OpnF- 50078 -~

CONF-9007181--1

DE91 001515

New Phases of D > 2 Current and Diffeomorphism Algebras

in Particle Physics®

Chia-Hsiung Tze**
Institute of High. Energy Physics
and Physics Department,
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061, U.S.A.

ABSTRACT

We survey some global results and open i.sues of current algebras and their canonical
field theoretical realizations in D2 2 dimensional spacetime. We assess the status of the
representation thecry of their generalized Kac-Moody and diffeomorphism algebras. Particular
emphasis is put on higher dimensional analogs of a) fermi-bose corrrespondance b) complex
analyticity and c) the phase entanglements of anyonic solitons with exotic spin and statistics.

DISCL..IMER

This report was prepared as an account of work spoasored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of uny information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein Lo any specific commercial product, process, or service by trade name, trademark,
manufuacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof,

* Invited talk given at the Symposium on " Symmetries in Science V: Algebraic Structures,
Their Representations, Realizations and Physical Applications", at Schioss Hofen, Voralberg,

Austria , 7/30/90-8/3/90, to be published by Plenum Press

**Work supported by the U.S. DOE under Grant DE@Q&M

cn -l*



0.Introduction

As one who thought deeply about all aspects of symmetries Hermann Weyl[1]had traced
their origin in nature to the mathematical character of physical laws. In the last thirty years,
the developments in particle physics have been dominated by one single theme, the
exploitation of symmetries. They can be either exact or approximate, ultimately fundamental
or effective[2]. With its unqualified successes the use of symmetries has become
synonymous with that of Lie algebras and groups. In the early seventies the mathematician,
Jean Dieudonné [3] wrote : " Les groupes de Lie sont devenus le centre des mathematiques;
on ne peut rien faire de sérieux sans eux" . In this era of gauge and string theories, we may,
without much exaggeration, assert the preeminent role at the frontiers of physics of infinite
dimensional Lie group theory by replacing the words "des mathematiques” above by " de la
physique théorique" .

In a broader perspective, with the coming of age of gauge theories, string theories and
D=2 conformal field theories, the range of applicable mathematics seems limited only by one's
ingenuity and imagination . It spans the gamut of all major branches of 19th century and
modern mathematics, from Riemann surfaces to hyperkiahler manifolds, from infinite Lie
groups to non-cuinmutative geometry, from knots and links to p-adic numbers and analysis.
As will be illustrated below, all of these apparently disparate structures are often brought
together through the intermediary of une set of physical phenomena. This linkage reflects both
the unity of mathematics as well as its unreasonable effectiveness in accounting for the
physical world.

We have certainly gone a long way from the Young tableaux and Clebch-Gordan series in
finite parameter Lie algebras applied to global (flavor) theu local (gauge) symmetries of point
particles to the full use of the representation theory of infinite parameter (super-)Virasoro-
Kac-Moody algebras in string, 2-dimensional conformal and ipregrable field theories. Indeed
solving for two dimensional quantum ficld theories is alniost equivalent to solving for the
representation theories of the loop and/or Virasoro groups. Though the task is rather difficult
we dream of a parallel outcome in four dimensions. So while we started out by often
invoking symmetries as substitutes for dynamics we have ended up fulfilling the old
Einsteinian dictum " symmetry dictai>s dynamics".

In his instructions to the speakers at this Symposium, Professor Gruber commissioned
comprehensive reviews aimed not just at physicists using symmetries in their research but also
at experts in other areas of sciences. This criterion has partly guided my choice of topics.

My special interests are in algebraic and topological structures in particle physics.
Accordingly, I shall take as my main and unifying theme, a few global aspects of Kac-
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Moody-Virasoro typed algebras, the representation theory of their current and diffeomorphism
groups, seen in the context of a few concrete semi-topological field theories with solitons in
D22 spacetime dimensions.

In these alotted pages, a truly comprehensive review is admittedly out of the question. I
shall therefore not dwell on the numerous well established and extensively reviewed results of
two dimensional. Rather using the latter as standards, I will focus on a few basic
developments in D2 2 dimensions and discuss their open problems. My threefold emphasis
will be on a) the question of fermi-boson equivalence or D23 bosonization, b) the possibility
of anyonic transmutation and c) the role of complex and hypercomplex analyticity. These
topics best illustrate some natural directions toward a nonperturbative, algebraic understanding
of D=2 dimensional quantum field theories. Four related topics are singled out for discussion:

1) To introduce the basic concepts and notations, a brief review of 2-cocycles as central
extensions of D=2 current algebras, its equivaient fermionic and bosonic representations, via
the Wess-Zumino- Novikov-Witten ( WZNW ) model. The complex analytic structure of the
Kac-Moody- Virasoro algebras.

2) Going behond affine Lie algetras, D=4 current algebra with it g-number, non central,
Abelian extension, its canonical realization in a Skyrme model with a Wess-Zumino term.
Attempts at constructing vertex operators and a representation theory. Generalized fermi-bose
correspondence and comments on hypercomplex analyticity of generalized Kac-Moody-
Virasoro algebras.

3) An realization of D=3 current and diffeomorphism algebras in the CP; 6-model with a
Chemn-Simons-Hopf term. An anyonic vertex operator construction. A generalized spin and
statistics connection by way of the Gauss-Bonnet theorem . Its relation to self-linking,
twisting writhing numbers of Feynman paths.

4) Going behond D=3 anyons, exceptional D=7, 15 anyonic Hopf 2- and 3-membranes and
their connection to division algebras via Adams' theorem. Comments on their current,
diffeomorphism algebras.

These topics will be covered respectively in sections 1 to 4, section 5 encloses some parting
remarks. Our treatment of established results will be brief and primarily conceptual . For
proofs and greater details we refer the interested reader to our long, though incomplete list of
references.
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1. D=2 Kac-Moody Groups , Fermionization and Complex
Analyticity '

1.1 Current Algebras and Cocycles

For those uniamilar with current algebras,a few brief historical remarks may be in order.
Comprehensive accounts of current algebras are to be found in the classic books by Adler and |
Dashen[4] and Ne'eman [5] and in a modern update by Treiman, Jackiw, Zumino and Witten
[6]. Before the advent of gauge theories, amids the profusion of hadronic states the
introduction of current algebras was motivated by the unifying idea that the basic objects for
strong interaction physics should be the observable currents rather than the then still elusive
fundamental fields. Thus, while the electromagnetic interactions among all charged particles
are governed by the interaction Hamiltonian

H. =eJ d*x ju(x) AK(x) , (1.1)

e being the electric charge , ju the electric current and Au the elctromagnetic potential, the

leptonic and non-leptonic weak decays of hadrons are effectively accounted for by the
interaction Hamiltonians

H =G [ & ji(x) ju(x) » Ho=G I S jix) . (1.2)

G is the Fermi-coupling constant, jhu (x) and j’ “(x) denote the weak currents of the
hadrons and the leptons respectively. Ata fixed imet, the currents j,(x) are mappings from
physical space into some internal space of a symmetry group G .

From these jﬁ(x) 's , one compute the corresponding charge operaters

Q= Id3xjg(x). (1.3)

Essentially the fundamental hypothesis of current algebra was that , irrespective of the details
(or even of the existence) of an underlying quantum field theory, the charges and current
close under an algebra of equal- time canonical commutation relations. In order of their
reliability, the postulated relations are of the generic forms of
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a) a charge-charge algebra

[ , QPw]=irdQry , | (1.4)

b) a mixed charge -current algebra

(@0 . P o] =ity (1.5)

c) a current-current algebra
[Rw . )= i Sx-y), (1.6)

[12x) . Py = itBilx) B (x-y) +P(xy) (1.7)

where f*BY are the structure constants of the algebra of the symmetry group G ,e.g. G =
SU(N), SUN)xSU(N), N=2, 3. The additional matrix valued term S(x, x') in (1.7) is the
celebrated singular Schwinger term.

One particular feature must be noted. In the old current algebras, the Schwinger terms
are highly model dependent and occur only in the space-time current commutator (1.7) while
their modern cousins, being of topological origin, have more restricted forms and appear in
the time-time current commutator or local charge algebra (1.6) . As such these topological
extension terms, being the repositories of "good" or "bad" anomalies, have important
implications on new physical effects or on the over all quantum consistency of the associated
(gauge) field theory.

Clearly {a) and (b) are but special integrated form of {c) . We recall that (1.4) and (1.5)
were widely and successfully used. Similarly several sum rules were derived fromi (1.6)
and agreed reasonably well with experiments. Today the above algebras are seen to arise from
the underlying dynamics of quantum chromodynamics and the standard model of electroweak
interactions.

Looking back ,what physicists missed during the 60's was the possible topological
significance of the Schwinger term(s). At one time Gell-Mann even banned these terms by
decree from his universal current algebra. Yet they are necessarily present for consistency
with Lorentz invariance and energy positivity. Its form is constrained by the associativity of
the algebra, i.e. the Jacobi identity . It turns out that these singular terms are the residual local
signatures of nontrivial 2-cocycles or projective representations of quantum systems with an
infinite numbers of degrees of freedom and with topologically nontrivial configuration spaces.
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This fact was realized early on by .M. Gelfand and his followers [7]who pioneered the
representation theory of current groups in arbitrary dimensions. Unfortunately the relevance
of their works musts await the coming of age of affine and loop algebras, ushered in by the
advent of superstring and conformal field theories.

In the title of this review, by "new phases" we mean the nontrivial phases of the
projective representations of infinite dimensional algebras, the 2-cocycles or Berry's
phases{8]. We next recall their mathematical and physical meanings.

It is commonly said that the phrases of the complex Schrodinger wave function ‘¥ of a
quantumn system do not matter since physically observable effects are determined by the real
norm I¥12 . This statement is true provided ¥ is the wave function for the whole system,
which is seldom the case in practice or even in principle[9]. As the Aharonov-Bohm effect
[10]and the rich theoretical analyses and experimental confirmations of the Berry phase
recently show, the relative phases of wave functions describing a part of the entire system are
most relevant and physically detectable. Moreover they often have drastic and stunning effects
on the properties of the subsystem(s) in question. Theseanomaly phenomena to be illustrated
here by the fermi-bose equivalence in D=2 quantum field theory, the emergence of the D=4
baryonic topological soliton, the Skyrmion, from QCD, by the anyonic membrane excitations
in odd dimensional , semi-topological field theories etc...

What are cocycles ?[9]Consider a quantum system X with a symmetry group G of
transformations T(g) . For each fixed g, T(g) can be represented up to a phase factor ei®(a. 8)
by an (ant-) unitary operator U(g) in a Hilbert space H. Let q be the dynamical variable(s)
on which g acts : q —g8 , A wave function ‘¥(q) transforms as

U(g) ¥(q) = @8 ¥(qe) . (1.8)
Consistency with the group composition law

U(gy) U(gn) = U(g18p) = Ulg12) (1.9)
implies
01(q8; g2) - 01(q; g12) + 01(q; g1) =0 (mod Z) . (1.10)

The real phase 01(q;g) , a 1-cocycle, depends generally on both g and q . Specifically if X
is a non-Abelian gauge ( chiral field) theory , then in the Hamiltonian formalism, the g's, q's
and 'P(q) correspond respectively to local gauge ( global chiral) transformations, the spatial
components of the gauge potential A ( chiral current J ) and the Schrodinger wavefunctional
Y(A).



Similarly, to the group relation (1.9) corresponds the composition law
U(g1) U(ga) = e 2™ «iz182U(gy2) (1.11)
Associativity of (1.11) leads to the consistency condition

(g8 g2, 81) - W2(Qq; €12, 83) +( Q5 81,82) -@(q; 81,8) =0 (modZ).
(1.12)

Such a phase is a 2-cocycle and the unitary representations bearing it are the ray or projective
representations of frequent occurence in quantum theory.

One could continue this process and abstractly define higher cocycles. Thus the 3-
cocycle is given through

(U(g1) U(g2)) U(ga) = e- 2ri eslaiengas) U(gy) (U(g2)U(g3)) - (1.13)

However it violates associativity; moreover nonassociative entities cannot be represented by
linear operators in a Hilbert space. As of now rio physical effect is attributable to 3 - or
higher cocycles. So we shall limit ourselves here to 2-cocycles as we consider next the global
- aspects of the affine Kac-Moody algebras in 2-spacetime dimensions.

1.2 D=2 Kac-Moody Groups

There exist several approaches to construct D=2 Kac-Moody groups. We adopt the
simple and instructive construction of Mickelsson [11] as it readily generalizes to higher
dimensions; specifically for the case of D=4. The latter's papers should be consulted for
greater details. Consider (suitable smooth) mappings where the target space is a finite
dimensional Lie group G and the base space, uic unit circle sl=aoD= {zeC llzl=1).
This Sl is seen as a boundary of an unitdisc D= { ze C |lzI< 1)) . Let LG be the space of
loops f: S! -G and QG={feLG| f(1) = 1 } the space of based loops. While LG and
QG both has a natural group structure under point-wise multiplication ,namely given two
maps 1 andy5 : S1 — G, their product compositionis y1-y2 : S!— G such that
Y1:-Y2(2) = v1(z)-y2(z) , only QG is a C*- manifold. NowletDG={f:D—- G If(1)=1},
the space of based smooth maps from D into G and let n : DG — QG be the natural



projection, n(f) = f Ist . Then the triple (DG, n, QG) is a principal fibre bundle with as its
structure group G= { f: D — G If(l)=1,x¢ sl } acting on DG frem the right..

By contracting S 19D toa single point , the North pole of Sz‘, Gcan‘altematively be
the space { f: D — G | f(North poleof52)=1 ,xeS!t } . Then forfe DG, ge G define
the 1-cocycle 0, ‘

2
oy( fg) = — J (f19af , gp £"!) dxq A dxp + C(g) (1.14)
16 n J,
with |
_W2 o~ ~ 1[~1~~ ~ ~
Clg) = 2'[ <g'laag, E[g'lagg, g'layg]>dxa/\ dxpAadxy (1.15)
48 n“Jp,

where < ... > denotes the Kiling form on g , the Lie algebra of G . In (1.15) the map g :
D3 — G, D3 being a 3-dimensional unit ball , is now an arbitary extension of g: $2-G.
w? is the length squared of the longest root of g . If g1 and gy are two extensions of the
same g, then C( gy) - C(gp) € Z, so that the phase exp( 2mi wj ) is well defined. The 1-
cocycle w allows one to define for ge G in the foregoing extension DG x U(1) the
following equivalence relation " ~ "

(f,A)~(fg,Aexp{2niwy(f,g)) (1.16)

whose transitivity property is but the 1-cocycle consistency condition satisfied by wy ( 1.10)
. The Kac-Moody group G is then a principal U(1) bundle P over the loop apace AL =
Map(S1 ,G),P={DGxU(1)/~} . The right action of U(1) in DG x U(1) commutes with
the g-action; U(1) acts on P . So the KM group G can be defined by the pairs (f,A) , fe
Map( S!, G), with a multiplication law

(EAM)(FA)Y=(ff, AN exp{ 2riwp(f,f) ), (1.17)
where
‘ 2
o f, ) = —‘L—L(f‘laa f, opf F")dxu/\dxg (1.18)
16n? |
wy (f, f) satisfies (1.12) so exp (27i w, ) is then a U(1) valued 2-cocycle in DG . The
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bundle P is a group; a central extension of QG by U(1) .

So the Kac-Mondy algebra g of G is a 1-dimensional central extension of loop algebra
Map ( sl, g).Givenf; andfy € Map (8! G ) the Lie algebra cocycle corresponding to

(1.18) is simply given by Map ( st, g ) with the commutator is defined point-wise as

[f), £2] (®) =[£,(8) , £2(6)] . (1.19)

The central extension is given by the Lie algebra 2-cocycle c(f], f2) corresponding to the
group cocycle wy

2
c(fy, f2) = 4n Eg‘(ﬁ wa( €%h, e¥)) Iy ¢ =g

2 . 2 2n
- %;J (9nf ,0pT) d xq Adxp = = %I <f1(6) f2(8> (1.20)
D 0

Soif G=SUN),<X,Y>=Tr(XY) and vy 222 .Then (1.20) , which defines a
symplectic, nondegenerate and closed Kirillov 2-form on QG leads to a modified commutator

[f1(0) , f2(0)] +ix c(f1, f2) . (1.21)

Alternatively it takes the more familiar form of

(T2, T8) = f“b°'I‘;'.+m+”‘“’ 5%, (102)

Here T%=T32 cm9 are the Fourier components of f near the identity map in an orthonormal
basis { T2 } (a=1,...dim g) of g with structure constants f;,. and where x \4/2 eZ.
(1.22) shows the 1-dimensionality of the central extension. It is called a level k =1 Kac-
Moody algebra (KMA) . A level k KMA is simply gotten by multiplying 0, in (1.18) by
keZ.

The pervasive phenomenon of fermi-bose equivalence in 2-dimensions is best illustrated
by two equivalent representations , one fermionic, the other bosonic of the same untwisted

affine KMA (1.21) . Witten[12] considered a conformal invariant system of N free Majorana
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fermions with a non-Abelian chiral symmetry G = O(N). In light cone or conformal
coordianates z=z,=x+1y and Zz=z.=x - iy, the Euclidean action reads

N — —
S(vy, ) =%J ix Y, [yidz vitvio vi]. (1.23)

i=1

From second quantization the anticommutation relations read { wi , i | =% 8(x-y) 84 .

1
Then equivalent to the Dirac equations for y; = yl= wf , are the conservation laws
13 =0,J02=0 (1.24)
for the chiral currents
T
W= wiMiy | (1.25)

M3 (a=1,2,...N) are real skew symmetric NxN O(N) representation matrices.
Consequently J} is only a function of z and J? a function of z, they also mutually commute ,
so they can be taken as independent . This shows the theory to be invariant under a much
larger infinite invariance group G(z) x G(z) whose generators are J§ ana J? . The resulting
two commuting ee-dimensional Kac-Moody algebras are

Ji(ze) Ji(wi) = ifi 0 Jo(Wy) O (24 - wy) + %'%ﬁzsab 8'(zy - wy) (1.26)

where x), is , up to a representation free normalization, the Dynkin index of the representation:
- K, Opp = tr( M2MDP) | In fact cady=xadimG ; - cy = (M®)2 is the value of the quadratic
Casimir in the representation A and d, = N is the dimension of A .

The existence and physical origin of the Schwinger term were in fact known to P.
Jordan[13, 14] long before the works of Goto, Imamura {15] and Schwinger [16]. Indeed the
validity of (1.26) presupposes a Dirac vacuum ( i.e, 2nd quantization) ; specifically the
condition for the global existence of such a fermion ground state is encoded in a local "
deformation" of the algebra of currents by the addition of a Schwinger term. Furthermore,
Jordan et al pointed out that the current commutator derives from their D=2 quantum massless
spinor field
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U1, Jo] = ;‘t‘"alﬁ(X-Y) | (1.27)

is reproduced exactly by the commutator [01¢ , dgo] = i # 9,0(x-y) resulting from the
Heisenberg relation (¢ , dod] = i # 8(x-y) for a Bose field ¢ , provided one sets

A\l/2
T

Ju=: ¥ Ysyuyi= ( oud . (1.28)

This mapping is the first example of fermi-bose equivalence or abelianbosonization . The
# dependent factor in (1.28) testifies to its purely quantum character . Later on, another
canonical example was established by Coleman[17]: the equivalence between the fermion of
the massive Thirring model and the quantum soliton of Sine-Gordon model . The
corresponding lagrangian densities are

Lyt =2 w0y - my v - 1g (yyuy)? (1.29)
Lsg=": 39,0940 - af1( 1- cos(Bo): . | (1.30)
For subsequent comparison we only write down the "vertex operator” y = \\z; for

creating a point-like fermion as a topologically nontrivial bose field coherent state excitation.
Pioneered by Skyrme ,its construction was completed by Mandelstam[ 18]

y1= N exp{-Zi Blj dé ¢ - % iBe}: (1.31a)

-0

X

vo= - iN:exp({-2i B’j

déq')+%i[3<b}: (1.31b)

Characteristic features can be inferred from these explicit expressions. Here we observe
that while the fermionic currents are local, the fermion fields themselves are nonlocal in
terms of the field ¢ with nontrivial topology. Actually this short (local) to long (global)
distance connection reflects a quite general a trademark of anomalies or quantum symmetry
breaking. For an elaboration of this intriguing phenomenon, we recommend the excellent
reviews of Morozov [19] and Shifman [20].

Subsequently Witten[12, 21] put forth a non-abelian extension of the above fermi-bose
equivalence . His model is governed by the following semi-topological action [22]
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S x(g) = “—lﬁf d?€(d,g19ug) + k I'(g) . (1.32)

[ =‘—1‘5f &Y e T 13,5 ' 9pze 'Ove) (1.33)
24r“Jp ‘

with g € G, namely a Gp_x GR ( say G = O(N)) D=2 invariant chiral model made up of the
sum of the standard geometrical nonlinear 6-model and a topological action I'(g) . This added
Wess-Zumino term is defined over a 3-dimensional ball D (with coordinates Y% ) whose
boundary is 2-spacetime. The boundary values of g(§) determine (1.23) modulo 2x. " is an
example of a multiplevalued action; the singlevaluedness of the Feynman action exp(iS), )
implies that the quantizationofk =n#.

A renormalization group analysis shows that the Wess-Zumino-Novikov-Witten
(WZNW) model (1.32) has an infrared fixed point when A = 4% , it then reads

Sk(g) = 1—:3‘; {I d2€(d,g'dug) + T(g) } ' (1.34)

which is now invariant, exactly like the system (1.23), under the infinite dimensional Kac-

—1
Moody group G(z)1, x G(Z)R , namely under the transformation g€) — Q2) g€)Q (z)

Indeed the equations of motions for (1.34) are the same as (1.24 ) if the J z are defined as

aja o gy
TeJ: = 1\/2'4ng 1(0+g) (1.35)
TP =i g%a-g)g-l (1.36)

The T2 are generators of G . Then the obtained canonical Poisson brackets promoted to Dirac
brackets yield in the case of n =1 the same KMA (1.17) of the massless O(N) fermion theory.
The nonabelian bosonization rules are given by equating the T*J} from (1.35) with (1.25) .
It can on fact be proved that the two theories (1.23 ) and (1.34 ) are dynamical identical.

Yet the translation dictionary for this generalized fermi-bose equivalence is still to our

knowledge incomplete. Despite attempts, we still do not have the non-abelian counterparts of
the vertex operators (1.31) giving the fermionic field in term of exponential of the non-abelian
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currents. What we have is the powerful Frenkel-Kac construction to be recalled subsequently.
1.3 Virasoro -Kac-Moody aigebra : representations

Examples of conformally invariant field theories( CFT) are statistical mechanical systems
at their critical points[23, 24]. The representation theory of the conformal group places
contraints on the critical exponents and on correlation functions[25]. Since the two
dimensional conformal group, Vir, the Virasoro-Botts group of diffeomorphisms [26, 27] of
the circle is infinite dimensional, it has a very rich and powerful in structure (24, 28]. One
could actually realized[25] the conformal bootstrap program of Polyakov[29] in two
dimensionns. It amounts to solving fur the representation theory of the Dirac-Schwinger
algebra of the energy momentum tensor components, the generators of Vir . This will give a
complete classification of all possible D=2 conformal field theories.

The basic ubjects of a CFT are the primary fields ¢( z,z) . They transform as tensors

6(z,7) — 0(z. 2 = @2 (92} 0z, 2 ) (1.37)

under conformal transformations z —~ z ' =f(z) ,Zz— Z' =f (Z) . h and h are the conformal
weights. Since under rescaling z — Az , A real , and under a rotation z — exp(-i 6}z,

o — AM*M ¢ and¢ — exp( -i(h-h)0) ¢ , d=h+h ands=h-harecalled the scaling
dimension and the conformal spin of ¢ respectively.

The tracelessness and conservation of the energy momentum tensor T, of a CFT imply
that

»T=0 , 9,T=0 (1.38)
namely the two nonzero components of Tuv'T(z) =T,(z) and T@@) =Tz are
holomorphic and anti-holomorphic functions respectively.

Now any primary field ¢ has the following operator product expansion (OPE) with T(z)

T(2) 6(E) = (hz ‘f"é’z + a(ﬁz‘f’%) + finite terms (1.39)

as for the OPE of T with itself
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c
2 L 2TE)  %T® . .
T(z) TE) = Y + 2.7 + ) + finite terms (1.40)

The anomalous first term is due to the famous nonvanishing D=2 trace anomaly . For
example ¢ = n, if the field theory is a free massless theory of n scalar field. Indeed (1.40)
and its barred counterpart are together another expression of the Virasoro algebra of Vir
realized quantur mechanically by the central extension of the algebra of the diffeomorphisms

of the circle S1. Itis given by the product of two commuting Virasoro algebras Vir x Virg,
the first of which is

[Ln s L] = (n-m) Lm.n+~1~°5n(n2-1) Om,n ; (1.41)

the second obtains by the mere replacement Ln,—Ly in (1.41) with the same c since T + T is
real. The L andL, , neZ , are respectively the hermitian (L::= L..,) moments of T(z) and

T@ : T(z) = z zn2L, .

While (1.41) describes the infinitesimal transformation 6z = z*! , T(z) obeys the
following composition law for finite transformations z — z' = f(z) :

T(z) dz?2 = T(f) df? +T%(f, z) dz? (1.42)
where
( f,z) dz2 = d°f df! -i{ d?f df-1 )2 (1.43)

is the Schwarzian quadratic differential . Its properties, unique for a weight 2 conformal
object, are

. __gZ'l' )
(f,z)=0 if f=es e SL(2, R) , (1.44)
(f,z) (dz)? = { f, E)(dE)® + { &, z} (dz)?, (1.45)

SL(2, R) is the maximal subalgebra of Vir and generated by Lgand L, ,
There are numerous reviews of the representation theory of the Virasoro algebra are [24,
30, 31]. For later reference, we only mention the following facts. In a conformal field theory

such as (1.34), the Hilbert space must be partioned into irreducible representations of the
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Virasoro algebras. The dictate of physics, i.e. energy positivity, requires the representations
to be of highest weight i.e. such that

Lolh>=hih> ,L;h>=0,n>0. (1.46)
Such a Verma module V(c,h) is spanned by the linear independent vectors
LUML%.. L0 lh> (1.47)

and is graded by the level z j nj . For unitary representations it is necessary that either
j

or
=].—0 6 _[(m+3)p - (m+2)q*- 1
=l mmey M T dmy ey )

where m = 0,2,2,...; p = 1,2,...,, m+1 ; q =1,2,...p.

A conformal field theory is thus characterized by the value of its central charge anc the set
of highest weights { h , h } of its irreducible representations. In addition the Wilson operator
product algebra for these fields should also be specified. Having in mind a WZNW theory at

its critical point , the possible values of hand h can be determined and formula : for the
characters in a Kac Moody highest weight representation have been computed by Kac and
Petersen[32].

To every Kac-Moody algebra is associated a Virasoro algebra as a derivation algebra.
Thus since A = 4% corresponds to a conformal invariant fixed point , the Wess-Zumino-

Novikov-Witten model is also invariant under the Virasoro-Bott conformal group. The L, 's

are given through the generic Sugawara-Sommerfield form[33, 34] of the system energy
momentum tensor

= .78 Ya.
T(2) —L——2K+C2 }n:_ :J8 I, (1.50)
whence
L,,=5—K1:E-Z A m T (1.51)
m
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J% are the moments of the current J§ = 2 J3z-(m+1) and the KMA (1.21) i.e. (1.26)
m
reads
(3. 0h] = e Jum+ En b (1.52)

K, a real constant in each representation in general, is called the level of the KMA . The
central charge ¢ of (1.41) is given by

_2KdimG
“CK+C, (1.53)

where C is the quadratic Casimir operator for the adjoint representation of G. So when
(1.52) and (1.41 ) are combined together with [L,, , J&] = - m J3, , and similar relations for
the barred counterparts, the full invariance algebra of the WZNW model is the semi-direct
products (Virp, x KMA{ ) x (Virg x KMAR) .

If G is simply -laced and of rank n, then Witten's result ( K =1) (1.34) implies that for
level K=1, the corresponding ¢ = n, an integer, and hence that the level 1 KMA currents
of G should be reproducable from n free bosonic fields. This bose field realization is the

Frenkel-Kac construction. Its results are as follows:

In a Cartan-Weyl basis and self-explained standard notations, a KM algebra (i.52) of a
simply-laced G with rank n reads

[Hi, 1] = m 538 [ EY = o ER,,
[E% , Ef] = e B)ES P B =-1
=aHpn+Kmpm of=-2
=0 ap=20 (1.54)

i,j=12,.rank G, by hermiticity Hf =Hi, ,E%'=EZ . itadmits an explicit
realization from n free bosonic fields

Xi(z) = q- ipilnz +i Y, %a;z-n : (1.55)
n #0

namely
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H;;} .%znﬂi(z) where Hi(z) =i 0,Xi(2), (1.56)
C

E‘;:f %:‘i—z“E"(z) where E%(z) =cq: exp{i «X(z)}, (1.57)
c ‘

cq are Klein factors or cocycles obeying cq-Cp = (-iyP CpCo and Ca'CB = €(0,B)Cosp -
Since a D=2 field theory of a free Majorana-Weyl (i.e real chiral ) fermion corresponds

to a CFT with c= 1/2 , we expect to be able to realize a K =1 KMA for 2n real fermions in a
vector representation say of S0(2n) by a CFT of n scalar fields with momentum vector being

the vectors of SO(2n). Thus using the complex basis ¥* 2 = \/_li: (2l + 1 y2e)
one has for the Cartan subalgebra S0(2n) currents

Jaa(z) = Ya W2 =i 9,X?%z) (a<d) (1.58)
while the other non-commuting SO(2n) currents read
JEE0(2) = Cyp 4y €xp{ i (EX2EXO): (a<b) (1.59)

In fact one has a generalized fermi-bose equivalence , a generalized Mandelstam -Halpern,
vertex construction in

Wa(z) =c,, :exp{ £1X?) (1.60)
This Frenkel-Kac bosonization[35] is key to the incorporation of Yang-Mills symmetries in
the heterotic string and allows for enormous simplifications in handling vertex operators of
fermionic CFT's
The key question is how and how much can the above sampling of the rich

representation and analyticity structures be generalized to four and higher dimensions. We
survey the various excursions toward higher dimensional worlds next.

2. Beyond the dffine and diffeomorphisms algebras of the circle
2.1 D=4 Gauge and Current Groups
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We have recalled the tremendous successes of affine Lie algebras realized as loop
algebras in D=2 quantum field theories. A natural next question concerns how much of these
structures carries over to a four dimensional setting by replacing the circle S 1by a higher
dimiensional arbitrary Riemannian manifold M[36]. Indeed the group Map(M;G) of smooth
maps M — G is an infinite dimensional Lie group and appears almost as simple as the loop
group Map(Sl, G ). There had been results on the representation theory of these algebras and
groups; they were reviewed in 1983 by R.S. Ismagilov[37]. However it is a remarkable fact
of loop algebras that all positive energy irreducible representations are both unitary and
necessarily projective. It would therefore be most interesting to seek their higher dimensional
analogs in D22 counterpart of affine Lie algebras, namely algebras with nontrivial extensions.
From the standpoint of physics where M=3§3 , the compactified physical space, such groups
are of primary importance in quantum field theory as the "gauge groups" and their special
cases, the"current groups' [6]. They are the algebraic structures underlying current gauge
theories and effective chiral theories of strong interactons at the Gev([38]as well as the Tev
energy scales[39]. Unfortunately not much is known after several ongoing efforts. Here we
assess the results and mention the novel directions some have been undertaking to make
further progress.

As shown by the works of Bars{40] and of Bruce and Bose[41] it is an easy matter as

far as obtaining the algebras with extensions, say of the sphere group Map (Sd, G). As
illustrations we summarize the results for the simplest case of d =2 and 3 respectively.
Generically the current algebra reads:

[J2(x) , IP(x")] = £P€Ie(x) ( x - x') + S 2.1

‘ . b
It is a very straightforward matter to find the most general Schwinger terms S consistent
with the Jacobi identity . They are

For M = S2 parametrized by the Euler angle 8 and ¢ , z = cos 8

S&b = § [ £1(8, ¢) 8(z -z') 8'(¢ - ¢) + f2(6, ¢) 8'(z -2)d(% - ¢ ] (2.2)
where
oh(0,
flzél_jﬁae__’?_)_ ,f2=-____(_m, (2.3)
Z o0

h(B, ¢) is an arbitary function on s2.
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For M =83

§= & [ £18(z -z) 8(y-¥)8'(o-e) + £28'(z -2)8(y-¥)d(a-at')

+ £30(z -2') 3'(y-y) 8(a-ar')] (2.4)

with |
ohy odhy I _ohy ohsy P _ohy dhy

=% Ty T e 0 BT w3

f, or h; (i=1,23) are three arbitrary functions of z = cosp and the Euler angles a.B, v .
These arbitrary functions h and h; are in fact identifiable with components of closed 1-forms

on S2 and 83 respectively .

Paralleling the algebra of the Fourier moments J?  of Map (Sl , £) , onie expands the

G-algébra valued currents J2 ( 6, ¢) on S2 and J3(a,B, y) on 83 in spherical harmonics
Y|, and Wigner's D| m m functions

10,0) =), BnYim( 0.0) (2.6)
I,m
P = Y, InmDimm(apy) (2.7)
l,m,m'

The notable features distinguishing the above algebras from the affine Lie algebras are the
following :

a) the resulting algebras of moments will clearly have an infinit¢ number of central elements
corresponding to the number of components of the function h for S2, and h; (i=1,2,3). 80

ford > 1, the central extension is no longer one dimensional ; there are an infinite number of
central extensions. This new phenomenon for Dim M > 1 agrees with a general cohomological

theorem of Feigin[42]. The latter states that if gM is the Lie algebra of Map( M;G ), then the
second cohomology group H¥( gM) is infinite dimensional for M with Dim M > 1 . One can

interpret the space H2( gM) as an infinite set of classes of independent 1-dimensional central
extensions.
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b) Focusing of the moments J{ ., and J{ , o , it was shown that while grading operators can
be constructed by the indices m and m' , none exists for the index 1 . This feature implies that
in contrast to the D=2 affine case it is not possible to asociate with these sphere algebras a
root vector system in a finite dimensional root vector space .

To construct the corresponding KM groups, their representation theory and make contact
with physics ,we return to Mickelsson's bundle formulation . To be specific we restrict to
D=3+1 dimensions ; extension to higher dimensions being straightforward[43]. Let us

consider the case of the "gauge group" Mép( s3 - G) , specifically with G = SU(N) , N >3
. Let 4 be the space of gauge connections on s4 and G be the gauge group of point based
“maps f: $% — G with f(p) =1 for some fixed peS% . LetD = { xe R*11xI < 1 )be the unit
disk so that $3= 9D .and let DG = { f: D~ G| f(p) =1 } for some fixed p € D. Now the
space Q3 G={(f: s3 .G f(p) =1} is infinitely connected since n3( 3G) = 13(G) = Z
its connected components Q3G are labelled by the instanton number n . As in the two |
dimensional case, each connected component of the bundle 2— 2/ G on s4 is

homotopically equivalent to DG — QgG where the restriction to the zero instanton sector is
of no consequence as all sectors are homeomorphic.

Now there is a D=4 analog of the principle bundle P discussed earlier. This bundle P3
on Q3G consists of equivalence classes (f,A) in DGx U(1) w.r.t.

(f,A)~(fg,Aexp(2m wr(fg) }) (2.8)
o1 (f.g) = (F1df, g) - (29
for g G,
o (A, g) =$§J’ Tr{-dg g"(:,lz-(-é—AdA+dAA+-;—A3)
+Haggt A2 +Ll@ggy'A|+Csle)  (210)
and
Cs(g) = mi ~ LTr(dg g’ (2.11)

Here A =fldf .®; isa l-cocycle of the group DG.
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- Now unlike the bundle P in the 2-dimensional case, P3 has no natural group structure.
To see this, define a 2-cocycle @, for the group DG as ‘

(A ; 81,82) = - Z;;;L Tr{[(dg2 g3} ) (&1 A g1) (g1 dg1 )

(g2 gd') Gsitder) e Ag)l}+ Ra(gng) (2.12)

where the A independent term Ry is of nc: importance to our subsequent discussion. We defer

the details of the cohomological derivation of (2.10) to a large body of literature. We note that
w, differs from its two dimensional counterpart (1.17) by being a function of the gauge

potential A . Consequently a proper extension of DG is not simply a U(1) but rather the
infinite Abelian group (by point wise multiplication) Map (43, U(1) ) where 45 is the space
of g-valued vector potential in S3. We have then a non central , operator valued extension by
an abelian ideal, Map (43, U(1). This is in accord with the cited Feigin's theorem .The

group composition rule reads
(EA)(F,A) =(ff,AANrexp(2ni wp(A;f,f)) (2.13)

where A'(A) = A (f1A £+ f1d ). The associativity of this product is guaranteed by the 2-
cocycle nature of @ ( A,; g1, g2 ) - The gauge transfonnation for A € 4; is defined by the

restriction of f to S3 = oD , the boundary of the unit 4-disk. As in the D=2 case, one can now
define a group Q3 by way of the abelian extension mod out the equivalence relation " ~ "

(2.13) . Q3 =(DGx Map(43,U(1))/~) , the obtained set of equivalence classes , is thus
the principal bundle on Q3G with as structure group Map( A3, U(1) ) . Q3 is seen as an
associated bundle to P3 through the natural action of U(1) in the space Map( 43, U(1) ), its
group structure being inherited from that of DG x Map( 43 U(1) ).

The Lie algebra 2-cocycle ¢3 in Map( D, g) corresponding to @y (2.12) can be
computed to be

cy(A ; 1, ) = EIFJ Tr (A ( dfidfy-dfydfy)) (2.14)

where A = A{T*dxi, df] and df; are three matrix-valued 1-forms. As we are solely
interested here in current groups arising from chiral 6-models, we see that (1.14) defines the
extension of the current algebra Map( s3 , G) by the ableian ideal Map( 43, U(1) ) . If we
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define our smeared current J (f), in an evident generic notation

J(H) EJ dx fi(x) J*x)  , f=fT*, (2.15)

then the D=4 Kac-Moody current algebra reads

[J(f1) , J(F2) 1 = 1 T ([f1, f2]) + ca( A; i, f3) (2.16)

where the integration in (2.15) is over s3 and A reduces to the flat connection ® = U-lqu
, U € G as we will illustrate next.

2.2. Canonical redlization , soliton operator and representation
theory

We saw that a salient and powerful feature of affine Lie algebras is the existence of
equivalent fermionic and bosonic representations. The existence of the Skyrmion testifies to-
the existence of a similar phenomenon in four dimensions. A question of great theoretical and
phenomenological interest is the full extent and exact mathematical nature of this analogy ,
namely its proper place in the representation theory of D=4 Kac-Moody algebras.

Any physically motivated current algebra A has too many representations only a subset of
which is of physical relevance. So to better single out these physical representations, which
must be adopted to the dynamics at hand, one is led in practice to assume some concrete
dynamics underlying A such as an effective field theory. After all the vertex operator
representation of the Virasoro algebra was first discovered by physicists in the dual resonance
model. A concrete point starting for looking at the representation problem is the D=4 analog
of the D=2 WZNW model , which may emerge from a large N, low energy limit of QCD. Its
manifestly SU(N)xSU(N) chiral invariant action reads

S = Som +Swz (2.17)
where
Som=—1=| d*xTr(3,U-19,V) (2.18)
16 £2 )y
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Swz = ‘—Ntz-l Tr (U-1dU)S . (2.19)
240 & 0

The SU(N) matrix field U parametrizes the field space G = SU‘I;_IB‘(S;J(N) ~ SU(N). With
strong interactions in mind, N is the number of flavor. U-ldU = @ = 0*T? is the Maurer-
Caruan, left-invariant current 1-form. The { T2} denotes an anti-Hermitian basis of SUN).

Som is the standard nonlinear -model action . Syyz is the D=4 Wess-Zumino term where

for the same reason as its D=2 counterpart , the integration is over Q , a 5-dimensional disk
with as its boundary the spacetime M., N is similarly quantized .

With the boundary condition that U(x) — I ét spatial infinity, 3-space is effectively
compactified onto a 3-sphere S3. The configuration space of our model is then the infinite Lie

group Map ( s3; G=SU(N) ) . From here we can obtain the corresponding current algebra of
(2.17) either by the cohomological or the canonical field theory method . By way of the field
equations of (2.17) expressed as a current conservation law

auJ; =0 ‘ (2.20)
for the current
- .

Its first term is of the usual Sugawara-Sommerfield form, its second term derives from the

Wess-Zumino anomaly, A = 541—01592— . In particular the resulting local charge density algebra
T
reads
[J3(x) , J6(x)] =i £ I§(x) &(x - y) + S*°(A; x,y) (2.22)
where

S = 10 A e Tr (T TOwieo;) o F(x - y) (2.23)

(2.22) is an exact realization of the commutator (2.16) given previously. The operator-

valued Schwinger term or Abelian extension Sab , originates fror the Wess-Zumino action. It
is the flat connection (= U-1dU) limit of the anomalous gauge generator algebra of
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Faddeev and Shatashvili[44] for a quantum theory of left-handed fermions coupled to an

external gauge field A " (x). In the case of global chiral symmetry, the prescnce of Sab
signals the possibility of projective representations, new sectors in the model's iHilbert of
physical states. It is thus called a "good" anomaly. In the gauge theory case on the other
hand, we have an inconsistent quantum gauge theory since a nonvanishing 830 jor >3 s
a topological obstruction to the implementation of Gauss's law or local gauge invariance. We
have here a "bad" anomaly.

What is most remarkable about the algebra ( 2.22 ) and its canonical bosonic realization

(2.17) ) is that the later admit a fermionic soliton. It is well known that a D=4 dimensional o-
model i.e. the action S augmented by suitable stabilizing higher field derivative terms
admits topclogical 3 — G solitons, the Skyrmions(45]. Since the works of Balachandran et
al [46, 47, 48], there has been an explosion of phenomenological applications to hadronic
physics[38, 49]. But of interest to us is Witten's proof that the added topological Wess-
Zumino action induces the realization of a projective fermionic representation of the current
algebra. It confirmed Skyrme's conjecture existence of a D=4 bosonization .

We recall in a nutshell Witten's semi-classical argument . Take the stat.c classical 1-
Skyrmion map Ug(x) : s3 - SU(2), seen as a suitable SU(2) embedding in G = SU(3)
with topological charge B

B=—L_ | & Tr(UldU)}=1 (2.24)
24n2 )

the generator of 13 ( G) = Z . Using the time dependent ansatz U(x,t) = g(t) Ug g(t).'l , g(1)
e SU(3) being the collecfive coordinate matrix, we now adiabatically rotate the skyrmion by
an angle of 2r around some axis . The resulting contribution coming solely from the Wess-
Zumino term is (i 7 N;), giving a geometrical phase factor of exp(intN;)=(-1) Ne ,
the spin phase , to the quantum mechanical wavefunctional . So the soliton is a fermion for
N, = odd integer. N, is identified as the number of colors by matching the flavor anomalies
of the effective chiral model (2.17) with those of its underlying gauge theory, quantum

chromodynamics.

To go beyond the semi-classical description of the Skyrmion, one would like to obtain
the D-=4 counterpart of the local Skyrme-Mandelstam(18, 50, 51] fermionic operator (1.31)
for creating a point like soliton out of the vacuum. The first effort was due to Skyrme
himself{52]. It is at least of conceptual interest to sketch the essential elements of his
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construction . For the Sine-Gordon model with field denoted by o, he showed that the
operator '

i | o0
= = 1 1y 2=
S=FK= exp(:t‘—-Ot2 (x0)) ex ZJ S dx (2.25)

X0

obeys a massless Dirac equation. After normal ordering or renormalization , (2.25) was to
become the Mandelstam operator . It later generalized to the vertex opcratér representation of
affine Lie algebras. In analogy to (2.25) , Skyrme argued that the correspbnding Weyl-liked
operator S should also be made of two factors

S = §,5,= exp H Iaf"‘—‘(—’;;"—@i o(r) d3x} explitaB) (2.26)

with r = X- X0 I(x) is the time -component of the isospin current, e, is a proper
orthogonal matrix interlocking spatial and isospin directions and ® a suitable angular function
of r. S, identifies the auxiliary momentum p(y with a suitable field expression and e, with a
matrix characterizing the field orientation. In S| , t,, is a rotation operator conjugate to e, i
relating to the internal symmetry index o,the Oa( o =1,2,3) are functions of the soliton map .
By applying the collective coordinate method to a static point like soliton and naively
manipulating with $ seen as canonical transformadon, Skyrme partially diagonalized the
nonlinear field system turning it into an effective, rotator Hamiltonian Hefr = At t, + B +

interactions, with its isobaric spectrum so typical of old strong coupling theories. Then by a
rather uncorvincing argument he projected out the spin 1/2 state with Ho¢r leading to a Dirac

hamiltonian of a free point particle plus interactions.

Much later Rajeev([53] took as operator which would create a soliton state from the
vacuum the unitary operator

U(gy) = expli I d3xI1502(x)) (2.27)

where g(x) = eir®'®) , U is to implement a projective or 2-cocycle representation of the 3-
sphere current group I" = Map( s3, G) in that ﬁ(gl) ﬁ(gg) = e 2m M(q;zx.sz)ﬁ(gu) ().As
is well known [54], there exist nontrivial projective representations of I' provided its 2nd
cohomology H? () is nontrivial . This is the case for G = SUN) , N> 3 as no (SUN)) =Z
for N23 due to the isomorphism H2(I') =H3(G) = ©3(G) . Nontrivial H3(G) is [5S5]precisely

25

]



|

El

the condition for the existence of the Wess-Zumino anomaly . In a rather sketchy analysis, it

was argued that for largely separated Skyrmions , two U (2.27)at different spatial points

anticommute. In any case it is clear that to obtain a true local soliton operator obeying some

spinor wave equation etc...greater kinematical and dynamical inputs through a canonical [
quantization of a definite model need to be brought to bear on Rajeev 's program . In our |
opinion, it may be more fruitful to try extracting such a soliton operator from a Skyrrmon

wavefunctional seen as a section of a Dirac determinant bundle.

The attempts by Skyrme and Rajeev while embodying the necessary central ideas are at
best heuristic and incomplete . A technically rigorous construction has yet to be performed
.One must face such ignored yet crucial and difficult issues such as regularizations, the
meaning of exponentials of D>2 non-abelian field operators and other new topological
ingredients. Surely one could profit from the recent experience ( see Sect.C.1 ) in establishing
certain exact operatorial boson fermi correspondence in three spacetime dimensions.

From an algebraic viewpoint, the existence of a kind of D=4 quantum fermi-bose
correspondence has provided a strong inducement to attack a larger problem, that of the
representation theory of the D=4 current algebra (2.16 ). Indeed there is also an pressing
phenomenological need to do so. With the profusion of Gev hadrons, the possibility of a
strongly coupled Higgs sector at SSC eticrgies and the still intractable infrared structure of
QCD, we may revive and seek to further advarce the old program of current algebra , this
time with an added topological twist, the Wess-Zumino chiral anomaly. The hope would be
that , knowing the physical representations of such extended current algebra based on QCD,
such an approach would provide a systematic nonperturbative (albeit effective) handle to
portray strong interactions.

Compared to the rich developments of the representation theory of affine algebras what ,
if anything, is known about the representations of Map( M; G) ? The answer is " rather
surprisingly little" . Till recently, there was only one irreducible representation due Gelfand ,
Graev and Vershik [7],but it has no apparent physical relevance. Another physically well
founded attempt is by Mickelson and Rajeev{56]. The goal is to construct a suitable (3+1)
dimensional generalization of the fermionic Fock space of D=2 current algebra with a
Schwinger term ( say ( 2.22).). To do so they generalized to the case of a larger linear group
modelled by rank p (0<p <) Schatten classes the methods of Pressley and Segal [57]for
constructing cocycle representations of the infinite dimensional restricted general linear
groups. This is no place for involved techn.cal details, we can only sum up their results.

Working in a D =odd spatial manifold M such as Sd, they consider the system of a Dirac
spinor coupled to an external Yang-Mills field with gauge group G and its corresponding
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algebra g. Its current algebra is just I = Map ( sd; g) is just (2.26) without the extension
term C3 . Let f: sd g be Lie algebra valued functions , A! the representation matrices of

g. Since the Dirac Hamiltonian is unbounded below, the "1st quantized" unitary
representation of I" given by

[36) , wa(®) ] = AP fitx) wp(x) (2.28)

is physically unsuitable as it has no vacuum state or highest weight vector . Second
quantization cures this instability i.e. by constructing a Dirac vacuum as the highest weight
state. The operator product Ji(x) = wAly needs a short distance say a point splitting
regularization, which involves substracting the VEV of J{f} . As a result, one no longer has a
representation of I” but a central extension of it .

In contiast to the situation in one spatial dimension where normal ordering is enough to a
well-defined quantum theory , for d >1 further renormer. izations are required. Thus for d >1

J{f }2 are still not well defined after substraction . For 4=3 , J{f} requires an additional
multiplicative renormalizaton, implying that such an operator is meaningless within the purely
fermionic Fock space as it creates out states of infinite norm of the vacuum . A larger Hilbert
space is then introduced . It include the fermionic states which no longer form a complete set
and new bosonic states created from the vacuum by J(f} and having the quantum numbers
of a two fermion states. In this manner Mickelsson and Rajeev [56] found a nonunitary
representation of an Abelian extension of Map(Sd ; &) 1.e.(2.12) . Their procedure
illustrates the flip "local " side of the anomaly or of the ray representations of the KM group
Map ( sd; g) . Specificolly they found a linear representation with highest weight vector,
essentially including these bosonic states . Very recently [56] they did manage to construct
unitawy representations in certain special cases of a 3-parameter family of deformations of the
abelain extension g/\lg of the general linear algebra gl . It would be of great interest to see
physical applications of such results.

We note that the necessity to include bosonic states along with fermionic ones, say to
implement unitarity, seems consistent with the more recent conclusion on D=3 bosonization .
In fact while D=3, 4 purely bosonic field theories do admit fermionic solitons, only in D=2
are such theories exactly equivalent to a local fermion model. Luscher [58] has shown that
there exists an analogous exact quantum correspondence between certain D=3 interacting field
theories, but this equivalence is between a purely bosonic model and one involving not only
a basic local fermion field but also other bosonic fields. Similarly an illustration of exact of
D=4 fermi-bose corespondence was put forth by Mickelsson[59]. He showed that on a spatial

manifold with topology SZx si a D=4 Yang-Mills system coupled to a U(1) monopole and
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the mixed field system of a 4-component fermion coupled to a U(1) monopole have identical
KMA. These results should motivated further work on physical representations of D>2
current algebras.

2.3 D > 2 Diffeomorphisms

As noted before, solving for quantum field théory is often equivalent to knowing all the
unitary representatior:s of its invariance groups. In two dimensions CFT testifies to the truth
of the above assertion. In higher dimensions the place of the Virasoro-Bott conformal group is
taken by the group of diffeomorphisms of a given manifold. In particular the diffeomorphism
invariant topological quantum field theories should naturally take the place of CFT 's.

In the 60's diffeomorphism groups were considered in the motion of incompressible
fluids by V. Amold[60]. Subsequently applications of representations of the group SDiff(R™)

of volume preserving diffeomorphisms of R? (n=2, 3) have been made in classical and
quantum fluids, specifically to vortex filaments and other topological defects {61, 62]. In
particle physics, recent attempts to quantize relativistic closed p-(super)branes[63], which

generalize (super)strings, have led to the analysis of the algebras of SDiff(Sz) , of SDiff(Mg),

Mg being a Riemann surface of genus g, of SDiff(S3 ) ete.... and their possible central

extensions. We briefly survey the status of these algebras as the D>2 analogs of the Virasoro
algebra [64].

A p-brane Mp is a bosonic extended object of p-spatial dimensions propagating in d-
spacetime dimensions according to the Polyakov action

Sp= I dp“ow"g[giiaix-ajx - (p-l)] (2.29)

ol =(o*,1) , 0% (a= 1,..,p) are the coordinates on the p-brane, T parametrizes the latter's
time evolution. Working in the light cone gauge, well tested in string theory, means imposing
first the following condition on the p-brane metric 8

g0a=0, goo =-det hyp=h (2.30)

where h,}, is the spatial metric on the p-brane. One can then choose the light cone gauge
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X*=p*t , (2.31)

Xt = {1? ( X% £ X941y, What remains of the (p+1)-dimensional general coordinate invariance

group is its subgroup which preserves (2.30) and (2.32) and consists of reparametrizations of
the spatial variables 6® —c? (o) with the restriction that they preserve the volume

o
det (ao

dab

=1. (2.32)

The existence of this reparametrization invariance relates to that of the constraint

3(aX™IpP™ = ¢,=0 , (2.33)

m
m = 1,2,..d-2 , P™(c) =%m .

In mathematics the above subgroup is called the group of volume-preserving
diffeomorphisms which we denote by (VPDiffMp). Its general classical algebra has been
computed, valid for any topologies and geometries. Infinitesimally (2.33) is equivalent to the
variation 86? = n%(c?) where V,( o1n? =0 . The latter is solved by

by
nt=E4 Y cHo (2.34)
r=1

in terms of coexact (£3do?) and harmonic (w{,de?) 1-forms on Mp . by denotes the 1st
Bett number of Mp » C(r) are constant coefficients,

Eo= 5L2)—' E*;“”‘""“PanzAn,...n, . (2.35)
The classical algebra reads

[LA,» LA, ] =LAy, (2.36a)

[Py » LA, ] = LAy (2.36b)

[Pty » Pisy ] =Lag (2.36¢)



c) are given by

(A12)ag...a.,, = - Eabay...ap ﬁ?‘ig (2.37)
(A(r))aa...ap = - Eabay...a, m?f)éb (2.38)
(A@))ara, = - Eabas...ay OfeyOF) | (3.39)

. In the quantum theory of membranes (p=2) , the constraints q)ab = () become
ﬁAIphys> = f’(,)lphys> 0 on physical states through the operators

Lp=-i J d2ot®d,XmPm By, = -ij d26 @f, 3,X™P™ (2.40)

They satisfy at the level Poisson brackets the classical algebra (2.36 ) . For an arbitrary
closed bosonic membrane X = My g namely a 2-sphere with g handles , the area-preserving
diffeomorphism algebra was found with the most general central extension consistent with the
Jacobi identy. It reads

~ a1 o~ [

[Ca, Lo =Lan+ | d20ViAdaA,, (2.41a)
JT

. . . i

[P(r) , LA] = La,-2| d%0 ViewolyA | (2.41b)
JZ

[i;(r) ’ i;(s)] = iAm(n) + L d20' eabmf,)m?s)w . (241C)

where W is any scalar and V,(oc1V?) =0 , namely o-lvais any divergenceless vector field
on X . Consequently , from (2.42a-c) we see that the most general central extension is
specified by one arbitrary scalar function and by 2g arbitarry constant coefficients of the
harmonic forms on X [65] . This is so since the dimension of the space of harmonic 1-forms

on I, dim H!( My 4 , R) = dim R28 = 2g [66].

From the above analysis it follows that , for the 2-torus ( indeed the n-torus) and the 2-
sphere, there are no nontrivial central extensions . The algebra for the torus was one found
long ago by Amold in hydrodynamics[67]. It is also remarkable that the Lie algebra of SU(eo)
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as well as the large N limit W of the operator algebra A generated by primary fields with

N
integer spin 1,2,...N are isomorphic to the L- subalgebra (2.41a ) of the area-preserving

diffeomorphisms algebra of of the 2-plane ,whether or not it is compactified i.e. to s2 [68].

As far as explicit representations, Figueirido and Ramos[69] have constructed Fock

space representations of the algebra of vector fields of the n-torus, i.e of Diff(T™ ). They used

a generalization of the infinite wedge representation of Kac, Petersen, of Feigin and Fuchs for

Diff (S1 )[32, 70]. Further renormalizations beside normal ordering were necessary to make

everything well defined. Their representations are generated not by linear operators but
‘bilinear forms so they do not arise from a Verma module. The unitarity question remains to

be answered before physical applications. Of course, if one could manage to quantize

membranes, this would amount to finding interesting unitary representations of their
_corresponding diffeomorphism groups with or without central extensions.

In two dimensions one can form the semi-direct sum of the Kac-Moody and Virasoro
algebras where the first appears as an ideal. The join structure underlies conformal field
theories with internal symmetries such as the WZNW model. A natural question is whether
Map( SP, g) and Diff(S™) can be so combined into a larger algebra. This question was
investigated for n=2,3 . It was shown [41] on the basis of consistency with the Jacobi identity
that a) there exist no such a larger algebra containing Diff(S™) and the centrally extended SM-
algebra e.g. (2.2) for n=2 and (2.4) for n=3, b) however such a structure does exist if the

SP- algebra is not centrally extended . An example of (b) could be the current algebra
Map(S3; su (N) ) of D=4 WZNW (2.17) non centrally extended by an abelian ideal.

From the standpoints both of physics and mathematics, the representation theory of
higher dimensional analogs of Kac-Moody-Virasoro algebras is an object of great
mathematical fascination and much potential physical importance. Since the D> 2 conformal
groups are finite dimensional, to analyze D> 2 system at their critical points one should target
infinite dimensional subgroups of the general D-dimensional diffeomorphism groups, ones
which have the conformal group as a subgroup . In four dimensions several attempts to define
and study four dinmensional structures endowed with the richness of D=2 CFT. One group
[71, 72] studies representations of infinite self-dual and anti-self dual subalgebras of the

Diff(R4) making use of quaternionic Schwartzian derivative and Fueter quaternionic
analyticity. Inspired by the connection between D=3 Chern-Simons theory and D=2 CFT
,another group [73] seeks by descending from a D=5 Chern-Simons theory to find D=4
analogs of 2d CFT . Another group[74, 75] has undertaken a more radical approach a la
Penrose. They propose replacing the Riemann surfaces of D=2 CTF by twistor spaces and
complex analyticity by hoiomorphic sheaf cohomology. In this manner a classical infinite

aloamle Lons bhamem fmvrmAd whink han nn 380 anhaloaleno hath tha N4 QT T/ "\ rrvfrrnl
CUBCUUI nas ocn Auuuu, Onc wiiCii nas as i ouucu5\4u1uo VUL U L2 =T O U\l Conidtnnal
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and D=2 conformal algebras. The hope is to apply the corresponding quantum algebra with
extension to classify fields and field theories reformulated in terms of twistors. If any of these
programs succeeds, very enticing mathematical vistas will surely lie ahead.

3 . 0dd phenomena in odd dimensions
3.1 Anyons Revisi’red : current algebra and verfex operator

Two overlapping topics in field theory have attracted a great deal of attention. They are
the topological quantum field theories (TQFT) in D 2 3 spacetime dimensions{[76], ushered in
by the mathematical works of Denaldson and Jones and field theories|77] with excitations
bearingany spin and statistics, anyons, which may well account for the fractional quantum
Hall effect and high temperature superconductivity.

In his trail brazing analysis of D=3 Chern-Simons theories, Witten [78] showed the
beautiful correspondence between the expectation values of the Wilsen loops traced by
‘colored' point sources in spacetime and Jone's polynomials for knots. To obtain the
fundamental Skein relation of knot theory , he had to regularize or frame the Wilson loops
inaddition to performing the standard regularization. A different form of such a regularization
had been discovered by Polyakov[79, 80] in his proof of the fermi-bose transmutation of D=3
"baby Skyrmions" in their geometric point-like limit. It is at that juncture that an 'miercsting '
overlap with the theory of anyonsoccurs . Our work[81, 82] on which this section is based
takes off at this intersection between physics, the biology of DNA molecules, differential
geometry, topology, representation theory of current algebras and division algebras.

To be specific we shall choose without loss of generality the model par excellence for
anyons ,one governed by the action [77]

A =J d3x:| DuZ|2 + -8—9—2 eVA Ay Fop + Ault) (3.1)
n

the CP; o- model with a Chern-Simons term. Its basic field is a two component complex
spinor Zz' = (Z1,Zp) with | Z ?=1 , consequently it lives on $3. The more familiar unit

normed Wegner vector field n is given by the complex Hopf projection map taking Z €S 3

ton= Z'0Z ¢ S?‘z CP, . D, is the covariant derivative w.r.t the composite U(1) gauge

field Ay =i z*auz » Fyy being the associated field strength . 8 is a free parameter (0<6<
7t ). This model should best be viewed as the low energy limit ( e2— oo) of a system with a
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Maxwellian kinetic term 51—2 FuFuy added on to (3.1).
€

It is well known that (3.1) (with 6 =0) to admit exact S2 — S2 general solitons. While
the standard third term in (3.1) is the Aharonov-Bohm term, the second or Chern-Simons (C-

S) term also reads for 8=nas Sy = —71-1 d3x AJ¥, namely as an interaction between the

field A, and the conserved topological current
Ju= glféuvke,bcnaavnbaknc . (3.2)

The soliton (electric) charge Q = J.dzx Jo is aninteger labelling the elements of nz(S‘?‘) =7Z.

The field boundary condition is such that spacetime 1s R3U (e0) = S3; the C-S action is in

fact the Whitehead form of the Hopf invariant for the maps n : §3-— CP{ = 82, classified by
the generators of 73 (Sz) = Z. The configuration space of fields is the infinte Lie group of

2-sphere base preserving smooth mappings I" = { n: SZ —- Sz} . The homotopic relations
no) = nz(SZ) =Z and nt)([') = 7t3(82) =~ Z allow the topological possibilities of solitons
and exotic spin -statistics connection respectively[84]. The latter option is implemented
dynamically by a topological Chern-Simons action .

What effect does the Chern-Simons term have on the chiral soliton ? Wilczek and Zee[83]
showed that either the interchange of two Q=1-solitons or a 2x rotation of one of them around

- . . i0 .
the other gives a statistical (alias spin) phase factore = (-1) 25 to the wave function. Hence

the soliton has spins = 9 and intermediate statistics, it is an anyon. A key ingredient for

2n

~ their proof is that the soliton map giving raise to this phase be of Hopf invariant 1 . It will be

a guiding criterion in our subsequent D 23 generalization of the 8-spin and statistics
connection .

Being a o-model , (3.1) with 8 = 0 has a canonical realization [84]of the following
pseudo- Sugawara-Sommerfield equal time algebra of currents

B, By) | =-i eI , (3.3a)

[180) . (y) | = -1 TS X-F) + if1( 80 - na(y)nd(y)) R AKX, (3.3b)
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where I, = f-1€35¢9,nb n¢ . It is a pseudo-current algebra in it does not close since the
operator-valued Schwinger term in (3.3b) is explicitly a function of the field n. Actually a

larger close algebra can be obtained from (3.3a )-(3.3c) by introducing a new rank two
' Ssymmetric tensor operator $2b(y) which is realized as 8D =( §ab . na(y)nd(y)) by the model

(3.1) . However one feature which distinguishes even and odd -dimensional current algebras
seem to be the following . In contrast to the 4-dimensional 6-model with Wess-Zumino term
leading to a noncentral extension of its algebra of currents ( vis 2.22 ) by an abelian ideal, the
model (3.1) with its Chern-Simons terms in fact leads to exactly the same algebra (3.3 )
where, say in the local charge density algebra (3.3a) we replace I by the new canonical
momentum

L= I3 + %eiin(x)aina(x). (3.4)

In other words the current algebra is without extension and is independent of the Chern-
Simons term; it is 8-independent. While in odd dimension locally there is no signature of the
Chern-Simon anomaly, globally at the level of representations, Semenoff ,Sodano (85]and
Karabali [86]have shown that at the level of the wavefunctional ,when one exponentiates the
algebra and boundary conditions then enter, it does make a big difference in whether one uses
a la Skyrme as static vertex soliton creation operator

U(X) = exp {i d2y Ij(y) (X - ?’)} (3.5)

or

.
UL®) = exp {i d%y L(y) 0*( X - S")} (3.6)
‘ o
where the soliton profile map

sind
o= 50 s w e
0

! : ' ' b St
twists the vacuum configuration n? = ( 0, 0,1) into a soliton with charge O #0. Indeed
while (3.6) does not transform like a scalar under rotation (3.7) provide . proper
representations of the rotation group SO(2). In fact it can be shown that one has the graded
commutation relations
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‘where the multi-valued phase A( x, y) = ©(x,y) - ©(y,x) = t mod 2xn ,
O(X,y) = ta.n‘lgl(—zfm . (3.8) is the signature of exotic statistics. As with all such very ill-

(x1-y1)

defined vertex operators, (3.6) is a topologically nontrivial coherent state operator with its
classical soliton profile, it does not create a state of definite spin. As Skyrme was already
keenly aware, it is in general not an easy task to use collective coordinates and proper
regularization (!) procedures to project out from (3.6) operators with definite spin. All this
and more remain to be done if vertex operators are to be useful entities in formulating effective
Hamiltonian theories where anyonic excitations are the basic quasi-particles.

3.2 Geometry of a phase: Iihking the soliton's twist and writhe
to exotic spin and statistics

In the last section, we discussed the problem of zero in on some important
nonperturbative states or degrees of freedom of a highly nonlinear theory e.g. projecting out
anyons of definite spin. It is clear that by going to the pointlike limit one can get to the lowest
energy and spin states of a extended object. It is very much in this spirit that Polyakov([79]
pioneered a tractable Wilson loop approach to the low energy behavior of soliton Green
functions of model (3.1). To study the effects induced by the long range Chern-Simons
interactions, he approximated the partition function Z by

all closed paths
— -mL (P) . s ‘
Z = 2 e <exp(1 J.P dx" A > - (3.9)
(P)
P is a Feynman path of a pointlike soliton , hence a curve, in spacetime R3, L(P) is the total
path length .

The ﬁmt exponential in ( 3.9) is just the action of the path P of a free relativistic point
soliton of mass m. Let

OP) = <exp(i§ At dx, )> , (3.10)
P

the bracket < ...> denotes functional averaging w.r.t. the Hopf action. It embodies the
Aharonov-Bohm effect , characteristic of topologically massive gauge theories: namely the
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Chcm-Simons-Hopf action induces magnetic flux on electric charges and vice versa, thus
producing dyonic objects. Being Gaussian, this phase ®(P) is exactly calculable, thereby the
analytic appeal of the point soliton approximation. By direct integration of the equation of
motion , D(P) is given by exponentiating the effective action :

B_enve ALB,A, + Ay Ju) . (3.11)

4n?

d(P) -=-I}I—exp{i80 +iJ d3x

S is the free point particle action , N a suitable normalization. The conserved current of a

dyu(t) .
Q=1 point source Jy(x) = J dt 53(x-y('c))-)id'”i1(;—) is given geometrically. From (3.1) the

equation for J, reads
Jux) = - L e,0 AP (3.12)
2n? |

which on substitution in ( 3.11) with 8 =& gives O(P) = exp (%J’ d3x Ay JH1. Then for the

above givenpoint current and in the gauge 0%A4=0, Ay, can be solved to give :

®(P) = exp (in IG(P) b, (3.13)
where |
xL X)
Ig (cq—>cﬁ)=zlg§ dx#f dyvi“i’fg——jL (3.14)
Ca Cy |x-y|

in the limit where the two smooth closed 3-space curves C,, and Cg coincide, namely
Cq =Cp =P, the soliton worldline.

Were C1and C 3 in R3 (or s3 ) disjoint curves , (3.14 ) would be their Gauss linking
coefficient. If we denote by (M) the solid angle subtended by Cj at the point My of

Cy, Stoke's theorem gives Ig = '41—11: J.‘C d Q(M,) , which measures the variation of this
2

solid angle divided 4 as M7 runs along C3 ; it is an integer, the algebraic number of loops of
one curve around the other.

However though the integrand in (3.14) is that of Gauss’ invariant , the integration is
over one and the same curve. I(P) is therefore undetermined. This artifact of the point-limit
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approximation must be amended by a proper definition or regularization of Ig(P).

Polyakov’s regularization consists in trading the d-function in L dx“J‘ I d?y,8(x-y) , an

)
equivalent expression for 4nlg , for the Gaussian Sg(x-y)=(2ne)'% exp('li;j—). He found
that IG(P)g,, = - T(P), the total torsion or twist of the curve P in spacetime with

T(P) = 2‘1n—£ dx(n x %—'S‘«) = —Zln—L 17(s) ds. s and n denote the arc length and the principal

normal vector to P at the point x(s).

What is the meaning of this regularization ? By substituting the Gaussian, the dominant
contribution to the surface integral comes from an infinitesimal strip Zp ; so this procedure

effectively turns a spacetime curve into a ribbon . Precisely in 1961 such a process was used
by Calugareanu [87]in his search for new invariants of the knot. The entity [( Cy— CB)

turns out to be perfectly well defined and gives a new topological invariant SL , the
self-linking number for a simple closed ribbon. SL is in fact the linking number of Cp with
a twin curve C, moved an infinitesimally small distance € along the principle normal vector

field to CB' As disjoint curves they can be linked and unlinked exactly the strands of a
circular supercoiled DNA molecule[88). In modern knot theory this construction is termed the
framing of a curve CB . Of special importance to us is the existence of the “conservation

kA .

law’":
SL=T+W ‘ (3.15)

explicitly

-1 1
SL(P)-—M LXP dQ”anTds (3.16)

whereby SL, is the algebraic sum of two differential geometric characteristics of a closed
ribbon, its total torsion or twisting number T and its writhing number or writhe W. . W

is also the Gauss integral for the map ¢ : slx sl 5 82, is the element solid angle, the
pullback volume 2—form d€2, of S2 under ¢. While their sum SL is a topological invariant so

must be an integer, T and W are metrical properties of the ribbon and its "axis" respectively,
they can take a continuum of values. A coiled phone cord best illustrate the relation W + T =
SL for aribbon. When unstressed with iis axis curling like a helix in space, its writhe is
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large while its twist is small. When stretched with its axis almost straight, its twist is large
while its writhe is small. | ‘

By way of the dilatation invariance of W and the map e(s,u) (e2 = 1), a local Frenet-

L 1
Serret frame vector attached to the curve, we can write W = ZIE f ds f du €apc €205e%0,e¢ |
‘ 0 0

ab,c = (1,2,3) and d¢ = 9/3s, 3, =3/du. A conformally invariant action for the frame field
e, W is manifestly a WZNW term as well as a Berry phase upon exponentiation{8)]. Since W
=-T (mod Z), (3.15 ) explains Polyakov’s double integral representation (modulo an
integer) for the torsion T(P) .

By way of (3.15) the alternate form ®(P) = exp(- in T(P)) exp(+ix n) is the "spin "
phase factor, essential to Polyakov 's proof that the 1-solitons of model (3.1) with 8=r are
‘ermions by obeying a Dirac equation in their point-like limit [80]. For arbitrary 6, we go
over to the more general case of pointlike anyons . So we see the relation W =-T + SL as the
very mathematical expression of the connection between statistics and spin in the geometric
point soliton limit.

We now recall that in the geometry of 2-surfaces, a form of the Gauss-Bonnet theorem
says K =2my . Like (3.15), it relates a topological entity such as the Euler characteristics
of a closed surface M to a metrical entity such as the total Gaussian curvature K for M. In
applying (3.15) to supercoiled DNA, Fuller{89] in fact showed (3.15) to follow from the
Gauss-Bonnet formula, one of the simplest examples of an index theorem. Thus it is pleasing
to see how a fundamental physics principle, the relation between spin and statistics is mirrored
by such a fundamental theorem of geometry, indeed the simplest of index theorem.

4. Anyonic Membranes
4.1 Hopf's Essential Fibrations and Division Algebras

By 1935, Hopf [90, 91]discovered an unique link between topology and the four
division algebras K= R, C, H and Q , namely the real, complex numbers, the quaternions

and octonions by. connecting the latter and the fibrations of g1 by a great S“'l-spherc,
n=1, 2, 4 and 8 respectively. ‘

Hopf's construction [91],[90]of his maps is most instructive. It can be directly inferred
from Hurwitz's theorem which states: the only dimensions n of R™ with a multiplication R™ x

no
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R" — R™, denoted by F(X,Y) = XY with XY=0 < X=0 or Y=0 are n=1, 2, 4, 8. Namely
these multiplications can be realized by the four division algebras over the realsR, K~ R,
C ,H and € ,the real, complex numbers, quaternions and octonions respectively, X, Y € K

ie. R"= K.

Next by a linear identification of the product space Kx K with R?", the product F(X,Y)
, X, Y e K, defines a bilinear map, the Hopf map

H: R2" . g+l (4.1)
with ‘ , ‘
. 2 2 2 2 o
HXY) = (IXI? - 1YR 2FX,Y)) = (IX? - 1Y% 2XY). 4.2)

It follows that for IXP*+ IYP =1, H(X,Y)P = (IX*- IY1?)? + 4 IXY? = 1. Considers two
spheres, $20! as the space of pairs (X, Y) of K with X +1Y1? =1 and S” as the space of
all pairs (s, k) of areal number s = X121y and k =2 XY e K. Thus H restricts to the

map H: §21 . 8" with $°" and S™" as base space and fiber respectvely and S2™! as the
fibre space, .

We parametrize S" by a unit (n+1)-vector parametrizing N, N%=1.LetK' = (KI, Kz)'
Kl, K2 e K, K’K=1, be a unit normed K-valued 2-spinor parametrizing $21 The Hopf
map (4.1) then reads

N= Sc(x!yK) 4.3)
2 0 |
with KT =(K;,K,) and Yu’(_ e“) ,u=0, 1,..m-1 and ym={ (1) 01) ,m=1,2,4 and 8.
eu 0

Alternatively, with S*"!in KxK and S" = X U (e}, the Hopf projection map, = :
s¥1 . §" also reads

XY provided Y#0

mEY)= | if Y=0
oo 1

(4.4)

where X1+ Y12 =1, X, Y eK. n'l(X,Y), the pre-image (or inverse) of this Hopf map, is

o
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S2n-1

the gedmetric intersection of with an n-subspace of Kx K, namely a great (n-1) sphere

s"! oran (n-1) cycle. So the image of any pointon S" isa S"'l-spherc on S*™1, This is
apparent since N (or X/Y ) is invariant under the phase transformation K — KU ( X — XU,
Y - YU). U=T, u? =1, is a unit normed, pure imaginary K-number, i.e. U ¢ s0~ Z,, s!

2U(1), $® £ SU2) and §7, an (n-1)-cycle for n = 1, 2, 4 and 8 respectively.

(4.2)The Hopf Invariant in its many disguises

The Hopf invariant y(®) classifies the maps @ : §21. 8" As an added topological
action in the model (3.1) (n=2 ) it is essential to a dynamical realization of exotic spin and
statistics. Our work[81] is in essence about the many faces of Y(®), its mathematically
different and physically telling expressions[92]. First there is the connection to the abelian
Chern-Simons invariant .

Let V(p)(M) be the space of p-forms on a manifold M, p <dimM. On S", we select a
normalized n-form area element ®,,, ®,= 1. On SZ"'l, by pulling back the Hopf map F,
sn
we define a second induced n-form F, = ®*a, & v (s2ly which is closed (dF,=0) since
d(F*w,) = F*(dw,) = 0 and dw,=0. By de Rham's 2nd theorem H"(Szn'l)z 0, all closed n-
forms on $2! are exact, there is a non-unique (n-1)-form A e V(n'l)(S?‘n'l) such that
dKn_l = ﬁn. So the integral

D) =§ AnpiAF, (4.5)
sZn-l

is defined. The following features hold:
a) Y(P) is independent of the choice of either Ap-1 (dA,=F,)or of ®,, b) H(P) =0 for
all maps @ : $2" 1 S" with n odd, c) Y(®) is invariant for any two smooth and homotopic

n

maps $2"1— s" .

(4.5) is the Whitehead form of the Hopf invariant W®). For physicists this form is the
Chern-Simons term for the Kalb-Ramond field A,_;= 2% A,..; and property (a) translates
simply into the gauge invariance of this antisymmetric Abelian gauge field F. '

There are variants of the Hopf invariant. Let us first parametrize the map F: g2l _ gn
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by a (n+1) component unit vector Ne Sh, ( N’z=l). If N.o is an arbitrary fixed f)oint on S",
then as in the case of the complex Hopf fibration, ﬁ(x) = ﬁo is thus the equation of a closed

i -1 —
hypercurve Cy = s™on S2n L Equivalently, the preimage of Cy=F (N 0) of N 0 is an (n-

I)-cycle in g2n-1

. If § is some n-dimensional closed connected submanifold on g2n-1 with,
as its boundary 580, Co, then ﬁ(x) maps S, a Seifert surface, onto the whole n-sphere. The
Hopf invariant y(ﬁ ) can be defined as the number of times N maps Sq onto S™. It is the
mapping degree of N.(x) restricted to Sy, from $, to s", ﬁ(x) : £ — S™ and is independent
of the point NO of S". With nn(Sn) = Z, the Hopf invariant is then an integer . By a theorem

of Eilenberg and Niven, representative maps S" — S" for n=2,4 and 8 with winding number
m are given simply by X™ with X ¢ C, Hand Q respectively. So we also have a
generalized flux and loop integral representation of y(ﬁ )

‘Y(ﬁ) =§ En = f ‘Kn-l (46)
0~ Co~ ax®

where F, = dA,_; is the area element nform of S” mapped by N into $271. Asit should

be, these F,, and A,,_; are the same ones occuring in the Whitehead form of y(ﬁ). As (), the
Hopf invariant gives, upon exponentiation, a generalized Aharonov-Bohm-Berry phase factor
associated with its antisymmetric U(1) gauge field .

The connection, due to Hopf himself, between his invariant and Gauss' linking number
cannot be simpler : y (P) was originally defined as a linking number ! The map N represents

an element in rrq_n_l(S"). Pick two distinct points N, and N, on S", then their pre-images
F(N) = C, (a=1,2) are (n-1)-manifolds in S271 - After assigning a natural orientation to these

271 or (n-1)cycles C, and C,. They can be linked
or unlinked ; (o) is just the linking numbers Lk(al,az) of C, and C, and depends only on

hypercurves we get two (n-1)-spheres in S
a. . y(a) is thus a homomorphism :

H :mp (SN~ Z (4.7)

wirth the generalized Gauss linking coefficient to be given .
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We finally list some useful properties of the Hopf invariant :
a) Fornodd, H is zero in consequence of the anticommutativity of linking numbers

b) For n even , Hopf proved that maps of an even H always exist.
c)If the map I': S2'~ 2! has degree p the v (@oD) = p v (®).
d) If themap ¥ : S" — S" has degree q then y (Yo®) = q%y (D),

where the degree of the map S" —S" is an element of r,(S™).

4.3 Combining White and Adams' Theorems

In his 1969 thesis the mathematician White [93] derived the D>3 version of
Calugareanu's formula as a byproduct of a reformulation of the Gauss-Bonnet-Chern theorem
for Riemannian manifolds. In view of the established connection in section 3.2 it was natural
to for us to extend Polyakov's approach to the D>3 counterparts of Wilcek-Zee o-model
(3.1) . First we need to generalize Gauss linking number to higher dimensional manifolds.

Extending to D>3 manifolds the procedure for linking 3-space curves, we consider two
continuous maps f(M) and g(N) from two smooth, oriented, non intersecting manifolds M

and N, dim(M) = m and dim(N) =n, into R™™ Let ™7 be a unit (m+n)-sphere
centered at the origin of R™™M! et df2,, be the pull-back S™" volume form under the

map e: MxN — S™™ where to each pair of points (m,n) € M x N is associated the unit
vector e in Rm"&"‘*1 ce(m,n) = _g(_nl—_f;(_;nﬁ_ . The degree of this map
| g(n)-f(m)|
1
LEM.e) = LN =—— aq,. 48
Qn+m e . (4.8)

is the Gauss linking number of M and N. Q_ (=2n(™*1)/2T"((n+1)/2)) is the volume of S™.

Due to the non-commutativity property LM, N) = (=)™ D™D 1§ My, L (MN)
vanishes for even dimensional submanifolds M and N .

White's main theorem states: Let f : M7 — RP=21*1 be an smooth embedding of a

closed oriented differentable manifold into Euclidean (2n+1 ) space. Let v be an unit vector
along the mean curvature vector of M? . If n is odd (i.e. D=3, 7, 11,15 etc...) then
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2n ™ dv (4.9)

M

is the self-linking number of a hyper-ribbon. The latter consists of M™ and the same
manifold deformed a small distance ¢ along v . The two terms on the RHS of (4.9) are
respectively the generalized writhing and twisting numbers, W and T , of the hyper-ribbon.
The casesof gven _n_(D=1,59,...) are of no interest to us since both W and T are zero and
hence also SL =0.

The universality of the formula SL = W + T (3.15) mirrors that of Gauss-Bonnet-
Chern theorem. As a possible physical application, we expect that for solitons in suitable D>
3 models White’s general formula T = -W (mod Z) similarly links their spin and statistical

phases . It would define and relate the twisting and writhing of odd dimensional closed S3-,

SS-, s’-... hyper-ribbons, the world volumes of topological 2 -, 54, $6. membranes
solitons in D=7, 11, 15... dimensional spacetime respectively. The first problem is to cut
down this infinity of choices ? What are the natural D >3 o-model counterparts of (3 1) which
may admit solitons with exotic spin and statistics ? ,

In seeking for exact analogs of 6-spin and statistics among D>3 extended objects, at least
three key features of the CP(1) model (3.1) should be maintained:

1) the existence of topological solitons,
2) the presence in the action of an Abelian Chern-Simons-Hopf invariant;

3) the associated Hopf mappings $27-! — S™ include ones with Hopf invariant 1.

The first two requirements are embodied in the time component of the key equation
(3.12) . Upon integration over all of space of both members of this equation, one obtains the
topological charge-magnetic flux coupling which is at the very basis of the fractional statistics
phenomenon in (2+1) dimensions. As to the third requirement, essential to the proof of the
fractional spin and statistics for one soliton, the following striking feature holds true for these

Hopf mappings. While for any n gven there always exists a map f : Szn'1 — S" with only
even integer Hopf invariant (f), the existence question of Hopf maps of invariant 1 received
the final answer in the celebrated theorem of Adams[94):

If there exists a Hopf map ®@: SP — S(D+1)/2 of invariant y(®) = 1, in fact of
NP) = any integer, then D mustequal 1,3, 7and 15 (m=([D+1)2 =1,2, 4

and &)
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So there can only be four and only four classes of Hopf maps with y(®) = 1.
They along with their associated hidden (or holonomic) gauge field structures are best
displayed through the following diagram of spheres bundles over spheres:

U(1) = SOQ)
I

Z, = 0(1) = 80 ~§1=§1/Z, = RP(1) ~SO(2)/Z,
i

SO(2) = U(1) = S! -8§3-+82 == CP(1) ~SU(2)/U(1)
I

SUQ2) = Sp(1) = 53——87 S0(8)/SO(7) —=S* = HP(1) = Sp(2)/Sp(1)ySp(1)

Spm(8)/Spm(7)~S7~Sls Spin(9)/Spin(7) — S8 = QP(1) =Spin(9)/Spin(8).

The four rows reflect the one to one correspondence between the four division algebras
over R and the real (R), complex (C), quaternionic (H) and octonionic (W) Hopf bundles
(displayed in bold letters). The first three principal bundles are actually the simplest members
of the three infinite sequences of the K= R, C, H universal Stiefel bundles over
Grassmannian manifolds . The fourth bundle stands alone, a fact connected to the non-
associativity of octonions.

The spheres SP, p =0, 1, 3 and 7 are the fibers,the first three are Lie groups while s7isa
very special coset space, the space of the unit octonions. The latter has been an exotic object
of fascination and discoveries in mathematics and in the Kaluza-Klein compactification of
D=11 supergravity and supermembrane theories . An n-sphere S" is parallelizable if there is a
continous family of n orthonormal vectors at each its points. The fact that Sl, S3and 7 are
the only parallelizable spheres is yet another corollary to Adams' theorem. S',r=1,3,7, 15
constitute the corresponding fibre spaces. Finally the sequence of base spaces S", n =1, 2,

4, 8 are equally interesting as K-projective lines, as is clear from their coset forms. With their
holonomy groups Z,, SO(2), SO(4) and SO(8) being the norm groups of R, C, H and Q
they can be said to have a real, complex, quaternionic and octonionic Kéhler structures .

The Hopf maps f : §2n-1__ gt n=1, 2, 4, 8 with Hopf invariant one have found
important physical applications in condensed matter physics and in quantum field theory.

Tlerrmes
1

Even annection hatwaan Hoanf mans and nonstandard cnm and ctatictice had been lurki q
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in the background. Thus, in the D=2 ¢4 field theory , it was shown that the n=1 real Hopf
map realizes the 1-kink soliton , which carries intermediate spin and admits exotic statistics.
Besides being the Dirac 1-monopole bundle, the n=2 complex Hopf map underlies the 6 spin
and statistics of D=3 CP(1) model. The n=4 quaternionic Hopf map is the embedding map
for the SO(4) invariant, D=4 SU(2) BPST 1-instanton or the SO(5) invariant, D=5 SU(2)
Yang monopole with eg=1/2. The n=8 octonionic Hopf map appears as a SO(9) invariant,
D=8 SO(8) 1-instanton. The latter two maps admit further realizations in terms of U(1) tensor
gauge fields associated with extended Dirac monopoles with eg = 1/2 in p-form Maxwellian
electrodynamics.

We have noted that the field theory realizations of the R- and C- Hopf fiberings both
admit exotic spin and statistics. It is then only natural to ask whether this pattern persist in

suitable theories built on the two remaining Hopf fibrations, s2"1 . S for n= 4, 87 Clearly
the answer should be sought within the quaternionic D=7 HP(1) (=S4) and the octonionic

D=15 QP(1)= (SS) o-models augmented with their respective Hopf invariant term. We
consider them next

4.4 Division algebra 6- models with a Hopf Term

In mathematics, the standard nonlinear 6-models are well known as harmonic maps.
One associates with the map ¥ : M — N between two Riemannian manifolds M and N an

action
S = _21. I |d\{l(x)12 dmx . d¥(x) is the differential of ¥ at the point x ® M and d™x, the
M

9 yP
element of M. In a coordinate patch, A g‘J—é——a——hag is the pullback on M
volume
of the metric ds? = hde‘I’md‘I’f3 on N. V¥ is called harmonig if it leads to a vanishing Euler-

Lagrange operator (or tension field) div(d'¥) = 0. The quadratic Hopf map ¥(X,Y) : g2n-1

— 8" (n=2, 4, 8) is in fact a harmonic polynomial map, with constant Lagrangian density

ld‘I’(x)I2 =2n. As such it is the simplest harmonic representative of maps with Hopf
invariant 1.

While the D=3 CP(1) o-model [83]) admits exact finite energy static solitons, the

corresponding D=7 HP(1)(=S"*) and the D=15 QP(1)(=S%) o-models do not . This is clear
from the Hobart-Derrick scaling argument In practice, as in the Skyrme model , dynamical

siabilily can be insured cither by coupling the model to a gauge field or by adding to the
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standard KP(1) o-model action with suitable chiral invariant terms of higher order in the field
derivatives. Taking the second alternative, the generic o-model action with the added Hopf
term then reads |

St = j auﬁ.a“ﬁ d2n-ly 4 % j Ap.iA dAq. + suitable Skyrme terms;  (4.10)
M M

n=4,8 M=S’,6s!®

“where the unit vector N with K =H and Qs given (4.3). The composite U(1) ATGF
A, nonlocal in N, is local in the 2-spinor K (4.3). Its expression in terms of K will be
given later. ‘ ‘

The 6-term can be rewritten as

S1= (n-ll)!j dix JHton Aul..-un.n ‘ (4.11)

S
i.e. an interaction of the potential A} with the topological current J;.; = - (—n—l—)z‘-g)—‘"l?,.l (n=4,

4r
8). The latter's conservation and expression in terms of N will be shortly deduced solely

from the field topology. Since the sources of J,,_; are charged solitons, we shall first
determine what types of solitons are allowed in our KP(1) models.

In condensed matter physics our o-models are the familiar Wegner's n-vector models .

As field theories of a 5- and 9- unit-vector order parameter N, they are the quaternionic and
octonionic counterparts of the isotropic Heisenberg ferromagnet, albeit in rather exotic higher
dimensions and with an added Chern-Simons terms. In consequence the nature and
dimensionality of their allowed topological defects should only depend on the dimensionalities
of the order parameters and of the compactified spacetime. They should obey the defect
formula of Toulouse and Kleman [95].

Consider a topological defect of spatial dimension d' in D-space or D-Euclidean
spacetime. To measure its homotopic charge, we need to completely "surround” this defect
by a submanifold of dimension r such that d'+ r + 1 = D. The meaning of the contribution 1
on the LHS of this last relation is evident for a vortex line; it corresponds to the distance in
3-space (D=3) between the line defect (d'=1) and its surrounding loop (r=1) . The

topological charge labels the equivalence classes of the group nr(S") of mappings S* — S", of

the spatial submanifold S" into the space of the (n+1) unit vector order parameter N. With r
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< nand nr(Sm) =0forr<m, n (S ™) = Z, it follows that topologically stable (r(S") = 0)
defects must have spatial dimension d' =D-1-r=D - (n+l). Sothere exist no stable
defects for (n+1) > D and (n+1) <0, but for 0 < (n+1) <D, the so called triangle of defects
in the ((n+1), d) plane, there are defects of various kinds, points, vortices, membranes etc...

Furthermore if D > 4 such as in Kaluza-Klein-typed theories and if r > m nr(Sm) is generally
nontrivial, even a richer variety of defects are possible.

Applying the Toulouse-Kleman formula to our cases of (D, r=n) = (3, 2), (7, 4) and
(15, 8) we find that the allowed topological defects in the CP(1), HP(1) and QP(1) o-models
(3.16) to be 0-, 2- and 6-membrane solitons, their topological charges being the generators of

(8" = Z, n=2, 4, 8.

Since our solitons are charged 2- and 6- membranes, we expect the associated 6-models

to possess a rank 3 and rank 7 topological conserved current J**° and jHpoofid  Their

conservation follows solely from the constraint N2 = 1, hence N-9,N =0, and the fact that
n the dimension of the unit vector N is less or equal the dimension D of spacetime. Since here
(D, n) = (7, 5), (15, 9), the latter condition is satisfied. Indeed

3y JHobtmvicoho = 4.12)

with Jp-nuuolm“-D = eulmuoeal__.an(aulNal...aun_lNaﬂ'l)Na“

As with the CP(1) model, these 3 and 7-form conserved currents, suitably normalized,
are just the D=7 and 15 Hodge duals of the respective 4- and 8-forms antisymmetric gauge

fields F, = dA,.; appearing in the Hopf invariant action in (3.17): J, =- 4111% *Fn+1, with
T

the star operation denoting the Hodge dual *F,. ;.= ﬁlT Epuy i Flopeia,

The conserved current (4.12) can be converted into a conservation law. Two equalities

are used : a) Stokes' theorem I
M

manifold with boundary oM, D = dim M = (p+1) and dim(dM) = p; b) the relation between

the divergence and the exterior derivative: 9q@},..u,= (-1)PP [*d* @}y, ... With the latter
identity 4.12) becomes d*J = 0. Its integration over a (D-p+1)-dimensional manifold M with
boundary oM gives

dw =J , o is a p-form and M is an oriented compact
oM
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f =0, (4.13)
M) ‘

If M consists of two spacelike hypersurfaces £ (With dim(Z) = D-p), connected by a remote

timelike tube dT and since the topological current J in our o-models is localized in space, the
integral over dT vanishes and (4.13 ) gives the Lorentz invariant and conserved charge

Q =f *J, its value being independent of Z. Applied to our KP(1) o-models where the
E .

‘equations of motion , e.g.(3.12), forces a O-dependent linear relation between topological

charge and flux , for (D, p) =(3, 1) () reduces to the Skyrmion winding number, the

generator T,(CP(1)) = Z

==L
Q 47rj

S

-

dzl.l Fl] = ;lf dxi Ai = Cl (fOr q= p)- (4'14)
2 = sl

(Note that we are using Roman indices for the spacelike components.) It is also the first
Chern index C,; of the U(1)-bundle, the complex si— s? Hopf fibration. For (D,p) = (7,3)

and (15,7), the topological charzes of the membrane $%. and S%- solitons and the generators

of Tt4(HP(1)) = Z and RS(QP(I)) = Z are similarly given for 8 = 7t by

Q=fB JOiiiz dzi:---i5 =4;7l£f Fig‘--ig dzisu.io =2__71t_f Aighis dEi:iAis ‘ (4.15)
Js s4 s3
and

sz R T f Fiw--mdz”"i”=z;3€f Aip.ing 7 (4.16)
s7 s8 s7

respectively.

That Q is equal to n, an integer can be seen through the mentioned gauge field connection
between our problem and the D=2 complex, D=4 quaternionic and D=8 octonionic instanton.

We take for the KP(1) field coordinate, the mapping K(x) = x", where x is the space position
K-number in I, K = C, H and Q. While these maps are not 0-, 2- or 6-membrane solutions
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to the systems (4.10 ), they are the simplest harmonic representatives maps : S™— S™ (m =2,
4 and 8) with topological number Q= n. As will be clear the charges (4.15 ) and (4.16) can
be identified with the 2nd and 4th Chern index which reflects the relation between the U(1)
ATGF and the hidden non-Abelian gauge structure of the o-models, namely the Sp(1)
quaternionic and associated Spin(8) octonionic Hopf fibrations respectively. Though our
subsequent analysis of the thin soliton limit deals primarily with the 8-term in (4.10), the
Hopf term, to make clear the hidden gauge connection we now consider the HP(1) = s
model in greater detail. An analogous discussion of the £2P(1) model can be carried out.

As the coset space Sp(2)/Sp(1)x Sp(1), the quaternionic projective line HP(1) can be
parametrized in two ways ( see Sect.2f.3 for details) . Either we have by two real quaternions

q, and q, with 1q; >+1q, 2 =1, i.e by a 2-component H-spinor QT =(q,, q4,),QQ=1,
coordinatizing the sphere s’ or by one quaternionic inhomogeneous coordinate h = q, ql'l.
An alternative parametrization is by the unit 5-vector N defined by the Hopf projection map

(4.3) from 87 to §*, N = Sc(Q7Q) = (N 1—111]; N5=f~h-1: To make manifest the
+
local Sp(1) = SU(2) gauge invariance

= Uxq, a=12; UXeSp) (4.17)

of the HP(1) model, we introduce the covariant derivative D,Q = (au +a,)Q. The
1 a_h
2 1+ hh
and takes the ADHM form [96] for the 1-SU(2) instanton solution. So the first term in (4.10)

holonomic Sp(1) gauge field is a“ =ay-e=Q au Q=700 = is purely vectorial

reads

S@ o= Sc{(D,Q'DHQ) (4.18)

and similarly for the Skyrme terms.

As for the Hopf term, we can check that the 3-form A 3 to be the D=4 Sp(1) Chemn-
Simons form of Liischer et al.:
A@) = 3—,A[uvudx“dxvdxl , (4.19)
= Tr(AAdA + %—A3)
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F4)=dAg@, | (4.20)

where dxH dx¥ = dx#* A dxV etc... In terms of the 2-spinor Q, they read

Aw = 5c[Q1dQdQdQ + %(Q*dQP} , (4.21)

F4) = Sc[dQtdQ + (QTdQ)?) . o (4.22)

These forms clearly show the local nature of the Hopf term wlien written in terms of

quaternionic -valued field Q of the bundle space s7. Itis thus locally a total divergence as is
already clear from (4.6).

A parallel derivation of A7y and Fg) = dA 7) can be done for the D=15 QP(1) o-model,

In fact the connection to the D=8 octonionic instanton problem identifies the 7-form A7y as
the D=8 Chern-Simons term of a Spin(8) gauge field :

Agy=Tr{ A(dA)? +~§~A3(dA)2 + glA5dA + §A7 : (4.23)

The above specifics of the o-models are sufficient for our analysis. Being essentially
nonlinear, our models are analytically highly intractable in their field theoretic details. Besides,
there is much arbitrariness in the choice of Skyrme terms which, being higher order in the
field derivatives, control the shorter distance solitonic structure. As in the D=3 case, the latter
structure is not relevant to the problem of phase entanglements of the solitons. Only the
existence but not the details of the Skyrme terms matter. It is enough to analyse the effective
theories obtained in the geometrical Nambu-Goto limit of widely separated membranes.

Referring to and for the relevant details, we can show using the method of Umezawa et
al that our membrane solitons have a thin London limit . Thus Polyakov's approximation for
the models (4.10) translates into the Chern-Simons-Kalb-Ramond electrodynamics of
Nambu-Goto membranes. Ti regularate the ultraviolet divergences of the theory we can also
add a Maxwellian kinetic terms for the antisymmetric gauge field.

To obtain the statistical phase [97], we consider the propagation of two pairs of

membranes-antimembrane and compute the phase resulting from adiabatically exchanging the
two membranes. We get
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<exp(3i—!f A[“"de“/\dx"/\dx"}xg{gi‘—f A[“"de“/\dxv/\dx*)) (4.24)
Py , Pz

P and P; are S3 hyper-curves. The functional average {.) is taken over the Hopf action
(9). As in D=3 case , the resulting phase here is the sum of three phases. The first
contribution gives the phase factor exp{2i ( n2/8) L.} with L being the generalized Gauss’
linking coefficient (4.8) for two S3-loops. We get /0 for the statistical phase. The other

two phase factors ®(P;) are given by the expectation value of one hyperloop:

d(P) = <ex;{§ii~§ AlMldqudvadka . (4.25)
P

In the London-Nielsen-Clesen limit the effective action reads [98]

d7x JaARvA
7 .

- AR 1
S=§p+ J—L7 d’x EuvAapys AHVAQTARYS | g’—f ’ (4.26)

(3!1)a s

where Sy is free Nambu-Goto action for a 2-membrane, 0 < 0 <n and a is a constant to be
freely chosen . Direct integration of the equation of motion

Juva +2 %eumwa";xﬂvﬁ =0 (4.27)
\ A
with JWVAy) = | d3 57(x-y) w , in the Lorentz gauge BGAQBY =0, gives
8(1,01,02)
AoiBB .
1 7 ByS(yy ——:.a 1 | etVAPIO(X-y)
i——) d'xJ x)==i dZays] dZuva .
23 J oA 4906L= i L Tl @2

Here the double 3-sphere integration is over one and the same hypercurve s ; the phase
(4.25) is undetermined unless we regulate[99] the short distance divergence say by including
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the Maxwellian kinetic term for the gauge .2ld A . The regularized phase is then

®(P=§) = cxp(i fe—W(P)‘) (4.29)

where W(P) = L j dQg is the writhe of the Nambu-Goto S2-membrane tracing the
Q¢ Jsixs?
Feynman path P, a s hyper-ribon in 7-spacetimes. A parallel computation gives the same

expression as (4.29) for @ in the octonionic case of the 6-brane SO with P=S7 inSli5.
spacetime .

Setting a = 4n?, (D(P)=exp(1r2iW/9). Invoking White's formula (4.9) we obtain for 6 =

n the exact S3- (S7—) counterpart of Polyakov’s phase factor ®(P) = exp(-mi T(P)) cxb(ni n),
T(P) being the generalized torsion for an SB-( S7) ribbon P. This phase factor presumably
embodies the thin membrane’s spin in a functional integral formalism. If this reasonable
expectation is realized by an explicit construction a la Polyakov[80] of the spin factor for
membranes, we will then have a 7- (15-) dimensional analog of the D=3 Fermi-Bose
transmutation. With the value of 0 not being fixed by the gauge invariance of the
antisymmetric tensor gauge field, we have in general the possibility of fractional statistics and
spin via the relation W = -T (mod Z) for solitonic membranes.

Finally, without knowing the short distance soliton structure or performing a detailed
canonical quantization of the above KP o-models, the case for the B-spin and statistics

among our Hopf- membranes can be made on topological grounds. We focus on the topology
of the configuration space of fields I" of the above KP(1) 6-model . In the Schrodinger
picture, the space I of finite energy static solutions is the mapping space of all based
preserving smooth soliton maps N (x): xe 8" — N (x)e 8", n=2,4,8.isan
infinite Lie group with the nontrivial connectivity property:

m,(T= (N:8"—8") ~m (") = Z (4.30)
So I is split into an infinite set of pathwise-connected components I' , o € Z, corresponding
to the various soliton sectors labelled by the charge Q. For our membranes, as with
Skyrmions and Yang-Mills instantons, each sector I, has further topological obstructions.
G.W. Whitehead showed that all the I'y's in I" have the same homotopy type i.e. ni(I‘a) ~

ni(I’B). The relations
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n (L) = mC)=mn, (S")~Z for (,n)=(1,2),34),07,83). (4.31)
are of partcular relevance to the question of exotic spin and statistics, for the 1-soliton sector

They result from the Whitehead and Hurewicz's isomorphisms, the latter stating (Y =

m +n(S"), and reflect the multi-valuedness of I'; . (4.31) imply the possibility of adding to
the KP(1) o-model action a Hopf invariant y(l_\i.), the generator of the torsion free part of

T, 8" (1y(8%)=Z, 1,(8*) = Z@Zy and 1, (S) = Z@® Zy). Generalizing the CP(1)
model {(j,n) = (1,2)), the nontriviality of these ni(Fl) implies the possibilities of Aharonoy-

Bohm effects of a multiply connected configuration space I" and signals for the membrane
solitons the existence of a higher dimensional analog of a 8 spin and statistics connection .

In the CP(1) case,upon a 27 rotation P of the Skyrmion or an interchange of two
Skyrmions, the Hopf term induces a spin phase factor ®(P) = exp(iB} = exp(i 2xs), s being
the soliton spin .The equality 8 = 2xs for this process of rotation is a physical realization of
the homomorphism: ‘

n,(SO(2)) = n3(32) =n(T)) =2 (4.32)

It establishes the equality of the kinematically allowed exotic spin to the dynamically induced
8-spin by way of the Hopf term. Notably (4.32) is but a special case of the Hopf-Whitehead
J-homomorphism nk(SO(n) ) = 7tk+n(S“). Generally we have the following chain of

homomorphisms :
n(C) = n ()= n(S" = n;(SOM)) = Z (4.33)

with (i, n) = (1, 2), (3, 4), (7, 8) . n3(SO(4)) = n7(S4) =~ Z, 1r7(SO(8)) = nlS(SS) = Z,
Clearly the most natural physical interpretation of these topological relations is a dynamically
induced exotic spin and statistics connection for the 2-and 6-membranes,

The foregoing analysis represents a first assault on the problem of the spin and statistics
connection for higher dimensional topological extended objects. It is a small step both in the
bosonic functional integral formulation for spinning extended objects and in the study of the
0-vacuum phenomenon in Kaluza-Klein compactification. Paralleling the study of p-branes it
would be of interest to supersymmetrize the above theories, to study the canonical
quantization of anyonic membranes, attempt the construction of a thin membrane soliton
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operator, tackle the representation theory of associated algebras of diffeomorphisms with their
specific central extensions. In a broader framework the systems discussed here are parts of
higher dimensional topological field theories[100].

‘5. Parting Remarks

We have entered into a new phase of extensive developments and applications of
algebraic methods to physics. In this review we try to illustrate in the context of field theoy
some deep interconnections between topology, geometry, division algebras and the
representation theory of certain infinite algebras. The unifying entity is a geometrical phase
carried by solitonic excitations realized as projective representations of certain current
algebras. Kac-Moody groups and their higher dimensional counterparts have provided the
common thread for seemingly disparate areas of physics and mathematics.Why is there such
unreasonable effectiveness of mathematics in accounting for physical phenomena ? Writing in
the Notices of the American Mathematical Society, Weinberg[101] advanced a ’tantalizing
explanation : " It is because some mathematicians have sold their soul to the Devil in return for
advance information about what sort of mathematics will be of scientific importance". If he is
right, some of us should perhaps consider taking this Faustian path in order to make
significant headway on the problems outlined here.

Acknowledgments: I particularly wish to thank all the authors, collaborators and friends
whose works form the basis of much of this review. Any errors or misrepresentations are of
course my own .
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