	14,000	0.785	0.197
K	15,000	21164.325	3753.935	2,000	10812.000	1821.507	15,000	13823.600	3803.266
NI	7,000	0.279	0.058	2,000	5.042	1.237	15,000	12.520	4.075
RD	2,000	0.132	0.009	1,000	0.126	0.126	5,000	1.626	0.407
RB	16,000	5.363	0.839	2,000	2.821	0.521	15,000	2.115	0.500
SE	16,000	0.235	0.139	2,000	0.000	0.018	15,000	2.502	0.725
SR	16,000	4.808	2.677	2,000	10.184	8.966	15,000	578.527	97.720
WEIGHT:D/A	16,000	16.704	1.971	19,000	5.348	7.604	16,000	3.159	0.353
ZH	16,000	16,000		3,000	22.260	7.768	15,000	39.920	5.264
				2,000	45.730	10.720			
				1,000	0.128				

Table 9. Mean concentration of elements in surgo muscle, liver, and bone relative to station sampled.

MUSCLE				LIVER				BONE				
SP	PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV
	AS	10,000	0.584	0.181	AS	4,000	0.828	0.210	AS	11,000	3.304	1.983
	BR	10,000	3.797	1.797	BR	4,000	2.141	1.325	BR	10,000	5.129	6.681
	CA	10,000	4089.540	9344.093	CA	4,000	9361.375	17285.735	CA	11,000	149181.727	77004.462
	CU	10,000	0.650	0.329	CU	4,000	2.368	1.651	CU	8,000	4.089	5.701
	FE	10,000	17.319	2.601	FE	4,000	459.442	310.764	FE	11,000	313.185	383.984
	FISHWEIGHT	11,000	274.655	130.869	FISHWEIGHT	11,000	274.655	130.869	FISHWEIGHT	11,000	274.655	130.869
	GA	4,000	0.096	0.015	GA	2,000	0.146	0.039	GA	8,000	0.786	0.167
	K	10,000	17160.500	6110.517	K	4,000	5655.250	2254.753	K	10,000	29844.636	44547.617
	MN	1,000	3.132		MN	4,000	4.459	3.284	MN	10,000	22.650	4.966
	NI	2,000	0.238	0.023	NI	1,000	0.350		NI	5,000	1.975	0.289
	PB	1,000	0.155		PB	1,000	0.128		RB	11,000	6.239	10.082
	RB	10,000	5.033	2.047	RB	4,000	1.598	1.017	SE	11,000	1.357	0.497
	SE	10,000	0.165	0.139	SE	4,000	0.293	0.270	SR	11,000	521.979	290.269
	SR	10,000	17.178	29.069	SR	4,000	34.112	50.862	WEIGHT:D/A	11,000	2.949	0.365
	WEIGHT:D/A	11,000	17.057	2.610	WEIGHT	14,000	5.930	4.566	ZN	11,000	108.708	139.100
	ZN	10,000	14.393	3.872	WEIGHT:D/A	4,000	27.900	11.801	ZR	5,000	2.559	2.603
		1,000	0.633		ZN	4,000	50.035	38.574				
					ZR	3,000	0.517	0.559				
SC	PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV
	AS	2,000	0.602	0.110	AS	1,000	0.123		AS	2,000	2.695	0.115
	BR	2,000	2.654	1.055	CA	1,000	27.450		BR	2,000	2.901	0.528
	CA	2,000	1625.000	571.926	CU	1,000	0.469		CA	2,000	184900.000	311.270
	CU	2,000	0.709	0.132	FE	1,000	76.600		FE	2,000	105.125	16.652
	FE	2,000	13.371	4.905	FISHWEIGHT	2,000	203.550	61.589	FISHWEIGHT	2,000	203.550	61.539
	FISHWEIGHT	2,000	203.550	61.589	K	1,000	1257.000		GA	2,000	0.699	0.018
	RB	2,000	25880.000	4299.200	MN	1,000	0.289		K	2,000	14020.000	4157.798
	SE	2,000	6.878	1.633	RB	1,000	0.291		MN	2,000	33.245	0.471
	SR	2,000	0.121	0.078	SE	1,000	0.013		RB	2,000	2.222	0.602
	WEIGHT:D/A	2,000	8.405	4.434	SR	1,000	0.223		SE	2,000	1.846	0.459
	ZN	2,000	16.010	0.636	WEIGHT	2,000	2.553	0.090	SR	2,000	584.400	26.304
		2,000	15.415	3.924	WEIGHT:D/A	1,000	36.030		WEIGHT:D/A	2,000	2.843	0.128
					ZN	1,000	12.820		ZN	2,000	54.285	2.284
					ZR	1,000	0.031					

RH

SEE OTHER

SEE OTHER

SEE OTHER

Table 10. Mean concentration of elements in corvina muscle relative to sampling period and station.
December April July October

PARAMETER	N	December		April		July		October	
		A-MEAN	STD DEV	A-MEAN	STD DEV	A-MEAN	STD DEV	A-MEAN	STD DEV
SP									
AS	15,000	0.256	0.132	5,000	0.339	0.083	2,000	0.455	0.120
BR	15,000	1.619	0.637	5,000	4.257	1.884	2,000	3.033	0.646
CA	15,000	332.246	269.311	5,000	264.520	172.917	2,000	246.950	164.261
CU	15,000	0.218	0.079	5,000	0.549	0.079	2,000	0.391	0.068
FE	15,000	10.665	3.718	5,000	14.733	9.135	2,000	9.262	0.242
FISHWEIGHT	15,000	1140.007	447.261	5,000	2070.400	1026.471	2,000	1896.500	406.586
GA	3,000	0.070	0.023	5,000	26164.000	5322.451	2,000	23775.000	3698.168
K	15,000	20370.667	3035.246	2,000	0.309	0.042	2,000	6.581	0.808
PB	10,000	0.499	0.596	2,000	0.136	0.044	2,000	0.174	0.064
PR	15,000	4.680	0.948	5,000	5.120	1.136	2,000	2.007	1.103
SE	14,000	0.084	0.061	5,000	0.266	0.108	2,000	18.010	2.531
SP	15,000	1.814	1.711	5,000	2.116	0.715	2,000	13.450	0.594
WEIGHT:D/A	15,000	20.470	3.603	5,000	17.428	3.455	1,000	0.089	
ZN	15,000	11.417	1.939	5,000	14.101	3.620			
SC									
AS	.199			N	A-MEAN	STD DEV	N	A-MEAN	STD DEV
BR	2.316			5,000	0.458	0.087	7,000	0.464	0.139
CA	238.3			5,000	2.455	0.685	7,000	2.922	0.660
CU	302			5,000	20.380	63.522	7,000	218.057	105.711
FE	17.51			5,000	0.429	0.115	7,000	0.453	0.087
FW	1738.6			5,000	1443.500	788.981	7,000	2136.857	1356.699
K	22390.			1,000	0.109		1,000	0.112	
RB	5.033			5,000	23610.000	1437.220	7,000	25315.714	2071.166
SE	.178			2,000	0.240	0.004	3,000	0.304	0.074
SR	1.371			1,000	0.089		7,000	7.552	0.809
WT	19.470			5,000	4.844	0.463	7,000	0.147	0.097
ZN	12.280			5,000	0.213	0.107	7,000	1.695	0.749
RH									
PARAMETER	N	A-MEAN	STD DEV	N	A-MEAN	STD DEV	N	A-MEAN	STD DEV
AS	5,000	0.428	0.147	3,000	0.458	0.084	5,000	0.437	0.126
BR	5,000	2.172	0.963	5,000	4.106	1.005	5,000	2.615	0.361
CA	5,000	161.163	111.856	3,000	649.233	221.509	5,000	387.840	141.696
CU	5,000	0.300	0.153	3,000	0.261	0.075	5,000	0.495	0.085
FE	5,000	7.729	2.432	3,000	8.574	1.646	5,000	11.820	2.518
FISHWEIGHT	5,000	1459.400	305.459	3,000	210.667	43.097	5,000	454.200	91.909
K	5,000	17968.400	6419.717	3,000	21916.667	2322.592	1,000	0.088	
RB	5,000	0.140	0.246	3,000	8.988	0.647	5,000	25354.000	1815.277
SE	5,000	0.146	0.071	2,000	0.061	0.018	1,000	0.286	
SR	3,000	1.262	0.617	3,000	2.011	1.019	5,000	8.253	1.294
WEIGHT:D/A	5,000	29.606	16.430	3,000	16.600	0.980	5,000	0.109	0.042
ZN	5,000	9.613	4.279	3,000	16.393	0.476	5,000	1.772	0.767
							5,000	18.074	0.463
							5,000	14.544	1.233

Table 11. Mean concentration of elements in corvina liver relative to sampling period and station.

Table 12. -Mean concentration of elements in corvina bone relative to sampling period and station.

PARAMETER	N	December		April		July		October					
		A-MEAN	STD DEV	A-MEAN	STD DEV	A-MEAN	STD DEV	A-MEAN	STD DEV				
SP	AS	15.000	1.245	0.219	5.000	1.162	0.353	2.000	1.434	0.139	6.000	1.252	0.196
	BR	15.000	3.690	0.403	5.000	4.013	0.319	2.000	3.095	0.579	6.000	3.061	0.264
	CA	15.000	150973.333	18847.867	5.000	158620.000	9354.785	2.000	159150.000	9404.520	6.000	160483.333	10390.268
	CU	1.000	0.847	0.047	5.000	39.600	6.256	2.000	43.720	13.308	1.000	0.864	0.047
	FE	15.000	24.965	7.522	5.000	2070.400	1026.471	2.000	1896.500	406.536	6.000	35.956	12.980
	FISHWEIGHT	15.000	1140.007	447.261	5.000	618.000	0.160	1.000	0.500	0.000	6.000	1232.000	786.692
	GA	15.000	0.598	0.154	5.000	3691.600	1320.514	2.000	4237.500	1218.345	6.000	0.736	0.125
	K	15.000	4379.133	1150.759	5.000	16.686	1.042	2.000	23.200	1.669	6.000	6097.667	937.984
	MN	15.000	13.273	3.201	5.000	0.494	0.193	2.000	0.834	0.099	6.000	18.783	3.380
	RB	1.000	21.178	0.000	5.000	0.842	0.065	2.000	0.976	0.006	6.000	1.414	0.311
RB	RB	15.000	0.605	0.157	5.000	492.380	144.157	2.000	408.650	9.122	6.000	0.928	0.156
	SE	15.000	1.136	0.218	5.000	3.302	0.541	2.000	3.444	0.240	6.000	324.600	60.060
	SR	15.000	397.807	78.377	5.000	20.300	3.364	2.000	31.990	2.107	6.000	3.485	0.154
	WEIGHT:D/A	15.000	3.834	0.393	5.000	3.816	0.202	2.000	3.199	1.971	6.000	34.293	1.862
	ZN	15.000	30.323	3.753	5.000	0.000	0.000	2.000	0.000	0.000	5.000	4.366	0.725
	ZR	6.000	0.933	0.168	5.000	0.000	0.000	2.000	0.000	0.000	5.000	0.000	0.000
SC	AS	1.152	5.000	1.250	0.160	7.000	1.496	0.270	5.000	1.262	0.226		
	BR	3.910	6.000	3.363	0.582	7.000	3.423	1.257	5.000	3.783	1.487		
	CA	152200.	6.000	154016.667	12644.907	7.000	173357.143	24912.772	5.000	171260.000	22309.482		
	FE	21.77	1.000	0.973	8.595	7.000	36.967	11.313	3.000	1.074	0.107		
	FW	1738.6	6.000	1443.500	788.981	7.000	0.707	0.189	5.000	2057.200	2227.491		
	K	2959.	1.000	0.493	7.000	5065.714	3366.090	5.000	0.712	0.215			
	MN	21.03	6.000	4462.667	1663.262	7.000	19.826	6.010	5.000	6004.800	2443.915		
	RB	4.410	3.000	17.953	4.777	1.000	1.879	0.000	5.000	18.682	4.032		
	SE	1.25	2.000	17.308	21.145	7.000	0.989	0.215	5.000	1.297	0.403		
	SR	446.5	6.000	0.624	0.222	7.000	528.529	78.740	5.000	1.044	0.075		
RH	WT	3.785	6.000	0.709	0.136	7.000	3.243	0.372	5.000	432.700	147.871		
	ZN	27.74	6.000	397.000	49.257	7.000	35.560	4.027	5.000	3.278	0.358		
	AS	6.000	3.747	0.226	7.000	3.095	1.296	5.000	35.294	3.563			
	BR	6.000	28.530	4.183	5.000	2.315	1.131	5.000	4.912	2.248			
	CA	6.000	1459.400	305.459	5.000	0.000	0.000	5.000	0.000	0.000			
	FE	6.000	31.532	9.086	1.000	0.959	0.179	5.000	1.616	0.267			
	FISHWEIGHT	6.000	1459.400	305.459	3.000	66.237	15.962	5.000	3.073	0.223			
	GA	6.000	0.542	0.081	3.000	210.667	43.097	4.000	0.603	0.036			
	K	6.000	4708.600	1354.708	3.000	0.479	0.026	5.000	9117.400	1001.372			
	MIN	6.000	12.710	3.910	3.000	11616.667	825.611	5.000	26.540	5.406			
SR	NI	6.000	1.286	0.098	3.000	31.267	10.514	3.000	1.323	0.154			
	RD	6.000	0.672	0.261	3.000	2.713	0.355	5.000	1.817	0.350			
	SE	6.000	0.914	0.140	3.000	0.835	0.069	5.000	1.917	0.232			
	SR	6.000	424.060	25.937	3.000	257.167	27.233	5.000	360.100	45.688			
	WEIGHT:D/A	6.000	3.766	0.164	3.000	3.509	0.285	5.000	3.405	0.103			
	ZN	6.000	20.112	2.603	3.000	47.527	1.199	5.000	42.684	2.861			
ZP	ZP	6.000	2.260	1.370	2.000	1.577	0.033	5.000	0.000	0.000			

Table 13. Mean concentration of elements in *Bairdiella* Muscle relative to sampling period and station.

December				April				July				October			
SP	AS	BR	CA	AS	BR	CA	AS	BR	CA	AS	BR	CA	AS	BR	CA
AS	8.000	0.520	0.207	AS	4.000	0.790	0.379	AS	5.000	0.523	0.224	AS	3.000	0.509	0.072
BR	8.000	2.825	0.497	BR	4.000	3.291	0.638	BR	5.000	3.629	0.973	BR	3.000	3.110	0.290
CA	8.000	511.425	157.391	CA	4.000	770.375	513.331	CA	5.000	581.000	280.512	CA	3.000	532.733	231.395
CU	8.000	0.613	0.140	CU	4.000	0.978	0.401	CU	5.000	0.701	0.119	CU	3.000	0.484	0.050
FE	8.000	16.025	7.915	FE	4.000	20.030	3.708	FE	5.000	17.538	3.748	FE	3.000	21.070	6.008
FISHWEIGHT	8.000	207.330	71.474	FISHWEIGHT	4.000	274.475	127.310	FISHWEIGHT	5.000	210.600	127.414	FISHWEIGHT	3.000	165.500	54.252
K	8.000	2097.720	1375.212	K	4.000	2320.000	3600.343	K	5.000	2000.000	0.004	K	3.000	101.001	0.014
PB	8.000	0.209	0.155	PB	4.000	0.123	0.026	PB	5.000	21344.000	2401.173	PB	3.000	24470.000	3161.313
RB	8.000	4.674	0.384	RB	4.000	9.343	1.010	RB	5.000	0.222	0.027	RB	3.000	0.623	0.387
SE	8.000	0.101	0.049	SE	4.000	0.176	0.135	SE	5.000	6.054	1.569	SE	3.000	5.733	0.823
SR	8.000	3.631	1.118	SR	4.000	5.612	2.608	SR	5.000	0.197	0.114	SR	3.000	0.918	0.123
WEIGHT:D/A	8.000	19.964	0.913	WEIGHT:D/A	4.000	17.245	2.138	WEIGHT:D/A	5.000	17.756	1.821	WEIGHT:D/A	3.000	4.281	1.230
ZN	8.000	16.074	1.712	ZN	4.000	15.320	1.632	ZN	5.000	16.486	1.509	ZN	3.000	17.973	0.823
SC															
PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV
AS	8.000	0.550	0.168	AS	4.000	0.542	0.044	AS	5.000	0.660	0.390	AS	6.000	0.437	0.108
BR	8.000	2.802	0.693	BR	4.000	3.277	0.526	BR	5.000	2.442	1.558	BR	6.000	3.329	0.967
CA	8.000	620.187	307.663	CA	4.000	552.350	30.025	CA	5.000	495.180	417.083	CA	6.000	627.566	227.777
CU	8.000	0.610	0.160	CU	4.000	0.784	0.240	CU	5.000	0.445	0.295	CU	6.000	0.386	0.054
FE	8.000	16.260	2.043	FE	4.000	21.022	4.132	FE	5.000	13.530	8.673	FE	6.000	21.575	3.061
FISHWEIGHT	8.000	210.387	84.632	FISHWEIGHT	4.000	294.875	152.848	FISHWEIGHT	5.000	187.400	114.701	FISHWEIGHT	6.000	263.667	101.212
K	8.000	22445.000	1529.276	K	4.000	23615.000	3161.629	K	5.000	19394.000	10947.277	K	6.000	20.104	0.022
RB	8.000	5.037	0.463	RB	4.000	4.744	0.575	RB	5.000	1.000	0.302	RB	6.000	22905.000	2420.395
SE	8.000	0.133	0.057	SE	4.000	0.124	0.074	SE	5.000	6.043	2.078	SE	6.000	0.371	0.084
SR	8.000	5.158	3.535	SR	4.000	5.124	1.422	SR	5.000	5.523	3.177	SR	6.000	6.313	1.771
WEIGHT:D/A	8.000	18.842	1.261	WEIGHT:D/A	4.000	17.377	1.173	WEIGHT:D/A	5.000	17.024	2.688	WEIGHT:D/A	6.000	17.260	0.584
ZN	8.000	17.010	1.311	ZN	4.000	14.530	1.422	ZN	5.000	13.124	7.571	ZN	6.000	17.690	2.637
BB															
PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV
AS	4.000	0.604	0.524	AS	4.000	3.745	0.833	AS	4.000	434.975	189.509	AS	4.000	0.655	0.123
BR	4.000	4.000	0.629	BR	4.000	0.855	0.431	BR	4.000	26.932	12.858	BR	4.000	4.885	0.536
CA	4.000	4.000	0.629	CA	4.000	0.081	0.011	CA	4.000	4.510	1.771	CA	4.000	0.028	2.365
FE	4.000	4.000	0.302	FE	4.000	17.272	1.983	FE	4.000	15.707	0.786	FE	4.000	14.737	3.135
FISHWEIGHT	4.000	237.175	176.061	FISHWEIGHT	4.000	231.750	140.323	FISHWEIGHT	5.000	245.600	121.428	FISHWEIGHT	7.000	247.000	57.364
K	4.000	22965.000	523.625	K	4.000	19976.000	4210.665	K	5.000	0.087	0.063	K	5.000	0.070	0.009
RB	4.000	4.000	0.583	RB	4.000	0.104	0.019	RB	4.000	19272.000	4608.451	RB	5.000	23270.000	1738.841
SE	4.000	4.000	0.535	SE	4.000	4.510	1.771	SE	5.000	0.212	0.159	SE	6.000	0.291	0.053
SR	4.000	4.000	0.535	SR	4.000	14.510	1.771	SR	5.000	18.032	4.625	SR	7.000	20.089	4.066
WEIGHT:D/A	4.000	19.690	5.597	WEIGHT:D/A	4.000	14.737	3.135	WEIGHT:D/A	5.000	18.460	1.266	WEIGHT:D/A	7.000	18.297	1.005
ZN	4.000	4.000	0.535	ZN	4.000	15.936	0.937	ZN	5.000	16.924	1.472	ZN	7.000	16.924	1.472
RH															
PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV
AS	4.000	0.443	0.070	AS	5.000	0.666	0.173	AS	7.000	0.535	0.123	AS	7.000	2.959	0.624
BR	4.000	3.134	0.978	BR	5.000	3.891	1.951	BR	7.000	590.614	221.545	BR	7.000	0.438	0.086
CA	4.000	527.400	255.061	CA	5.000	734.240	700.369	CA	7.000	590.614	221.545	CA	7.000	0.438	0.086
CU	4.000	0.629	0.141	CU	5.000	0.536	0.116	CU	5.000	18.032	4.625	CU	7.000	20.089	4.066
FE	4.000	11.942	3.482	FE	5.000	1.032	0.482	FE	5.000	1.032	0.482	FE	7.000	20.089	4.066
FISHWEIGHT	4.000	231.750	140.323	FISHWEIGHT	5.000	245.600	121.428	FISHWEIGHT	7.000	247.000	57.364	FISHWEIGHT	7.000	0.070	0.009
K	4.000	19976.000	4210.665	K	5.000	19272.000	4608.451	K	5.000	19272.000	4608.451	K	6.000	0.291	0.053
RB	4.000	4.000	0.583	RB	5.000	0.212	0.159	RB	5.000	0.212	0.159	RB	7.000	0.291	0.053
SE	4.000	4.000	0.535	SE	5.000	0.367	0.134	SE	5.000	0.367	0.134	SE	7.000	0.308	0.136
NI	4.000	0.104	0.019	NI	5.000	0.212	0.159	NI	5.000	0.212	0.159	NI	7.000	0.298	0.167
SR	4.000	4.510	1.771	SR	5.000	1.032	0.482	SR	5.000	1.032	0.482	SR	7.000	1.032	0.482
WEIGHT:D/A	4.000	19.690	5.597	WEIGHT:D/A	5.000	18.460	1.266	WEIGHT:D/A	7.000	18.297	1.005	WEIGHT:D/A	7.000	16.924	1.472
ZN	4.000	4.000	0.535	ZN	5.000	16.924	1.472	ZN	5.000	16.924	1.472	ZN	7.000	16.924	1.472

Table 14. Mean concentration of elements in *Bairdiella* Liver relative to sampling period and station.

SP	December			April			July			October						
	PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV
SP	AS	1,000	0.295		AS	1,000	0.429		AS	1,000	0.935		AS	1,000	1.020	
	BR	1,000	1.537		BR	1,000	1.910		BR	1,000	4.909		BR	1,000	2.037	
	CA	1,000	471.500		CA	1,000	198.100		CA	1,000	2572.000		CA	1,000	8.905	
	CU	1,000	8.173		CU	1,000	3.123		CU	1,000	6.708		CU	1,000	4087.000	
	FE	1,000	412.600		FE	1,000	312.700		FE	1,000	841.600		FE	1,000	4.857	
	FISHWEIGHT	6,000	207.350	71.474	FISHWEIGHT	4,000	274.475	127.310	FISHWEIGHT	5,000	210.600	127.414	FISHWEIGHT	1,000	1614.000	
	K	1,000	11200.000		K	1,000	10680.000		K	1,000	1174		K	3,000	168.300	54.252
	MN	1,000	1.513		MN	1,000	2.694		MN	1,000	11400.000		MN	1,000	7616.000	
	RB	1,000	2.778		RB	1,000	2.865		RB	1,000	0.991		RB	1,000	2.398	
	SE	1,000	0.052		SE	1,000	0.053		SE	1,000	0.227		SE	1,000	38.690	
	SR	1,000	6.090		SR	1,000	3.998		SR	1,000	3.571		SR	1,000	1.679	1.253
	WEIGHT	9,000	6.659	8.851	WEIGHT	5,000	10.680	9.867	WEIGHT	1,000	0.123		WEIGHT	4,000	15.610	
	WEIGHT:D/A	1,000	25.450		WEIGHT:D/A	1,000	26.650		WEIGHT:D/A	6,000	26.880		WEIGHT:D/A	1,000	47.850	
	ZN	1,000	51.060		ZN	1,000	50.210		ZN	1,000	4.400	4.893	ZN	1,000	17.110	
														1,000	63.120	
														1,000	13.744	
SC	PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV
	AS	1,000	0.292		AS	1,000	0.246		AS	1,000	0.983		AS	1,000	1.048	
	BR	1,000	3.736		BR	1,000	260.800		BR	1,000	2.902		BR	1,000	17.030	
	CA	1,000	405.200		CA	1,000	2.049		CA	1,000	304.400		CA	1,000	2140.000	
	CU	1,000	5.985		CU	1,000	239.100		CU	1,000	5.713		CU	1,000	6.376	
	FE	1,000	449.600		FE	1,000	294.873	152.848	FE	1,000	379.300		FE	1,000	3319.000	
	FISHWEIGHT	6,000	210.387	84.632	FISHWEIGHT	1,000	0.051		FISHWEIGHT	5,000	187.400	114.701	FISHWEIGHT	6,000	263.667	101.212
	K	1,000	10000.000		K	1,000	5807.000		K	1,000	0.053		K	1,000	0.217	
	MN	1,000	2.104		MN	1,000	1.354		MN	1,000	4799.000		MN	1,000	11790.000	
	RB	1,000	2.922		RB	1,000	1.718		RB	1,000	1.504		RB	1,000	7.886	
	SE	1,000	0.037		SE	1,000	0.106		SE	1,000	1.778		SE	1,000	0.418	
	SR	1,000	5.513		SR	1,000	3.826		SR	1,000	0.024		SR	1,000	0.146	
	WEIGHT	9,345	5.691	8.958	WEIGHT	5,000	14.143	13.042	WEIGHT	6,000	4.936		WEIGHT	1,000	3.493	
	WEIGHT:D/A	1,000	27.370		WEIGHT:D/A	1,000	36.850		WEIGHT:D/A	6,000	2.474	2.659	WEIGHT:D/A	1,000	0.438	
	ZN	1,000	51.511		ZN	1,000	34.740		ZN	1,000	21.990		ZN	1,000	25.940	
														7,000	3.242	3.608
														1,000	11.450	
														1,000	57.820	
														1,000	0.241	
BB	PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV	PARAMETER	N	A-MEAN	STD DEV
	AS	1,000	0.266		AS	1,000	2.130		AS	1,000	0.266		AS	1,000	0.240	
	BR	1,000	351.500		BR	1,000	351.500		BR	1,000	2.042		BR	1,000	2.042	
	CA	1,000	351.500		CA	1,000	351.500		CA	1,000	2.042		CA	1,000	2.042	
	CU	1,000	351.500		CU	1,000	351.500		CU	1,000	2.042		CU	1,000	2.042	
	FE	1,000	332.100		FE	1,000	237.175	176.061	FE	1,000	0.053		FE	1,000	0.053	
	FISHWEIGHT	4,000	237.175	176.061	FISHWEIGHT	1,000	7750.000		FISHWEIGHT	4,000	231.750	140.523	FISHWEIGHT	1,000	12130.000	
	GA	1,000	0.053		GA	1,000	0.053		GA	1,000	4.168		GA	1,000	5.917	
	MN	1,000	2.875		MN	1,000	2.875		MN	1,000	2.443		MN	1,000	0.126	
	RB	1,000	2.042		RB	1,000	2.042		RB	1,000	0.077		RB	1,000	0.077	
	SE	1,000	0.024		SE	1,000	0.024		SE	1,000	0.024		SE	1,000	0.024	
	SR	1,000	6.675		SR	1,000	10.686	10.217	SR	1,000	5.258		SR	1,000	3.199	
	WEIGHT	5,000	10.686		WEIGHT	5,000	14.143		WEIGHT	5,000	11.780		WEIGHT	1,000	0.102	
	WEIGHT:D/A	1,000	30.710		WEIGHT:D/A	1,000	36.850		WEIGHT:D/A	6,000	21.990		WEIGHT:D/A	1,000	15.110	
	ZN	1,000	31.640		ZN	1,000	31.640		ZN	1,000	38.150		ZN	1,000	2.577	3.160
		1,000	0.120											1,000	17.070	
RH	PARAMETER	N	A-MEAN	STD DEV	Insufficient sample	N	A-MEAN	STD DEV	Insufficient sample	N	A-MEAN	STD DEV	Insufficient sample	N	A-MEAN	STD DEV
	AS	1,000	0.372		AS	1,000	1.132		AS	1,000	0.996		AS	1,000	10.780	
	BR	1,000	0.654		BR	1,000	306.600		BR	1,000	4.866		BR	1,000	2646.000	
	CA	1,000	2.302		CA	1,000	217.400		CA	1,000	247.000	57.364	CA	1,000	0.200	
	CU	1,000	2.302		CU	1,000	217.400		CU	1,000	247.000	57.364	CU	1,000	0.200	
	FE	1,000	2.302		FE	1,000	217.400		FE	1,000	247.000	57.364	FE	1,000	0.200	
	FISHWEIGHT	4,000	231.750	140.523	FISHWEIGHT	1,000	5254.000		FISHWEIGHT	4,000	231.750	140.523	FISHWEIGHT	1,000	12130.000	
	K	1,000	4.168		K	1,000	4.168		K	1,000	4.168		K	1,000	0.126	
	RB	1,000	2.443		RB	1,000	2.443		RB	1,000	2.443		RB	1,000	0.126	
	SE	1,000	0.077		SE	1,000	0.077		SE	1,000	0.077		SE	1,000	0.077	
	SR	1,000	5.258		SR	1,000	5.258		SR	1,000	5.258		SR	1,000	5.258	
	WEIGHT	5,000	11.780	12.262	WEIGHT	5,000	11.780		WEIGHT	5,000	11.780		WEIGHT	1,000	0.102	
	WEIGHT:D/A	1,000	31.190		WEIGHT:D/A	1,000	31.190		WEIGHT:D/A	6,000	21.990		WEIGHT:D/A	1,000	15.110	
	ZN	1,000	38.150		ZN	1,000	38.150		ZN	1,000	38.150		ZN	1,000	17.070	3.160
														1,000	53.310	
														1,000	0.128	

Table 15. Mean concentration of elements in *Bairdiella* Bone relative to sampling period and station.

December

April

July

October

PARAMETER	N	A-MEAN	STD DEV
AS	6.000	2.508	0.539
BR	5.000	1.974	0.420
CA	8.000	154150.000	11074.811
CU	1.000	0.877	
FE	6.000	118.739	90.213

FISHWEIGHT

GA	6.000	207.350	71.474
GA	5.000	0.577	0.098
K	8.000	12243.000	1742.658
MN	8.000	8.112	2.060
RB	8.000	1.730	0.435

SE	6.000	2.424	0.699
SR	8.000	553.075	69.755
WEIGHT:D/A	8.000	3.539	0.162
ZN	6.000	40.555	3.522
ZR	4.000	1.752	0.634

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

ZR

FISHWEIGHT

GA

K

MN

NI

RB

SE

SR

WEIGHT:D/A

ZN

Table 16. Mean concentration of elements in sargo muscle relative to sampling period and station.

PARAMETER	DECEMBER			APRIL			JULY			OCTOBER			
	N	A-MEAN	STD DEV	N	A-MEAN	STD DEV	N	A-Mean	Std Dev.	N	A-MEAN	STD DEV	
SP	AS	2,000	0.402	0.279	4,000	0.557	0.226	AS	1,000	0.446	3,000	0.694	0.066
	BR	2,000	4.100	0.379	4,000	3.304	2.124	BR	1,745	3,000	4.982	1.786	
	CA	2,000	2334.000	359.210	4,000	8421.250	14795.042	CA	505.300	3,000	679.033	140.856	
	CU	2,000	0.813	0.079	4,000	0.823	0.461	CU	0.323	3,000	0.552	0.131	
	FE	2,000	17.720	2.772	4,000	16.940	2.507	FE	15.330	3,000	347.333	50.332	
	FISHWEIGHT	2,000	293.200	4.808	5,000	192.160	150.758	FN	432.000	3,000	19246.667	2795.019	
	GA	1,000	0.024		2,000	0.108	0.005	GA	0.076	3,000	0.651	0.233	
	K	2,000	21665.000	854.594	4,000	13016.250	8071.738	K	18470.000	3,000	5.222	0.733	
	RB	2,000	6.400	0.786	1,000	3.132		NI	0.252	3,000	17.320	1.275	
	SE	2,000	0.163	0.070	1,000	0.155		RB	4.586	3,000	13.327	0.934	
SP	SR	2,000	17.185	0.573	4,000	3.248	2.037	SE	.042				
	WEIGHT:D/A	2,000	15.220	0.776	4,000	3.180	0.201	SR	4.756				
	ZN	2,000	17.312	2.128	4,000	27.608	46.524	Wt.	23.550				
	ZP				5,000	17.606	2.526	Zn	10.910				
					1,000	0.013							

SC

AS	0.680	0.524
BR	1.908	3.400
CA	2029.000	1221.000
CU	9.903	.616
FE	247.100	16.840
FN	22840.000	160.000
GA	5.723	28920.000
K	.176	8.033
RB	11.540	0.066
SE	16.46	5.270
SR	12.640	15.560
D/4		18.190
ZN		

RH

PARAMETER	N	A-MEAN	STD DEV
AS	5,000	0.789	0.170
BR	5,000	4.667	0.923
CA	5,000	329.776	233.111
CU	5,000	0.715	0.158
FE	5,000	20.212	3.691
FISHWEIGHT	6,000	318.000	123.653
GA	1,000	0.102	
K	5,000	21410.000	2648.728
NI	1,000	0.216	
RB	5,000	6.432	0.692
SE	5,000	0.112	0.034
SR	5,000	3.006	1.274
WEIGHT:D/A	6,000	18.003	0.913
ZN	5,000	15.414	2.360

Table 17. Mean concentration of elements in sargo liver relative to sampling period and station.

SC	As	.123
	Ca	27.45
	CU	.469
	FE	76.6
	FW	247.1
	K	1257.
	MN	.289
	RB	.291
	SE	.013
	SR	.223
	WT	2.617
	ST	36.03
	ZN	12.82
	ZR	.031

Insufficient sample
for analyses.

PARAMETER	N	A-MEAN	STD DEV
AS	1.000	1.208	
BR	1.000	2.658	
CA	1.000	233.800	
CU	1.000	2.092	
FE	1.000	287.600	
FISHWEIGHT	6.000	318.000	123.653
GA	1.000	0.044	
K	1.000	4188.000	
MN	1.000	1.374	
RB	1.000	1.282	
SE	1.000	0.082	
SR	1.000	0.382	
WEIGHT	7.000	6.382	
WEIGHT:D/A	1.000	59.450	
ZN	1.000	29.440	

Table 18. Mean concentration of elements in sargo bone relative to sampling period and station.

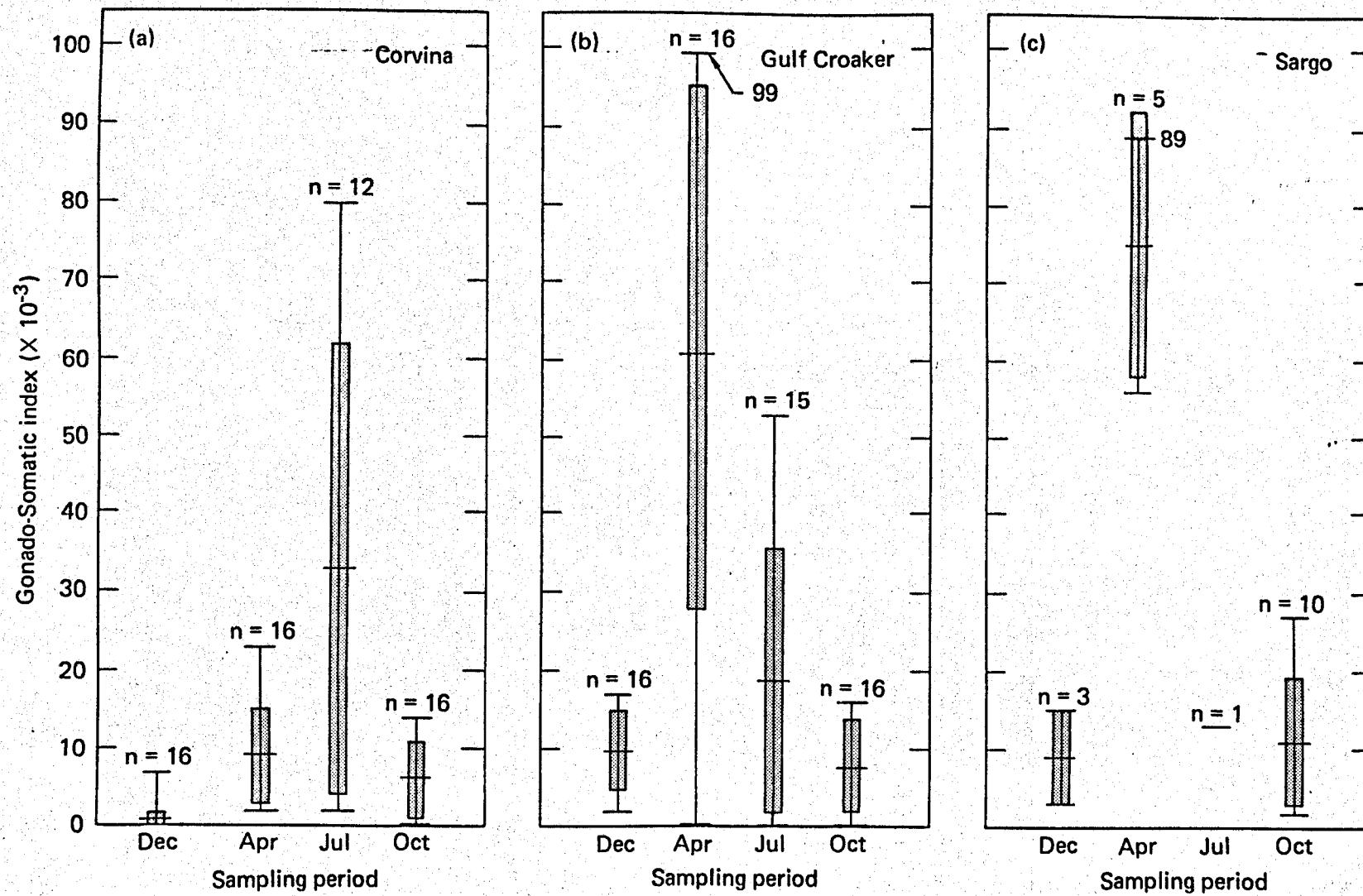


Figure 1. Gonado-Somatic index vs. sampling period for Salton Sea fishes (Go-So index = $\frac{\text{gonad wt.}}{\text{fish wt.}}$)

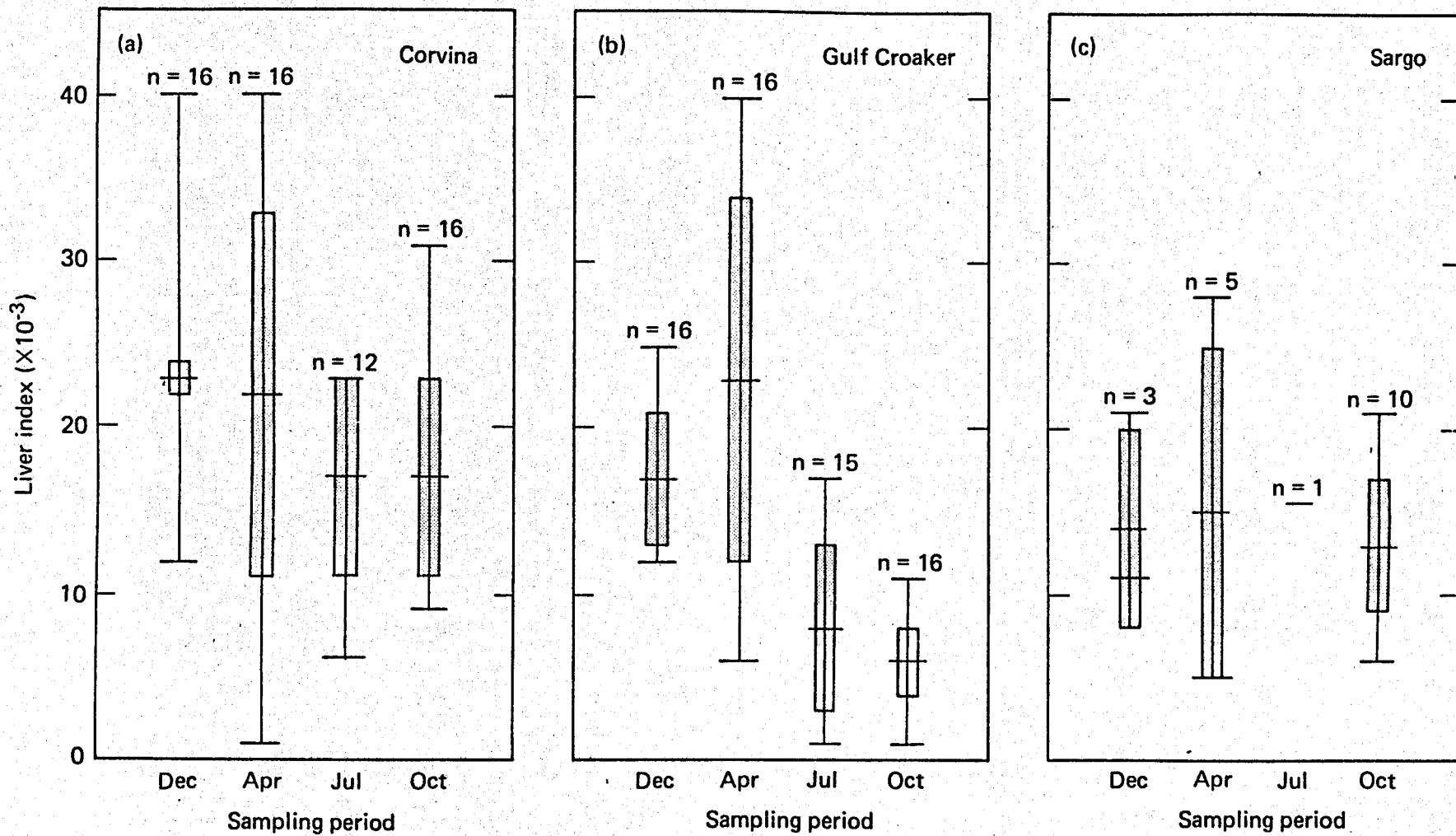


Figure 2. Liver index vs. sampling period for Salton Sea fishes (Liver index = $\frac{\text{liver wt.}}{\text{fish wt.}}$)