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f 2 

1. SUMMARY 

As part  o f  the 
Engineering Laboratory (INEL) , a sieve t r a y  d i r e c t  contact heat exchanger 

Raf t  River geothermal t e s t  s i t e .  I 
a hot  geothermal f l u i d  a secondary working f l u i d  which 
was vaporized dur ing the heat exchange process. , This working f l u i d  vapor 
could then be expanded through a turb ine generating e l e c t r i c a l  power. I n  
the d i r e c t  contact heat exchanger (DCHX), the two f l u i d s  are i n  physical 
contact w i t h  each other, i.e., there are no physical boundaries between 
the f l u i d s  as heat i s  ese devices have been widely used i n  
mass t rans fer  ap 
t rans fer  appl ica . .. i 

a t  the Idaho National 
E 

. was designed, b u i l t  and then tested i n  a b inary power cyc le  a t  the INEL 
heat exchanger the energy from 

I 

cations, however l i t t l e  experience ex is ts  i n  heat 

A ser ies o f  basel ine t 1 and2hydrau'tic t es ts  were conducted w i th  an 
isobutane working f l u i d .  The evaluat ion o f  these tes ts  are the subject 
o f  t h i s  prel iminary report .  The tes t i ng  o f  the DCHX confirmed t h a t  the 
repeated forming and coalescence o f  the working f l u i d  drops i n  the sieve 
t r a y  column produce excel lent  heat t rans fer  performance. Tray thermal 
e f f i c i enc ies  were a t  o r  above the design value o f  70% and the pinch points 
were wel l  under the design goal o f  1°F ( too small t o  be measured w i t h  
i n s t a l l e d  instrumentation). 
operated a t  the working f l u i d  ve loc i t i es  from the p la te  holes corresponding 
t o  the predicted condi t ion o f  maximum t o t a l  drop surface area (o r  minimum 
drop s ize)  when the u n i t  was operating near the " f looding" l i m i t s ,  o r  
throughputs. This i s  the recommended working f l u i d  hole ve loc i t y  f o r  use 
i n  designing sieve t r a y  
( a t  f looding) correspond t o  the terminal r i s e  ve loc i t y  o f  a 
1/32-inch drop. This i s  a d e commonly used f o r  
terminal v e l o c i t y  (o r  con t in  
f o r  mass transfer appl icat ions.  

Few operational o r  major equipment problems were encountered. Aside from 
t r y i n g  t o  run the u n i t  i n  co ld  weather (and the associated freezing problems), 
the major probl em'encountered was caused by the excel l e n t  thermal performance 

L. 

Q 

From a hydraul ic standpoint, the column 

he geothermal flow 1 i m i  t s  encountered 

u i d  ve loc i t y )  i n  the 

Y 

0 

1 



of the un i t .  A s i g n i f i c a n t  volume o f  working f l u i d  ( l i q u i d )  was very near 
the b o i l i n g  temperature corresponding t o  the b o i l e r  pressure. 
(a pressure drop) could cause t h i s  f l w i d  t o  begin t o  b o i l  prematurely i n  
the preheating sect ion causing the  column t o  f lood.  

Valve changes 

From these tes ts  s u f f i c i e n t  informat ion has been generated t o  design the 
next phase o f  t es t i ng  which w i l l  examine the re la t ionships between ,heat 

transfer, mass transfer,  and column hydraulics. A t  t h i s  point, the DCHX 
could be designed, t o  increase i t s  throughput apacity, bu t  i t  i s  .not 
known what, if any, sac r i f i ces  might have t o  be made i n  terms of  thermal 
performance o r  the penalty t h a t  would have t o  be paid i n  wrorking f l u i d  

losses (o r  recovery) , t o  provide t h i s  
data taken does ind ica te  sthat t he  t r a y  thermal e f f i c iency  i s  dependent 
upon hydraulics. These tes ts  w i l l  provide the baseline f o r  the t e s t i n g  t h a t  
w i l l  attempt t o  resolve some o f  these questions. This next ser ies o f  t e s t s  
are planned a f te r  the completion o f  the superc r i t i ca l  t es t i ng  w i t h  she l l  
and tube heat exchangers. 

d i t j o n a l  hydraul i c  capacity. The 

2 



2. INTRODUCTION 

As p a r t  o f  the Department o f  Energy, Div is ion o f  Geothermal Energy e f f o r t  
i n  conversion technology, EG&G Idaho, Inc., has been invest igat ing d i f f e r e n t  
methods o f  u t i l i z i n g  the energy contained i n  a moderate temperature (14OOC) 
geothermal resource a t  the INEL Raf t  River geothermal t e s t  s i t e .  The 
major emphasis o f  the conversion technology e f f o r t  has been the t e s t i n g  
o f  b inary power cycles w i t h  a prototype p lan t  t e s t  f a c i l i t y  which has 
been i n  operation since 1978. This repor t  w i l l  present the r e s u l t s  of 
t h a t  por t ion  o f  the l a t e s t  sequence o f  tes ts  conducted from A p r i l  1981 t o  
Ju ly  1982 u t i l i z i n g  a d i r e c t  contact heat exchanger (DCHX) as the preheater/ 
evaporator and an isobutane working f l u i d .  

The i n t e r e s t  i n  d i r e c t  contact heat exchangers i n  geothermal appl icat ions 
has developed because these devices have the potent ia l  t o  provide e f f i c i e n t  
heat t ransfer  service wi thout the scal ing o r  corrosion problems t h a t  could 
a r i s e  w i t h  conventional heat exchangers. Because the working and geothermal 
f l u i d s  phys ica l ly  contact each other during the heat exchange process, 
there i s  no physical heat t rans fer  surface, i.e., tube w a l l ,  t o  fou l  o r  
corrode due t o  exposure t o  a hot  b r ine  containing varying leve ls  o f  dissolved 
sol ids.  This lack o f  a physical boundary between the two f l u i d s  also 
presents problems t o  a system using these heaters i n  t h a t  some contamination 
o f  the secondary working f l u i d  occurs ( i n  the form o f  noncondensable gases 
and water vapor) due t o  the exposure t o  the geothermal f l u i d ;  despite 
the f a c t  t h a t  the two f l u i d s  are r e l a t i v e l y  insoluable, some working f l u i d  
i s  dissolved and/or mech 
Both the working f l u i d  losses and the contamination o f  the working f l u i d  
system represent a cost  and power penalty t o  a f a c i l i t y  using these 
exchangers. 

a l l y  entrained i n  the br ine  leaving the un i t .  

g o f  d i r e c t  conta eat  exchange w i t h  the prototype p lan t  
invest igated the performance o f  a sieve tray, or perforated plate-type 
d i r e c t  contact column, 
w i t h  a s ing le  component working f l u i d ,  isobutane, the f l u i d  chemistry o f  
the streams leaving the column were examined t o  determine working f l u i d  
losses and the leve ls  o f  contamination i n  the working f l u i d  vapor flow. 

I n  addi t ion t o  t e s t i n g  the perfo ance of the u n i t  

3 
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During the l a s t  s i x  weeks o f  operation, the f a c i l i t y  was operated using 
d i f f e r e n t  combinations o f  working f l u i d  mixtures. This prel iminary 
repor t  w i l l  deal p r imar i l y  w i th  the performance resu l t s  w i t h  the s ing le  
component working f l u i d ,  isobutane. A more de ta i led  descr ip t ion of the 
f a c i l i t y  and the methods used w i l l  be included i n  the f i n a l  repo r t  a long. 
w i th  an analysis o f  performance w i th  working f l u i d  mixtures and the resu l t s  
of the f l u i d  chemistry test ing.  



3. FACILITY AND COMPONENT DESCRIPTIO 
, -  

P The prototype p lan t  i s .  a small scalg.,geothermal, b inary power p lan t  which 

e 

11 ,scale p lan t  i n  most aspects excep 
primary purpose o f  thed p lan t  i s  $0 be used as a t e s t  f a c i l i t y ,  i t  has 
been b u i l t  w i th  the f l e x i b i l i t y  t o  al low f o r  operation i n  d i f f e r e n t  
conf igurat ions u t i 1  i z i n g  
though,, remains essen t ia l l y  the same. Heat from a hot.  geothermal f l u i d  

r ious  components; the basic p lan t  cycle, 

l 
i s  tranferred t o  a second,ary.working f l u i d  - in  one o f  the heater un i ts .  
This working 

working f l u i d  vapor ( re fer  t o  
nded through a turb ine which 

i d  (isobutane) i s  f i r s t  ,heated t o  saturat ion condit ions 

dr ives an e l e  o r  i s  expanded through a turb ine bypass 
valve $0 the ow pressure vapor (low r e l a t i v e  t o  the 
heater pressu ed andicondensed i n  the condenser. The 
1 i q u i d  conden 

3 back t o  the h he cooled geothermal 
b o i l e r  pressure and rec i rcu la ted  

l u i d  leaving g pond. The condensing 

heat load ' i s  l i n g  water c i r c u l a t i n g  ,through the 3 

condenser which i n  tu rn  r e j e c t  
conventional wet cooi ing tower. 

his,energy W t h e  .atmospherei i n  -a 

, ; .:* I :: " 1 

The subject .o f  t 
when -the :d i r  was _used. The heat exchanger 
i s  a sieve t b u i l t  f o r  t h i s  
app l i ca t ion  forn ia .  The column i s  a 
v e r t i c a l  uni  provide for  the 
ordered pass ermal f l u i d  and 

isobutane working fl 
which are maintaine 
d i f ference between c i b l e  f l u ids .  I n  t h i s  appl icat ion the. 

l i g h t e r  working f l u i d  i 
i n  each plate. These d r i s e  through the heavi geothermal f l u i d  

because o f  the buoyancy force on the drop, and c o l l e c t  and coalesce under 
the next t r a y  and vessel wall .  This process o f  drop forming and coalescing 

be 'operat jon and performance o f  the p lan t  

ow paths through the column 
e o f  g rav i t y  act ing on the densi ty 

ersed as drops from the holes o r  perforat ions 

. z  
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i s  repeated a t  each t r a y  as the working f l u i d  moves up the column, heating 
as i t  r ises  through the geothermal f l u i d .  
f lows as the continuous medium hor izon ta l l y  across each p l a t e  t rans fer r ing  
heat t o  the wroking f l u i d ,  and then passes down t o  the next p l a t e  through 
a disengagement space formed by the downcomer on each plate.  

The prototype DCHX i s  shown schematically i n  Figure 2. The lower 17 o f  
the 20 t rays comprise the preheating section where the working f l u i d  i s  
heated up t o  the b o i l i n g  temperature corresponding t o  the b o i l e r  pressure. 
The next two trays, i.e., 18 and 19, make up t h e  b o i l i n g  sect ion where the 

working f l u i d  i s  vaporized. The upper tray, number 20, was included f o r  
draw-off t e s t i n g  w i t h  a hydrocarbon mixture working f lu id .  Geothermal 
f l u i d  enters the column j u s t  above the upper b o i l i n g  t r a y  and i s  cooled 

as i t  flows down the column and out the very bottom o f  the uni t .  As ’ 

indicated i n  Figure 2, the geothermal f l u i d  temperature i s  measured i n  
the downcomer regions a t  various locat ions as the f l u i d  flows through the 
heat exchanger. The l i q u i d  working f l u i d  enters the bottom of the co 
and i s  dispersed j u s t  under the bottom plate.  The working f l u i d  temperature 

i s  measured under d i f fe ren t  t rays as i t  r ises  up through the column. The 
working f lu id-vapor  leaves the u n i t  near the top. 

The heavier geothermal f l u i d  

The DCHX is 30.48 cm (1 ft) i n  diameter and approximately 5.94 m (19.5 f t )  
long. The performations i n  the t rays have a diameter of 0.3175 cm 
(1/8-inch) and the t rays ( i n  the preheating section) are spaced a t  15.24 cm 
(6-inch) i n t e r v a l s  w i t h  7.62 cm (3-inch) long downcomers). 

,I 

. 



4. DIRECT CONTACT HEAT EXCHANGER THERMAL AND HYDRAULIC PERFORMANCE TESTS 

4.1 

The f i r s t  sequence o f  performance tes ts  w i th  the proto 
was t o  provide thermal and hydraul ic performance da ta . fo r  the u n i t  
w i th  an isobutane working 
Table 1; provide temperat 
e f f i c ienc ies  and heat exchanger pinch points  and the column "f looding" 

-da ta  which establ ished the mass t h  
"Flooding" i n  these d i r e c t  contact 
the dispersed f l u i d ,  was 
the column operation bec i ng these performance 
tests, the DCHX was brought t o  t h  g condit ions a t  
f l o w  rates w e l l  below the predicted f looding l i m i t s .  Flow rates 
were then increased i n  regula increments ( s t i l l  maintaining the 

each o f  the, cond i t i  

DCHX 

which are out l ined i n  
n determi n i  ng tray 

i t s  for  the column. 
ef ined as the po in t  where 

ntinuous f l u i d  a t  leve ls  where 

- b o i l i n g  condit ions) curred. This was repeated - fo r  

. I  ~ 
0 

4.2 Discussion o f  DCHX Thermal and Hydraulic Performance 

I n  the d i r e c t  contact 'heat exchanger both the geothermal f l u i d  and 
the working f l u i d   are^ i n  contact w i th  each othe dur ing the heat 

e r  physical boundary 
i ng  both f l u i d s  
ensi ty d i f ference 

f the l i g h t e r  working f l u i d  r i s i n g  
down and out  

between the f l u i d s  

of the bottom o f  

i d s  al lows these 

f f i c i e n t  f low 

. 

i 
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desired during boi l ing,  provided a large enough "pot" i s  avai lab le 
t o  vaporize a l l  the working f l u i d .  
o f  the prototype DCHX the main emphasis was placed on the the 
preheating section. 

The d i r e c t  contact heat exchanger p i l y  used O r  tested i n  geothermal 
appl icat ions i s  the spray o r  Elgin-'tower. This type o f  column i s  
characterized by i t s  s imp l ic i t y ,  i.e., i t  contains no special in te rna ls  
other than d i s t r i b u t o r  plates o r  nozzles used t o  introduce the 
two f l u i d s  i n t o  the column. The .prototype DCHX, whose t e s t  r e s u l t s  
are reported here, i s  a s ieve t r a y  column which uses in te rna l  t rays 
and downcomers t o  provide f o r  an ordered repeated mixing and separation 
of the f l u i d s  as-they move through the column. These in te rna ls  el iminate 
the rec i rcu la t ion  o f  f l u i d s  charac ter is t i c  o f  E lg in  towers which tends 
t o  reduce thermal performance. The repeated formation and coalescence, 
i.e., heating and mixing, o f  the drops can also provide a potent ia l  
improvement i n  thermal performance i n  t h a t  more o f  the f l u i d  i s  
exposed t o  the source o f  heat than i n  the case o f  a s ing le drop r i s i n g  
i n  a spray column where the f l u i d  a t  the center o f  the drop must be 
heated by conduction through the drop from i t s  surface. 

I n  evaluating the performance 

t 

One ind ica tor  o f  the thermal performance o f  the sieve t r a y  DCHX i s  
the t r a y  e f f i c i e n c y  which i s  a measure o f  how e f f i c i e n t l y  heat i s  
t ransferred during the contacting o f  the two f l u i d s  between plates, 

The t r a y  e f f i c i e n c y  i s  defined as the r a t i o  o f  the actual 
temperature change o f  a f l u i d  through a t r a y  sect ion t o  the maximum 
temperature.change the f l u i d  could have undergone. The maximum 

and the temperature both f l u i d s  wouTd come t o  i f  allowed t o  mix i n  the 
t r a y  andptemperatures equi l ibrate.  The t r a y  e f f i c i e n c y  i s  always 
greater than zero and less than one (100%). I t  should be noted t h a t  
t h i s  d e f i n i t i o n  o f  t r a y  e f f i c i e n c y  when applied t o  the working"f1uid 
temperature, i s  useful f o r  the preheating por t ion  o f  the column but  
no t  the b o i l i n g  trays. ( I n  the b o i l i n g  trays, e f f i c i e n c y  der ived 
from working f l u i d  temperatures must be based on enthalpy di f ferences 
as the working f l u i d  b o i l s  a t  a constant temperature.) The thermal 

i temperature change i s  the d i f ference between the i n l e t  f l u i d  temperature 

I 
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o provide the data f o r  
col  umn condi ti ons and 

ated design 
ra tu re  p r o f i l e  i n  t 

e design e f f i c i ency  
e was based on a 

t number o f  boi  

pinch po in t  i s  the min i  

P 

5 

r i s e  i n  the column due t o  the densi ty d i f ference between the f l u i d s  
or the drop's buoyancy. The ve loc i t y  a t  which the drop r i se ,  or i t s  



* . 

terminal veloci ty,  i s  approximately proport ional  t o  the square r o o t  

' I f  the ve loc i t y  o f  the continu f l u i d  exceeds t h  
l oc i t y ,  then the drop w i l l  b wept along i n  the 

, thus smaller ps r i s e  more slowly 

continuous f l u i d  stream, o r  mechanically entrained. Thus the terminal 
ve loc i t y  o f  the working f l u i d  drop establ ishes the maximum ve loc i t y  
o f  the geothermal f l u i d  i n  the column. The reduct ion i n  drop size t o  
provide more heat t ransfer  area must be traded o f f  w i th  reduced mass 
throughputs o f  both f l u i d s  and/or a la rger  vessel a t  higher costs. 

The i n t e n t  o f  the DCHX hydraul ic and 
not t o  invest igate the d i f f e r e n t  mechanisms involved i n  the drop 
formation process 
mechanisms i n  i n t e r  
Invest igat ions have found t h a t  a t  low o r i f i c e  o r  hole ve loc i t i es  
the drops w i l l  form a t  a uniform s ize and break o f f  a t  regular  
in terva ls .  
the drop s ize a t  these low ve loc i t i es  and produced estimated diameters 
ranging from 0.6 cm t o  over 1 cm.) As the ve loc i t y  through the o r i f i c e  
i s  increased, a po int  i s  reached where the mechanism for the drop 
formation changes. A short  j e t  o f  dispersed f l u i d  extends f rom the 
nozzle and drops form by a "necking-in" a t  the top o f  the j e t .  The 
drops formed from the j e t ,  whi le not  as uniform i n  s ize  as the drops 
formed p r i o r  t o  j e t t i n g ,  have some consistency i n  s ize a t  the lower 

rmal performance tes ts  was 

s iderat ion must be made o f  these 
operating l i m i t s  encountered. 

. 

(Some o f  the d i f f e r e n t  corre la t ions were used t o  p red ic t  

j e t  ve loc i t i es  and t h e i r  average diameter can be predi cted. (1 1 

As the o r i f i c e  ve loc i t y  increases, the j e t  increases i n  length. Skel l  
and Johnson(') invest igated the formation of drops f r o m  t h e  breakup o f  
j e t s  
maximum i n t e r f a c i a l  area. This condi t ion defines the po in t  where the 
i n t e r f a c i a l  or surface area between the contact in l u i d s  i s  a t  a 
maximum. I t was i n i t i a l l y  defined as an importa 
design o f  l i q u i d - l i q u i d  columns i n  mass transfer p l i ca t ions .  It 

would assume the same importance i n  the d n of columns for  l i q u i d -  
l i q u i d  heat t rans fer  appl icat ions i n  tha defines the condi t ion 

defined corre la t ions which pred ic t  the condit ions producing the 

parameter i n  the 
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f o r  maximum drop surface area ( t o t a l )  which corresponds t o  the minimum 
average drop size. 
i s  recommended by Jacobs and 50ehm(~), as the maximum hole ve loc i ty  t o  
use i n  the design o f  a sieve t r a y  d i rec  

he o r i f i c e  ve loc i t y  cbrresponding t o  t h i s  condi t ion 

ontact  heat exchanger. 

length increases w i th  t h e - o r i f i c e  ve loc i t y  to-  a po in t  where 

The maximum j e t  length condi t ion defines 
the length reaches a maximum a f t e r  whichlthe j e t  decreases i n  length 
as vel oc l  ty  increases , 
the po in t  where j e t  b 
have no uni formi ty  i n  size, The j e t  length w i l l  continue t o  decrease 

disappears and the wor 
producing I a c l  oud o f  small drop1 e ts  

s t o  breakup i n  a random manner and the drops’ 

I wi th  increasing veloci  u n t i l  the po in t  i s  reached where the j e t  
g f l u i d  stream leaving the o r i f i c e  i s  atomized 

i d  through the p l a t  orat ions which 
je t t ing ;  the maximum i n t e r f a c i a l  area, and the 

hese predic t ions a r e  made 
f o r  condit ions fo r  some 
the hole sizes and 

f l u i d s  used i n  the DCHX. 
i n i t i a t e s  from the p la te  perforat ions varied l i t t l e  over the range o f  

The predicted ve loc i t y  a t  hhich j e t t i n g  

condit ions considered, ind ica t ing  f l u i d  propert ies had 1 i t t l e  e f f e c t  

i 

I 

velocity.,to be p r  . 
l i q u i d  systems have noted tha t  t h i s  assumption i s  v a l i d  t o  a ce r ta in  drop 



ameter a f ter -which the terminal v e l o c i t y  no longer -increases and 
i n  some instances may--decrease s l i g h t l y  w i t h  increasing drop i n  
diameter, This t r a n s i t i o n  i s  f e l t  t o  be the r e s u l t  o f  i 'nternal 
c i r c u l a t i o n  wi th in the drop and o s c i l l a t i o n s  and d i s t o r t i o n  of the 
drop surface which increase the drag forces on the drop. A cor re la t ion  
developed by Treybal and Klee(') was used: t o  p red ic t  t h i s  l i m i t i n g  
terminal veloci ty.  The r e s u l t i n g  v e l o c i t y  predict ions are shown i n  
Figure 4. 
ve loc i ty  i n  the column. Higher geothermal f l u i d  v e l o c i t i e s  would 
ent ra in  any drop formed regardless o f  size. The design o f  a d i r e c t  
contact column would not  be based on t h i s  maximum or l i m i t i n g  terminal 
veloci ty.  
of the maximum sized droplet  t h a t  would be allowed t o  be earr ied under. 
Usually t h i s  drop diameter i s  a r b i t r a r i l y  selected. 
used i n  the design o f  sieve t r a y  columns are 0.0794 cm ( l j32- inch)  and 
0.1588 cm (1/16-inch). (5) Both o f  these values are below the diameter 
a t  which the drop i s  predicted t o  no longer behave as a s o l i d  sphere 
(0.18 t o  0.24 cm). The predicted terminal v e l o c i t i e s  f o r  a 0.0794 cm 
(1/32-inch) drop for the range o f  operating condit ions i n  the prototype 
DCHX i s  shown i n  Figure 4. 

This v e l o c i t y  represents the maximum continuous f l u i d  

It would instead be based on the terminal v e l o c i t y  

Values commonly 

4.3 Test Results 

The sequence o f  thermal and hydraul ic tes ts  ( l i s t e d  i n  Table 1) were 
conducted w i t h  the prototype DCHX 'and the hydraul ic throughput 1 i m i t s  
establ ished f o r  each of the condit ions l i s t e d  w i t h  two exceptions. 
was not  possible t o  reach the column f looding l i m i t  i n  t e s t  run 1, 
i.e., the highest b o i l e r  pressure, p r i m a r i l y  because the i n l e t  geothermal 
f l u i d  temperature (approximately 13OOC o r  266°F) was lower than t h  
design value (143°C o r  290OF) requ i r ing  higher geothermal f l u i d  f low 

rates t o  vaporize a given amount o f  working f lu id.  The upper f low l ' i m i t  
of the geothermal f l u i d  boost pump was exceeded'before the column flooded. 

It 

1 

. 

i 

- 
The second exception was t e s t  run 5 where the i n i t i a l  e f f o r t s  resul ted 
i n  premature f looding+as the r e s u l t  of i n s t a b i l i t i e s  i n  the  contro l  
system. 

- 
Later e f f o r t s  t o  establ ish the f looding l i m i t  



were successful however, some inconsistencies were .found i n  the 
data. .If. these inconsistencies can be sorted out, t h i s  data w i l l  
be included , i n  the f i n a l  DCHX report. c 

7 .  

Even though two o f  the seven t e s t  runs were not  t o t a l l y  successful, 
a f a i r l y  wide range o f  operating condi t ions were obtained w i th  the 
u n i t  up t o  i t s  f looding l i m i t s .  The "near f looding" condi t ions f o r  
the column are l i s t e d  i n  Table 2 except f o r  t e s t  run  5 (maximum f low 
condi t ions f o r  t e s t  run 1 are given). The trends i n  f low rates f o r  
both f l u i d s  shown i n  Table 2 are consistent w i t h  the operating 
charac ter is t i cs  o f  other d i r e c t  contact columns; t h a t  i s ,  as the 
dispersed o r  working f l u i d  f low increased, the continuous or geothermal 
f l u i d  f low decreased. 
predic t ions (see Figure 4) which estimated an almost constant terminal 
ve loc i t y  over the range.of conditions considered. 
t h a t  the terminal ve loc i t y  p red ic t ion  considers on ly  a s ing le  drop 

consider the drop formation processes; i.e., the smaller drops formed 

h i s  t rend d i d  not  follow terminal ve loc i t y  

It should be noted 

. system, i.e., no interference from adjacent o r i f i c e s  and does not 

i I a t  the  higher o r i f i c e  ve loc i t ies .  

a t  with the  exception o f  
t e s t  run 1, the heat balances i n  the DCHX u n i t  we 

,range o f  e r r o r  one might expect w i t h  the instrumentation 
i n  5% was cons d acceptable) Th data co l lec ted  f o r  

good and a l l  were 

each o f  the "near f l o  
i n t o  a,  program devel o 
o f  the DCHX preheatin 
analysis f o r  each o f  
temperatures and the 

l i s t e d  i n  Table 2 was input  
hermal performance 
e DCHX thermal 

a t  the measured*flows and 
iency of 70% are shown i n  
.f igures show t h  
sured parameter 

5, 6, 7, 8, 9 

. t r a y  ef f ic iency.  along 

b 

co l  umn temperature prof i 1 e. 
With some exceptions, the data i n  these f igures f i t s  the predicted 

t 
v 
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performance curves f a i r l y  w e l l .  The exceptions are most apparent i n  
the resu l t s  f o r  t e s t  runs 4 and 6 {Figures 8 and 9) where the predicted 

section. 

poor preheating sect ion heat balance which could be corrected through 
an adjustment o f  the f low ra te  and/or the  temperatures. A dev iat ion 
i n  the lower end o f  the preheating section, i.e., p lates 1 through 8, 
resul ted from an incor rec t  e f f i c i ency  assumption. 

The data f o r  each o f  the t e s t  runs was adjusted t o  balance the preheating 
sect ion heat loads which produced good agreement between the measured, 
and predicted temperature p r o f i l e s  i n  the upper preheating section, i .e. , 
near the b o i l i n g  trays. This was accomplished using two methods; 
adjustment o f  the mass f low r a t i o  o r  adjustment o f  the geothermal f l u i d  
o u t l e t  temperature. The t r a y  e f f i c i ency  was then adjusted u n t i l  the 
predicted geothermal f l u i d  temperature p r o f i l e  matched the measured 
p r o f i l e  along the e n t i r e  length o f  the column. The resu l t s  o f  the 
heat balance and t r a y  e f f i c i ency  adjustment f o r  the near f looding 
condit ions are shown i n  Figures 11 through 16. For  the analysis shown 
i n  these figures, the heat balances were adjusted by varying the mass 
flow r a t i o .  When the o u t l e t  temperatures were adjusted, s im i la r  resu l ts  
were obtained. Except f o r  t e s t  run 1 (Figure ll), the t r a y  ef f ic iencies 
which best f i t  the measured p r o f i l e  were a t  the design value o f  70% 
o r  s l i g h t l y  higher (up t o  74%) ind ica t ing  t h a t  from the thermal stand- 
point, the column was performing as designed. 

The e f f e c t  o f  tray e f f i c i ency  on the column temperature p r o f i l e  i s  
demonstrated i n  Figure 17 f o r  the condi t ions i n  t e s t  run 3. I n  t h i s  
figure, predicted column temperature p r o f i l e s  are shown a t  three 
d i f f e ren t  e f f i c ienc ies ,  i.e., 502, 70%, and 90%. I n  a l l  three cases, 
by the t i m e  the f lu ids  reach the l a s t  preheating tray, p la te  17, they 
have reached essent ia l l y  the same temperatures. However, i n  the lower 
por t ion of the preheating section, the assumed e f f i c i ency  does have a 
considerable impact on the predicted p r o f i l e .  

performance deviates f rom the actual data i n  the upper preheating 

preheating section, i.e., p lates 8 through 17, was the r e s u l t  o f  a 

h 

I t  was found t h a t  the deviat ion a t  the upper end of the 
? 

L 

6 

If the trays had an 

.. _ -  
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e f f i c i ency  o most, i f  not a l l ,  c) e t rays would be required 
t o  b r ing  the l u i d  up t o  the b ng ,temperature. A t  a 90% 

t r a y  e f f i c i ency  
It i s  appare 

e i s  an excess o f  preheating t rays i n  the column. . 
se predicted pro f i les  t h a t  for  the condit ions 

L e f f i c i ency  p f  70% produces a temperature 
close t o  matching the t e s t  data. 

shown i n  Figures 5 through 17, i t  i s  
1.  

apparent t h a t  some heat t rans fer  occurred i n  the column before the 
working f l u i d  entered the f i r s t  t r a y  o r  heat t rans fer  zone between 
plates 1 and 2. This heat t rans fer  was occurring i n  the tube (pipe) 
which 9 ,  brought the working f l u i d  i n t o  the downcomer region under p la te  1 
and i n  the region between the discharge o f  t h i s  nozzle and the coalescing 
working f l u i d  layer  under p la te  1 (see Figure 2). I n i t i a l l y  i t  was 
suspected tha t  the temperature probe had not been placed properly. 

.however, i t  was noted t h a t  the geothermal 
easing from ,the downcomer leaving t r a y  1 

t o  the column ce the column was not nea 
conditions, t h  
f l u i d  carryund 

* r e  change could not be a t t r i bu ted  t o  working 
have been the r e s u l t  of a heat exchange w i t h  

h i s  temperature change -was most s ign i f i can t  a t  
e s t  run 1, Figures 5 
t e  increased (see 

ugh the temperature change 

g f l u i d  flow rates (see data fo 

he working f l u i d  
C I  

f low rate, the wor 
continued t o  provide inconsistencies, i .e . ,  see data f o r  t e s t  run 7, 

account f o r  the 

I 

0 
e 

f o r  both methods o f  data 
adjustment f o r  the preheating section, along w i t h  the pinch point, 
heat loads, and volumetric heat t ransfer  coef f ic ients .  Trends i n  
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the ef f ic ienc ies are not apparent except i n  the region under p l a t e  1, 
which was termed the d i s t r i b u t o r  tray. This e f f i c i e n c y  general ly 
decreased w i t h  an increasing working f l u i d  f low r a t e  which would 
be expected as the layer  o f  working f l u i d  should become th icker  as 
the f low r a t e  increases, decreasi the s ize o f  t h i s  heat t rans fer  
zone. Although i t  i s  d i f f i c u l t  t o  i d e n t i f y  any trends i n  the . 
preheating t r a y  ef f ic iency,  i t  i s  s i g n i f i c a n t  t h a t  the e f f i c i e n c i e s  
obtained (except i n  t e s t  run 1 which was no t  brought t o  flooding) 
were equal t o  the design value o f  70 B o i l i n g  t r a y  e f f i c i e n c i e s  
were calculated using a combination o f  temperature measurements and 
predicted enthalpy changes. The 0% t r a y  e f f i c i e n c i e s  obtained i n  
t e s t  runs 4 and 6 f o r  p l a t e  18 are suspect given t h a t  t h i s  eff iciency 
depends on a geothermal f l u i d  temperature measurement i n  a region 
where nei ther f l u i d  i s  the continuous f l u i d  and i n  a sense a 
"bo i l ing  pot" exists.  

. b o i l i n g  heat load increases and working f l u i d  f l o w  r a t e  increases 
(geothermal f l u i d  f low r a t e  decreases) the b o i l i n g  s h i f t s  from 
occurring i n  both t rays t o  occurring mainly i n  the top t ray.  This 
might be explained by the lower b o i l i n g  t r a y  assuming some preheating 
duty; however, from the analysis o f  the preheating t r a y  perfo 
i t  would appear t h a t  there i s  an excess o f  preheating t rays i 
column. Given the uncertainty i n  obtaining an accurate intermediate 
geothermal f l u i d  temperature between b o i l i n g  trays, any signif icance 
o f  apparent trends i n  b o i l i n g  t r a y  e f f i c i e n c i e s  i s  questionable. The 
only  s ign i f icant  conclusion t h a t  one can define i s  t h a t  b o i l i n g  t rays 
had s u f f i c i e n t  capacity f o r  the condit ions tested. 

The pinch points for  tes ts  conducted were small much smaller than 
could be accurately measured w i t h  the instrumentation avai lable. 
matching the preheating sect ion temperature p r o f i l e  pinch points 
ranging from 0.02OF t o  O.3O0F were obtained. These pinch points 
increased as the heat load f o r  the column increased. 
appear from the resu l ts  obtained t h a t  the pinch po in t  i s  more 
sensi t ive t o  the heat load i n  the b o i l i n g  sect ion than t h a t  i n  the 
preheating section ( the la rges t  pinch p o i n t  obtained occurred a t  
the lowest preheating heat load). 

I t  would appear from the data t h a t  as the 

I n  

It would 
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f o r  the d i f f e r e n t  runs and are presented i n  Table 3. 
were defined using the heat t rans fer ' tha t  occurred i n  these sections, 
the t o t a l  volume i n  t h i s  sect ion where heat t rans fer  could have 
occurred, and the l o g  mean temperature dif ference. The l o g  mean 
temperature differences i n  the preheating and b o i l i n g  sections were 
defined using the pinch po in t  obtained i n  matching the preheating 
sect ion temperature p r o f i l e s .  The d i s t r i b u t o r  t r a y  volume was 
defined as the volume between the working f l u i d  i n l e t  nozzle and 
p l a t e  1, enclosed by the downcomer leaving t r a y  1. The preheating 
sect ion volume was defined as the volume o f  the column from the top 
o f  p la te  1 t o  theabottom o f  p la te  18, less the volume o f  the downcomers. 
The b o i l i n g  sect ion volume was defined as the volume i n  the column from 
the top o f  p la te  18 t o  the bottom o f  the demister. It should be 
noted t h a t  these volumes are not  the volumes i n  which the heat t ransfer 
takes place, although the preheating sect ion volume best approximates 
the actual volume. I n - t h e  d i s t r i b u t o r  t r a y  and i n  the preheating 
sect ion the layer  o f  working f l u i d  under each p l a t e  reduces the 
actual volume, and the heat t ransfer  done i n  the i n l e t  pipe i s  not  

These values 

b 

2 

i 

c 



b o i l i n g  increases w i th  heat load. Thus the Uv values a t  the lower 
b o i l e r  heat loads would be even higher i f  actual volume were used. 

Trying t o  compare the Uv values between t e s t  runs o r  f o r  d i f f e r e n t  
heat exchangers i s  d i f f i c u l t  unless volumes and pinch points are 
wel l  defined. 
r e l a t i v e  t o  the actual pinch points  and volumes i n  which heat 
t ransfer  occurs produce s u f f i c i e n t  uncertainty t o  not  m e r i t  more 
deta i led comparisons o f  Uv values w i t h  other heat exchangers. 

Hydraul i c  Performance 

The f l u i d  f low rates l i s t e d  i n  Table 2 are those obtained i n  the 
DCWX u n i t  j u s t  before the f low change t h a t  produced f looding and 
approximate the upper mass throughput l i m i t s  f o r  t h i s  column. 
Flooding Sn the DCHX, as defined i n  t h i s  report,  was t h a t  po in t  where 
the operation o f  the column became unstable and was characterized by 

I n  the case o f  t h i s  heat exchanger un i t ,  questions 

very large carryunder. 
ind ica t ion  measured by the s ize o f  the flame present over the tank i n t o  
which the geothermal f l u i d  discharged. (A continuous p i l o t  flame was 
maintained over the tank t o  burn o f f  any working f l u i d  i n  the geothermal 

Carryunder i n  t h i s  instance i s  a q u a l i t a t i v e  T 

* 

f l u i d . )  Carryunder was noted a t  lower f low rates (again as a flame on 
the tank water leve l ) ,  however the column operated s t a b i l y  a t  these 
f low rates (approximately 16 t o  20 gpm WF). 

The ve loc i t ies  f o r  the "near f looding" condit ions i n  t e s t  runs 2, 3, 
and 4 are shown i n  Figure 18 as the working f l u i d  hole v e l o c i t y  and 
the geothermal f l u i d  downcomer v e l o c i t y  f o r  each p l a t e  i n  the 
preheating section. Also shown are the predicted v e l o c i t i e s  from 
Figure 4 and the geothermal f l u i d  downcomer and working f l u i d  hole 
ve loc i t ies  a t  p lates 1 and 17 for t e s t  runs 6 and 7. 

The geothermal f l u i d  ve loc i t ies  (shown as open c i r c l e s )  i n  the 
downcomer region are below the predicted l i m i t i n g  terminal v e l o c i t y  
for  a l l  the t e s t  runs. For runs 2, 3, 4, and 6, the geothermal f l u i d  
ve loc i ty  i n  the downcomers f o r  p lates 2 through 17 i s  equal t o  
(run 6) o r  exceeds (2, 3, and 4)  the predicted terminal ve loc i ty  

18 
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fo r  a 0.0794 cm (1/32-inch) drop. Geothermal f l u i d  velocit ies were 
n the downcomer leaving t ray 1 as this downcomer was designed 

1 w i t h  approximately 40% more cross sectional area t o  decrease the 
velocity' and reduce' the potential f o r  mechanical entrainment of the 

downcomer sized for  a 0.0794 ctn ( 
velocity would allow for  continuo 
limits encountered w i t h  the DCHX. 

The working f l u i d  'hole velocities a t  the near flooding conditions. 
for  the test runs are,  w i t h  the exception of r u n  2 
predicted for  j e t  formation. The hole velocity for  run 2 is above 
the 'predicted j e t  from a l l  the p la t  except plates 2 and 6 

' where the hole area 

working'fluid i n  the out le t  geofluid. The data implies tha t  a 
2-inch) diameter drop terminal 
f l u i d  velocit ies near the operating 

bove the velocity 

For the most part ,  the working 

um interfacial  area (minimum average 
oci ty  data for  a 

predicted velocity where the m 
drop s ize)  occurs. 

o f  the test runs approximates the 

he plate hole area changes (increase i n  the number 
he 'plate) designed i n t o  the' column by the designer 

f l u i d  velocity pattern similar to  tha t  i 

city.  The data implies 
ncountered by the column 

generally correspond 
minimum average drop 
f l u i d  leaves the plate perforations. The correlation tha t  predicted 

rop of this s ize  

could estimat 
oci ties encounter 

. 
i ng f l u i d  t o  be removed from the column 

at :or  near the saturation temperature. To ensure tha t  the f l u i d  
under plate 17 being removed was working f l u i d  and not geothermal 



f l u id ,  the t o t a l  hole area i n  p l a t e  17 was reduced i n  order t o  
“back-up” o r  thicken the layer  o f  working f l u i d  under the plate. 
This reduction i n  hole area (approximately 60%) resul  ted i n  very 
high working f l u i d  hole v e l o c i t i e s  a t  the operating l i m i t s  (see 
Figure 18). 
from the performations i n  p la te  17 exceeded those predicted f o r  
maximum j e t  length and the r e s u l t i n g  i r r e g u l a r i t y  i n  the s ize  of 
drops formed from the breakup of the j e t .  
t e s t  runs 6 and 7, not  shown i n  Figure 18, were 61.2 cm/s and 
60.7 cm/s, respectively.) It appears t h a t  t h i s  condi t ion was 
occurring i n  p la te  17 near the operating flow l i m i t  
however, i t s  e f fect  on the column hydraul ics i s  d i f  

Except f o r  the condit ions i n  t e s t  run 2, the ve loc i t ies  

(The ve loc i t ies  f o r  

number o f  small drops were formed and entrained i n  the geothermal 

d ve loc i ty  slows over p la te  16 o r  they could, be carr ied on f a r t h e r  
leaving t r a y  17, they could begin r i s i n g  when the geothermal 

down and/or out  the bottom o f  the column. 

A t  t h i s  point, wi thout removing o r  modifying p la te  17, i t  i s  not  
possible t o  associate the column operating hydraul ic 1 i m i  t s  w i t h  
e i ther  the maximum j e t  length ve loc i ty  a t  p la te  17, o r  the maximum 
in te r fac ia l  area ve loc i ty  i n  the remainder o f  the column. I t  i s  
also possible t h a t  ne i ther  these represent an operating l i m i t ,  though 
a t  t h i s  time they are the most l o g i c a l  candidates. 

The predicted ve loc i ty  a t  the maximum i n t e r f a c i a l  area condi t ion i s  
recommended by Jacobs and Boehm(*) as the maximum hole v e l o c i t y  t o  
use i n  designing a sieve t r a y  d i r e c t  contact heat exchanger. I f  
t h i s  ve loc i ty  does produce the maximum surface area i t  should 
provide the most e f f i c i e n t  heat t rans fer  operating condit ion. The 
t r a y  ef f ic iency of two o f  the t e s t  runs (runs 3 and 4) were examined 
as a function of f low r a t e  as the column was brought t o  the flooded 
condition. In both cases the t r a y  e f f i c i e n c y  increased as the f low 
r a t e  increased, although a t  the highest flow f o r  t e s t  run 4, the 
e f f i c i e n c y  decreased s l i g h t l y .  
two runs as wel l  as the ef f ic iencies a t  the maximum f low condit ions 

The t r a y  ef f ic ienc ies f o r  these 
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f o r  the other t e s t  runs are shown i n  Figure 19. 
f low rates a t  which j e t t i n g  and the maximum i n t e r f a c i a l  area condi t ion 

Also shown are the 

i n  the column. The data indicates t h a t  the t r a y  
e w i t h  flow, and suggest t h a t  i t  may peak a t  

c 

* an i n l e t  f low 
continues t o  
e f f i c i e n c y  ‘reach 

t e  around 20 gpm and decrease s l i g h t l y  as f low 
e data a lso ind icates t h a t  the t r a y  
k ( i f  i t  does i n  f a c t  peak) o r  plateau 

predicted maximum i n t e r f a c i a l  a ea and before j e t t i n g  
d. A t  t h i s  po in t  no explanation i s  o f fe red  other than 

the predicted vel t y  values may ave used a i n t e r f a c i a l  surface 
tension higher t h  e. The i n t e r f a c i a l  surface 
tension was estimate erence between the ind iv idua l  surface 

on the m ix tu re_ i  
ed when data 

i o n  were used, the predicted ve loc i t i es  would 
t t e r  agreement between predicted and data 

% 

i 

ote  t h a t  dur ing the operation o f  the DCHX, 
flame on the surface o f  the geothermal 

pproaches o r  reached t h e i r  maximum. Except 
rryunder was noted e a r l i e r  and geothermal f low 

f f  a spray tower o f  sim ests conducted w i t h  ~ 

5 
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super f i c i a l  ve loc i t i es  o f  the sieve t r a y  DCHX were compared t o  those 

o f  the DSS spray tower(7) and the 500kW spray tower. ( 8 )  This 
comparison i s  shown i n  Figure 20. The super f i c i a l  ve loc i t ies ,  which 
were defined as the volume f l ow  r a t e  o f  a f l u i d  a t  the bottom o f  
the column d iv ided by the t o t a l  column cross sect ional  area, enables 
vessels o f  d i f f e r e n t  diameters t o  be compared on an equivalent basis. 
The prototype DCHX data i n  Figure 20 general ly fo l lows the trends 
indicated by Treybal(’) i n  h i s  discussion o f  the f looding l i m i t s  of 
d i f ferent  types o f  d i r e c t  contact columns ( i n  mass transfer appl icat ions) 
It i s  d i f f j c u l t  t o  draw deta i led  conclusions about the throughput 
capacity o f  the sieve t r a y  u n i t  r e l a  ve t o  the spray towers. The 
throughput performance o f  the sieve t r a y  column compar 
w i t h  the design po in t  f o r  the 500kW spray tower. This 
however, does not  represent the throughput l i m i t s  as t h i s  column was 
operated a t  o r  near t h i s  condi t ion wi thout  f looding. The operating 
data from the DSS spray tower indicates’  t h a t  dur ing the low 
cyc le tes t i ng  (i.e., low b r ine  i n l e t  and working f l u i d  out1 
atures), the DSS u n i t  operated a t  higher r e l a t i v e  throughputs than 
the sieve t r a y  column. 
maximum flow rates at’which the DSS spray’tower operated s t a b i l y  
produced super f ic ia l  ve loc i t i es  lower than those obtained dur ing 
operation of the s ieve  t r a y  DCHX. It i s  not  apparent whether t h i s  
l i m i t  encountered dur ing the h igh temperature cyc le  tes t i ng  i s  due t o  
flooding o r  some other factor .  Given the throughputs obtained dur ing 
the low temperature cycle tests, the DSS u n i t  should be able t o  operate 
a t  higher super f ic ia l  ve loc i t i es  when operated a t  higher tempe 
without f looding, i.e., data should fo l low a t rend s i m i l a r  t o  the 
sieve t r a y  DCHX data. 
throughput values represent the f looding l i m i t  o f  t h a t  spr 
the sieve t r a y  DCHX does have a lower r e l a t i v e  throughput 

During the high temperature cyc le  tests,  the 

I f  i t  i s  assumed then t h a t  the higher DSS 

Ef fec ts  o f  Control System on Column Hydraulics r 

The discussion o f  the f looding l i m i t s  o f  the prototype p lan t  DCHX 
t o  t h i s  poin p r imar i l y  involved 

* 



. 

u l t ,  qnd the terminal ve loc i t i es  
in-. the working f l u i d  drops. One, po in t  

DCHX was i n s t a l l e d  and operated w i th  two 
j red) Contro3 .valves. The pressure o f  

the column was maintainedrby a control  valve I n - t h e  working f l u i d  
vapor stream leaving the un i t ,  and the geothermal f l u i d  l i q u i d  leve l  
was contro l led by a valve i n  the e f f l u e n t  geothermal f l u i d  stream. I n  
examining the column temperature p r o f i l e s  (Figures 11 through 16), i t  

i s  apparent t ha t  much of the working f l u i d  i n  the column i s  a t  o r  very 
near the saturat ion temperature corresponding t o  the column operating 
pressure. This poses an operational and contro l  problem as the column 
i s  slow t o  react  t o  flow changes ( p a r t i c u l a r l y  the leve l ) .  On several 
occasions the column flooded because the leve l  valve kept opening i n  
response t o  an apparent high l i q u i d  leve l  i n  the column. A po in t  was 
reached where the pressure control  valve d i d  not  react f a s t  enough t o  
compensate for the drop i n  column pressure caused by the opening leve l  
cont ro l  valve. A t  t h i s  po in t  the column pressure had decreased t o  the 
value where the working' f l u i d  previously near saturat ion temperature was 
a t  the saturat ion temperature corresponding t o  the lower column 
pressure and began t o  vaporize. As t h i s  l i q u i d  began t o  b o i l  i n  
the preheating section, the geothermal f l u i d  was i n  a sense " l i f t e d "  
and the leve l  cont ro l  system saw a r i s i n g  l i q u i d  leve l  and opened the 
contro l  valve t o  compensate. This compounded the problem dropping 
pressure and forcing the b o i l i n g  fur ther down i n t o  the preheating 
section. The net r e s u l t  was he column rap id l y  reached a flooded 
condi t ion where 1 arge amoun f working f l u i d  was being car r ied  
under and the contro l  system was unable t o  compensate o r  correct  the 
problem. 

The con t r i  bu t i o  of the contr  1 system t o  the d e f i n i t i  of the column 
f looding l i m i t s  i s  not  a t  t h i s  time f e l t  t o  be s i g n i f i c a n t  as 
considerable care was taken i n  br ing ing the u n i t  t o  f looding t o  
minimize the ef fects j u s t  described. 
note t h a t  the excel lent  thermal performance o f  the u n i t  and the resu l tan t  

r o l  system on the hydraul ic 

' 

I t  i s  important, however, t o  



excess o f  preheating t rays produced s ign i f i can t  problems wh 
operate the column i'n an automatic control  mode whether for  an extended 
period o r  during the start-up. The end, r e s u l t  w an operation where , 
the pressure was contro l led automatical ly and t h  1 eve1 contro l  1 ed 
manually, w i th  adjustment o f  the leQel  being based on the operator 
experience and " fee l "  for  running the column. - 

t 
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5. CONCLUSIONS . 

The tes t i ng  o f  the INEL prototype p lan t  DCHX confirmed t h a t  i n  thermal 
appl icat ions, the: 'sieve t r a y  column i s  an excel lent  heat exchange device. 
Very small pinch poin€s were obtained, wel l  under the design goal o f  1 O F .  

The column operated a t  o r  above the design tray thermal e f f i c i ency  o f  70% 
when f l ow  rates were above ce r ta in  levels.  The t ray  e f f i c i ency  general ly 
increased with the working f l u i d  f low t o  a given f l o w  range (16 t o  20 gpm) 
a f te r  which i t  was constant o r  decreased s l i g h t l y  w i th  increasing flow. 
A t  the t r a y  e f f i c i enc ies  obtained, the temperatures o f  both f l u i d s  were 
w i t h i n  lo t o  2OF o f  each other i n  the upper preheating sect ion ( t rays 9 
through- 17) ind ica t ing '  t h a t  f o  the bo i  1 i n g  temperatures operated at ,  the 
u n i t  had an excess. o f  prehea-ting trays. A t  t h i s  performance level ,  the 
number o f  t rays i n  the preheating sect ion and the column length could be 
reduced without a corresponding s a c r i f i c e  i n  thermal performance. The 
ex i s t i ng  column could also be operated a t  an elevated br ine  . i n le t  and 

performance 1 eve1 . 
Although the colum 
t o  the design terminal veloc 
operate a t  the working f l u i d  
recommended(2) f o r  - the desig 

8 

.* working f l u i d  vapor o u t l e t  temperatures and s t i l l  maintain an acceptable 

. I _  

geothermal .f 1 ow r a t e  correspohdi ng 
o f  a 1/16-inch diameter'drop, i t  d i d  

l o c i t i e s  from the p la te  performations 
a sieve t r a y  column The data suggests 

. t h a t  premature f looding may curred due t o  the reduced t o t a l  hole 
e upper. preheating ' (drawoff) t ray.  The reduced hole area 

oles i n  excess a f t h e  
g from the j e t  have no 

r i  

f looding, i .e. 
d a s u f f i c i e n t  

own the length o f  the 
The hole area f o r  the plates 

hole ve loc i t ies  
um in te r fac ia l  
e hole ve loc i ty  

* 

recommended by, Jacobs and Boehm, 
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Comparisons o f  the mass throughput capaci t ies of a sieve t r a y  u n i t  w i th  
a d i r e c t  contact spray tower are somewhat inconclusive. The performance 
o f  the sieve t r a y  DCHX compares favorably w i th  the r e l a t i v e  capacity o f  
the 500kW spray tower, however, t h i s  spray tower was never brought t o  
a "flooded" condi t ion so t h a t  an increment i n  capacity performance could 
be estimated. A comparison w i th  the high temperature cycle t e s t  performance 
o f  the DSS spray tower indicates the sieve t ray  DCHX had a throughput 
advantage. When compared t o  the low temperature cycle t e s t  performance 
o f  the DSS uni t ,  the spray tower had an advantage. Given the general 
trends f o r  f looding o f  spray towers, the DSS u n i t  performance during 
the low temperature cyc le  tes ts  probably represent the maximum l i m i t  f o r  

y tower due t o  f looding. I n  t h i s  case the spray tower does have 
a throughput advantage over the sieve t r a y  column as reputed. (2 1 

The excel lent  thermal performance o f  the u n i t  also presented an operational 
problem i n  tha t  a s ign i f i can t  quant i ty  o f  working f l u i d  i n  the column was 
near the saturat ion temperature. A drop i n  column pressure due t o  the 
opening o f  a control  valve o r  change i n  f lows could s t a r t , b o i l i n g  o f  t h i s  
volumne o f  f l u i d  i n  the preheating section. Once started, the control  
system tended t o  perpetuate the phenomenon u n t i  1 f looding was produced. 
Generally, manual control  o f  l i q u i d  leve ls  corrected or reduced the problem. 

- 

A t  t h i s  po in t  a considerable amount has been learned about the design 
and operation o f  a sieve t r a y  d i r e c t  contact heat exchanger. The column 
tested was an excel lent  device f o r  heat t ransfer,  While the hydraul ics 

I o f  the u n i t  are not t o t a l l y  understood, enough has been learned t o  design 
a sieve t r a y  u n i t  which would probably produce higher throughput capaci t ies 
than were produced during these i n i t i a l  tests.  The major question y e t  t o  
be resolved i s  the impact o f  the hydraul ic design on the thermal performance 
and mass transfer.  If, f o r  instance, drop sizes a r e  increased by increasing 
hole sizes, what happens t o  the t r a y  e f f i c iency ,  and does the amount o f  
working f l u i d  dissolved i n  the geothermal f l u i d  increase o r  decrease? The 
data taken dur ing t h i s  basel ine sequence o f  tes ts  suggests t r a y  e f f i c i ency  
is dependent upon the s ize  o f  drops formed o r  perhaps on the formation 
o f  a j e t  f rom the holes. With what ha een learned dur ing these baseline 

* 
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tests,  the next sequence o f  test ing can be designed t o  answer these 
questions and provide the data to  allow f o r  the design o f  a sieve t r a y  

conditions 

6 u n i t  t h a t  would mum thermal and hydraulic 

€ 
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TABLE 2: NEAR FLOODING CONDITIONS I N  THE PROTOTYPE DCHX 

PARAMETER 1* 

B o i l e r  Pressure, Ps ia 
O u t l e t  WF Vapor Temperature, O F  

I n l e t  WF L i q u i d  Temperature, O F  

I n l e t  WF Flow Rate, l b  iC4/HR 

I n l e t  GF Temperature, OF 
O u t l e t  GF Temperature, O F  

I n l e t  GF Flow Rate, l b  GF/hr 
Flow Ra t io  Preheating Sect ion 

fi, F) IN/(MGF)ouT 

Average To ta l  Heat Load, Btu/hr  x l o 6  
% Di f ference i n  Heat Loads 

(QGF - QWFI'QGF 

*Ftooding Condi t ions Not Reached 

446.7 
249.6' 

91.6' 
3636 

265.9' 
223 .9' 
17605 
0.2075 

0.743 
4.6% 

. ,  

2 

365.0 
230.7' 
99.1' 
6282 

267.7' 
191.1 ' 
15537 
0.4072 

1.204 
2.5% 

3 

329.4 
221 .oo 
99. 9' 
6984 

268.3' 
177.9' 
14354 
0.4906 

1.311 
2.4% 

TEST RUN 

4 

294.2 
210.8' 
94 2' 
7569 

268.4' 
165.7' 
13334 
0.5727 

1.404 
0.1% 

6 

236.3 
190.4' 
98.5' 
8325 

266.1' 
146.3' 
12136 
0.6920 

1.470 
1.26% 

7 

146.2 
150.6' 
97.1' 
8887 

267.6' 
119O 
9656 
0.9274 

1.437 
2.5% 

1 
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TABLE 3: THERMAL PERFORMANCE OF DCHX 

0.5006 , 0 ~ 5 6 1  

Volumetric Heat Transfer Coeff ic ient  

Preheater Trays Btu/hr-ft3-'F 4952 91 09 10705 10354 10666 
Boi l ing Trays Btu/hr-ft3-OF 29987 28992 27300 22957 19689 

*Flooding not reached 

7 

0.9273 
0.9367 
0% 
71 % 
90% 
98.9% 

1190 
119.5' 
0% 
69% I 

86% 
99% 

0.30' 
1.437 
0.304 
1.133 

0 
9670 
13690 
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