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ARCHIMEDES: A Sysfem that Plans and Executes Me,chanical Assemblieé 1
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- Abstract ‘

Archimedes is a prototype mechanical assembly system
which generates and executes robot assembly programs
from a2 CAD model input. The system addresses the un-
realized potential for flexibility in robotic' mechanical as-
sembly applications by automating the programming task.
Input is a solid model of the finished assembly. Parts rela-
tionslips and geometric constraints are deduced from the
solid model. A rule-based planner generates a “gencric”
assembly plan that satisfies the geometric constraints, as
well as other constraints embodied in the rules. A re-
targetable plan compiler converts the generic plan into
code specific to an application environment. Execution of
the compiled plan in & workcell containing an Adept Two
robot, a vision system, and other parts handling cquxpmcnl
will be shown on videotape.

I. Introduction

Archimedes is a prototype system for automating mechani-
cal assembly. It accepts a solid model of an assembly as input
and generates a program for executing the assembly.
Although robots offer the potential for truly flexible man-
ufacturing systems, their application has usually been limited
to situations in ‘'which the robot can operale in a relatively fixed
manner for a reasonably long p.oduction run. The complexity
of programming robots, designing fixtures, arranging work-
cells, and interacting with the output of the design process are
the principle reasons for this limitation. The Archimedes
system is motivated by the desire to significantly simpiify the
task of programming and setting up a mechanical assembly
task. (We contrast mechanical assembly with electronic (PCB)
assembly which is generally a 2 degree of freedom task and is
well enough understood that commercial software is available.)
Our goal was a system which would accept a set of plans
and parts as inputs and produce an executable assembly plan.
We have elected to use solid models as input since they are
increasingly available as the output of modern design systems
and eliminate the need to build a solid mode! from multiple
view drawings. When actual production is the goal, the ex-
ecutable assembly plan consists of instructions in the native
language of the assembly robot. Our demonstration system,
a workcell built around an Adept Two robot and associated
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equipment, reflects this goal. Live demonstrations take a solid
model as input and produce a plan that is executed on the
workcell. Other applications and the nature of their plans will
be discussed later.

Automatic planning or simplified programming for robots
has been a focus of robotics research from its inception. Early
efforts in automating assembly include Fahlman’s BUILD Sys-
tem [2], which focused on planning, but contains a very inter-
esting approach to stability analysis. Several task level pro-
gramming systems have been proposed, such as Lama [7] and
AML/X [12}, both of which use the idea of skeleton strategies.
These are both textually oriented and procedural in nature.

~ Rapt [11] moves away from the procedural format, and uses

a textual input describing the geometric relationships among
the parts. These task-level systems are primarily conceptual
designs; little experience is reported on their application to as-
sembly tasks using physical robots. Somewhat more closely
related o our work are approaches that use a geometric rep-
resentation as part of their input. Autopass [5] is an early
example in this direction. Again, little is reported on the
actual implementation cr application of these concepts. To
our knowledge, Lozano-Perez's Handey system [8] is the only
other planning system that we are familiar with that empha-
sizes implementation. Related work in a different vein includes
de Mello’s [6] ideas on AND-OR graphs for finding feasible
subassembly and related planning issues.

-Recently there has been a flurry of activity in the mechan-
ical assembly planning domain [9, 13, 4, 3, 1]. Most of this
work is concurrent with the work we present here, and shares
a common approach. In the following sections we will present
an outline of our approach, and compare and contrast it with
this body of work that is developing elsewhere.

II. A Motivating Example

Sandia National Laboratories acts as a design agency for the
Department of Energy, designing electronic and mechanical
components for safety and security. As a consequence, we are
involved ‘n the manufacture of complex, highly reliable me-
chanicar assemblies which are built in very small lots. The
stringent controls on assembly motivate our interest in au-
tomating the process. For the experiment described in this pa-
per, we have selected the the pattern wheel assembly (shown
in Figure 1). The pattem-wheel assembly is just one sub-
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Figure 1: Pattern Wheel Assembly

at Sandia. This assembly contains 13 parts (mostly pins and

cogs) and is representative of a large fraction of the approx-
‘imately 150 parts in this clockwork-like mechanism. For as-
sembly planning, the parts can be modeled as stepped cylinders
with holes in them. This simple model is sufficient for all the
parts in the pattern wheel assembly, as well as a substantial
fraction of the other parts in the dual stronglink. The motions
needed for this particular assembly are uni-directional, as are a
great many of the motions needed for assembling other parts of
the larger mechanism. This is consistent with the frequently
cited study of Nevins and Whimey (10] on assembly. The
goal of the experiment is to accept a CAD model of the as-
sembled pattern wheel and the parts as input and to produce
an assembled pattern wheel as output.

The workcell for assembling this component consists of
an Adept Two manipulator with a tool changer, a two-finger
pneumatic gripper, a vacuum gripper, a remote center com-
pliance, a force sensor, an arm mounted video camera, and a
VMEbus-based computing system to supplement the commer-
cial robot controller,

III. The Input Model

Because solid models contain all the geometrical information
about an assembly (at least in principle), they have become
popular as the input to assembly planners. Since solid models
increasingly form the underlying structure of modem design
systems, this is a good choice if it can be made o0 work.
Our approach makes few assumptions beyond the existence of
the geometric data. Unlike 1), we avoid the use of features,

since featurcs‘ are very function dependent. We would like,

of course, to have assembly features identified to simplify our

task. However, the machinist wants machining features, and
so on. In addition, what constitutes a feature changes over time
as well, as assembly or machining processes change. Unlike
(4], we do not require relationships (e.g., against or contacts)
between parts to be expressly contained in the model. Instead,
like {9, 1], we attempt to deduce them from the geometry.

Subassemblies are important in assembly planning be-
cause they limit the number of parts which must be considered
at any stage by the planner, reducing the combinatorial growth
of problem complexity. In addition, grouping parts into sub-
assemblies can considerably simplify planning by revealing
groups of parts that can be handled as units. These factors lie
behind the interest in subassembly identification (e.g., [6]). In
examining the drawings for the entire stronglink, as well as
other assemblies, it is our experience that the designer speci-
fies subassemblies, often for inspection purposes in intermedi-
ate stages. There are sufficient levels of subassemblies in the
drawings to keep the complexity in hand without identifying
additional Jevels of subassemblies.

In our initial experiments we used a very simple CSG
(construchvc solid geometry) modeler that we developed for
representing the domain of the pattern wheel parts (disks and
pins which can be assembled by z-translation). It is imple-
mented in Common Lisp on a Symbolics Lisp Machine. It can
quickly answer the necessary queries about object intersection,
interference in z-translation, and other similar queries required
to infer part relationships. As restrictive as the assumptions
may appear for the modeler used in the initial experiments, an
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examination of the service manual for the author’s car revealed

that large portions of the drivetrain, braking system, steering,

suspension, and so on could be modeled and planned in this re-
strictive domain. We are currently increasing the scope of the
Archimedes system, and have replaced the modeler with a
more general 2 3/4 dimensional boundary representation solid
modeler. The new modeler can accept input from AutoCad
(.dxf format) files. In addition, the modeler has a well-defined
interface to the planner, and can bz replaced by any modeler
capable of answering the defined geometric queries. The mod-
eler operates in a server-client mode with the planner, and is
free 10 run on any platform that supports IP-TCP connection.
The first stage in generating the pian is to create a par-
tial order graph representing the geometric constraints on part
order. We do this by querying the solid modcler about frec-
dom of motion in the z-direction between pairs of parts. (This
initial experiment uses an assumption of unidirectional assem-
bly.) We then find the kernel of the pairwise relations, which
gives us the minimum (or most constrained) representation of
the part ordering. By generating candidate orders from the
partiai ordering, we restrict candidate sequences to always be
geometrically feasible. One way to represent these constraints
"(with a-loss of some of the information, however) is as an
exploded diagram. (Exploded drawings are currently made by
artists or by the operators of CAD systems, not automatically.)
Figure 2 is an automatically generated exploded view. Using
the solid modeler, the constraints among the parts arc deter-
mined. The drawing is made by placing each part at the lowes!.
possible level in the drawing such that it is above all parts that
constrain it from below,
Modeling parts in a general 3D domain requires the use of
a true 3D solid modeler. Many such modelers exist, and their
design is a research topic in itself. Many of the tests for part in-
terference that we now use can be couched as queries to a gen-
eral solid modeler, although they take much longer to evaluate
than in specialized modelers. The uni-directional assumption
of this example cannot be expected to hold in general. For the
3D case, we are looking at a number of approaches for finding
candidate directions for inotion, both algorithmic, based on the
pert geometry, and knowledge-based, using information such
as part categories or rules relating to previously discovered
assembly directions.

IV. The planner

Given a candidate assembly order, the planner’s main func-
tions are to determine whether the candidate order is feasible,
what assembly operations are required to move from one stage
of the assembly to the next, and, if the order is infeasible, to
select a next candidate order. Figure 3 shows an overview
of these functions. The basic approach we have taken to. the
planner is to provide a set of rules for carrying out these oper-
ations. In the initial experiments the rules were implemented
as functions in Common Lisp. We are modifying the system
50 that the rules are represented as predicates in the Joshua
expert system substrate, which is a layered product for the
Symbolics Lisp Machine. We are also implementing a more

Figure 2. Automatically generated exploded diagram of pattern
wheel assembly.

powerful backtracking mechanism in the modified system to

provide more capabilities in searching the solution space.

The planner currently recognizes three types of infeasi-
bilities: instability of intermediate stages, inaccessibility of
weld surfaces, and placing objects through the support sur-
face. There are two cases for the instability check —- objects
that can fal over, and objects that may shift with respect to
one another. The toppling instability rulc operates on the basis
of ratio of height to part diameter, a crude but effective mea-
sure in the pait domain of interest. It would be a relatively
simple matter to replace this with an actual measurement of
the force required to move the center of gravity outside of the
footprint, but that would be overkill in the domain of parts that
can be manipulated by our workeell. The second instability
check was provided to account for critical alignments required
when welding two of the disk-like objects together. Note that
in the expioded diagram the bottom object drawn consists of
two disks. These are a subassembly which has been welded to-
gether. There is a requirement for a critical alignment betwecn
these parts. If no pins are through the holes in the two disks at

‘the time of the weld, there is no assurance that the alignment is

maintained. A rule in the planner refiects this situation, requir-
ing pins in holes of all aligned disks. Thus, the two disks as
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Figure 3: Oversview of Planner Functions

shown in the exploded diagram are considercd unstable until
either welded or pins are placed through them. The next rule
covers accessibility of weld surfaces. The system is designed
to use a laser spot-beam welder, held in the manipulator. The
check is a straightforward visibility test. The final infeasibility
check is for parts placed through the support surface. This
occurs, for example, when a disk is placed on the table and a
pin needs to be placed in a hole in the disk, and the bottom of
the pin is below the level of the base of the disk. This check
is purely geometric and is handied by the modeler.

For each candidate sequence, which is guaranteed to be
geometrically feasible by the way in which we generate the
sequences, the planner evaluates the addition of each part to
the current assembly against the applicable rules. The planner
continues as long as feasibility is maintained. When an in-
feasibility is uncovered, the planner applies a set of rules that
derives a new sequence from the old. These rules either invert
the sequence (effectively putting the assembly together upside
Vuwn), put parts in as early as possible, or as late as possi-
b.~. If reordering is not sufficient, the planner calls a fixture
plarning module that is capable of designing fixtures to handle
the instability and part-through-support-surface infeasibilities.
Fixtures are less desirable than re-ordered assembly sequences
so they are called after reordering has been exhausted. At
present the system has no provision for inverting portions of
assemblies or discovering new subassemblies. In the current
domain, rules for discovering these cases would be straight-

forward. (Mainly they need to recognize that all the currently
assembled parts are rigidly connected and can be manipulated

. as a unit) We provide a final “out” by allowing the planner

to guery the operator for a breakdown of the current assembly
into two subassemblies.

~ As the sequence is evaluated for feasibility, another set
of rules is applicd as each part is added to the sequence to de-
termine what operation is required to add the new part to the
current assembly. The system has six operators: place, insert,

‘multiple-insert, onsert, multiple-onsert, and weld. (Onsert is

the opposite of a peg-in-hole operation — a hole-on-peg opera-
tion, such as placing a washer on a bolt.) There is no inversion
operator, although we have mentioned that the system can put
the part together “upside-down.” This is not required because -
the generated plan contains orientation information which is
used by the compiler to be discussed next. ‘

At present, the planner contains no rules to measure plan
quality — it merely looks for a feasible plan. Optimization is
an important consideration, and will be addressed in extensions
to the system. ‘ ‘

The output of the planner is a generic plan — a sequence
of invocations of the six primitive operators mentioned above.
The plan contains calls to these operators which have param-
eters which are generally the parts involved, although other
parameters, such as the specific weld surfaces sometimes are
required. The order of calls in the plan is the assembly or-
der. ".ne plan also contains grouping information, showing
which operations can be carried out in parallel, or are required
to be serial. This information can be used to perform some
optimization in the compiler,

V. The compiler

The compiler translates a generic, high-level plan into detailed
instructions that can be directly executed in a robot workcell.
(Other compilation targets will be discussed later.) In order to
perform this translation, the compiler requires the geometric
model of the parts, a map of the workspace, a skeleton for
translating each primitive into robot specific commands, (An-
other view of this last pait is that we have a macto for each
assembly primitive, and the compiler expands the macro calls
made in the plan.)

Because the planner only deals with the sequencing
and operation selection, the compiler is required to plan the
workspace and maintain a record of its status. The workspace
manager allocates and maintains a record of the reachable
workspace of the robot for which the plan is being compiled.
Parts are assigned absolute positions within the workspace
based on their bounding spheres and order of use. The strategy
seeks a compromise between minimizing workspace fragmen-
tation (which would dictate a global best fit policy) and mini-
mizing manipulator motion based on the proximity of related
paris. The workspace manager is also able to reclaim portions
of the workspace to be reused later in the assembly. This
space is most commonly used to store subassemblies that have
been created from the individual parts which had occupied this
area. Because subassemblies may be added to the next level



assembly in an orientation inverted relative to the orientation
in which they were assembled, the workspace manager is re-
quired to keep track of all part orientations. . The compiler is
responsible for planning ancillary actions required for invert-
ing parts. the generic plan contains no information on these
motions. ‘

While the workspace manager is responsible for assigning
the position of a part, the nominal orientation of a part is
specified by the grasp planning module. The philosophy of
the grasp planner is to choose the initial orientation at which a

part is presented to the workcell in such a way that regrasping

is unnecessary. The grasp planner generates an initial set of
grasps hased on the no regrasp criterion. The resulting set of
grasps is then mapped to the part’s starting position and pared
. on the basis of stability. The set of orientation trajectories
resulting from pairing each valid starting configuration with the
set of valid ending grasps is then compared to the kinematic
capabilities of the robot being used in the assembly. This

procedure identifies all of the initial part orientations which.
result in a physically achievable motion trajectory that does.

not require regrasping. A unique solution from this set can be
obtained by using the stability ranking, a dexterity measure,
or a combination of the two.

The outputs of the workspace manager together with the
grasp planner specify a nominal workeell design. However,
due to the positional uncertainty inherent in material handling
systems, the actual position and orientation of the parts pre-
sented to the workcell will vary. To accurately identify the
locations of these parts at assembly time the compiler gener-
ates code with calls to a vision system. Since the nominal
position of a part is already known, the system does not need
to deal with part identification except to flag errors. The ma-
jority of this calculation is performed off-line at compile time.
A single matrix multiply is all that is required at assembly time
in order to perform a least-squares fit of the data to the part
model. The a‘ivantages of this approach are faster execution
time and flexibility in the target hardware.

After establishing absolute workcell locations and grasps
for all parts in the assembly, the compiler translates the plan-
ner language commands into the control language for a specific
system controller. The compilation is performed by merging
the location information with the parameters to assembly prim-
itives and expanding the skeletons for the assembly operations.
For the Adept workcell, the compiler produces V+ code which
is downloaded to the Adept controller. This downloaded pro-
gram controls all robot motions and auxiliary device control
and communicates with the vision system over the controller
serial link.

The use of the skeletons and macro expansion-like com-
pilation allows us to easily retarget the compilation to different
robots and applications. By compiling code for various work-
cells, we view the system as a manufacturing tool. Other
compilation targets, however, change our perspective on the
system's use. We developed a set of skeleton. which target
GSL code for the IGRIP computer graphic simulation system.
Initially this target was used in debugging the compiler code.
The simulation target has a much more important use in the

product design phase. By allowing easy access to simulation of
the actual assembly plan, designers can quickly and accurately
cvaluate the impact of design changes on manufacturability.
Thus, we can view Archimedes as a design analysis tool,
Yet another compilation target might focus on the time re-
quired for each operation. By applying this set of expansions
to a complex system such as a ship, which might take years to
build, we can produce PERT diagrams of the assembly, allow-
ing estimation of material requirement dates and identification
of critical paths in the assembly. In this light, Archimedes
is a production planning tool.

VI. Experimental Results

The planner and compiler described here were initially applied
to the pattern wheel assembly presented earlier. We first com-
piled the plan into GSL code for the IGRIP simulation system
and executed the assembly as a simulation. As noted, this was
of great assistance in debugging the code generator. When the
workcell was completed, we began compiling into Adept’s V+
programming language. The primary difficulties that arose in
this stage were similar to those encountered when manuaily
programming a robotic task: accurately defining fixed loca-
tions in the workcell, getting various pieces of equipment to
talk to one another, etc. Instead of using the compiler gen-
erated locations, we used a manually designed part tray that
would allow part to be grouped in kits. The vision system was
used to locate the large cog-like parts, while the small pins
were precisely located in holes in the part kit delivery tray.
This corresponds (o a situation in which the cogs are provided
by an outside manufacturer and are manually added to the kits,
while the pins are fabricated in-house and are precisely located
in the part tray as they leave the turning station. The force sen-
sor in the initial system is only used for guarded moves (and
searches) rather than force-directed actions. A passive RCC
on the amm provided the required compliance for the tight in-
sertions. In spite of the limited capabilities of the workcell,
the compiler generated code allows consistently successful as-
sembly of the pattern wheel assembly. The plan creation and
compilation each take less than one second to execute (on a
Symbolics Lisp Machine and a Sun workstation, respectively).
The assembly requires a few minutes in the workcell.

The Archimedes sysiem is capable of dealing with
a large variety of interesting real-world assemblies, includ-
ing a parts of the automobile drivetrain such as the transmis-
sion and differential; many subassemblies in machine tools;
many household appliances like blenders, mixers, drills, elc;
consumer electronics like VCRs and personal stereos (“Walk-
man”); and so on. We are taking advantage of the modular
implementation of the system to expand its capabilitics. We
are extending the modeler to more general 2 3/4 D capabili-
ties, and working on a true 3D approach. We are improving
the planner with a more powerful backtrack mechanism and
a simple method for writing rules. The compiler will have
added capabilities for motion planning and error handling.
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