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NEUTRON SPECTRA AS A FUNCTION OF ANGLE AT TWO METERS

UCRL--90178
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R. V. Griffith, C. J. Huntzinger and J. H. Thorngate,

Abstract

i Measurements of neutron spectra produced hy the Los Alamns National

E \ Laboratory (LANL) Little Roy replica assembly (Comet) were made with a
combined multisphere and liquid scintillator system, that has heen widely used
at the Lawrence Livermore National Lahoratory. The comhined system was used
for measurements at the side (90°) and nose (0°) of the assembly: additional
measurements were made at 45° using only the liquid scintillator. Data were
nhtained at two meters fram the center of the reactive region of the assembly,

with gond agreement hetween the multisphere and scintillator results.

Comparison with 1iquid scintillator measurements performed by experimenters
from the Ganadian Nefence Research fstahlishment, Ottawa (NRED) and

calculations from LANL depended on the specific angle, ohtaining the hest

i agreement at 90°
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I. TIntroduction

Since a major portion of the understanding of radiation effects on humans
depends on data from the Japanese homb survivors, considerable affort has been
expended to provide the necessary dosimetry. The recent availability of
better source terms led to the recalculation of the dose-versus-distance
re]ationships.1 These calculations produced results at variance with the
previously used T65D va]ues,2 particularly for Hiroshima. As a result, a
critical assembly was constructed at LANL to mock up the Hiroshima weapon
“Little Roy". The leakage radiation from this assemhly has heen measured by a
number of groups. We made neutron spectrum measurements at three argles
around the assembly, two meters from the center.

Qur measurements used a multisphere system and a liquid scintillatar
system. In hoth cases, preliminary data reductions were done in the field.
The scintillator, with careful data acquisition and reduction, can pravide
reasanahly high resolution spectra over the energy range of 0.5 to 20 MeV,
while the multisphere system can provide low-resolution data from 2.5 x 10'8
to 10 MeV, Therefore, the scintillator provides the bulk of the information
ahove 1 MeV where the multisphere resolution is maore limited, and the
multisphere provides information in the energy region helow the range of the

scintillator, thus combining the data from the two systems.

[I. Detectors

Liquid Organic Scintillator

Neutrons interact with an organic scintillater primarily hy the production
of recoil protons. The liquid organic Scintillator NE-213 (Nuclear

Enterprises Ltd., Edinburgh, Scatland) has gained wide acceptance far
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measuring fast neutron spectra (En > 100 keV). A large part of its popularity
is hecause protons and electrons produce light pulses with sufficiently
different decay constants that the pulses can he electronically separated over
a wide enerqy range. Liquid scintillators possess other advantages: They can
he made in almost any desired shape and size, and their homogeneous nature
eliminates the non-isotropic 1ight production which occurs in solid organi:
scintillators.

The need to hold a liquid scintillator in some sort of a cell can be a
prohlem for some applicaticns. The detector used for these measurements had a
cylindrical glass cell enclosing a liquid scintillator 5.08-cm in diameter by
5.08-cm high. The cell was designed for mounting in any orientation.

Liquid organic scintillators produce considerably less light for a given
electron energy deposition than does a Nal scintillator; thus they have poorer
resolution. Also, the light producad by protons in an organic scintillatar is
not a linear function of the energy deposited. For example, a 20-MeV proton
produces about 200 times more 1ight than a 0.5-MeV proton. To ensure that the
relation hetween output current and incident 1ight stays linear over this wide
range of light values, the circuit providing the operating voltages for the
phaotomultiplier tube must bhe designed to accommodate tlarge surges in current
and remain stahle.3 The circuits used to amplify the signals must also be
capar1e of handling this large dynamic range.

To differentiate between neutron- and gamma-ray-produced pulses, we use
the pulse shape discriminator (PSD) descrihed by Adams and white4
(commercially availahle as the Link System, Ltd. PSD 5010). This circuit is
the hest we found among the many techmiques which have heen reported. Even

it, however, has pulse-rate and dynamic-range limitations which affect data



awcguisition. Dynamic range limitations make it necessary to use two gain
settings to covzr the neutron energy range from 0.5 to 20 MeV. Our standard
technique divides the measurements into one range from about 1.5 to 20 :V and
a second range from about 0.5 to 2 MeV. This provides an overlap to ensure

that the runs are consistent.

Multispheres

The use of multisphere-moderated neutron spectrometry dates back more than
20 years.5 The advantages of “nis technique are simplicity of operation,
increased sensitivity, and procuction of spectral information over the full
neutron energy range. A major disadvantage is the limited energy resolution.

The multisphere system used at the Lawrence Livermore National Laboratory
(LLNL) dincludes a 12.7 x 12.7 mm 6LiI crystal with polyethylene spheres 7.6,
12.7, 20.3, 25.4 and 30.5 cm in diameter. The 7.6 and 12,7 cm spheres are
covered with 0.050-m thick cadmium shells to suppress thermal neu.ron

response.

II1. Data Acquisition
The detectors were mounted on a special handling device designed to allow
measurements at angles from 90° (side) to 0° (nuse) while maintaining a
constant distance of 2 meters to the center of the assembly. We made our
measurements during the week of April 25, 1983, when the Comet assembly was

operated outside the containment building.
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Organic Scintillator

Generally the low gain (1 - 20 MeV) data were taken first since the
spectra had most of their infnrmation in this range. Refore taking neutron
data we performed pulse height calibrations using the Compton edges produced
hy the three gamma rays from 207Ri (edges at 0.393, 0.85R, 1,55 MeV), the two
from 2?Na (0.341 and 1.07 MeV) and one from 137¢ (0,482 MeV). Considerable
extrapalation of the calibration data was required to cover the entire range
cf the measurement. A similar set of gamma ray data was taken after the
neutron run. The gamma data were fit with a least square straight line using
1ight values from our gamma-ray light yield measurpmpnts.6 This assumes that
any gain drift occurred linearly during the course of the neutron run and that
an average is the best representation of the adjustment which must be made.

For the high-gain runs (0.3 - 2 MeV), the 60 keV gamma ray from 2- ‘Am and
the Compton edges from the Teast energetic gamma rays of 22Na and 207Ri are
used for pulse-height caiibration. In this case, the 20781 gamma ray produces
a calibration point nearly 60% of full scale, requiring less extrapolation and

allowing a good calibration with fewer points,

Multispheres

The Lil detector is used with a portable pulse-height analyzer to provide
immediate measurement of the detector respons2s. The main feature of the
pulse-height spectrum is the peak due to the 6LT’I (n,alpha) reaction. The
area of the n,alpha peak (after subtracting the continuum due to gamma
hackground and other neutron interactions) is used as the detectnr response.
We use a logarithmic interpolation between the minimum below the n,alpha peak

and the point at which the n,alpha events appear to no longer contribute to
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the spectrum. We have found that the 0.5 9pch x 0.5 inch LiF crystal is
sufficiently sensitive to measure spectra at a Tevel of 1 nSv over a period of
a few hours.

Spectrum determinations are usually made hy leaving the crystal in a
fixed position and taking individual measurements with the various spheres in
position over the detector. In addition to the sphere measurements, we also
take counts with and without a 0.05-cm-thick cadmium sleeve over the
crystal. Measurements of the Comet Assembly were made at two meters using the
special handling device. We measured only the 0° and 90° points with the

multisphere system.

1V. Data Reduction

Organic Scintillator

The data reduction program used was based on the realization that the
recoil-proton spectrum can be expressed as a convelution of the neutron
spectrum and the recoil-proton cross section. The neutron spectrum can be
deduced hy differentiating the recoil-proton data. This ignores the
distortions in the recoil-proton spectrum from nonlinear light output, edge
effects, or multiple scattering. Data reduction programs using
differentiation differ primarily in how they compensate for these
distortions. The largest distortion is caused by the nonlinear 1ight
output. If these techniques are to work properly, the relation between
scintillator 1ight output and proton energy must be well-known. These data
have been taken over varying energy ranges by a large numher of workers, with
considerable disagreement hetween their results. The carbon scattering,

carbon reactions, multiple scattering- and edge-effect corrections vary




widely, and all involve approximations. Despite these limitations, neutraon
spectrum reduction using differentiation retains considerable pupuiarity
because it can be done on small, even portable, computer systems.7

Because the relation between proton energy and light output is so
important, we made a large number of measurements with monoenergetic neutrons
to verify this function for our detectors. As might he expected, our results
are not in complete agreement with previous measurements. The response to
gamma-ray sources is widely u-ed as a means of providing a pulse-height
calibration for these detectors, so we also made a number of careful
measurements to determine 1ight output as a function of electron energy.

Qur data-reduction program starts by rebinning the data in 0.1 MeV
increments of proton energy. An advantage of this procedure is that the
results are always given in the same, uniform energy groups. This is
particularly convenient when combining data measured at different gains or
from multiple +uns. The corrections we presently use for efficiency, multiple
scattering, and edge effects are the same as those used hy Slaughter in
NUTSPEC,8 most of which were accumulated from various sources hy Toms.9 After
rebinning, the data are differentiated in the simplest possible way, using
differences of adjacent energy bins. Johnson has pointed out that other
differentiation procedures can result in distortions of the data.10

After differentiation, the data are smoothed with a Gaussian function
whose width varies in a manner similar to the change of resolution of the
detectar as 2 function of light output. The relation between light and

resolution is of the form reported by Dietze with the constants derived from

the Compton recoil electron data.11
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The data-reduction program is used wi*h a small computer (Hewlett-Packard
HP-B5) which can easily be taken into the field. A second program is used to

transfer data directly from a portable multi-channel analyzer to this

computer.

Multispheres

Accurate response functions are a vital aspect of the use of multispheres
for spectrometry. Lack of moncenergetic neutrons below 2 keV means that
calculations must be used to produce a full energy response matrix.
Calculations have been made for a Targe number of detector types over a range
of sphere sizes.lz-15 For some time we have used response funccions based on
the calculations by Sanna,15 which recognize that the polyethylene used for
spheres ranges in density from 0.9 to 1.0 g/cm3. These calculations also
provide data for interpolation using actual CHp densities. For the smaller
spheres this effect is not serious, but at diameters of 25 cm or more the
result could be in error of as much as 40 to 100% in the expacted thermal
neutron response.

The last bhasic reguirement is a mathematical method for unfolding the
spectrum from the response matrix. A number of computer codes have been
developed to attack this class of unfolding prob]em.16'26 For a number of
years, we have used the Fortran LOUHI code developnd at the Lawrence Berkeley
Labor‘ator‘y.”’24 LOUHI is designed to obtain the soiution of Fredholm
integral egquations of the first kind by using a gereralized least-squares
procedure with non-negative solution.

With LOUHI, any given energy bin can be "TIED" to a specific fluence

value if the experimenter has independent knowledge of that value. Therefore,
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we can use spectral data from high-resolution spectrometry systems, such as
the arganic scintillator, to establish the higher-enerqy portion of the
spectrum in order to evaluate the lnw and iitermediate bins more
effectively. The result is a hybrid spectrum with potentially improved
accuracy.

We have recently begun using the SPUNF code developed for desk top
computers (Hewlett-Packard 85).22 This code provides us with true portability
previously lacking in our multispher. system. Although the code does not have
some of the features of LOUHI (for example, the result is dependent on the
trial solutions), the results are quite comparable. This is particularly true
when comparing spectrum-averaged values from sach, such as the quaiity factor,

dose equivalent rate, and avera je neutron energy.

Results

The results of our measurements are presented in Tables 1-3 and
Figs. 1-3. The first figures show multisphere results-at 0° and 90°. Fewer
neutrons and a somewhat softer spectrum were obtained at 0° than at 90°. The
Tiquid scintillator results shown in Fig. 2 confirm this with the 45° data
falling between the 0° and 90° data. When the data from the two systems are
combined for the 0° and 90° cases, the results shown in Fig. 3 are chtained.
The effect of considering the scintillator results while processing the
muTtisohere data is small. This confirms that the data from the two systems
are consistent.

For purposes of comparison, experimenters from the Defence Research
E tablishment, Ottawa {DREQ) have made measurements using an NE-213 fast-

ncutron spectrometer at seven polar angles from 0 to 135 degrees and distances



of 75 and 200 cm from the center of the Comet assemb]y.27 Those measurements
were made inside a containment huilding which contributed additional
background components not present in our measurements. The DREQ experimenters
did, however, take steps to compensate for the huilding background except at
0°. In addition to these measurements, neutron transport calculations have
been made at LANL.?'8 A recent, unpublished set of calculations with improved
statistical precision29 has been used for comparison. These calculations do
not include scattering from the ground or building materials.

Comparisons of the LLNL measurements and LANL calculations over the range
10°/ to 10 MeV are presented in Figs. 4 and 5. The lack of scatter
contributien is evident in the spectral difference below about 100 eV. The
25-keV peak due to transmission through the steel assembly case is present in
the calculated spectra, but not found in thg LLNL composite spectrum because
of the poor multisphere resolution.

Figures 6-11 show the comparison of the calculated spectra with the two
measurements. The agreement at 0° is clearly poor. The neutron intensity is
Towest at this angle, so that background related errors could cause serious
differences. Neither LLNL nor DREO made background corrections at 0°, The
DREOQ measurements were made in the containment building with other neutron
sources present, while the LLNL measurements were made outside. As the angle
increases through 45° to 90° the agreement between hoth measurement sets ang
calculations improves dramatically.

Spectrum-weighted values of kerma,30 dose equiva]ent,31 and absorbed dose
{Element 57 of the Snyder phantom32) have also been calculated from these data
(Table 4). The full energy range weightings show significant differences,

primarily the result of the differences in the values of fluence per

-10-
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fission. Moreover, differences in spectral shape at low energies result in

different fluence-to-dose (equivalent) cunversion tactors. These differences

add

to the overall disparity. The weighted dosimetric parameters in the range

1 to 10 MeV again show the Targe disagreement at 0°, narrowing to +20% at 45°

and

+9.8% at 90°.
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Table 1

Composite Little Boy Replica Neutron Spectrum
2 meters - 0°

Lower Energy Fluence 2 1 -1 Lower Erergy Fluence > 1 1
Round (MeV) (n » cm™® MeV™" . Fission~!) Bound (MaV) (n » cm™ MeV™ . Fission™ )
2.50 x 108 3.23 + 0.960 x 10-2 0.95 2.29 + 0.067
~ 4,14 y 1077 1.45 + 0.676 1.05 1.39 + 0.045
6.83 6.41 + 3.48 x 10-3 1.15 8.10 + 0.276 x 10-9
1.44 x 10-8 2.77 + 1.38 1.25 5.29 + 0.214
3.06 1.17 + 0.57 1.35 3.33 £ 0.176
6.48 4.93 + 3.05 x 1074 1.45 2.63 + 0.157
1.37 x 1073 2.10 ¥ 1.64 1.55 2.35 + 0.136
2.90 9.22 * 8.21 x 10~ 1.65 2,02 + Q.11
6.14 4,26 + 4.03 1.75 1.53 + 0.104
1.30 x 1074 2.10 * 2.03 1.85 9.43 + 1.03 x 10-10
2.75 1.12 + 1.08 1.95 7.65 + 0.930
5.93 6.52 + 6.12 x 10-0 2.05 6.36 + 0.928
1.23 x 1073 4,19 ¥ 3.70 2.15 5.43 + 0.886
2.61 2.96 + 2.35 2.25 4.66 + 0.789
5.53 2.28 ¥ 1.54 2.35 3.85 + 0,697
1.17 x 1072 1.88 + 1.03 2.45 3.14 + 0.643
2.48 1.62 + 0.711 2.55 2.66 + 0.612
5.25 1.36 £ 0.463 2.65 2.33 % 0.595
0.111 1.01 + 0.243 2.75 2,01 + 0.587
0.224 5.59 + 1.10 x 10~/ 2.85 1.63 + 0.581
0.45 3.10 + 0.098 2.95 1.30 + 0.573
0.55 2.26 + 0.068 3.05 1.21 + 0.583
n.65 1.54 + 0.047 3.15 1.40 + 0.597
0.75 8.29 + 0,245 x 10-8 3.25 1.60 + 0.588
0.85 4.10 + 0.110 3.35 1.56 + 0.553
3.45 1.21 + 0.510
: 3.55 7.36 + 4.85 x 10-1!
| 3.65 3.84 + 4.88
3 3.75 2.67 + 5.00
§ 3.85 3.23 + 5.05
B 3.95 4.46 + 5.00
' 4,05

« Error estigates
2.50 x 107° tp 0.45 MeV - Uncertainty of muitisphere unfolding process
above 0,45 MgV - Statistical errors and cross section uncertainties
associated with NE-213 unfolding
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Table 3

Composite Little Boy Replica Neutron Spectrum
2 meters - 90°

Lower Energy Fluence » 1 1 Lower Energy Fluence 5 1

Bound (MeV) (n « cn™ MeV™" « Fission™") Bound (MeV) (n « em™ MeV™" Fission'l)
2.50 x 10-8 3.59 +1.59 x 1072 0.95 1.70 + 0.032

4.14 x 1077 2.00 + 0.930 1.05 1.17 % 0.022

6.83 1.08 * 0.561 1.15 8.09 + 0,153 x 10-8
1.44 X 1076 5.54 + 2,69 x 1073 1.25 5.81 + 0.114

3.06 2.68 + 1.16 1.35 4.02 ¥ 0.087

6.43 1.24 + 0.601 1.45 2.71 + 0.070

1.37 x 107° 5.58 + 3,48 x 1074 1.55 2,45 + 0.072

2.90 2.50 + 1.87 1.65 2.61 + 0.076

6.14 1.15 + 0.954 1.75 2.38 + 0.067

1.30 x 1074 5.56 + 4,48 x 107 1.85 1.02  0.054

2.75 2.90 + 2,54 1.95 1.37 + 0.0/6

5.93 1.66 + 1.42 2.05 1.17 + 0.074

1.23 x 1073 1.06 + 0,854 2.15 9.87 + 0,725 x 1079
2.61 7.61 + 5.48 x 10-6 2.25 8.44 t 0.666

5.53 6.11 + 3.70 2.35 4,34 & 0,574

1.17 x 1072 5.42 + 2.59 2.45 6.43 + 0.485

2.48 5.11 + 1.83 2.55 5.67 + 0.432

5.25 4.77 + 1.27 2.65 5.07 + 0.399

0.111 3.87 + 0.743 2.75 4.59 + 0,374

0.224 2,22 + 0,353 2.85 4,15 ¥ 0,352

0.45 9.57 + 0,216 x 1077 2.95 3.73 + 0.328

0.55 9.30 + 0.200 3.05 3.35 + 0.310

0.65 7.38 + 0.160 3.15 3.08 + 0.295

0.75 4,51 ¥ 0.091 3.25 2.87 + 0.283

0.85 2.63 + 0.048 3.35 2.62 + 0,274
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-2 pey-l Fission'l)

Fluence
(n + em

Lower Energy
Bound (MeV)

Table 3 (continued)
2 meters - 90°

Composite Little Boy Replica Neutron Spectrum
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Table 4
Spectrum Weighted Dosimetric Quantities

4.14 + 1077 to 1- Mev

KERMA ICRPDE EL57
' ne n/cm2 « Fission Ergs/gm/fission Rem/Fissicn Rad/Fission
LLNL  5.47 « 1077 0.497 . 10713 5.66 « 1071  0.638 . 10715
: LANL  3.32 0.234 2.58 0.323
90°
LLNL  20.0 2.08 24,0 2.62
LANL  16.1 1.36 15.6 1.82
1.0 to 10 MeV
OO
LLNL  0.0566 - 107/ 0.0146 » 10713 0.198 - 1071%  g.0186
LANL  0.0327 0.00840 0.114 0.0107
DREO  0.139 0.0392 0.505 0.0498
45°
LLNL  0.252 0.0670 0.879 0.0852
LANL  0.204 0.0542 0.724 0.0691
DREO  0.299 0.0813 1.08 0.104
90°
LLNL  0.630 0.176 2.27 0.224
LANL  0.565 0.155 2.03 0.196
FUE0 0,683 0.188 2.47 0.238
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Normalized fluence (n/cm?2-MeV - Fission)

Bonner sphere spectra at 2 meters
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Normalized fluence (n/ecm?2 -MeV - Fission)

NE213 spectra at 2 meters
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Normalized fluence (n/cm? -MeV - Fission)
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Norsmalized fluence {n/am?-MeV - Fission)

Comet spectra — 0 degrees, 2 m
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Normalized fluence (n/cmz ‘MeV - Fission}
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Comet spectra — 0 degrees, 2 m
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Normalized fluence {n/cm?2 -MeV - Fission)

Comet spectra — 0 degrees, 2 m
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§ Comet spectra — 45 degrees, 2 m
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Normalized fluence {n/ecm?2-MeV - Fission)

Comet spectra — 45 degrees, 2 m
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Normalized fluence {n/em?-MeV - Fission)
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