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O.Introduction

As one who thought deeply about ali aspects of symmetries Hermann Weyl[ 1]had traced

their origin in nature to the mathematical character of physical laws. In the last thirty years,

the developments in particle physics have been dominated by one single theme, the

exploitation of symmetries. They can be either exact or approximate, ultimately fundamental
or effective[2]. With its unqualified successes the use of symmetries has become

synonymous with that of Lie algebras and groups. In the early seventies the mathematician,

Jean Dieudorm6 [3] wrote" "Les groupes de Lie sont devenus le centre des mathematiques;

on ne peut rien faire de s6rieux sans eux". In this era of gauge and string theories, we may,
without much exaggeration, assert the preeminent role at the frontiers of physics of infinite

dimensional Lie group theory by replacing the words "des mathematiques" above by " de la

physique th6orique"

In a broader perspective, with the coming of age of gauge theories, string theories and

_=2 conformal field theories, the range of applicable mathematics seems limited only by one's
ingenuity and imagination, lt spans the gamut of ali major branches of 19rh century and

modem mathematics, from Riemann surfaces to hyperk/ihler manifolds, from infinite Lie

groups to non-coinmutative geometry, from knots and links to l_-adic numbers and analysis.

As will be illustrated below, ali of these apparently disparate structures are often brought
together through the intermediary of c,ne set of physical phenomena. This linkage reflects both

the unity of mathematics as well as its unreasonable effectiveness in accounting for the

physical world.

We have certainly gone a long way from the Young tableaux and Clebch-Gordan series in

f'mite parameter Lie algebras applied to global (flavor) the_, local (gauge) symmetries of point

particles to the fizll use of the representation theory of infinite parameter (super-)Virasoro-
Kac-Moody algebras in string, 2-dimensional conformal and ir_tegrable field theories. Indeed

solving for two dimensional quantum field theories is aln_ost equivalent to solving for the
representation theories of the loop and/or Virasoro groups. Tt_ough the task is rather difficult

we dream of a pamllel outcome in four dimensions. So while we started out by often

invoking symmetries as substitutes for dynamics we have ended up fulfilling the old

Einsteinian dictum " symmetry dicta_,_sdynamics".

In his instructions to the speakers at this Symposium, Professor Gruber commissioned
comprehensive reviews aimed not just at physicists using symmetries in their research but also

at experts in other areas of sciences. This criterion has partly guided my choice of topics.

My special interests are in algebraic and topological structures in particle physics.

Accordingly, I shall take as my main and unifying theme, a few global aspects of Kac-
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Moody-Virasoro typed algebras, the representation theory of their current and diffeomorphism

groups, seen in the context of a few concrete semi-topological field theories with solitons in
D>_2 spacetime dimensions.

In these alotted pages, a truly comprehensive review is admittedly out of the question. I

shall therefore not dwell on the numerous well established and extensively reviewed results of

two dimensional. Rather using the latter as standards, I will focus on a few basic
developments in D> 2 dimensions and discuss their open problems. My threefold emphasis

will be on a) the question of fermi-boson equivalence or D>3 bosonization, b) the possibility

of anyonic transmutation and c) the role of complex and hypercomplex analyticity. These

topics best illustrate some natural directions toward a nonpermrbative, algebraic understanding
of D>__2dimensional quantum field theories. Four related topics are singled out for discussion:

1) To introduce the basic concepts and notations, a brief review of 2-cocycles as central

extensions of D=2 current algebras, its equivalent fermionic and bosonic representations, via

the Wess-Zumino- Novikov-Witten ( WZNW ) model. The complex analytic structure of the

Kac-Moody-Virasoro algebras.

2) Going behond affine Lie alger,ras, D=4 current algebra with it q-number, non central,
Abelian extension, its canonical Iealization in a Skyrme model with a Wess-Zumino term.

Attempts at constructing vertex operators and a representation theory. Generalized fermi-bose

correspondence and comments on hypercomplex analyticity of generalized Kac-Moody-
Viraso_'o algebras.

3) An realization of D=3 current and diffeomorphism algebras in the CP 1 c_-model with a

Chern-Simons-Hopf term. An anyonic vertex operator construction. A generalized spin and

statistics connection by way of the Gauss-Bonnet theorem. Its relation to serf-linking,

twisting, writhing numbers of Feynman paths.

4) Going behond D=3 anyons, exceptional D= 7, 15 anyonic Hopf 2- and 3-membranes and
their connection to division algebras via A'dams' _eorem. Comments on their current,

diffeomorphism algebras.

These topics will be covered respectively in sections 1 to 4, section 5 encloses some parting

remarks. Our treatment of established results will be brief and prim'wily conceptual. For

proofs and greater details we refer the interested reader to our long, though incomplete list of
references.



I. D=2 Kac-Moody Groups, Fermionizationand Complex
Anolyticity

1.1 CurrentAIgebras and Cocycles

For those uni'._milar with current algebras,a few brief historical remarks may be in order.

Comprehenswe accounts of current algebras are to be found in the classic books by Adler and '
Dashen[4] and Ne'eman [5] and in a modem update by Treiman, Jackiw, Zumino and Witten

[6]. Before the advent of gauge theories, amids the profusion of hadronic states the
introduction of current algebras was motivated by the unifying idea that the basic objects for

strong interaction physics should be the observable currents rather than the then still elusive
fundamental fields. Thus, while the electromagnetic interactions among all charged particles

are governed by the interaction Hamiltonian

He = e I d3x j_t(x) A_'(x) , (1.1)

e being the electric charge, Jl.tthe electric current and AI.t the elctromagnetic potentiai, the
leptonic and non-leptonic weak decays of hadrons are effectively accounted for by the
interaction Hamiltonians

Ht=GId3xj_(x)j_(x), H'l=GId3xj_(x)j_(x) ' (1.2)

G is the Fermi-coupling constant, jhl.t (x) and j/lt(x) denote the weak currents of the
hadrons and the leptons respectively. At a fixed time t, the currents j_t(x) are mappings from

physical space into some internal space of a symmetry group G.

.Ct 'SFrom these j_(x) one compute the corresponding charge operators

I °Qa = d3x j0(x). (1.3)

Essentially the fundamental hypothesis of current algebra was that, irrespective of the details
(or even of the existence) of an underlying quantum field theory, the charges and current

close under an algebra of equal- time canonical commutation relations. In order of their

reliability, the postulated relations are of the generic forms of



a) a charge-charge algebra

[Qa(t) , Q_(t)] = if_Qr(t) , (1.4)

b) a mixed charge -current algebra

[Q_(t), j_(x, t)] = iFl_j_(x,t) , (1.5)

c) a current-curreru algebra
i

i

; [j_(x) , j_(y)] ifa_0(x)83( x-y ), (1.6)l

i

I

I

. wheref_l_ are the structureconstantsof the algebraof the symmetry group G, e.g. G =

SU(N), SU(N)xSU(N), N= 2,3. The additional matrix valued term S(x, x') in (1.7) is the

celebrated singular Schwinger term.

_i One particular feature must be noted. In the old current algebras, the Schwinger terms
|I are highly model dependent and occur only in the space-time current commutator (1.7) while

- their modem cousins, being of topological origin, have more restricted forms and appear in

the time-time current commutator or local charge a/gebra (1.6) . As such these topological
extension terms, being the repositories of "good" or "bad," anomalies, have important

implications on new physical effects or on the over ali quantum consistency of the associated

(gauge) field theory.

Clearly (a) and (b) are but special integrated form of (c). We recall that (1.4) and (1.5)

were widely and successfully used. Similarly several sum rules were derived from (1.6)

and agreed reasonably well with experiments. Today the above algebras are seen to arise from

i the underlying dynamics of quantum chromodynamics and the standard model of electroweak

interactions.

Looking back ,what physicists missed during the 60's was the possible topological

significance of the Schwinger term(s). At one time Gell-Mann even banned these terms by

decree from his universal current algebra. Yet they are necessarily present for consistency

with Lorentz invariance and energy positivity. Its form is constrained by the associafivity of

the algebra, i.e. the Jacobi identity, lt mms out that these singular terms are the residual local

signatures of nontrivial 2-cocycles or projective representations of quantum systems with an
infinite numbers of degrees of freedom and with topologically nontrivial configuration spaces.

' l_
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This fact was realized early on by I.M. Gelfand and his followers [7]who pioneered the

representation theory of current groups in arbitrary dimensions. Unfortunately the relevance

of their works musts await the coming of age of affine and loop algebras, ushered in by the

advent of superstring and conformal field theories.

In the title of this review, by "new phases" we mean the nontrivial phases of the

projective representations of infinite dimensional algebras, the 2-cocycles or Berry's
phases[8]. We next recall their mathematical and physical meanings.

lt is commonly said that the phrases of the complex Schr6dinger wave function q_of a

quantum system do not matter since physically observable effects are determined by the real

norm IqJl2 . This statement is true provided • is the wave function for the whole system,

which is seldom the case in practice or even in principle[9]. As the Aharonov-Bohm effect
[10land the rich theoretical analyses and experimental confirmations of the Berry. phase

recently show, the relative phases of wave functions describing a part ef the entire system are
most relevant and physically detectable. Moreover they often have clmstic and stunning effects

on the properties of the subsystem(s) in question. Theseanoma/y phenomena to be illustrated

here by the fermi-bose equivalence in D=2 quantum field theory, the emergence of the D--4

baryonic topological soliton, the Skyrmion, from QCD, by the anyonic membrane excitations

in odd dimensional, semi-topological field theories etc...

What are cocycles ?[9]Consider a quantum system Z with a symmetry group Gof

transformations T(g). For each fixed g, T(g) can be represented up to a phase factorei_,(q, g)

by an (anti-) unitary operator U(g) in a Hilbert space H. Let q be the dynamical variable(s)

on which g acts : q ---_qg , A wave function _(q) transforms as

U(g) qJ(q) = ei_(q' g) _(qg) (1.8)

Consiste,_cy with the group composition law

U(gl) U(g2) = U(glg2) = U(gl2 ) (1.9)

implies
¢ol(qg'; g2)- oi(q; g12) + c01(q;gl) = 0 ( mod Z ). (1.1 O)

The real phase _1 (q;g), a 1-cocycle, depends generally on both g and q . Specifically if Y,

' is a non-Abelian gauge ( chiral field) theory, then in the Hamiltonian formalism, the g's, q's

and W(q) correspond respectively to local gauge ( global chiral) transformations, the spatial

components of the gauge potential A ( chiral current J ) and the Schr6dinger wavefunctional



Similarly, to the group relation (1.9) corresponds the composition law

U(gl) U(g2) = e- 2ni o2(q;gx,gz)U(gl2) ( 1.l 1)

Associativity of (1.11) leads to the consistency condition

0.)2(qgt; g2, gl) o>2(q; g12, g3) + o)2(q; gl, g2) - o32(q; gl, g2) = 0 (mod Z ).

(1.12)

Such a phase is a 2-cocycle and the unitary representations bearing it are the ray or projective
representations of frequent occurence in quantum theory.

One could continue this process and abstractly define higher cocycles. Thus the 3-

cocycle is given through

(U(gl) U(g2)) U(g3) = e- 2rti,o3(q;gl,g2,g3) U(gl) (U(g2)U(g3)). (1.13)

However it violates associativity; moreover nonassociative entities cannot be represented by
linear operators in a Hilbert space. As of now rio physical effect is attributable to 3 - or

higher cocycles. So we shall limit ourselves here to 2-cocycles as we consider next the global

aspects of the affine Kac-Moody algebras in 2-spacetime dimensions.

1,2 D= 2 Kac-Moody Groups

There exist several approaches to construct D=2 Kac-Moody groups. We adopt the
simple and instructive construction of Mickelsson [11] as it readily generalizes to higher

dimensions; specifically for the case of D=4. The latter's papers should be consulted for

greater details. Consider (suitable smooth) mappings where the target space is a finite

dimensional Lie group G and the base space, tile unit ckrcle S 1 _ OD = { z e C I lzl - 1 ).

This S 1 is seen as a boundary of an unit disc D = { z e C I lzl _<1 ) }. Let LG be the space of

!oops f : S 1 ..., G and _G = { f e LG If(1) = 1 } the space of based loops. While LG and

f2G both has a natural group structure under point-wise multiplication ,namely given two

maps 71 and 72 : S 1 _.,.G, their product composition is ¢1'72 : S1_ G such that

71'72(z) = 71(z)'_2(z), only f_G isa C_- manifold. Now let DG= { f : D--.. G I f(1)=l } ,
the space of based smooth maps from D into G and let rc : DG --,. fiG be the natural



projection, n(f) - f Is_ . Then the triple ( DG, n, _G) is a principal fibre bundle with as its

structure group G = { f' D-.. G If(1)= 1 , x _ S1 } acting on DG frc m the right..

By contracting S 1_ 3D to a single point, the North pole of S2, G can alternatively be

the space { f" D -,- G I f(North pole of $2 ) = 1, x e S 1 }. Then for f _ DG, g e G define

the 1-cocycle o 1

x¢2 Io(f'l_o_f 0g_g-l)dxaAdx[_+C(g) (I.14)(o1(f,g) = 16 n2 '

with

C(g)-4_- 2 "l_ctg, _[g-lOgD, g'lO_] dx_mdxBmdx _, (1.15)

where < ... > denotes the Kiling form on g, the Lie algebra of G. In (1.15) the map g"

D3 -.- G, D3 being a 3-dimension,'d unit ball, is now an arbitary extension of g ' $2 -.. G.
9

i W" is the length squared of the longest root of g. If gl and g'2 are two extensions of the

' same g, then C(gl) - C(g2) e Z, so that the phase exp( 2ni c01) is well defined. The 1-

[ cocycle (01 allows one to define for g e G in the foregoing extension DG x U(1) the
| ,,

following equivalence relation " -

(f,_,)-(fg,_.exp{ 2nitol(f,g)) (1.16)

whose transitivity property is but the 1-cocycle consistency condition satisfied by 0)1 (1.10)

• The Kac-Moody group G is then a principal U(1) bundle P over the loop apace f_L =

Map(S 1 , G), P = {DG x U(1)/-} . The right action of U(1) in DG x U(1) commutes with

the g-action; U(1) acts on P. So the KM group Gcan be def'med by the pairs ( f, _) , f e

Map( S 1, G), with a multiplication law

i
( f, _, ) (f'),') = ( f f', _, _,'exp{ 2n i o)2( f, f' ) } , (1.17)

where

02( f, f') = _/2 (f'l_tx f, 3l_f' f"1}dXaAclxl3 (1.18)

t92 ( f, f) satisfies (1.12) soexp ( 2td 0 2 ) is then a U(1) valued 2-cocycle in DG. The



bundle P is a group; a central extension of _G by U(1).

So the Kac-Mo.,xty algebra g of G is a 1-dimensional central extension of loop algebra

Map ( S 1 , g ). Given fl and f2 EMap (S 1 ,G ) the Lie algebra cocycle corresponding to

(1.18 ) is simply given by Map ( S 1, g ) with the commutator is defined point-wise as

[fl, f 2] (0) - [fl(0), f2(0)]. (1.19)

The central extension is given by the Lie algebra 2-cocycle c(f 1, f2) corresponding to the

group cocycle 0_2

c(fl, f2) = 4n:_ 0)2( earl , e_f2)) le_=_--0dc d'l:

V2 (aaf ,o[_f-)d ^dx[_
-4n xa 4-_J0 _ dO (1.20)

So if G = SU(N), < X, Y > = Tr (XY) and V 2 = 2 . Then (1.20), which defines a

symplectic, nondegenerate and closed Kirillov 2-form on f_G leads to a modified commutator

If1(0), f2(0)] + i x c( fl, f2) . (1.21)

Alternatively it takes the more familiar form of

['_n ybm] = fabe'_n+m + _ 8abl_)rn.-n "' 22)' 4_

in0
Here "_n= Ta e are the Fourier components of f near the identity map in an orthonormal

basis { Ta } (a = 1, ...dim g) of g with structure constants fabc and where x V2 e Z.

(1.22) shows the 1-dimensionality of the central extension, lt is called a level k =1 Kac-

Moody algebra (KMA) . A level k KMA is simply gotten by multiplying o 2 in (1.18) by
keZ.

The pervasive phenomenon of fermi-bose equivalence in 2-dimensions is best illustrated

by two equivalent representations, one fermionic, the other bosonic of the same untwisted
aft'me KMA (1.21). Witten[12] considered a conformal invariant system of N free Majorana

9
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fermions with a non-Abelian chiral symmetry G = O(N). In light cone or conformal

coordianates z - z.= x + i y and _ - z_=x - i y, the Euclidean action reads

-- 1_ N __ __S( V, V ) = d2x 2 IV i_97Vi+ Vi _z vi] . (1.23)
+2J i=l

From second quantization the anticommutation relations read Vi , _J }= h 8(x-y) 8iJ .

Then equivalent to the Dirac equations for Vi = V i V_-= , are the conservation laws
v!

_J_. = OzJa= 0 (1.24)

for the chiral currents

ja = ½ TMa± :_± V±: , (1.25)

Ma ( a- 1,2,...N) are real skew symmetric NxN O(N) representation matrices.

Consequently J_.is only a function of z and j.aa function of g, they also mutually commute,

so they can be taken as independent. This shows the theory to be invariant under a much

larger infinite invariance group G(z) x G(-/) whose generators are J.I and ja . The resulting

two commuting _-dimensional Kac-Moody algebras are

[ja (z.t:) ' jb(w±)] = ih tabc J_(w:0 _5(ze-w±) + _-_h2_ ab _'( z_-w:t ) (1.26)

where +eL is, up to a representation free normalization, ,..heDynkin index of the representation:

- _ _iab= tr( MaMh) . In fact ckdk= _dimG ; - ck = (Ma)2 is the value of the quadratic

Casimir in the representation _ and d k = N is the dimension of _,.

The existence and physical origin of the Schwinger term were in fact known to P.

Jordan[13, 141 long before the works of Goto, Imamura [15] and Schwinger [16]. Indeed the

validity of (1.26) presupposes a Dirac vacuum ( i.e, 2nd quantization) ; specifically the
condition for the global existence of such a fermion ground state is encoded in a local"

deformation" of the algebra of currents by the addition of a Schwinger term. Furthermore,

Jordan et al pointed out that the current commutator derives from their D=2 quantum massless

spinor field

10
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[J1 , J0] = -i-OlS(x-Y) (1.27)

is reproduced exactly by the commutator [Ol¢, 200] = i h OlS(x-y) resulting from the

Heisenberg relation [_ , _0_] = i h 8(x-y) for a Bose field ¢, _ one sets

-- lh_l/2_

S_t='gt _'5_'_g:= t_'J d_,. (1.28)

This mapping is the first example of fermi-bose equivalence or abelianbosonization. The
h dependent factor in (1.28) testifies to its purely quantum character. Later on, another

canonical example was established by Coleman[ 17]: the equivalence between the fermion of

the massive Thirring model and the quantum soliton of Sine-Gordon model. The
corresponding lagrangian densities are

LMT=} _ihg - m __g- l_g (_y_g)2 (1.29)

LSG= ' _-0_tO_0O- (X_l( 1- cos(_0)' . (1.30)

( Vi )forFor subsequent comparison we only write down the "vertex operator" V = _g2
creating a point-like fermion as a topologically nontrivial bose field coherent state excitation.

Pioneered by Skyrme ,its construction was completed by Mandelstam[ 18]

Is; 1Vi = N'exp -2i _-1 d_ 6-2]-i_0 ' (1.3 la)

xls2=- iN' exp{-2i _-lf_d{ q_+ 2]-i_O} • (1.31b)

Characteristic features can be inferred from these explicit expressions. Here we observe
that while the fermionic currents are local, the fermion fields themselves are nonlocal in

terms of the field ¢ with nontrivial topology. Actually this short (local) to long (global)

distance connection reflects a quite general a trademark of anomalies or quantum symmetry
breaking. For an elaboration of this intriguing phenomenon, we recommend the excellent
reviews of Morozov [19] and Shifman [20].

Subsequently Witten[ 12, 21] put forth a non-abelian extension of the above fermi-bose

equivalence. I-F:,model is governed by the following semi-topological action [22]

11
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St ,k(g) = 4-_I da{(O_tglO_tg)+ k F(g). (I.32)

: /oF(g) 212 (1.33)

with g E G, namely a GLX GR ( say G - O(N)) D=2 invariant chiral model made up ef the

sum of the standard geometrical nonlinear g-model and a topological action F(g). This added

Wess-Zumino term is defined over a 3-dimensional ball D (with coordinates yCZ) whose

boundary is 2-spacetime. The boundary values of g({) determine (1.23) modulo 2r_. F is an

example of a multiplevalued action; the singlevaluedness of the Feynman action exp(iS_, k)
implies that the quantization of k = n h.

A renormalization group analysis shows that the Wess-Zumino-Novikov-Witten
471:

(WZbPOV)model (1.32)has an infrared fixed point when )_= _ , it then reads

k {I d2_(_tg-l_tg) + F(g) } (1.34)
Sk(g) = 16----_

which is now invariant, exactly like the system (1.23), under the infinite dimensional Kac-

Moody group G(z) L x G('/)R , namely under the transformation g({) ---)f_(z) g(_)fl (-/)

a

Indeed the equations of motions for (1.34) are the same as (1.24) if the J± are defined as

TaJ_ -- i "("2_hg-x(3.g) (1.35)

TaP. =- i "('zn,-_3.g)g-1 (1.36)
4g"

The Ta are generators of G. Then the obtained canonical Poisson brackets promoted to Dirac

brackets yield in the case of n = 1 the same KMA (1.17) of the massless O(N) fermion theory.

The nonabelian bosonization rules are given by equating the Ta_ from (1.35) with (1.25).

It can on fact be proved that the two theories (1.23) and (1.34) are dynamical identical.

Yet the translation dictionary for this generalized fermi-bose equivalence is still to our

knowledge incomplete. Despite attempts, we still do not have the non-abelian counterparts of

the vertex operators (1.31) giving the fermionic field in term of exponential of the non-abelian



currents. What we have is the powerful Frenkel-Kac construction to be recalled subsequently.

1.3 Virasoro-Kac-Moody algebra ' representations

Examples of conformally invariant field theories(CEF) are statistical mechanical systems

at their critical points[23, 24]. The representation theory of the conformal group places
contraints on the critical exponents and on correlation functions[25]. Since the two

dimensional conformal group, Vir, the Virasoro-Botts group of diffeomorphisms [26, 27] of

the circle is infinite dimensional, it has a very rich and powerful in structure [24, 28]. One

could actually realizeM[25] the conformal bootstrap program of Polyakov[29] in two

dimensionns. It amounts to solving fo_ the representation theory of the Dirac-Schwinger

algebra of the energy momentum tensor components, the generators of Vir. This will give a
complete classification of all possible D=2 conformal field theories.

[]

The basic objects of a cFr are the primary fields ¢( z, g ). They transform as tensors

¢(z, z)--- ¢(z, z)': (0zZ')h (_zZ'_ ¢(z', z ') (1.37)

under conformal transformations z -- z ' = f(z) , _-.- _' = }:(-/). h and h are the conformal

weights. Since under rescaling z-,- Xz , t. real, and under a rotation z-- exp{-i 0}z,

- 0"-" _'h +hg h and0-., exp{ -i (h-h) O} ¢ , d =h+h and s =h-harecalledthescaling
dimension and the conformal spin of ¢ respectively.

The tracelessness and conservation of the energy momentum tensor Tgv of a CFT imply
that

_zT=0 , _zT=0 (1.38)

namely the two nonzero components ofTgv T(z ) - Tzz(z) and T(Z) ---T72-_) are
holomorphic and anti-holomorphic functions respectively.

_g
,11

Now any primary field ¢ has the following operator product expansion (OPE) with T(z)

T(z) 0({) = (z : _2 + '(z- _) + finite terms (1.39)

as for the OPE ofT with itself

13



,

_T(_)2 + 2 T(_) + + finite terms (1.40)
T(z) T(_)= (z-_)4 (z-_)2 (z-_)

The anomalous first term is due to the famous nonvanishing D=2 trace anomaly. For

example c = n, if the field theory is a free massless theory of n scalar fieM. Indeed (1.40)

and its barred counterpart are together another expression of the Virasoro algebra of Vir

realized quantum mechanically by the central extension of the algebra of the diffeomorphisms

of the circle S 1. It is given by the product of two cotrmmting Virasoro algebras VirL x Vir R,
the first of which is

[Lh, Lm] = (n-m) Ln.,n + _ n(n2-1) _n,-n ; (1.41)

the second obtains by the mere replacement I-,n_I-,n in (1.41) with the same c since T + T is

real. The Ln and_ , n _ Z , are respectively the hermitian (I__= L-r0 moments ofT(z) and

W('z)' T(z) = 2 z'n'Zgn "
rl

While (1.41) describes the infinitesimal transformation _Sz = zn+l , T(z) obeys the

following composition law for finite transformations z --.-z'= f(z) •

T(z) dz 2 = Tfr) df2 +1-_ {f' z} dz2 (1.42)

where

{ f, z} dz 2 = d3fdf 1 _ d2fdf 1 )2 (1.43)
Z

is the Schwarzian quadratic differential. Its properties, unique for a weight 2 conformal

object, are

{f, z} =0 if f=ctz +_
Tz + _5 e SL(2, R) , (1.44)

{ f, z} (dz) 2= { f, {}(d{)2 + { {, z} (dz) 2 , (1.45)

SL(2, R) is the maximal subalgebra of Vir and generated by Lo and L± 1 :

There are numerous reviews of the representation theory of the Virasoro algebra are [24,

30, 31]. For later reference, we only mention the following facts. In a conformal field theory

such as (1,34), the Hilbert space must be partioned into irreducible representations of the

i 14
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Virasoro algebras. The dictate of physics, i.e. energy positivity, requires the representations

to be of highest weight i.e. such that

Lo lh> = h lh> , I.,nlh>=0 , n > 0. (1.46)

Such a Verma module V(c,h) is spanned by the Linearindependent vectors

LntTm L-'i_rlh>-1"-2.... (1.47)

and is graded by the level _ j nj. For unitary representations it is necessary that either
J

c_ 1 and h>0 (1.48)

| or

1 (m+2)6(m+3) and b [(m+3)p- (m+2)q]2- 1
C

" = 4(m.2) (m+ 1) (1.49)

where m = 0,2,2,...; p = 1,2,..., m+l ; q =l,2,...p.

A conformal field theory is thus characterized by the value of its central charge and the set

of highest weights { h, h } of its irreducible representations. In addition the Wilson operator

product algebra for these fields should also be specified. Having in mind a WZNW theory at

its critical point, the possible values of h and h can be determined and formul_ ; for the
characters in a Kac Moody highest weight representation have been computed by Kac and

Petersen[32].

To every Kac-Moody algebra is associated a Virasoro algebra as a derivation algebra.
4r_

l Thus since _, = _ corresponds to a conformal invariant fixed point, the Wess-Zumino-
II Novikov-Witten model is also invariant under the Virasoro-Bott conformal group. The Ln's

,.__i are given through the generic Sugawara-Sornmerfield form[33, 34] of the system energy
momentum tensor



' JR are the moments of the current J.I = _ Jr_z"(ro.l) and the KMA (1.21 ) i.e. (1.26)
m

reads

[Jna , JUm]= tabc J_a+m+ K n _n,.n • (1.52)

K, a real constant in each representation in general, is called the level of the KMA. The

central charge c of (1.41) is given by

c= _2Kdim G. (1.53)
2K + C2

I

: where C 2 is the quadratic Casimir operator for the adjoint representation of G. So when

'. (1.52) and (1,41 ) are combined together with [Ln, Jan]=- m Jna+m,and similar relations for
I
:

the barred counterparts, the full invariance algebra of the WZNW model is the semi-direct

products (VirL x KMA L ) x (VirR x KMAR) .

IfG is simply -laced and of rank n, then Witterfs result ( K =1) (1.34) implies that for
level K= 1, the corresponding c = n, an integer, and hence that the level 1 KMA currents

of G should be reproducable from n free bosonic fields. This bose field realization is thedll

II Frenkel-Kac construction. Its results are as follows:

In a Caftan-Weyl basis and self-explained standard notations, a KM algebra (i.52) of a
dm

simply-laced G with rank n reads

[H i , HJl = m _iJ_m+ n , [H i , E_ = _i E_n.nCt

- -

= oc'Hm.n + K m _n+n ct._=-2

= 0 o_._> 0 (1.54)

- i, j = 1,2,... rank G, by hermiticity Hint = I-I_n , Enat = E._ . it admits an explicit
realization from n free bosonic fields

Xi(z) - qi_ ipilnz + i _ n_Z -n , (1.55)
n_'O

namely
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g
Hi = (1)-t_.znHi(z) where Hi(z) = i _zXi(z), (1.56)2tri

=_ =07_-.znEr'(--:) where E=(z) =ca: exp{i a.X(z)}, (1.57)
Jc 2rzi

ctx are Klein factors or cocycles obeying cocc[_= (-i)='1_c_.c= and cot.cD= 8(ot,_)cot+_.

Since a D=2 field theory,of a freeMajorana-Weyl (i.e real chiral ) fermion corresponds
to a CFF with c= 1/2, we expect to be able to realize a K =1 KMA for 2n real fermions in a

vector representation say of S0(2n) by a CFF of n scalar fields with momentumvector being

the vectors of SO(2n). Thus using the complex basis W±a = __1_(v2a-1+ i tC2a)
' _

one has for the Caftan subalgebra S0(2n)currents

ja,.a (z) = : qJa_-_,: = i 3zXa(z) (a < b) (1.58)

while the other non-commuting SO(2n) currents read

J_b(z) = c±a,+u:exp{ i ( +._.Xa't-_..xb): (a < b) (1.59)

In fact one has a generalized fermi-boseequivalence, a generalizedMandelstam -Halpern,
vertexconstruction in

qJ±a(z)=c__._: exp{ +i Xa} (1.60)

This Frenkel-Kac bosonization[35] is key to the incorporationof Yang-MiUssymmetries in
the heterotic string and allows for enormous simplificationsin handling vertexoperators of
fermionic CFF's

The key question is how and how much can the above sampling of the rich
representation and analyticity structuresbe generalizedto four and higherdimensions. We
survey the various excursions toward higher dimensional worlds next.

2. Beyond the affine and diffeomorphisms algebras of the circle

2,1 D=4 Gauge and Current Groups

'1[_ "17



We have recalled the tremendous successes of affine Lie algebras realized as loop
algebras in D=2 quantum field theories. A natural next question concerns how much of these

structures carries over to a four dimensional setting by replacing the circle S1by a higher
cthnensional arbitrary Riernannian manifold M[36]. Indeed the group Map(M;G) of smooth

maps M --- G is an inr-mite dimensional Lie group and appears almost as simple as the loop

group Map(S 1, G ). There had been results on the representation theory of these algebras and
groups; they were reviewed in 1983 by R.S. Ismagilov[37]. However it is a remarkable fact

of loop algebras that ali positive energy irreducible representations are both unit______and

necessarily projective, lt would therefore be most interesting to seek their higher dimensional

analogs in D>_2counterpart of Milne Lie algebras, namely algebras with nontrivial extensions.

From the standpoint of physics where M = $3, the compactified physical space, such grot_ps
are of primary, importance in quantum field theory as the "gauge groups" and their special

cases, the"current groups' [6]. They are the algebraic structures underlying current gauge
theories and effective chiral theories of strong interactions at the Gev[38]as well as the Tev
energy scales[39]. Unfortunately not much is known after several ongoing efforts. Here we

assess the results and mention the novel directions some have been undertaking to make

further progress.

As shown by the works of Bars[40] and of Bruce and Bose[41] it is an easy matter as

far as obtaining the algebras with extensions, say of the sphere group Map (Sd, G). As

illustrations we summarize the results for the simplest case of d = 2 and 3 respectively.
Generically the current algebra reads:

[Ja(x) , Jb(x')] = falx:jc(x) 5( x- x') + Sab (2.1)

ab
It is a verystraightforward matter to find the most general Schwinger terms S consistent

with the Jacobi identity. They are

For M = S2 parametrized by the Euler angle 0 and _ , z = cos 0

Sab= 8ab [ fl(0, ,) 8(z -z') 8'(,- ,') + h(0, *) 8'(z -z')8(, - ,') ] (2.2)

where

Oh(O,,) _h(O,,)
= , (2.3)

fy _z , f2 = 3_

h(O, t_)is an arbitary function on S2 .

I, 18
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For M = S3

Nab= 6ab[ fllS(Z-z') 6(7-_)t5'(0_-0_' ) 't- f26'(Z -Z')8(7-_)8(0_-O_' )

+ f35(z -z') 8'(Y-Y) 8(0t-o_')] (2.4)

with

fl 3h3 3h2 f2=3hl 0h3 3h2 3hl (2.5)
= 3z 37 ' 37 3a , t'3 =3a 3z '

fi or tl i ( i = 1,2 3 ) are three arbitrary functions of z = cos_ and the Euler angles ct,_, 7 •

These arbitrary functions h and hi are in fact identifiable with components of closed 1-forms

on S2 and S3 respectively.

Paralleling the algebra of the Fourier moments Jam of Map (S1 , g), one expands the

G-algebra valued currents ja ( 0, 0) on S2 and ja( o_,_,7) on S3 in spherical harmonics

Yl,m and Wigner's Dl,m, m, functions

Ja(0'0) =Z J_'mYl'm(0,0) (2.6)
l,m

Ja(°t'_'7 )= E J_,m,m'Dl,m,m'(°t,_,7) (2.7)
1,rn,m'

The notable features distinguishing the above algebras from the aff'me Lie algebras are the

following •

a) the resulting algebras of moments will clearly have an infinit_ number of central elements

corresponding to the number of components of the function h for S2, and hi (i= 1,2, 3). So

for d> 1, the central extension is no longer one dimensional ; there are an infinite number of

central extensions. This new phenomenon for Dim M > 1 agrees with a general cohomological

theorem of Feigin[42]. The latter states that ff gM is the Lie algebra of Map( M;G ), then the

second cohomology group H2(gM) is infinite dimensional for M with Dim M > 1. One can

interpret the space H2(gM) as an infirfite set of classes of independent 1-dimensional central
extensions.

" 1WP....
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b) Focusing of the moments Jla,m and J_,m,m', it was shown that while grading operators can
be constructed by the indices m and m', none exists for the index 1 . This feature implies that

in contrast to the D=2 affine case it is n_t possible to asociate with these sphere algebras a

root vector system in a finite dimensional mot vector space.

To construct the corresponding KM groups, their representation theory and make contact
with physics ,we return to Mickelsson's bundle formulation. To be specific we restrict to
D=3+l dimensions ; extension to higher dimensions being straightforward[43]. Let us

consider the case of the "gauge group" Map( S3 --.-G), specifically with G _-SU(N), N _>3

. Let .a be the space of gauge connections on S4 and q be the gauge group of point based

maps f : S4 --- G with f(p) =1 for some fixed p eS4 . Let D = { x e R4 1lxl < 1 }be the unit

disk so that $3= 3D .and let DG = { f i D --- G I f(p) =1 } for some fixed p e._D. Now the

space f23 G = { f : S3 --- G I rfp) =1 } is infinitely connected since x3(_3G) -- x3(G) =Z ,

its connected components f2_G are labelled by the instanton number n. As in the two

dimensional case, each connected component of the bundle ._-----A/G on S4 is

homotopically equivalent to DG--- f2°G where the restriction to the zero instanton sector is

of no consequence as ali sectors are homeomorphic.

Now there is a D=4 analog of the principle bundle P discussed earlier. This bundle P3

on _23G consists of equivalence classes (f,_) in DGx U(1) w.r.t.

( f, _,) - ( f g, _,exp{ 2xi 031(f,g) } ) (2.8)

031(f,g) = o31( fldf, g ) (2.9)

for g e q,

-- _if{ (21__1 1 )031(A,g) 24-_ Tr'dgg'l ( AdA+dAA+ A3

+ _-{dg g-1A)2+ 1 (dg g-1)3A}+ C5(g) (2.10)

and

Cs(g)----L---i / Tr(dg g-l)5 (2.11)
240 _ )r_

Here A = f" ldf . _ is a 1-cocycle of the group DG.
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Now unlike the bundle P in the 2-dimensional case, P3 has no natural group structure.

To see this, define a 2-cocycle 0r2 for the group DG as

f

c02(A; ga,g2) -- __L_ / Tr,{[(dg2 g_l ) ( g]l A gl) (g]Xdgl )
48n3 .Is

-(dg2 g_l ) (gil dgl ) (gi1 A gi)]} + R3( gx, g2) (2.12)
i

! where the A independent terroR 3 is of no importance to our subsequent discussion. We defer

the details of the cohomological derivation of' (2.10) to a large body of literature. We note that

i o32 differs from its two dimensional counterpart (1.17) by being a function of the gaugeI
' potential A. Consequently a proper extension of DG is not simply a U(1) but rather the

infinite Abelian group (by point wise multiplication) Map (A 3 , U(1) ) where A3 is the space

; of g-valued vector potential in S3 . We have then a non central, operator valued extension by|

an abelian ideal, Map (A 3 , U(1). This is in accord with the cited Feigin's theorem .The

group composition rule reads

( f, _ ).( f', _') = ( f f', _, )_'f exp{2rfi ra)2(A; f, f' } ) (2.13)

where _,'f(A) - L ( flA f + fld f ). The associativity of this product is guaranteed by the 2-

cocycle nature of 0r2 ( A,; g1, g2 ) ' The gauge transformation for A e A3 is def'med by the

restriction of f to S3 _ OD, the boundary of the unit 4-disk. As in the D=2 case, one can now

define a _ Q3 by way of the abeliari extension mod out the equivalence relation " - "

(2.13). Q3 = ( DG x Map(A3, U(1) )/-) , the obtained set of equivalence classes, is thus

the principal bundle on _3 G with as structure group Map( A3, U(1) ). Q3 is seen as an

associated bundle to P3 through the natural action of U(1) in the space Map( A3, U(1) ), its

group structure being inherited from that ofDG x Map( A3, U(1) ).

The Lie algebra 2-cocycle c3 in Map( D, g) corresponding to 0)2 (2.12) can be

computed to be

1 / Tr {A (
c3(A ;fl, f2) = 12 rt"2

dfldf2-df2dfl) } (2.14)
1

where A = A_T_ktxi , df 1 and df 2 are three matrix-valued 1-forms. As we are solely

interested here in current groups arising from chiral g-models, we see that (1.14) defines the

extension of the current algebra Map( S3 , G) by the ableian ideal Map( A3, U(1) ). If we



, ,. b_., dii .

define our smeared current J (f), in an evident generic notation

D

J(f) - dx fa(x) Ja(x) , f = faT', (2.15)

then the D--4 Kac-Moody current algebra reads

[J(fl), J(f2) ]= i J{ [fl, f2]}+ c3( A; fl, f3) (2.16)

where the integration in (2.15) is over S3 and A reduces to the flat connection co= u'ldu
, U _ G as we will illustrate next.

, 2,2, Canonical realization, soliton operatorand representation
, theory
I

i

We saw that a salient and powerful feature of affine Lie algebras is the existence of

_, equivalent fermionic and bosonic representations. The existence of the Skyrmion testifies to
the existence of a similar phenomenon in four dimensions. A question of great theoretical and

I phenomenological interest is the full extent and exact mathematical nature of this analogy,_. namely its proper piace in the representation theory of D=4 Kac-Moody algebras.

Any physically motivated current algebra A has too many representations only a subset of

which is of physical relevance. So to better single out these physical representations, which

must be adopted to the dynamics at hand, one is led in practice to assume some concrete

dynamics underlying A such as an effective field theory. After ali the vertex operator

representation of the Virasoro algebra was first discovered by physicists in the dual resonance

model. A concrete point starting for looking at the representation problem is the D=4 analog

of the D=2 WZNW model, which may emerge from a large N, low energy limit of QCD. Its

manifestly SU(N)xSU(N) chiral invariant action reads
Hi

S = Sam + SWZ (2.17)
where

So.m= -l16f2 IM d4xTr(Olsul_tU) (2.18)

22
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Swz = -i N_ | Tr (U-idU) 5 (2.19)
240 r_zJta

6

r{

The SU(N) matrix field U parametrizes the field space G -- SU(N)x SU(N) = SU(N). With
SU(N)

stronginteractionsinmind,N isthenumberofflavor.UIdU = co= coaTaistheMaurer-

Caftan,left-invariantcurrentl-form.The {Ta}denotesananti-HermitianbasisofSU(N).

S(m'isthestandardnonlineara-modelaction.SWZ istheD=4 Wess-Zuminotermwhere

forthesamereasonasitsD=2 counterpart,theintegrationisoverf_ ,a 5-dimensionaldisk

withasitsboundarythespacetimeM., Ncissimilarlyquantized.

WiththeboundaryconditionthatU(x)---I atspatialinfinity,3-spaceiseffectively

compactifiedontoa 3-sphereS3.The configurationspaceofourmodel isthentheinfiniteLie

groupMap (S3 ;G=SU(N) ).From herewe canobtainthecorrespondingcurrentalgebraof

(2.17)eitherbythecohomologicalorthecanonicalfieldtheorymethod.By way ofthefield

equationsof (2.17)expressedasacurrentconservationlaw
J

II

_tJ_t= 0 (2.20)

for the current

J_t" = __i__8f_Tr (Tat%) + 5 _ e_tvpc_Tr{Tatovt%toa}. (2121)

Its f'trst term is of the usual Sugawara-Sommerfield form, its second term derives from the

Wess-Zumino anomaly, _, - "i Ne . In particular the resulting local charge density algebra
240 n2

reads

[ J_(x), Job(x)l= i t"abcJ_(x) _i3(x- y) + sab( A ; x, y) (2.22)

where

S"b= 10 i _,eijkTr({T a, Tb}0_i_j) C)k53( X- y) (2.23)

( 2.22 ) is an exact realization of the commutator (2.!6) given previously. The operator-

valued Schwinger term or Abelian extension Sab, originates from the Wess-Zumino action, lt

is the flat connection ( co= U"ldu) limit of the anomalous gauge generator algebra of

23



Faddeev and Shatashvili[44] for a quantum theory of left-handed fermions coupled to an

external gauge field A _t(x). In the case of global chiral symmetry, the presence of Sab
signals the possibility of projective representations, new sectors in the model's Hilbert of

physical states, lt is thus called a "good" anomaly. In the gauge theory case on the other

hand, we have an inconsistent quantum gauge theory since a nonvanishing Sab for lq'e 3 is

a topological obstruction to the implementation of Gauss's law or local gauge invariance. We
have here a "bad" anomaly.

What is most remarkable about the algebra ( 2.22 ) and its canonical bosonic realization
(2.17) ) is that the later admit a fermionic soliton, lt is well known that a D=4 dimensional o-

model i.e. the action S0m augmented by suitable stabilizing higher field derivative terms

admits topological S3 -- G solitons, the Skyrmions[45]. Since the works of Balachandran et

al [46, 47, 48], there has been anexplosion of phenomenological applications to hadronic

physics[38, 49]. But of interest to us is Witten's proof that the added topological Wess-

Zumino action induces the realization of a projective fermionic representation of the current

algebra. It confirmed Skyrme's conjecture existence of a D=4 bosonization.

We recall in a nutshell Witten's se_rfi-classical argument. Take the stat'.c classical 1-

Skyrmion map Us(x) ' $3 _.,.SU(2), seen as a suitable SU(2) embedding in G = SU(3)

with topological charge B

/-
B- 1 | d3xTr(UldU) 3=1 (2.24)

24n:2 JS3

-1
the generator of n:3 (G) = Z. Using the time dependent ansatz U(x,t) = g(t) Us g(t) , g(t)

e SU(3) being the collective coordinate matrix, we now adiabatically rotate the skyrmion by

an angle of 2n around some axis. The resulting contribution coming solely from the Wess-

Zumino term is ( i r_Nc), giving a geometrical phase factor of exp ( i r_Nc ) - (- 1 ) Nc,

the spin phase, to the quantum mechanical wavefunctional. So the soliton is a fermion for

Nc = odd integer. Nc is identified as the number of colors by matching the .flavor anomalies

of the effective chiral model (2.17) with those of its underlying gauge theory, quantum

chromodynamics.

To go beyond the semi-classical description of the Skyrmion, one would like to obtain

the D----4counterpart of the local Skyrme-Mandelstam[ 18, 50, 51] fermionic operator (1.31)

for creating a point like soliton out of the vacuum. The fast effort was due to Skyrme
himself[52], lt is at least of conceptual interest to sketch the essential elements of his
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construction. For the Sine-Gordon model with field denoted by a, he showed that the
f

operator

S = FK - exp(+. (xo)) ex -_--dx (2.25)
.,x0

obeys a massless Dirac equation. After normal ordering or renormalization, (2.25) was to

become the Mandelstam operator. It later generalized to the vertex operator representation of

affine Lie algebras. In analogy to (2.25), Skyrme argued that the corresponding Weyl-liked
operator S should also be made of two factors

{I i(X,X0)i 0_(r)d3x} exp{ita0a } (2.26)
S=$2S1 =exp i Iaea r

i

with r = _- x-_, Iet(x) is the time -component of the isospin current, ecti is a proper

orthogonal matrix interlocking spatial and isospin directions and coa suitable angular function

of r. S2 identifies the auxiliary momentum POwith a suitable field expression and eai with a

matrix characterizing the field orientation. In S1 , ta is a rotation operator conjugate to ea i

relating to the internal symmetry index a, the Oa( a =1,2,3) are functions of the soliton map.

By applying the collective coordinate method to a static point like soliton and

manipulating with S seen as canonical transformation, Skyrme partially diagonalized the

nonlinear field system turning it into an effective, rotator Hamiltonian Heft = Atata . B +

interactions, with its isobaric spectrum so typical of old strong coupling theories. Then by a

rather uncorvincing argument he projected out the spin 1/2 state with Heft leading to a Dirac

hamiltonian of a free point particle plus interactions.

Much later Rajeev[53] took as operator which would create a soliton state from the
vacuum the unitary operator

f

U(gl) = exp{i J d3xI_0a(x)} (2.27)

where g(x) = ei_.'0'00. U is to implement a projective or 2-cocycle representation of the 3-

sphere current group 1"= Map( S3, G) in that U(gl) U(g2) = e- 2_ on(q;gl,s0O(gl2) ( ). As

is well known [54], there exist nontrivial projective representations of F provided its 2nd

cohomology H2 (1") is nontrivial. This is the case for G = SU(N), N_ 3 as n 5 (SU(N)) =Z

for N'e_3due to the isomorphism H2(1") --H5(G) =._5(G). Nontrivial H5(G) is [55]precisely
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the condition for the existence of the Wess-Zumino anomaly. In a rather sketchy analysis, it

was argued that for largely separated Skyrmions, two U (2.27)at different spatial points

anticommute. In any case it is clear that to obtain a true local soliton operator obeying some

spinor wave equation etc...greater kinematical and dynamical inputs through a canonical _i/
quantization of a definite model need to be brought to bear on Rajeev's program. In our
opinion, it may be more fruitful to try extracting such a soliton operator from a Skyrmion
wavefunctional seen as a section of a Dirac determinant bundle.

The attempts by Skyrme and Rajeev while embodying the necessary central ideas are at
best heuristic and incomplete. A technically rigorous construction has yet to be performed

.One must face such ignored yet crucial and difficult issues such as regularizations, the

meaning of exponentials of D>2 non-abelian field operators and other new topological

ingredients. Surely one could profit from the recent experience ( see Sect.C.1 ) in establishing

certain exact operatorial boson fermi correspondence in three spacetime dimensions.
i

i From an algebraic viewpoint, the existence of a kind of D=4 quantum fermi-bose

correspondence has provided a strong inducement to attack a larger problem, that of the

representation theory of the D=4 current algebra (2.16 ). Indeed there is also an pressing

II phenomenological need to do so. With the profusion of Gev hadrons, the possibility of a

strongly coupled Higgs sector at SSC eti,ergies and the still intractable infrared structure ofQCD, we may revive and seek to furthe,r advance the old program of current algebra, thisnl

time with an added topological twist, the Wess-Zumino chiral anomaly. The hope would be

that, knowing the physical representations of such extended current algebra based on QCD,

such an approach would provide a systematic nonperturbative (albeit effective) handle to

portray strong interactions.

tt °

Compared to the rich developments of the representalaon theory of aff'me algebras what,

if anything, is known about the representations of Map( M; G) ? The answer is "rather

surprisingly little',. Till recently, there was only one irreducible representation due Gelfand,

Graev and Vershik [7],but it has no apparent physical relevance. Another physically well

i founded attempt is by Mickelson and Rajeev[56]. The goal is to construct a suitable (3+ 1)dimensional generalization of the fermionic Fock space of D=2 current algebra with a

Schwinger term ( say (2.22).). To do so they generalized to the case of a larger linear group

modelled by rank p ( o < p < 0- ) Schatten classes the methods of l_ressley and Segal [57]for ,_
constructing cocycle representations of the infinite dimensional restricted general linear

groups. This is no piace for involved technical details, we can only sum up their results.

Working in a D _ spatial manifold M such as sd, they consider the system of a Dirac

spinor coupled to an external Yang-MiUs field with gauge group G and its corresponding
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algebra g. Its current algebra is just F = Map ( Sd ; g) is just (2.26) without the extension

term C3 . Let f" Sd -- g be Lie algebra valued functions, Xi the representation matrices of

g. Since the Dirac Hamiltonian is unbounded below, the "lst quantized" unitary

representation of F given by

[J(f), Va(x) ]= _,_ fi(x) VI3(x) (2.28)

is physically unsuitable as it has no vacuum state or highest weight vector. Second

quantization cures this instability i.e. by constructing a Dirac vacuum as the highest weight

state. The operator product Ji(x) = _1"_i_ needs a short distance say a point splitting

regularization, which involves substra_.ting the VEV of J {f} . As a result, one no longer has a

representation of 1"but a central extension of it.

In contaast to the situation in one spatial dimension where normal ordering is enough to a

well-defined quantum theory, for d > 1 further renorme izations are required. Thus for d > 1

j{f} 2 are still not well defined after substraction. For d=3, J{f} requires an additional

i multiplJcative renormalizaton, implying that such an operator is meaningless within the purely

fermionic Fock space as it creates out states of infinite norm of the vacuum. A larger Hilbert

space is then introduced. It include the fermionic states which no longer form a complete set
and new _ states created from the vacuum by J {f} and having the quantum numbers

of a two fermion states. In this manner Mickelsson and Rajeev [56] found a nonunitar3,

representation of an Abelian extension of Map(S d ; g ) i.e. (2.12). Their procedure

illustrates the flip "local" side of the anomaly or of the ray representations of the KM group

Map ( Sd ; g). Specific:ally they found a linear representation with highest weight vector,
essentially including these bosonic states. Very recenfly [56] they did manage to construct

unita::5'representations in certain special cases of a 3-parameter family of deformations of the

abelain extension gl"-2of the general linear algebra g12. lt would be of great interest to see

physical applications of such results.

We note that the necessity to include bosonic states along with fermionic ones, say to

implement unitarity, seems consistent with the more recent conclusion on D=3 bosonization.
In fact while D=3, 4 purely bosonic field theories do admit fermionic solitons, only in D=2

are such theories exactly equivalent to a local fermion model. Luscher [58] has shown that

there exists an analogous exact quantum correspondence between certain D=3 interacting field

theories, but this equivalence is between a purely bosonic model and one involving not only
a basic local fermion field but also other bosonic fields. Similarly an illustration of exact of

D---4fermi-bose corespondence was put forth by Mickelsson[59]. He showed that on a spatial

manifold with topology S2x S i a D--4 Yang-Mills system coupled to a U(1) monopole and
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the mixed field system of a 4-component fermion coupled to a U(1) monopole have identical
KMA. These results should motivated further work on physical represep,,ations of D>2

current algebras.

2,3 D > 2 Diffeomorphisms

As noted before, solving for quantum field theory is often equivalent to knowing all the

unitary representations of its invariance groups. In two dimensions CFT testifies to the truth
of the above assertion. In higher dimensions the piace of the Virasoro-Bott conformal group is

taken by the group of diffeomorphisms of a given manifold. In particular the diffeomorphism

invariant topological quantum field theories should naturally take the piace of CFT 's.

In the 60's diffeomorphism groups were considered in the motion of incompressible

fluids by V. Arnold[60]. Subsequently applications of representations of the group SDiff(R n)

of volume preserving diffeomorphisms of Rn ( n=2, 3) have been made in classical and

quantum fluids, specifically to vortex f'flaments and other topological defects [61, 62]. In

particle physics, recent attempts to quantize relativistic closed p-(super)branes[63], which

generalize (super)strings, have led to the analysis of the algebras of SDiff(S 2) , of SDiff(Mg),
3

Mg being a Riemann surface of genus g, of SDiff(S ) et_,.... and their possible central
extensions. We briefly survey the status of these algebras as the D>2 analogs of the Vimsoro

algebra [64].

A p-brahe Mp is a bosonic extended object of p-spatial dimensions propagating in d-
spacetime dimensions according to the Polyakov acuon

Sp = f dP+lo_gij_)iX'OjX - (p-l)] (2.29)

o i = (oa , "_) , oa ( a= 1,...,p) are the coordinates on the p-brane, '_parametrizes the latter's

time evolution. Working in the fight cone gauge, well tested in string theory, means imposing

first the following condition on the p-brane metric gij

g0a= 0, g00 = - det h,ar_ h (2.30)

where hab is the spatial metric on the p-brane. One can then choose the light cone gauge
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X. = p'_ , (2.31)

X± - _ ( X° + xdl). What remains of the (p+l)-dimensional general coordinate invariance
T/-.

group is its subgroupwhich preserves (2.30) and (2.32) and consists of repammetrizations of

the spatial variables o a --,:ra' (ob) with the restriction that they preserve the volume

detIa°a'/=l . (2.32)

The existence of this reparametrization invariance relates to that of the constraint

O[aXmOb]P m = 0ab=0 , (2.33)

3X m
m = 1,2,...d-2 , pm(g)= _1:

In mathematics the above subgroup is called the group of volume-preserving

diffeomorphisms which we denote by (VPDiffMp). Its general classical algebra has been
computed, valid for any topologies and geometries. Infinitesimally (2.33) is equivalent to the

variation _a = rla(ot,) where Va( alrl a) =0 . The latter is solved by

bl

rla= {a+ _ C(r)0.)(ar) (2.34)
r=l

in terms of coexact ( {adoa) and harmonic (C0_r)dO"a) 1-forms on Mp . b 1 denotes the 1st

Betti number of Mp , C(r) are constant coefficients,

The classical algebra reads

[Lh,, LA, ] = LA,a, (2.36a)

[P(r), LA2] = L&o, (2.36b)

[P(r), P(s)] = L&,x.) (2.36c)



c) are giveri by

a b
(A12)a3..._=- eaba,..._ _1_2 (2.37)

(A(r))a3...ap=- eaba_...a_0)_r)_b (2.38)

a b
(A(r)(s))a_..._,= - E,ba3..._,0)(r)C0(s) (3.39)

In the quantum theory of membranes (19=2), the constraints 0ab .=0 becomei

i

L._lphys> = P(r)lphys> 0 on physical states through the operators

- They satisfy at the level Poisson brackets the classical algebra (2.36). For an arbitrary

closed bosonic membrane Z = M2, g, namely a 2-sphere with g handles, the area-preserving
dfffeomorphism algebra was found with the most general central extension consistent with the

Jacobi identy, lt reads

= LAt2+ j_ d2cVaAl_aA2, (2.4 la)
EA ]

lP(r), Lh] = I"_a(,,"2J_ d2cr vaeab0)(br)A,
(2.41b)

"" f a b[P(r) ,P(s)] = L&,x.)+ d2_ gabO(r)O(s)W. (2.41c)
J'£

where W is any scalar and Va(ctiV a) ----0 , namely tx'lv a is any divergenceless vector field

on Z. Consequently, from (2.42a-c) we see that the most general central extension is
=l

specified by one arbitrary scalar function and by 2g arbitarry constant coefficients of the
harmonic forms on Z [65]. This is so since the dimension of the space of harmonic 1-forms

on Y_,dim Hl( M2,g ' R) = dim R2g = 2g [66].

From the above analysis it follows that, for the 2-torus ( indeed the n-torus) and the 2-

sphere, there are no nontrivial central extensions. The algebra for the torus was one found
long ago by Arnold in hydrodynamics[67], lt is also remarkable that the Lie algebra of SU(*,,)
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as well as the large N limit Wo_of the operator algebra W N generated by primary fields with

integer spin 1,2,...N are isomorphic to the L- subalgebra (2.41a) of the area-preserving

diffeomorphisms algebra of of the 2-plane ,whether or not it is compactified i.e. to S2 [68].

As far as explicit representations, Figueirido and Ramos[69] have constructed Fock

space representations of the algebra of vector fields of the n-torus, i.e of Diff(T n ). They used

a generalization of the infinite wedge representation of Kac, Petersen, of Feigin and Fuchs for

Diff (S1 )[32, 70]. Further renormalizations beside normal ordering were necessary to make

everything well defined. Their representations are generated not by !inear operators but

bilinear forms so they do not arise from a Verma module. The unitarity question remains to

be answered before physical applications. Of course, if one could manage to quantize
membranes, this would amount to finding interesting unitary representations of their

corresponding diffeomorphism groups with or without central extensions.

In two dimensions one can form the semi-direct sum of the Kac-Moody and Virasoro

algebras where the ftr,st appears as an ideal. The join structure underlies conformal field

theories with internal symmetries such as the WZNW model. A natural question is whether

Map( Sn, g) and Diff(S n) can be so combined into a larger algebra. This question was

investigated for n=2,3. It was shown [41] on the basis of consistency with the Jacobi identity

that a) there exist no such a larger algebra containing Diff(S n) and the centrally extended Sn,

algebra e.g. (2.2) for n=2 and (2.4) for n=3, b) however such a structure does exist if the

Sn- algebra is not centrally extended. An example of (b) could be the current algebra

Map(S3; su (N)) of D--4 WZNW (2.17) non centrally extended by an abelian ideal.

From the standpoints both of physics and mathematics, the representation theory of

higher dimensional analogs of Kac-Moody-Virasoro algebras is an object of great

mathematical fascination and much potential physical importance. Since the D> 2 conformal

groups are.finite dimensional, to analyze D> 2 system at their critical points one should target
infinite dimensional subgroups of the general D-dimensional diffeomorphism groups, ones

which have the conformal group as a subgroup. In four dimensions several attempts to define

and study four dimensional structures endowed with the richness of D=2 CFI'. One group

[71, 72] studies representations of infinite self-dual and anti-self dual subalgebras of the

Diff(R4) making use of quatemionic Schwartzian derivative and Fueter quatemionic

analyticity. Inspired by the connection between D=3 Chem-Simons theory and D=2 cFr
,another group [73] seeks by descending from a D=5 Chem-Simons theory to find D---4

analogs of 2d CF'F. Another group[74, 75] has undertaken a more radical approach _ila

Penrose. They propose replacing the Riemann surfaces of D=2 CTF by twistor spaces and

complex analyticity by holomorphic sheaf cohomology. In this manner a classical infinite
_1__1.._ t.,._ L.,.,,, g .... ,.I ...... l..',-,I.. I.. .... ;, .... I.-._l_,,_l.,.,..nr I_*1_ *t_=, T_--A _T TI'_ "_ r.,'_,_c','_,-_._,d
_[._[.jpla. IlG_ I..,,It,l_._,ll llk.JIAllllk,i, Ik/ll_ WIIII_,,,II 11_ _ lkl._ OI,_K,JI,,t..It_III_,K.PI_t_, _l.i.lt I,dti%.,, v--'-l" I_ _b..,/_k_,jdl._ ] V_,_l_l,_,.D,Itl,t,ltl.,l_



and D=2 conformal algebras. The hope is to apply the corresponding quantum algebra with
extension to classify fields and field theories reformulated in terms of twistors. If any of these

programs succeeds, very enticing mathematical vistas will surely lie ahead.

3. Odd phenomena in odd dimensions

3,1 Anyons Revisited : current algebra and vertex operator

Two overlapping topics in field theory have attracted a great deal of attention. They are
the topological quantum field theories (TQFT) in D > 3 spacetime dimensions[76], ushered in
by the mathematical works of Donaldson and Jones and field theories[77] with excitations

bearingany spin and statistics, anyons, which may well account for the fractional quantum
Hall effect and high temperature superconductivity.

In his trail brazing analysis of D=3 Chern-Simons theories, Witten [78] showed the

beautiful correspondence between the expectation values of the Wilson loops traced by
'colored' point sources in spacetime and Jone's polynomials for knots. To obtain the

fundamental Skein relation of knot theory, he had to regularize or/i'ame the Wilson loops

inaddition to performing the standard regularization. A different form of such a regularization
had been discovered by Polyakov[79, 80] in his proof of the fermi-bose transmutation of D=3

"baby Skyrmions" in their geometric point-like limiL lt is at that juncture that an interesting
overlap with the theory of anyonsoccurs. Our work[81, 82] on which this section is based

takes off at this intersection between physics, the biology of DNA molecules, differential

geometry, topology, representation theory of current algebras and division algebras.

To be specific we shall choose without loss of generality the model par excellence for

anyons ,one governed by the action [77]

A = d3x [DrtZ[ 2 + 0--_ertV_'Ag Fv_' + Agjrt (3 1)
8_2 • .

the CP1 _- model with a Chern-Simons term. Its basic field is a two component complex

spinor ZT = (Z 1, Z2) with IZ 12= 1, consequently it lives on S3. The more familiar unit
3

normed Wegner vector field n is given by the complex Hopf projection map taking Z e S

to n = Z+o'Z e S2= CP 1 • D_tis the covariant derivative w.r.t the composite U(1)gauge

field Art = i Zt/}rt Z, FI.tv being the associated field strength. 0 is a free parameter ( 0 < 0 <

n: ). This model should best be viewed as the low energy limit ( e2-,. o,) of a system with a
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MaxweUian kinetic term l_l_ F_tvF_tvadded on to (3.1).2e2

lt is well known that (3.1) (with 0 --0) to admit exact S2--* S2 general solitons. While

the standard third term in (3.1) is the Aharonov-Bohm term, the second or Chern-Simons (C-t

0= r: as SH = "2--1-1d3x A_J_', namely as an interaction between the
S) term also reads for

field A_t and the conserved topological current

I

v b L
' J_t= @_tvXe,_n_? n _ nc . (3.2)
I

The soliton (electric) charge Q = 2x J0 is an integer labelling the elements of r_2(S2) = Z.

The field boundary condition is such that spacetime is R3 u (oo) = S3', the C-S action is in

fact the Whitehead form of the Hopf invariant for the maps n ' $3--..- CP 1 _-S2, classified byi
' the generators of n 3 (S2) = Z. The configuration space of fields is tile infinte Lie group of

!1-_ 2-sphere base preserving smooth mappings F = { n: S2 _ S2 } . The homotopic relations

:| _0(F) = n2(S 2) = Z and ni(F)= rt3(S2) = Z allow the topological possibilities of solitons

I and exotic spin -statistics connection respectively[84]. The latter option is implemented
• dynamically by a topological Chern-Simons action.

What effect does the Chern-Simons term have on the chiral soliton ? Wilczek and Zee[83]

showed that either the interchange of two Q=l-solitons or a 2r: rotation of one of them around
i0

the other gives a statistical (alias spin) phase factor e = (- 1)2s to the wave function. Hence

the soliton has spin s = and intermediate statistics, it is an anyon, A key ingredient for

their proof is that the soliton map giving raise to this phase be of Hopf invariant 1. It will be

a guiding criterion in our subsequent D >_3generalization of the 0-spin and statistics

connection.
' Being a ct-model, (3.1) with O= 0 has a canonical realization [84]of the following

pseudo- Sugawara-Sommerfield equal time algebra of currents

FI_(x),i_(y)] =-ieabC_o(X)_2(_-y-'), (3.3a)

[I_(x), Ib(y) ] = -i eabcI_i(x)_i2(_-_)+ if'l( _ab_ na(y)nb(y)) Ox,_( _-_, (3.3b)
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i

Iii(x), I_(y) ] = 0. (3.3c)

where I_t- f'lEabcS_tnbnc . lt is a pseudo-current algebra in it does not close since the

operator-valued Schwinger term in (3.3b) is explicitly a function of the field n. Actually a

larger close algebra can be obtained from (3.3a)-(3.3c) by introducing a new rank two

symmetric tensor operator sab(y) which is realized as Sab =( 15ab- na(y)nb(y)) by the model
(3.1). However one feature which distinguishes even and odd -dimensional current algebras

seem to be the following. In contrast to the 4-dimensional ct-model with Wess-Zumino term

leading to a noncentral extension of its algebra of currents ( vis 2.22 ) by an abelian ideal, the

model (3.1) with its Chern-Simons terms in fact leads to exactly the same algebra (3.3)

where, say in the local charge density algebra (3.3a) we replace I_ by the new canonical
momentum

I_ + _0--__ijAi(x)_ina(x ). (3.4)La=_
AB;

In other words the current algebra is without extension and is independent of the Chern-

Simons term; it is 0-independent. While in odd dimension locally there is no signature of the

Chem-Simon anomaly, globally at the level of representations, Semenoff ,Sodano [85land
Karabali [86]have shown that at the level of the wavefunctional ,when one exponentiates the

algebra and boundary conditions then enter, it does make a big difference in whether one uses

la Skyrme as static vertex soliton creation operator

Ui(x-*)= exp {iI d2y I_(y) c0a(x - y-*)} (3'5)
or

UL(X-')= exp {i f d2y La(y) f.0a(_"- _} (3.6)
_

where the soliton profile map

[ sine

CoS,
twists the vacuum configuration na = ( 0, 0,1) into a soliton with charge O _:0. Indeed

while (3.6) does not transform like a scalar under rotation (3.7) provide a proper

representations of the rotation group SO(2). In fact it can be shown that one has the graded
commutation relations



wherethe multi-valued phase A( x, y) = 19(x,y) - O(y,x) = _ mod 2rra,

19(_,_) - tan-x(x2"y2) . ( 3.8 ) is the signature of exotic statistics. As with ali such very ill-
(xl-yl)

defined vertex operators, (3.6) is a topologically nontrivial coherent state operator with its

classical soliton profile, it does not create a state of definite spin. As Skyrme was already

keenly aware, it is in general not an easy task to use collective coordinates and proper
regularization (!) procedures to project out from (3.6) operators with definite spin. Ali this

and more remain to be done if vertex operators are to be useful entities in formulating effective

Hamiltonian theories where anyonic excitations are the basic quasi-particles.

3,2 Geometry of a phase: linking the soliton's twist and writhe
to exotic spin and statistics

In the last section, we discussed the problem of zero in on some important
nonperturbative states or degrees of freedom of a highly nonlinear theory e.g. projecting out
anyons of definite spin. It is clear that by going to the pointlike limit one can get to the lowest

energy and spin states of a extended object. It is very much in this spirit that Polyakov[791

pioneered a tractable Wilson loop approach to the low energy behavior of soliton Green

functions of model (3.1). To study the effects induced by the long range Chern-Simons

interactions, he approximated the partition function Z by

ali closed paths

mL(P)<exp(i A_t> • (3.9)Z -- 2 e- Ip axe"(P)

P is a Feynman path of a pointlike soliton, hence a curve, in spacetime R3, L(P) is the total

path length.

The first exponential in (3.9) is just the action of the path P of a free relativistic point
soliton of mass m. Let

q_(P) = @xp(ifr, Ag dx_t)/ , (3.10)

the bracket < ...> denotes functional averaging w.r.t, the Hopf action. It embodies the

Aharonov-Bohm effect, characteristic of topologically massive gauge theories: namely the



Chem,Simons-Hopf acdon induces magnetic flux on electric charges and vice versa, thus

producing dyonic objects. Being Gaussian, this phase _(P) is exactly calculable, thereby the

analytic appeal of the point soliton approximation. By direct integration of the equation of
motion, O(P) is givenby exponentiating the effective action :

• (P) =_exp(iS0 +ii d3x (---0_Et_vP4_:2 A_t_vA_,+ AgJ_t)} . (3.11)
,,

SOis the free point particle action, N a suitable nommlizadon. The conserved current of a

f 53(x.y(,_))dy_(,l; )
Q=I point source J_(x) = di: is given geometrically. From (3.1) thea_

equation for JI.treads

J_t(x)=- --_0_%vpOVAp (3.12)2r_z

 ivesexptI Then for the
/

above givenpoint current and in the gauge OaAc_=0, AI.t can be solved to give '

• (P) = exp {ix IGft:') } , (3.13)
where

_c _c _tv_(xx'-y_')_4r_ 3
IG (Ca "--+C[3) _ dx_t dy v (3.14)

_ Jx-y

in the limit where the two smooth closed 3-space curves Ct_ and C[_coincide, namely

Ca = CI3 = P, the soliton worldline.

Were C 1 and C 2 in R 3 ( or S3 ) disjoint curves , (3.14) would be their Gauss linking

coefficient, ff we denote by f_ (M2) the solid angle subtended by C 1 at the point M2 of

1 fC d f_(M2), 'which measures the variation of thisC2, Stoke's theorem gives i IG= _ 2 ' "

solid angle divided 4_ as M2 runs along C2 ; it is an integer, the algebraic number of loops of
one curve around the other.

However though the integrand in (3.14) is that of Gauss' invariant, the integration is

over one and the same curve. IG(P ) is therefore undetermined. This artifact of the point-limit



approximation must be amended by a proper definition or regularization of IG(P ).

f ff

Polyakov's regularization consists in trading the 8-function in L dx_ll
d2y_8(x-y), an

for4_IG ,fortheGaussianSE(x-y)=(2_e)_ex_'_x_yl2). He foundequivalent expression

that IG(P)R_g= - T(P), the total torsion or twist of the curve P in spacetime with

T(P) = 1 dx.(n x On) 1 x(s) ds. s n arcOs - and denote the length and the principal

normal vector to P at the point x(s).

What is the meaning of this regularization ? By substituting the Gaussian, the dominant

contribution to the surface integral comes from an infinitesimal strip Y_,p; so this procedure

effectively turns a spacetime curve into a ribbon. Precisely in 1961 such a process was used

by Calugareanu [87]in his search for new invariants of the knot. The entity IG( Ca--- C_)
turns out to be perfectly well defined and gives a new topological invariant SL, the

self-linking number for a simFle closed ribbon. SL is in fact the linking number of C13with
a twin curve Ca moved an infinitesimally small distance _:along the principle normal vector

field to C_. As disjoint curves they can be linked and unlinked exactly the strands of a
circular supercoiled DNA molecule[88]. In modem knot theory this construction is termed the

framing of a curve C_. Of special importance to us is the existence of the "conservation
law":

SL = 'r + W (3.15)

explicitly

ISL(P) _- xP

whereby SL, is the algebraic sum of two differenU'al geometn'c characteristics of a closed

ribbon, its total torsion or twisting number T and its writhing number or wr/the W.. W

is also the Gauss integral for the map ¢ • Six S 1 --->S2, is the element solid angle, the

pullback volume 2-form dD.2 of S2 under ¢_.While their sum SL is a topological invariant so

must be an integer, T and W are metrical properties of the ribbon and its "axis" respectively,

they can take a _ of values. A coiled phone cord best illustrate the relation W + T =
SL for a ribbon. When unstressed with ks axis curling like a helix in space, its writhe is



q

large while its twist is small. When stretched with its axis almost straight, its twist is large
while its writhe is small.

By waY of the dilatation invariance of W and the map e(s,u) (e2 = 1), a local Frenet-

'Io1Serret frame vector attached to the curve, we can write W = ds du eat,cea0seb_ueC,

a,b,c = (1,2,3) and Os = _/Os, Ou = O/Ou. A conforrnally invariant action for the frame field

e, W is manifestly a WZNW term as well as a Berry phase upon exponentiation[8]. Since W

= - T (mod Z), (3.15) explains Polyakov's double integral representation (modulo an

integer) for the torsion T(P).

By way of (3.15) the alternate form O(P) = exp(- in T(P)) exp(+irc n) is the "spin "

phase factor, essential to Polyakov's proof that the 1-solitons of model (3.1) with 0---_ are

:, "ermions by obeying a Dirac equation in their point-like limit [80]. For arbitrary 0, we go
over to the more general case of pointlike anyons. So we see the relation W = -T + SL as the

very mathematical expression of the connection between statistics and spin in the geometric

point soliton limit.

We now recall that in the geometry of 2-surfaces, a form of the Gauss-Bonnet theorem

says K= 2rt_. Like (3.15), it relates a topological entity such as the Euler characteristics Z
of a closed surface M to a metrical entity such as the total Gaussian curvature K for M. In

applying (3.15) to supercoiled DNA, Fuller[89] in fact showed (3.15) to follow from the
Gauss-Bonnet formula, one of the simplest examples of an index theorem. Thus it is pleasing

to see how a fundamental physics principle, the relation between spin and statistics is mirrored

by such a fundamental theorem of geometry, indeed the simplest of index theorem.

4. AnyonicMembranes

4.1 Hopf'sEssentialFibrationsand DivisionAlgebras

By 1935, Hopf [90, 91]discovered an unique link between topology and the four

division algebras K= R, t2, H and f_, namely the real, complex numbers, the quatemions

and oct_nions by connecting the latter and the fibrations of S2n"1 by a great Sn'l-sphere,

n= 1, 2, 4 and 8 respectively.

Hopfs construction [91 ],[90]of his maps is most instructive, lt can be directly inferred

from Hurwitz's theorem which states: the only dimensions n of Rn with a multiplication Rn x

_,,t I,,J
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J * I
i

Rn ----Rn, denoted by F(X,Y) = XY with XY=0 _ X----Oor Y---0are n=l, 2, 4, 8. Namely
these multiplications can be realized by the four division algebras over the reals R, K ,,, R,

C ,H and fl ,the real, complex numbers, quaternions and octonions respectively, X, Y e K
i.e. Rh-- K.

Next by a linear identification of the product space Kx K with R2n, the product F(X,Y)

, X, Y e K, defines a bilinear map, the Hopf map

H' R2n--,- Sn+l (4.1)
with

H(X,Y) = (IXl 2 -IYI2,2F(X,Y))=(IXI 2 -IYI2'2XY). (4.2)

It follows that for IXI2+IYI2 =1, IH(X,Y)I2 = ( IXI2- IYI2 )2 + 4 IXYI2 = 1. Considers two

spheres, S2n'l as the space of pairs (X, Y) of K with IXI2 + IYI2 =1 and Sn as the space of

all pairs (s, k) of a real number s = IXI2- IYI2 and k = 2 XY c K. Thus H restricts to the

map H' S2n'l -,- Sn with S 2n and Sn'l as base space and fiber respectvely and S2n'l as the

fibre space,.

We parametrize Sn by a unit (n+l)-vector parametrizing N', _.2= 1. Let KT = (K I, K2),

K I, K2 E:K, KXK=I, be a unit nomaed K-valued 2-spinor parametrizing S2n'l. The Hopf

map (4.1) then reads

• N= Sc (Kty K) (4.3)

__ _1 0) 'm-1 2'4and8"
eg , kt= 0, 1,...m- 1 and 7m o 'with Kt ={K'I,K2) and Yg _ 0

Alternatively, with S2n'l in KxK and sn= K w {_}, the Hopfprojection map, n"

s2n'l ---,-Sn also reads

r_ (X,Y)= [ X/Y provided Y¢O (4.4)
o, if Y=0

where IX12+IYI2 =1, X, Y _ K. n'I(x,Y), the pre-image (or inverse) of this Hopf map, is

ot"l



the geometric intersection of S2n'l with an n-subspace of Kx K, namely a great (n-i) sphere

, Sn'l or an (n-l) cycle. So the image of any point on Sn is a sn'l-sphere on S2n'l. This is

apparent since N ( or X/Y ) is invariant under the phase transformation K --,-KU ( X --.-XU,

Y --,-YU ). U= U', IWl2 = 1, is a unit normed, pure imaginary K-number, i.e. U e SO= Z2, S 1

U(1), S3 SU(2) and $7, an (n-1)-cycle for n = 1, 2, 4 and 8 respectively.

(4,2) The Hopf Invariant in Its many disguises

The Hopf invariant T(O) classifies the maps • • S2n'1--- Sn. As an added topological

action in the model (3.1) ( n=2 ) it is essential to a dynamical realization of exotic Spin and
statistics. Our work[81 ] is in essence about the many faces of 3'(0), its mathematically

different and physically telling expressions[92]. First there is the connection to the abelian
Chern-Simons invariant.

Let v(P)(M) be,the space of p-forrns on a manifold M, p < dimM. On Sn, we select a

normalized n-form area element o n , / oh = 1. On S2n'l, by pulling back the Hopf map F,
.Isn

we define a second induced n-form Fn = O*°n e v(n)(S2n'l) which is closed (dl_n = 0) since

d(F*On) = F*(d0]n) = 0 and don---0. By de Rham's 2nd theorem Hn(s2n-l)- - 0, ali closed n-

forms on S2n'l are exact, there is a non-unique (n-1)-form _n-1E v(n'I)(s 2n'l) such that

dan. 1 = Fn. So the integral

'_/(_) "" An-1 A 1::;n (4.5)
2n-I

is defined. The following features hold:

a) _O) is independent of the choice of either An_1 ( dAn.l= Fn ) or of o n, b) T(O) - 0 for

ali maps • ' S2n'l--,- Sn with n odd, c) _O) is invariant for any two smooth and homotopic

maps S 2n'l--- Sn •

(4.5) is the Whitehead form of the Hopf invariant y(O). For physicists this form is the

Chem-Simons term for the Kalb-Ramond field An.1= 2_ An-1 and property (a) translates

simply into the gauge invariance of this antisymmetric Abelian gauge field F.

There are variants of the Hopf invariant. Letus first parametrize the map F' S2n'l ----Sn
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by a (n+l) component unit vector N"e Sn, ( _2= 1). If N'0 is an arbitrary fixed point on Sn,

then as in the case of the complex Hopf fibration, N(x) = N Ois thus the equation of a closed
-1 _

hypercurve CO-- sn'Ion S2n'l Equivalently, the preimage ofC 0 = F (No) ofN 0 is an (n-

l)-cycle in S2n'l. If SOis some n-dimensional closed connected submanifold on S2n'l with,

as its boundary _S0, C0, then N'(x) maps S0, a Seifert surface, onto the whole n-sphere. The

Hopf invariant _N) can be defined as the number of times N maps SO onto Sn. It is the

mapping degree of N'(x) restricted to S0, from SOtoS n, N'(x) • Zo _ Sn and is independent

of the point N'0 of Sn. With nn(Sn) = Z, the Hopf invariant is then an integer . By a theorem

of Eilenberg and Niven, representative maps Sn ----Sn for n=2,4 and 8 with winding number

m are given simply by Xm with X EC, H and _ respectively. So we also have a

generalized flux and loop integral representation of NN)

_N') = __o _" = _C An-1 (4.6)-S' °-_X°

where Fn = dan-1 is the area element nf-orm of Sn mapped by N" into S2nl. As it should

be, these Fn and An.1are tile sanae ones occuring in the Whitehead form of _N). As 0, the

Hopf invariant gives, upon exponenfiation, a generalized Aharonov-Bohm-Berry phase factor
associated with its antisymmetric U(1) gauge field.

The connection, due to Hopf himself, between his invariant and Gauss' linking number

cannot be simpler" y (_) was originally defined as a linking number [ The map N represents

an element in r,,2n.l(Sn). Pick two distinct points N 1 and N2 on Sn, then their pre-images

F(Na) = Ca (a=l,2) are (n-1)-manifolds in S2n'l. After assigning a natural orientation to these

hypercurves we get two (n- 1)-spheres in S2n'l or (n- 1)-cycles C1 and C2. They can be linked

or unlinked ; y(ot) is just the linking numbers Lk(O_l,a2) of C1 and C2 and depends only on

a. y(a) is thus a homomorphism '

H " n:2n.l(Sn)--.- Z (4.7)

wi.'.rh the ge.neraliT_,,wl Gau._._ linking coefficient to he _ven.-!1

,'
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We finally list some useful properties of the Hopf invariant •

a) For n odd, H is zero in consequence of the anticommutativity of linking numbers

b) For n even, Hopf proved that maps of an even H always exist.

c) If the map F' S2"1- S2n'l has degree p the y (Oo1") = p y (O).

d) If the map W' Sn-- Sn has degree q then y (_Fo_) = q2y (O),

where the degree of the map Sn--- Sn is an element of _(sn).

4,3 Combining White and Adams' Theorems

In his 1969 thesis the mathematician White [93] derived the D>3 version of

Calugareanu's formula as a byproduct of a reformulation of the Gauss-Bonnet-Chem theorem
for Riemannian manifolds. In view of the established connection in section 3.2 it was natural

to for us to extend Polyakov's approach to the D>3 counterparts of Wilcek-Zee _,model
(3.1). First we need to generalize Gauss linking number to higher dimensional manifolds.

Extending to D>3 manifolds the procedure for linking 3-space curves, we consider two

continuous maps f(M) and g(N) from two smooth, oriented, non intersecting manifolds M

and N, dim(M) = m and dim(N) = n, into Rm+n+l. Let Sm+n be a unit (m+n)-sphere

centered at the origin of Rm+n+l . Let d.Qm be the pull-back sm+n volume form under the

map e M x N _ Sn+m where to each pair of points (m,n) e M x N is associated the unit

= g(n)-f(m) . The degree of this map
vectore in Rm+n+l 'e(m,n) Ig(n)-f(m)l

= i L d'Qn+m. (4.8)L(f(M),g(N)) = L(M,N) f_ +m

is the Gauss linking number of M and N. D.n (=2rt'(n+l)/2/F((n+l)/2)) is the volume of Sn.

Due to the non-commutativity property L(M, N) = (-1)(m-lXn-1) L(N, M), L (M,N)
vanishes for even dimensional submanifolds M and N .

White's,main theorem states: Let f" Mn --- RD=2 n+ 1 be an smooth embedding of a "
closed oriented differentable manifold into Euclidean (2n+l) space. Let v be an unit vector

along the mean curvature vector of Mn . If n is odd ( i.e. D=3, 7, 11,15 etc...) then

42



2n + * dV
_'_2n _"_nJ M (4.9)

is the self-linking number of a hyper-ribbon. The latter consists of Mn and the same
manifold deformed a smaU distance Ealong v. The two terms on the RHS of (4.9) are

respectively the generalized writhing and twisting numbers, W and T, of the hyper-ribbon.
The cases of even n ( D= 1,5,9,...) are of no interest to us since both W and T are zero and
hence also SL ---0.

The universality of the formula SL = W + T (3.15) mirrors that of Gauss-Bonnet-

Chem theorem. As a possible physical application, we expect that for solitons in suitable D>
3 models White's general formula T = -W (mod Z) similarly links their spin and statistical

phases, lt would define and relate the twisting and writhing of odd dimensional closed S3-,

S5-, $7-... hyper-ribbons, the world volumes of topological S2 -, S4-, S6- membranes

solitons in D=7, 11, 15... dimensional spacetime respectively. The first problem is to cut

down tiffs infinity of choices ? What are the natural D >3 o-model counterparts of (3.1) which
may admit solitons with exotic spin and statistics ?

In seeking for exact analogs of 0-spin and statistics among D>3 extended objects, at least
three key features of the CP(l) model (3.1) should be maintained:

1) the existence of topological solitons,

2) the presence in the action of an Abelian Chem-Simons-Hopf invariant;

3) the associated Hopf mappings S2n'l --- Sn include ones with Hopf invariant 1.

The fast two requirements are embodied in the time component of the key equation

(3.12). Upon integration over ali of space of both members of this equation, one obtains the

topological charge-magnetic flux coupling which is at the very basis of the fractional statistics

phenomenon in (2+ 1) dimensions. As to the third requirement, essential to the proof of the
fractional spin and statistics for one soliton, the following striking feature holds true for these

Hopf mappings. While for any n _ there always exists a map f' Szn'l --- Sn with only
f,.xga.Jlll.e,g_Hopf invariant 7(0, the existence question of Hopf maps of invariant 1 received
the final answer in the celebrated theorem of Adams[94]:

If there exists a Hopf map _: SD --- S( D+1)/2 Ofinvariant _(_) = I, in fact of

7(_) = any integer, then D must equal I, 3, 7 and 15 (m = (1),1)I2 = I, 2, 4
and o)
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So there can only be four and only four classes of Hopf maps with _) = 1.

They along with their associated hidden (or holonomic) gauge field structures are best
displayed through the following diagram of spheres bundles over spheres:

U(1) = S0(2)
li

Z2 = O(1) -- SO----$1-..S1]Z 2 = RP(1) =SO(2)/Z 2
Ii

SO(Z) = U(1) = S 1 ....S3....S2 =_ CP(l) =SU(Z)/U(1)
II

SU(2) = Sp(l)= S3---S7= S0(8)/SO(7) ---S 4= HP(1) = Sp(2)/Sp(1)_cSp(1)
II

Spin(8)/Spin(7) = S7 --.-S15--Spin(9)/Spin(7) --,-S8 = _"/,P(1)=Spin(9)/Spin(8).

The four rows reflect the one to one correspondence between the four division algebras

over R and the real (R), complex (C), quaternionic (H) and octonionic (W) Hopf bundles

(displayed in bold letters). The ftrst three principal bundles are actually the simplest members
of the three infinite sequences of the K= R, C, H universal Stiefel bundles over
Grassmannian manifolds. The fourth bundle stands alone, a fact connected to the non-

associativity of octonions.

The spheres Sp, p = 0, 1, 3 and 7 are the fibers,the tin'st three are Lie groups while $7 is a

very special coset space, the space of the unit octonions. The latter has been an exotic object
of fascination and discoveries in mathematics and in the Kaluza-Klein compactification of

D= 11 supergravity and supermembrane theories. An n-sphere Sn is parallelizable if there is a

continous family of n orthononnal vectors at each its points. The fact that Sl, S3 and S7 are

the only paraUelizable spheres is yet another corollary to Adams' theorem. Sr, r = 1, 3, 7, 15

constitute the corresponding fibre spaces. Finally the sequence of base spaces Sn, n = 1, 2,

4, 8 are equally interesting as K-projective lines, as is clear from their coset forms. With their

holonomy groups 7_,2, SO(2), SO(4) and SO(8) being the norm groups of R, C, H and fl

they can be said to have a real, complex, quaterrtionic and oetonionic K/ihler structures.

The Hopf maps f" S2n'l _ Sn, n=l, 2, 4, 8 with Hopfinvariant one have found

imtx'rrtant physical applications in condensed matter physics and in quantum field theory.
.... ,_........ t_ts _t1,,_n T-T_n¢ m_ne _nA nr_net_nd_r_ cnin _n_ et_t_eHoc _d _n hlrl_incy
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in the background. Thus, in the D=2 _ field theory, it was shown that the n= 1 real Hopf

map realizes the 1-kink soliton, which carries intermediate spin and admits exotic statistics.

Besides being the Dirac 1-monopole bundle, the n=2 complex Hopf map underlies the 0 spin

and statistics of D=3 CP(l) model. The n--4 quatemionic Hopf map is the embedding map
for the SO(4) invariant, D---4SU(2) BPST 1-instanton or the SO(5) invariant, D=5 SU(2)

Yang monopole with eg=l/2. The n=8 octonionic Hopf map appears as a SO(9) invariant,
D=8 SO(8) 1-instanton. The latter two maps admit further realizations in terms of U(1) tensor

gauge fields associated with extended Dirac monopoles with eg = 1/2 in p-form Maxwellian
electrodynamics.

h

We have noted that the field theory realizations of the R- and C- Hopf fiberings both

admit exotic spin and statistics. It is then only natural to ask whether this pattern persist in

suitable theories built on the two remaining Hopf fibrations, S2n'l ---- S n for n= 4, 8? Clearly

the answer should be sought within the quatemionic D=7 HP(1) (=S4) and the octonionic

D=15 D.P(1)= (S8) o-models augmented with their respective Hopf invariant term. We
consider them next

4.4 Division algebra _- models with a Hopf Term

In mathematics, the standard nonlinear o-models are well known as harmonic maps.

One associates with the map W : M --.-N between two Riemannian manifolds M and N an
action i=

S - -1-1 Id_(x)l 2 dmx • dLF(x)is the differential of • at the point x 0 M and dmx, the
JM2

element of M. In a coordinate patch, Id_q2 - g ijO'_a _8 h_ is the pullback on M
()X i _xJ

volume

of the metric ds2 = ha_dq_tdq iii on N. W is called tlal:lIl._c if it leads to a vanishing Euler-

Lagrange operator (or tension field) div(dq0 - 0. The quadratic Hopf map qJ(X,Y) : S2n 1

--,. Sn ( n= 2, 4, 8 ) is in fact a harmonic polynomial map, with constant Lagrangian density

IdqJ(x)l2 = 2n. As such it is the simplest harmonic representative of maps with Hopf
invariant 1.

While the D=3 CP(l) o-model [83]) admits exact finite energy static solitons, the

corresponding D=7 I-IP(1)(=S4) and the D=15 f2P(1)(=S 8) o-models do not. This is clear
from the Hobart-Derrick scaling argument. In practice, as in the Skyrme model, dynamical
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standard KP(1) ct-model action with suitable chiral invariant terms of higher order in the field

derivatives. Taking the second alternative, the generic g-model action with the added Hopf
term then reads

S(n) =fM_ t_'3_t_d2nlx, + °fM An-lA dan'1 + suitable Skyrmeterms;a (4.10)

n=4,8, M=S 7,S 15

where the unit vector N with K = H and fl is given (4.3). The composite U(1) ATGF

An. l, nonlocal in N, is local in the 2-spinor K (4.3). Its expression in terms of K will be
given later.

The 0-term can be rewritten as

d2n-1 j_t_..._._A_t_ (4.11)SI - (n-ll)! x ..._n._
J i

(n-l)!0
i.e. an interaction of the potential An.1 with the topological current Jn-1 - *Un (n---.4,

4_ 2

8). The latter's conservation and expression in terms of N will be shortly deduced solely

from the field topology. Since the sources of Jn-1 are charged solitons, we shall Ftrst

determine what types of solitons are allowed in our KP(1) models.

In condensed matter physics our g-models are the familiar Wegner's n-vector models.

As field theories of a 5- and 9- unit-vector order parameter N, they are the quatemionic and

octonionic counterparts of the isotropic Heisenberg ferromagnet, albeit in rather exotic higher

dimensions and with an added Chem-Simons terms. In consequence the nature and

dimensionality of their allowed topological defects should only depend on the dimensionalities

of the order parameters and of the compactified spacetime. They should obey the defect
formula of Toulouse and Kleman [95].

Consider a topological defect of spatial dimension d' in D-space or D-Euclidean

spacetime. To measure its homotopic charge, we need to completely "surround" this defect

by a submanif01d of dimension r such that d' . r + 1 = D. The meaning of the contribution 1
on the LHS of this last relation is evident for a vortex line; it corresponds to the distance in

3-space 03=3) between the line defect (d'= 1) and its surrounding loop (r= 1). The

topological charge labels the equivalence classes of the group nr(Sn) of mappings Sr ----Sn, of

the spatial submanifold Sr into the space of the (n+ 1) unit vector order parameter N. With r
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< n and nr(Sm) = 0 for r < m, nm(S m) = Z, it follows that topologically stable (nr(S n) _ 0)
defects must have spatial dimension d' = D - 1 - r = D - (n+l). Sothere exist no stable

defects for (n+l) > D and (n+l)<0, but for 0 < (n+l) < D, the so called triangle ofdefects
in the ((n+ 1), d) plane, there are defects of various kinds, points, vortices, membranes etc...

Furthermore if D > 4 such as in Kaluza-Klein-typed theories and if r > m nr(Sm) is generally
nontrivial, even a richer variety of defects are possible.

Applying the Toulouse-Kleman formula to our cases of (D, r-n) = (3, 2), (7, 4) and

(15, 8) we find that the allowed topological defects in the CP(l), HP(1) and D,P(1) G-models

(3.16) to be 0-, 2- and 6-membrane solitons, their topological charges being the generators of

7_n(Sn) = Z, n=2, 4,8.

Since our solitons are charged 2- and 6- membranes, we expect the associated G-models

to possess a rank 3 and rank 7 topological conserved ctm'ent j_o,_ and jppact_q,)_,Their

conservation follows solely from the constraint N2 = 1, hence N '3_tN --0, and the fact that
n the dimension of the unit vector N is less or equal the dimension D of spacetime. Since here
(D, n) = (7, 5), (15, 9), the latter condition issatisfied. Indeed

with jg_n.l...p.t_= E_tt'"_tDE (5 _ct . )NO_al..._'-'_t_, , t..._t, _N°_'_

As with the CP(l) model, these 3 and 7-form conserved currents, suitably normalized,

are just the D=7 and 15Hodge duals of the respective 4- and 8-forms antisymmetric gauge

fields Fn =dAn. 1 appearing in the Hopf invariant action in (3.17): Jn = _ n_0_. ,Fn+l ' with
4n 2

the star operation denoting the Hodge dual *Fg t...laW= 1-!7 Ei.tl...g. F_ _'''_n.ni

The conserved current (4.12) can be converted into a conservation law. Two equalities

used • a) Stokes' theorem / do = I °, ° is a p-form and M is an oriented

,di rill

are compact
JM M

manifold with boundary _gM,D - dim M = (p+l) and dim(_M) = p; b) the relation between

the divergence and the exterior derivative: _gct_t..._tp= (- 1)Dr'[,d, o]_._..._tp.With the latter

identity 4.12) becomes d*J = 0. Its integration over a (D-p+l)-dimensional manifold M with

boundary__M _ver,_



*J = 0
(4.13)ii

3M)

If 3M consists of two spacelike hypersurfaces E (with dim(Z) = D-p), connected by a remote

timelike tube _I" and since the topological current J in our G-models is localized in space, the

integral over 3"1"vanishes and (4.13) gives the Lorentz invariant and conserved charge
P

Q = I,- *J' its value being independent of Z. Applied to our KP(1)
ct-models where the

equations of motion, e.g.(3.12), forces a 0-dependent linear relation between topological

charge and flux, for (D, p) =(3,1) ( ) reduces to the Skyrmion winding number, the

generator _2(CP(1)) = Z

Q= 4'--_-_Ig2dziJ Fij = -9__-fs1dx i Ai = C1 (for q = p). (4.14)

(Note that we are using Roman indices for the spacelike components.) lt is also the first

Chem index C 1 of the U(1)-bundle, the complex S 3--.- S2 Hopf fibration. For (D,p) = (7,3)

and (15,7), the topological charges of the membrane S4- and S8- solitons and the generators

of rc4(HP(1) ) = Z and rl:8(f2P(1)) = Z are similarly given tor 0 = rc by

=--fS i, d_i3'"i'-- 2"-_-IS Ai3i,i5 (4.15)
- 1 Fi3..." 1 dE i3i4i5

Q= 3 j0iti2 d_i3.. ' i6 4_ 4 3

and

fs _-__fs fs dZiT"' it_ (4' 16)
= d]giT..,it5 = -1 Ai.r.. it4

Q = joit.., i_ d_i.r.., ils FIT...i1_ 271: 77 8

respectively.

That Q is equal to n, an integer can be seen through the mentioned gauge field connection

between our problem and the D=2 complex, DM quaternionic and D=8 oetonionic instanton.

We take for the KP(1) field coordinate, the mapping K(x) = xn, where x is the space position

K-number in I;, K = C, H and f_. While these maps are not 0-, 2- or &membrane solutions
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0

to the systems (4.10 ), they are the simplest harmonic representatives maps : sm---., Sm (m =2,
4 and 8) with topological number Q = n. As will be clear the charges (4.15 ) and (4.16) can

be identified with the 2nd and 4th Chem index which reflects the relation between tile U(1)
ATGF and the hidden non-Abelian gauge structure of the (_-models, namely the Sp(l)

quaternionic and associated Spin(8) octonionic Hopf fibrations respectively. Though our
subsequent analysis of the thin soliton limit deals primarily with the 0-term in (4.10), the

Hopf term, to make clear the hidden gauge connection we now consider the HP(1) -S 4

model in greater detail. An analogous discussion of the D,P(1) model can be carried out.

As the coset space Sp(2)/Sp(1)x Sp(l), the quaternionic projective line HP(1) can be

parametrized in two ways ( see Sect.2f.3 for details). Either we have by two real quaternions

ql and q2 with Iq112+1 q212=1, i.e by a 2-component H-spinor QT =(ql, q2 ), QXQ = 1,

-- -1
coordinatizing the sphere S7 or by one quaternionic inhomogeneous coordinate h q2 ql '
An 'alternative parametrization is by the unit 5-vector N defined by the Hopf projection map

(4.3) frorn S7 to Sn, N' = Sc (Qt'_Q) =( N = 2h , Ns= -____t/. To make manifest the
1+ hh 1+hh J

local Sp(l) = SU(2) gauge invariance

qot'= U(x) qa ct = 1, 2 ; U(x) e Sp(l) (4.17)

of the HP(1) model, we introduce the covariant derivative D_tQ= (_t + ag )Q. The

_._ 1 h_th- is purely vectorial '
holonomic Sp(l) gauge field is a_t= a_t.e = Q_t Q = ctO_tqot 2 1+ hh

and takes the ADHM form [96] for the 1-SU(2) instanton solution. So the first term in (4.10)

reads

S(4)0 = Sc{(D_tQ)t(DttQ)} (4.18)

and similarly for the Skyrme terms.

As for the Hopf term, we can check that the 3-form A(3) to be the D---4Sp(l) Chern-
Silnons form of Ltischer et al.'

A(3)= 1A[_tv_,ldxlMxVdx_", (4.19)

= Tr(A^dA + 2A3)
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F(4)= dA(3) (4.20)

where dx_t dxv = dxl_ A dxV etc.,. In terms of the 2-spinor Q, they read

A(3)= Sc{QtdQdQdQ + _-(QtdQ)3} , (4,21)

F(4) = Sc{dQtdQ + (QtdQ)2} • °' (4.22)

These forms clearly show the local nature of the Hopf term when written in temas of

quaternionic -valued field Q of the bundle space S7. lt is thus locaLly a total divergence as is

already clear from (4.6).

A parallel derivation of A(7) and F(8) =dA(7 ) can be done for the D=15 D.P(1) o-model.

In fact the connection to the D=8 octonionic instanton problem identifies the 7-form A(7) as
the D=8 Chern-Simons term of a Spin(8) gauge field :

A(7)= Tr{ A(dA) 3+_-_A3(dA):+ 5fi-AScka.+ _A7}. (4.23)

The above specifics of the o-models are sufficient for our analysis. Being essentially
nonlinear, our models are analytically highly intractable in their field theoretic details. Besides,

there is much arbitrariness in the choice of Skyrme teIms which, being higher order in the
field derivatives, control the shorter distance solitonic structure. As in the D=3 case, the latter

structure is not relevant to the problem of phase entanglements of the solitons. Only the

existence but not the details of the Skyrme terms matter, lt is enough to analyse the effective

theories obtained in the geometrical Nambu-Goto limit of widely separated membranes.

Referring to and for the relevant details, we can show using the method of Umezawa et
al '.hat our membrane solitons have a thin London limit. Thus Polyakov's approximation for

the models (4.10) translates into the Chem-Simons-Kalb-Ramond electrodynamics of

Nambu-Goto membranes. Ti regularate the ultraviolet divergences of the theory we can also
add a Maxwellian kinetic terms for the andsymmetric gauge field.

To obtain the statistical phase [97], we consider the propagation of two pairs of

membranes-andmembrane and compute the phase resulting from adiabatically exchanging the

two membranes. We get
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\ \- dP1 / \ dP2

PIandP2 areS3 hyper-curves.The functionalaverage(,,,}istakenovertheHopfaction

(9).AsinD=3 case,theresultingphasehereisthesum ofthreephases.The first

contributiongivesthephasefactorexp{2i(_/0)L}withL beingthegeneralizedGauss'

linking coefficient (4,8) for two S3-1oops. We get _/0 for the statistical phase. The other

two phase factors @(Pi) are given by the expectation value of one hyperloop:
p

I

In the London-Nielsen..Olesen limit the effective action reads [98]

(3!)2a 7 E_tvXat3_ 7 , (4.26)

where SO is free Nambu-Goto action for a 2-membrane, 0 < 0 < rc and a is a constant to be

freely chosen. Direct integration of the equation of motion

J_v_.+ 2 3[a--0_vXal3.ts0CtA_ = 0 (4.27)

with j_tv_.(y)= f d3x 5 7(x.y) 0(x_t'xV'x_')O(z,c1,o2)' ' in the Lorentz gauge bCtActl3v = 0 , gives

_I dTx J_r_Al_(x) ==i"a"-L1 f dZl_78fs dZlavXE_tv_l_(x'Y)°t2.3t 40_6jS 3 _ ix.yl7 " (4.28)

Here the double 3-sphere integration is over one and the same hypercurve S3 ; the phase

(4.25) is unde_rm/ned unless we regulate[99] the short distance divergence say by including
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the Maxwellian kinetic term for the gauge F._ld A_tvp,The regularized phase is then

• ( P =$3) = exr_i 4-_W(P) ) (4,29)

where W(P) - df_6 is the writhe of the Narnbu-Goto S2-membrane tracing the
_"_6 3xSi

Feynman path P, a S3 hyper-ribon in 7-spacetimes. A parallel computation gives the same

expression as (4.29) for @ in the octonionic case of the 6-brane S6 with P -- S7 in S 15 _

spacetime.

Setting a = 4r¢2, @(P)=exp(_2iW/0). Invoking White's formula (4,9) we obtain for 0 =

n: the exact S3- (S7-) counterpart of Polyakov's phase factor @(P) = exp(-rri T(P)) cxp(rfi n),

T(P) being the generalized torsion for an $3-( S7) ribbon P. This phase factor presumably

embodies the thin membrane's spin in a functional integral formalism. If this reasonable

expectation is realized by an explicit construction/_ la Polyakov[80] of the spin factor for
membranes, we will then have a 7- (15-) dimensional analog of the D--3 Fermi-Bose

transmutation. With the value of 0 not being fixed by the gauge invariance of the

antisymmetric tensor gauge field, we have in general the possibility of fractional statistics and

spin via the relation W = -T (mod Z) for solitonic membranes.

Finally, without knowing the short distance soliton structure or performing a detailed

canonical quantization of the above KP 1 g-models, the case for the 0-spin and statistics

among our Hopf- membranes can be made on topological grounds. We focus on the topology

of the configuration space of fields F of the above KP(1) g-model. In the Schr6dinger

picture, the space F of finite energy static solutions is the mapping space of ali based

preserving smooth soliton maps N"(x) ' x _ Sn -- N" (x) e Sn , n = 2, 4, 8 . F is an
infinite Lie group with the nontrivial connectivity property:

_;0(F= {N' Sn -- sn}) -__;n(Sn) - Z. (4.30)

So F is split into an infinite set of pathwise-connected components F0t, o__ Z, corresponding

to the various soliton sectors labelled by the charge Q. For our membranes, as with

Skyrmions and Yang-Mills instantons, each sector Fa has further topological obstructions.

G.W. Whitehead showed that ali the Fct's in F have the same homotopy type i.e. gi(Fct) -
r

_i(I"13). The relations
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n i (FI) = ni(F0) = _t+n(S n ) = Z for (i, n) = (1, 2), (3, 4), (7, 8). (4.31)

are of particular relevance to the question of exotic spin and statistics, for the 1-soliton sector

They result from the Whitehead and Hurewicz's isomorphisms, the latter stating _i(Fa) =

Xi+n(Sn),and reflect the multJ-valuedness of Fi . (4.31) imply the possibility of adding to

the KP(I) o-model action a Hopf invariant y(N), the generator of the torsion free part of

Xi+n(Sn) (r_3(S2)=Z, rt7(S4) = Z_ Z12 and nls(S 7) = Z_ ZI20). Generalizing the CP(l)

model {(j,n) = (1,2) }, the nontriviality of these _i(F1) implies the possibilities of Aharonov-
Bohm effects of a multiply connected configuration space F and signals for the membrane

solitons the existence of a higher dimensional analog of a 0 spin and statistics connection.

In the CP(l) case,upon a 2r_rotation P of the Skyrmion or an interchange of two

Skyrmions, the Hopf term induces a s?in phase factor _(P) = exp{i0} = exp(i 2r_s), s being

the soliton spin .The equality 0 = 2r_sfor this process of rotation is a physical realization of
the homomorphism:

_1(SO(2)) = r_3($2) = _1(F1) = Z. (4.32)

lt establishes the equality of the kinematically allowed exotic spin to the dynamically induced

0-spin by way of the Hopf term. Notably (4.32) is but a special case of the Hopf-Whitehead

J-homomorphism rr.k(SO(n) ) = _+n(Sn). Generally we have the following chain of

homomorphisms •

_i(F1) = r_i(l"0) = Xi+n(Sn) = ni(SO(n)) = Z (4.33)

with (i, n) = (1, 2), (3, 4), (7, 8). r_3(SO(4)) -- _v(S 4) = Z,/I;7(SO(8)) --.glS(S 8) = Z.

Clearly the most natural physical interpretation of these topological relations is a dynamically
induced exotic spin and statistics connection for the 2-and 6-membranes.

The foregoing analysis represents a first assault on the problem of the spin and statistics

connection for higher dimensional topological extended objects. It is a small step both in the
bosonic functional integral formulation for spinning extended objects and in the study of the

0-vacuum phenomenon in Kaluza-Klein compactification. Paralleling the study of p-branes it

would be of interest to supersymmetrize the above the.odes, to study the canonical

quantization of anyonic membranes, attempt the construction of a thin membrane soliton
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operator, tackle the representation theory of associated algebras of diffeomorphisms with their

specific central extensions. In a broader framework the systems discussed here are parts of

higher dimensional topological field theories[ 100].

5. Parting Remarks

We have entered into a new phase of extensive developments and applications of
algebraic methods to physics. In this review we try to illustrate in the context of field theoy

some deep interconnections between topology, geometry, division algebras and the
representation theory of certain infinite algebras. The unifying entity is a geometrical phase

carried by solitonic excitations realized as projective representations of certain current

algebras. Kac-Moody groups and their higher dimensional counterparts have provided the

common thread for seemingly disparate ,areas of physics and mathematics.Why is there such

unreasonable effectiveness of mathematics in accounting for physical phenomena ? Writing in
the Notices of the American Mathematical Society, Weinberg[ 101] advanced a tantalizing

explanation : " It is because some mathematicians have sold their soul to the Devil in return for

advance information about what sort of mathematics will be of scientific importance". If he is

right, some of us should perhaps consider taking this Faustian path in order to make

significant headway on the problems outlined here.

Acknowledgments: I particularly wish to thank ali the authors, collaborators and friends

whose works form the basis of much of this review. Any errors or misrepresentations are of

course my own .
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