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INTRODUCTION 

A superconducting a c  power t ransmiss ion  c a b l e  i s  under development a t  Brook- 
haven National  Laboratory (BNL). This  p r o j e c t  w a s  undertaken i n  1972 i n  response 
to growing n a t i o n a l  power requirements .  The goa l  o f  t h i s  program i s  to  develop 
an underground power t ransmiss ion  system s u i t a b l e  f o r  t r a n s f e r r i n g  bulk q u a n t i t i e s  
of e l e c t r i c i t y  over  d i s t a n c e s  of 16 t o  160 km. Both t h e  c a p i t a l  investment  and 
ope ra t ing  c o s t s  must be low enough t o  make the  system a t t r a c t i v e  t o  the  e l e c t r i c  
u t i l i t i e s .  

The superconducting cab le  sha res  t he  advantages wi th  convent ional  underground 
cab le s  of needing only a few f e e t  of r ight-of-way width r a t h e r  than the  l a r g e  
t r a c t s  of i nc reas ing ly  expensive land requi red  f o r  convent ional  a e r i a l  t ransmis-  
s ion .  Recent c o s t  a n a l y s i s  s  tudieswshow t h a t  superconduc t i n g  c a b l e s ,  a 1  though 
more espens ive  than a e r i a l  t ransmiss ion ,  w i l l  probably be compet i t ive  wi th  o t h e r  
methods of underground t ransmiss ion  a t  loads  g r e a t e r  than 2000 MVA. I n i t i a l  de- 
s ign  s t u d i e s  showed t h a t  a f l e x i b l e ,  forced-cooled c a b l e  o f f e r e d  t h e  b e s t  combina- 
t i o n  of t echn ica l  and ec0nomi.c  feature^.^ A helium cooled c a b l e  wi th  Nb3Sn ,super-  
conductor was chosen a s  t he  BNL desi-on. 

The p re sen t  goa l  of  the BNL'program i s  the  c o n s t r u c t i o n  o f  a  LOO meter ou t -  
door three-phase a c  c a b l e  r a t e d  a t  138 kV and 1000 MVA. The r e f r i g e r a t o r  and 
the  100 m-long devar  a r e  a l r eady  i n s t a l l e d .  Terminations and cab le s  a r e  under 
des ign ,  and i t  i s  planned to begin i n s t a l l a t i o n  o f  the  f i r s t  s i n g l e  phase c a b l e  
i n  1979. I f  the  r e s u l t s  on t h i s  model show promise f o r  even tua l  commercial use ,  
cab le s  o f  h i g h e r  vo l t age  and power r a t i n g  w i l l  be developed. One f u n d m e n t a l  
phase of t h i s  p r o j e c t ;  t he  development of t h e  r e q u i r e d  i n s u l a t i n g  m a t e r i a l s ,  i s  
the s u b j e c t  of t h i s  paper. 

TAPE REQUIREXENTS 

Many of  the des ign  f e a t u r e s  of t he  d i e l e c t r i c  a r e  governed by the  n e c e s s i t y  
t o  o p e r a t e  the  c a b l e  a t  a  temperature s u i t a b l e  f o r  t he  Nb3Sn superconductor  (6- 
8 K ) .  Extruded polymer i s  n o t  a  v i a b l e  mode of  i n s u l a t i o n  a p p l i c a t i o n  s i n c e  the  
very l a r g e  thermal c o n t r a c t i o n  a s s o c i a t e d  w i t h  ext ruded polye thylene  would almost  
c e r t a i n l y  l ead  t o  e a r l y  mechanical f a i l u r e  of  t h i s  d i e l e c t r i c .  I n s t e a d ,  t h e  choice  
was made t o  l a p  many l a y e r s  o f  p l a s t i c  tape  and impregnate the  but t -gaps  wi th  super-  
c r i t i c a l  helium. The major d i e l e c t r i c ,  mechanical ,  and thermal s p e c i f i c a t i o n s  
f o r  t h e  d i e l e c t r i c  tapes  a r e  summarized i n  Table I. 

Jz  NOT^ , per fomed  under the auspices  of the U .  S .  D e F a r b e n t  of Energy. 



I n  o r d e r  f o r  an exper imental  c a b l e  t o  be c o s t - e f f e c t i v e  the  m a t e r i a l s  should 
be commonly produced and r e a d i l y  a v a i l a b l e .  Also,  f a b r i c a t i o n  techniques should 
fo l low s tandard  p r a c t i c e s  and technologies  wherever p o s s i b l e .  The d i e l e c t r i c  
t apes  \Jill be a p p l i e d  t o  the  c a b l e  by high-speed t ap ing  machines designed many 
y e a r s  ago t o  c o n s t r u c t  conven t iona l  paper-lapped underground cab les .  Although 
p r e c i s e  predetermined winding p a t t e r n s  a r e  used dur ing  the  lapping o f  a  k r a f t -  
paper c a b l e ,  even g r e a t e r  c a r e  i s  r e q u i r e d  dur ing c o n s t r u c t i o n  of a  p l a s t i c -  
lapped superconduct ing cab le .  Each success ive  l a y e r  must be lapped "out-of-phase' '  
w i th  the  previous  l a y e r ,  so t h a t  the  small  bu t t -gaps  between a d j a c e n t  tu rns  a r e  
complete ly  covered by the  width of t h e  t ape  from t h e  very n e x t  l a y e r .  Double- 
t h i c k  b u t t  spaces  would reduce the  i n c e p t i o n  s t r e s s  o f  p a r t i a l  d i scharge  a c t i v -  
i t y  t h a t  'could u l t i m a t e l y  cause  tape degrada t ion  and d i e l e c t r i c  f a i l u r e .  Ex- 
p e r i e n c e  h a s  shown t h a t  t ap ing  t ens ions  of 2 . 8 - 3 . 6 ~ 1 0 ~  ~ / m ~  (4-5 p s i )  a r e  r e -  
q u i r e d  t o  produce t i g h t ,  a c c u r a t e l y  wound paper c a b l e s .  The tapes  must possess  
s u f f i c i e n t l y  high va lues  of t e n s i l e  s t r e n g t h  and t e n s i l e  modulus t o  ensure  t h a t  
they do n o t  break o r  deform under t h e s e  t ens ions .  

Addi t iona l  requirements  on t h e  293 K t a  e  moduli were revea led  a f t e r  s e v e r a l  
exper imental  t e s t  c a b l e s  were b u i l t  f o r  BNL.5 During c a b l e  lapping a  component 
o f  t h e  taping t e n s i o n  i s  transiormed t o  a  r a d i a l  p r e s s u r e  d i r e c t e d  r a d i a l l y  towards 
t h e  c a b l e  core.' These r a d i a l  f o r c e s  p r e s e n t  no problem i n  convent ional  c a b l e s  
because of the  high c o m p r e s s i b i l i t y  of paper.  The more i s o t r o p i c  n a t u r e  of polymers 
t ransforms tap ing  t ens ions  t o  extremely high va lues  of r a d i a l  p r e s s u r e s  i n  p l a s t i c  
lapped cab les .  The p r e s s u r e  i n c r e a s e s  p r o p o r t i o n a t e l y  t o  t h e  number of l a y e r s  . 
of t ape  app l ied .  During bending of the  completed c a b l e  i n  r e e l i n g ,  t h e  r a d i a l  
p r e s s u r e  can f o r c e  t apes  t o  wr ink le  r a t h e r  than s l i d e  on one ano ther  a s  they 
normally should. Wrinkles w i l l  r e s u l t  i n  a  reduced d i e l e c t r i c  s t r e n g t h  and can 
s h o r t e n  t h e  l i f e *  of the  cab le .  

The n e t  thermal ~ o n t ~ r a c t i o n  of t h e  d i e l e c t r i c  must be designed so  t h a t  i t  ', 

c o n t r a c t s  evenly wi th  t h e  conductor dur ing  the  cooldown per iod.  I n s u f f i c i e n t  
d i e l e c t r i c  c o n t r a c t i o n  would lead t o  voids  between the  i n n e r  conductor and the  
d i e l e c t r i c  medium. These vo ids  would permit  harmful p a r t i a l  d i scharges  t o  occur .  
Excess ive  c o n t r a c t i o n  would keep t h e  tapes  under t e n s i l e  and compressive load 
whi le  a t  o p e r a t i n g  temperature .  This  s t r e s s  could e i t h e r  cause  immediate t ape  
f r a c t u r e ,  o r  c o n t r i b u t e  t o  a c c e l e r a t e d  f a i l u r e  due t o  a  long- t e r n  aging process .  

The value  of the  thermal c o n d u c t i v i t y  i s  ano ther  important  c o n s i d e r a t i o n  i n  
t h e  design of t h e  d i e l e c t r i c .  Too smal l  a  va lue  could  cause  l o c a l  h e a t i n g  of 
c e r t a i n  p o r t i o n s  of the  d i e l e c t r i c  and produce reg ions  of reduced d i e l e c t r i c  
s t r e n g t h  w i t h i n  t h e  hel ium impregnant. An upper l i m i t  t o  t h e  c o n d u c t i v i t y  w a s  
a l s o  e s t a b l i s h e d 5  i n  o r d e r  t o  prevent  excess ive ,  thermal coupl ing between counter-  
f lowing "go" and " re  turn"  hel ium c o o l a n t  s trearns. 

I n  s t r i v i n g  f o r  a  low-loss c a b l e ,  we placed a  g r e a t  d e a l  of emphasis on the  
s e l e c t i o n  of tapes  having very  low va lues  of both d i e l e c t r i c  c o n s t a n t  and d i s -  
s i p a t i o n  f a c t o r .  A maximum d i e l e c t r i c  c o n s t a n t  of 2.5 was chosen t o  both minimize 
d i e l e c t r i c  l o s s e s  and t o  keep t h e  p e r m i t t i v i t y  of the p l a s t i c  a s  c l o s e  a s  p o s s i b l e  
t o  t h a t  of the  helium impregnant. The l o s s  tangent  of 20x10 '~  was s e t  so t h a t  
the  d i s l s c t r i c  l o s s  a t  the  l i k e l y  o p e r a t i n g  vo l tage  would be no g r e a t e r  than 
e i t h e r  conductor l o s s  o r  t h e  h e a t  leak through the  cryogenic envelope.  An i m -  
p o r t a n t  des ign requirement d iscovered dur ing  e l e c t r i c a l  t e s t i n g  of smal l  c a b l e  



samples was t h a t  the  d i e l e c t r i c  tapes must be s o l i d  r a t h e r  than of porous cons t ruc-  
t i on .  Helium impregnated porous tapes were found to  have s i g n i f i c a n t l y  lower d i -  
e l e c t r i c  s t r e n g t h s  than s o l i d  tapes .  6 

F i n a l l y ,  i n  o rde r  f o r  an underground cable  t o  be c o s t  e f f e c t i v e ,  i t  should 
have a l i f e  expectancy of 30 to  40 years .  S tud ie s  of the e f f e c t s  of environmental 
s t r e s s  c racking  and f a t i g u e  f a i l u r e  on the  l i f e  of d i e l e c t r i c  tapes a r e  being con- 
ducted.  

I n i t i a l  eva lua t ion  of commercially a v a i l a b l e  p l a s t i c  f i lms  d i sc losed  t h a t  none 
simultaneously s a t i s f i e d  a11 our requirements.7 D i e l e c t r i c a l l y  accep tab le  tapes  
were mechanical ly weak and mechanical ly s t r o n g  tapes  had unacceptable d i e l e c t r i c  
p rope r t i e s .  See Table 11. The Tef lons ,  Kaptons, and o t h e r  e x o t i c  tapes  had 
a t t r a c t i v e  p r o p e r t i e s  but  were s e t  a s i d e  because of t h e i r  very high c o s t s .  A t -  
tempts t o  reduce the  60 Hz, 4.2 K l o s s  tangents  of polysulfone and polycarbonate 
by a l t e r i n g  t h e i r  chemical cons t ruc t ion  were unsuccessfu l .  Consequently the  
dec i s ion  w a s  made . t o  modify the  d i e l e c t r i c  and mechanical c h a r a c t e r i s t i c s  of the  
l e s s  expensive,  i n t r i n s i c a l l y  lower l o s s  po lyo le f in s .  This  development work i s  
descr ibed  i n  the fol lowing sec t ions .  

TAPE DEVELOPPENT 

A. D i e l e c t r i c  P rope r t i e s  

The i n t r i n s i c  d i e l e c t r i c  l o s s e s  of pure polye thylene  and polypropylene a r e  
very small  a t  4.2 K ( i . e . ,  ~ 5 x 1 0 ' ~ ) .  The. h ighe r  values of t an  6 measured f o r  
c o m e r c i a l l y  produced po lyo le f in s  a r e  due t o  the presence of a d d i t i v e s  placed i n  
the  polymer during the manufacturing .process t o  p r o t e c t  the  p o l - p e r  i n  i t s  i n -  
tended a i r  envitonment. Ea r ly  work by King and Thomas8 d i sc lbsed  t h a t  the a n t i -  
oxidant  may be one of the  major sources of d i e l e c t r i c  l o s s  a t  temperatures of 
6-8 K. A' subsequent s tudy of e f f e c t s  of an t iox idan t  on t an  6 c a r r i e d  o u t  j o i n t l y  
by B a t t e l l e  Columbus Labora tor ies  (BCL) , the  Nat ional  Bureau of Standards (NBS) 
and BNL, a l s o  showed t h a t  the  60 Hz l o s s  tangent  of  polyethylene,  i n  the  region 
of 4-10 K ,  was s t rong ly  dependent upon both type and concent ra t ion  of an t iox idan t  
One v a r i e t y  of  a n t i o x i d a n t ,  To ano l ,  i n  a concent ra t ion  of  0.1% was found to  r e -  
s u l t  i n  a l o s s  tangent  <10x10-8 over the  temperature range 4.2-10 K . ~  

B. Mechanical P r o p e r t i e s  

The most severe  problems f ac ing  the des igner  of cryogenic d i e l e c t r i c  i n su la -  
t i o n  a r e  those of  ob ta in ing  s a t i s f a c t o r y  mechanical p r o p e r t i e s  over  a wide tem- 
pe ra tu re  range. The d i e l e c t r i c  must be a b l e  t o  wi ths tand the  v a r i e t y  of  fo rces  
p re sen t  dur ing  cons t ruc t ion ,  i n s t a l l a t i o n ,  and .over the normal l i f e  of  t he  cable .  

B . l  Tens i l e  Measurements. Tape t e n s i l e  measurements were made a t  293, 77, 
and 4.2 K u s ing  an  I n s t r o n  t a b l e  model t e s t i n g  machine and the  a s soc ia t ed  ap- 
pa ra tus  shown i n  Fig. 1. Cryogenic t e n s i l e  t e s t s  were made i n  the  modified 4 
l i t e r  helium dewar shown i n  the f igu re .  A p a i r  of  g r i p s  with c y l i n d r i c a l  bear -  
i ng  su r f aces  were used to  hold the  specimens. During a cryogenic t e n s i l e  t e s t  
the sample was loca ted  i n s i d e  a 6 cm-diameter by 40 cm-long compression cy l inde r  
which i n  t u r n  was submerged i n  the cryogenic l i q u i d .  The compression c y l i n d e r  
was f i l l e d  with pressur ized  helium d u r i n s  t e s t s  made a t  77 K. (01f l0  has  shown 



t h a t  n i t r o g e n  g a s ,  a t  a  temperature  n e a r  i t s  b o i l i n g  p o i n t ,  can induce c r a z i n g  
and s t r e s s  c rack ing  i n  many polymers.) Tes t  specimens were u s u a l l y  L O  cm long 
by 2 cm wide,  and cross-head speeds i\rere (0.05 cm/min) . A s t r i p  c h a r t  record of 
load versus  s t r a i n  was made o f  each run.  Represen ta t ive  s t r e s s - s t r a i n  curves  
f o r  both h igh  and low d e n s i t y  polypropylene samples a r e  i l l u s t r a t e d  i n  Fig. 2. 

The i n i t i a l  s l o p e s  of the  curves  were used t o  compute t e n s i l e  moduli. The 
maximum s t r e s s  reached dur ing  a  run was used t o  c a l c u l a t e  t e n s i l e  s t r e n g t h  and 
t h e  s t r a i n  a t  f r a c t u r e  was taken a s  t h e  u l t i m a t e  e longa t ion .  The y i e l d  p o i n t  
w a s  de f ined  a s  t h e  i n t e r c e p t  wi th  the  s  t r e s s - s t r a i n  curve o f  a s t r a i g h t  l i n e  
p a r a l l e l  t o  the  i n i t i a l  s l o p e  and o f f s e t  0.2% ex tens ion .  Tfie t e n s i l e  d a t a  taken 
a t  293, 77  and 4.2 K a r e  sunrmarized i n  Tables  111, I V  and V ,  r e s p e c t i v e l y .  

Examination of Table  111 shows t h a t  t h e  nonor iented p o l y o l e f i n s  possess  
293 K t e n s i l e  s t r e n g t h s  and t e n s i l e  moduli w e l l  below c a b l e  s p e c i f i c a t i o n $ .  How- 
e v e r ,  o r i e n t e d  polypropylene and polye thy Lent: tapes have s u p e r i u r  Leusl lc  pi'op- 
e r t i e s  a t  t h i s  temperature.  

Tables  I V  and V i l l u s t r a t e  t h e  p a t t e r n  of d r a m a t i c a l l y  reduced t o t a l  elonga- 
t i o n s  and inc reased  embri t t lement  t h a t  accompanies most p l a s t i c s  upon ,coo l ing  t o  
cryogenic  temperatures.  These changes a r e  most pronounced wleh ehe low dmsLLy, 
low modulus p b l y o l e f i n s .  A h i g h  d e n s i t y  b i a x i a l l y  o r i e n t e d  l aminak i l  polyprapylenc 
t a p e  under development a t  BNL h a s  a c c e p t a b l e  t e n s i l e  p r o p e r t i e s - a t  a l l  tzmperatures 
w h i l e  a l s o  having dielectric and thermal p r o p e r t i e s  t h a t  meet c a b l e  s p e c i f i c a t i o n s .  
Th i s  f i l m  i s  manufactured i n  a  th ickness  of 32 urn and e i t h e r  two o r  t h r e e  l a y e r s  
a r e  cemented toge ther  w i t h  a 2 gm-thick polyurethane b i n d e r  t o  produce t o t a l  t ape  
th icknesses  of e i t h e r . 6 6  o r  100 b m ,  r e s p e c t i v e l y .  

B.2 Very High Modulus Tapes. The r e s u l t s  o f  t e s t s  made w i t h  laminated,  
i n t e r m e d i a t e  modulus polypropylene show t h a t  bending behavior  of c a b l e s  f a b r i c a t e d  
wi th  t h i s  m a t e r i a l  should be  s a t i s f a c t o r y  f o r  c a b l e  i n s u l a t i o n  th icknesses  up t o  
a t  Least  1 cm. However r a d i a l  p r e s s u r e  i s  dependent upon i n s u l a t i o n  th ickness4  
and h i g h e r  vo l tage  c a b l e s  may r e q u i r e  h i g h e r  r a t i o s  of t e n s i l e  modulus, El t o  
compressive modulus, E3 t o  permit  r e e l i n g  wi thou t  damage t o  t h e  i n s u l a t i o n .  Most 
s t andard  methods of reducing E3 would probably a l s o  degrade t h e  d i e l e c t r i c  per-  
formance of the tape.  However, an i n c r e a s e  i n  t h e  va lue  of El  would b e n e f i t  
winding and r e e l i n g  performance wi thou t  j eopard iz ing  the  e l e c t r i c a l  p r o p e r t i e s  
o f  t h e  i n s u l a t i o n .  See Table  V I .  

Although t h e  t e n s i l e  moduli o f  commercial grades  of po lye thy lene  a r e  on ly  
approximately 1x109 ~ / m 2  ( 1 . 4 ~ 1 0 ~  p s i ) ,  the  t h e o r e t i c a l  modulus o f  h i g h l y  c r y s -  
t a l l i n e  o r i e n t e d  polyethylene i s  1x1011 ~ / r n ~ .  See Fig. 3. Polymers d e r i v e  t h e i r  
ve ry  h i g h  moduli from a  o r i e n t a t i o n  because t h e  number of t i e  molecules connect-  
i n g  c r y s t a l l i n e  reg ions  i s  g r e a t l y  inc reased  dur ing  o r i e n t a t i o n .  See Fig. 4. 
The t i e  molecules a r e  produced as a  r e s u l t  o f  f r i c t i o n  between a d j a c e n t  b locks  
o f  lamel lae .  Th i s  causes  cha in  unfo ld ing  a t  t h e  boundar ies  of t h e s e  blocks.  I n  
drawn m a t e r i a l ,  the  r e s u l t i n g  h i g h e r  modulus i s  almost d i r e c t l y  p r o p o r t i o n a l  t o  
t h e  draw r a t i o .  See Fig.  5. 

There a r e  two major methods used to  produce very h i g h l y  o r i e n t e d ,  h igh  modulus 
polymers; cold drawing and h y d r o s t a t i c  ex t rus ion .  Although the  h i g h e s t  moduli 
may be reached by way of t h e  cold-drawing technique,  h y d r o s t a t i c  e x t r u s i o n  provides  



b e t t e r  c o n t r o l  over f i n a l  product dimensions than does drawing.l l  

Working under BNL c o n t r a c t ,  B a t t e l l e  Columbus Labora tor ies  (BCL) has begun 
prel iminary work to develop a h y d r o s t a t i c  ex t rus ion  process f o r  f ab r i czc ing  u l t r a -  
high modulus po lyo le f in  tapes with a t e n s i l e  modulus of 7x10' x / m 2  ( 1 x 1 0 ~  p s i ) .  
(Recently,  s i n g l e  f i b r e s  of h igh ly  o r i e n t e d  polyethylene were prepared by p o r t e r L 2  
t h a t  had moduli of 7 x 1 0 ~ ~  N/m2 ( 1 x 1 0 ~  p s ~ ) .  Using the  d i e  shown i n  Fig.  6 molten 
polymer i s  f ed  to  a r ec t angu la r  t r a n s i t i o n  zone which precedes the  deformation 
zone of t h e  d i e .  The polymer i s  cooled i n  the  t r a n s i t i o n  zone so a s  t o  be s o l i d  
p r i o r  t o  a r e a  reduction.  The th ickness  of the t r a n s i t i o n  zone i s  1.5 nrm and the  
deformation zone i s  125 ~ m - t h i c k .  This  geometry r e s u l t s  i n  an ex t rus ion  r a t i o  
o r  draw r a t i o  of  1 2 : l .  The su r f ace  of the  channel was a l s o  Teflon coated t o  r e -  
duce f r i c t i o n a l  drag.  Severa l  tapes  one-inch wide, by 125 um-thick, by s e v e r a l  
meters  long have been success f u l l  Tens i l e  moduli of t hese  tapes  were 
approximately l . i 1 x 1 0 ~ ~  ?l/m2 (2x10g ;:i;fde&difications a r e  planned t o  improve 
che d i e  cemperawre coderol  and t o  reduce the  ex t rus ion  r a t i o  to 6: 1. 

C. Thermal P r o p e r t i e s  

C . l  Thermal E x ~ a n s i o n .  Ear ly  BNL d i e l e c t r i c  s t r e n g t h  measurements were 
made with e i g h t  to t en  Layers o f  tape  helically-wound on a 1.27 cm-diameter 
s t a i n l e s s  s t e e 1  mandrel. Plos t nonoriented polyethylene and polypropylene tape 
candida tes  f r a c t u r e d  during these  t e s t s  which were made a t  6-8 K. A comparison 
of the  293-4.2 K thermal cont rac t ions13 to  the  e longat ion  to  f r a c t u r e  a t  4.2 K 
revea led  the  probable reasbn f o r  t h i s  problem. See Table VII. Tapes could no t  
c o n t r a c t  while  wrapped around the meta l  mandrel and were forced t o  s t r e t c h  beyond 
t h e i r  maximum elongat ions .  Tapes possess ing  e longat ions  cons iderably  l a r g e r  
than requi red  con t r ac t ions  remained i n t a c t .  To avoid f u t u r e  c r y o f r a c t u r e  problems 
BNL cape 'caadidaces a r e  requi red  t o  meet an empi r i ca l  e longat ion  t o  c o n t r a c t i o n  
r a t i o  of r 2 : l .  A s  a s g e n e r a l  r u l e  i t  was found t h a t  the e longat ion  to  f r a c t u r e  
u s u a l l y  increased  as a r e s u l t  of o r i e n t a t i o n  and t h e  thermal c o n t r a c t i o n  decreased 
fol lowing t h i s  t reatment .  The 293 t o  4.2 K con t r ac t ion  of the  laminated b i a x i a l l y  
o r i en ted  tapes was found t o  be 0 . 6 4 1 , ~ 3  and E/C r a t i o s  f o r  t h i s  m a t e r i a l  a r e  g r e a t e r  
than 1 2 : l .  (De ta i l s  of  the BCL thermal expansion technique a r e  descr ibed  i n  Ap- 
pendix I .  ) 

C. 2 Thermal Conductivi ty.  Conductivi ty measurements were made of t ape  can- 
d i d a t e s  t o  determine whether o r  no t  they would s a t i s f y  the  cab le  desi,sn r equ i r e -  
ments l i s t e d  i n  Table I. The measurements were made f o r  BNL by J e l i n e k  of BCL 
us ing  the appara tus  i l l u s t r a t e d  i n  Fig. 7. The method was a modified s teady-  
s t a t e  conduct iv i ty  technique where a temperature g rad ien t  w a s  e s t a b l i s h e d  be- 
t seen  two copper p l a t e s  separa ted  by four  Layers of polymeric f i lm.  (Mul t i layer  
measureme~ts  were always made so  a s  t o  approximate the  s e r i e s  i n t e r f a c i a l  r e -  
s i s t i v i t y  t h a t  would be p re sen t  i n  lapped cab le  conf igura t ions . )  One p l a t e  w a s  
a t t ached  to  .a con t ro l l ed  h e a t  s ink  and a ineasured q u a n t i t y  o f  h e a t  w a s  added t o  
the  o t h e r  p l a t e  by means of an e l e c t r i c  hea t e r .  With the  use  of a l i q u i d  helium 

o ree  t h r o t t l i n g  dewar the  ambient temperature could be c o n t r o l l e d  t o  w i t h i n  one de, 
Kelvin. (Complete d e t a i l s  o f  t h e  conduc t iv i ty  measurement method a r e  inc luded 
i n  Appendix I1 of t h i s  paper.) 

The r e s u l t s  of t he  conduc t iv i ty  measurements made i n  vacuo of  s e v e r a l  mate- 
r i a l s  a r e  shown i n  Table VIII. A l l  of  the polymers showed inc reas ing  va lues  of 



thermal c o n d u c t i v i t y  wi th  temperature over t h e  range of 6-300 K. The d a t a  i n  
Table  I X  were taken a t  6 K a s  a  -function of helium gas  p r e s s u r e  a t  s e v e r a l  p res -  
s u r e s  over  the  range of 0-7.1x1OJ x / m 2  (0-100 p s i ) .  This experiment was designed 
t o  more c l o s e l y  approximate t h e  composite h e a t  pa th  p r e s e n t  i n  a  superconduct ing 
c a b l e  impregnated wi th  s u p e r c r i t i c a l  helium. Although t h e r e  i s  a  h igh dependency 
of c o n d u c t i v i t y  on p r e s s u r e  between 0  and 1 . 7 8 ~ 1 0 ~  ~ / r n ~  (25 p s i ) ,  t h e r e  i s  no 
f u r t h e r  dependence of c o n d u c t i v i t y  on p r e s s u r e  above t h i s  p r e s s u r e  f o r  t h e  poly- 
e t h y l e n e  and polycarbonate  f i lms .  The polysulfone conduc t iv i ty  appears  t o  i n -  
c r e a s e  a g a i n  a s  a  f u n c t i o n  of p r e s s u r e  a t  7 . 1 ~ 1 0 5  ~ / m 2 .  The c o n d u c t i v i t i e s  of 
the  t h r e e  m a t e r i a l s  a t  7 . 1 ~ 1 0 ~  l\l/rn2 meet t h e  s p e c i f i c a t i o n s  of Table I. 

CONCLUSIONS 

The development of a s u i t a b l e  polymeric t ape  f o r  u s e  a s  i n s u l a t i o n  on ac  
superconduct ing c a b l e s  i s  a  cha l l eng ing  eng ineer ing  problem f o r  t h e  d e s i g n e r  of  
p l a s t i c  f i lms .  No commercially a v a i l a b l e  tape S~mLileaneously f u l f L l l s  a11 uL 
t h e  d i e l e c t r i c ,  mechanical  and thermal requirements  wi thou t  modi f i ca t ion .  Porous, 
p a p e r - l i k e  tapes  produced d i e l e c t r i c a l l y  weak c a b l e s .  

U n i a x i a l l y  o r i e n t e d  p o l y o l e f i n  tapes  were found to  have t e n s i l e  p r o p e r t i e s  
s u p e r i o r  t o  the  nonor iented types ,  bu t  t h e s e  m a t e r i a l s  o f t e n  f i b r i l l a t e d  dur ing  
cooldown t o  o p e r a t i n g  temperature.  Fur the r  s t u d i e s  showed t h a t  c m e r c i a l l y  
produced, 32 urn-thick, biaxiaLLy o r l e n t e d  palypropylene capes had a c c e p ~ a b l t  
t e n s i l e  p r o p e r t i e s  a t  both 4.2 and 293 K. The d e s i r e d  t ape  th icknesses  of 66 pm 
and 100 v m  were ob ta ined  by l amina t ing  two o r  t h r e e  l a y e r s  toge ther  wi th  a 2.0 Pm- 
t h i c k  polyurethane adhesive .  The l o s s  t angen t  and p e r m i t t i v i t y  of t h i s  laminate  
meets des ign  c o n s i d e r a t i o n s .  B i a x i a l  o r i e n t a t i o n  was a l s o  found t o  reduce thermal 
c o n t r a c t i o n  and i n c r e a s e  t h e  4 . 2  K e longa t ion  of t h e  polypropylene f i lms .  Work . 
h a s  been s t a r t e d  t o  develop a  ve ry  high modulus, s i n g l e  l a y e r  polyethylene tape 
f o r  use  wi th  h i g h e r  v o l t a g e  superconduct ing c a b l e s .  
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- PS- 

APPENDIX I 

Thermal Expansion Neasuremen t Technique 

I n  p repar ing  the  t ape  samples f o r  measurement the  procedure c o n s i s t e d  of 
c u t t i n g  enough tape  s t r i p s  (114" wide x 1 112" long) t o  produce a s t a c k  of mate- ' 

r i a l  114" t h i c k  when clamped. S t e e l  clamping j i g s  were machined t o  f a c i l i t a t e  
t h i s  s t a c k i n g  procedure.  While clamped, the  ends o f  the  s t a c k  were trimmed t o  
produce a specimen approximately 1 114" long,  and t h e  l o n g i t u d i n a l  edge f a c e s  of 
t h e  s t a c k  were l i g h t l y  wiped wi th  Eastman 910 ( s t r a i n  gauge q u a l i t y )  epoxy. The 
bundles were then unclamped and end-ground on a meta l lograph ic  p o l i s h i n g  wheel. 
Thermocouples were a t t a c h e d  t o  the specimens with  chi^ s t r i p s  LIT ulasking t ape  
and t h e  beads t a s t e n e d  Co  he specimen sur fdue  w i L h  a amall  drep of c l a o t x i c a l  
v a r n i s h  . 

Measurement Technique. The thermal expansion measurements were performed 
i n  a fused s i l i c a  d i l a t o m e t e r  wi th  a s s o c i a t e d  LVDT sens ing  equipment. The 
d i l a to rne te r  has a r e s o l u t i o n  of . 5 x 1 0 ' ~  i n .  'Temperature is c o n t r o l l e d  ac 10- 
degree  i n t e r v a l s  by u t i l i z i n g  a chroccl lng dewar, w l ~ i c l ~  uses t h e  s e n s i b l c  hcclt 
r e s u l t i n g  from vapor ized cryogen, and p r o p o r t i o n a l  c o n t r o l l e r s  which permit  
temperature  c o n t r o l  o f  f0.1 K i n  the  e n t i r e  temperature range.  



Descr ip t ion  of  .Thermal Conductivi ty Xeasurements 

I n  the modified s t eady- s t a t e  conduc t iv i ty  method employed i n  t h i s  experiment, 
a  temperature g rad ien t  i s  e s t a b l i s h e d  between two copper p l a t e s  separa ted  by the  
polymeric f i lm.  One p l a t e  i s  a t t ached  to  a  c o n t r o l l e d  temperature h e a t  s i n k ,  and 
a  measured q u a n t i t y  of  h e a t  i s  added t o  the  o t h e r  p l a t e  by means of an e l e c t r i c  
r e s i s t a n c e  h e a t e r .  Conductivi ty i s  then c a l c u l a t e d  us ing  a  form of the Four ier  
equation : 

k = thermal conduct iv i ty  
g/A = h e a t  flow per  u n i t  ac'ross s e c t i o n  a r e a  

L = f i lm  i2tickness s i n c e  . the conduc t iv i ty  of copper and the  bonding 
agen-t a r e  orders  of magnitude h ighe r  

AT = temperature g rad ien t  ac ros s  L  neasured r ~ i  th Kei th l ey  147 nanovol tmeter .  

The g rad ien t  h e a t e r  i s  a  3-lead u n i t  wound of Evanohm wire  which has  a n e a r l y  
zero  temperature c o e f f i c i e n t  of r e s i s t a n c e .  A cons t an t  c u r r e n t  source i s  used t o  
power the g r a d i e n t  h e a t e r .  The temperature g rad ien t  s e t  up i n  the specimen a f t e r  
a  s t eady- s t a t e  cond i t ion  has  been reached i s  measured us ing  e i t h e r  gold c o b a l t  
versus "normal" s i l v e r  d i f f e r e n t i a l  thermocouples, o r  minia ture  pLati.ncm r e s i s  tancc  
thermometers. The ambient temperature i s  p r e c i s e l y  c o n t r o l l e d  ( S . 0 5  K) dur ing  a  
measurement u s ing  the  output  o f  a  Kei th ley  150 B n u l l  d e t e c t o r ,  the s i g n a l  t o  which 
a r i s e s  from a  copper-constantan thermopile  mounted on the  specimen con ta ine r ,  and 
a  low-temperature modified West c o n t r o l l e r .  The temperature g rad ien t  ac ros s  t he  
specimen i s  measured by a  Kei th ley  140 nanovoltmeter. 

The measurements a r e  c a r r i e d  o u t  i n  a  l i q u i d  helium t h r o t t l i n g  dewar. This  
dewar provides a  degree of  ambient temperature c o n t r o l  i n  i t s e l f  i n  t h a t  by s u i t -  
ab ly  a d j u s t i n g  the  t h r o t t l e  va lue  (which admits helium through a  c a p i l l a r y  to  
t he  dewar sample chamber) and the vapor i za t ion  h e a t e r  vo l t age  (which al lows the  
l i q u i d  helium t o  vaporize before  e n t e r i n g  the  sample chamber), the  co ld  helium 
gas flowing p a s t  the  specimen f i x t u r e  (which i s  h igh ly  evacuated) can be con- 
t r o l l e d  to  w i th in  one degree K. This  g r e a t l y  reduces the  burden on the  independ- 
e n t  ambient temperature c o n t r o l  device  used i n  the  specimen f i x t u r e .  

For the  s i n g l e  f i l m  unpressur ized  experiment, t he  sample assembly presented  
no unusual  d i f f i c u l t y .  For the p re s su r i zed  cond i t ions  a d i f f e r e n t  sample con- 
t a i n e r  had to  be designed which could convey t h e  r equ i r ed  p re s su re  t o  t he  f i l m  
m a t e r i a l  and a t  the  same time prevent  excess ive  h e a t  l o s s  through the  mechanical 
p re s su r i z ing  s t r u c t u r e .  Figure 7 i l l u s t r a t e s  the technique used. The method w a s  
n o t  i d e a l  i n  t h a t  h e a t  l o s s e s  of 25 to  30% were measured along the top f i b e r  rod. 
These lo s ses  were taken i n t o  cons ide ra t ion  i n  c a l c u l a t i n g  the e f f e c t i v e  thermal 
conduct iv i ty  of the  f i l m . u s i n g  the equat ion  previous ly  d iscussed .  .4 load of 
70 l b s / i n 2  was appl ied  t o  the f i b e r  rod using an LVIIT load measuring device .  A s  



t h e  l o a d  w a s  a p p l i e d  and h e l d ,  t h e  s e t s c r e w  c o l l a r  was t i g h t e n e d .  We e s t i m a t e  
t h e  a p p l i e d  load  was r e t a i n e d  t o  w i t h i n  5 l b s / i n 2  a f t e r  cooldown. The g l a s s -  
ine t a l  t ube  was u t i l i z e d  t o  f u r t h e r  miniinize h e a t  l o s s e s  d u r i n g  t h e  measurement. 



Table I 

Specifications .for Dielectric Tapes for Use in ac 

Superconduct ing Cables 

A.  Pielectsic 16-8 Q 

1. Dielectric Constant - 2.5 max 

2. Dissipation Factor - 2xl0-~ my 

1. Yield Strength - 1x10' ~ / m '  (minimum) 

8 2 2. Tensile Strength - 1.4xl.0 N/m (*urn) 
9 2 3. Tensile Modulus, El - 3.5-7.0xl.0 N/m 

2 4. Compressive Modulus , E 3  - ~ 0 '  N/m (maximum) 

5. Friction Coefficient, us - 0.250 ~MX 

C. Thennal 

1. Total Contraction (293 to 4.2 K) 0 0. 60 1.0% 

2. Conductivity (4.2 K) - 5 ~ 1 0 - ~  to 3 x 1 0 ~ ~  W/m-K 



' Table TI 

Dielectric and Tensile Properties of Dielectric Tape Candidates 

POLYMER TYPE DISS. FACIDR* DI EL. CONSTM* YIELD STRENGTH, TENSILE MODULUS TENSILE M013ULIJS, 
(Tan 6x106) ~/m2x10-7 AT 293 K ~/rn2x10-9 AT ~/rr?x10-9 AT 

293 K 4.2 K 

Polyethylene 15 
low density 
non-oriented 
(100 urn) 

Polypropylene 9 
low .density 
non-oriented 
(125 om) 

: Polypropylene 
biaxially 
oriented 
laminated < .  

(100 g") 

Polysulfone 60 
(125 om) 

Polyimide , 
Kapton 1-1 
(100 l lm) 

Polycarbonate, 55 
Makrofol "KG" 
(60 tlm) 

Polyester , Mylar 200 
(75 pm) 

* C4.2 K and 100. Hz] 



Table I11 

TENSILE PROPERTIES OF DIELECTRIC TAPE CANDTMmS AT 293 K* 

I)OLYMEll TYPE ELASTIC TOTAL Y IE1,D TENS I LE 
EWNGATION , % * * ELONGATION, % SllENG'flI, ** STREMI 

N/III~X~O - 7 N / ~ ~ x I o - ~  

Polyethylene, low 
density non-oriented 
(100 wm) 

Polypropylene, low 
density non-oriented 
(125 urn) 

. . 

Polyethlene, m i -  
axially oriented, 
laminated, Valeron 
(100 . 

Polypropylene, b i -  
axially oriented, 
laminated (.10Qla1) 

Polysulfone (125 C l n ~ )  2.25 

Polyilnide, Kapton H 1.84 
(100 y m )  

Polycarbonate , 2.00 
Makrofol "G" (100 urn) 

Polyester, Mylar 2.08 
(75 urn) 

* Measurements made in tape machine direction. 

** At 0.2% Offset. 



Table IV 

TENSILE PROPFBTIES OF DIELECTRIC TAPE CAhDIDAl'ES AT 77 K* 

WLYMER TYPE ELASTIC TOTAL Y IEL3 TENSILE ENS I LE 
EL-ONGATION , 5 * * ELONGATION, % STIENGni ,** STRENm I M3DUI,IJS 

h/r11~x13 - 7 ~/n1~x10- N/III~X] 0 -9 

Polyethylene, low 
density; non-orir 
ented (100 

Polypropylene, low 2.38 
density non-ori-. 
ented [I25 

Polyethylene, uni - 2.60 
axially oriented, 
Valeron (100 

Polypropylene, bi- 3.28 
axially oriented, 
laminated (100 ym) 

1 Polysulfone (125 pm) 

Polyimide , "Kapton 
H" , (100 y ~ ~ ~ )  

Polycarbonate , uni- 
axially oriented 
'Makrofol G" (100 

Polyester, "Mylar" 
(.75 pm)' 

* Measurements made in machine direction of tape. 
** At 0.2 % Offset. 



TENSILE PROPERTIES OF DIELECTRIC TAPE CANDlIlATES AT 4.2 K* 

POLYMER TYPE ELASTIC 1YYTAL YIELD TENSILE 'II-NS ILE 
ELONGATION, % ** ELONGATION, % S'I'REtjGlI I , * * STRENmI b10 UL.US 

N/ln x10-7 ~ / m ~ x 1 0 - ~  N/III 9 xl~-4 
Polyethylene, low 2.85 
density, non-oriented' 
(100 

- - 
Polypropylene, low 
density, non-oriented 
(125 um) 

Polyethylene, m i -  3. P 
axially oriented 

I "Valeron" (1.00 pnl) 

Polyp-opylene, bi- 3.26 
axially oriented, 
'laminated (1.00 

I Polysulfone (125 2.62 

Polycarbonate, uni- 4.42 
axially oriented, 
"Makrofol C" (100 c ln~)  

Polyester, '%lylar" 4.52 
(25 u?) 

* Measurements made in machine direction of tape. 

** At 0.2% Offset. 



Table V I  

VALUES 03 SOME FACTORS AFFECTING CABIE B?NDII\IG FERFORMSNCE 

POLYMER TYPE TENSILE MOWLUS, El COMPRESSIVE bY)DULUS., 5 m=E1/E COEFFICIENT OF 
(~/m2x10 -7) (~/m2x10 - 7: FRICTION, H_** 

Polyethylene, unixia l ly  
oriented, .  laminated 
Valeron (100 

Polycarbona t e  , non- 
embossed, Makrofol "Gt' 
(100 bm) 

Polypropylene, b iax ia l ly  2 34 
oriented,  2 ply laminate 
(66 vm) 

Polypropylene, b iax ia l ly  190 
oriented,  3 ply laminate 
(100 ym) 

Polycarbonate, embossed, 1.71 
Makrofol "C" (178 

Kraft paper, e l e c t r i c a l  640 
grade. (178 

* A t  1 . 4 0 ~ 1 0 ~  ~ / m '  

** Cross nuchine d i rec t ion t o  c ross  machine direct ion.  ' 



Table VI'I 

THERMAL CDWrnnCTION AND TENSILE ELONGATION OF 1)IELECI'RIC TAPES 

1QLYMEII TYPE CONTMCTION, 293K to 4.2K, k ELONGATION TO FIWC'IURE ELONGA'I'ION/CONI'I?AC- 
TO 4.2K, 'i TION, % 

LONGITUDINAL TRAMSVERSE 

Polyetl~ylene low den- 2.74 2.69 
s i t y ,  non-oriented 

P01yami.de , Nylon- 11 1.92 1.85 

Polyethylene, uni- 
ax ia l ly  oriented, 
laminated Veleron 

Polysul f one 1.16 1.07 

Polypropyle~~e , b i -  
axia l ly  oriented, 
2-ply laminate 

Polycal-bonate , Makrofol 0.474 0.471 
"KG1 1 



Table VIII' 

'PHERMAL CONDUmNITIES OF DIELECTRIC TAPES* 

POLYMER TYPE 

Polyethylene, ~niiaxially 6. O X ~ O - ~  7.1x10-~ 1. 2x1~-4 8.lxl0-~ 
oriented, laminated 
Valeron 

Polypropylene, biaxially 7.8x10-' 1 .lx10-~ 2.9~10-~ 8.9x10-~ 
oriented, 2-ply laminate, 
urethane binder 

Polycarbonate, Makrofol 
I t  I t t  LC 

Polypropylene, biaxially 9. 2x10-' 1.3x10-' 4.3xi0-~ 1. lxlO- 
oriented, 2-ply laminate, 
pol ye thylene binder 

* Measurements made in vacuum at 1[1-~ torr. 



THERMAL CONDUCTNI'IY OF THREE POLYMERS 1\S A FUNCl'IOt4 
OF HELIW GAS PRESSURE AT 6K* 

POLYMER TYPE PRESSURE, ~ / 1 n ~ x 1 0 - ~  

Polysul fone 

Polyetllylene , uni - 
axially oriented, 
laminated Valeron 

Polycarbona te , 
Makrofol "KG" 

* Conductivities in watts/cm K. 



Figure 1. Apparatus used for Tensile Mcasrrte- 
mnts. 
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Figure 3. The cornpantive stiflness of some typical materials 
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Figure 7. SCfli3lATIC OF SANPLE CONTA$L.ER USED FOR T H E E M L  CONDUCTIVITY 
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Figure 6. S C H Z W T I C  CROSS SECTION OF TAPE DIE IN EXTRUSIO?; COKlA1SE.I 




