ORNL/TM--12375

DE93 013470

o Engineering Physics and Mathematics Division

" PROCEEDINGS OF THE SEVENTH
INTERNATIONAL SYMPOSIUM ON
METHODOLOGIES FOR INTELLIGENT
SYSTEMS (POSTER SESSION)

June 15-18, 1993
Trondheim, Norway

Karen S. Harber, Editor
Center for Engineering Systems Advanced Research
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831-6364

’ DATE PUBLISHED — May 1993

Sponsors:
The University of Trondheim, Norway
NFR/NTNF - The Norwegian Research Council
The University of North Carolina in Charlotte, U.S.A.
Office of Naval Research
Oak Ridge National Laboratory/Center for Engineering Systems Advanced Research
ESPRIT BRA Compulog Network of Excellence

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
managed by
MARTIN MARIETTAf E II;D‘RGY SYSTEMS, INC.
- or the
U.S. DEPARTMENT OF ENERGY -

i . ‘
under contract DE-AC05-840R21400 M A S TER .

SRS TRIBUTION OF THIS DOCURMEN T i UNLIMITEB\

Preface

This volume contains papers which were selected for presentation at the Poster
Session of the Seventh International Symposium on Methodologies for Intelligent
Systems - ISMIS’93, held in Trondheim, Norway, June 15-18, 1993. The symposium
was hosted by the Norwegian Institute of Technology and sponsored by The University
of Trondheim, NFR/NTNF - The Norwegian Research Council, UNC-Charlotte, Office
of Naval Research, Oak Ridge National Laboratory and ESPRIT BRA Compulog
Network of Excellence.

ISMIS is a conference series that was started in 1986 in Knoxville, Tennessee. It
has since then been held in Charlotte, North Carolina, once in Knoxville, and once in
Torino, Italy.

The Organizing Committee has decided to select the following major areas for
ISMIS’93:

Approximate Reasoning
Constraint Programming
Expert Systems

Intelligent Databases
Knowledge Representation
Learning and Adaptive Systems
Manufacturing

Methodologies

0O O LN

The contributed papers were selected from more than 120 full draft papers by the
following Program Committee: Jens Balchen (NTH, Norway), Alan W. Biermann
(Duke, USA), Alan Bundy (Edinburgh, Scotland), Jacques Calmet (Karlsruhe,
Germany), Jaime Carbonell (Carnegie-Mellon, USA), David Hislop (US Army
Research Office), Eero Hyvonen FVTT, Finland), Marek Karpinski (Bonn,
Germany), Yves Kodratoff (Paris VI, France), Jan Komorowski (NTH, Norway),
Kurt Konolige (SRI International, USA), Catherine Lassez (Yorktown Heights,
USA), Lennart Ljung (Linkoping, Sweden), Ramon Lopez de Mantaras (CSIC,
Spain), Alberto Martelli (Torino, Italy), Ryszard Michalski (George Mason, USA),
Jack Minker, (Maryland, USA), Rohit Parikh (CUNY, USA), Judea Pearl (UCLA,
USA), Don Perlis (Maryland, USA), Francois G. Pin (ORNL, USA), Henri Prade
(Toulouse, France), Zbigniew W. Raé (UNC, USA), Barry Richards (Imperial
College, UK), Colette Rolland (Paris I, France), Lorenza Saitta (Trento, Italy),
Erik Sandewall (Linkoping, Sweden), Richmond Thomason (Pittsburgh, USA),
Enn Tyugu (KTH, Sweden), Ralph Wachter (ONR, USA), S. K. Michael Wong
(Regina, Canada), Erling Woods (SINTEF, Norway), Maria Zemankova (NSF,
USA) and Jan Zytkow (Wichita State, USA). Additionally, we acknowledge the
help in reviewing the papers from: M. Beckerman, Sanjiv Bhatia, Jianhua Chen,
Stephen Chenoweth, Bill Chu, Bipin Desai, Keith Downing, Doug Fisher,
Melvin Fitting, Theresa Gaasterland, Atillio Giordana, Charles Glover, Diana Gordon,
Jerzy Grzymala-Busse, Cezary Janikow, Kien-Chung Kuo, Rei-Chi Lee, Charles Ling,
Anthony Maida, Stan Matwin, Neil Murray, David Mutchler, Jan Plaza,
Helena Rasiowa, Steven Salzberg, P. F. Spelt, David Reed, Michael Sobolewski,
Stan Szpakowicz, Zbigniew Stachniak, K. Thirunarayan, Marianne Winslett,
Agata Wrzos-Kaminska, Jacek Wrzos-Kaminski, Jing Xiao, Wlodek Zadrozny and
Wojtek Ziarko. '

ili

The Symposium was organized by the Knowledge Systems Group of the
Department of Computer Systems and Telematics, The Norwegian Institute of
Technology. The Congress Department of the Institute provided the secretariat
of the Symposium. The Organizing Committee consisted of Jan Komorowski,
Zbigniew W. Ras$ and Jacek Wrzos-Kaminski.

We wish to express our thanks to Francois Bry, Lennart Ljung, Michael Lowry,
Jack Minker, Luc De Raedt and Erik Sandewall who presented the invited addresses
at the symposium. We would also like to express our appreciation to the sponsors of
the symposium and to all who submitted papers for presentation and publication in
the proceedings. Special thanks are due to Francois Pin at ORNL for his help and
support.

Finally, we would like to thank Jacek Wrzos-Kaminiski whose contribution to
organizing this symposium was essential to its becoming a success.

J. Komorowski and Z. W. Raé March 1993

iv

TABLE OF CONTENTS

Implications in Vivid Logic
Seiki Akama and Hiroto Ohnishi 1

A Self-Learning Bayesian Expert System (B.E.St.)
Farrokh Alemi, Pallav Bhatt, Eric Eisenstein, Adam Fadlalla,
Richard Stephens, and John Butts 12

A Natural Language Generation System for a Heterogeneous
Distributed Database System
Bipin C. Desai and Georgios Ioanni Kouklakis 27

‘Competence-Switching’ Managed by Intelligent Systems
Edeltraud Egger and Hardy Hanappé\ 44

Strategy Acquisition by an Artificial Neural Network: Experiments
in Learning to Play a Stochastic Game
Neal M.Mazur 55

Viewpoints and Selective Inheritance in Object-Oriented Modeling
MarkkuQivo 70

Multivariate Discretization of Continuous Attributes for Machine
Learning

Thomas W. Rauber, Dinu Coltuc, and Adolfo S. Steiger-Gargio 80

Utilization of the Case-Based Reasoning Method to Resolve
Dynamic Problems
Sophie Rougegrezo 95

Formalization of an Ontology of Ceramic Science in CLASSIC
Piet-Hein Speel, Paul E. van der Vet, Wilco ter Stal, and
Nicolaas J.I.Mars 110

Linguistic Tools for Intelligent Systems
BorisStilman0 L0 125

An Application of Rough Sets in Knowledge Synthesis

S.K.M. Wong, Y. Y. Yao,and L.S. Wang 140
A Relational Model for Imprecise Queries

Weining Zhang, Clement Yu, Gaoming Wang, Tracy Pham, and

Hiroshi Nakajima 151

POSTER SESSIONS

APPROXIMATE REASONING

“An Application of Rough Sets in Knowledge Synthesis,” S. K. M. Wong (Univ. of
Regina, Canada), Y. Y. Yao (Lakehead Univ., Canada), and L. S. Wang (Univ. of
Regina, Canada)

EXPERT SYSTEMS

“Formalization of an Ontology of Ceramic Science in CLASSIC,” Piet-Hein Speel,
Paul E. van der Vet, Wilco ter Stal, and Nicolaas J. I. Mars (Univ. Twente,
The Netherlands)

INTELLIGENT DATABASES

“A Natural Languaée Generation System for a Heterogeneous Distributed Database
System,” Bipin C. Desai and Georgios Ioanni Kouklakis (Concordia Univ., Canada)

“A Relational Model for Imprecise Queries,” Weining Zhang (Univ. of Lethbridge,
Canada), Clement Yu (Univ. of Illinois-Chicago, USA), Gaoming Wang, Tracy Pham
(Omron, Japan), and Hiroshi Nakajima (Alberta, Canada)

LEARNING AND ADAPTIVE SYSTEMS

“A Self-Learning Bayesian Expert System (B.E.St.),” Farrokh Alemi, Pallav Bhatt,
Eric Eisenst)ein, Adam Fadlalla, Richard Stephens, and John Butts (Cleveland State
Univ., USA

“Strategy Acquisition by an Artificial Neural Network: Experiments in Learning to
Play a gtocha.stic Game,” Neal M. Mazur (Union College, USA)

“Multivariate Discretization of Continuous Attributes for Machine Learning,”

Thomas W. Rauber (Univ. of Nova de Lisboa, Portugal), Dinu Coltuc (ICPE,

Romania), and Adolfo S. Steiger-Gargéo (Univ. of Nova de Lisboa, Portugal)
LOGIC FOR Al

“Implications in Vivid Logic,” Seiki Akama and Hiroto Ohnishi (Fujitsu, Japan)

METHODOLOGICAL ISSUES

“Viewpoints and Selective Inheritance in Object-Oriented Modeling,” Markku Oivo
(VTT, Finland)

“Linguistic Tools for Intelligent Systems,” Boris Stilman (Univ. of Colorado, USA)

“‘Competence-Switching’ Managed by Intelligent Systems,” Edeltraud Egger
(Techni;al Univ. of Vienna, Austria) and Hardy Hanappi (Academy of Science,
Austria

“Utilization of the Case-Based Reasoning Method to Resolve Dynamic Problems,”
Sophie Rougegrez (Univ. Paris VI, France)

vi

IMPLICATIONS IN VIVID LOGIC

Seiki Akama and Hiroto Ohnishi

Department of Information System, Teikyo University of Technology,
2289 Uruido, Ichihara-shi, Chiba, 290-01, JAPAN
Toyo Women's College
1660 Hiregasaki, Nagareyama-shi, Chiba, 270-01, JAPAN

ABSTRACT
We discuss implications in vivid logic to enhance the
expressive power concerning conditional knowledge. This

can be accomplished as an extension of Wagner's partial
logical framework. We show that the resulting system is
equivalent to Nelson's constructive logic. We also argue
inconsistency handling in the proposed framework.

1.INTRODUCTION

The idea of vivid knowledge was proposed by Levesque[l] to handle
incomplete information in knowledge bases. However, to make Levesque's
idea computationally feasible we have to incorporate both closed world
assumption(CWA) and the open world assumption(OWA) in a unified frame-
work. Unfortunately, as is well known these two meta-rules for han-
dling negative information are incompatible.

The lesson from Levesque's observation is that there is a need to
formalize two types of negation corresponding to CWA and OWA. In
particular, we should deal with explicit negative information. For
example, negation in logic programming has been considered as negation
as rfailure(NAF) to avoid the computational overhead in implementing
classical negation. But, recently several people have proposed to add
explicit negation to logic programming effectively; see Gelfond and
Lifschitz[2] and Kowalski and Sadri[3] for details. It is thus inter-
esting to explore a logical framework for vivid reasoning.

Wagner([4][5] proposed a vivid logic(VL) to incorporate strong and
weak negation within the framework of partial logic. In fact, vivid
logic can be regarded as the first promising system for vivid reason-
ing. For instance, Wagner's system has some similarities with Nel-
son's[6] constructive logic. Constructive logic has attracted re-
searchers in AI, e.g., RAkama[7] and Pearce and Wagner[8]. The vivid
logic can also be automated by means of logic programming with strong
negation due to Pearce and Wagner([8].

The purpose of this paper is to expand Wagner's vivid logic with
implication for describing conditional knowledge. By introducing
implications in Wagner's logic, we can improve the expressive power
required for vivid reasoning. From a theoretical point of view, the
given system is also attractive in the sense that it corresponds to the
full system of Nelson's constructive logic. This is because Nelson's

system can express both truth and falsity in a constructive setting.

The rest of this paper is structured as follows. In section 2, we
review Wagner's vivid logic VL. Section 3 discusses Nelson's construc-
tive logic. We proposed the extended vivid logic EVL in section 4. We
develop a semantics and proof theory for EVL. We also try to embed EVL
in an extended version of logic programming with strong negation.
Section 5 argues the inconsistency handling in the proposed framework.
Section 6 ends with our conclusions.

2. VIVID LOGIC

The language of Wagner's[4][5] vivid logic VL consists of &(con-
junction), V (disjunction), -(weak negation), and true(truth). A liter-
al is either an atomic formula or strongly negated atom. A vivid
knowledge base V consists of inference rules of the form lit « F
read as lit if F, where lit is a literal and F is an arbitrary formula.
We call such rules conditional facts. A rule with its premise true is
called a fact denoted by lit instead of 1lit «~ true. A variable-free
expression is said to be ground.

Although we assume implicit quantification, a vivid knowledge base
V with non-grounded conditional facts can be identified with a dynamic
representation of the corresponding set of ground conditional facts by
means of the current domain of individuals U, denoted by [V]U:

[V]U = {lito « Fo: lit « F €V and o: Var(lit, F) —U)
(2.1)

where o ranges over all mappings from the set of variables of lit and F
into the set of all constant symbols U. We call o a ground substitu-
tion for lit « F and [V]y the Herbrand expansion of V relative to a
certain Herbrand universe U. We also denote by [V] the Herbrand expan-
sion of V relative to the Herbrand Universe Uy.

Wagner argued that VL con represent four kinds of information,
namely definite positive information, definite negative information,
conditional information, and implicit negative information. The dif-
ference between strong and weak negation is that -p means that p is
falsifiable and -p means that p is not verifiable, respectively.

We then describe a model theory for VL. Let M = <M*, M™> be a
partial Herbrand interpretation, where M* contains positive facts and
M~ contains negative facts. A model of a program P is an interpreta-
tion satisfying all clauses of P. The partial Herbrand interpretation
can define two forcing relations F and 1 to express provability and re
futability, respectively:

MEa iff ae M
MEF&G iff M}FF and MG,
MEFV G iff M}FF or MG,
M F-F iff M4 F,
M E-F iff M}F,

M4 a iff ae&€ M,

M4 F&G iff M4 F or M 1 G,

M4 FV G iff M4 F and M4 G,

M4 -F iff M EF,

M4 -F iff M EF.
In this model, we assume that M F true for all models M. M is a par-
tial Herbrand model of V, denoted by M k V, if for all lit « F € [V]
and any ground instance Fo of F, M k Fo implies M f lito. We say that
F is a logical consequence of P, denoted by P f F, if every model of P
is also a model of F. We call M' an extension of M, denoted by M' >
M, if M*cM'* and M"CM'".
Theorem 2.2 (Wagner[4])
Let M'2M and let F be a ground formula without weak negation, then

M F F ==> MI ’: FI
M4 F ==> M 4F.
Theorem 2.3 (Wagner[4])
Every vivid knowledge base V without weak negation has a least model.
A proof theory for VL can be developed by formalizing a derivabil-

ity relation using natural deduction. We use the notation V | F to
show that F is derivable from V:

() V}F and VG ==> V}F&G,

(-&) V toF or V G ==> V } ~(F & G),
(-<&) V }-F orVy} -G ==> V} -(F&G),
(==&) V }--F and V } =G ==> V | =~(F & G),
() V }F ==> V } -F,

(=-n) V r -F ==> V f ---F,

(=) V }F ==> V| o~F,

(==) V}F ==> V } --F,

(=2=) V } =F ==> V }| =-=-F,

where F and G are ground formulas. We assume that for any V, V } true.
Let V be a set of simple facts. Then, the derivability of a fact from
V can be defined as a membership check in the following way:

(1it) Vv } lit iff lit €V.
(-1it) V } -lit iff 1lit €V.
In a general case, we can define the derivability as
(1it) Vv | lit iff 3(lit « F) €[V]: V } F,
(-1it) V | -lit iff v (lit « F) €[V]): V } -F.

However, this definition only works for well-founded VKB. For a gener-
al case, we need to add the following deduction rules:

(2.4) V + F for some lit « F € [V] => V + lit,
V + -F for all lit « F € [V] => V | -lit.

A formula F is thus derivable from V if there is a derivation for the
sequent V | F. Wagner also discussed weakly well-founded VKB and a
loop-tolerant recursive proof theory.

3. CONSTRUCTIVE LOGIC

Nelson[6] proposed constructive logic to formalize the notion of
constructible falsity or strong negation to overcome the weakness of
intuitionistic negation. In this sense, we distinguish constructive
logic from Heyting's intuitionistic logic. Nelson's principal aim is
to describe negation in the same way as in constructive truth. Then we
need strong negation satisfying some of the classical principles. For
constructive logic, the reader is referred to Gabbay[9] and
Akama[10][11][12]1[71[13] for details.

The axiomatization of constructive logic with strong negation
denoted by N can be given as that of positive intuitionistic predicate
logic with the following axioms for strong negation:

(Al) -A — (A — B),

(A2) -(A & B) « (-A VvV -B),
(A3) -(A V B) &« (-A & -B),
(A4) -(A - B) < (A & -B),
(A5) --A & A,

(A8) -V xA(x) « 3Ix-A(x),
(A7) -3 xA(x) & vx-A(x),

being closed under detachment and two obvious quantificational rules.
If we delete (Al) from N, the resulting system is said to be N.

Intuitionistic negation "-" can be defined in N as one of the
following forms; see Nelson[6]:

-A=A—- B& -B (3.1)

-A=3A-—- -A (3.2)
We also have the following as a theorem in N:

-A — -A (3.3)
For a semantics for N, we can give a Kripke type model theory by ex-
tending intuitionistic Kripke semantics. Following Gabbay[9], let

(S,R,0,val) be a strong propositional Kripke structure, where (S,R,0)
is a partially ordered set with first element O € S and val is a three-
valued function such that for each t € S and atomic q, val(t,q) € {-1,
0, 1) satisfying that tRs and val(t,q) #0 imply val(t,q) = val(s,q).
Intuitively, the values of val 1, 0, -1 are, respectively, used to
express truth, undefined, falsity in a constructive sense.

The truth-value (A)t of a formula A at a point t of a strong

Tl i

e ¥ 1 1 JNIi

propositional Kripke structure is defined by induction as:
(A)t = val(t,A) for atomic A,

(A & B)t = min((A)t, (B)t)v

(A V B)t = max((A)t, (B)t)’

(A — B)t =1 iff for all s, tRs and (A)szl imply (B)s=1,
(A - B)y = -1 iff (A)y =1 and (B)y = -1,

(-A)y = 1 iff (A), = -1.

We say that A is valid in the structure if (A)y = 1. We can establish
the completeness of N as follows:
Theorem 3.4 (Completeness theorem)
tyA iff A is valid in every strong propositional Kripke structure.

The above Kripke semantics can also be extended for the predicate
logic; see Thomason[l14] and Akama[11][13].

4. AN EXTENSION OF VIVID LOGIC
WITH IMPLICATION

We are now in a position to extend Wagner's vivid logic VL with
intuitionistic implication to formalize vivid reasoning within the
framework of constructive logic. It is obviously of importance to add
implications to VL because we can express conditional knowledge flexi-
bly.

We introduce (intuitionistic) implication — to VL. The resulting
system is called extended vivid logic EVL. Then we can use embedded
implications to describe conditional knowledge in connection with
hypothetical reasoning. In EVL, implications are interpreted in the
following way:

MEF—=G iff wM'2M (M'|= A implies M'E B),
M{F— G iff MFF and M4 G.

The derivability relation of the implication can be expressed as
(») V, F}G ==> V}IF - G,
(~—) V f F and V } G ==> V r -(F — G).

Next, we prove the relationship of EVL and Nelson's constructive
logic by showing the equivalence between partial Herbrand semantics and
Kripke semantics. The proof can be developed using a variant of
strong Kripke structure defined above in such a way that Herbrand
interpretations are defined as subsets of the Herbrand base. Let a
Kripk%(.mterpretation M for A be a tuple <W,C V,,V_,D>, where
We2 is a partially ordered set of worlds, v, and V_ are func-
tions which map every literal to a subset of W closed under C satisfy-
ing V;(a) N V_(a) = g, and D is a (constant) domain. We here denote
the Herbrand base for P by B(P). Then we can define two forcing rela-
tions f and ﬂ with respect to a formula A in a world w of M, denoted by
M, w A (M w {1 A) to state that A is true (false) at a world w in a

model M as follows:
M, wka iff we v,(a),
M, w 4 a iff we V_(a).
The forcing relations can thus be extended by induction on A as
M, w F true,
M, w4 false,
wkEF&G 1iff M, w fFand M, w F G,

w E-F iff M, wq F,

wEk-F iff M, w fFF,

wikF—- G iff vw' 2w (M, w'FF ==> M w'}G),
FF(x) iff M F F(t) for some t € D,

wi{ F&G iff M, w4 F or M, w {1 G,

wdq oF iff M, w FF,

wdq -F iff M, w }F,

M,wq F— G iff M, w fFand M, w{ G,

M4 F(x) iff M [F(t) for all t € D.

We say that a Kripke interpretation satisfies a formula A iff M, Wy F
A, where wy is the least (actual) world. A goal G is a logical conse-
quence of ghe knowledge base V, denoted by V F G iff M, wg k V ==> M,
wg F C for all Kripke interpretations M for P. We here write PB(A) for
a partial Herbrand base for A defined as a pair <B(A), {-a:a€ B(A)}>.
Lemma 4.1
Let IO be a subset of PB(A) for a formula é(?nd M the Kripke interpre-
tation <W,c,V_,V_,D>. IfW=({I':1I'€ 2P and I5C I'}, where Ip is
a subset of PB(A), then for all IEW,
I FA iff M, I FA.
Proof: By induction on A.
Lemma 4.2
I G <==> M, 1 FG.
Proof: By induction on G.
Theorem 4.3
For any vivid knowledge base V and any goal G,
Vg G iff V F G.

Proof: For (=>), we have M, 1I FP==>M, k G for all Kripke inter-
pretaiions by hypothesis. Leg I be an 1nterpretat10n satisfying I k P.
Then, M, 1 F P by lemma 4.1, where M and I are as described above. So,
M, I F G by hypothesis. From lemma 4.2, we obtain I F G.

o prove (<=), by hypothesis 1 FP==>1 F G for all interpreta-
tions. Then, we must prove that M, Ip P ==> M, I G for all

- -

-

-

2R RRR R RZR

Kripke interpretations There are two cases for I,. In other words,
either IO P or I E If Io P then M, IO F P by lemma 4.2.
Similarly, if I en M 1 G y lemma 4.2. As a consequence, we

have either M, 0 f P or M, IO F G. This implies that M, Ip FP ==
M, Io F G.
0

Because Pearce and Wagner's([8] logic programming with strong
negation(LPS) is faithful to Nelson's logic N°, EVL without "not" is
also faithful to not only N~ but also LPS with intuitionistic implica-
tions. This implies that EVL can be simulated within LPS. In other
words, LPS can serve as a general constructive framework for implement-
ing vivid reasoning.

5. WEAK NEGATION AND INCONSISTENCY

In this section, we discuss the issue of weak negation in relation
to reasoning about inconsistency. First, we describe how negation as
inconsistency can be interpreted in EVL. In fact, EVL has weak nega-
tion "not" as negation by failure, which is, however, meta-level nega-
tion. To make EVL more logical, we would like to define weak negation
as in constructive logic, as intuitionistic negation can be defined in
N. Thus, we introduce weak negation in EVL identifying with intuition-
istic negation in the manner of negation as inconsistency.

Negation as inconsistency(NAl) was proposed by Gabbay and Sergot
[15] as an alternative to NAF in order to give a logical negation to
logic programming. NAI can express negation by means of inconsistency
checking. In fact, Gabbay and Sergot's formulation assumes that a
database can be identified with a positive program P augmented with a
set of negative clauses N of the form of integrity constraints. If
both positive goal G and negative goal -G are proved from the database,
then NAI denoted by "not*" can be confirmed in the sense that:

(P,N)?not* A =1 iff (P,A)?B =1 (5.1)

where BE N. Unfortunately, NAI is not local negation since it is
based on indirect interpretation via inconsistency checking. Thus NAI
cannot express explicit negative information. This means that NAI is a
kind of weak negation.

Gabbay and Sergot showed that NAF is a special case of NAI by
assuming N as a set of atoms which finitely fail from P, namely

P(?F)G =1 1iff (P,N)(?I)G =1 (5.2)

where P(?F)G = 1 ((P,N)(?1)G = 1) denotes success computation of G from
P ((P,N)) by NAF (NAI). Gabbay and Sergot also showed the translation
of NAI into N-Prolog of Gabbay and Reyle[16]:

Definition 5.3

Let (P,N) be a database, and let "false" be a symbol for absurdity:

(a) Define the following translation * from the language of NAI into
N-Prolog:

(al) q* = q for atomic,
(a2) (A & B)* = A* & B,
(a3) (A - B)* = a* —~ B*,
(a4) (not* A)* = A* - false.
(b) Let D* be the following database of N-Prolog:

i

D* = {A*: A€P)uU {B* - false: BEN).
D* is called the translation of (P,N).

Theorem 5.4
(P,N)(?1)G = 1 iff D*?G* = 1 in N-Prolog.

This result can be recast in our case by formalizing N-Prolog with
strong negation extending Gabbay and Reyle's language. As N-Prolog is
in fact complete for intuitionistic logic, A — false is identified with
intuitionistic negation -A. This interpretation is in parallel with
the definition of intuitionistic negation in N, namely

-A =3 > -A (5.5)
By (5.5), we modify the translation of "not*" as follows:
(a4') (not* A)* = A* - (-A)*,
where (ﬂA)* = -A* for atomic A. We should also rewrite (b) as
(b') D* = {a*: A eP} (B* - (-B)*: B €N}

It is easy to understand that, NAI (also NAF) can be expressed as
intuitionistic negation. Therefore, NAI is also complete for Nelson's
constructive logic N and EVL. Unfortunately, this result cannot be
applied to the case where underlying logic is replaced by the weaker
system N". This is because N~ is a paraconsistent logic, which is a
logical system in which inconsistency doces not mean triviality; see
Priest, Routley and Normanf[l17].

Second, we discuss the problem of inconsistency resolution. One
way to overcome difficulties with inconsistency is to employ paracon-
sistent logic which can view a contradiction true. Namely, when A &
-A is true, we can both assume that both A and -A are true. Unfortu-
nately, the paraconsistent approach cannot extract reasonable informa-
tion from the inconsistent database. Since EVL can be considered as a
version of paraconsistent logic, similar difficulty arises. Thus, we
must work out a method of resolving inconsistency in our system.

As paraconsistent constructive logic N~ (which is also a basis for
EVL), can tolerate inconsistency, we can utilize the underlying system
for conflict resolution. This is because N~ can still do constructive
reasoning under inconsistency. Our architecture thus deduces contra-
dictions by means of N, and to resolve it so that we can get a plausi-
ble conclusion based on some meta-level control strategy. However, it
is very difficult to carry out the idea in EVL mainly due to the
presence of weak negation. Consider the following example:

Example 1.
Let VKB be the following:

fly(x) « bird(x), -~abnormal(x)
-fly(tweety)
bird(tweety)

Existing logic programming semantics cannot capture the intended mean-
ing of the VKB. In fact, there is no model in well-founded semantics

.l

due to inconsistency. We can thus prove both fly(tweety) and
-~fly(tweety). However, the VKB intends to express that Tweety does not
fly explicitly. 1In this sense, we should deduce a plausible conclusion
-fly(tweety) even if inconsistency arises.

One possible solution is to amalgamate general rules and excep-
tions in the sense of Kowalski and Sadri's[3] logic programs with
exceptions. In their system, the negative conclusion -A is adopted if
we conclude both A and -A, simultaneously. It is, however, rather ad
hoc, since the postulate is definitely false in common-sense reasoning.
The problem with the example is that the closed world assumption(CWA)
by way of NAF is unrestrictedly applied. Since CWA is expressed as the
rule -A «-A in Gelfond and Lifschitz's[18][2] answer set semantics, we
obviously face the defect. The lesson from the fact is that in logic
programming with two kinds of negation we have to flexibly tell closed
world reasoning (i.e. weak negation) from open world reasoning (i.e.
explicit negation).

This suggests that if contradiction appears and if one of the
complementary conclusions was derived by CWA, then we can resolve
inconsistency by discarding the conclusions induced by CWA. In other
words, we need an action to revise VKB so that we can biock the appli-
cation of CWA in relation to the inconsistency. Using this strategy,
we get the revised VKB

(5.6) fly(x) « bird(x), -abnormal(x)
~fly(tweety)
bird(tweety)
abnormal(x) « -abnormal(x)

We can then prove the plausible conclusion ~fly(tweety). The point is
to add the fourth clause to avoid the application of CWA. We can thus
see that NAF is not logically sound in vivid reasoning. The above
strategy can easily be described by means of meta-level:

find_naf_body(V,A,-B) «~ prove (V,A), prove(V,-A)

prove(V",-A) — cwa_prove(V,-B,A), C = (B « -B),
add(v,C,Vv'), delete(V',-A,V")

prove(V",A) « cwa_prove(V,-B,-A), C = (B ~ -B),
add(v,C,V'), delete(V',-A,V")

where "find naf_body(V,A,-B)" is to mean that if contradiction A &
-A is provable, find weak negation in a body, "cwa_prove(V,-B,A)" that
A is provable from V by CWA to assume -B, "add(V,A,V')" that V' is ob-
tainable from V by adding A, and "delete(V,A,V')" that V' is obtainable
from V by deleting A, respectively. The meta-program is a natural
specification of our strategy. It is, however, open whether the
strategy can be established in the object-level computation.

The next example is called Barber's Paradox, which is of interest
to the formalization of common-sense reasoning.

Example 2.

10

Let VKB be given as follows:
shave(fred, x) « -shave(x,x)

The problem is: does the barber Fred shave himself? The well-founded
semantics can conclude that he does not. However, VKB proves that
shave(fred,fred). The reason is that we have -shave(fred,fred) since
shave(fred, fred) is not contained in VKB. As a consequence, we can

deduce that shave(fred,fred). Next, we add "shave(casanova,casanova)"
to VKB. Then we can prove both shave(fred, bill) and -shave(fred,
casanova). Consider the case that we instead add "mayor(casanova)".

In this case, no semantics including our method cannot conclude that
Fred shaves Casanova. But, from the view point of common-sense reason-
ing, we would like to deduce shave(fred, casanova). This example
suggests that we can incorporate some empirical evidence into reasoning
about incomplete information. In other words, vivid logic also has to
employ meta-level reasoning in addition to inference engine based on
constructive logic.

6. CONCLUSIONS

We have introduced intuitionistic implication into Wagner's vivid
logic. We have also shown how NAI(NAF) can be interpreted in our
logic. It has been argued that EVL with its device to resolve contra-
dictions is a promising theory for reasoning about inconsistency.

REFERENCES

1. Levesque,H.(1986): Making believers out of computers, Artificial
Intelligence 30, 81-107.

2. Gelfond,M. and Lifschitz,V. (1991): Logic programs with classical
negation and disjunctive databases, New Generation Computing 9,
365-385.

3. Kowalski,R.A. and Sadri,F. (1990): Logic programs with exceptions,
D.H.D.Warren and P. Szeredi(eds.), Proc. of the 7th ICLP, 598-613,
MIT Press, Cambridge.

4. Wagner,G.(1991a): A database needs two kinds of negation, B.
Thalheim, J.Demetrovics and H.-D.Gerhardt(eds.), Proc. of the 3rd
Symposium on Mathematical Foundations of Database and Knowledge
Base Systems, 357-371, Springer, Berlin.

5. Wagner,G.(1991b): Logic programming with strong negation and
inexact predicates, Journal of Logic and Computation 1, 835-859.

6. Nelson,D.(1949): Constructible falsity, The Journal of Symbolic
Logic 14, 14-26.

7. Akama,S. (1989): Constructive Falsity: Foundations and Their

Applications to Computer Science, Ph.D. dissertation, Department
of Administration Engineering, Keio University, Yokohama, Japan.
8. Pearce,D. and Wagner,G.(1991): Logic programming with strong
negation, P.Schroeder-Heister(ed.), Proc. of Workshop on Exten-
sions in Logic Programming, 311-326, Springer, Berlin, 1991.
9. Gabbay,D. (1981): Semantical Investigations in Heyting's Intui-

10.

11.

12.

13.

14.

15.

16.

17.

18.

11

tionistic Logic, Reidel, Dordrecht.
Akama,S. (1987): Resolution in constructivism, Logique et
Analyse 120, 385-399.
Akama,S. (1988a): Constructive predicate logic with strong
negation and mo2el theory, Notre Dame Journal of Formal Logic
29. 18-27.
Akama,S. (1988b): On the proof method for constructive falsity,
Zeitschrift fur mathematische Logik und Grundlagen der Mathema-
tik 34, 385-392.
Akama,S. (1990): Subformula semantics for strong negation sys-
tems, Journal of Philosophical Logic 19, 217-226.
Thomason,R.H. (1969): A semantical study of constructible
falsity, Zeitschrift fur Mathematische Logik und Grundlagen der
Mathematik 15, 247-257.
Gabbay,D. and Sergot,M. (1986): Negation as inconsistency 1,
Journal of Logic Programming 3, 1-35.
Gabbay,D. and Reyle,U.(1984): N-Prolog: An extension of Prolog
with hypothetical implication I, Journal of Logic Programming 1,
319-355.
Priest,G., Routley,G, and Norman,J. (1989): Paraconsistent
Logic: Essays on the Inconsistent, Philosophia Verlag, Munchen.
Gelfond,M and Lifschitz,V.(1990): Logic programs with classical
negation, D.H.D.Warren and P. Szeredi(eds.), Proc. of the 7th
ICLP, 579-597.

£ T

12

A SELF-LEARNING BAYESIAN EXPERT SYSTEM (B.E.ST.)

Farrokh Alemi*, Pallav Bhatt*, Eric Eisenstein*,
Adam Fadlalla**, Richard Stephens***, and John Butts*

*Health Administraticn Program
**Computer and Information Science Department
***Department of Sociology
Cleveland State University
Cleveland, OH 44115

ABSTRACT

This paper presents a Bayesian Expert System (B.E.St.).
This system is different from other forms of supervised
machine learning in that it induces likelihood ratios from a
set of cases. B.E.St. provides unique methods for maraging
conditional dependencies, for selecting questions to use in
its models, and for predicting events when given responses
that are not contained in its original set of cases.

1. TERMINOLOGY

B.E.St. predicts the probability that one of two mutually exclusive
and collective exhaustive target events will occur. We identify a target
event as H, indicate the presence of the event as H,, and indicate the
absence of the event as H, Probability is represented by the small letter
p. Thus, the probability of the event H; may be written as p(H,).

B.E.St. assumes that answers to a set of questions developed by

experts can serve as clues for predicting the target event. In this
paper, the terms "answers," "prediction clues," and "data" are used
interchangeably, and they are identified as D,, D;, ..., D,. Thus, D,

represents the answer to the ith question, the ith datum, and the ith clue
in the prediction task,

The possibility of the target event can be written as the
conditional probability of H, given the various clues:

p(Hy|Dy, Dy, ..., D).

The posterior odds for the occurrence of tue target event is shown as:
Posterior Odds of H = p(H,|D;, D, ..., D)/p(He|D;, Dy, ..., D)
B.E.St. is designed to calculate the posterior odds of a specified target
event. These odds are calculated as a function of likelihood ratios. The

likelihood ratio of D, is defined as:

Likelihood Ratio of D; = p(D,|H,)/p(D;|H,)

13

Where p(D;|H;) is the probability of observing clue D, in cases where H,
has occurred and p(D, |H,) is the probability of observing the same clue in
cases where H;, has occurred. For example, if we are examining the
importance of shock in predicting in-hospital mortality, then the
likelihood ratio principle suggests that this importance is equal to the
prevalence of shock among patients who live divided by the prevalence of
shock among patients who die:

Likelihood Ratio of Shock = p(Shock|Live)/p(Shock|Die)

. A likelihood ratio is a non-negative score. Values larger than one
suggest qualitatively greater support for the occurrence of the target
event, while unity suggests that no evidence exists for or against the
target event.

2. KNOWLEDGE MANAGEMENT APPROACH

There are numerous approaches to reasoning. Many expert systems
incorporate heuristics or rules provided by experts in a particular field.
Such an approach is advantageous because it is flexible and easily
understood by experts. However, this approach has two disadvantages: (1)
it requires a substantial time commitment on the part of the experts and
(2) it fails to provide a clear mechanism for resolving contradictions in
experts' opinions. Other supervised learning systems, such as neural
networks, do not require that experts provide rules as these systems
assess the relationships between clues and the target event through
automatic analysis of data and goodness of fit principles. However, these
systems often require that all contraditions in their data be resolved
before a solution can be determined.

2.1 BAYESIAN REASONING

B.E.St. has many advantages of both heuristic-based expert systems
and neural networks. B.E.St. is flexible and takes little time to set up,
and, unlike a neural network, its inference mechanism can be easily
understood by experts. Furthermore, unlike heuristic-based expert
systems, B.E.St. is capable of resolving the contradictory opinions of one
Or more experts.

B.E.St. predicts the target event using probability rules. If
p(D;, Dz, ...,Di|H;)/p(D;, D,, ..., D,) describes the likelihood ratio
associated with clues D; through D,, then B.E.St. calculates the odds for
the target event using a formula first suggested by Bayes:!

O0dds of (H|D,, D, ..., D) =
[p(Dy, Dy, ..., DulHy)/P(Dy, Dy, ...,Du|He) 1¥[p(H) /p(Hy)] (1)

1 T. Bayes, "Essays toward solving a problem in the doctrine of changes,"
Philosophical Transaction of Royal Society, 53: 370-418 (1783).

14

The principles wunderlying Bayes' formula include the wuse of
likelihood ratios. Although controversy exists regarding the use of
Bayes' formula for subjective inferences, the use of likelihood ratios is
well accepted by statisticians.?

2.2 BAYESIAN LEARNING

Machine learning occurs in at least two different ways: (1) through
deduction from a set of rules or (2) through induction from a set of
cases.® Our focus here is on inductive learning. Researchers who study
automated learning suggest several methods for inductive learning. In one
approach to supervised learning, a case example is used to generate an
'if-then’ rule.” Subsequent counter-examples are used to refine the rule
with a series of 'unless’ conditions. The process continues until a set
of 'if-then’ and 'unless’ rules can explain all cases. Another approach
to unsupervised learning searches for regularities among cases by
clustering similar cases together.>

While the above methods of automated learning are reasonable in many
domains, we found that inducing likelihood ratios from a set of cases is
another valid method of machine learning. For some time, statisticians
have argued that the only way to properly measure the impact of a clue in
an inference task is with the likelihood ratio.® Figure 1 describes the
system's knowledge base and the method it uses to calculate the likelihood
ratio associated with a clue.

The system’s knowledge base contains previous users’ answers and
subsequent observations related to the occurrence of the target event.
The knowledge base for m previous users who have answered n questions is
as shown in Figure 1. Entries under the first column are the number of
cases in the knowledge base. Entries under the question columns are the
answers to questions that were provided by previous users. For example,

2 A. W. F. Edwards, "The History of Likelihood," International
Statistical Review, 42: 8-15 (1974).

3 R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine Learning,
Morgan Kaufmann Publishers, Inc., Los Altos, California (1986).

4 P. H. Winston, "Learning by Augmenting Rules and Accumulating Censors",
Machine Learning: An Artificial Intelligence Approach, Vol II, R. S.
Michalski, J. G. Carbonell, and T. M. Mitchell (eds.), Morgan Kaufmann
Publishers, Inc., Los Altos, California (1986).

5 R. E. Stepp III and R. S. Michalski, "Conceptual Clustering: Inventing
Goal-Oriented Classifications of Structured Objects", Machine Learning:
An Artificial Intelligence Approach, Vel. II, R. §. Michalski, J. G.
Carbonell, and T. M. Mitchell (eds.), Morgan Kaufmann Publishers, Inc.,
Los Altos, California (1986).

6 R. A. Fisher, Statistical Methods and Scientific Inference, (2nd ed
rev. 1959), Hafner, London, Oliver and Boyd, New York (1956)

15

if the first entry for question 1 in column 2 is a 2, this means that the
first user, case number 1, answered option 2 for question 1. An entry of
-1 means that an answer is missing from the data set. The entry under the
hypothesis column indicates whether the target event actually occurred.
Specifically, a value of 1 means that the target event has occurred, while
a value of 0 means that the target event has not occurred. No missing
values are allowed in the hypothesis column. The knowledge base may be
specified by experts or may be established by collecting data on actual
events., B.E.St. utilizes the information in its knowledge base to
calculate the likelihood ratios associated with each clue.

Figure 1. System knowledge base organization
Case | Question 1 | Question 2 | Question n | Hypothesis
1 2 2 -1 1
2 9) O 1 0
3 2 2 | ... 1 1
m 1) N -1 1
3. MANAGING CONDITIONAL DEPENDENCE
3.1 CONDITIONAL LIKELIHOOD RATIOS
B.E.St. assesses 1likelihood ratios while accounting for

interdependencies that may exist among clues. There are a number of
mathematical methods for accounting for interdependencies. These methods
include various equivalent probability formulas, the use of dependence
trees, and the use of correlations among pairs of clues.’r & 9. 10, 11, 12

7 D. J. Croft, Is Computer Diagnosis Possible, Computers and Biomedical
Research, 5: 351-367 (1972).

8 M. J. Norusis and J. A. Jacquez, Diagnosis. I. Symptom
Nonindependence in Mathematical Models for Diagnosis, Computers and
Biomedical Research, 8: 156-172 (1975).

9 B. Seroussi, ARC and AURC Cooperative Group, Computer Aided Diagnosis
of Acute Abdominal Pain When Taking Into Account Interactions," Methods
of Information in Medicine, 25: 194-198 (1986).

10 C. Ohmann, Q. Yang, M. Kunneke, H. Stolzing, K. Thon and W. Lorenz,
"Bayes Theorem and Conditional Dependence of Symptoms: Different
Models Applied to Data of Upper Gastrointestinal Bleeding," Methods of

16

In addition, there are behavioral approaches that may be used to account
for interdependencies, whereby experts are asked to group clues into
independent clusters.!® !* e chose a mathematical approach to account
for the interdependence of clues, so that modifications could be
calculated automatically by the computer. B.E.St. uses the following
probability rule to assess the joint likelihood ratio of a set of
dependent clues:

p(Dl’ Dz, oo ey DUIHI) -
p(Dy|Hy)*p(Dy|H,, Dy)*p(Ds|H;, Dy, Dp)*
P(Dl.lﬂp Dls D2v D3)*°-'*p(Dn'H1s Dl) D2o D3v ---yDn-l) (2)

Note that each term in the above formula is conditioned on answer to
previously asked questions. The first term is conditioned on no answers
since no questions were previously asked; the second term is conditioned
on answers to the first question; the third term is conditioned on
answers to the first two questions; and the last term is conditioned on
answers to the first n-1 questions. B.E.St. follows the above rule, and
every time an answer is given, it calculates all subsequent likelihood
ratios conditioned on the user’s previous answers.

To calculate conditional likelihood ratios, the system automatically
reduces the data base to cases in which the condition is met. For
example, if the answer to the first question is that the patient is in
shock, then all cases of non-shock patients are not incorporated in the
calculations of 1likelihood ratios for subsequent answers. Since
likelihood ratios are recalculated dynamically, this approach allows the
interdependence among the clues to change. Thus, two clues that are
dependent when the full data set is analyzed may be independent when the
reduced data set is used and vice versa. This dynamic approach is more
sensitive than an approach that calculates the interdependence of clues at
the beginning of the data analysis.

Information in Medicine, 27: 73-83 (1988).

11 S. Lichtenstein, "Conditional Non-Independence of Data in a Practical
Bayesian Task," Organizational Behavior and Human Performance, 8: 21-
25 (1972).

12 A. Gammerman and A. R. Thatcher, "Bayesian Diagnostic Probabilities
Without Assuming Independence of Symptoms," Methods of Information in
Medicine, 30: 187-193 (1991).

13 H. J. B. Moens and J, K. Van Der Korst, "Comparison of Rheumatological
Diagnoses by a Program and by a Physician," Methods of Information in
Medicine, 30: 187-193 (1991).

14 D. H. Gustafson, J. J. Kestly, R. L. Ludke, and F. Larson,
"Probabilistic Information Processing: Implementation and Evaluation
of a Semi-PIP Diagnostic System," Computers and Biomedical Research,
6: 355-370 (1973).

17

The primary disadvantage of this dynamic approach, and of approaches
for accounting for interdependencies in general, is that large data bases
are required. As the number of conditions increases, more and more data
become irrelevant and the size of the knowledge base decreases. For
example, if a user indicates that the patient is in shock, B.E.St. ignores
all of the data collected for non-shock patients. If shock and non-shock
patients are equally probable, the data base is reduced by one-half.
Likewise, each subsequent equally probable question can reduce the data
base by one-half. Asking 8 equally probable questions will reduce the
data by 28, or 256 times. Therefore, the application of Formula 2 requires
large knowledge bases. In order to overcome this difficulty, we allow
approximation of Formula 2, as discussed in the following section.

3.2 APPROXIMATING CONDITIONAL DEPENDENCIES

A number of authors have suggested methods that could account for
some of the dependencies among the clues. A method used in most
statistical approaches, e.g. discriminant analysis or logistic regression,
relies upon the correlations among the clues. Another approach, first
suggested by Lincoln and Parker, allows users to condition each answer on
the answer to one previous question.® B.E.St. expands the latter
approach to allow users to specify the number of previous answers on which
the calculation of subsequent likelihood ratios should be conditioned;
the answers chosen for inclusion in subsequent calculations are those that
are the most predictive. If this number is zero, then the system assumes
that all answers are conditionally independent, i.e.:

p(p(D;, Dy, ..., Dy|H)) =
P(Dy |Hy)*p (D, | Hy)**p(Dy|Hy)*p (D, |Hy)*. . .*pD,|H,) (3)

If the number is n-1, then all answers are assumed to be dependent and
equation 2 is wused. If the number is between zero and n-1, some
dependencies are accounted for while other are ignored. For example, if
the wuser specifies the number 2, the likelihood ratios should be
conditioned on no more than two previous answers, B.E.St. will
automatically choose the two most predictive answers as defined below:

p(Dy, Dz, ..., Dy|H;) = p(Dy|H,)*p(Dy|H;, Dy)*
pP(D3|H;, Dy, Dp)*p(D,|H;, Dy, Dy)*...*p(D,|H;, Dy, D;) (4)

Where i and j are chosen so that the difference between p(D,|H,, D;, D;)
and p(D,|H;, D;, D, D3) is minimized and k and 1 are chosen so that the
difference between p(D,|H;, Dy, D;) and p(D,|H,, D,, Dp, D3, ...,D,.;) are
minimized. In this manner, most of the dependencies are accounted for and
more effective usage is made of a limited amount of learning data.

15 T. L. Lincoln and R. D. Parker, "Medical Diagnosis Using Bayes
Theorem", Health Services Research, 2:34 (1967).

18

4. QUESTION SELECTION
4.1 TEST FOR STATISTICAL SIGNIFICANCE

Researchers have for some time known that the performance of a self-
learning expert system depends upon the number of cases in its knowledge
base. Through simulations, some researchers have found that the number of
cases should be greater than 200 and less than 500, provided that the
questions are conditionally independent.!® An alternative approach for
determining the appropriate size for a knowledge base is to rely on
statistical sample theory.

In B.E.St. every time a question is answered, the knowledge base is
reduced, which in turn changes the likelihood ratios associated with
subsequent answers. If there are too few cases in the reduced knowledge
base, then the calculated likelihood ratios may reflect random error and
thus, may be misleading. Random variations suggest that a likelihood
ratio is close to one and that the answer associated with the ratio has
little or no statistical significance. B.E.St. was designed to examine
whether changes in the knowledge base have led to likelihood ratios that
are close to one.

To test the statistical significance of the likelihood ratio, one
specifies a power and then B.E.St. uses binomial distributions to test
whether the p(D;|H;) is statistically different from p(D,|H,). The
following gives a brief overview. Let:

d = 2[p(H,)p(Hy)/?(arcsin[p(D,|H;) /2] -arcsin[p(D, |Hy)/?])
Then the effect size, D, can be calculated as:
D = (e®-1)/(e?+1)

Kramer and Thieman provide tables for the number of cases needed to
detect the effect size D in a binomial distribution at different levels of
power.l” B.E.St. compares this required number of cases to the observed
number of cases in the knowledge base. If the observed number is lower
than the required number of cases, then there is insufficient data to
detect the difference between p(D;|H;) and p(D,|Hy); therefore, the
likelihood ratio is not used in predicting the target event. In these
cases, B.E.St. will attempt to create likelihood ratios by combining
neighboring responses to the same question in order to create a large
enough sample to justify including the question.

16. T. Chard, "Self Learning For A Bayesian Knowledge Base. How Long
Does It Take For The Machine To Educate Itself," Methods of
Information in Medicine, 26: 185-188 (1987).

17 H. C. Kramer and S. Thieman, How Many Subjects: Statistical Power
Analysis and Research, Sage Publications, Inc., Newbury Park,
California (1987).

19

4.2 DYNAMIC SEQUENCING OF QUESTIONS

B.E.St. changes the sequence of its questions based upon the answers
it has previously received; this process is typical of many clinical
interviews. Each time a question is asked, B.E.St. recalculates the
likelihood ratios associated with the answers to the remaining questions,
For the next inquiry, it chooses the question with a response having the
likelihood ratio with the most extreme value. In essence, B.E.St. asks
the questions with rare but very informative answers first. .

Researchers have suggested alternative methods for sequencing
questions. One group of researchers rely on the expected impact of the
questions (the criterion is defined as a function of both the probability
and the likelihood ratios associated with the answers to a question).18
The second group of researchers sequence questions by asking questions
with maximum conditional correlation first).!®

The approaches described above are unlike the approach used by
B.E.St.; both the computational requirements and the sequencing of
questions differ. We prefer the B.E.St. approach because questions with
rare but informative answers area asked at the beginning of the interview,
when there is less chance that the knowledge base has been reduced (due to
dependencies), and when it is more likely that sufficient data exist to
use the answers to the informative questions.

Another advantage of the B.E.St. approach to sequencing is that it
is computationally simple. Because the likelihood ratios are already
calculated for the inferential task, no new computations, e.g. calculation
of correlations among questions, are needed.

5. CONFIDENCE BUILDING

B.E.St. attempts to increase the user's confidence in the system’s
advice by explaining the reasons for its predictions. It lists clues with
likelihood ratios larger than one as being for the prediction, and clues
with likelihood ratios less than one as being against the prediction. A
number of studies have shown that explaining one’s reasoning increases the
acceptance of one’'s conclusions by others. In one study, subjects listed

18 L. R. Bigongiari, D. F. Preston, L. Cook, S. J. Dwyer, S. Fritz,
D. G. Fryback, J. R. Thornbury, "Uncertainty/Information As Measures
of Various Urographic Parameters: An Information Theory Model Of
Diagnosis of Renal Masses," Investigative Radiology, 16:. 77-81
(1981).

19 D. G. Fryback, "Bayes Theorem And Conditional Nonindependence Of Data
In Medical Diagnosis," Computers and Biomedical Research, 1l: 423-434
(1978).

20

persuasive pro an con arguments for their judgments.?° Other
individuals, after being exposed to the same arguments, changed their
attitudes to conform with the judgments of the original subjects. This
study revealed that explaining a judgment, in terms of arguments for and
against it, induces others to accept the judgment. More direct evidence
comes from the work of Erdman.?! He developed a computer consultation
program for advising physicians about depression. Half of the physicians
received only computer advice, while the other half received both the
advice and explanations from a computer. Erdman found that the
explanations helped some groups of users decide whether the computer's
advice was reasonable.

B.E.St. also attempts to increase the user’s confidence by providing
anecdotal evidence in support of its predictions. The system searches its
knowledge base for cases similar to the current case and prints the five
most similar cases. Similarity is defined by the following formula:?2?

Similarity Of case A and B - DA,B/(DA,B+DA,NOI’. B+DNOt A,B)

Where D, 5 is the number of clues in both case A and case B, Dy wot 5 18 the
number of clues not in case A but in case B, and Dot a,3 is the number of
clues in case A but not in case B. This allows the user to use the
printed cases as anecdotal evidence in support of the system’s
predictions.

6. MYOCARDIAL INFARCTION APPLICATION
6.1 DESCRIPTION OF TEST DATA

To evaluate the effectiveness of B.E.St., we used it to predict
mortality from myocardial infarction. Under a separate grant from the
Health Care Financing Administration, we collected data on approximately
1100 patients with myocardial infarction.?® For each patient, this data
base contained clues describing the patients’ condition on admission as
well as one variable describing the patients’ condition upon discharge
from the hospital (coded as alive or dead).

20 E. Burnstein, A. Vinokur, and Y. Trope, "Interpersonal Comparison
Versus Persuasive Argumentation," Journal of Experimental Social
Psychology, 9: 236-245 (1973).

21 H. P. Erdman, "The Impact Of Explanation Capability For A Computer
Consultation System," Methods of Information in Medicine, 24: 181-191
(1985).

22 A. Tversky, "Features Of Similarity," Psychology Review, 84: 327-352
(1977).

23 F. Alemi, J. Rice, and R. Hankins, "Predicting In-Hospital Survival Of
Myocardial Infarction," Medical Care, 28(9): 762-775 (1990).

21

The questions/variables used to predict in-hospital mortality are
given in Table 1. Other authors have classified these factors into
groups, based on their relative deviation from normal values.2 23
Because B.E.St. currently works only with discrete variables, we used the
groupings suggested by these authors.

A recent study found that the above set of questions/variables are
as predictive of in-hospital mortality in patients with myocardial

Table 1: Questions Used to Predict In-Hospital Mortality
1. Temperature 7. Sodium 13. Age
2. Mean Arterial 8. Potassium 14. Chronic
Pressure Health
3. Heart Rate 9. Creatinine 15. Surgical
Treatment
4. Respiratory Rate 10. Hematocrit 16. Emergency
Admission
5. Oxygenation 11. White Blood
Count
6. Arterial pH 12. Coma Score

infarction, as are five other sets of questions/variables.? Therefore,
our choice to focus on the above clues is as reasonable as if we were to
focus upon any other set of clues.

The performance of B.E.St. can be compared to that of optimal
statistical procedures such as logistic regression. In logistic
regression, a dichotomous variable like mortality is regressed on other
variables. Since both logistic regression and B.E.St. use the same set of
questions/variables and the same data, the performance differences are
only due to the method that is chosen for making inferences.

24 W. A. Knaus, E. A. Draper, D. P. Wagner, J. E. Zimmerman, "APACHE II:
A Severity Of Disease Classification System," Critical Care Medicine,
13(10): 818 (1985).

25 W. A. Knaus, J. E. Zimmerman, D. P. Wagner, E. A. Draper, D. E.
Lawrence, "APACHE -- Acute Physiology And Chronic Health Evaluation:
A Physiological Based Classification System," Critical Care Medicine,
9: 591-597 (1981).

26 F. Alemi, J. Rice, and R. Hankins, "Predicting In-Hospital Survival Of
Myocardial Infarction," Medical Care, 28(9): 762-775 (1990).

22

6.2 METHOD OF COMPARISON

B.E.St. uses two thiras of the data for its knowledge base, and the
remaining data, referred to as the "hold out" sample, were used in the
cross-validated evaluation of the system. Similarly, a logistic
regression would require the same two thirds of the data for parameter
estimationi and the same hnld out sample for evaluation. Two different
logistic regressions were run. In one regression, all 16 variables were
forced into the model. In the other regression, stepwise selection was
used, an.i only variables that were found to be significantly related to
mortality wvere included.

We compared the performance of B.E.St. and the logistic regression
using Receiver Operatirg Curves (ROCs). An ROC is constructed by assuming
several cutoff points or scores for predicting whether one will live or
die. Patients with a score exceeding a cutoff point are predicted to die,
while those with a score below the cutoff point are predicted to live. By
experimenting and changirg the cutoff point, a curve may be constructed
and an optimal point may be found where differences between observed and
pPredicted surviva® are minimized. The two ends of the curve show two
extreme strategies for choosing a cutoff point. If one assumes all
patients will live. in effect he’she will accurately predict all cases
discharged alive, but will not predict all of the deaths; such an
assumption would result in perfect sensitivity but no specificity. On the
other hand, if one assumes all patients will die, he/she will accurately
predict all cases wuo die, thus achieving perfect specificity but not
sensitivity. A straight line between these two extreme points shows the
sensitivity and specificity of a random prediction of those cases who will
live. The areas between ROCs and this line show the predictive ability of
each approach. The larger the area under the curve, the more accurac.. the
index.

We estimated the area under the ROCs using procedures recommended by
Hanley and McNeil.?” Because the approaches are compared using the same
hold out sample, and are related to the same outcome, the areas calculated
for each approach were interdependent, To correct for these
interdependencies, we used a method also suggested by Hanley and
McNeil %8 28

27 J. Hanley and B. McNeil, "The Meaning And Use OF The Area Under A
Receiver Operating Curve," Diagnostic Radiology, 143(1): 29-36
(1982).

28 B. J. McNeil and J. Hanley, "Statistical Approaches To The Analysis Of
Receiver Operating Characteristic Curves," Journal of Medical Decision
Making 4(2): 137-150 (1984).

29 J. A. Hanley and B. J. McNeil, "A Method of Comparing The Areas Under
Receiver Operating Characteristic Curves Derived From The Same Data,"
Radiology, 148: 839-843 (1983),

23

6.3 RESULTS OF COMPARISON

Table 2 shows the results of the logistic regression on the learning
data base. Note that only 7 out of the 16 variables had a statistically
significant relation to mortality. Thus, according to the logistic
regression, a model including only the 7 significant variables would be as
predictive as a model with all 16 variables.

Table 2: Variables Predictive of Mortality in Logistic Regression

All Questions / Stepwise

Variables Variables Model Model

Intercept +4.9186%* +4.,9987%

Temperature +0.1504

Arterial Pressure +0.3477% +0.3301*

Heart Rate -0.0054

Respiratory Rate -0.2094

Oxygenation -0.2270% -0.2603*

Arterial pH -0.0381

Sodium -0.0170

Potassium -0.1096

Creatinine -0.3759% -0.3871%*

Hematocrit -0.4614% -0.4343%

White Blood Count -0.7648%* -0.8801*

Coma Score -0.1330

Age -0.4772% -0.4892%*

Chronic Health -0.1446

Surgical Tx -0.8450% -0.9351%*

Emergency Admission -0.7403

Logistic regression finds the single optimal combination of
variables that explain the data. Similarly, B.E.St. also uses all of the
variables and finds subsets of questions/variables that are most
predictive. However, the subsets of questions/variables used in the
B.E.St. model vary from case to case. In some cases, questions/variables
are ignored because they are left unanswered or because they fail the

b

24

sample test requirements that were previously explained. However,
variables ignored in one case may be used in another.

Table 3 shows the use of the 16 questions/variables by B.E.St. in
predicting mortality using the learning data set. The right hand columns
report the impact of each question in cases where these questions were

Table 3: Use of Questions/Answers by B.E.St. in Predicting Mortality
Percent Mean Impact Standard
Variables Used When Used Deviation
Temperature 18.75 2.04 0.93
Arterial Pressure* 44.13 1.36 0.08
Heart Fate 5.75 1.40 0.39
Respiratory Rate 96.25 1.54 1.19
Oxygenation* 7.13 2.61 2.05
Arterial pH 20.00 2.07 1.69
Sodium 57.50 1.06 0.08
Potassium 2.25 3.33 2.55
Creatinine* 47.50 2.03 1.62
Hematocrit#* 94.38 1.20 0.32
White Blood Count* 93.75 1.49 0.82
Coma Score 95.00 1.42 1.57
Age¥* 95.25 1.59 0.47
Chronic Health 0.00 - -
Surgical Tx* 97.88 1.98 0.35
Emergency Admission 0.00 - -
* = Variables which were statistically significant in logistic
regression reported in Table 2.

used (for a definition of how impact was calculated see the Terminology
section). Also note that the average impact of each question changes from
case to case. This is due to the fact that different answers to the
questions have diffe.ent likelihood ratios, and that the likelihood ratio
associated with an answer changes as the knowledge base 1is reduced.
Because of the variation in the impact of each question, the standard
deviations for the impact of each question are also reported. The
questions/variables with the largest average impacts are the most

E—_ T

25

informative when they are used. A comparison of Tables 2 and 3 highlights
the differences in how the questions/variables are used in the two
different approaches.

For example, note that Potassium is almost never used (2.25%), but
when it is used, it has a large impact on the prediction of mortality
(Mortality odds are changed by a ratio of 3.33). In contrast, Potassium
does not appear to be significantly related to mortality in the logistic
regression model.

The ROC curves associated with B.E.St. and with the stepwise
logistic regression using the hold-out sample are shown in Figures 2 and
3. The area under the B.E.St. ROC curve was 81.19% and the area under the
Stepwise Logistic Regression ROC curve was 76.54%. The difference between
these two areas is statistically significant at an alpha level of 0.07
(z = 1.80), suggesting that B.E.St. constructed a more accurate model than
the Stepwise Logistic Regression.

7. DISCUSSION

One of the major strengths of B.E.St. is the manner by which it
accounts for dependencies. Most statistical approaches attempt to reduce
the number of variables in a model until an optimum number remains;
variables that are interdependent are dropped out of the model. B.E.St.
takes an opposite approach. All variables are used by the systen,
including dependent variables. Therefore, B.E.St. is more robust to
missing information, a problem for the optimal statistical approaches.
B.E.St. will only ask one of two redundant questions, since asking the
other question would not be informative. This procedure has no effect on
the data collection time. Thus, compared to the optimal statistical
approaches, B.E.St. is more robust and does not have any additional data
collection requirements.

Redundant systems are designed to function very much like human
beings and experts. For example, words in a singe sentence are often
redundant. Such redundancy in language ensures that a sentence can still
communicate the intended meaning even if some words are omitted. By
allowing for redundancy, B.E.St., in effect, simulates the robustness of
an actual expert.

In this study, one of the surprising findings was the relative
performance of B.E.St. and the logistic regression. Both approaches
derive their parameters from the data, but B.E.St. was more accurate than
the logistic regression. Unlike B.E.St., logistic regression ignores
variables that are very informative but rare. For example, the presence
of coma is very informative in predicting mortality, but the overvhelming
majority of patients are not in a coma. Therefore, the coefficient for
this variable is not statistically significant in the logistic regression.
In contrast, B.E.St. uses this variable considerably.

We have not compared B.E.St. to other statistical approaches like
Automatic Interaction Detection. In addition, our findings are based on
one data base and may not be generalizable.

W v "o " ' L

TPF

TPF

26

B.E.ST
ROC AREA = 81.19

0.0

—]

0.8

0.7

0.6

0.5

0.4

0.3

0.1
ol
0

05 06 07 08 09 1

FPF

LOGISTIC REGRESSION
ROC AREA = 76.54

01 02 03 04

01 02 03 04 05 06 07 08 09 1
FPF

Figure 2

Figure 3

27

A NATURAL LANGUAGE GENERATION SYSTEM
FOR A
HETEROGENEOUS DISTRIBUTED DATABASE SYSTEM

Bipin C Desai
Georgios Ioanni Kouklakis
Computer Science, Concordia University
Montreal, H4B 1R6, CANADA

ABSTRACT

In this paper we describe the design issues of a database independent
natural language generation system (NLG system) targeted for non-technical
users. The NLG system generates output in the form of a coherent, consistent
and stylish text. A prototype NLG system which addresses these issues has been
built for integration into a multilevel interface for a Heterogeneous Distributed
Database Management System.

INTRODUCTION

Database systems are used by different kinds of users for various purposes.
The users can generally be classified into two different types: technical and non-
technical users. The latter pose simple requests and have very little knowledge of
the database system, other than the conceptual organization of the objects they
want to query.

To bridge the gap between the casual users and a complex database system,
a natural language interface (NLI) is required. The principal role of a NLI is that
of an intermediary which encodes and translates information in natural
language (NL). This provides a means of communication between the machine
and the casual user.

The use of NL, as the vehicle for communication, is very important for the
following reasons[20]. NL is the common mode of communication in everyday
life; using it requires no special training. NL frees the user from knowing how a
formal language is used and how information is stored and processed. Natural
language is however, syntactically and semantically ambiguous. These ambigui-
ties cannot be resolved completely by a NLI system[7].

Many natural language processing(NLP) systems have been developed in
recent years. Some examples of these are ASK[28], Data Talker[20], Eufid[27],
TQA[6], KID[16], Datalog[14], TEAM[13], KAMP[2], [3], MUMBLE([24], PHRED[17],
PAULINE(15], TEXT{22], Ana[18], Yh[12] and Adorni[1]. These sytems are used for a
wide range of applications, such as, machine translation, story comprehension,
language learning assistance, database front-ends, and tutoring systems.

This work will focus on the design and implementation of a NLG system. A
model for the system is proposed in this work. The production of text generation
is viewed as a mapping from meaning to text, through a series of transforma-
tions. A prototype system has been developed using this approach for integration
with a Multilevel Interface to an Heterogeneous Distributed Database

=

28

Management System (MIDBMS) environment[10]. The MIDBMS environment pro-
vides its users with a multilevel interface using different languages such as nat-
ural or formal query languages. The interface consists of four levels, based on
the users knowledge of the system: the NLI, SQL, General Mapping and Query
Language(GQML)[25], and local database query language interfaces levels.

The conceptual architecture of the system is shown in Figure 1. At the NLI
level, the users pose their queries using natural language. This level is targeted
to the wusers of the system who merely want to make some casual queries.
However, the users are assumed to have a knowledge of the underlying database
schema, since the system does not support a dialogue with the user to clarify
his/her questions regarding the database structure or the way to form queries.

At the second level, SQL is provided as the language to access the database.
The database users who are experienced with the syntax of the language and the
structure of the database can form their requests directly in SQL, skipping the
NLI level. This saves computational time and results in a more efficient process-
ing. The request in SQL can be stated in a clear and unambiguous way, compared
to a natural-language request which may result in a misunderstanding due to the
vagueness of the natural language. This level can be considered as the bridge
linking the natural language and GQML. The GQML operates on a Heterogeneous
Distributed Database Management System(HDDBMS). In this way, a higher level
interface is provided over several different types of databases, each of which has
its own native query language.

Since GQML is operating on a HDDBMS environment, it has special opera-
tions related to the mapping among the heterogeneous database schema which
are not provided in the SQL. The processing of the GQML includes interpreting
the global query into a set of local queries. These are sent to the corresponding
local DBMS, collecting the database results from each of the local database systems
which are involved in the global query processing, translating and combining
all the collected database results and relaying to the previous level. Consequently,
it appears to the database users that they are interfacing with a single conven-
tional database system rather than a set of different DBMS products. Each compo-
nent DBMS of the HDDBMS provides a local query language and a local user could
use it to query the individual database system.

At the highest level of the interface, there is the lack of a natural lan-
guage response from the system. The motivation for the proposed NLG system is
the realization that a NLI should produce a response which must consist of natu-
ral language sentences, rather than a formal output. For non-technical users,
interpreting a complete text is much easier and more natural than understanding
a structured answer from the computer. Thus, the requirement of the NLG system
is to produce stylish text, which is coherent, consistent and easily comprehensi-
ble. The NLG system can also be used to provide feedback to the user. This can be
done by paraphrasing the user's request and sending it back to the user. The
paraphrase can be generated from the SQL query by applying the transforma-
tional steps described in the Section 3 and turning a declarative sentence into an
imperative.

This paper is organized as follows. In section 2, a brief discussion of the
components of the NLI systems is presented. Different approaches for syntactic
and semantic processing, and query interpretation, are addressed. In section 3,
the model of the proposed NLG system is described. Section 4 we give a detailed

Naoture) Languege
Understonding

AR

29

Mature! Languagse
Gensration

sSQL
interface

NATURAL
LANGUAGE
INTERFACE

saL
INTERFACE

QQML
INTERFACE

LOCAL
QUERY
LANQUAGE
INTERFACE

Figure 1 Integration of NLG system into MIDBMS

L Response

RN AN
S RN D BB

 Morpholeglcal
4 Symtheole

Syntactic
Knowledge

Semantic
Knowledge

Samantle
Synthssls

Specific
Knowiedge

Qaneration

Figure 2 NLI Architecture of MIDBMS

31

example. Finally, section 45 gives the conclusion and further development guide-
lines.

2. Components of a NLI

The integration of NLG into the MIDBMS is shown in Figure 1 The NLI con-
sists of ten processing phases, of which five are "down" phases and five are "up"

phases (Figure 2). In the following discussion, we elaborate on the functions of
the NLI modules.

NLP systems use language information in many different forms to com-
municate effectively with the end-user. In the context of computational linguis-
tics, natural language is described in terms of its morphology, syntax, semantics
and pragmatics[19]. In order to process a user's request and respond appropri-
ately to it, the NLI to a DBMS assigns an internal interpretation to the natural
language input and generates from this representation a response that is natural
as well. To do so, it integrates information from a number of sources of knowl-
edge. A NLI system must embody not only a grammar, a lexicon, and morphologi-
cal rules, but also a parser and translator, to effectively analyze input sentences
and generate responses in accordance with grammatical and morphological
rules.

The proposed system is designed to operate under the MIDBMS environ-
ment, and the lexicon and extended Entity/Relationship Model proposed in [10]
are used. An entry in the lexicon, called lexeme, is defined with its syntactic and
semantic properties. The syntactic part of the definition contains all the neces-
sary syntactic categories of the lexeme, such as noun, verb, preposition etc. The
semantic part contains the semantic category of each lexeme, for example, ani-
mate, abstract object, and so on.

The parser verifies that the sentence is syntactically well-formed and de-
termines its linguistic structure. During the parsing process, the linguistic rela-
tions such as subject-verb, verb-object, and noun-modifier are determined. These
relations provide the framework for semantic interpretation during the natural
language understanding(NLU) phase and response generation in the NLG phase.

In the NLU phase, two basic strategies for parsing exist; top-down and bot-
tom-up[26]. Top-down parsers construct the parse-tree by starting at the top and
working downward. They start with the symbol for "sentence" and recursively
expand it, until the parse-tree contains pre-terminal symbols which can be
checked against the lexicon.

Top-down parsers often impose constraints on the allowable grammar
rules. For instance, a left-to-right top-down parser requires that the grammar be
put in a form which avoids the use of recursive left-branching rules, which
could result in infinite processes during parsing.

Bottom-up parsers start with the input words and develop the parse-tree
from the bottom-up, by replacing right-hand-side patterns with those from the
left-hand-side. They end when all that remains is the "sentence" symbol.

N

32

As opposed to top-down parsers, bottom-up parsers avoid the backtracking
problem, and the generation of infinite parse-trees. However, they still produce
undesirable results such as the generation of all possible sentences.

The input of the Lexical Analysis module is a natural language sentence.
The lexical analyzer searches the lexicon to find the lexical entries for the words
appearing in the sentence. In natural language, a word may have several syn-
tactic or semantic definitions. As a result, a sentence could have several lexical
interpretations. The task of the Lexical Analyzer is to provide associativity be-
tween each word and its syntactic and semantic definitions.

For each word, all its possible lexical interpretations are constructed in the
form of syntactic markers. Each lexical representation(LR) is submitted to the
Syntactic Analysis module for further processing. The syntactic analyzer applies
grammar rules to the LR to verify that the sentence is grammatically legal. If the
sentence fails to be parsed, the next lexical interpretation is processed, and so on,
until a suitable interpretation is successfully parsed into a Syntactic
Representation(SyR), or there are no more lexical interpretations.

If the sentence is parsed, a parse-tree is produced. The parse-tree contains
lexical markers, such as noun and verb and phrase markers, such as, noun
phrase and verb phrase.

Since it is possible for a syntactically legal sentence to make no sense be-
cause of its semantic disagreement, Semantic Analysis is performed. Semantic
processing is needed to translate the parse-tree into a semantically-legal inter-
pretation in the NLU phase and assign semantic roles to formal (database) objects
in the NLG phase. The output of the Syntactic Analysis module is accepted by the
Semantic Analyzer module and semantic restriction rules are applied.

If the semantic analysis fails, the next SyR is processed until a semanti-
cally legal interpretation is encountered or the SyR's are exhausted. A semanti-
cally legal interpretation is recorded as a Semantic Representation(SR) and it
represents the deep structure of the sentence.

The Query Interpretation module accepts the SR's and performs the inter-
pretation of the query. If the query interpretation fails, the next SR is examined
until one is interpreted correctly or the SR's are exhausted. If the query intcr-
pretation phase succeeds, the SR which is linguistic-oriented, is transformed into
a query meaning representation(QMR) which is query specification oriented.
QMR fills the gap between the general meaning representation and the formal
query language.

The task of the Formal Query Generator is to map the QMR into an SQL
query. The SQL query is translated into a GQML query which is then handled by
the HDDBMS system.

For a generally applicable natural language interface the main concern is
that of embodying the knowledge in order to establish the associations between
the semantic notions and the database notions. For the purpose of portability it is
reasonable to separate knowledge about English words from database attributes.
For this reason the knowledge can be separated into two parts: one which is do-
main-independent and another which is domain-dependent.

33

To model the database, the Entity-Relationship(E-R) Model is used.
According to this model, the entities represent distinguishable objects, and
the relationships represent the associations between these entities. The enti-
ties and relationships have a number of attributes, and each attribute has an
associated domain. For example, a <University> database which consists of
three entities, namely <Student>, <Course> and <Teacher>, and two relation-
ships <Stu-Cour> and <Cour-Teach> is represented using the E-R model shown
in Figure 3. In the E-R model, the arcs between an entity or a relationship
and their attributes, and between an entity and a relationship represent the
existence of various associations. They do not, however, indicate what kind of
association it is, because they lack the semantic content. To overcome this
drawback and enhance the model, an explicit semantic meaning is assigned
to each arc in the form of a tramsitive verb. Figure 3 shows the extended E-R
model for an University database.

teach

take

oo G i

STUDENT

Figure 3 Extended E-R Model for an University Database

Finally, a preposition is assigned to each arc, which is illustrated by an
arc from attribute to an entity or a relationship. For example, the <Teacher>
entity may be modifiedas shown in Figure 4.

34

Figure 4 Teacher Entity

Many researchers have attempted different approaches to represent the
deep meaning of a sentence. Commonly used representations include conceptual
graphs, conceptual dependencies, case-frames and logic-representations. The
most influencial work among these is the Case Grammar developed by
Fillmore[11]. Case Grammar is semantically-oriented and establishes a represen-
tation for expressing the deep meaning of the sentence to be generated or ana-
lyzed. The verb plays an important part in building the semantic representation,
since it defines relationships between the subject, object and other syntactic
components of the sentence. For each verb, a case frame specification is set up to
indicate which case is required, optional or not allowed.

The case frame representation is used for the description of the tran-
sitive verbs. Figure 5(a) shows the domain-independent definition of the
verb teach, and Figure 5(b) shows the domain-dependent definition of teach
within the context of the university database. This separation of knowledge
into domain-dependent and domain-independent parts is very important for
making the system transportable and easily expandable.

teach(agent: optional teach(agent: teacher
action: teach action: teach
instrumental: not_required instrumental: null
dative: optional dative: null
neutral: required neutral: course
locative: optional) locative: campus)
Figure 5(a) Domain-Independent Figure 5(b) Domain-Dependent
Definition of teach Definition of teach

At the query interpretation stage of processing, a mapping between the
semantic primitives and the database attributes is established. In the NLU phase

‘the task of the query interpreter is to map the meaning representation structure

obtained from the semantic analysis onto a query meaning representation
scheme. This creates a query-oriented representation which can be processed by
the query language translator. During the NLG phase, the query along with the
answer obtained from the database, is mapped to the semantic structure. With this
mapping, semantic markers are assigned to the database attributes.

35

3. NLG of Database Response

The requirement of the NLG systern proposed in this work, is to generate a
natural, coherent and stylistically satisfying English text, in the form of one or
more sentences. The generated text is a response to a user's query, formed using
natural language. The NLG system is database-independent, i.e., the generation
process is not affected by the change of the domain of the database. To model such
a system, the Meaning Text Model formalism[23] is adapted in combination with
Chomsky's phrase-scructure approach[4]. The knowledge sources needed for the
generation process, are the lexicon and the semantics expressed in the extended
E-R model of the database.

The first phase of the NLG process is the Conceptual Synthesis module. It
generates CR: the conceptual representation, of the response to be generated by
the NLG system. This module is the interface between the NLG system and the
GMQL.

The input to the conceptual synthesis process is a SQL query Q (SC, FC, WC)
and a database response R. Here SC is the select clause, FC is the from clause and
WC, the where clause of the query. The response R is in the form of a table with a
column for each attribute in the select clause. The SQL query is taken from the
formal query generation module and the the corresponding database response, in
table form, from the GQML translator.

CR is a compact form of the query and the response, which preserves the
association between an entity or a relationship and its attribuies and between an
attribute and its values. The CR is the input for the semantic synthesizer module.
It is a list created from four sets: S, F, W, and R, where:

S = {ajjl ajj e SC} i.e., the set of attributes in the select clause of the
SQL query,

F = {fjl fj e FC) i.e., the set of entities and relationships in the

from clause,

W = {<ajj, vij> | ajj 0 vjje WC} i.., the set of attribute-value pairs in
the where clause (note that the join conditions are not needed and
thus they are suppressed),

R is the database response.

The elements of the CR list are triples of the form (fj, Sublistlj, Sublist2j),
where:

fie F.
Sublistlj = {<ajj, vij> | ajj & fi & ajj 6 vije WC}
Sublist2j = {<ajj, Rlajj}> | ajje fj)

The first sublist, Sublistl, consists of the elements from W such that: a
member <ajj, Vij>, of the set W, becomes an element in the sublist, if the attribute
ajj is an attribute of the fj relation in the extended E-R model. The second sublist,
Sublist2, consists of the elements from the set S and the elements from R, such
that each attribute ajj, of the set S which is an attribute of the fj relation in the

36

extended E-R model, becomes a candidate for the sublist. For each such attribute, a
sublist is created with R!lajj],

SR

2%

‘g{: R /
1 Syntectization

Figure 6 Semantic Synthesis

The input of the second phase, the Semantic Synthesis module(Figure 6), is
CR's and its output is a number of semantic representations(SR's), which repre-
sent the deep meaning of the sentences to be generated. The process of the SR
generation is divided into two subphases: Semanteme Representation and
Semantization. Semanteme representation breaks the CR into smaller units, SRi,
which are called semantemes. Semantization maps each SRi against the semantic
model, in order to assign semantic meaning to the SRi objects.

In the semantization subphase, the principle of decomposability is applied,
wherein, the meaning of the whole is constructed out of the meanings of its
parts. The meaning of the whole is represented by the CR's and the meaning of
the parts by the semantemes. For each SR, the mapping is as follows: (i) Every
element of the Sublistl is mapped ontc the corresponding database attribute in

37

the E-R model. Since each element of the Sublistl will form a prepositional
phrase in the final text, only the ‘preposition’ arrows are retained. Thus, the
mapping of the elements of the Sublistl to the database attributes retains the
‘preposition' arrows and discards the ‘'verb' arrows. (ii) Each element of the
Sublist2 will form the object part of the sentences to be generated. Thus, by
mapping each element onto the Extended E-R model, only the 'verb' arrows of the
corresponding database attributes are retained and the ‘preposition’ arrows are
discarded. (iii) The attributes of the Extended E-R model which do not occur in
either sublist are discarded.

SR

Figure 7 Syntactic Synthesis

In the next phase of the NLG process the intent is to produce the syntactic
representation (SyR). It specifies the organization of the sentences based on
their meaning. The meaning is represented by the SR's which are created in the
previous phase and passed on as the input to this phase. The generation of the
syntactic representations is divided into three subphases: Syntactization,

B

38

SyntMerging and Lexicalization (Figure 7). Syntactization creates a SyRi for each
SRi. SyntMerging merges the SyR's that have common properties. Finally,
Lexicalization maps each attribute from the SyR onto a lexicon entry.

The syntactization phase creates three-part structures of the form:
<Subject - Prepositional Phrase set (PPset) - Object set>. The PPset is a set of
prepositional phrases which we call global prepositional phrases (globalPPs),
and the object set is a set of zero, one or more objects. The Sublist] of the SR is
mapped onto the globalPP(s) of the SyR, whereas the Sublist2 from the SR is
mapped onto the object set of the SyR. Each object may have its own PPset associ-
ated with it; we call these the object's local prepositional phrases (localPPs).

The second sub-phase operates on the SyR's created by the Syntactization
phase. The SyntMerging process has two subphases, namely SubjectMerging,
which merges the SyR's that have a common subject, and Localization, which ap-
pends a globalPP of a SyR to a localPP of another SyR. The SubjectMerging pro-
cess combines two SyR's that have a common subject, into one SyR. The PP and
object parts of the mew SyR are the union of the corresponding parts of the input
SyR's.

During the merging of the object parts of the two SyR's, (one of which
corresponds to an entity and the other to a relationship) a process called object-
linearization occurs. In object linearization, the object set is sorted, such that the
first object entry of the new SyR is the first entry of the relationship's object set,
followed by the object set from the entity's set, and then the remaining entries
from the object set of the relationship.

The localization process appends a globalPP from a SyR to a localPP of an-
other SyR. If there is a SyRi with empty object-set and non empty global PP set,
and the subject of the SyRi occurs in the object set of another syntactical repre-
sentation, SyRj, then localization of the global PP takes place.

Lexicalization, the final subphase of syntactic synthesis, is a mapping be-
tween semantic objects and lexemes from the lexicon. Two types of mapping are
defined, namely lexico-semantic and phraseologico-semantic mapping. The lex-
ico-semantic mapping is a substitution of a semantic object by a lexeme from the
lexicon. Phraseologico-semantic mapping is very much like a lexico-semantic
mapping, the difference being the substituent contains a phraseme. A phraseme
is a sequence of lexemes, i.e., adjective-nouns, instead of a single lexeme. For ex-
ample, the mapping of <tfname> into <first name>.

Recall the principle of decomposability: the meaning of the whole is con-
structed out of the meaning of its parts. Thus, the meaning of the sentence is
built up out of the meanings of its constituents. Ultimately, the meaning of the
sentence is built up out of the meanings of the lexical items occuring in it. The
lexicalization process transfers each database attribute into its corresponding
lexical entry. The morphologic synthesis module (Figure 8) generates morpho-
logic representations(MR), an ordered sequence of lexemes in their required
forms, out of the SyR's. The process consists of three phases, namely
Sentencialization, Lexeme-Transformation and Sentence-Generation.
Sentencialization breaks each SyR into a number of MR's, each of them corre-
sponding to a potential sentence. Lexeme transformation implements the trans-
formation of the lexemes io their required forms. Finally, senience generaiion

39

transforms each MR into a sentence-like form by inserting the articles, conjunc-
tions, and punctuation.

R

%
A
Z

| Sentencielizetion

Sentence_
Generation

MR
Figure 8 Morphologic Synthesis

The final phase of NLG is Textual Synthesis(Figure 9) which creates the
text to be displayed to the users. The intent of textual synthesis is to generate co-
herent and stylish English text, in the form of one or more sentences. In most
cases, MR's created in the previous step are a sequence of independent sen-
tences, rather than coherent text of the final output presented to the user.
Textual synthesis reorganizes a sequence of independent sentences into a more
readable and stylish text. The TR's are generated from the MR's by applying the
textual transformation rules(TTR). These rules combine the MR's with common
attributes into compound, anaphoric and elliptical sentences. This results in a
coherent, consistent and stylish text.

40

Transformation
Rules

Response

Figure 9 Textual Synthesis

The first two MR's, with the same subject and verb that agree on the num-
ber(TTR1), are combined into one by combining the object-value parts. If there is
a third MR, with the same subject and verb as the previous ones, it is transformed
into its possessive case(TTR2). If there is a fourth MR, with the same subject and
verb as before, a pronoun replaces the subject, if the latter is in its plural
form(TTR3). In the case where the subject is singular, this step is skipped and the
next rule is applied. The problem with the singular case is that, the gender of the
noun cannot be determined, in order to use the appropriate pronoun. If there is a
fifth MR, with the same subject and verb as before, or if the previous step was
skipped, then TTR4 is applied. In this step, each MR is transformed into its posses-
sive case, by applying TTR2. The subject of the sentence is relinquished and an
elliptical sentence is generated, retaining only the object from the original MR
and the value list which become the subject and object(s) respectively, of the
new sentence.

54 CONCLUSION

This project proposed a model for a NLG system. A prototype based on this
model has been developed in ANSI-C. The choice of the language makes the sys-
tem easily transportable to different environments which support the C lan-
guage. Since the HDDMBS (which is at the lowest level of MIDBMS) resides on PCs,
the NLG system has been implemented on these machines.

The NLG system is database independent and has been tested using two dif-
ferent database domains. The results have shown that the NLG system meets its
design goal: to generate Natural Language as the response of the system to its
non-technical users.

41

The output contains all the necessary information and is in a textual form.
The Textual Synthesizer module maintains a textual transformation rule
base(TTRB). Currently, the TTRB has four rules to transform the generated sen-
tences into the final text. The generated text consists of one or more sentences in
nominative and possessive cases. It may also contain anaphoric and elliptical
senteances, based on the common attributes and the number of generated sen-
tences. The text can be further improved by adding discourse rules in the TTRB.
Aside from the rules discussed in Section 3, it is possible to add new rules. For ex-
ample, consider the following three sentences:

S1: Subjectl Verbl Objectl
S2: Subjectl Verb2 Object2
S3: Subject2 Verb3 Object3

such that Objectl = Subject2. If the sentence S3 is placed after the S2 it
"cuts" the flow of the text. It is rather preferable to place S3 right after S1, as an
elliptical sentence by applying the TTR4. Thus, a new rule can be inserted in the
TTRB, which implements the above transformation.

At this point the NLG system responds to the users by treating their
queries as independent requests. For example, if the user asks for Professor
Smith's phone number, the response of the system is "Professor Smith has phone
number 327 3943". If the next request is for his office number, the system, will
similarly answer, "Professor Smith has office number AD 639". The user might
however, expect a more natural and friendly response such as "His office number
is AD 639" or simply "It is AD 639". Such system behavior can be achieved if the
NLG system can keep track of the most recent history of requests and responses
and adjust its behavior accordingly.

A problem arises when the response contains many tuples. For example,
the query "List the student names" may generate 100 or 1000 names. Then, it is
not feasible to provide a "row" sentence having one subject and a hundred or a
thousand objects. Rather, it is preferable to generate the NL text and provide a
reference to the corresponding student table, i.e., "The students' names are
shown in table 1".

The NLG system is aimed at the non-technical users of the MIDBMS. The
users can range from knowledgeable to inexperienced, according to their famil-
iarity with the system. The NLG system should adapt the system's responses to the
users’ level of expertise in order to behave in an intelligent way. This can be
achieved by maintaining a model of the user. In practice, the users are expected
to gain some familiarity after using the system for some time. Thus, they may be-
come local experts in specific domains. Therefore, the system should also be able
to dynamically change its model of the users by maintaining the relevant pa-
rameters that describe their profiles.

One of the goals of the NLG system is to make the user interface more natu-
ral. The term natural here means that the system has to behave like humans as
much as possible. However, naturalness is not a single characteristic. Rather, it is
a collection of attributes that jointly enhance the naturalness of the interface.
Providing NLI, in terms of writing text, is one attribute. Using sound is another.
Supporting a voice interface for the NLG system will increase the overall re-

42

trieval efficiency: using voice is faster than writing text, and provides the users
with a more familiar environment.

References

[1] G. Adomi, L. Massone, Toward a Language - Independent Generator of Sentences , Applied Artificial Intelligence,
1987.

[2] D. E. Appelt, Planning Natural-Language Referring Expressions, Proceedings of the 20th Annual Conference of the
Association of Computational Linguistics, Toronto, 1982.

[31 D. E. Appelt, Planning English Referring Expressions, Cambridge University Press, Cambridge U.K., 1985.

[4] Noam Chomsky, Studies on Semantics in Generative Grammar, Mouton & Co., The Hague, 1972.

[5] Fred J. Damerau, Problems and Some Solutions in Customization of Natural Language Database Front Ends., ACM
Transactions on Office Information Systems, April 1985, Vol. 3-2.

[6] Fred J. Damerau, An Interactive Customization Program for a Natural Language Database Query System, Cooperative
Interfaces to Information Systems, Eds. L.Bolc and M.Jarke, 1986, Springer-Verlag Berlin Heidelberg.

[7]1 Bipin C. Desai, J. McManus and Philip J. Vincent, A Portable Natural Language Interface, AFIPS Conference
Proceedings, Vol. 56, 1987.

[8] Bipin C. Desai, J. McManus and Philip J. Vincent, A Natural Language Interface to a Multiple Database Office,
Information System SIGOIS Bulletin, Vol. 9-4, December 1988.

[9] Bipin C. Desai, Li Zhang, Multileve!l Interface to a Distributed Database System, Methodologies for Intelligent
Systems, Sixth International Symposium, ISMIS'91,, Eds. Z. W. Ras and M. Zemankova, 1991.

[10] Bipin C. Desai, L. Zhang, Multilevel Interface to Database Management System: MIDBMS, Computer Science
Report, Concordia University, 1991.

[11] Charles Fillmore, A Case for Case; Universals in Linguistic Theory, Holt, Rhinehart and Winston, CBS College
Publishing, 1968.

[12] R. P. Gabriel, Deliberate Writing, Natural Language Generation Systems, L. Bolc and D.D. MacDonald Eds.,
Springer-Verlag, New York, 1988.

[13] B. J. Grosz, TEAM: A Transportable Natural-Language Interface System, Proceedings Applied Natural Language
Conference, 1983, Santa Monica, Ca.

[14] C. D. Hafner, K. Godden, Portability of Syntax and Semantics in Datalog, ACM Trans. on Office Information
Systems, Vol 3-2, 1985.

[15] E. H. Hovy, Generating Language With a Phrasal Lexicon, Natural Language Generation Systems, L. Bolc and D.
D. MacDonald Eds., Springer-Verlag, New York, 1988.

[16] Ishikawa et al., A Knowledge-Based Approach to Design a Portable Natural Language Interface to Database Systems,
Proc. of the 1986 International Conference on Data Engineering, IEEE Computer Society. '

{171 P. S. Yacobs, PHRED: A Generator for Natural Language Interfaces, Natural Language Generation Systems, L. Bolc
and D.D. MacDonald, Eds., Springer-Verlag, New York, 1985,

[18] K. Kukich, Fluency in Natural Language Reports, Natural Language Generation Systems, L. Bolc and D. D.
MacDonald, Eds., Springer-Verlag, New York, 1988.

[19] George F. Luger, William A. Stubblefield, Artificial Intelligence and the Design of Expert Systems, editor Alan
Apt, the Benjamin/Cummings Publishing Co., 1989.

[20] John L. Manferdelli, Natural Language Interfaces: Benefits, Requirements, State of the Art and Applications, Natural
Language Inc., Berkeley, California, 1987.

[21] M. P. Marcus, A theory of Syntactic Recognition for Natural Language, The MIT Press, Cambridge, Mass., 1980
[22] K.R. McKeown, The TEXT System for Natural Language Generation: An Overview Proceedings of the 20th Annual
Conference of the Association of Computational Linguistics, Toronto, 1982.

[23] Igor Mel'cuk, Nikolaj V. Pertsov, Dependency Syntax: Theory and Practice, editor Richard Kittredge, John
Benjamins Publishing Co., 1987.

[24) Metcer and D.D. MacDonald, Mumble ‘86: Design and Implementation, COINS Technical Report, University of
Massachussetts at Amherst, 1987.

[25] Richard J. Pollock, Bipin C. Desai, The Design and Implementation of a Heterogeneous Database Management
System Prototype, Computer Science Report, Concordia University, 1988.

=T e

43

{26] J. H. Remko, Natural Language Interface Systems, Handbook of Human-Computer Interaction, Edited by Martin
Helander, North-Holland, 1988

[27] M.Templeton, J.Burger, Considerationsfor the Development of Natural-Language Interfaces 1o Database Management
Systems, Cooperative Interfaces to Information Systems, Eds. L.Bolc and M.Jarke, 1986, Springer-Verlag Berlin
Heidelberg.

(28] B. Thompson and F, Thompson, Introducing ASK, A Simple Knowledgeable System, Proc. Conference on Applied
Natural Language Processing, 1983.

[29] T. Winograd, Understanding Natural Language, Academic Press, New York, 1972.

[30] W.A . Woods, Augmented Transition Network Grammar, In S.C.Shapiro (Ed.), Encyclopedia of Artificial Intelligence
(vol.1) New York 1987; John Wiley and Sons.

44

'COMPETENCE-SWITCHING' MANAGED BY INTELLIGENT SYSTEMS

Edeltraud Egger

Technical University of Vienna, Argentinierstr. 8/187, A-1040 Vienna
email: eegger@email.tuwien.ac.at

Hardy Hanappi

Academy of Science, Kegelgasse 27, A-1030 Vienna
email: awhana@lezvax.oeaw.ac.at

ABSTRACT

This article deals with problems of time-management and the
coordination of activities of heterogeneous agents. To support the
planning of strongly interwoven jobs more than a pure scheduling
algorithm is needed: Since hierarchical power-relations, diverging
nbjective functions and unequally distributed decision competencies
prohibit any straight-forward solution, a more complex framework
switching between computer support and face-to-face decisions is more
adequate. We discuss these issues in the context of hospital organization,
in particular for the example of surgery-planning.

1. INTRODUCTION

In human societies work is a group process. Different persons perform different tasks
at well-defined time-points to achieve a common goal. Therefore there has to be some kind
of co-ordination for these heterog eneous agents!. Recent developments in automatization
do not focus anymore only on mere machine-co-ordinated production processes, but
invade also areas of decision-making and control. This trend has not been paralleled by a
theoretical treatment, which could be a reason for the apparent frustration with many of
these tools. Since time has been introduced as relation between the single heterogeneous
agents within an organisation, it is embedded in decision-making and control with respect
to the given power-structure. Due to this a more basic discussion on switching competence
between person and machine is urgently needed.

Im distinguish between three needs which determine time-patterns in groups: the need to set and
meet deadlines, the need for dynamic teamwork and the need to assure an adequate
demand/capability match.

45

Chapter 1 of this article deals with one approach to solve problems of time-
management, namely scheduling-algorithms. Though they are of great importance for
many fields of applications, it is evident that they do not cover more complex decision
structures of large-scale organizations. In chapter 2 we will show where and why these
short-comings appear. This critique leads us to a system-design in chapter 3 which we
consider as intelligent and which helps to improve on prevailing solutions. Finally chapter 4
presents an empirical case-study: operation-planning in a surgery-clinic.

2. TIME - SCHEDULING

All working-processes consist of a sequence of single tasks, which have to be co-
ordinated. In this context co-ordination is defined as the order of tasks and their start- and
end-times.

e.g.. C(wp):=(taskl, task2, task3, taskl, task4, task1)

. with task,[tO, t1], ... task; [tn-1, tn]
with wp: working-process, [t0, t1]: t0 ... start-time, t1 ... end-time

This means that zime is introduced as relation between the agents: It is determined
when a certain task ha$ to start, when it has to end and which task has to be finished before
another one can begin. It is evident that there is an underlying objective-function which can
also be expressed by terms of times: The objective-function describes the expected goal
variable, which should reach an optimum, a maximum or a minimum?2 in a certain time-
interval. These connections and dependencies of tasks and times can be represented
graphically by network-techniques. The according scheduling-algorithm optimized with
respect to time computes an optimal solution3.

Fig. 1. Graph of time-sequence

2 While a maximum is wanted in production, mimimum is searched in questions of cost.

46

Usually constraints to be met have to be formulated. Temporal constraints can be e.g.
the absence of agents at certain times4, no clear duration of certain tasks, no clear time-
points but time-intervals in between tasks etc. Scheduling-algorithms also offer the
possibility of priority-setting to arrive at unique solutions. As a consequence it can be
defined which tasks are the most important ones.

In literature there are two main approaches to scheduling problems. The traditional
one stems from operation-research using methods of optimization like illustrated aboves.
The most practical problem is the enormous solution-space which has to be searched in
order to find good solutions. To make the search-process more efficient (in terms of time
and memory-space) genetic algorithms® are introduced which build on search-techniques
like random search, hill climbing and sampling.

The second approach is considering scheduling as knowledge-intensive activity which
requires mechanisms for representing and acquiring knowledge’, both questions of the
field of Al. This leads to the constraint-based approach, which is a combination of
propagation techniques and specified constraints. Still there is the problem of applicability
to real-world-problems, where information is not only uncertain but even incomplete.

The above mentioned ideas of scheduling can also be found in the context of questions
of time-scheduling. Usually scheduling problems are under specified concerning
organizational characteristics of the problem to be solved. Normally there is a given
hierarchical power-structure, where decision-competence is focused on one agent. This
agent usually determines the objective-functions and has the power to ignore other agents’
objective-functions®. Time is treated as quantifiable variable, as a resource-parameter,
which enters his objective-function. A typical application-field of this kind of scheduling is
a production-process, where machines are programmed to steer the sequence of tasks.
Human agents are seen as part of the machinery, they do not have the power to participate
in the optimization-process.

In working-areas with a less exclusive and inflexible division of competence this kind
of scheduling has to fail%. The treatment of time as a measurable scalar does neglect the
political character of time. [8] illustrates that successful running of electronic calendars and
maintaining them are based on two conditions: First, each of the concerned groups has to
invest additional work in updating electronic calendars and second has to leave time-
scheduling to a supervising system. Both aspects are not fulfilled in organizations where
agents are able to insist on their time-autonomies.

In the following chapter we will discuss other issues arising when seeing automized
co-ordination as pure scheduling-problem.

3 compare €.g. [2]

4 Therefore electronic calendars are needed to describe this kind of temporal constraints.

5 see also [3]

6 compare also [4]

7 For more detailed discussion see e.g. [5], [6].

8 ¢.g. In many cases the objective functions of workers are not the same as those of employers.
9 for further discussion also see [7]

47

3. LIMITS OF TIME - SCHEDULING

Since the agents within a production-unit are heterogeneous, it would be an arbitrary
event if they had not conflicting interests. The degree of participation in decision-making is
strongly interwoven with the position within the hierarchy. Decision-competence is
unequally distributed, even though a certain decision can effect the whole organization.
This leads to following problems when trying to establish a scheduling-algorithm:

Fig. 2a. Time-conflicts in organizations: time-autonomies

throughput-related income

fixed working-times

fixed working-times with buffer-times

L .
/tlme

While the group with throughput-related income will use their high time-autonomy to
expand their working-times, the group with fixed working-hours is interested in keeping to
their working-hours as defined in their working-contracts. The third group, agents with
limited autonomy, also will try to stick to their working-hours, but do have a special
interest in allocating self-managed buffer-times.

Co-ordination of these types of time-orientation surpasses the capacities of most
scheduling-algorithms. External information on power-relations between groups is needed.
Either there is one group (e.g. the group sticking to fixed working-hours without
autonomy) which determines the final outcome - all the others have to adjust - or there is a
weighting of the importance of different groups. Still the questions where these power-
relations come from is open.

48

Fig. 2b. Time-conflicts in organizations: sources of bottle-necks

tasks
N bo%tlenecks

~N
VN
~

e

\
\

wpd

SNtime
t0 t 12 tn 7

As already mentioned co-ordination means to fix the order of single tasks. The time-
point from the end of one task to the beginning of the next one is always a source for
bottlenecks. Reasons for the extension of the task of group A are unforeseen complications
or unrealistic estimates of task-duration. On the other hand group B could fail to begin
with their task at the planned time-point because of lack of time-discipline etc.

Especially the last aspect (time-discipline) is very much connected with an agent's
autonomy, which itself is specified by the internal power-distribution.

Problems of bottlenecks are severe in organizations where the different tasks of the
single agents are strongly interwoven and depending on each other. Even if some kind of
buffer-times is foreseen, the perception of responsibility for bottlenecks can be quite
different. The consequences for the originator of bottlenecks depend again from his
position within the hierarchy.

Automized time-scheduling can to some extend take organizational factors into
account (by using constraints, weighting, etc.), but the designer has to decide which 'view'
he/she will implement - which usually is the view of the one who is buying the system -
without considering the other agents' wishes. As empirical studies show lack of acceptance
of certain decisions can lead to passive counter-reaction. In organizations where decisions
are not understandable there is some kind of institutionalized counter-action. It is quite
easy to find reasons for delays, slow-down of work and the like. Trying to eliminate
obstructions would mean expanding control, which goes hand in hand with increasing cost.
This effect does also arise in cases, where certain decisions are made by computer systems.
Instead of forcing users to accept automized decisions by extended control it seems to be

1

49

more adequate (and cheaper) to further the acceptance of decisions by transferring critical
ones to face-to-faceimeetings!0.

This means that a general discussion on competence-switching between person and
machine has to be started. As we will show in the next chapter this is not a trivial
requirement for the design of computer-systems.

4. INTELLIGENT COMPETENCE-SWITCHING

Agents in organizations have on the one hand explicit knowledge concerning the
power-structure and on the other hand mental maps of informal relations among the
members. They also can locate their own position in this structure, though they need not
necessarily accept it. Decisions which are conceived as threatening their position are
critical ones. Transferring such decisions to a information-system leaves to the concerned
agents only institutional ways of defencell. This is so because there is no terrain for
negotiation. Negotiation in this context means facing conflicting interests and elaborating
modes to handle them. Even if there exist underlying contradictions which cannot be
eliminated by negotiating there still might be some room for ameliorating the prevailing
situation. The most efficient way to negotiate actually is face-to-face.

Let us discuss this issue with respect to the examples given in figures 2a and 2b: If the
group with the high autonomy and throughput-related income (compare fig. 2a) is
powerful enough to force the other groups to adjust to their choice of time-frame, the
weak groups will try to find ways of institutional response. Diverse reactions are open to
them: passive defence through low work-intensity, invoking union actions, ...

As soon as a bottleneck appears there is the question who caused it. In organizations
with a strong hierarchical structure the manager perceives who is responsible and initiates
appropriate sanctions. The person concerned might have a different view and in that case
will respond in ways similar to those described in the first example.

These different perceptions of the same bottleneck will also appear in organizations
with a less rigid hierarchy. Since in this case there is no possibility of direct sanctioning, the
diverse assessment of reasons will lead to passive counter-actions. Both situations can be
improved by the introduction of face-to-face negotiations giving the single agents the
opportunity to articulate their views.

Obviously face-to-face meetings cannot be substituted by automatized decision-
making, but information-systems can support negotiations by structuring them!2,

10 Critical decisions are the ones which undermine a person’s or a group’s autonomy or position
within the organization.

11 This kind of reaction usually is counter-productive and leads to high cost.

12 (9] justifies the increasing demand to computer supported decision-making with 'losses' of
productivity in group decision-making occuring because of certain individual’s domination, group
pressure (which leads to conformity of thoughts) etc.

O w

e |

50

Therefore intelligent competence-switching modules can be used for demonstrating
consequences of certain decisions. But before going into details let us first analyze the
meaning of ‘intelligence’ in this respect.

[10] describes that in complex systems agents are unable to identify all of the
constraints on their actions and that their information-processing capacities are limited!3.
The common characteristic of artificial-intelligence techniques is the attempt of modelling
decision-making!4. In our understanding an information system can only be called
intelligent if it is able to simulate the interaction of different agents with different world
views to further in a direct feedback their co-operation. In this context co-operation is not
restricted to cases where agents have the same goals, it particularly occurs and needs
simulation support in cases of diverging or even opposite objectives of agents!5, It is this
property of simulating contradictions, of anticipating actions and opinions of others leading
to these actions, which can be used to solve them or at least to transform them to improve

solutions16.

Fig. 3. Simulating contradicting views

GROUPA GROUP B
ivisinn g ivision ;?
I specification of causation ! I specification ofcwaﬁonj

All groups involved in organizations produce more or less simple preliminary 'visions'
of internal structures and their own role within the hierarchy. Information systems can be

13110, p. 25]
or in other words ‘to cast the problem in a frame' [11].
5 We insist that these contradictions exist in reality and are not just different views which can be
eliminated by communication as for example proposed by [12, pp.488-550].
Since contemporary organizations ban all underlying processing contradictions from the
internal sphere, they permanently reappear in the outer political field. For an innovative game
theoretic treatment of contradictions compare [13].

-

51

used to verify these visions by inducing agents to make their objectives explicit. The
system-designer provide them with a causation structure (excluding what we called critical
decisions before) which then is used by simulations!”.

The result of a simulation run are a preliminary solutions which differ from group to
group. The choice of a certain solution as final solution - which is a critical decision -
cannot be delegated to the information-system. At this point conipetence-switching from
the system to face-to-face has to take place. Nevertheless groups enter the bargaining-
process more informed since they have preliminary solutions at hand. Assessing and
balancing of preliminary solutions is the main purpose of negotiations. A particular
agreement can be used as a new input for another simulation - a reverse competence-
switching takes place. This recursion is terminated by a final face-to-face agreement18.
Learning as defining characteristic of intelligent system-design is guaranteed by these
recursions. The next chapter will illustrate some of our major issues.

5. CASE-STUDY: OPERATION-PLANNING IN A SURGERY CLINIC

The clinic, part of a large university hospital, consists of five departments, representing
different specialities!®. The underlying organizational structure is characterized by a strict
hierarchical order and the existence of well-defined disjunctive professional groups (namely
surgeons, surgery-nurses, anaesthesiologists). The clinic disposes of six operation-theatres.
There is a fixed allocation-plan which assigns operation-theatres to departments (see figure
4).

Fig. 4. Allocation-plan

0.p. 1 0.p. 2 o.p. 3 0.p. 4 0.p. § 0.p. 6

MON ward A ward A |ward B ward C ward C/D |ward E

TUE ward A ward A ward C ward E ward C ward B

WED ward A ward A ward B ward C ward C ward E

THU ward A ward A ward B ward D ward D ward E

FRI ward A ward A ward C ward D ward C/D |ward E

In other words each ward has certain operation-days. The planning of operations is a
several phase-process. Pre-planning is done by entering an operation (including name of
patient and responsible surgeon) into a book which is located in the clinic's main
secretariat. A pre-program for the following day is discussed in a 14.30 session in which
one representative from each department (normally a doctor), the head surgery-nurse and
one representative from anaesthesiology are present. In this session the schedule for the

17 Simulations probably will use the scheduiing algorithms described in chapter 2 as subprograms.
18 Ap indispensable rule for negotiating is to define finite durations (see [14]).
19 For a more detailed description of the case-study see [15].

52

next day is set up. The result of these consultations is a time-table which shows the
distribution of operations over the available theatres. Nurses decide among themselves (in
a 7.00 meeting the following morning) who is going to join which surgical team. No pre-
planning for the following days is done, although surgeons may enter operations ahead.

Normally a day's program cannot be realized as it was planned. Due to unrealistic
time-estimates, unforeseen complications, emergencies and organizational delays, ad-hoc
adjustments have to be made. Responsible for all kinds of re-scheduling is one main
surgeon, who, as a consequence of his role, monopolizes valuable information (especially
knowledge on vacant operation-capacities) and is only selectively involving implicated
colleagues in his decisions.

As can be seen from this brief description all criteria for the emergence of time-
conflicts as discussed more generally in the preceding chapters are met: strong hierarchical
structure, disjunctive groups (implying different views), different time-autonomies and the
urgent need for planning.

Consider again figure 2a: In this case-study the group with high time-autonomy
evidently are the surgeons. They press for longer working-days since their income is
related to the number of treated patients. The group with no autonomy can be identified as
surgery-nurses who want to keep to fixed working-times. Anaesthesiologists - as group
with limited autonomy - are interested in self-managed buffer-times to contact next day's
patients.

As empirical investigations prove surgeons as the most powerful group set starting
times for operations close to the end of the working-day to force nurses and
anaesthesiologists to do overtime. As a reaction - we called it institutionalized counter-
action above - there is passive resistance of surgery-nurses in form of delaying routine
work during the day.

What we showed in figure 2b now can be interpreted in the following way.
Bottlenecks do occur when e.g. anaesthesiologists (group B) have to wait with the
introduction of the anaesthesia for the surgeon (group C). An analogue situation arises
between surgery-nurses (group A) and anaesthesiologists.

This last example leads us to the discussion of contradicting views: While surgeons
argue that time can be saved by introducing anaesthesia before they arrive and therefore
identify anaesthesiologists as the source of the bottleneck, the latter counter-argue that
because of surgeons’ high time-autonomy there is an uncertainty concerning the arrival of
them. Because of medical reasons they do have to wait with the introduction of anaesthesia
- and therefore they accuse surgeons to be responsible for bottlenecks.

Simulations making these views and their consequences for planning explicit can be
used to structure and support face-to-face-negotiations between the concerned groups.
Therefore an intelligent computersystem has to include features managing the treatment of
critical decisions. During the design phase it has to be discussed which decisions are not
critical and could therefore be solved by implemented algorithms. E.g. how to distribute
additional surgery-time: This can be done by the use of certain priority-lists expressing the

53

hospital’s favorite specialities (heart-surgery, ...). Critical decisions on the other hand will
be singled out by the computersystem and have to be treated during face-to-face-meetings.
E.g the cancelling of operations because of time-constraints, falls under this category, since
on one side organizational conditions (working-hours of staff) have to be met, whereas on
the other side the operation is very urgent. But this is not the only example of competence-
switching in our case-study20.

There are a lot of other cases where automized decision-making fails. The system-
designer has to anticipate critical decisions and therefore implement a "collision-
management"-module, which detects them and provides a print-out with such topics for
the face-to-face-meeting. In cases where more sophisticated "what-if"-arguments appear in
face-to-face-discussions, collision-management can be extended to include simulations of
such questions (e.g. the effects of a change of priorities among a hospital’s specialities).

6. CONCLUSION

We have shown that competence-switching between person and machine is an
interesting alternative to the increasing unreflected automatization of group decision-
making. It will be an important ingredient of the design of intelligent information systems,
because it combines elements of organizational development with the more technical
aspects of computer support.

REFERENCES

1. J.E. McGrath, J.R. Kelly, "Time and Human Interaction: Toward a Social Psychology
of Time", Guilford Press, New York, 1986.

2. F. Bohm et al., "Mathematische Standardmodelle der Operationsforschung", Verlag
Die Wirtschaft, Berlin, 1972.

3. EL. Lawler et al, "Recent Developments in Determenistic Sequencing and
Scheduling: A Survey in Deterministic and Stochastic Scheduling", Reidel, 1982.

4. J.H. Holland, "Adaption in Natural and Artificial Systems", University of Michigan
Press, Michigan, 1975.

5. T.J. Grant, "Lessons for OR from Al: A Scheduling Case Study", Journal of the
Operational Research Society, 37/1, 41-57, 1986.

20 For a more extended discussion of this issue see [16].

10.

11.

12.
13.
14,

15.

16.

54

M.S. Fox., N. Sadeh, "Why is Scheduling difficult? A CSP Perspective", in: Proc.
ECAI-90, 754-767, 1990.

J. Grudin, "Why Groupware Applications Fail: Problems in Design and Evaluation",
Office: Technolgy and People 4:3:245-264, 1989.

S.F. Ehrlich, "Social and Psychological Factors Influencing the Design of Office
Communication Systems", Proc. CHI+GI'87 Human Factors in Computing Systems,
Torornto, 1987.

G.P. Huber, "Group Decision Support Systems as Aids in the Use of Structured
Group Management Techniques", DDS-82 Conf. Proc. 1982: 96-108, 1982.

S. Moss, J. Rae, "Artificial Intelligence and Economic Analysis", Edward Elgar,
London, 1992.

G. Hanappi, "Evolutionary Economics", Habilitation at the Technical University of
Vienna, Department of Economics, 1992.

N. Luhmann, "Soziale Systeme", Suhrkamp, Frankfurt a. M., 1984.
S. Brams, "Negotiation Games", Routledge, New York, 1990.
A. Strauss, "Negotiations", Jossey-Bass, San Francisco, 1979.

E. Egger, "Gruppenentscheidungssysteme am Beispiel der Terminplanung", Technical
Report 6/91, Technical University of Vienna, Department of CSCW, 1991.

E. Egger, I. Wagner, "Time-management. A Case for CSCW?", Proc. of CSCW-
Conference, ACM Press, Toronto, 1992.

55

STRATEGY ACQUISITION BY AN ARTIFICIAL NEURAL NETWORK:
EXPERIMENTS IN LEARNING TO PLAY A STOCHASTIC GAME

Neal M. Mazur

Department of Electrical Engineering and Computer Science
Union College
Schenectady, NY 12308, U.S.A.

ABSTRACT

Artificial neural networks have been successfully used to
perform a variety of tasks, mostly in the areas of pattern
recognition and classification. This paper explores their use in
learning and executing strategies. A series of experiments are
performed in which a network using the backpropagation
algorithm learns strategies for playing the game of casino
blackjack. ~ The experiments range from the supervised learning
of a blackjack strategy using the normal backpropagation regime,
to supervised learning wusing situations generated from the
naturally occurring probabilities of the game, and, finally, to an
unsupervised experiment where the network learns a strategy
based on its performance and past experience in playing. The
latter experiments introduce probabilistic and contradictory
feedback to the network due to the stochastic nature of the game.
The experiments show that artificial neural networks can be used
to represent and learn strategies for a stochastic game and that
their performance can be favorably compared to that of human
players. '

1. INTRODUCTION

Artificial neural networks in general, and the backpropagation
algorithm! in particular, have been shown to be powerful pattern
recognition tools2:3:4. This paper will explore the use of the backpropagation
algorithm in representing and learning strategies associated with the game
of casino blackjack. Casino blackjack is first adapted for wuse with
backpropagation networks and then a series of learning experiments are
performed.

The first experiments utilize the normal backpropagation mechanism
of supervised learning. A set of patterns and desired outputs, as prescribed
by an expert, are continually cycled through the network during training.
Sejnowski and Tesauro have had outstanding success in teaching
backpropagation networks to play backgammon using this approach3.6,

The second set of experiments again models an expert strategy but
utilizes a passive observation mode. In this case, the network views an expert

56

working in the naturally occurring environment of the game. The network
can no longer request to see a particular situation but must instead deal with
the differing probabilities of situation occurrence.

The final experiment does not involve an expert. The network leams a
strategy based on its own performance during play of the game. This
introduces problems associated with credit assignment and contradictory
feedback to the system based on the stochastic nature of the game. The
ability to learn based on performance has a long history in artificial

intelligence from Samuel's landmark work with the game of checkers’ to
more recent work utilizing evolutionary replicator58 and stochastic
automata®. The backpropagation algorithm will be utilized here with a
reward or penaltyl0 given to actions based on the outcome of each hand.

2. CASINO BLACKJACK

Casino blackjack is a gambling game played with a standard deck (or
several decks) of playing cards. A player competes against a dealer who
utilizes a fixed strategy. The object of the game is to accumulate a greater
hand value than the dealer without going over 21. The cards two through ten
are evaluated at face value, jacks, queens and kings have a value of 10 and
aces are given a value of 1 or 11 based on which value will favor the holder.
A hand that contains an ace counted as 11 is termed a soft hand. All others
will be called hard hands.

In the casino game, there may be several players playing against a
single dealer. Each player makes a bet for the hand. The initial play sees two
cards dealt to each player and the dealer with the last of the dealer's cards
exposed (the show card). Each player, in turn, plays out his hand. The
player may choose to stand on his given hand, hit (request another card) or
double down (double the bet to receive only one card).

After receiving an extra card with a hit, the player may continue
making hit decisions. After an initial hit decision, the play ends when the
player makes a stand decision or when the held cards total more than 21
(called a bust, in which case the player immediately loses).

After all players have completed making their decisions, the dealer
completes the hand by continually taking extra cards until the cards that are
held total 16 or greater. If the value is more than 21, the dealer loses to all
players who did not bust. Dealer values from 17 to 21 beat players with lower
hand values, tie players with equal hand values and lose to players with
greater hand values,

There are three decision variables that a player considers when
making decisions. The player's hand total is obviously a major factor in
decision making. A total of greater than 11 introduces the possibility of
busting when drawing a card while low totals will be beaten by a dealer hand
that does not bust. A value of 11 is favorable for doubling down. The second
decision variable is whether the player's hand is soft or hard. A soft hand
cannot go over 21 with the drawing of a card. The value of the dealer's up
card is the last decision variable. Values of 4 through 6 indicate a stronger
possibility that the dealer will bust than when a 10 is shown.

57

One could also devise a fourth decision variable and use a history of the
cards that have been played to influence betting amounts and decisions.
Card counting strategies are considered illegal at the gaming tables and are
combatted by using a large number of decks (from 4 to 6) and reshuffling
cards often. This paper will not consider this variable.

There are various postulated optimum blackjack strategies in the
literature!1-14, All such strategies considered are either the same or differ
by a small number of decisions. We will not be concerned with the slight
variations and will adopt the soft and hard strategies from Silberstang shown
in Figures 1 and 2.

Value in Hand
4 5 6 7 8 9 1011121314151617181920

A MAMN
3 RN
Show N &\
Card 4 NN
5 A |
AN NN NN
8 ML NHinnini
2 AMHEHBITHHIR NN
1 A T N
N Hit | Stand Double

Fig. 1. Silberstang strategy for hard blackjack hands.

3. THE BACKPROPAGATION ALGORITHM

The standard backpropagation algorithm utilizes a network consisting
of layers of non-symbolic nodes to learn to recognize a set of patterns. The
learning is supervised as each time a pattern is presented to the network, the
desired output for the pattern is also provided. The network gradually
converges to a point where all patterns are properly associated with the
correct output. These networks are general purpose pattern recognizers and
have desirable generalization and robustness properties.

58

Value in Hand
121314151617181920

A NN
2 N
Y Hit

Showi N\

Card 5 Stand
6
7 N Double
& ANisnn
s A
70 DI

Fig. 2. Silberstang strategy for soft blackjack hands.
The network is maximally connected from layer to layer. The

connection between each pair of nodes has a weight associated with it. The
weights are given initial random weights which are adjusted as the network
learns,

Each pattern is presented to the network, in turn, during training. A
presentation can be separated into three steps: propagation of activity,
computation of error and weight adjustment.

The pattern is encoded as a binary number and the activity of each
node of the input layer is assigned one bit of the number. This input layer

activity is propagated forward through the layers of the network using the
formula:

aj = 1
-Z(aj - wijj)
1+e

where aj is the activity of the receiving node, the aj's are the activities of the
nodes in the sending layer and wjj is the weight on the connection between
nodes i and j. This formula generates an output from the network at the final
layer. The propagation of activity can be used exclusively to generate a
response from a given input in a non-learning mode.

After propagation, an error term is computed for each non-input node
in the network. The error associated with each output node is given by

ei = aj(1 - aj)(aj - di)

59

where d; is the desired output for node i. The output node errors are
propagated back to interior level nodes

ei = ai(1 - aj) - Z(ek - wik)
k

Lastly, the weights are adjusted by the following term such that
another presentation of the given pattern will yield outputs closer to those
desired

Awijn) = N (ej * aik) + ¥ * Awij(n)

where T is a constant that controls the speed of learning, Awij(n) is the

change in weight on the ntl iteration of training, and W is a momentum
constant. The momentum term inhibits forgetting of patterns that have been
previously presented.

Normally, this presentation of patterns and adjustment of weights
continues until the outputs derived from propagation of all patterns are

within some threshold, T, of the desired outputs.

4. APPLICATION OF THE NETWORK TO BLACKJACK

All possible situations and responses in the game of casino blackjack
must be represented by the network. An input node will be created for each
possible value of each decision variable. This creates 17 nodes for the
possible player hand values, 4 through 20, 10 nodes for the possible show
cards (ace through 10) and 2 nodes to represent the status of the player hand
as being soft or hard. There are 260 possible inputs that may be presented to
the network. Hands with hard values make up 170 of these scenarios and
hands with soft values make up the other 90 (since there are no soft hands
with values from 4 through 11). Similarly, there are 3 output nodes, one for
each possible decision of hit, stand and double. Figure 3 shows the
architecture of the network used in the experiments to follow. As described
above, there are 29 input layer nodes and 3 output layer nodes that were
dictated by the problem. There will also be one interior layer that consists of
40 hidden nodes.

All programming experiments that follow were written in C and run
on a DECstation 5000 Model 200 running ULTRIX V4.2,

4.1 AN EXPERIMENT IN SUPERVISED LEARNING

The first experiment to be performed has the network learning the
Silberstang strategy using the traditional backpropagation technique. All
possible input patterns are cycled during training in a given order. The
learning is supervised since the network is supplied with the desired output
for each input pattern. The network is doing active experimentation in the
sense that it is requesting the strategy to give its responses for specified

60

situations. The outputs supplied are consistent and correct as compared to the
given strategy.

Hold Cards Show Card Soft
I | o

O00000000000000000 pOo000ooono oo

Interior Level
of 40 Nodes

Hit Stand Double

Fig. 3. A neural network architecture representing a casino blackjack
strategy.

The algorithm was trained 100 times with different initial random

weight assignments in the range (0.0 ... 1.0). The speed of learning constant,
T, and the momentum constant, , from the weight change formula were set
to values of 0.2 and 0.8, respectively. The value of the convergence

threshold, T, was set at 0.1. A training epoch is defined as one presentation of

each of the 260 input patterns to the network. The results of the experiments
are summarized in Figure 4.

Nn= 0.2 | y=0.8 | t= 0.1}260 input patterns
network architecture : 29 -> 40 -> 3

values below in epoches for 100 trials

mean median min max |std dev] fails

91.96 89 72 173 15.78 0

Fig. 4. Results of experiments training an artificial neural network on an
expert casino blackjack strategy using the standard backpropagation regime.

The experiments show that the backpropagation algorithm was highly
successful in learning the given strategy. The 260 patterns were learned in
all tests and the number of epoches needed for training was small. These
results are not surprising given the fact that strategy acquisition problem
has been translated into one of binary pattern recognition. The

61

backpropagation algorithm has been shown to work well for problems of this
type.

4.2 SUPERVISED LEARNING IN A NATURAL ENVIRONMENT

The next experiment puts the network into a passive mode of operation
while learning the strategy. Instead of following the typical pattern of
repeatedly cycling through all possible inputs, the network will view a
sequence of blackjack hands that would occur during the normal play of the
game. The training will still use the backpropagation algorithm and will
essentially be supervised. It is analogous to the network watching a player
who utilizes the Silberstang strategy play the game at a casino blackjack
table. The network will once again see a consistent, correct strategy.

The test for convergence to the optimum strategy will be changed for

practical reasons. The actual outputs will not be within a certain threshold T

for all patterns. Some patterns will occur much less frequently (for instance,
those representing soft hands and small hard totals like 4) due to the
probabilistic nature of the game. The difference in frequency of
presentation of patterns to the network makes reaching a specified tolerance
for all patterns difficult. Convergence to the given strategy will be said to be
reached when the output node representing the desired action (hit, stand or
double) has a greater activity than the other output nodes for every pattern.
That is, if majority rule was used, the correct action would be chosen in all
cases,

There were 10 tests run in this passive mode of operation with
different initial random weight assignments in the range (0.0 ... 1.0). The
results of the experiments are shown in Figure 5.

n= 0.2 y= 0.8 majority convergence

network architecture : 29 -> 40 -> 3

values below in hands played for 10 trials

mean median min max |std dev} fails

28137 | 20655 | 11820 | 83180 | 22373 0

Fig. 5. Results of experiments training a backpropagation neural network on

an expert casino blackjack strategy using a sequence of normally occurring
hands.

All tests reached majority convergence in less than 100,000 hands of

play. These results are quite encouraging. Even though the number of
hands seems quite large, the speed of learning compares favorably to the
results in the active experimentation mode. Each epoch represents 260

decisions which roughly translates into 130 hands using the assumption that
two decisions are made each hand. The convergence was thus reached after

62

the equivalent of approximately 90 epoches for the minimum trial and 640
epoches for the maximum trial.

Additionally, the network learns a large portion of the strategy very
quickly. A majority of the iterations needed to reach convergence are
associated with correcting the last few erroneous decisions. Figure 6
illustrates this for a typical run from the experiments. It graphs the number
of incorrect decisions, those that do not agree with the strategy being
modeled, versus the number of hands viewed. The number of incorrect
decisions was computed every 100 hands played. The data points did not all
mornotonically decrease as shown in the graph. Only the values that showed
decreases in the number of incorrect decisions were shown to give a general
idea of the trend in improvement. Note that once a strategy did reach 0
incorrect decisions, it never degraded to more than 1 incorrect decision and
after several hundred extra iterations would move back to and remain at 0. It
can be seen from the graph that all but 5 decisions were leamed in the first
4100 iterations. The final three quarters of the hands viewed merely
corrected the last 2 percent of the decisions.

Incorrect Decisions vs. Hands Viewed

240

220 F
200 -
180 -
160 -
140 |-
120 -

100 -

Number of incorrect Decislons

20 -

T | L) L] T L
| 200 | soo | 700 | 1100 | 1700 | 2300 | 3600 | #4100 | 9200 {22000
100 300 600 900 1400 2100 3100 3700 7800 11600 28800
Number of Hands Viewed by the Network

t
0

Fig. 6. Graph showing the decrease in the number of incorrect decisions
prescribed by the backpropagation network as it passively observes an
optimum strategy.

63

One of the major advantages of artificial neural networks is that they
more closely mimic human learning than more traditional techniques. This
experiment illustrates this nicely. The network learns much as a human
would in that it observes a strategy working in the normal environment,
quickly learns the basics of the strategy, displays forgetting (as stated above,
at times the performance degrades) and finally learns the entire strategy
(note that it may outperform, in this case, because a human may never
master the decisions for all situations).

4.3 UNSUPERVISED LEARNING BY PERFORMANCE EVALUATION

The final experiment is the most challenging. The netwcrk will leamn
to play the game without observing an expert but by playing the sequence of
games itself. The network will not be supervised in the standard sense. It
will be informed whether it won a hand or not but will not be informed of the
proper decision(s) for the hand. '

Thus, the network will sometimes be given incorrect information and
will often be given inconsistent feedback as compared with information that
it has previously received. The information can be incorrect in several
ways. First, the network will be told that it lost a hand when in fact the
decisions that it made were correct. Since the game of casino blackjack is
ultimately a losing one for the player, this will happen often. Conversely,
there is the possibility that an incorrect decision will lead to a winning hand.
Finally, if the network makes several decisions during a hand, some may be
correct and some may be incorrect and we have a good example of the credit
assignment problem. Regardless of the outcome in this case, the feedback
will be in some way erroneous. The feedback will be inconsistent because the
network will sometimes be told that a decision in a certain situation is correct
and at other times told it is incorrect. The hope in rurning the experiment is
that the network will filter through the noise to generate an appropriate
strategy.

The game will be slightly simplified for this experiment by disallowing
the double action. This removes the need for an extra variable that would be
necessary to indicate the number of cards in the player's hand (since
doubling down can only be performed when two cards are held) and will
accommodate the feedback rule which will be used.

The backpropagation network and learning algorithm are once again
used. The network will be the same as in Figure 3 except that only two output
nodes, hit and stand, are now necessary. Decisions will be rewarded and
penalized very simply. If the network wins or has a draw for a given hand,
each decision made during the playing of the hand will be presented to the
network for onme training cycle. If the network loses a hand, the opposite of
each decision made during the playing of the hand will be presented to the
network for one training cycle. This is analogous to a person playing the
game without being told the rules. The only information provided is that
there is a choice of two actions and after a hand that the player has won or
lost. '

Three experiments were performed with different initial weights in
the network, varied in the range (-1.0 ... 1.0). Each experiment consisted of
1,000,000 hands. The number of incorrect actions for all 260 decisions when

64

compared to the Silberstang strategy was recorded every 1000 hands. Figure
7 displays these results.

n= 0.2 y= 0.8 convergence not reached

network architecture : 29 -> 40 -> 2

values below in incorrect decisions
(minimum followed by iceration number)

min (it#) max mean median
Trial 1| 6 (970000)| 160 41.85 39
rrial 2| 12 (870000)| 166 39.50 36
Trial 3] 9 (947000)| 150 39.05 36

Fig. 7. Results of experiments training a backpropagation network to play
blackjack using s« normal sequence of hands and a performance based reward
system.

The strategies generated were quite volatile, Even though they
reached their minimum values for incorrect decisions late in training, the
strategies did not stabilize at these low values. The strategies did not at any
point mimic the optimal strategy with »o incorrect decisions (although they
were only compared every 1000 hands and could have matched at a point
between tests).

However, there were some promising results. Although there was a
great variance from test point to test point, averaging the number of
incorrect decisions over 50 test points shows a gradual improvement. Figure
8 shows this graphically for values from Trial 1. The average number of
inccrrect decisions approaches a value of about 34 for all three trials.

Next, consider the strategies that are generated after hand 1,000,000.
The number of incorrect decisions for the three trials at this point were 11,
45 and 17, respectively. Although there wece a number of incorrect
decisions in each strategy, many of them were on the borderline of
changing.

The incorrect decisions came in two categories. The first is associated
with situations that occur infrequently (such as a hard 4). Several
occurrences of incorrect!r rewarded decisions, due to chance, in recent
history can incorrectly swing the action for these situations. The second
category is that of statistically tough decisions. The question of whether to
hit a hard 15 or 16 given a show card of 8, 9 or 10 is not clear cut. In general
these are losing hands for the player. The difference between the activation
of the chosen action and the opposing action when a situation is presented to
the network 7'ves a rough level of confidence in the decision. A portion of
the decision space for Trial 1 is given in Figure 9. The results show that the
network has discovered to some extent which of the choices are obvious and
which are difficult.

65

Average Incorrect vs. Hands Viewed

L L R

Average Nurnbter of Incorrect Dacisions
BresgsyrsessenreEgeEenees

1 L . L v \J L v ¥ LJ '.
80000 |150000|250000] 380000 430000| 330000 830000] 780000 830000 950000|
00 50000/2800001 35000014 8000018500001430000/ 7800001830000/ 450%

Number of Honds Viewed by the Network

. Fig. 8. Graph showing the average number of incorrect decisions prescribed
by the performance supervised backpropagation network every 50,000

hands.
Show Card
8 9 10
Value 15| 0.0007 hit 0.0015 hit 0.0002 hit
in 16] 0.0003 hit 0.0011 hit 0.0001 hit

Hand 17| 0.011 stand | 0.0063 stand | 0.0016 stand
18] 0.57 stand | 0.0046 stand | 0.001 stand
19| 0.85 stand | 0.61 stand | 0.058 stand
20| 0.89 stand | 0.91 stand | 0.8 stand

Fig. 9. A portion of the blackjack strategy leamed by the network includes a
coarse level of confidence along with the decisions.

One can try to remove the variance in strategy quality by developing
scveral sirategies and meiding them into a meta-strategy. For example, the

PSR MR R WO . S .

66

strategies in the three trials can be combined by taking the majority choice
for each decision. The strategy in Figures 10 and 11 is obtained.

Value in Hand

A NN
2
Show 2
Card
5
6 .
7 R NIININ
8 X NN
9 NNMN
1 AN _
Hit B Stand

(incorrect) (incorrect)

Fig. 10. Hard hand meta-strategy with differences from Silberstang strategy
indicated.

Value in Hand
121314151617181920

A MMM

> NN § Hit
show® NN SNEEE N Hi

5 N MI MMM DM Stand

; \\ Q\ N\ Y Stand

N NN (incorrect)
2 AHiiii
70 RENMHIMIMHIMIN

Fig. 11. Soft hand meta-strategy with differences from Silberstang strategy
indicated.

67

There are 11 discrepancies with the hit and stand strategy from
Silberstang. Although there are 11 incorrect choices by majority, at least
one of the trial strategies had the correct action for every decision except
one (a soft hand with show card 7 and value in hand 17).

Finally, the performance of the learned strategies will be considered.
They will be compared to the Silberstang strategy, two intuitive strategies, no
bust and dealer, and a random strategy. A no bust strategy always hits
hard hands below 12 and stands on all other hard hands. It hits on all softs
hands below 17 and stands on all others. The dealer strategy uses the same
hitting and standing rules as the dealer. Table 1 shows the results for
1,000,000 hands played with each comparison strategy and the meta-strategy.
Only the last 500,000 hands of the trial strategies are used (recorded while
learning) to discount early random behavior.

Table 1. Comparison of Blackjack Strategies
Wins Losses | Draws Loss %

Silber 432805 | 474980 | 92215 4.22
No Bust | 421962 | 508392 | 69646 8.64
Dealer | 408659 | 488934 (102407 8.03
Random | 319552 | 628487 | 51961 30.89
Trial 1 | 209202 | 249859 | 40939 8.13
Trial 2 | 208383 | 250784 40833 8.48
Trial 3 | 210593 | 248661 | 40746 7.61
Meta 427908 | 481224 | 90868 5.33

The last column in the table gives the difference between the number
of losses and wins as a percentage of the number of hands played. The best
strategies will minimize this percentage. The strategies created in the trial
runs were of the same order as the intuitive strategies. The meta-sirategy
was an improvement over all but the Silberstang strategy which has slightly
better performance. :

5. CONCLUSIONS

A series of experiments has demonstrated that a backpropagation
neural network can be adapted for use in representing strategies for the
game of casino blackjack. The network can learn an expert strategy quickly
and without failures when allowed to work in a mode of active
experimentation. This is the normal mode of operation for backpropagation
training.

i Iy

=

68

The network is also able to model an expert strategy when working in
a passive mode of operation. That is, it learns the strategy by observing an
expert who is presented with a normal sequence of hands. In doing so, the
network exhibits many characteristics of human learning such as fast
learning of the basics of the strategy, occasional forgetting of portions of the
strategy and a lengthy period of fine tuning. The network eventually
mastered the observed strategy in all tests.

Lastly, the network developed a strategy not by observing an expert
but by learning from its own experience in playing. It rewarded actions that
led to victories and penalized those which led to defeats. This type of
learning introduced contradictory feedback to the system due to the
stochastic nature of the game. The strategies created in this manner had
roughly the same level of performance as some intuitive human strategies. A
meta-strategy built from the end products of several trials approached the
performance level of an expert strategy.

REFERENCES

1. D. E. Rumelhart, G. E. Hinton, R. J. Williams, "Leaming Internal
Representations by Error Propagation,” in Parallel Distributed Processing,
vol. 1, MIT Press (1986) pp. 318-362.

2. D. J. Burr, "Experiments with a Connectionist Text Reader," Proceedings of
the IEEE First International Conference on Neural Networks, 1987, pp. 717-
724,

3. G. L. Martin, J. A. Pittman, "Recognizing Hand-Printed Letters using
Backpropagation Learning," Neural Computing, no. 3, 1991, pp. 258-267.

4. R. H. Silverman, A. S. Noetzel,"Image Processing and Pattern Recognition in
Ultrasonograms by Backpropagation,” Neural Networks, no. 3, 1990, pp.
593-603.

5. T. J. Sejnowski, G. Tesauro, "A Parallel Network that Learns to Play
Backgammon," Artificial Intelligence, vol. 39, no. 3, 1989, pp. 357-390.

6. G. Tesauro, "Neurogammon Wins Computer Olympiad," Neural Computation,
vol. 1, no. 3, 1989, pp. 321-323.

7. A. L. Samuel, Some Studies in Machine Learning using the Game of
Checkers" in Computers and Thought, eds. E. A. Feigenbaum, J. Feldman,
McGraw-Hill, 1963.

8. P. Kurka, "Evolution of Replicators Playing a Strategic Game," Biological
Cybernetics, vol. 52, no. 4, 1985, pp. 211-218.

9. K. Okamura, T. Kanaoka, T. Okada, S. Tomita, "Learning Behavior of Variable
Structure Stochastic Automata in a Three Person Zero-sum Game,” IEEE
Transactions on Systems, Man and Cybernetics, vol. SMC 14, no. 6, 1984, pp.
924-931.

69

10. S. Lakshmivarahan, K. S. Narendra, "Learning Algorithms for Two-person
Zero-sum Stochastic Games with Incomplete Information: a Unified
Approach,” SIAM Journal on Control and Optimization, vol. 20, no. 4, 1982,
pp. 541-552.

11. E. Silberstang, How to Gamble and Win, Franklin Watts, Inc., 1977.

12. R. A. Epstein, The Theory of Gambling and Statistical Logic, Academic
Press, 1977.

13. D. Ortiz, On Casino Gambling, Dodd, Mead & Co., 1986.

14. H. Tamburin, Casino Gambling, The New Complete Guide on How to Play
and Win, Research Services Unlimited, 1988.

70

VIEWPOINTS AND SELECTIVE INHERITANCE
IN OBJECT-ORIENTED MODELING

Markku Oivo
Technical Research Centre of Finland (VTT)
Computer Technology Laboratory

P.0.Box 201, SF-90571 Oulu, Finland
email: markku.oivo@vtt.fi

ABSTRACT

Object-oriented modeling is a powerful and natural knowledge

representation mechanism for many real-life applications. However,
there are situations when the traditional object-oriented modeling and
inheritance lattices are not sufficient. We introduce a dynamic
viewpoint mechanism with selective inheritance for building models in
the context of software engineering and for viewing the models from
multiple perspectives. Furthermore, we describe a set of inter-object

relationships which can be used to enhance the traditional object-
oriented and frame-based modeling mechanisms. These methods and

techniques have been implemented in a prototype system and they have
been used to model various software engineering activities and

1. INTRODUCTION

elements.
The way we perceive concrete or abstract objects depends on our viewpoint. A

chemist, a broker on the Amsterdam oil spot market, a car driver and an automobile
engine all have a different viewpoint to oil. They all see some common properties of oil
but they also attach very different properties to the same object. Having all the

attributes attached to the same object all the time would be unnecessary and confusing

for any of them. Similarly, objects in software engineering can be viewed from different

viewpoints. A software module may have different attributes when viewed from
developer's, tester's, manager's or customer's viewpoint. Certainly there are, and there

should be many common attributes as well, but having all the attributes visible for
everyone would make the object overwhelmingly complicated and difficult to
comprehend. Hence, we need a mechanism for looking at objects from different
Object-oriented modeling is a powerful and natural knowledge representation
mechanism for many real-life applications. It yields itself naturally into taxonomic

viewpoints.
classification and the inheritance mechanism makes it easy to incrementally define
features for objects. However, there are situations when the traditional object-oriented

modeling and inheritance lattices are not sufficient.

N

=]

71

We may want to create an object as an instance of a class and then at some point
continue developing both the ancestor and the descendant independently, i.e., changes
in the parent class should not be inherited into the child anymore. Consider the task of
creating and maintaining reusable components in software engineering. An object may
have been initially created as a part of a class hierarchy. When we store it into a reuse
repository we may not want to store the whole chain of its ancestors in the class
hierarchy. Instead, we could take all the inherited attributes with the object and store
the objects as a self sufficient element into the repository. Later the original class
hierarchy may be changed and classes may be modified but we may want to keep the
original version of the object in the repository.

The above mentioned examples require an object-oriented system to support:

consistent internal representation of the objects

traditional object oriented modeling with both single and multiple inheritance
selective inheritance of attributes from multiple sources

dynamic changing of viewpoints and consequently attributes and behavior of an
object based the user's current interest

In this paper we propose a viewpoint mechanism with selective inheritance which
will address these problems. It is possible to implement these mechanisms on top of
many of the object-oriented as well as frame-based systems but a truly efficient system
requires these features to be implemented in the underlying system. Our method does
not replace or exclude neither single nor multiple inheritance. It is an addition to the
traditional object-oriented and frame-based classification and inheritance mechanisms.
We have implemented a prototype system (ES-TAME) which fulfills the key features of
the viewpoint mechanism with selective inheritance. ES-TAME is built in PC
environment using Kappa, ToolBook and Excel tools in Windows environment. It has
been developed and used in the context of top down goal oriented characterization of
software engineering activities. We are using reusable and tailorable object-oriented
models to represent software engineering elements. Our methods are especially useful
in the analysis and design activities of software development.

2. MODELING

Naturally, the basic object-oriented modeling methods and Is-A hierarchies are
used extensively when building models of software engineering artifacts. In addition,
we provide a set of predefined inter-object relationships and a dynamic viewpoint
mechanism with a highly selective inheritance for building various model hierarchies
and networks. By offering = limited collection of relationships we can maintain
consistent models and prov.de automated support for managing the models. On the
other hand, if we would simply use attributes to store relationships without a rigorous
set of rules we could easily end up to a spaghetti-like relationship network which is
very difficult to maintain in a large modeling application. With a well-defined set of
relationships we can build models which are flexible and yet manageable. In this paper
we concentrate on the dynamic viewpoints and selective inheritance and we will
describe the inter-object relationships only briefly in this paper. An extensive
discussion of the inter-object relationships can be found in [12].

- ———

72

2.1. DYNAMIC HIERARCHIES

The viewpoint mechanism is based on dynamic hierarchies concept, which is
realized with the dynamic manipulation of inheritance hierarchies. Basically, our Is-A /
Children and Instance-Of / Instances relationships are similar to the standard
class/subclass and class/instance relationship offered by most object-oriented and
frame-based systems [3], [4], [5], [11], [8], [18]. They are the only relationships which
employ the conventional inheritance in ES-TAME. However, we do not currently
provide traditional multiple inheritance. Instead, we provide dynamic linking of the Is-
A relationships which considerably enhances the capabilities of the traditional
inheritance. Each object can have a potential Is-A relationship, or more precisely
inheritance link, to several super classes but only one of them is active at any point in
time. All the attributes of the active super class are inherited, whereas inheritance via
the other inheritance links is highly selective and must be explicitly defined. The
purpose of the children relationship is to catalogue all the subclasses or instances of a
given class.

Despite th: rather novel approach to inheritance we still consider our system a
class based system as opposed to prototypical and object based systems. In prototypical
systems the traditional inheritance is replaced by linking a new object to a prototype
object. A message can be delegated to the prototype if the new object has an identical
response to that particular message. On the other hand, the behavior of the prototype
can be redefined or new features can be added simply by defining a method in the new
object. Our approach can offer a similar functionality as delegation on attribute level
but normally we do not use it on class or object level. An object may use the method or
attribute of another object but normally we do not use a full object as a prototype, we
simply inherit selected attributes from one or more classes. We always have a parent
class (which can be changed dynamically) from which we inherit all the methods and
attributes. Additional functionalities and attributes can be inherited selectively from
other objects.

A well known object based system Self has the notion of prototype metaphor
instead of classes and variables [19]. It searches values for slots using parent pointers
instead of inheriting according to a class hierarchy. Self does not use classes or
variables. In ES-TAME each class or instance always has an active parent class and
inherits all the attributes of that parent. If we did not have the dynamic linking
mechanism, our strategy could be considered a single inheritance approach similar to
what is used in systems like Smalltalk, KEE, and Eiffel. However, the dynamic linking
mechanism of the inheritance links provides multiple viewpoints to object models.
Furthermore, it facilitates context sensitive behavior for objects by changing
relationships on the fly and inheriting new attributes and functionalities from the new
parent. The old relationships can be restored without any loss of information due to the
dynamic relationship manipulation.

The fact that we do not currently use multiple inheritance does not mean that we
would argue that it is useless in the context of software modeling and construction. On
the contrary, it is easy to identify numerous cases where objects are conceptually
related to more than one parent and multiple inheritance is useful. The multiple
viewpoints and selective inheritance offer many of the benefits of multiple inheritance.
We can avoid the well known name collision and repeated inheritance problems
involved in multiple inheritance [3], [17], [20] because we have only one parent link or

73

viewpoint active at any point of time. Consequently, we can avoid the problem of
having several possible methods in multiple parent classes with the same name when
forwarding a message to upwards in the inheritance lattice. However, we would still
gain from having both the multiple inheritance and the dynamic viewpoints with
selective inheritance in cur toolbox.

During a link change, all the application level local values of an object, i.e.
instance values which are not inherited from the old parent, must be maintained in the
object in order to be accessible also under the new parent. Furthermore, all the
attributes selected by the user to be inherited and ported under the new parent must
also be maintained. We can recover these values if the old parent becomes the current
parent again. Even if the old parent is deleted or is otherwise not accessible anymore,
we can maintain the attributes which were initially inherited from the deleted parent
before the link change. This is useful for reusing objects in new systems where the
parent may not be included in the new systems. Attributes without a local value and
which are not explicitly defined to be maintained by the user can be removed in the
object level. If the inheritance link is changed to point back to the old parent the
attributes are automatically inherited again from the old parent. Consequently, there is
no need to maintain these attributes while the inheritance link points to a new parent.

This mechanism avoids the problem of information maintenance involved in
coercion in schema evolution for object-oriented databases [15]. In schema evolution the
coercion mechanism discards information during type changes if their definition is not
included in the new type. In the dynamic linking of the inheritance link ES-TAME
maintains all the information even if the definition of the attribute is not included in
the new parent. On the other hand, dynamic linking of the inheritance link is most
often used as a run-time feature and the relationship can also be changed back to any
* of the previous parents, as opposed to the one way evolution of versions in object-
oriented databases [15]. The following algorithm describes the principle of the attribute
manipulation of an object Object during dynamic changing of an Is-A link from Old-
Parent to New-Parent (figure 1).

FOR EACH attribute inherited from the Old-Parent in the Object
IF attribute has a local value in the Object
OR attribute is selected by the user to be inherited THEN
Make attribute local in Object and maintain
the local values
ELSE
Remove attribute from Object
Change 1S-A link of Object to the New-Parent

Ll

Fig. 1. Principle of attribute manipulation.

74

2.2. RELATIONSHIP NETWORKS

In addition to the basic Is-A relationship we need a set of pre-defined relationships,
which can be used as basis for the model building tools and graphical browsers in a
similar manner as the basic Is-A relationship. We have defined all the relationships in
pairs because of the emphasis of using ES-TAME to build reusable objects. Each object
can be taken out of its original hierarchy and subsequently be stored into the reuse
repository for future use. It must retain knowledge not only of its descendants in the
hierarchy but also of its possible ancestors, parts if it is a composite object, to which
context it belongs and information on how its relationships can be used in new
applications. It is a reusable object with relationships as connectors which can plug into
other objects both upwards and downwards in any of the relationship hierarchies.

The relationships offered by ES-TAME are Is-A/Children, Instance-Of/Instances,
Part-Of/Has-Parts, Compatible-Objects, Dynamic-Attribute and a Counterpart
relationship:

e The Part-Of /| Has-Parts relationship pair is used to describe compound objects. A
composite object is a collection of objects which can be managed as a single entity.
Our composite object is roughly comparable to the related concepts of some other
object-oriented languages and object-oriented database systems [9], [17]). However,
it is important to notice that we do not require a composite object to be instantiated
in a top down fashion starting from the compound object and then instantiating the
components [1], [17]). Due to the emphasis on reusable components and parallel
design in large projects, we don't have any restrictions on the order in which
compound objects are built and instantiated.

o The Compatible-Objects relationship is used to describe objccts which can be used
together, e.g. the function point method might be compatible with MIS projects but
not with real-time projects.

e The Counterpart relationships are provided for creating various domain specific
relationships and links between objects. They are normally used to define
relationships between objects which are used in the same context to build a larger
scheme. The counterpart relationship has some similarities with Booch's
association relationship which denotes a semantic connection among otherwise
unrelated classes [3]. Using counterpart relationships the user can create, edit and
browse any kind of application specific hierarchies. Naturally, each object can also
be viewed from all the standard viewpoints provided by ES-TAME. These
relationships are used to manage the interconnections and interactions between the
related objects, including message passing, constraint reasoning and value
propagation. ,

o The Dynamic-Attribute provides a way of associating an object's attribute with
the attribute of another object [9); e.g. if we have estimated the number of source
lines (SLOC) in the product characterization and given it as an attribute to the
product model, we can link the corresponding SLOC attributes of the resource
estimation and defect slippage models to the product model's SLOC attribute. Thus
we maintain the SLOC estimate in one place only and changing the estimate can be
automatically updated in the other models.

75

3. USING DYNAMIC VIEWPOINTS AND SELECTIVE

INHERITANCE

We provide a mechanism for attaching a generic viewpoint mechanism to any of
the models or model components and their relationships. The objects and models are
always internally defined by a single internal representation. Normally each user has a
default viewpoint to the system. For example, the tester is mainly interested in the
errors, faults, and various quality models. On the other hand, management is more
interested in budgets, resources, cost, project schedule, etc., and can have models
tailored according to the management perspective. The manager may impose a
schedule for the whole project using the project model and estimations of the size and
effort needed to implement the system. When the system reaches the testing phase the
tester takes a totally different viewpoint to the software. The tester performs the pre-
defined testing procedures and records the results. The information recorded in the
model of the software is available also for the tester.

r~

CLASS: Cost-Estimation-Unit

Al: Development time

A2 Size in KLOC
INSTANCE: Module-n 1
Al: Developmentime |}

A2 15

CLASS: Cost-Estimation-Unit |

CLASS: Testable-Unit

Al: Development time |

B1: # of errors

A2: Size in KLOC K

B2: ¥ of errors/....OC

P

B3: Method for counting errors

B4: T
INSTANCE: Module-n
Bi: 100
B2: 7
B3: Method for counting errors
B4: ...
A2: 1S

4

CLASS: Cost-Estimation-Unit I

CLASS: Testable-Unit

Al: Development time - - 3 B1: # of errors

A2: Size in KLOC RN B2: # of emors/KLOC
_1 [: B3: Method for counting errors

: ' B4: ...

INSTANCE: Module-n !

Al: Development time ! :

A2: 15 : !

Bl: 100 .

B2: 7 -

Fig. 2. Internal structure of objects during changing viewpoints.

76

Each model or component of a model is defined as an object. Each object is defined
with attributes which are relevant to itself as a class or as an instance of a class. For
example, a data flow diagram is defined with its relevant attributes in the context of
structured analysis and design. However, because it is defined as a model which can be
viewed from multiple perspectives it has the capability of having several viewpoints, If
the user wants to examine the quality aspects of a particular data flow diagram, he/she
would change the viewpoint of that object to a particular quality model. As a result, the
data flow diagram would be dynamically linked to that quality model and inherit its
features and functionality. Note that this is different from multiple inheritance.
Linking is dynamic and inheritance is applied only while the object is linked to the
viewpoint. When changing the viewpoint again, only those attributes which are
instantiated during the old viewpoint, i.e. those that have been modified or given local
values, are ported into the new viewpoint.

CLASS: SystemViewpoints
CLASS: Testing
CLASS: ResourceBstimation
CLASS: Static
CLASS: FunctionPoint
CLASS: SLOC
CLASS: COCOMO
CLASS: Basic
CLASS: Intermediate
CLASS: Advanced
CLASS: IBM.FSD
CLASS: Doty
CLASS: BaileyBasili
CLASS: Dynamic
CLASS: QualityModels
CLASS: Cohesion
CLASS: Coupling
CLASS: DefectModels
CLASS: Defects
CLASS: Faults
CLASS: Failures
CLASS: Errors
CLASS: DefectViewpoint

Fig. 3. A sample collection of potential viewpoints of a software sub-system.

One of the advantages of the dynamic viewpoint mechanism and selective
inheritance is it limits the amount of information in each object. Because most of the
objects can be viewed from a variety of predefined perspectives (quality modeis, cost
estimation, testing, design, implementation etc.), use of straightforward multiple
inheritance or implementing the attributes and functions as part of the objects would
yield excessive information and obscure the user's understanding of the object itself
and its conceptual relationships to other objects. With dynamic viewpoints we can focus
our attention on the features which are relevant to our current interest.

Our approach differs from the multiple interfaces defined in some object-oriented
languages. For example, Snyder proposes two different interfaces to classes, one for

77

public use and one for subclasses [16]. Others have proposed restricted subsets of
operations for different users to facilitate multiple views to the same object {7].
Dynamic viewpoints and selective inheritance are primarily a means for changing run-
time behavior, object attributes, or even class hierarchies, Changing a viewpoint adds
new methods and attributes to an object and may remove old ones if they are no longer
needed. This is a basic difference from controlling visibility in Trellis’'Owl [14] or
accessing an object in [7] and [16].

4. CONCLUSIONS

We have presented a method for enhancing the traditional object-oriented
techniques to better support the modeling of software engineering related artifacts and
activities. For example, we should have different perspectives to a software module
when viewed from developer's, tester's, manager's or customer's viewpoint. In addition
to the basic object-oriented techniques we provide a dynamic viewpoint mechanism
with selective inheritance and a set of predefined inter-object relationships. These
techniques have been demonstrated in a prototype system which has been used to
model various software engineering elements. The knowledge representation
mechanisms have proven to offer better modeling tools for the user. The dynamic
viewpoint mechanism offers a convenient way of having multiple perspectives to the
models. It is also a useful tool for incrementally building object-oriented models.

ACKNOWLEDGMENTS

This work has been supported by Technical Research Centre of Finland, US Air
Force grant AFOSR 90-0031, Tekniikan Edistimiss##tié foundation and Tauno
Ténningin S#4tié foundation.

REFERENCES

1. Banerjee, J. , Chou, H.T., Garza, J.F., Kim, W., Woelk, D., Ballou, N., Data
Model Issues for Object-oriented Applications, ACM Transactions on Office
Information Systems, January 1987.

2. Baslili, V.R. & Rombach, H.D. The TAME Project: Towards Improvement-
Oriented Software Environments, IEEE Transactions on Software
Engineering, Volume SE-14, No. 6, June 1988, pp. 758-773.

3. Booch, G., Object-Oriented Design with Applications, Benjamin/Cummings
Publishing Company, Redwood City, CA, 1991, 580 p.

4. Fikes, R., Kehler, T, , The Role of Frame-Based Representation in Reasoning.
Communications of the ACM, Vol. 28, No. 9. September 1985, pp. 904 - 920.

5. Goldberg, A. , Robson, D., Smalitalk-80: The Language and its
Implementation, Reading, Massachusetts, Addison-Wesley Publishing
Company, 1983

10.

11.

12.

13.

14,

15.

16.

17.

18.

18.

78

Hahn, U., Jarke, M., Rose, T. Teamwork Support in a Knowledge-Based
Information Systems Environment, IEEE Transactions on Software
Engineering. No 17, May 1991, pp. 467-482.

Hailpern, B.. Ossher, H., Extending Objects to Support Multiple Interfaces
and Access Conirol, IEEE Transactions on Software Engineering, Vol. 16, No
11, November 1990, pp. 1247-1257.

IntelliCo:p. KEE Software Development System User's Manual.
IntelliCorp, Kappa System User's Manual.

Kim, W., Banerjee, J. , Chou, H.T., Garza, J.F., Woelk, Composite Object
Support in an Object-Oriented Database System, Proceedings of the ACM
Conference on OOPSLA, October 1987, pp. 118-125.

Lieberman, H., Using Prototypical Objects to Implement Shared Behavior in
Object Oriented Systems, Proceedings of the ACM Conference on OOPSLA,
September 1986, pp. 214-223..

Meyer, B., Object-oriented Software Construction, Prentice Hall, New York,
1988.

Otvo, M. & Basili, V.R. Representing Software Engineering Models: The TAME
Goal Oriented Approach. IEEE Transactions on Software Engineering,
Volume 18, No. 10, October 1952.

Oivo, M., Multiple Viewpoints to Software Models, International Workshop
on Experimental Software Engineering, Dagstuhl Castle, Germany,
September 1992 (to appear in Springer-Verlag Lecture Notes Series).

Schaffert, C., Cooper, T., Bullis, B., Kilian, M., Wilpot, C., An Intreductiun to
Trellis/Owl, Proceedings of the ACM Conference on OOPSLA, September
1986.

Skarra, A.H., Zdonik, S.B, The Management of Changing Types in an Object-
Oriented Database, Proceedings of the ACM Conference on OOPSLA,
September 1986, pp. 483-495.

Snyder, A.., Encapsulation and Inheritance in Object-Oriented Programmn:ing
Languages, Proceedings of the ACM Conference on OOPSLA, September
1986, pp. 38-45.

Stefik, M., Bobrow, D., Object-Oriented Programming: Themes and
Variations, Al Magazine, Volume 6, No 4, Winter 1986, pp. 40-62.

Stroustrup, B.: The C++ Programming Language, Addison Wesley, Reading,
Massachusetts, 1986.

79

20. Ungar, D., Smith, R., SELF: The Power of Simplicity, Proceedings of the ACM
Conference on OOPSLA, October 1987, pp. 227-241, Orlando, FL, 1987.

21. Wegner, P., Concepts and Paradigms of Object-Oriented Programming,
Expansion of Oct 4 OOPSLA-89 Keynote Talk, OOPS Messenger, Vol I,
Number I, August 1990, pp.7-87.

e

80

MULTIVARIATE DISCRETIZATION OF CONTINUOUS
ATTRIBUTES FOR MACHINE LEARNING

Thomas W, Rauber, Dinu Coltuc* and Adolfo S. Steiger-Gargao

Universidade Nova de Lisboa-Faculdade de Ciéncias e Tecnologia
Departamento de Informatica-Intelligent Robotics Group
2825 Monte de Caparica-Portugal
Tel.: +351-1-2953220 — Fax: +351-1-2955641 — E-mail: tr @fct.unl.pt

ABSTRACT

Symbolic Machine Learning algorithms like decision tree or rule
induction programs must discretize continuous attributes. This symboliza-
tion of continuous values is usually done in an univariate way. That means
that the attributes are transformed from continuous to discrete space inde-
pendently from each other. For each attribute the infinite range of its possi-
ble values is discretized to a finite number of values which from there
onwards are considered as symbolic.

In this paper we propose multivariate discretization of continuous
attributes as a preprocessing step of symbolic induction. The generated
symbolic values represent not only a single continuous attribute, but a mul-
tidimensional discretization of many continuous attributes. The novel
approach is to merge several continuous attributes in order to discretize
them and to use this multivariate discretization as a preprocessor for the
symbolization of continuous attnbutes in inductive learning.

Furthermore we propose the Q" algorithm which is capable of learning
multivariate prototypes in an Euclidean space. It is a self-organizing super-
vised learning method which condenses the raw sample data to a represen-
tative set of prototypes. The algorithm can be used for the multivariate
quantization philosophy that is proposed in this text.

Experimental results are presented for a classification task. Instead of
the normally univariate quantization, multivariate quantization using Q is
employed.

1. INTRODUCTION

In inductive learning the type of an attribute can be continuous, discrete ordered or
totally urordered (symbolic, nominal, categerical). Difficulties arise in the generation of
decision structures when the objects are described by a mixed set of attributes. Consider
the example set of Table 1. We modified the original training set for decision tree induc-
tion that Quinlan [2] used to illustrate the effect of his ID3 [1]. Originally 14 samples char-
acterize 2 weather classes. Outlook, temperature, humidity and wirndy were the four

* ICPE, Research Institute for Electrotechnology, Bucharest, Romania

e LD ___ . -] TW

81

symbolic attributes that described the classes positive (P) and negative (N). We substituted
the symbolic values of the two attributes temperature and humidity by continuous values
to obtain a mixed attribute set. It was assumed that the temperature is cool between 5°C
and 15°C, mild between 15°C and 25°C and hot between 25°C and 35°C. Humidity is
normal below 80% and high above 80%. The original symbolic values are indicated in
parenthesis.

What are the alternatives for the attribute model in the mixed attribute case if a classi-
fier has to be induced?

1.1 SYMBOLIC — NUMERIC

Table 1: Example training set for inductive learning

ATTRIBUTES
[Sample Outlook Temperature | Humidity Windy Class
1 sunny 332 (hot) | 899 (high) false N
2 sunny 31.1 (hot) 92.2 (high) true N
3 overcast 28.3 (bot) 98.2 (high) false P
4 rain 19.9 (mild) | 88.1 (high) false P
5 rain 10.1 (cool) | 71.2 (normal) false P
6 rain 63 (cool) 63.2 (normal) true N
7 overcast 84 (cool) 75.2 (normal) true P
8 sunny 18.2 (mild) | 92.3 (high) false N
9 sunny 93 (cool) | 78.2 (normal) false P
10 rain 19.3 (mild) | 69.3 (normal) false P
11 sunny 214 (mild) | 70.4 (normal) true P
12 overcast 224 (mild) | 94.2 (high) true P
13 overcast 32.2 (bot) 73.2 (normal) false P
14 rain 21.8 (mild) | 82.5 (high) true N

The symbolic attributes (outlook, windy) are encoded to numeric attributes. Then a
purely numeric learning task is performed. This could be for instance a supervised cluster-
ing in a multidimensional Euclidean space, a connectionist (neural network) approach, a
Bayesian classifier in a multidimensional continuous space etc. The problem with this
technique is the eventual creation of a non-existing order that is imposed on the values of
the unordered variable, see e.g. Utgoff and Brodley [3] for a discussion on encoding sym-
bolic attributes. In the weather example the windy attribute can still be handled relatively
easy, since it has only a binary range. The value true could be er.coded to 0.5, false to -0.5
and even an unknown value finds a place in this model with 0.0. The outlook attribute has
more than two possible values. One method to encode multi-value categorical attributes is
the introduction of new attributes, one for each possible value, and then proceed like for
the binary case. Here we would obtain three new binary attributes out of one multi-value
discrete attribute: outlook_overcast, outlook_rain and outlook_sunny. One drawback of
this method is obvious. Attributes with many values cause an enormous multiplication of
the size of the attribute set.

82

Many induction programs have to go the way from symbolic to numeric attributes, e.g.
all those which rely on a geometric relationship among the attribute values. Kohonen’s
Learning Vector Quantization [4], [5], Utgoff and Brodley’s PT2 decision tree induction
[3] or multilayer perceptrons are examples of such learning programs.

1.2 NUMERIC - SYMBOLIC

Symbolic induction algorithms that work on symbolic attributes are for instance Quin-
lan’s ID3 decision tree induction algorithm [1] from which the ASSITANT program for
medical diagnosis of Kononenko et al. was derived [6]. Michalski’s AQ-Family which
was successfully applied with AQ11 [7] for soybean disease diagnosis is another example
of symbolic induction. Generalization of the data is expressed as rule sets. The CN2 algo-
rithm of Clark and Niblett [8] uses a hybrid form for the decision structure. The so called
decision lists are a intermediate concept between trees and rules.

The numeric attributes (temperature, humidity) are quantized. In Quinlan’s original
sample set this was certainly done in order to obtain the symbolic values. The infinite
range of continuous attributes is discretized to a finite set of symbolic values. Usually,
also the still existing order relation of the discrete values is discarded during the induction
process. This is the case for ID3.

The discretization of the variables is done however in an univariate manner. Tempera-
ture is discretized without taking into account humidity and vice versa. An independence
of the class conditional probability distributions for the attributes is assumed:

p((temp, humid)|Class) = p (temp| Class)p (humid)| Class)

or generally for attribute values x; and classes C.

n
P((xp . %)|C) = [TP (x| C) (1)
i=1

The assumption of the independence of the attribute values facilitates the induction
process in general. The quality of an attribute can be expressed without respecting the cor-
relation that it eventually has to another attribute. Univariate quantization was investigated
by Catlett [9]. His discretizing algorithm calculates cutting thresholds “for each attribute
without reference to the others”. We aim at taking into consideration the interdependence

of the attributes when a discretization has to be done, not independence.

2. MULTIVARIATE DISCRETIZATION
2.1 GENERAL IDEA

Instead of discretizing attributes univariately one by one, we merge several continuous
attributes to a multidimensional vector and discretize in the resulting Euclidean space. The
symbolic values are then geometric bounded entities, formed like hyperspheres, hyper-
rectangles, hyperpolygons, open halfspaces etc.

Let us join the two attributes temperature and humidity to a multidimensional superat-
tribute. The resuiting 2-dimensional points are plotted in Fig. 1.

83

The univariate discretization consists of cutting the continuous range in 3 respectively
2 intervals which are orthogonal to the axes for temperature respectively humidity.

100 T | 1 +
HIGH o + |
| | T -
= +
8 | |
> -
g 04— —————b——-=_ b_
E + l l
T +
+ | + + |
NORMAL | l
60 | 3 %
5 CcooL 15 MILD 25 HOT 35
Temperature [Celsius]

Fig. 1. Several continuous attribute values are points in a multidimensional Euclidean space.

A multivariate discretization would try to create two-dimensional patches which
describe the classes. In that sense a rectangle ((15 <temp<25) A (60 < hum <80))
would be a bivariate symbolization of the two continuous attributes. Any 2-dimensional
continuous value which a priori in the training and a posteriori in the classification falls in
that rectangle e.g. (16.9°C, 78.5%) has the symbolic value of the rectangle. But also a
hypersphere (a circle in the 2-dimensional case) around the point (9.27°C, 74.87%) is a
symbolic value.

Suppose now that some multivariate cluster algorithm had generated cluster centers
like in Fig. 2. The positive class is represented by three prototypes P-I at (9.27°C,
74.87%), P-2 at (26.28°C, 71.52%) and P-3 at (32.15°C, 91.05%), the negative class is
represented by two prototypes, N-1 at (6.3°C, 63.2%) and N-2 at (18.2°C, 92.3%).

Prototypes for the "N" class
X Prototypes for the "P" class
100 +
+
+
< =X _
) +
> -
:g 80 + +
k- +X +
+ + + X
O
60 . + —
5 15 25 35
Temperature [Celsius]

Fig. 2. Prototypes that represent bivariate symbolization of continuous attributes.

84

We consider these prototypes as the multivariate symbolic values for several continu-
ous attributes. Any unknown multidimensional value has the symbolic value if the proto-
type is nearer to it than any other prototype in terms of a distance function. The bivariate
symbolization of the two attributes temperature and humidity is now done as follows: For
each of the 14 samples search the prototype which is most similar (next to) to the sample;
then exchange the bivariate continuous value by the symbolic value of the prototype.
From now onwards there are only symbolic values that describe the classes. Proceed with
symbolic induction as usual, e. g. generate rules or decision trees. In the ID3 decision tree
induction algorithm the gain for the superattribute could be calculated for instance since it
is a symbolic attribute.

For our example we obtain then a purely symbolic description like in Table 2. The
bivariate continuous values for temperature and humidity have been substituted by the
sym.olic values of the superattribute.

3ut not only prototype-based multidimensional learning of continuous attributes fits
inty this philosophy, but also other geometric shapes that define a multidimensional sym-
bolic value, like hyperrectangles.

Table 2: Multivariate symbolization of the continuous attributes temperature and humidity

ATTRIBUTES
Sample || Outlook Windy (Temggﬁ;“r‘é""}'!’:":i gityy | Closs
1 sunny false “N-3“ N
2 sunny true “N-3% N
3 overcast false “N-3“ P
4 rain false “N-2¢ P
5 rain false “P-1¢ P
6 rain true “N-1% N
7 overcast true “p-1v P
8 sunny false “N-2+ N
9 sunny false “P-1¢ P
10 rain false “p-2¢ P
11 sunny true “p-2+ P
12 overcast true “N-2¢ P
13 overcast false “Pp-2¢ P
14 rain true “N-2¢ N

2.2 BENEFITS AND DISADVANTAGES OF MULTIVARIATE DISCRETIZATION

What benefits can be expected from the merging of several numeric attributes during
discretization? The general tendency in Machine Learning seems to corroborate the need
for multivariate instead of univariate approaches. Decision trees that test on several
attributes are proposed as a more sophisticated evolution of decision trees that test only on
a single attribute. Utgoff and Brodley [3] illustrate the limitations of univariate splits in
decision trees with an example of a linear function that has to be learned. The univariate

85

splits are only optimal if a projection of an attribute on its respective coordinate axis pre-
serves the class separation. Their PT2 decision tree induction algorithm uses multivariate
tests in a single tree node. Also Clark and Niblett’s CN2 [8] employs a multivariate test
with the concept of the decision lists, although the quantization of continuous attributes is
done in the usual univariate way. With multivariate tests, decision trees become eventu-
ally less complex because class boundaries may not be described exactly by an univariate
approach, only approximations to the class concepts could be done. If hyperrectangles are
used for instance to define the classes and the probability distributions of the classes really
have rectangular forms, a multivariate description is surely preferential.

As a drawback of multivariate discretization we can mention several facts: In a classi-
fication system with a high degree of human interaction its becomes more difficult to
understand a multivariate test. Decisions made by the system become less transparent. A
human being can easily trace the decision making of a tree classifier if only one attribute is
allowed in a node, but it gets harder to understand the combination of several attributes in
a single step.

3. RELATED RELEVANT WORK

In this section we will point out research that has been done in order to solve problems
that are related in many different aspects to our approach of multivariate discretization of
continuous attributes. We do not claim any completeness of this overview. The objective
is to relate the principles that are used in the different learning algorithms to our general
approach of multivariate discretization.

3.1 MULTIVARIATE CLUSTERING AS DISCRIMINANT ANALYSIS

Rendell investigated the problem of selective induction in a general framework that
highlights the expression of discriminant analysis {10]. Class formation and multivariate
quantization are basically put on the same level. Three different types for symbolic values
of multidimensional ordered numerical attributes are mentioned:

i.) Hyperrectangular class clusters. This form of class formation expresses a concept or
class as a bounded multidimensional box in which the members of the class are stored.
The symbolization process in this case would state e.g. that an example has the sym-
bolic value “box_1" if its first attribute may vary in the interval [3,6], its second
attribute may vary in the interval [1,5] etc.

ii.) Open hyperspaces. A line with the equation y = x in the 2-dimensional Euclidean
space is an example of a boundary between two different classes. The symbolic value
of a sample becomes then “upper halfspace” or “lower halfspace”.

iii.) Prototype based methods. This class representation schema is exactly the same as for
the hyperrectangles, differing only in the shape of the discriminating boundary. A pro-
totype is the centroid of a hypersphere. The symbolic value is associated with the
sphere. A sample is labelled with this symbolic value if its multidimensional numeri-
cal value falls e.g. into “sphere_1". The Q° uses a prototype-based model.

86

3.2 HYPERRECTANGLES

Salzberg [11] developed the idea of rectangular shaped class delimiters to a learning
algorithm that is able to model multimodal, nested class distributions. His NGE-algorithm
dynamically learns by reshaping existing rectangles or creating new rectangles. The learn-
ing is supervised and the outcome of a classification during training is the source of feed-
back for the learning mechanism. The nearest hyperrectangle learning algorithm uses the
way from symbolic to numeric attributes. Symbolic attributes are encoded like described
in section 1.1. Experiments in two medical domains and for Fisher’s iris flowers data set
[12] are descnbed

The Q -algorithm that will be presented later shares some concepts with the hyperrect-
angle learning. A feedback about how the actual state of the induction system performs is
used to dynamlcally reorganize the prototype based class representation. Differently how-
ever Q" is conceived only as a preprocessing step for numerical attributes in order to trans-
form them to symbolic values. The proper induction is performed by a symbolic approach,
like ID3 for instance, whereas the NGE approach works in a geometric space.

3.3 SELF-ORGANIZING MAPS, LEARNING VECTOR QUANTIZATION

A leamming method generally categorized as a neural network approach is the self-
organizing map conceived by Kohonen [4]. This method is based on the principle of com-
petitive learning. A set of codebook vectors represent a multidimensional abstraction of
the raw data that are supplied by the examples. The algorithm works on a multidimen-
sional Euclidean space. The basic idea is to tune the structure of the codebooks conform-
ing the signals that appear in discrete time steps. The closest codebook m; = m; () to a
signal (sample) x; = x;(#) is updated following the rule:

m . (t+1) =m_ (1) +o(t) [x(1) =m_ ()] 2

with 0 < a (7) < 1 being some gain coefficient, whereas the other codebooks that were not
close to the sample remain the same:

m;(t+1) = m,; (1)

In its supervised form the codebooks are learned by the so called Vector Quantization
(VQ) [5]. In this case competitive learning is done with the known class membership of
the samples. Several variants are proposed by Kohonen (LVQ1, LVQ2, LVQ3). A fixed
number of initial codebooks is chosen. These codebooks are then updated using the com-
petitive learning above. The codebooks are modified in the sense that they minimize an
error cntenon for the distance between the samples and their associated codebooks.

Q" shares some concepts with the VQ. From a set of raw samples a representative set
of prototypes is generated. Prototype samples are dynamically updated, taking into con-
sideration if the actual state of the system is capable to classify correctly. The dlffercnce
however is that in VQ the number of the codebook vectors is fixed, where for Q represen-
tative prototypes are dynamically created.

S T Wi

87

3.4 MULTIVARIATE ATTRIBUTE NODES IN DECISION TREES

Utgoff and Brodley showed with the PT2 algorithm [3] that it makes sense to test sev-
eral attributes in a decision tree together. It is pointed out that eventually more compact
trees are found compared to the conventional, univariate quantization method. The authors
use linear threshold units (LTU) to separate classes. Symbolic attribute values are conse-
quently half-spaces divided by hyperplanes. The trees for PT2 are always binary which
implies a successive division of samples that could otherwise be divided directly if the
separating boundary were not a hyperplane. Only two classes can be characterized.

The paper also points out the major drawback of multivariate splits mentioned before:
decisions made by the system become less transparent. The trade-off between complex
trees on one hand or complex tests on the other hand was described.

4. THE Q* QUANTIZATION ALGORITM

In this section we will specify in detail a technique that is conceived for the multivari-
ate quantization of ordered numerical attributes. It should be understood as a possibility to
implement the generation of symbolic attributes from a set of several continuous
attributes. Other learning algorithms like Kohonen’s LVQ or Salzberg’s NGE could be
used interchangeably for this purpose.

Q" has the following properties:

i.) It is non-parametric which is especially advantageous if the number of available train-
ing examples is small. For instance the number of prototypes for each class has not to
be specified a priori.

ii.) It handles multimodal class distributions. Classes may be nested inside other classes in
the multivariate continuous attribute space. This property is not true if e.g. a prototype
is always calculated as the centroid of all samples that belong to .. certain class.

iii.) It is self-organizing. No parameters have to specified by the user. Class concepts in
the multidimensional continuous space are discovered automatically.

iv.) For the purpose of a preprocessor for symbolic Machine Learning algorithms, it
reduces the dimension of the class description vector. Several continuous attributes are
merged into one superattribute.

The subset of attributes that are numerical and continuous are represented by a set of
prototypes (cluster centers) that are associated with the classes. The prototypes are created
without any information about the other, symbolic attributes of the classes. The hasic idea
is to create a new prototype for a class whenever the actual set of prototypes is not capable
of classifying the training set satisfactorily. This means that if a sample is mis-classified,
we assume that it is not covered sufficiently by the prototypes of the true class of the sam-
ple. On the other hand if a sample is correctly classified by a prototype, it will influence
the prototype itself. We use the method of updating a prototype by the mean of all samples
which were correctly classified by the prototype. The mean is a multidimensional vector
that is calculated by the individual means of the components of the vector. These compo-
nents are the values of a certain continuous attribute. In the example of Fig. 1 for instance
the mean of the three vectors for the positive class in the lower left corner of the graph

o,

88

(10.1°C, 71.2%), (8.4°C, 75.2%) and (9.3°C, 78.2%) are represented by the mean vector
(9.27°C, 74.87%) in Fig. 2.

This process of updating is repeated as long as the system commits errors in classifica-
tion and as long as it dynamically changes the location of the prototypes.

The expectation for such a system is that it converges to a stable state in which the pro-
totypes represent the classes. Multimodal class distributions should also be learned by the
system without any prior specification by the user. The prototypes should adapt them-
selves to complex class distributions in the n-dimensional Euclidean space. Nested class
clusters inside other class clusters must be detected. The system must also be determinis-
tic, i.e. it must not cycle infinitely through its adaptatlon loop.

Table 3 gives the functional definition of the Q quantlzatlon algorithm. Initially one
arbitrary prototype represents one class. The whole sample set is presented to the system
in one discrete time cycle. The feedback to the system is given by the classification of a
sample. If the sample was correctly classified, join it to the list of positive examples of the
nearest prototype. In the updating phase the mean value of this list will substitute the pro-
totype. Hence the prototypes will gradually move to the centers of the local sample cluster
that they should represent. Speaking in terms of probability distribution, the prototypes
become the centroids of one mode of a multimodal class probability distribution.

On the other hand if a sample was “recognized” by a strange prototype (a prototype of
another class than the correct class of the sample), then the algorithm concludes that the
class of the sample is not sufficiently represented. Consequently the sample is declared to
be a new prototype for the class that was not recognized correctly. This mechanism
ensures that new prototypes are created as seeds for new clusters.

A highlight of the algorithm is that it needs no initial system parameter specifications
like K-means or the similar ISODATA algorithm [13]. It adapts the prototype representa-
tion of the classes by trying to approximate the respective class regions in the multidimen-
sional space.

One aspect of the clustering must be taken into consideration. The generation of the
prototypes creates so called outliers, i.e. samples that are isolated from a cluster are
always considered as a new cluster center. This should however be avoided in order not to
overfit the clustering to noise, similar to the problem of the “pure” ID3 algorithm.

We therefore pass over the whole set of prototypes and delete those who never had any
positive samples in their neighborhood. This procedure has the effect that outliers are
purged and in overlapping areas of several classes the prototype occurrence is kept low.

5. EXPERIMENTAL RESULTS

The Q"-algorithm will be used for experiments in inductive classification. First we
will feed the quantization mechanism with the iris flower data set of Fisher [12] using a
attribute vector reduced to 2 dimensions for the purpose of better visualization. This
experiment serves for the illustration of the effects of Q". The second series of experi-
ments will focus on the intentional conception of the algorithm, namely to be a preproces-
sor of numerical attributes for symbolic induction algorithms.

89

Table 3: The Q' quantization algorithm

Let {S)} be all labelled examples of the training set and {S.} be the samples of
class c.

Let (P} be the set of all prototypes and {P.} be the set of all prototypes for
class c.

Let (S+cy} be a list of positive examples that were correctly classified by P.j.

Procedure Q" (S)
Initialization. For each class c pick one aleatory sample S. of that class as
the first prototype P.; for that class c. Reset discrete time step: t « 0.

Repeat
c & first class;
while ((c <= Nr. of classesg) and (no mis-classification occurred))
for (all samples S. of class c)
measure the Euclidean distance between S. and all prototypes P;; of
all classes i, inclusively the class c;
update the minimum distance (special case: do not update if minimum
distance is equal to measured distance and i is different from c);
if (the closest prototype P;; to S; belongs to class ¢, i.e. i=c)
join the sample S. to the positive samples of P.y:
{S+cyle={S+.5}US.;
else
a mis-classification occurred;
the prototype Pyy with the minimum distance to S. belongs to
another class k;
create a new prototype for class c: {P.}e{P.}US.;
update all classes a by now visited: UPDATE_PROTOTYPES (a) with
ae{l...c};
increment c;
if (no mis-classification occurred)
for (all classes c)
UPDATE_PROTOTYPES (C) ;
test if prototypes change during the updating of class ¢
next discrete time step t: t « t+l;
Until (the prototypes do not change anymore);

Purge outliers. Delete all P. which {S+.y} was always empty.

Procedure UPDATE_PROTOTYPES(c)
for (all prototypes P. of class c)
if (list for positive examples {S+cy)} of prototype P.y is not empty)
replace P, by the mean of all S+.4;
if (new value of P. is different from old value of P.)
prototypes have changed;
reset the list of positive examples for P.: {S+cy}e(}

The ID3 decision tree generator program of Quinlan [1] will be the frame in which
classification experiments will be carried out. Data from three real world domains is ana-
lyzed: i.) car imports ii.) hepatitis diagnosis and iii.) credit screening. The databases were
downloaded from a repository for machine learning databases from the University of Cal-
ifornia at Irvine”. The databases were chosen in respect to the suitability for the quantiza-
tion algorithm. The attributes are mixed, i.e. nominal and numerical. The experiments will
compare the estimated classification error rate for the univariate (no multivariate quantiza-
tion) to the error for multivariate quantization with Q”.

Beforehand we will define a set of conventions that were made at this stage of the system:
1.) The ID3 decis:un tree algorithm is used in its pure form. No pruning or soft thresholds

* directory: pub/machine-learning-databases at server: ics.uci.edu

90

like described in [14] were applied to the decision tree. This constraint does not influ-

ence the comparison of univariate to multivariate quantization. ID3 is one of several

possible frameworks for the symbolic induction.

I1.) Examples with unknown values in one or more of their attributes were not used. The
subset of the examples with only known attributes was used for training. The estima-
tion of unknown attribute values lies outside the scope of this paper.

II1.) Contradictions were discarded in the training set. If an identical attribute vector was
representing two or more classes, it was deleted from the training set.

A few considerations about the time complex1ty of the algorithm: it is very hard to
determine the analytic complexity of the Q*-algorithm, because it depends on the topol-
ogy of the data. Experimentally however even for large data sets it runs in a reasonable
amount of time. The duration lies in the same dimensions as the ID3 tree induction. The
example mentioned below of credit screening needs for 6 continuous attributes and 653
samples about 16 seconds on an IBM Risc/6000-32H workstation.

S.11IRIS FLOWERS

The classical data set consists of 150 samples with 4 continuous valued attributed and
3 classes of flowers each being equally represented by 50 samples. We use this data set in
order to permit a visual comparison of the learning algorithm with the method of the
hyperrectangles proposed by Salzberg [11]. In his paper the author uses the 4th and 2nd
attribute of the whole possible set of 4 continuous attributes. Figure 5 of his paper illus-
trate the effect of the hyperrectangle learning on the 3 classes. The “setosa” class is lin-
early separable from the other two classes using a linear decision boundary orthogonal to
the “petal width” attribute. This fact is reflected by a single rectangle that defines the “set-
osas”. For the other two classes “versicolor” and “virginica” the linear separation is
impossible. The samples for the two classes overlap in attribute space. They must be
approxxmated by several rectangles which also overlap partially.

Q is submitted to the same data as in the hyperrectangle algorithm. Fig. 3 shows the
result after the prototypes have been learned. For this illustration no outlier purging was
performed. It is interesting to note that the easily separable “setosa” is represented by only
2 prototypes. The lower of the two prototypes would be deleted as an outlier if this part of
the algorithm was executed. The hyperrectangle leaming copes also easily with this class,
because only one rectangle is needed to represent “setosa”. The other two classes are
harder to distinguish. Consequently more prototypes are generated were the two classes
approximate. It can be observed that the prototypes align themselves to the regions which
are formed by the raw data of the two classes “versicolor” and “virginica”.

Q learned 2, 18 and 11 prototypes, of these being 1, 1, and 3 outliers for the 3 classes
“setosa”, “versicolor” and “virginica” respectively. The induced ID3 tree consequently
has 26 leaves with the multivariate attribute being the tested attribute in the root node.

5.2 CAR IMPORTS

This database is the number 4 of the repository of the University of California at Irvine
mentioned above. It contains samples of imported cars and their specification. It was first
used in [15]. The first attribute is the class attribute. It is called “symboling” and cnnsists

91

of 6 different values which express a risk factor for assurance purposes. The Q" algorithm
is used to join all continuous attributes to the new superattribute. From the total of 26
attributes these are nr.: 2,10-14,17,19-26 which are 15 continuous attributes.

+ virginica < setosa O versicolor
4.5 + Raw data 45 1 Prototypes
4 & 4 +
o
g 35 F + < 35 + o
2 o+4t+7 3 e *
3 - +° 4 34 _—
? 4 -+t i o § +F
A 25 + O-1+"' A 25 T o0 +
%o i © Cgq
2+ o 2+
1.5 + + — 1.5 } + -
0 1 2 3 0 1 2
Petal width Petal width

Fig. 3. The effect of the Q° quantization algorithm on the modified iris flower data: raw data and leamed
prototypes. The outlizrs of the respective classes are emphasized. The setosa class has 1 outlier, versicolor 1
outlier, virginica 3 outliers.

The error estimation is done by the leave-one-out method. From all the hold-out error
estimation this is the most expensive but also the most unbiased. It can be shown experi-
mentally that the leave-out-out can be applied in a reasonable amount of time. Conse-
quently instead of splitting the data e.g. in 70% training samples and 30% test samples and
calculating the average error for 5 runs, like in [8], we hold out one sample and build the
classifier with the rest. This process is repeated for each sample and the average error is
then the number of mis-classifications divided by the number of samples.

The univariate quantization was done for different interval lengths. Error rates were
tested for uniformly split intervals of 0,1,2,3,4,5,10,15,20,25,30,40,45 and 50. The inter-
val length O means simply that all continuous attributes for all samples get the same sym-
bolic value; they are not relevant for classification anymore. From the original sample size
of 205 those with unknown values were deleted which resulted in 159 samples.

The parameters that were compared are the principal attribute of the root node, its gain
(ID3), the average number of leaves of the tree and the estimated error. Fig. 4 shows the
multivariate error rates of Q compared to the univariate error rates for different interval
coarsenesses. It can be observed that the multivariate error is 22.0% compared to the low-
est univariate error of 13.84% for an interval coarseness of 20 discrete steps for all origi-
nally continuous attributes and the highest error rate for binary intervals of 24.53%. In
relation fo the complexity of the decision trees the following can be stated: For the 160
error estimation runs, the average complexity of the multivariate ID3 tree is slightly higher
than for the best univariate tree. The number of leaves for the multivariate tree lies
between 64 and 70, where on the other hand the number of leaves for the univariate case is
between 54 and 58 for the coarseness with the lowest error rate. Multivariate: the root

91

of 6 different values which express a risk factor for assurance purposes. The Q" algorithm
is used to join all continuous attributes to the new superattribute. From the total of 26
attributes these are nr.: 2,10-14,17,19-26 which are 15 continuous attributes.

+ virginica < setosa O versicolor
51 o Raw data 45 Prototypes
4 8 44
o
= 35 £ 0 £ 35 t10
3 o4tIF g e *
3 + + 3+ +
S -t ! 88+ +
T oXe
A 25 T O'0 -4+ B 25 + oo +
o S L 2 o ©O @
24 o 2+
1.5 } t i 1.5 t t {
0 1 2 3 0 1 2 3
Petal width Petal width

Fig. 3. The effect of the Q" quantization algorithm on the modified iris flower data: raw data and learned
prototypes. The outliers of the respective classes are emphasized. The setosa class has 1 outlier, versicolor 1
outlier, virginica 3 outliers.

The error estimation is done by the leave-one-out method. From all the hold-out error
estimation this is the most expensive but also the most unbiased. It can be shown experi-
mentally that the leave-out-out can be applied in a reasonable amount of time. Conse-
quently instead of splitting the data e.g. in 70% training samples and 30% test samples and
calculating the average error for 5 runs, like in [8], we hold out one sample and build the
classifier with the rest. This process is repeated for each sample and the average error is
then the number of mis-classifications divided by the number of samples.

The univariate quantization was done for different interval lengths. Error rates were
tested for uniformly split intervals of 0,1,2,3,4,5,10,15,20,25,30,40,45 and 50. The inter-
val length O means simply that all continuous attributes for all samples get the same sym-
bolic value; they are not relevant for classification anymore. From the original sample size
of 205 those with unknown values were deleted which resulted in 159 samples.

The parameters that were compared are the principal attribute of the root node, its gain
(ID3), the average number of leaves of the tree and the estimated error. Fig. 4 shows the
multivariate error rates of Q" compared to the univariate error rates for different interval
coarsenesses. It can be observed that the multivariate error is 22.0% compared to the low-
est univariate error of 13.84% for an interval coarseness of 20 discrete steps for all origi-
nally continuous attributes and the highest error rate for binary intervals of 24.53%. In
relation to the complexity of the decision trees the following can be stated: For the 160
error estimation runs, the average complexity of the multivariate ID3 tree is slightly higher
than for the best univariate tree. The number of leaves for the multivariate tree lies
between 64 and 70, where on the other hand the number of leaves for the univariate case is
between 54 and 58 for the coarseness with the lowest error rate. Multivariate: the root

92

node of the ID3 is 17 times the superattribute and 143 times the second (nominal)
attribute. The gain in the root node varies between 1.92 and 2.18. Univariate: the attribute
with the highest gain in the root node is always the attribute 10 with a gain between 1.18
and 1.22. For this database the multivariate quantization has a lower error rate only for one
case of the univariate quantization. The high gain of the superattribute can be explained by
the fact that almost each class has an exclusive set of values for the superattribute.

40.00%
= . [Gas]
= 3000%
‘E L Error rate for Q° = 22.0%
E 20.m% "r’
E 1000% +
4]
0.00% +—+ T T

012 345 101520253035404550
Interval coarseness

Fig. 4. Estimated error by the leave-one-out method of the ID3 classification tree for the car import database
with univariate quantization of continuous attributes and multivariate quantization using Q".

5.3 HEPATITIS DATABASE

This data set was used in [16] and [17]. After deleting the samples with one or more
unknown attribute values, 80 of the originally 155 samples remained. Attributes 2 and 15-
19 were merged into the superattribute.

60.00%

® 50.00%
T tom
& 3000%
g 20.00% /,
& 10.00% Esvor rate for Q* =22.5%
0.00% 012345 10'155055'3055304550
Interval coarseness

Fig. 5. Estimated error for the hepatitis database. Analogous case like in Fig. 4.

The error for the multivariate quantization is 22.5%, whereas the lowest univariate
error is 12.5% for the size 4 of the discretization interval. For 10 out of the 15 different
univariate coarseness intervals Q" classifies better, see Fig. 5.

The gain for the multivariate case falls between 0.35 and 0.51, with the superattribute
always being the winner at the root node. The number of leaves varies between 29 and 37.

In the best univariate case attribute nr. 20 (histology) wins once with a gain of 0.22,
attribute 19 (protime) wins two times in the root node of ID3 with a gain of 0.17 and 0.19.
The remaining 77 times attribute 18 (albumin) wins with a gain between 0.16 and 0.24.

93

5.4 CREDIT SCREENING

It depends on several conditions whether a person is granted a credit card or not. In
this database provided by Quinlan [18], [19] a history of credit card ailowance decisions
was recorded. The original data set of 690 was reduced to 653, deleting unknown samples.
Continuous attributes are 2, 3, 8, 11, 14 and 15. The error estimation was not done by the
leave-one-out. Instead the average of 5 test runs with a split of 70 to 30 for training and
test was taken to estimate the error rate.

Observing the graph in Fig. 6 we can conclude a very interesting property of this data
set. The lowest univariate error appears for the discrete interval step 0. This means without
the use of any numerical attribute it is possible to decide best if a person can be granted a
credit card or not. Any additional numerical attribute is moze confusing than helpful in the
decision making process. This emphasizes the necessity of an essential preprocessing step
in classification: feature (attribute) selection.

Assoon as a numencal attribute is included, the error rate starts to raise. Logically one
cannot expect from the Q' algorithm that it classifies better than an univariate technique
for this database.

The average multivariate error is 32.4% with a gain of 0.83 to 0.94 always for the
superattribute as the root node winner and the number of leaves between 317 and 330.

In all cases of the univariate version the attribute number 9 (binary with values t, f) is
the winner of the root with gain values between 0.4 and 0.52. The number of leaves is with
values between 94 and 257 always smaller than for the multivariate case.

40.00% T

/

Error rate for Q* = 32.6%

10.00%

Estimated Error [%]
)
S

d
-+

T W W S W | I Il . J
T T L T 1t .+ T

2 34 5 101520 2530354045 50
Interval coarseness

0.00% -t
0

Fig. 6. Estimated error for the credit card granting database by splitting the data set into 70% training samples
and 30% test samples using the average of 5 test runs.

6. DISCUSSION AND CONCLUSIONS

We have presented a method for the multivariate quantization of ordered numerical
attributes. The quantxzed values serve as symbolic values for Machine Learning induction
algorithms. The Q* algorithm clusters the samples of a data set in the subspace of the
numerical attributes. It prevents the user from dividing the ordered attribute scales into
discrete steps. Its advantage is the parameter free nature of the approach. It is self organiz-
ing and can be used as a straightforward preprocessor for Machine Learning algorithms.

The drawback of such a multivariate method is that decision structures become less
transparent.

The results show higher recognition rates in some cases but do not yet satisfy. One

94

would evmect a greater impact on the accuracy of the classifier. Perhaps other symbolic
induction algorithms than ID3 are fitter for the method. Future research will try to focus
on that question.

It also seems that the gain for the superattribute is always to high in the root node, so
that other attributes never have a chance to win in the root node. By further reduction of
the number of prototypes for the samples it can eventually be achieved that the gains for
the superattribute and the other symbolic attributes approximate in order to permit a fairer
competition. The gain also favors attributes with many different values. These facts are
open questions which have to be investigated in future work.

REFERENCES

{11 J. R. Quinlan, “Discovering rules by induction from large collections of examples,” in D. Michie
(Ed.), Expert systems in the micro electronic age, Edinburgh University Press, 1979.

[2] ——, “Incuction of decision trees,” in Machine Learning 1:81-106, Kluwer Acad. Publ., Boston,
1986.

(3] P.E. Utgoff and C. E. Brodley, “An incremental method for finding multivariate splits for decision
trees,” in Proc. of 7th Int. Conf. on Machine Learning, Austin, Texas, USA. Porter, B. and Mooney R.
(eds.), 1990.

[4] T.Kohonen, “The self-organizing map,” in Proc. of the IEEE, Vol. 78, no. 9, Sept. 1990.

[5S] ~——, “Learning Vector Quantization,” Helsinki University of Technology, Lab. of Comp. and Infor-
mation Science, Report TKK-F-A-601, 1986.

[6] I Kononenko, I. Bratko and E. Roskar, “Experiments in automatic leaming of medical diagnostic
rules,” Technical Report, Ljubljana, Slovenia: E. Kardelj University, Faculty of Electrical Engineer-
ing, 1984,

[7} R.S.Michalski and J. B. Larson, “Selection of most representative training examples and incremen-
tal hypotheses: the underlying methodology and the description of programs AESEL and AQ11V,”
Research report UIUCDCS-R 78-867, University of Urbana-Champaign, Illinois, USA, 1978.

(8] P.Clark and T. Niblett, ‘“The CN2 induction algorithm,” in Machine Learning 3:261-283, Kluwer
Acad. Publ,, Boston, 1989,

[9]1 J.Catlett, “On changing continuous attributes into ordered discrete attributes,” in Proc. of EWSL-91:
European workshop on Learning, Porto, Portugal. Kodratoff, Y. (ed.), 1991.

[10] L. Rendell, “A general framework for induction and a study of selective induction,” in Machine
Learning 1:177-226, Kluwer Acad. Publ., Boston, 1986.

[11] S. Salzberg, “A nearest hyperrectangle learning method” in Machine Learning 6:251-276, Kluwer
Acad. Publ,, Boston, 1991.

[12] R.Fisher, “The use of multiple measurements in taxonomic problems,” in Annals of Eugenics 7, 179-
188, 1936.

[13] J.T. Tou and R. C. Gonzalez, ‘Pattern recognition principles,” Reading: Addison-Wesley, 1974.

[14] J.R. Quinlan, “Decision trees as probabilistic classifiers,” in Proc. of 4th Int. Workshop on Machine
Learning, Irvine, California, USA. Langley, P. (ed.), 1987.

[15] D.Kibler, D. W. Aha and M. Albert, “Instance-based prediction of real-valued attributes,” in Compu-
tational Intelligence, 51-57, 1989,

{16] P. Diaconis and B. Efron, “Computer-intensive methods in statistics,” in Scientific American, Vol.
248, 1983.

[17]1 G. Cestnik, I. Konenenko and 1. Bratko, “Assistant-86: A knowledge-elicitation tool for sophisticated
users,” in 1. Bratko and N. Lavrac (Eds.) Progress in Machine Learning, 31-45, Sigma Press, 1987.

(18] J.R. Quinlan, “Simplifying decision trees,” in Int. Journal of Man-Machine Studies 27, pp. 221-234,
Dec. 1987.

[19] —, “C4.5: Programs for Machine Learning”, Morgan Kaufmann, Oct 1992.

95

UTILIZATION OF THE CASE-BASED REASONING METHOD TO RESOLVE
DYNAMIC PROBLEMS

Sophie Rougegrez
Laforia-IBP
Université Pierrc & Marie Curie
4, place Jussieu
75230 Paris cedex 05
France
e-mail : rougegre@laforia.ibp.fr

ABSTRACT

Case-based reasoning allows to resolve problems
by comparison with already resolved ones. This
technique is being utilized for domains in which
little knowledge is correctly formalized.

But a minimum of knowledge has to be available
to represent cases stored in memory by pertinent
features. But this one does not always exist, as
we shall see.

The method we use makes smaller this necessity.
In this paper we describe the system conceived.
Thanks to the definition of viewpoints, this one
permits to predict an evolution from a given
date.

INTRODUCTION

Case-based reasoning is a technique of resolution used
when the knowledge required for resolution is insufficient
or imprecise. It consists in using similar problem(s)
already resolved. It avoids rebuilding a solution when a
similar problem has already been handled. In this kind of
reasoning, the entity manipulated is named "case",
associating the statement of the problem with its
solution. Cases are stored in a memory, called case base
[1].

The process of case-based reasoning breaks down into the
following steps

1- definition of the problem by its representation in a
form adapted to the reasoning,

2- search of the pertinent cases in the case memory for
the resolution of that problem. This phasis is generally
carried out in two steps : the first consists in selecting
in memory a set of cases susceptible of being interesting
» then among those to choose the best(s) for the
resolution to carry out. They are the source cases.

3- building of the solution

The question is to transfer the solution from the chosen
case to the case to fill up, the target case. But very
often, there's no identity relation between both and the
transfer is then followed by an adaptation step.

4- validation

96

Once the solution is worked out, the question is to test
it. This step is performed when the resolution is turned
onto a precise objective, a goal satisfaction for example.
When the reasoning has failed, it can be followed by the
correction of the knowledge being used ([2}.

The CBR sine gqua non condition is then the possibility of
defining a case entity made up of the terms problem and
its solution. It has been shown that this kind of
reasoning could be used in many areas : cookery [2]), [3),
law [4], planification (51, (6], (2], etc.
We have used case-based reasoning for the determination of
evolutions from a given date, for areas in which very
little knowledge is available. Our approach is new for two
reasons
- our case-based reasoning manipulates temporal data,
- our case-based reasoning doesn't require the use of
important features to identify the cases.

We will describe in section I more precisely the problem
proposed. In section II we shall detail the reasoning
steps. We will proceed in the third part by an area
description which has been the subject-matter of an
application, and in section IV by the presentation of the
system conceived, illustrated by the description of one of
its components and we'll conclude.

1. THE PROBLEM PROPOSED

We wish to be able to determine the follow~up of an
evolution. An evolution can be described this way : an
event which triggers it and other events that follow it.
An event can result further to one or several others. But
an event can happen regardless of the others too. Our
definition of an event is the following : a part change of
situation at a given instant, without information about
its life time.

We have especially interested ourselves in evolutions for
which we have no knowledge about the links between the
diverse events which make it up. The use of "classic"
reasoning methods as well as expert systems was then not
considerable. Therefore we have chosen the case-based
reasoning method.

From an evolution described by a set of events which
occured between an instant tp and an instant t, we wish to
know which events are going to take place afterwards.
Hence, we search for a similar evolution, that is to say
an evolution which has experienced the same events at a
given time. Then we utilize those which followed it to
work out the searched evolution.

The fact of ignoring the causal links between events
doesn't permit us to "abstract" from the set of events
describing an evolution a set of features, as it is

97

traditionaly done in case-based reasoning. We are thus
compelled to match cases per the consideration of the
totality of events that have occured.

2. THE REASONING STEPS

The "important feature" concept is fundamental in case-
based reasoning. That's those features which permit to
represent, store, and retrieve cases.

Case-based reasoning is quite often opposed to rule-based
reasoning. We blame this one for being not the perfect
reflect of the expert knowledge. The use of problem
resolution experiences permits indeed to palliate this
drawback [7]... on the following single condition : the
features identifying them are the reflect of the important
elements effectively characterizing the experiences.

There exists indeed domains in which the experiences only
can be used. That's the case with the areas in which we
have interested. The expertise is so little known that we
don't have even the means of associating those experiences
with a set of important features

The brrnad lines of our case-based reasoning steps are
consequently the following.

2.1. CASE SELECTION

Several systems select all cases in memory, this is the
case with PROXIMITY, GROWTH and SHRINK [8].

But most of the time, a few cases only are selected : the
selection of potentialy interesting cases is then followed
by the choice of the most interesting cases, by a
constraint satisfaction algorithm for example {9] or the
use of a model [10]. In HYPO [4], the method being
utilized is quite different : instead of reducing the set
of selected cases, the system widens it. It doesn't
attempt to select the most interesting cases but to find
all cases having a link with the target case.

Our approach consists in reducing the set of the
potentialy candidate cases to a singleton : the one in
which we could locate a given follow-up of events.

2.2. MATCHING OF CASES

Given that we do not have at our disposal the sufficient
knowledge to abstract the important events from an
evolution, which would facilitate the comparison of
evolutions, we consider the totality of those events.

Moreover, there may have different kinds of events. For
example, let's consider the case of a person who is ill.
The evolution of her state results from the value of

98

several factors, specially their respective evolutions. To
settle a diagnostic, it may be interesting bringing
together the evolution of the state of the ill person and
the evolution of well-known illnesses. Now, the comparison
of two illnesses evolutions is hardly conceivable by
considering them in their whole : how can we consider the
evolution of the blood pressure of the patient with the
one of its sedimentation speed ?

This remark applies equally to natural catastrophes,
chosen area, and more generally to every phenomenon in
which a global state results of a large number of
parameters. These thoughts have led us to consider the
evolution according to a viewpoint, this one being
associated with a given type of events.

Two evolutions are thus similar iff

For a given follow-up of events relative to the evolution
E and the viewpoint P, which occured between instants to
and tj, there exists two instants t'; and t'2, between
which events that occured according to the viewpoint P in
the evolution E', are similar to E between to and ¢t.

2.3. EVOLUTION DETERMINATION AND ADAPTATION

The evolution produced by our system consists in events
coming from the source case, that is to say the chosen
evolution. The adaptation step consists in adapting the
events to the target case. That will be described more
precisely in the follow-up.

To realize these steps, all the events have been
classified according to their nature and have been
associated with different viewpoints. But we have to
choose which kind(s) of events(s) is (resp. are) going to
be used to translate the hypotheses about the evolution.
Hence, we have proceeded to an other categorization of
events according to the kind of links which associate them
to others. Hence, we distinguish

- events which result of the influence of other events,

- events which influence other events.

That is to say we suppose that we know among all the
events which occur, those who indicate the influence of
some other events, and those who influence others. That's
the minimal knowledge that we use in our reasoning. We
represent then our hypotheses in terms of events which are
subject to the influence of others. In medical diagnosis,
Such an hypothesis may be "the patient will have a crisis
at ten", this one resulting of events like a drop of the
blood pressure.

We have considered this approach in the frame of a real
time system. At any moment of the evolution, it contains
the following information about the evolution

-~ the description of the evolution which is occuring,

99

- the hypotheses realized about its future, each
hypothesis being linked to a viewpoint, that is to say a
kind of parameter.

We have defined a multi-expert distributed architecture,
composed of modules associated to a kind of events, these
events having an influence on others ; and a database
containing on the one hand the infocrmation received about
the evolution considered, and on the other hand the
hypotheses resulting from the reasonings done by each
module. These latest are thus translated in terms of
"events which are influenced by" other events. Each module
reasons per case to build hypotheses relative to the
future evolution, according to the viewpoint which
interests it.

That's the area of forest fires which has made up the
point of departure of our work . We describe below the
area and how we have implemented the proposed method.

3. THE DOMAIN

The propagation of a forest fire is a complicated
phenomenon. It depends on a high number of environmental
factors : wind, relief, vegetation, dryness, etc.

A forest fire is described by overall information such as

"the risk of fire start in the day of the 15 july was
very strong". Information can be much more precise as "an
attack group arrived on the Ste Victoire mountain at 4:12
pm ". Precise information correspond to what we designed
above as events.

The set of parameters, like relief and vegetation run
along, the arrival of engins constitute also events. In
our object representation of a case, the relief and the
vegetation are yet information independent of time. But
this is not the case with their interpretation. Each
relief object, describing a point located at a given
altitude, is indeed represented in the case because at a
given moment, fire went across it. Our representation
permits doing the link between these "timeless" pieces of
information and time (see appendix). Therefore we will
expand our definition of an event to every change linked
directly or indirectly to this one.

These parameters are going to have an influence on the
fire propagation and then on the description of the fire
evolution, in terms of events describing its spread. But
the link between parameters and the propagation is far
away from being explicit.

Therefore, we have chosen to compare forest fires
viewpoint per viewpoint. In fact, in order to determine
the fire propagation which is occuring, we are going to
search for similar fires according to the three viewpoints

100

described above : wind, relief and vegetation. More
precisely, under the wind viewpoint, we are going to find
the fire which has known the same wind changes :, direction
and speed. For the relief, we are going to search for a
fire which has spread over a relief identical to the fire
which is occuring, it is the same for the vegetation. And
the established evolution will be translated in terms of
events describing the propagation.

4. THE SYSTEM

Its objective is then being able to predict the evolution
of a running fire. This system has a distributed
architecture as figure 1 below shows it. Each of the
module reasons per case according to a fire parameter
relief, vegetation, or wind. The hypotheses, generated by
each of the modules are added to the database. Hypotheses
are represented by events describing the propagation.
That's indeed this kind of event that interests us.

The system 1is a real-time system which reacts to new
information that it receives, among others, on the fire
progression. Afterwards, theses ones allow generating
hypotheses on its future propagation. The relief module
for example, is going to search for a fire having run
along the same relief in the memory of cases, and is going
to generate hypotheses on the future fire propagation. It
is likewise for the other parameters.

C Cartography D Memory

><\
Relief Qeg@ C_ Wind>

Data base

Fig. 1 : System architecture

The database contains data that can be

- deduced by the modules associated with the diverse
parameters. They are the hypotheses on the propagation
“"fire will be at the farm Cazeneuve at 4:30 pm",

- entered by the user : changes of wind which
happened, information received on the actual spread of
fire,

- deduced from the data provided by the user : relief
and vegetation run along.

101

We consider indeed that these latest data can be deduced
from the information on the fire advance, by the
examination of a ground map. That's the role of the module
"cartography".

We describe now the working of the relief module, which
makes up itself a case-based reasoning system.

Relief module

From a piece of information concerning the fire
propagation, this module searches for a fire in memory
which at a given moment, has run along the same relief as
the one run along by the target fire since its outbreak.
But that's not enough.

The relief that the fire runs along can indeed have long
term effects on its propagation. For example, it may have
accelerated it. But its effects can be immediate : a
propagation stop caused by the descent of a strong slope,
for example.

If we wish to generate hypotheses about the future fire
behavior, we don't have to consider all the relief that it
ran along only, but alsc the relief that it's going to run
along. Therefore, we have to anticipate the relief that
will be run along.

Figure 2 presents the information utilized to calculate
the propagation of the target fire. Ef and Eg are events
describing the fire propagation. The "target fire" is the
fire which is occuring. We have described above the
profile of the relief that it ran along since its
outbreak, that is to say until the t instant.

We have represented the "anticipated relief" too,
represented after the t instant here. We have associated
to the time axis events corresponding to the piece of
information that we have on the fire propagation. Ef is
the latest event. In our representation, we separate the
different kinds of information. As it is shown in the
diagram, the time axis permits yet to link them (see
appendix) .

The principle of our method is to retrieve a fire in
memory which, under the relief viewpoint, is similar to
the target fire. We search then for a fire which has at a
given moment run along the same relief : the source fire
above has well went across a similar relief, between the
instants t'i and t'2. The event Eg has occured when the
fire has gone across the relief we have anticipated : it
results therefore of all the relief run along and at that
moment. These are the events we are going to utilize to
describe the hypotheses about the target fire propagation.

102

Target fire

. . , time
¥ g L
% O ot
Ef
Source fire
;
1 ., ﬁTe
B o P

Es
Fig. 2 : Evolution prediction according to the relief viewpoint

We descrive below the reasoning steps :

~ transformation of the relief under a suited shape,

- retrieval of a fire having run along the same relief,

- retrieval of information about its propagation,

~ transfer and adaptation of this piece of information
towards the target fire,

- adding of the hypotheses carried out to the database,

4.1. RELIEF TRANSFORMATION

The relief called up in the fires is represented under the
form of a curve. In our system, by contrast with the
description of fires as it is done by the experts, it
consists into a succession of points faraway from each
other of a certain distance and 1located at a given
altitude. The relief module is going to try to retrieve a
fire which has spread over the same relief. The
mathematical methods grounded on curves differences are
not useful here : theses ones consider a pixel follow-up.
Hence, we try to compare slope successions. The likeness
criterion of two profiles is indeed the sense of the slope
(ascendant, descendant), the order in which they have been
went across, and too the eventual passing over of more
complicated relief accidents too : such as a pass, a
valley, etc.

From the numerical relief representation under a numerical
form, we build a symbolic representation. This 1is
equivalent to slipping the curve into a succession of
segments, to associate those with a slope and if possible,

replacing a slope follow-up by a "shape" : for example, a
valley.

103

We dispose then of two representation levels : slopes and
shapes. The transformed relief will be represented thanks
to both levels.

In the expert language, we speak about "weak slope",
"strong slope", etc. This vocabulary has led us to
classify the set of slopes : to each group of slopes, we
associlate a representative, a prototyp¢ in form
recognition [12]). We dispose then of slope models, either
ascendant, or descendant. The degree associated with each
is symbolic. Indeed we have used the multi-set theory [11]
according to which an element belongs to a set to a
certain degree.

A first transformation from a set of points consists then
in generating slopes in the form of symbols with which we
associate a degree. From these symbolic slopes, we try to
generate forms, associated with a degree too. This latest
is a vector constituted of degrees associated with slopes
constituting the generated form.

4.2. RETRIEVAL OF A FIRE HAVING RUN ALONG THE SAME RELIEF

Traditionaly in CBR, the selection of the most comparable
case to the source target is carried out by the
determination of a set of "candidate" cases, then among
those the selection of the best. We consider that all
cases are candidates in the beginning. We evaluate the
likeness with the target case and only then we choose the
best one.

Our matching algorithm is hence put in charge of matching
lists of symbols representing slopes or forms, associated
with a membership degree which can be a symbol, or a
vector of symbols.

For example : (ascendant slope, strong)-(descendant slope,
weak) - (descendant slope, very weak), (valley, (weak,
strong)).

The matching step compares then two symbol follow-up
associated with a membership degree. Two follow-up look
"like each other if :

- they are constituted of the same elements,

- the elements follow each other in the same order.

These two matching criterions constitute two different
methods, two viewpoints, which are going to me mutually
utilized to evaluate this one. From a matching results
then a couple of costs : the first value comes from the
comparison between successions as sets of symbols. If the
sets are composed with the same elements, the matching
cost is null. The second considers the positioning of the
elements in both successions respectively. Figure 3
describes the corresponding algorithm.

104

Itarget _ symbol list describing the relief stemming from the target case.
Isource _ symbol list describing the relief stemming from the source
case.
cpt _ O.
while Itarget and Isource are not empty do
ftarget _ first (itarget). Itarget __ rest (ltarget).
fsource _ firsts (Isource). Isource _ rest (Isource).
if ftarget and fsource describe the same kind of slope (ascendant
or descendant) or the same kind of form then
cost _0
else :
search for a kind of slope or the kind of form the most like fsource
ard such that it is in Itarget.
- The found object is aux. We take it off from Itarget.
cost _ the distance, in number of positions, from the aux position
in Itarget to the ftarget position in Itarget + the "virtual distance" which
exists between fsource and aux.
end if
end while
result _ cpt.

Fig. 3. Matching algorithm between twc relief descriptions

The determination of the most similar slope or shape is
realized from a graph whose values are symbols. Each
value is related to the "most proximate" symbols per bow
stamped with a "virtual distance" which separate them. We
have defined the proximity between two symbols by the
similitude of their effects on the fire.

We dispose at this stage of a list of cost couples. As
theses measures are done for each case in memory, there
are as many as there are cases in memory. The best case is
the one whose two costs are lower than those of all the
others. In the absence of a case presenting this feature,
we'll take the one whose one of costs is lower than all
the others, independently of the couple it belongs to.

4.3. SEARCH OF INFORMATION ABOUT THE PROPAGATION

The best case being chosen, we can proceed to the calculus
of the fire evolution. This one is realized from
information about the propagation of the source fire which
has been selected. Events in a case being classified in
chronological order, we extract from a case the following
events : the event Eg in figure 2.

4.4. TRANSFER AND ADAPTATION OF EVENTS TO THE TARGET CASE

Once these events have been selected, we have to adapt
them to the target case. We consider that each event is
represented in a plan guided by a time axis and a distance

105

axis, whose origin corresponds to the location and
starting date of the fire. The transfer and adaptation of
an event consist then in a transposition of a guiding into
another one.

4.5. ADDING QOF THE GENERATED HYPOTHESES TO, THE DATABASE

The hypothetical events carried out describe the
succession of the running evolution. All the data on the
database are organized along the structure of a case
defined in appendix. At every moment of the reasoning, the
data base is then quite readable. We only have to suppress
all the hypothetical data to store the new case in memory.

There is another step in case-based reasoning systems that
doesn't exist in all systems. It is the evaluation phasis.
This one depends indeed on the available knowledge to
validate the yeld results. When the reasoning is directed
towards a single, or several goals, it suffices to verify
that those are reached ([2]. In all other cases, if it was
possible to evaluate the result, the reasoning would have
no sense anymore, at least in the frame of a reasoning use
toc palliate the lack of expertise. In our case, experts
themselves can't evaluate the results yeld. Only a
comparison with the actual evolution has some sense.

CONCLUSION

The determination of the evolution of a running process is
a new problem, at least in case-based reasoning. The
problem of the determination of a follow-up has been
handled, but for well-defined data between which we can
find a relation [13].

The determination’ of evolutions, much more general, has
constituted the target of our research. Our aim was to
conceive a system being able to determine its "future". An
evolution 1is described thanks to a set of events about
which we have little information : we don't know how they
interact and then how they influence the evolution. We
only know that they are of different kinds and that,
inside each group, events either have an action on the
events of other event categories, that is to say that the
second ones result from the first ones, or by contrast
undergo the other events.

We have introduced the notion of viewpoint on an evolution
we do hypotheses on its future along an event category.

Hence, we have defined a distributed architecture in which

each module reasons per case according to a viewpoint.

Our approach is original because each of our cases
constitutes a direct and integral transcription of the
evolution representations on which we have based our

106

system. Our matching method furthermore is very little
domain dependant.

Our approach has yet an inconvenient which is the
necessity of considering all the cases. But the use of an
index requires & case interpretation in terms of features.
Given the lack of knowledge about the considered area,
this one would have all the chances to be erroneous.
That's what we firmly wanted to avoid.

We study now the feasability of the combination of
hypotheses generated by each of the modules. That's a
difficult problem because the events we use to build
evolution hypotheses result "intrinsically" of the
influence of all the kinds of events. Moreover we obtained
them by considering only one of them. In short, we should
retire from hypotheses carried out all the influence of
events which don't have been voluntarily considered. An
other solution, much more reasonable, would consist in
controling the choice of cases by each module : if we
succeed in finding a case which is the best along all the
viewpoints, the problem is actually resolved.

107

Appendix

CASE REPRESENTATION

A case 1is described by much information : general
comments, such as for example, the eclosion risk the day
of the catastrophe and information relative to the
propagation of the fire too. That's these ones that
interest us. We have represented them in figure 4.

wind relief time vegetatior

7050

0

\

Fig. 4. Structure of a case

They are classified according to their nature and
constitute thus the different viewpoints described before

wind, relief, vegetation. Inside each of them, some
events have happened. Each event is an object related to
the object which follows it in time and the one which
precedes it. But the object contains no temporal
information. 1Inside each viewpoint, we have an event
chaining.

To be able to do the 1link between the different
viewpoints, as it is necessary for the construction of
hypotheses, our cases contain a temporal axis materialized
by an instant chaining, each instant being linked to all
events which happened at this date.

However, all the events can not be associated with an
instant. For the relief for example, an event describes a
passed over point : the distance which separates it from
the fire departure, its altitude. Il is hardly
considerable to know at each moment two points, separated
from each other of a few meters have been reached !

We palliate to that information incompleteness by the
description of a fire the following way

108

for each event E, whatever the considered viewpoint,
our case representation ensures us that there are at least
two events El and E2 such as

- E1 is a predecessor of E and E2 is a successor of
E,

- E1 and E2 are associated to an instant on the time
axis.

This manner, an information, described independantly of
time, can be associated with it.

BIBLIOGRAPHY

[1] : SLADE Stephen (1991):
Case-based reasoning : a research paradigm
AI magazine, spring 1991.

[2] : HAMMOND Kristian J. (1990) :

Case-based planning : a framework for planning from
experience
Cognitive science n®°14, pp 385-443.

[3] : Janet L. KOLODNER (1987)

Extending problem solver capabilities through case-based
inference
Proceedings of the 4th International Workshop on machine
learning, pp 167-178

(4] : Edwina L. RISSLAND et Kevin D. ASHLEY (1986) :
Hypotheticals as heuristic device
Proceedings of AAAI, pp 289-297.

[5] : ALTERMAN R. (1986) :
An adaptative planner
Proceedings of AAAI, pp 65-69.

[6] : KLEIN Gary A., WHITAKER Leslie A., KING , JAMES A.
(1988)

using analogues to predict and plan
Proceedings of the second Workshop on CBR, Pencola Beach, FL.

[7] :+ C. SCHANK & C.K. RIESBECK (1989) :
Inside Case-based reasoning
Lawrence Erlbaum Associates.

[8] : D. KIBLER, D.W. AHA (1987)

Learning representative exemplars of concepts. An initial
case study
Proceedings of the 4th International Workshop on machine
learning, pp 24-30.

109

[9) : Janet L. KOLODNER (1989)
Judging which .is the "best" case for a case-based
reasoner

Proceedings of the second Workshop on Case-based Reasoning,
Pencola Beach, FL.

(10] : BICHINDARITZ Isabelle, SEROUSSY Brigitte (1991)

Validité a priori des inférences produites par un
raisonnement & partir de cas : objectivation de l'analogie
par des critéres de ressemblance fonctionnellement quantifiés,
Proceedings of RFIA.

[11) : H. AKDAG, M. DE GLAS, D. PACHOLCZYCK (1990)
Towards a qualitative theory of uncertainty
technical report of LAFORIA-Université Paris 6, 8/90, 1990.

[12] : Jean-Claude SIMON (1984)
La reconnaissance des formes par algorithme
Masson.

(13] : Thomas G. DIETTERICH, Ryszard S. MICHALSKI (1989)
learning to predict sequences
in Machine learning, vol II, Morgan Kaufman.

.
.

110

FORMALIZATION OF AN ONTOLOGY OF CERAMIC SCIENCE IN CLASSIC

Piet-Hein Speel, Paul E. van der Vet, Wilco ter Stal & Nicolaas J.I. Mars

Knowledge-Based Systems Group, Uriversity of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands
email: {speel, vet, terstal, mars}@cs.utwente.nl

ABSTRACT

Recently, the term “ontology” has become popular in the field of Al. However,
often confusion arises when one is attempting to relate an ontology to existing Al
subjects. We argue that an ontology (i) is situated within the conceptualization stage
of knowledge-based system (KBS) development methods, (ii) specifies the domain on
which logic-based knowledge representation (KR) languages are defined semantically,
and (iii) represents the terminological/description (and not the assertional) component.

We have actually developed an ontology for a subdomain of materials science,
called ceramic science. We have formalized and implemented it in the CLASSIC KR
language to allow use of this ontology within the Plinius project. (The aim of the Plinius
project, currently undertaken by our group, is to build a system which is able to semi-
automatically extract knowledge from natural-language texts concerning ceramics.)

In this paper, we first concentrate on the integration of the three previously mentioned
Al subjects and the face of an ontology in this integrated whole. Then, we focus on both
the syntactical and semantical formalization of the Plinius ontology in the CLASSIC KR
language. We argue that the semantics of the formulae need to be defined in order to
guarantee the correctness of these formulae with respect to a model which includes the
Plinius ontology.

1. INTRODUCTION

In the last two decades, many expert systems and knowledge-based systems (KBSs) have been
built. However, these KBSs are task dependent and rather small. In order to build KBSs which
cover a realistic complex domain (which results in a large KB) or which contain more than one KB,
an ontology might be used. Examples of projects in which an ontology is used are LILOG [1], UMLS
[2] and Cyc [3].

Briefly, an ontology consists of a conceptual vocabulary of a particular domain together with a
general framework in which the dependencies between the concepts of the vocabulary are explicated.
In this paper, we concentrate on a method to formalize an ontology. A formalized ontology is called
ontology KB in the remainder of this paper. We do not concentrate on the design of an ontology
which has been discussed in [4-6).

This paper is organized as follows. In §2, we give an overview of Al subjects which are relevant
for the formalization of an ontology. We integrate the relevant parts of these subjects and place the
ontology and ontology KB within the integrated whole. Then, we apply the resulting method to the
Plinius project which is briefly described in §3. In §4, we discuss a part of the Plinius ontology and
in §5, we describe a part of the CLASSIC KR language. In this language, we have formalized the
Plinius ontology, which we present in §6. The implementation of the Plinius ontology KB and the
application of the Plinius ontology to the other Plinius domain specific KBs is given in [7].

111

2. RELEVANT Al SUBJECTS FOR THE DEVELOPMENT OF AN ONTOLOGY KB

In this section, our objective is to give a brief overview of the Al subjects which are relevant
for building an ontology KB for a particular domain. In §2.1, the stages within KBS development
methods are introduced and the relevant stages are selected. In §2.2 and §2.3, we discuss the syntax
and semantics of logic-based knowledge representation (KR) languages. In addition, we relate the
syntax and semantics to two relevant stages introduced in §2.1. In §2.4, we describe the subdivision
of domain knowledge into a terminological and an assertional component. Then, in §2.5, we describe
the term “ontology” and we relate it to the relevant issues of the previously discussed Al subjects.

2.1 KBS DEVELOPMENT FOR BUILDING AN ONTOLOGY KB

Within Al research has been done in developing methods for building KBSs or expert systems.
Usually, such development methods contain a fixed sequence of stages [8]). The relevant stages for
building an ontology KB for a particular domain are elicitation, conceptualization, formalization,
implementation, and testing. At the elicitation stage, the knowledge of the domain is elicitated
in an informal, usually verbal, form. At the conceptualization or analysis stage, the elicitated
data is interpreted, which means that the concepts are analysed and their implicit relationships are
made explicit. This results in the construction of a precise description of a conceptual base. The
formalization stage involves the translation of the conceptual base into a formal representation in a
KR language. Examples of such languages are order-sorted logics and descendents of the KL-ONE
family of KR languages [9]. The structure of this formal representation should be manageable and
maintainable. In addition, it should be possible to use the inference mechanism of the KR language
effectively and efficiently. At the implementation stage, the formal representation is implemented
in a language which is executable by a computer. Finally, at the testing stage, the KB obtained is
evaluated to determine whether the current granularity and coverage of the KB is appropriate for the
domain-specific tasks. In the course of building a domain specific KB, revisions may occur.

2.2 SYNTAX AND SEMANTICS OF LOGIC-BASED KR LANGUAGES

Logic-based KR languages are defined by giving a syntax and a semantics. In the syntax, the
formulae which can be formed in the language are defined. Formulae are usually defined recursively,
i.e., initially, an alphabet is specified and, then, with the use of syntax rules formulae are defined
recursively out of symbols from the alphabet. See §S.1, for example, for the syntax definition of a
part of the CLASSIC KR language.

In order to define the meaning, or semantics, of formulae which represent domain knowledge, a
domain’ description needs to be constructed. A domain is defined by a universe of discourse, which
is the set of objects, and by the object-tuples which form the relationships between the objects.

The denotational Tarskian semantics® of formulae can be specified in two steps. First, the
nonlogical symbols which are used in the formulae are associated with parts of the domain of interest
D. These associations are specified by an interpretation function. Second, the formulae can be
evaluated (i.e., the truth value is assigned) in accordance with these associations. Here, we make

!The domain of interest may consist of one or more consistent corcrete or fictional worlds.

2Semantics of formulae can be defined in other ways. An alternative way, which is not used in this report, is to state a
set of axioms I and define a formula ¢ to be true if and only if this formula is logically implied by this set of axioms, i.e.,
I |= ¢. We have not chosen this alternative since we want the formulae to apply to the domain of interest.

112

use of semantic rules for logical symbols within the formulae. A formula is true if and only if it
accurately describes the domain.

More formally, the semantics of formulae can be determined by the evaluation of the formulae
with respect to a certain model. A model M can be defined as M = (D, I) where the interpretation
function T is a mapping between the nonlogical symbols of the language and elements of the domain
of interest D. See §5.2, for example, for the semantic definition of a part of the CLASSIC KR
language.

Genesereth & Nilsson [10] have related the conceptualization and formalization stages of KBS
development methods to the syntax and semantics of first-order logic. This has resulted in the
following integration. Atthe conceptualization stage, the conceptual base is equated with the domain
description. This conceptual domain description is verbalized in terms of objects and object-tuples.
Thus, at the conceptualization stage the relevant objects and object-tuples of the domain of interest
are selected. Then, at the formalization stage, the output of the conceptualization phase should be
represented in first-order logic. (We propose to possibly use another appropriate logic-based KR
language.) In addition, it is possible to clearly specify the interface between the conceptualization
stage and the formalization stage by assigning semantics to the formulae at the formalization stage
in terms of objects and object-tuples at the conceptualization stage.

2.3 EXPRESSING KNOWLEDGE AT THE CONCEPTUALIZATION LEVEL

In evaluating the approach of §2.2, we make two remarks. First, the conceptualization stage and
formalization stage have to be demarcated. In §2.1, we have argued that these stages have different
objectives. In addition to this argument, the conceptualization stage can now be used to define the
semantics of the formulae at the formalization stage. We illustrate this for our application in §6.3.

Second, practical problems arise at the conceptualization stage when it is tried to express the
knowledge of a complex domain in terms of objects and object-tuples. We give three examples.
(1) Within a realistic domain, it is very hard or even impossible to explicitly enumerate all objects
and tuples. (2) In a dynamic domain, like most realistic domains, new objects and tuples are added
regularly. (3) It is very difficult to express complex descriptions, such as properties of classes of
objects.

We illustrate these problems for the Plinius domain, i.e., ceramic science. (1) Quantitative
values are used for describing most properties of a material. It would be impossible or at least very
unpractical to list all values that might occur as objects. (2) New materials are reported regularly. In
fact, it is one of the main goals of ceramics research to design new materials. (3) All materials have
a bending strength, a fracture toughness, a melting point, and so on. It would be very unpractical to
express this in the form of tuples consisting of a particular material and the property in question. It
would take 7 - p tuples to do this, with n the number of materials and p the number of properties.

We have resolved these problems by introducing extra building blocks which refine the language
consisting of only objects and object-tuples. For the problems described above, the following
refinements may be carried through. First, atomic concepts are introduced which stand for classes
of objects. Using atomic concepts, it is possible to implicitly describe infinitely many objects. This
means that an object does not have to be contained in the universe of discourse extensionally if an
atomic concept exists which describes this object intensionally.

In addition, concepts are introduced. A concept can be used to intensionally (or prototypically
when not all necessary and sufficient properties are known) describe sets of objects, object-tuples,
atomic concepts or concepts (i.c., a concept is defined recursively). Therefore, an extensional

113

enumeration of all items which satisfy the intensional (or prototypical) specification is not needed.
Concepts are defined by a description or structure which consists of the enumeration of the objects,
object-tuples, atomic concepts and concepts which play a role together with their interdependencies.

The domain of interest can now, for example, be analysed by constructing a set of atomic concepts
and, using this as a basis, more complex concepts can be constructed. For example, concepts may
be constructed, which over-generalize a part of the domain of interest. Using these over-generalized
concepts, the domain description anticipates on “new” sub-concepts in the domain. We have used
this approach in the medical domain [11] and the domain of ceramic science (see §4).

We want to make the remark that the intention here is to show that the construction of a domain
description for a realistic domain only in terms of objects and object-tuples is practically impossible.
We have given a refinement in order to precisely express a domain description for a realistic domain.
Other expressions, such as constraints [12], may also be added for this objective.

2.4 SUBDIVISION INTO TERMINOLOGY AND ASSERTIONS

Collecting, defining, structuring and representing knowledge about a complex domain is a
difficult task. Brachman & Levesque [13] have proposed to separate the technical vocabulary of a
domain from the facts in that domain.?'4

The technical vocabulary consists of descriptions which are atomic or more complex structures
forming concepts. The descriptions of the concepts of the technical vocabulary are be stored in
the terminological or description component. Structures that are used to express factual knowledge
are said to be assertional. These assertions of the domain of interest are expressed in terms of the
concepts of the terminological component. The assertions of the domain are stored in the assertional
component.

With this subdivision, the modularity is increased as a result of which one hopes the domain looks
more transparent and therefore is easier to understand. Due to this separation, special languages
have been developed which aim at representing knowledge of one distinguished component, such as
terminological/description logics [15,16].

Although a clear subdivision between terminology and assertions can be made on an abstract
level, this is not the case for the implementation of this separation [17]. One of the reasons is that in
order to define concepts in the terminological component, assertions are used.

In relating the segmentation introduced in this subsection with the development stages for
building an ontology KB for a particular domain, we propose to carry out this segmentation through
the conceptualization, formalization and implementation stages.

2.5 ONTOLOGY AND ONTOLOGY KB

In the literature [5,18,19], an ontology has become known as a systematic vocabulary of concepts
and relations of a particular domain. An ontology is language-independent in the sense that a single
concept in an ontology as a rule corresponds to different words and phrases, both within a single
natural language and in different natural languages. In addition, the interdependencies between the
concepts and relations of an ontology need to be specified which lead to a kind of framework. Often
these interdependencies are used to define the concepts and relations. Since a systematic vocabulary

3Within the field of Al the wish to separate these notions was firstly introduced in [14] in order to clarify the informal
semantic networks of that time.

*This subdivision corresponds to the separation of a database scheme from their occurrences in the database world.

114

together with a framework are constructed while analysing the domain, and an ontology is made on
a conceptual level, we argue that an ontology should be situated within the conceptualization stage.

Conceptualization Formalization Implementation
stage stage stage
Ontology Ontology KB Implem. ontology KB
Terminological | Conceptual base denptes Formulae Implemen- Progrgmming
component consisting of -«—— fepresenting tation of rep(r:gseeming
concepts \ concepts - Eoncopts
l in terms of l in terms of | in terms of
’ Programmin
Assertional Conceptual base Formulae Implemen- ode
component including denptes fepresenting tation of representing
assertions -—f— asserions a—— assertions

Figure 1: A development method for building an ontology KB for a particular domain. The conceptualization
stage is preceded by the elicitation stage and the implementation stage is followed by the testing stage. The
interface between the conceptualization and formalization stage is specified by a semantical, representational
relation. The different stages are subdivided into a terminological and an assertional component. The
assertions of the assertional component are expressed in terms of concepts of the terminological component.

In the field of knowledge representation (i.e., at the formalization stage), it has been proposed
to separate the terminological knowledge from assertional knowledge within a particular domain
(§2.4). Since the terminology of a particular domain is expressed within the systematic vocabulary
of the domain, we argue that an ontology should be placed within the terminological component.
Thus, we argue that an ontology represents the terminological component at the conceptualization
stage (see Figure 1). In the remainder of this paper we call the concepts at this stage C-concepts.
The ontology KB at the formalization stage consists of F-concepts.

The major advantage of incorporating an ontology within the development of a KBS which cover
a realistic complex domain (which results in a large KB) is that the domain knowledge is structured
according to the framework of the ontology [20]. For a KBS which contains more than one KB, the
different KBs are tuned due to the joint use of the same terminology [21,22].

3. AN OVERVIEW OF THE PLINIUS PROJECT

In this section, we give a brief description of the Plinius project (for a more detailed description,
we refer to [23]). The Plinius project is aimed at developing a system which is able to semi-
automatically extract domain-specific knowledge from title and abstract of scientific papers in the
field of ceramic science. The course of the documents through the Plinius processes and the
knowledge sources these processes use are shown in Figure 2.

At the beginning, document descriptions consisting of identifier, title and abstract are prepared
for natural language processing. This process of mainly syntactical manipulation is called the Plinius
preprocess. The first version of this preprocess has been implemented [24].

Then, in the Plinius language dependent process a syntactic and semantic analysis is carried
out on the preprocessed documents which leads to representations of the documents in a formal
language. These formal representations are stored in the interim KB. This process (mainly the
semantic analysis) is currently under consideration. The Plinius language-dependent process makes

115

background
KB

ontology

grammar lexicon
KB E

.,
‘
e,
‘N
‘e,
",
",
.
.
.
“,
‘e
‘e,
.,

EMA pre- language- language- _
documents /] rocess processed |- dependent ~—=! independent |- mtegKrgted
P process process
human human human
expert expert expert

Figure 2: The Plinius processes and knowledge sources.

use of two kinds of knowledge sources. The first kind consists of a sublanguage grammar and
a lexicon with syntactical information. These knowledge sources are natural-language (English)
dependent.® The second kind consists of the background KB, the ontology KB and the part of the
lexicon with semantic translations. These knowledge sources are domain dependent and natural-
language independent. In addition, the background KB and the semantic part of the lexicon (and the
integrated lexicon) contain the concepts and structures of the ontology KB.

Finally, in the Plinius language-independent process the separated representations per document
of the interim KB are integrated. The result of this process is stored in the integrated KB (which
of course is domain-specific as well). The process makes only use of domain-specific knowledge
sources, which include the background KB and the ontology KB. The Plinius language-independent
process is being explored.

Plinius does not aim at a fully automatic system. All three processes can communicate with a
human operator who deals with ambiguities and other problems the system cannot solve automati-
cally.

The interim KB and the integrated KB are the products of the Plinius project and can be used for
several applications. The interim KB might be used in a system for semi-automatic indexing [11].
The integrated KB is meant to be a general purpose domain-specific KB and might be used to answer
user queries directly (in the ideal case all user queries which can be answered by reading EMA can
also be answered with the integrated KB). In addition, the integrated KB might also be used as KB
within domain-specific KBSs.

4. AN ONTOLOGY OF CERAMICS: THE PLINIUS ONTOLOGY

The Plinius ontology has been formulated manually using several handbooks of ceramics and
materials science. We refer to [25] for a detailed, complete description and motivation. In this
section, we only discuss (due to lack of space) the definitions for properties of materials and for

*These knowledge sources are domain dependent since sublanguage is domain dependent.

116

processes. The definition for material is treated as a black box® (and so does the definition for phase,
which is needed in the process characterization).

Properties of materials are expressed as quantities in the physical sense, i.c., as comprising a name
to identify the kind of quantity involved, a numerical value, a measure of the accuracy (normally
the standard deviation), and a unit. A complication arises because certain values are observed under
particular conditions. For example, the material’s property of displaying an elongation may be
qualified by specifying the temperature range. These conditions, to be called property conditions
here, can be expressed as quantities. Conceptually, property conditions may be called second-order
properties or properties of properties.:

For the conceptualisation of processes, the so-called process triangle is an important notion.
A process is fully characterised by three groups of specifications: (1) the input materials; (2) the
product; and (3) the conditions under which the process is performed. Theoretically, any of these
three can be derived if the other two are known. In practice the necessary theory for performing
these derivations is lacking.

The way out proposed in the Plinius ontology is the following. Since theoretically two vertices
suffice, the C-concept for a process can be defined as comprising two vertices while the third vertex
is added but is considered to be non-defining. The choice of the two vertices is arbitrary from a
theoretical point of view. Choosing (1) and (2), i.e., the input and output materials, has certain
advantages such as allowing easy concatenation of processcs. The conditions under which a process
is performed are specified by the atmosphere of the process and a set of additional process properties.
A process type name, which is a kind of summary of many relevant process conditions, is also added
to combat the severe underspecification encountered in the texts.

The part of the Plinius ontology which is needed to introduce the previously described atomic
concepts and C-concepts contains:’

The atomic concept R stands for the class of real numbers.
The atomic concept Q stands for the class of quantity-names consisting of the objects: grain_size,
porosity, bending_strength, size, mass, temperature, duration, tensile_stress, frequency,

| The atomic concept U stands for the class of measurement units consisting of the objects: meter,
kilogram, second, ampere, kelvin, mol, candela, per_second, pascal, meter3, fraction,

The atomic concept P stands for the class of process type names consisting of the objects: slipcasting,
reaction sintering, molten particle deposition, hot isostatic pressing,

The C-concept Quantity g stands for a tuple
g=(n,v,d,u) wheren € Q,v,de R,andu e U

where n is a quantity-name, v is a value or value range, d a standard deviation, and u a unit.
In this paper, the C-concept Material m is defined as a black box.
The C-concept Material property mp stands for the C-concept:

mp = (m, s)

®In [25), material is defined as a C-concept which is constructed out of several C-concepts and atomic concepls.

"In this paper, we use the following orthographical conventions: objects are notated with lower case letters in sans
serif font (e.g., temperature), atomic concepts by upper case letters in the so-called blackboard bold font, (e.g., R), and
C-concepts by an upper case letter followed by lower case letters in sans serif font (e.g., Process).

e Al

Al

117

where m stands for a Material and s stands for a set of Quantities.
The C-concept Property condition pc stands for the C-concept:

pc=(q,s)

where g stands for a Quantity expressing a property and s stands for a set of Quantities expressing the
conditions.

The C-concept Process p stands for the C-concept:
p = (my, me, ptn, ph, s)
where m, stands for the input Material, m. stands for the output Material, ptn € P, ph stands for the

atmosphere expressed with a Phase (where Phase, similar to material, in this paper is considered as
a black box) and s stands for a set of process Quantities.

5. THE CLASSIC KNOWLEDGE REPRESENTATION LANGUAGE

In this section, we concentraie on the representation of an ontology at the formalization stage.
One group of KR systems, which is suitable for this purpose is the KL-ONE family of KR systems [9].
These KL-ONE style sysiems can be used very well for the representation of an ontology because
of their ability to represent a conceptual vocabulary separately from the assertional knowledge,
tieir ability to define the terms of the conceptual vocabulary intensionally, their logical foundation
and their general purpose approach. A descendent of the KL-ONE family of KR systems which is
deveioped at AT&T Bell laboratories is called CLASSIC [26-28]. We have chosen to use the language
of this system for the Plinius application since the expressiveness of this language is restricted in
order to increase the computational performance. In this section, we give a brief description of the
syntax and semantics of a part of the CLASSIC KR language.

S.1 SYNTAX OF THE CLASSIC KR LANGUAGE

Following the syntax definition of logic-based KR languages, as discussed in §2.2, we give the
syntax of a part of the CLASSIC KR language. Using this syntax the Plinius ontology is represented
in §6.2. The alphabet consists of the following sets of symbols:®

Nonlogical symbols: subdivided in individual_name (which denotes an object), role_name (which
denotes a class of 2-tuples), and F-concept_name (which denotes a class of objects);
Auxiliary symbols: “(” and “)”;

Fixed set of function constants: INDIVIDUAL, AND, ALL, ONE-OF and FILLS; and
The predicate symbo! “=",

Now, using the sets of symbols of the alphabet, construction rules can be formulated in order to define
the sets of individuals, roles and F -concepts (rules 1-8) and formulae are defined (rules 9-10):

(1) individual := individual_name
) | (INDIVIDUAL F-concept)
(3) role ::= role_name

8in th:s paper, we use the following orthographical conventions: Individual name: lower case, with first letter
uppercase; role name: lower case; ¥-CONCEPT NAME: small caps; FUNCTION_CONSTANT: small caps, boldface font.

118

. (4) F-concept = F-concept_name

(5) | (AND F-concept, ... F-concept,), forn > 1 ’
' (6) | (ALL role F-concept) i
(T | {ONE-OF individual, ... individualy,), forn > 0 |
; (8) | (FILLS role individual, ... individual,), forn > 1 |
. (9) formula i:= F-concept_name = F-concept :
' (10) | individual name = individual !

5.2 SEMANTICS OF THE CLASSIC KR LANGUAGE

In this subsection, the semantics of the previously described parts of the CLASSIC KR language
is defined (according to the model discussed in §2.2). In §6.3, we use this semantics to determine
the correctness of the Plinius ontology KB formulae with respect to a model including the Plinius
ontology.

The interpretation function Z maps the CLASSIC constants role_name on a set of 2-tuples, F-
concept-name on a class of objects and individual_name on an object of the universe of discourse.
The CLASSIC function constant INDIVIDUAL used in the syntax definition of individual is mapped
on an object and the other CLASSIC function constants are mapped on classes of objects. Finally, the
model-theoretic semantics of the CLASSIC formulae can be specified. This leads to the following
rules (individual and concept are abbreviated):

(1) Z[ind_name] €D

(2) Z[(INDIVIDUAL F-conc)) € I[F-conc]
(3) ZI[role_name] CDxD
(4) I[F-conc_name) cD

(5) Z[(AND F-conc, ... F-conc,)] ={z€D|ze€I[F-concy] A...Aze€ I[F-conc,)}
(6) ZI[(ALL role F-conc)] ={z € C|Vy ((z,y) € I[role] = y € I[F-conc])}
(7) Z[(ONE-OF ind; ... ind,)] = {Z[indy], ... ,Z[ind,]}
(8) ZI[(FILLS role ind, ... ind,)] ={z € C| (z,I[ind,]) € I[role] A ...

A (z,I[ind,)) € Z[role]}
9) Em F-concname = F-conc iff I[F-conc.name] = I| F-conc]
(10) l=p1 ind_name = ind iff I[ind_name] = I[ind]

6. THE PLINIUS ONTOLOGY KB IN CLASSIC

The C-concepts of the Plinius ontology are mainly expressed by complex tuples, complex sets,
constraints, conjunctions and disjunctions [25]. In §6.1, we show how tuples can be represented
in the CLASSIC KR language. Representations for complex sets, constraints, conjunctions and
disjunctions are given in [7). Then, in §6.2, the part of the Plinius ontology as defined in §4 can be
represented within in the CLASSIC part as defined in §5.1. Finally, in §6.3, we discuss the semantics
of the formulae of the Plinius ontology KB.

6.1 THE REPRESENTATION OF (COMPLEX) TUPLES IN CLASSIC

For the representation of C-concepts like Quantity in the CLASSIC KR language, a problem
arises. C-concepts sometimes stand for (complex) tuples. In order to represent these (complex)
tuples in the CLASSIC KR language, we need constructions which denote sets of tuples. However,

119

the CLASSIC KR language only contains individuals, F-concepts and roles. An individual denotes
an object, an F-concept denotes a set of objects or a set of (atomic) C-concepts, and a role denotes
a set of 2-tuples (where the arguments of the 2-tuples may be objects or (atomic) C-concepts).
Although a role seems to fulfil the conditions described above, it is not possible to use a role for
the representation of (complex) tuples, since a role cannot occur independently in CLASSIC, it only
occurs within an F-concept. This means that it is not possible to represent a (complex) tuple directly
in the CLASSIC KR language. which is in harmony with [27], page 416:

“[...] CLASSIC is likely to be cumbersome to use in cases where mathematical entities
such as tuples, sequences, geometric entities, etc. are the center of attention.”

Schmolze [29] has developed an extension of KR systems like CLASSIC in order to represent
(complex) tuples (which he calls n-ary relations, with n > 1. However, due to the increasing
expressiveness, the complexity for reasoning (such as subsumption) decreases. Therefore, we try to
represent (complex) tuples in the CLASSIC KR language.

In order to represent (complex) tuples in the CLASSIC KR language, we look at these tuples
as C-concepts where each argument of the (complex) tuple is specified by a relation with exactly
one filler. This means that (complex) tuples can be represented by F-concepts consisting of an
AND construction where each conjunct represents an argument and where each conjunct consists of
an ALL construction where the name of the attribute® specifies the argument name and the value
restriction specifies what F-concept/individual should be filled in in the argument.

For example, if we look at a simplified definition of the C-concept Quantity which stands for a tuple
g={n,v,u) wheren € Qv € R,andu € U

we may represent this by the formula

QUANTITY = (AND (ALL has_quantity_name QUANTITY NAME)
(ALL has_value NUMBER)
(ALL has_unit UNIT))

where the F-concept name QUANTITY represents the C-concept Quantity which is defined by an
JF-concept consisting of an AND construction which conjuncts three ALL constructions where the
roles has_quantity_name, has_value and has_unit specify the argument names quantity name, value
and unit respectively, and the value restrictions QUANTITY_NAME, NUMBER and UNIT specify
what individual should be filled in in these arguments.

6.2 THE SYNTAX OF THE PLINIUS ONTOLOGY KB IN CLASSIC

The CLASSIC representation for the Plinius ontology as described in §4 is the following:

QUANTITY NAME =(ONE-OF Grain_size Porosity Bending_strength Size Mass
Temperature Duration Tensile_stress Frequency)

UNIT =(ONE-OF Meter Kilogram Second Ampere Kelvin Mol
Candela Per_second Pascal Meter"3 Fraction)

PROCESS.TYPE.NAME =(ONE-OF Slipcasting Reaction_sintering

® An attribute is a role which has at least one and at most one role filler.

120

Molten_particle_deposition Hot _isostatic pressing)
, QUANTITY =(AND (ALL has_quantity_name QUANTITY NAME)
| (ALL has_value NUMBER)
i (ALL has_standard.deviation NUMBER)
(ALL has_unit UNIT))
. MATERIAL
MATERIAL _PROPERTY

n

(AND (ALL has_material MATERIAL)
(ALL has_property QUANTITY))

PROPERTY .CONDITION =(AND (ALL has_quantity QUANTITY)

(ALL has_condition QUANTITY)) ?

-1

i PHASE =R

PROCESS =(AND (ALL has_starting_material MATERIAL)
(ALL has_end_material MATERIAL)
(ALL has_type PROCESS_TYPE_NAME)
(ALL has_process_atmosphere PHASE)
(ALL has_property QUANTITY))

where all roles except for ‘has_condition’ and ‘has_property’ are defined to have exactly one filler
(these roles are attributes) and where the roles ‘has_condition’ and *has_property’ are defined to have
one or more fillers.

For the representation of the atomic C-concept R, the built-in F-concept_name NUMBER is used.
For the representation of the atomic C-concepts Q, U, and P, respectively the F-concept_names
QUANTITY.NAME, UNIT and PROCESS_TYPE_NAME are introduced which are defined as sets of
individuals. The C-concepts Property condition, Material property and Process are represented
by MATERIAL_PROPERTY, PROPERTY_CONDITION and PROCESS. Finally, the C-concepts Phase
and Material are represented by MATERIAL and PHASE.

6.3 THE SEMANTICS OF THE PLINIUS ONTOLOGY KB IN CLASSIC

In this section we discuss the semantics of the formulae of the Plinius ontology KB. Due to these
semantics the interface between the conceptualization stage, which resulted in the Plinius ontology,
and the formalization stage, which resulted in the Plinius ontology KB, is clarified and the correctness
of the formulae is determined with respect to a model which includes the Plinius ontology.

In giving the semantics of the formulae of the Plinius ontology KB, per formula the following
phases should be followed. (1) The F-concept name (the left hand side of the formula) needs to
be mapped on the corresponding (atomic) C-concept of the Plinius ontology. (2) The F-concept
(the right hand side of the formula), which syntactically define the F-concept name, need to be
mapped on objects, object-tuples, (atomic) F-concepts of the Plinius ontology. (3) The truth of the
formula of the Plinius ontology KB is proven if the denotation of the F-concept name is equal to the
denotation of the corresponding F-concept.

We illustrate this by giving the semantics of the QUANTITY-formula. In order to show that this
formula has the right meaning with respect to a certain model M, we give the interpretations of the

JF-concept name and the F-concept and determine whether the formula is correct with respect to
this model.

121

In order to show that the previously given formula has the right meaning with respect to a certain
model M, we give the interpretations of the F-concept name and the F-concept and determine
whether the formula is correct with respect to this model.

The F-concept name QUANTITY denotes the class of all Quantities, i.e.,!°

the class of all Quantities

{glg= (nv,uy) AneQAvERAUEU}

{g | ¢ = (has quantity name: n, has value: v, has unit: u)
AneQ AveR A ueU}

Z[QUANTITY]

The F-concept used to define QUANTITY has the following formal meaning, according to rules 5
and 6 of §5.2:

Z[(AND (ALL has_quantity_name QUANTITY NAME)
(ALL has_value NUMBER)
(ALL has_unit UNIT))] =
{q € D| q € T[(ALL has_quantity_name QUANTITY NAME)]
A g € Z[(ALL has_value NUMBER)]
A g € Z[(ALL has_unit UNIT)]}

where (since has_quantity_name is an attribute)

Z[(ALL has_quantity_name QUANTITY NAME)] =
{g € C| Vn ({g,n) € T[has_quantity name] = n € Q)
A card({n € D | (g,n) € T|has_quantity_name]}) =1}

In addition, since (1) attribute has_quantity .name specifies the argument name of the first argument
of ¢ = (n,v,u) and attributes has.value and has_unit specify the argument names of the second
and third argument of ¢ = (n,v,u), (2) the first argument of ¢ = (n, v, u) may only be filled by
a quantity name, the second argument by a number and the third argument by a unit, and (3) the
arguments have exactly one role filler, the following equation can be stated:

Z[(AND (ALL has_quantity_name QUANTITY NAME)
(ALL has.value NUMBER)
(ALL has_unit UNIT))] =
{g € C| ¥n ({g,n) € I|has_quantity name] = n € Q)
A card({n € D | (g, n) € I[has_quantity_name]}) =1
A Vv ({g,v) € Z[has_value] = v € R)
A card({v € D | (g,v) € T[has.value]}) =1
AVu ((g,u) € Z[has_unit] = u € U)
A card({u € D | (g, u) € Z|has_unit]}) =1} =

{q € C| ¢ = (I[has_quantity_name]: n, Z[has_value] : v, Z[has_unit] : u)
AmeQAvERAueU}=

{glg=(nv,u) AneQAVER A LEU}

and thus we conclude that the denotation of F-concept name QUANTITY is equal to the denotation
of its defining F-concept. This means, by rule 9 of §5.2:

10Since the argument names of the tuple (n, v,) are not specified within the notation, we introduce the alternative
notation (has quantity name: n, has value: v, has unit: u) in the last line,

122

=M QUANTITY = (AND (ALL has_quantity_name QUANTITY NAME)
(ALL has_value NUMBER)
(ALL has_unit UNIT))

Thus, the QUANTITY formula is correct with respect to model M where D is the Plinius ontology
and I the interpretations given above.

In [7], the semantics of all Plinius formulae are given by specifying a complete model which includes
the Plinius ontology and the interpretation functions for all F-concept names, F-concepts, roles,
individual names and individuals.

7. CONCLUSIONS

Using and integrating existing Al subjects, we have constructed a development method for
building and implementing an ontology KB for a particular domain. This method consists of the
elicitation, conceptualization, formalization, implementation, and testing stages. The formalization
stage is coupled with a logic-based KR language, the conceptualization stage is coupled with
a domain description and the interface between the conceptualization and formalization stage is
specified as a semantical, representational relation. This means that the conceptualization stage is
used for both the analysis of the domain of interest and the specification of the meaning (semantics)
of the symbols at the formalization stage. This is in contrast to the approach used by applications
for the KL-ONE style KR languages where the conceptualization and formalization stages have
not been distinguished. Finally, the conceptualization, formalization, and implementation stages
are subdivided into a terminological and an assertional component. An ontology represents the
terminological component at the conceptualization stage.

This proposed method has been applied to the Plinius project for which an ontology for ceramic
science had been developed [25]. This ontology, which makes use of tuple, set and disjunction
expressions, has been formalized and represented within the CLASSIC KR language. For the repre-
sentation of complex tuples and complex sets, special complex constructions have been developed
within CLASSIC. Disjunctions can only be represented under certain conditions. This means that
it is possible to represent the Plinius ontology in CLASSIC, however, the restricted expressiveness
takes its toll.

In contrast to most represented KBs, we have explicitly specified the semantics of the formulae.
Due to this semantics, the correctness of the formulae with respect to the ontology is guaranteed. This
means that the task of constructing a formalized ontology can be formally divided into two subtasks,
(1) the design of an ontology, independent of representational aspects, and (2) the representation of
the ontology, independent of concerns whether a right ontology of the domain of interest has been
developed. Although empirical justifications are absent, the method as described in this paper seems
to be useful, at least for the different domain specific KBs within the Plinius project.

8. ACKNOWLEDGEMENTS

We would like to thank Materials Information for providing us with the 1990 tape of document
descriptions; AT&T Bell laboratories for providing us with the CLASSIC system; Deborah McGuin-
ness for reading and correcting the CLASSIC description part of the paper; Mert Alberts for fruitful
discussions about ontologies; Patrick Hoogendoorn for helping to find the CLASSIC formalization

and implementation of the Plinius ontology; and Frank van Raalte for providing us with some of his
LISP knowledge.

123

9. REFERENCES

[1] Otthein Herzog & Claus-Rainer Rollinger, Text understanding in LILOG: integrating computational
linguistics and artificial intelligence, final report on the IBM Germany LILOG-Project, Lecture notes in
artificial intelligence; subseries of lecture notes in computer science; edited by Jorg Siekmann; volume
546, Springer-Verlag, Berlin, 1991.

[2] Betsy L. Humphreys, Donald A.B. Lindberg & William T. Hole, “Assessing and enhancing the value
of the UMLS Knowledge Sources,” in Proceedings of the Fifteenth Annual Symposium on Computer
Applications in Medical Care, a conference of the American Medical Informatics Association, Washington,
DC, November 17-20, 1991, Paul D. Clayton, ed., McGraw-Hill, New York, NY, 1991, 194--198.

[3] Douglas B. Lenat & Ramanathan V. Guha, Building large knowledge-based systems: representation and
inference in the Cyc Project, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1990.

[4] Gudrun Klose & Thomas Pirlein, “Modelling knowledge for a natural language understanding system,”
in Proceedings of the Fifth European Chapter of the Association for Computational Linguistics, 1991.

[5] Thomas R. Gruber, “Toward principles for the design of ontologies used for knowledge sharing,” Knowl-
edge Systems Laboratory, Stanford University, Technical Report KSL 93—4, Palo Alto, CA, 1993, Sub-
mitted to AAAI'93.

[6] Nicola Guarino, “Concepts, attributes and arbitrary relations: some linguistic and ontologicai criteria for
structuring knowledge bases,” Data & Knowl. Eng. 8 (1992), 249-261.

{7] Piet-Hein Speel, “The Plinius ontology knowledge base in CLASSIC,” University of Twente, Memoran-
dum UT-KBS-93-08, Enschede, the Netherlands , 1993.

[8] Frederick Hayes-Roth, Donald A. Waterman & Douglas B. Lenat, Building expert systems, Addison-
Wesley, Reading, MA, 1983.

[9] William A. Woods & James G. Schmolze, “The KL-ONE family,” in Semantic networks in artificial
intelligence, Fritz Lehmann, ed., Modern applied mathematics and computer science; edited by Ervin Y.
Rodin; Volume 24, Pergamon Press, Oxford, England, 1992, 133-177, Published as a special issue of the
journal Computers & Mathematics with Applications 23.

[10] Michael R. Genesereth & Nils J. Nilsson, Logical foundations of artificial intelligence, Morgan Kaufmann
Publishers, Inc., Palo Alto, 1987.

{11} Piet-Hein Speel, Nicolaas J.I. Mars & Paul E. van der Vet, “ A knowledge-based approach to semi-automatic
indexing,” in Proceedings of the Workshop on Language & Information Processing, October 27, 1991,
Washington, DC, held at the 54th ASIS Annual Meeting, Alexa T. McCray, ed., 1991, 49-58.

{12] John F. Sowa, “Conceptual analysis as a basis for knowledge acquisition,” in The Cognition of Experts:
Psychological Research and Empirical Al, Springer-Verlag, Berlin, 1991,

[13] Ronald J. Brachman & Hector J. Levesque, “Competence in knowledge representation,” in Proceedings
National Conference on Artificial Intelligence, Pittsburgh, PE, 18-20 August 1982, American Association
for Artificial Intelligence, 1982, 189-192.

{14] William A. Woods, “What'’s in a link: foundations for semantic networks,” in Representation and under-
standing: studies in cognitive science, Daniel G. Bobrow & Allan M. Collins, eds., Academic Press, New
York, NY, 1975, 35-82.

{15] Franz Baader, Hans-Jirgen Biirckert, Jochen Heinsohn, Bernhard Hollunder, Jirgen Miiller, Bernhard
Nebel, Werner Nutt & Hans-Jirgen Profitlich, “Terminological knowledge representation: a proposal
for a terminological logic,” Deutsches Forschungszentrum fiir Kiinstliche Intelligenz, DFKI, DFKI note,
Saarbriicken, Germany, 1991.

[16] Peter F. Patel-Schneider & William R. Swartout, “Working version: description logic specification from
the KRSS effort,” 1992,

124

[17] Robert M. MacGregor, “The evolving technology of classification-based knowledge representation sys-
tems,” in Principles of semantic networks: explorations in the representation of knowledge, John F. Sowa,
ed., The Morgan Kaufmann series in representation and reasoning, Morgan Kaufmann Publishers, Inc.,
San Mateo, CA, 1991, 385-400.

[18] Robert Neches, Richard E. Fikes, Tim Finin, Thomas Gruber, Ramesh Patil, Ted Senator & William R.
Swartout, “Enabling technology for knowledge sharing,” Al Magazine 12 (1991). 36-56.

[19] Patrick J. Hayes, “Naive physics I: ontology for liquids,” in Formal theories of the commonsense world,
Jerry R. Hobbs & Robert C. Moore, eds., Ablex, Norwood, NJ, 1985, 71-107.

[20] John F. Sowa, “Crystallizing theories out of knowledge soup,” in Intelligent systems: state of the art
and future directions, Zbigniew W. Ras & Maria Zemankova, eds., Ellis Horwood Ltd., London, 1990,
456-487.

[21] Victor Raskin, “Ontology, sublanguage, and semantic networks in natural language processing,” in Ad-
vances in Artificial Intelligence: natural language and knowledge based systems, Martin Charles Golumbic,
ed., Springer-Verlag, New York, NY, 1990, 114-128.

[22] Thomas R. Gruber, “The role of common ontology in achieving sharable, reusable knowledge bases,”
in Proceedings of the Second International Conference on Principles of Knowledge Representation and
Reasoning (KR’91), Cambridge, MA, April 22-25, 1991, James Allen, Richard E. Fikes & Erik Sandewall,
eds., 1991, 601-602.

[23] Nicolaas J.I. Mars & Paul E. van der Vet, “A semi-automatically generated knowledge base for direct
answers to user questions,” in TKE’90: Terminology and knowledge engineering. Proceedings Second
Interational Congress on Terminology and Knowledge Engineering, Trier, 2—4 October 1990, H. Czap
& W. Nedobity, eds., Indeks Verlag, Frankfurt am Main, 1990, 352-362.

[24] Frank van Raalte, Piet-Hein Speel & Paul E. van der Vet, “The Plinius preprocess: intermediate report,”
University of Twente, Memorandum UT-KBS-92-26, Enschede, The Netherlands, 1992,

[25] Paul E.vander Vet & Nicolaas J.1. Mars, “An ontology of ceramics,” University of Twente, UT-KBS-91-21,
Memoranda Informatica 91-85, Enschede, The Netherlands, 1991.

[26] Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness & Lori Alperin Resnick, “CLASSIC:
a structural data model for objects,” in Proceedings of ACM-SIGMOD 1989 International Conference
on Management of Data, Portland, OR, May 31-June 2, 1989, James Clifford, Bruce Lindsay & David
Maier, eds., ACM Press, New York, NY, 1989, 58-67, (also appeared as ACM SIGMOD Record, 18, 2,
June, 1989).

[27] RonaldJ. Brachman, Deborah L. McGuinness, Peter F. Patel-Schneider, Lori Alperin Resnick & Alexander
Borgida, “Living with CLASSIC: when and who to use a KL-ONE-like language,” in Principles of semantic
networks: explorations in the representation of knowledge, John F. Sowa, ed., The Morgan Kaufmann
series in representation and reasoning, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1991, 401-456.

[28] Peter F. Patel-Schneider, Deborah L. McGuinness, Ronald J. Brachman, Lori Alperin Resnick & Alexan-
der Borgida, “The CLASSIC knowledge representation system: guiding principles and implementation
rationale,” SIGART Bulletin 2 (1991), 108-113, Special issue on impiemented knowledge representation
and reasoning systems.

[29] James G. Schmolze, “Terminological knowledge representation systems supporting n-ary terms,” in Pro-
ceedings of the First International Conference on Principles of Knowledge Representation and Reasoning
(KR’89), Toronto, Ontario, Canada, May 15-18, 1989, Ronald J. Brachman, Hector J. Levesque & Ray-
mond Reiter, eds., 1989, 432443,

125

LINGUISTIC TOOLS
FOR INTELLIGENT SYSTEMS

Boris Stilman

Department of Computer Science & Engineering
University of Colorado at Denver,
Campus Box 109, Denver, CO 80217-3364, USA
E-mail: bstilman @copper.denver.colorado.edu

ABSTRACT

The objective of the research considered in this paper is to develop
formal linguistic tools for the representation of large-scale hierarchical
complex systems, the so-called Linguistic Geometry. The research relies on
the formalization of heuristics of high-skilled human experts which have
resulted in the development of successful decision support systems. This
approach is based on a broad application of the theory of formal languages
and grammars as well as theories of formal problem-solving and planning
on the basis of the first-order predicate calculus. This paper reports new
results in the investigation of geometrical properties of the first-level
subsystems (paths of elements) unified as One-Dimensional Linguistic
Geometry.

1. INTRODUCTION

Many important practical problems can be considered as optimization problems for
complex systems. The difficulties we meet trying to find optimal operation for real-world
complex systems are well known. While the formalization of the problem, as a rule, is not
difficult, an algorithm that finds its solution usually results in the search of many
variations. For small-dimensional "toy" problems a solution can be obtained; however, for
most real-world problems the dimension increases and the number of variations increases
significantly, sometimes exponentially, as a function of dimension [1]. Thus most real-
wforld search problems are not solvable employing exact algorithms in a reasonable amount
of time.

A development of approximate algorithms for such problems is a necessity. There
have been many attempts to design different approximate algorithms. One of the basic ideas
is to decrease the dimension of the real-world system following the approach of a human
expert in a certain field, by breaking this system down into subsystems, to study these
subsystems separately or in combinations, making appropriate searches, and eventually
combining optimal solutions for the subsystems as an approximately optimal solution for
the whole system [2-4]. These ideas have been implemented for many problems with
varying degrees of success, but each implementation was unique. There was no general
approach for such implementations. Each new problem must be carefully studied and
previous experience usually can not be applied. On the other hand, every attempt to
evaluate the computational complexity and quality of a pilot solution requires implementing
its program, which in itself is a unique task for each problem.

Here we consider a formal, general approach for a certain class of search problems
that involves breaking down a system into dynamic subsystems. This approach does not

126

immediately give us powerful tools for reducing the search in different complex problems.
It does give us a set of tools to be used for the formal description of problems where
successful results have already been achieved due to the informal, plausible reasoning of
some human expert. This reasoning should involve the decomposition of a complex system
into a hierarchy of dynamic interacting subsystems. The proposed approach permits us to
study the secondary multi-level system formally, evaluate the complexity and quality of
solutions, improve them, if necessary, and generate computer programs for applications.
This approach provides us with an opportunity to transfer formal properties and
constructions discovered in one problem to a new one and to apply the same tools to the
new problem domain. It actually looks like an application of the methods of a chess expert
to a maintenance scheduling problem and vice versa. But what about guaranties of success?
The guaranties reside in deeper studies of these methods, in the discovery of inner
properties which brought us to a success in a certain class of complex systems.

The main idea of the approach considered in this paper is as follows. A set of
dynamic subsystems might be represented as a hierarchy of formal languages where each
“sentence"” (a group of "words" or symbols) of the lower level language corresponds to the
"word" of the higher level one. This is a routine procedure in our native language. For
example, the phrase "A man who teaches students" creates a hierarchy of languages. A
lower level language is a native language without the word "professor." The symbols of
this language are all the English words (except "professor"). A higher level language might
be the same language with one extra word "A-man-who-teaches-students". Instead, we can
use the word "professor" which is simply a short designation of this long word.

In the 1960’s a formal syntactic approach to the investigation of properties of natural
language resulted in the fast development of a theory of formal languages by Chomsky [5],
Ginsburg [6], and others [7, 8]. This development provided an interesting opportunity for
dissemination of this approach to different areas. We refer to the ideas of syntactic methods
of pattern recognition developed by Fu [9, 10], Narasimhan [11], and Pavlidis [12], and
picture description languages by Shaw [13], Feder [14], and Phaltz [15]). We have
transformed the idea of linguistic representation of complex real-world and artificial images
into the idea of similar representation of complex hierarchical systems. However, the
appropriate languages should possess more sophisticated attributes than languages usually
used for pattern description. They should describe mathematically all of the essential
syntactic and semantic features of the system and search and be easily generated by certain
controlled grammars. An origin of such languages can be traced back to the origin of
SNOBOL-4 and the research on programmed formal grammars and languages by Knuth
[7], Rozenkrantz [8], and Volchenkov [16]. A mathematical environment for the formal
implementation of this approach was developed following the theories of formal problem
solving and planning by Nilsson, Fikes [17], Sacerdoti [18], and McCarthy, Hayes [19]
on the basis of the first order predicate calculus. To show the power of this approach it is
important that the chosen model of the hierarchical system be sufficiently complex, poorly
formalized, and has successful applications in different areas. The chosen informal model
was developed and applied to scheduling, planning, and computer chess by Botvinnik,
Stilman, and others [4].

An application of the hierarchy of languages to the chess model was implemented in
full as program PIONEER [4]. For power equipment maintenance the hierarchy was
implemented in a number of computer programs being used for maintenance scheduling in
the USSR [21, 22].

2. EXPERIMENTAL RESULTS

In order justify the following theoretical results we present here a brief discussion

127

about search algorithms and applications of the considered approach. We look for
approximate algorithms that reduce B, the branching factor [20], especially, those
algorithms which make B close to 1. Such algorithms should be considered as extremely
goal-driven with minimal branching to different directions.

Different search algorithms were designed in order to reduce the branching factor.
They are dynamic programming, various types of branch-and-bound algorithms, etc. For
opposing games like chess the most popular algorithms are various search algorithms with
alpha-beta pruning [20]. They are implemented in the most powerful computer chess
programs, e.g., in all the programs which are current and former World Computer Chess
Champions. It was proved that these algorithms, in the best case, theoretically can reduce
the branching factor to B%-3[20]. Supposing that an arbitrary chess position in average
contains about 40 moves permitted according to the chess rules, alpha-beta pruning can
reduce this number to approximately 6. Still we have an exponential growth with a very
high base (high branching factor). Thus chess problems that require a deep search, e.g.,
the search to the depth of 20 or more plies, would require enormous amounts of processing
time to be solved. We encounter the same problem but in a greater scope when we apply
search algorithms with alpha-beta pruning (or branch-and-bound algorithms) to real-world
problems, e.g., when we look for an optimal operation of complex systems. In such
problems the number of possibilities in each state usually is far more than 40, so an alpha-
beta or branch-and-bound reduction of the branching factor does not provide a solution in a
reasonable processing time.

Returning to the discussion of experiments with the PIONEER chess program, let us
consider the values of branching factor as well as some other parameters of the search [4].
The search tree generated by PIONEER while solving the R. Reti endgame contained 54
nodes (T = 54), hence, taking into account that the length of the solution L = 6 here, we
have B~1.65. In the Botvinnik-Kaminer endgame the total number of nodes generated by
the program was equal to 145, maximum length L =12, hence B~1.34. Although both
endgames are solvable by conventional chess programs, these results are very interesting in
the framework of substantial reduction of the branching factor.

Among the variety of complex problems solved by the PIONEER, we shall consider
two. Both are not solved yet by the conventional chess programs: alpha-beta pruning failed
to provide a substantial reduction of the branching factor, and so the expected processing
time would exceed a reasonable amount.

The first problem is the G.Nadareishvili endgame [4]. The total number of nodes
generated was T = 200, while the depth of the search required to find a solution is equal to
25! Consequently, B~1.14. At the initial position of this endgame there are 10 pieces, and
the unreduced branching factor might be estimated as B~15. The second complex problem
we would like to consider is the middle-game position in a game by Botvinnik-Capablanca.
This position contains 19 pieces and the unreduced branching factor might be estimated as
B~20! The depth of the search should not be less than 23. The PIONEER generated a
search tree of 40 nodes with the branching factor B~1.05.

Let us consider experiments with maintenance scheduling programs. The program for
monthly scheduling generated different search trees depending on the number of demands
in each month and a list of other constraints [21, 22]. The number of demands varied from
118 to 405 in different months. The total number of nodes never exceeded 165. With 31 as
the maximum length of the solution, a reduced branching factor in these problems never
exceeded 1.06. (To understand these results we should take into account that the program
aggregated some of the demands. In spite of this the unreduced branching factor varied
from 50 to 100.)

The experiments with the program for annual maintenance scheduling showed that
even this higher dimensional problem can be solved employing the proposed approach. The

128

power equipment maintenance plan for the USSR United Power System was computed for
1121 demands. Each demand contained 12 parameters, including resources requirements
and different types of constraints. Two types of resources were considered: the power
reserve and the maintenance personnel. The last one was broken into different specialties.
Obviously for the annual plan the length of the solution was 365! The reduced branching
factor never exceeded 1.005.

Evaluation of the quality of a solution for the chess problems is not hard. The variant-
solution (or subtree) is known. A computer should find it and prove it is optimum. For
maintenance scheduling problems the optimal plan is unknown but the results achieved can
be evaluated according to the optimum criterion: maximum total demanded power of the
units being actually maintained. For monthly scheduling the total demanded power of the
solutions varied from 91% to 99% of the theoretical optimum value. For annual scheduling
the total demanded power of the solutions was equal to 83% of the total demand while a
theoretical optimum was unknown.

The comparison with analogous scheduling programs based on branch-and-bound (or
dynamic programming) search strategies showed the advantage of our approach for
monthly planning; the quality of the plan was about the same, but the computation time in
our case was essentially shorter. In all experiments the branchin. factor of the trees
generated by conventional programs was substantially higher. For yearly planning
problems the competition could not even happen, because conventional programs could not
overcome in a reasonable time the ‘“‘combinatorial explosion” for such a higher-dimensional
problem.

The results shown by these programs in solving complex chess and scheduling
problems indicate that implementations of the hierarchy of languages resulted in the
extremely goal-driven algorithms generating search trees with a branching factor close to 1.
In order to discover the inner properties of human expert heuristics, which were successful
in a certain class of complex systems, we develop a formal theory, the Linguistic Geometry
[21-28].

3. INFORMAL REVIEW

The idea of a hierarchy of formal languages has been implemented in full for the
problems which can be stated as problems of optimal functioning of a Complex System, a
twin-set of elements and points where elements are units moving from one point to another.
The elements are divided into two opposite sides: the goal of each side is to maximize a
gain, the total value of opposite elements withdrawn from the system. Such a withdrawal
happens if an element comes to the point where there is already an element of the opposite
side: in this case opposite element should be withdrawn, e.g., as in the game of chess.

According to [16], a one-goal, one-level system should be substituted for a multi-goal
multi-level system by introducing intermediate goals and breaking it down into subsystems
striving to attain these goals. The goals of the subsystems are individual but coordinated
with the main mutual goal. Each subsystem includes elements of both sides; the goal of one
side is to attack and gain some element (a target), while the other side tries to protect it.
Thus, a subsystem called a Zone is the set of elements of both sides with their trajectories
(paths). The pruning criteria for the search and evaluation function are coordinated with the
intermediate subsystem's goals and the main goal of the system. Obviously, problems
studied in [16] are not the only class of problems eligible for creating a hierarchy of formal
languages.

Let us review the linguistic representation. Lower level subsystems are called the
trajectories of points for moving elements along these points to achieve certain local goals.
Trajectories are strings of a lower level formal language, the Language of Trajectories.

129

Higher level subsystems are well-organized networks of trajectories for moving elements
along them to achieve cooperative goals, specific for each network. These networks, called
Zones, are represented as strings of a yet higher level language, the Language of Zones;
each symbol of the string represents a trajectory, i.e., the string of a lower level language.

The system functions by moving from one state to another; that is, the movement of
an element from one point to another causes an adjustment of the hierarchy of languages.
This adjustment can be represented as a mapping (translating) to some other hierarchy.
Thus, the functioning of the system, in a process of the search, generates a tree of
translations of the hierarchy of languages. This tree is represented as a string of the highest
level formal language, the Language of Translations, which itself is a member of the family
of languages corresponding to various well-known search algorithms: depth-first search,
breadth-first search, alpha-beta and others. Every string of the Language of Translations
(corresponding to some search tree) contains a solution to the specific search problem.

Next we consider a formal theory and report some results for the lower level
subsystems, the so-called trajectories.

4. COMPLEX SYSTEMS

A Complex System is the following eight-tuple:
<X, P, Rp, {ON}, v, S, S¢, TR>,

where X={xi} is a finite set of points; P={p;} is a finite set of elements; P is a union of
two nonintersecting subsets P, and P,; Rp(x,y) is a set of binary relations of reachability in
X (x and y of X, p of P); ON(p)=x, where ON is a partial function of placement from P
into X;; v is a function on P with positive integer values; it describes the values of elements;
The Complex System searches a space of states, hence, it should have initial and target
states. Sj and S¢ are the descriptions of the initial and target states in the language of the
first order predicate calculus, that matches with each relation a certain Well-Formed
Formula (WFF). Thus, each state from S; or S is described by a certain collection of WFF
of the form {ON(pj)=xk}; TR is a set of operators TRANSITION(p, X, y) of transition of
the System from one state to another one. These operators describe the transition in terms
of two lists of WFF (to be removed and added to the description of the state), and of WFF
of applicability of the transition. Here,

Remove list: ON(p)=x, ON(q)=y;

Add list: ON(p)=y;

Applicability: (ON(p)=x)"Rp(x,y),
where p belongs to P, and q belongs to P, or vice versa. The transitions are carried out in
turn with participation of elements p from P, and P, respectively; omission of a turn is
permitted.

According to definition of the set P, the elements of the System are divided into two
subsets Py and P,. They might be considered as units moving along the reachable points.
Element p can move from point x to point y if these points are reachable, i.e., Ry(x,y)
holds. The current location of each element is described by the equation ON(p)=x. Thus,
the description of each state of the System {ON(pj):Xk] is the set of descriptions of the
locations of the elements. The operator TRANSITION(p, x, y) describes the change of the
state of the System caused by the move of the element p from the point x to the point y. The
element g from the point y must be withdrawn (eliminated) if p and q belong to the different
subsets P, and P,.

The problem of the optimal operation of the System is considered as a search for the
optimal variant of transitions leading from one of the initial states to a target state.

130

With such a problem statement for search for the optimal sequence of transitions into
the target state, we could use formal methods like those in the problem-solving system
STRIPS [17], nonlinear planner NOAH [18], or in subsequent planning systems.
However the search would have to be made in a space of a huge dimension (for nontrivial
examples), i.e., in practice no solution would be obtained. We, thus, devote ourselves to
search for an approximate solution of a reformulated problem considering our Complex
System in some sense as nearly decomposable [2].

It is easy to show that positional games such as chess and checkers might be
considered as Complex Systems [21, 24-27]. But it is more interesting that this specific
model of the formal linguistic approach is applicable to representing and solving a wide
class of practical problems such as power maintenance scheduling, long-range planning,
operations planning, VLSI layout, and various operations research problems [21, 22, 26,
27). The idea is that the optimal variant of operation of these real-world systems may be
artificially reduced to a two-sides game where one side strives to achieve some goal and the
other is responsible for the provision of resources.

S. GEOMETRICAL PROPERTIES OF THE COMPLEX SYSTEM

To create and study a hierarchy of dynamic subsystems we have to investigate
geometrical properties of the Complex System.

Fig. 1. An interpretation of the family of reachability areas

5\

A map of the set X relative to the point x and element p for the Complex System

is the mapping:
MAP, ,: X —> Z,,
(where x is from X, p is from P), which 1s constructed as follows. We consider a family
of reachability areas from the point x, i.e., a finite set of the following nonempty subsets
of X {M*, ,} (Fig. 1):
k=1: M",‘,p is a set of points m reachable in one step from x: Rp(x,m)=T;
k>1: ka,p is a set of points reachable in k steps and not reachable in k-1 steps,
i.e., points m reachable from points of M1, ; and not included in any M"x,p
with numbers i less than k.
Let MAP, ,(y)=k, for y from ka,p (number of steps from x to y).

In the remainder points let
MAP, p(y)=2n, if y#x, and

MAPx:p(y)=0, if y=x.
It is easy to verify that the map of the set X for the specified element p from P

defines an asymmetric distance function on X:

131

1. MAP, ,(y) >0 for x#y; MAPy ,(x)=0;
2. MAPx,p(y)+MAPy'p(z) 2 MAP,(,p Z).
If R is a symmetric relation,
3. MAPX, (y)"-:MAPy,p(x)»
In this case eac% of the elements p from P specifies on X its own r.etric.

6. CONTROLLED GRAMMARS

In pattern recognition problems, a linguistic approach was proposed [9-15] for
representation of hierarchic structured information contained by each pattern, i.e., for
describing patterns by means of simpler subpatterns. This approach brings to light an
analogy between the hierarchic structure of patterns and the syntax of languiges. The rules
controlling the merging of subpatterns into patterns are usually given by the so-called
pattern description grammars, with the power of such description being explained by the
recursive nature of the grammars. Using similar approach for generating of the hierarchy of
formal languages, we make use of the theory of formal grammars in the form developed in
{7, 8, 16]. We begin with the definition of the class of grammars to be used.

A controlled grammar G is the following eight-tuple:

G=(VT, VN’ VPR’ E, H, Parm, L, R),
where
Vr is the alphabet of terminal symbols,
Vi s the alphabet of nonterminal symbols, S (from Vy) is the start symbol,;
Vpg is the alphabet of the first order predicate calculus PR:
Vpr=Truth UCon UVar UFunc UPred U{symbols of logical operations},where

Truth are truth symbols T and F (these are reserved symbols);

Con are constant symbols;

Var are variable symbols;

Func are functional symbols (Func =Fcon UFvar). Functions have an
attached non-negative integer referred to as arity indicating the
number of elements of the domain mapped onto each element of
the range. A term is either a constant, variable or function
expression. A function expression is given by a functional symbol
of arity k, followed by k terms, ty, t5,..., t;, enclosed in
parentheses and separated by commas;

Pred are predicate symbols. Predicates have an associated positive
integer referred to as arity or “argument number” for the
predicate. Predicates with the same name but different arities are
considered distinct. An atom is a predicate constant of arity n,
followed by n terms, t;, t,,..., t,, enclosed in parentheses and
separated by commas. The truth values, T and F, are also atoms.
Well-formed formulas (or WFF) are atoms and combinations of
atoms using logical operations;

E is an enumerable set called the subject domain;
H is an interpretation of PR calculus on the set E, i.e., a certain assignment of the
following form. Each
—constant from Con is assigned to an element of E;
— variable from Var is assigned to a nonempty subset of E; these
are allowable substitutions for that variable;
— predicate Q from Pred of arity n is assigned to a relation on the

set E of arity n, i.e., to a mapping from E” into {T, F};

132

— function f of arity k is assigned to a mapping A(f)from D into E,
where D belongs to EX. If f is from Fvar, then D and the
mapping h(f) vary in the process of derivation in the grammar.

Thus, the interpretation H allows us to calculate the value of any function (it lies
in E) and any predicate (F or T), if the values of all variables contained by them
are specified.

Parm is a mapping from V;UVy in 2V matching with each symbol of the
alphabet VUV, a set of formal parameters, with Parm(S)=Var,

L s afinite set called the set of labels;

R s a finite set of productions, i.e., a finite set of the following seven-tuples:
(l, Q, A-—'>B, Ty Ty FT-' FF)

Here, I (from L) is the label of a production; the labels of different
productions are different, and subsequently sets of labels will be
made identical to the sets of productions labeled by them;

Q is a WFF of the predicate calculus PR, the condition of applicability
of productions; Q contains only variables from Var which belong
to Parm(A);

A—>B is an expression called the kernel of production, where
A isfrom V.; B is from (V7 U Vy)* is a string in the alphabet of
the gramma: G;

7 is a sequence of functional formulas corresponding to all formal
parameters of each entry of symbols from V; UV, into the strings
A and B (kernel actual parameters);

m, is a sequence of functional formulas corresponding to all formal
parameters of each functional symbol from Fvar (non-kernel actual
parameters),

Fr is a subset of L of labels of the productions permitted on the next
step of derivation if Q=T (“true”); it is called a permissible set in
case of success,

Fp is a subset of L of labels of the productions permitted on the next
step of derivation if Q=F(“false”); it is called a permissible set in
case of failure.

A finite set of strings from V* and formulas from #, , in which each formal
parameter (for every entry of a terminal symbol into a string) is attributed with a value from
E and each symbol f from Fvar is matched with a mapping h(f), serves as a derivation
result.

Derivation in controlled grammar takes place as follows. A symbol S serves as the
start of derivation, where its formal parameters are provided with initial mappings h(f) are
specified for all f from Fvar. In the role of the initial permissible set of productions we take

the entire set L. To a current string we apply each of the productions of the current
permissible set, the symbol A for which enters into the string. As a result of applying a
production, a new string and a new permissible set are formed. Later on derivation for each
of the strings obtained from a given one takes place independently.

If none of the productions from permissibie set can be applied, then derivation of the
given string is discontinued. If this string consists only of terminal symbols, then it goes
into the set of derivation results, otherwise it is discarded.

The application of a production takes place as follows. We choose the leftmost entry
of the symbol A in the string. We compute the value of the predicate Q. If Q=F, the Fp

133

becomes the permissible set, and the application of the production is ended. If Q=T, then
the symbol A is replaced by the string B; we carry out computation of the values of all
formulas from 7 corresponding to the parameters of the symbols, and the parameters
assume new values thus computed. New mappings h(f) (f from Fvar) are specified by
means of formulas from 7,; the permissible set is furnished by Fr, and application of the
production is ended. (In the record of the production the formulas from 7, leaving A(f)
unaltered are omitted.)

In constructions with which the controlled grammar is provided, it is easy to observe
analogies with the programming language SNOBOL-4.

A language L[G] generated by the controlled grammar G is the union of
all the sets which are the derivation results in this grammar.

7. ONE-DIMENSIONAL LINGUISTIC GEOMETRY

Here, we define the lowest level language of the hierarchy of languages. It serves as
a building block to create the upper-level languages [26, 27]. The lowest level language
actually formalizes a notion of a path between two points for the certain element of the
System. An element might follow this path to achieve the goal connected with the ending
point.

A trajectory for an element p of P with the beginning at x of X and the end at the y
of X (x#y) with a length [is a following string of symbols with parameters, points of X:

to=a(x)a(xy)...a(x)),

where each successive point x;, is reachable from the previous point x;: Rp(x;, x;,;) holds
fori=0,1,..., I-1; element p stands at the point x: ON(p)=x. We denote tp(x, y, [) the set

of trajectories in which p, x, y, and ! coincide. P (t5)={x, X, ..., X;} is the set of
parametric values of the trajectory t,.

Fig. 2. An interpretation of shortest and admissible trajectories.

I

. &
a b ¢c d e f g h

In order to illustrate this definition we consider the example from the robot control
model (Fig. 2). Here the set of X (from Section 4) corresponds to the set of squares with
coordinates: al, bl, cl, ..., h8 excluding squares in the shaded area, which represent a
restricted district. WFF ON(p)=x designate squares x were robots p stand in given state.
Relations Rp(x, y) designate moving capabilities of different robots, i.e., this relation holds
for all squares y which are reachable from x in one step. For example for the robot C on h8
squares g8 and h7 are reachable; it has moving capabilities similar to King from the game
of chess. The second robot S can move like Queen from the chess. Three trajectories of the

2,

N TV I SR T e R |

134

robot C leading from point h8 to c6 are shown in Fig. 2. Robot S has two trajectories
leading from al to f3. Arrows mark points (squares) where robots have to stop during the
motion along these trajectories. These points correspond to the values of parametric
symbols for each trajectory.

A shortest trajectory t of tp(x, ¥y, 1) is the trajectory of minimum length for the
given beginning x, end y and element p.

In Fig. 2, the two trajectories of robot C, a(h8)a(g8)a(f8)a(e8)a(d7)a(c6) and
a(h8)a(g8)a(f8)a(e7)a(d7)a(c6), are the shortest trajectories. All the trajectories of the
robot S shown in Fig. 2 are the shortest trajectories: a(al)a(f1)a(f3) and a(al)a(h1)a(f3).
Reasoning informally, an analogy can be set up: the shortest trajectory is an analogous to a
straight line segment connecting two points in a plane. Let us consider an analogy to a k-
element segmented line connecting these points.

An admissible trajectory of degree k is the trajectory which can be divided

into k shortest trajectories; more precisely there exists a subset {X;,, Xi,, ..., Xj,, } of P(to),
11<ip<...<iy.1, ks, such that corresponding substrings a(xo)...a(x;,), a(xi)...a(xj), ...,
a(xj,.,)...a(x]) are the shortest trajectories.

Shortest and admissible trajectories of degree 2 play a special role in many problems.
Obviously, every shortest trajectory is an admissible trajectory at the same tirne, but of
course, converse statement is not true. There exist admissible trajectories, e.g., of degree
2, which are not shortest. An example of such a trajectory
a(h8)a(h7)a(g6)a(f6)a(e7)a(d7)a(c6) is shown in Fig. 2. As a rule, elements of the
System should move along the shortest paths. In case of an obstacle, the element should
move around this obstacle by tracing some intermediate point aside (e.g. point h7 in Fig. 2)
and going to and from this point to the end along the shortest trajectories. Thus, in this
case, an element should move along the admissible trajectory of degree 2.

A Language of Trajectories LtH(S) for the Complex System in a state S is the
set of all the shortest and admissible (degree 2) trajectories of the length less or equal H.
This language also includes the empty trajectory e (of the length 0).

Properties of the Complex System permit to define (in general form) and study
formal grammars for generating the Language of Trajectories as a whole along with its
subsets: shortest and admissible (degree 2) trajectories.

8. GENERATION OF TRAJECTORIES

Consider the following controlled grammar for the Complex System with symmetric
relation of reachability Rp (Table 1):

T i i 1)
L Q Kernel, n; Ty F, Fg
1 Q] S(X,ys[) -> A(X,YJ) two [}
2; o, A(x,y,l) => a(x)A(next; (x,]), y, 1)) two 3
3 0, A(x,y,l) > a(y) 9]
Vr ={a}
Vy={S,A}

Ver: Pred ={Q,,0,,0,)}.

135

01(x, y,) = (MAPy o(y)=) (0<l<n)
Q20 =(21)
Q3=T
Var= {x,y, 1}
F =Fcon UFvar,
Fcon={fnext,,...,next,} (n=IXl),
fih=l-1, D(H)=Z . \{0}
(rext; is defined below)
Fvar={xq,yoloP}
E=Z,UXUP
Parm: S ->Var, A —>Var, a->{x}
L= {1,3} U two, two={2,2,,....2}
At the beginning of derivation:
X=Xg, Y=Yo: I=lg, Xo from X, y, from X, [, from Z,, p from P.
Function next; is defined as follows:
D(nextp=X x Z, x X2 x Z,xP
SUM=({v v from X, MAPXO'p(v)+MAPy°’p(v)=IO},
ST(x)={v v from X, MAPx,p(v)=k}.
MOVE(x) is an intersection of the following sets:
STy(x), STy.14+1(xo) and SUM.
If MOVE(x)={m, my, ...m,}# @ then
nexty(x,)=m; for i<r and
nexty(x,)=m, for r<i<n,
otherwise
nexti(x, [)=x.

Fig. 3. An interpretation of the algorithm for next; for the grammar G,(V.
yO

MAE ,(v) =k

THEOREM. The shortest trajectories from point x to point y of the length [, for the
element p on x (i.e., ON(p)=x) exist if and only if the distance of these points is equal /:

MAPy (Yo)=lo, (8.1)
where [,<2n, n is the number of points in%(. If the relation Ry, is symmetric, i.e., for all x
from X, y from X and p from P Rp(x, y)=R(y, x), then all the shortest trajectories tp(Xo:
Yo» lp) can be generated by the grammar Gﬁ) (Table 1, Fig. 3).

136

Proof. We assume that t, from tp(Xo» Yo» lo) exists and is shortest. We shall prove (8.1).
The proof is carried out by induction with respect to [,

In the case of /=1 the statement is easily verified.

We assume that for /,<m the statement is true.

Let [,=m and t, from t,(Xy, Yo, m) be the shortest. We shall prove that
MAPy, n(yo)=m. Let’s consider t[l)'ne shortened trajectory t,,_| from ty(Xo, Xp.1, m-1),
tm-1=a(Xg)a(xy)...a(X,,.1), which is obtained from t,, after discarding the last symbol. If t,,
from tp(xo, Xm, m) is the shortest (x,,=y,), then t,_; is also shortest. But from the
assumption it follows that MAPy, 5(X,,.1)=m-1. From definition of MAP (see Section 5)
it follows that x,,_; belongs to

m-1 m-1
My,,p- Since Ry(Xp_1. Yo) is true, y, belongs to (U Mly, p) U MMy, 1. If y, is from
m-1 j=1

U Mon,p, then the trajectory t,, is not the shortest one, since there exists a trajectory t’

j=1
from t,(X,, Yo, j) of length j<m-1. We have a contradiction. Thus, y, belongs to M™y..p:
1e., MAPy, n(yo)=m.

Conversely, let (8.1) be true. Let’s show that there exists a trajectory belonging to

to(Xo» Yo» lo), and that it is the shortest trajectory.

The proof will be carried out by induction. For /=1 the statement is obvious. Let it
be true for /,<m.

Let now /;=m and MAPXO,p(y0)=m. The shortest trajectory if exists can not be
shorter then m, otherwise there exists k,<m such that MAPy, p(¥o)=k, (from the direct
statement proved above), and we have a contradiction.

Let us construct the shortest trajectory belonging to to(Xo» Yo» m). By definition of
MAP there exists x,,_; from

m-1 m-1
My, p such that Ry(x, 1, ¥o)=T. But from the fact that x,,_; belongs to My, p» We have
MAPy, p(X;.1)=m-1. Consequently, according to the induction hypothesis, there exists
the shortest trajectory a(xq)a(xy)...a(x,,.1) of length m-1. In such a case the trajectory
a(xg)a(xq)...a(Xy,. 1)a(y,) of length m will also be the shortest one.

To complete the proof of the theorem it remains for us to show that all trajectories
to(Xo» Yo» lo) are generated by the grammar G(1) from Table 1, if R;, is symmetric. This
grammar, in accordance with definition of controlled grammars (Section 6), belongs to the
class of controlied grammars. Note that the set of functional symbols Fvar in it is a set of
four zero-arity functions p, X, Yo lo, i.€., GV=G(p, X¢, Yo, [,)- It is obvious that each of
the strings generated by G,(!) is a trajectory from to(Xo, Yo» lo)- Indeed, for each string
a(xg)a(xy)...a(y,) thus generated, the elements x; belong to STi(xo)=Mixo,p (see Fig. 3),
consequently, this string is the shortest trajectory.

To prove that all the shortest trajectories are generated by G,(!) let us conduct the
following preliminary discussion. As was already mentioned above, all substrings of the
shortest trajectory are the shortest trajectories with the beginning at x, and ending at x;
(i=1, 2,..., I;). Taking into account the symmetry of the relation Ry, all reversed substrings
with the beginning at y, and ending at x; (i =l,-1, [,-2,...,1, 0) will also be the shortest
trajectories. Consequently, x; belongs to

lo-i
My, p- This means that for any shortest trajectory a(x,)a(xy)...a(y,) from t(X0:Yorlo)

137

i lo-i
X belongs to the intersection of My, » and Myo’lp, i.e., MAPy, p(xj)=i and
MAPy, n(X))=lo-1, and, consequently,

MAPy, o(x)+MAPy, 1(x)=l,. (8.2)

Conversely, if for a certain x from X (8.2) takes place, then x necessarily enters

into the set P(t;) parametric values of at least one shortest trajectory t; from t,(X,, Yo, lo)-
This follows from the fact that MAPy, (x)20 and MAPy, (x)20, while their sum is
equal to ly. That is to say, there exists j (0Sj</,), such that MAPy, p(x)=],

MAPy, n(x)=l5-j. Then there exist two shortest trajectories t! from ty(x,, X, j) and t2 from

tp(Yo» X, lp-j). The trajectory t3 from to(X, Yo l5-j) constructed of the same symbols as t5,

but in the reversed order, will also be the shortest trajectory. The concatenation of t! and t2
gives the sought shortest trajectory containing x.

Thus, any element of the set X enters into the set of parametric values UP(ti)

(1
for all the shortest trajectories t; from tp(xo, Yo lo) if and only if (8.2) is true. These
arguments lay a basis for the algorithm for calculating the function next;(x, [) (Fig. 3).

Next we shall use induction again. Obviously, the grammar of trajectories generates
the first symbol a(x,) of all shortest trajectories from ty(x,, Yo, [p). Assume that it
generates the m first symbols of any shortest trajectory from tp(Xo, Yo /o). We shall show
that it generates also the (m+1)st symbol a(x,,).

We have: MOVE(X,,.;) is an intersection of ST(x,,.1), STju(X,) and SUM. Since

tp(Xo» Yos lo) are the shortest trajectories, x,, belongs to ST, (xo)=M™x, 5. But x,, also

belongs to SUM, because of (8.2), and x,, belongs to STl(x,,,,l)=M1xm_,,p since Ry(Xp.1,
Xm)=T by definition of trajectory. Thus, x,, belongs to MOVE(x,,_;), 1.e., the (m+1)st
symbol is generated by the grammar G,(1).

The theorem is proved.

9. DISCUSSION OF RESULTS

This paper reports the results on investigation of geometrical properties of complex
systems. It explores properties of the first-level subsystems, paths of elements, the so-
called trajectories. These results are considered as contribution to the One-Dimensional
Linguistic Geometry.

The investigation resulted in definition of a distance function between two points of
the system as a “length of the shortest path between these points”. It is interesting that
distances between the same two points are different for different elements of the system. It
takes place because usually paths for different elements are different, i.e., moving
capabilities of different robots as well as maintainability characteristics of different power
units are different.

The distance measurement allowed us to build the general formal grammar
generating all the shortest paths between two points for the given element of the system, the
shortest trajectories. There was proved the theorem (Section 8) which gives necessary and
sufficient conditions for existence of a path (trajectory) between two points (for the given
element); if such path does exist the theorem shows the actual length of the shortest path
and confirms that grammar G(!) generates all the shortest paths. Analogous results were

138

obtained in case of obstacles: visible and invisible. In this case the so-called “admissible
trajectories of degree 2”, i.e., constructed of two shortest ones, can be generated by the
G,(2) grammar to go around the obstacles [25, 26]. The application of the Linguistic
Geometry to the game of chess, robot control, and maintenance scheduling allowed for
efficient implementation of the Language of Trajectories in these models [26].

The same generating tools can be used to generate higher level subsystems, the
networks of paths, i.e., the Language of Trajectory Networks [27]. Even the Language of
Translations [27, 28] describing the process of search can be generated by a similar type of
grammars. Consequently, the investigation of the control of the search for an optimal
operation of the complex system can be reduced to the investigation of properties of the
specific formal grammars.

REFERENCES

1. M.R. Garey and D.S.Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness ,W.H.Freeman and Co., San Francisco, (1991).

2. H. Simon, The Sciences of the Artificial , The MIT Press, Cambridge, MA, (1980).

3. M.D. Mesarovich, D. Macko, Y. Takahara Y., Theory of Hierarchical Multileve!
Systems, Academic Press, New York, (1970).

4. M.M. Botvinnik, Computers in Chess: Solving Inexact Search Problems. Springer
Series in Symbolic Computation , Springer-Verlag, New York , (1984).

5. N. Chomsky, Formal Properties of Grammars, in Handbook of Mathematical
Psychology, ed. R. Luce, R. Bush, E. Galanter., 2, 323-418, John Wiley & Sons,
New York, (1963).

6. S. Ginsburg, The Mathematical Theory of Context-Free Languages , McGraw Hill,
New York, (1966).

7. D.E. Knuth, Semantics of Context-Free Languages, Mathematical Systems Theory,
2-2, 127-146, (1968).

8. D.J. Rozenkrantz, Programmed Grammars and Classes of Formal Languages,
Journal of the ACM, 16-1, 107-131, (1969).

9. K.S. Fu, Syntactic methods in pattern recognition, Mathematics in Science and
Engineering, Vol. 112, ed. Richard Bellman, Academic Press, New York, (1974).

10. K.S. Fu, Digital pattern recognition, Springer-Verlag, New York, (1980).

11. R.N. Narasimhan, Syntax—Directed Interpretation of Classes of Pictures, Comm. of
the ACM,9, 166-173, (1966).

12. T. Pavlidis, Linear and Context-Free Graph Grammars, Journal of the ACM, 19,11~
22, (1972).

13. A.C. Shaw, A Formal Picture Description Scheme as a Basis for Picture Processing
System, Information and Control, 19, 9-52, (1969).

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

139

J. Feder, Plex languages, Information Sciences, 3, 225-241, (1971).

J.L. Pfaltz and A. Rosenfeld, WEB grammars, in Proc. of the 1st International Joint
Conf. Artificial Intelligence ,Washington, D.C., 609-619, (May 1969).

N.G. Volchenkov, An Interpreter of Context-Free Controlled Parametric
Programmed Grammars, in: Cybernetics Problems. Intellectual Data Banks, ed. L.T.
Kuzin, The USSR Academy of Sciences, Moscow, 147-157, (1979), [in Russian].

R.E. Fikes and N.J. Nilsson, STRIPS: A New Approach to the Application of
Theorem Proving in Problem Solving, Artificial Intelligence, 2, 189-208, (1971).

E.D. Sacerdoti, Planning in a Hierarchy of Abstraction Spaces, Artificial Intelligence,
5-1, 115-135, (1974).

J. McCarthy and P.J. Hayes, Some Philosophical Problems from the Standpoint of
Artificial Intelligence, Machine Intelligence, 4, 463-502, (1969).

N. J. Nilsson, Principles of Artificial Intelligence, Tioga Pub., Palo Alto, CA,
(1980).

B. Stilman, Hierarchy of Formal Grammars for Solving Search Problems, in:
Proceedings of the International Workshop, Artificial Intelligence. Results and
Prospects, Moscow, 63-72 (1985), [in Russian].

A.L Reznitskiy and B.M. Stilman, Use of Method PIONEER in Automating the
Planning of Power-Generating Equipment Maintenance, Automatics and Remote
Control, 11, 147-153, (1983), [in Russian].

B. Stilman, A Syntactic Structure for Complex Systems, Proc. of the Second Golden
West International Conference on Artificial Intelligence, Reno, NE, 269-274, (June
1992).

B. Stilman, A Syntactic Approach to Geometric Reasoning about Complex Systems,
Proc. of the Fifth International Symposium on Artificial Intelligence, Cancun,
Mexico, 115-124, (Dec. 1992).

B. Stilman, A Geometry of Hierarchical Systems: Generating Techniques, Proc. of
the Ninth Israeli Symposium on Artificial Intelligence and Computer Vision, Ramat
Gan, Israel, 95-109, (Dec. 1992).

B. Stilman, A Linguistic Approach to Geometric Reasoning, International Journal:
Computers and Mathematics with Applications , (1993), (to appear).

B. Stilman, Network Languages for Complex Systems, International Journal:
Computers and Mathematics with Applications , (1993), (to appear).

B. Stilman, Translations of Network Languages, International Journal: Computers
and Mathematics with Applications , (1993), (to appear).

140

AN APPLICATION OF ROUGH SETS
IN KNOWLEDGE SYNTHESIS

S.K.M. Wong, Y.Y. Yao! and L.S. Wang

Department of Computer Science, University of Regina
Regina, Saskatchewan, Canada S4S 0A2

Abstract

In this paper, we consider the fundamental issues in knowledge verifica-
tion and synthesis by focusing on a special type of rule-based systems, which
consists of a set of deterministic and non-deterministic decision rules. A set
of sound and complete inference axioms is suggested. Based on these axioms,
an efficient algorithm is developed for computing the closure and testing the
consistency of the input rules.

1 INTRODUCTION

Knowledge verification and synthesis are two important processes in the design
and implementation of intelligent systems as it is often necessary to validate and
consolidate the input knowledge |3, 6, 8, 9, 18).

Many approaches for verification (validation) of knowledge in the rule-based
systems were proposed (7). In fact, many systems have been developed to identify
inconsistent, redundant or missing rules in a knowledge base [7, 8, 9]. However,
research on knowledge verification tends to be fragmentary in nature and unclear in
scope and methodology (7).

In this paper, by adopting an axiomatic approach we analyze some of the issues
in knowledge verification and synthesis. Our approach is similar to the method
used for analyzing functional dependencies in relational databases [5). Our study
will focus on the knowledge base consisting of deterministic and non-deterministic
rules {10, 11, 12, 15]. Based on the notion of logical implication, we introduce a
set of inference axioms for deriving new rules from the input rules. This process of

1Currently at Department of Mathematical Sciences, Lakehead University, Thunder Bay, On-
tario, Canada P7B 5E1

141

synthesis is similar to inferring new functional dependencies in a relational database.
The proposed set of axioms is related to that suggested by Bundy [1, 2] for incidence
calculus. In particular, we show that our inference axioms are both sound and
complete. Using these axioms, we also develop an algorithm to synthesize the input
rules.

2 ROUGH SETS AND DECISION RULES

In this section, we extend the notion of rough sets based on a compatibility
relation between the elements of two sets. The lower and upper approximations of
a concept suggest two kinds of decision rules for uncertain reasoning.

2.1 ROUGH SETS INDUCED BY A COMPATIBILITY
RELATION

Let W = {wy,w,,...,wn} and © = {6,,0,,...,6,} denote two finite non-empty sets
of interest. The set W may be regarded as a frame for representing evidence [13],
whose elements are descriptions or situations [15). On the other hand, the set ©
may be interpreted as a frame for representing propositions, whose elements are
elementary hypotheses. The relationship between the elements of these two frames
can be described by a compatibility relation between W and ©, a subset of the
Cartesian product W x ©. A description or situation w € W is said to be compatible
with a hypothesis § € ©, written w R 6, if w does not contradict . Semantically
speaking, compatibility is symmetric: w is compatible with 8 if and only if 6 is
compatible with w. Without lose of generality, we may assume that for any w € W
there exists at least one § € © such that w R 8, and vice versa. For example,
consider a diagnostic system, in which W denotes a set of symptoms, and © a set
of diseases. In this case, a symptom w € W is said to be compatible with a disease
6 € O, if a patient who suffers from the disease § has symptom w. Another example
can be found in incidence calculus [17], where a situation w € W is compatible with
a hypothesis 6 € © if w does not rule out the possibility that 8 is true.

Suppose we want to characterize a subset A C © in terms of the elements in
W. Given a compatibility relation ®, one can define a mapping 'y which assigns a
subset I'p(w) C O to every w € W as:

Te(w)= {0 O |wR). (1)

142

Conversely, for any subset A C ©, one can define the lower preimage R(A) and the
upper preimage R{A) of A as:

8
=
I

{we W |TI'g(w) C A}, (2)
R(4) = {weW |Te(w)nA#0). (3)

The set R(A) consists of ail those w’s compatible with only the elements in A.
The set £(A) contains all those w'’s, each of which is compatible with at least one
element in A. Obviously, ®(A) C R(A) for any A C ©. The pair (R(A), R(A4)) can
be viewed as a rough set of A induced by the compatibility relation ® (10]. R(A) is
referred to as the lower approximation (the greatest lower bound) of 4, and R(A4)
is called the upper approximation (the smallest upper bound) of A.

It can be verified that for any subsets A, B C O, the following properties hold (10,
13]:
(P1) R(ANnB)=R(A)NR(B),
(P2) R(AUB)2 R(A)UR(B),
(P3) R(ANnB)C R(A)NFR(B),
(P4) R(AUB)=TRA)URB),
(P5) R(-4) =W -R(4), R(-4)=W - R(4),
(P6) A2 B = (R(4) 2 R(B), R(4) 2 R(B)),
(P7) R(6)=F(0) =W,
(P8) R(0) =%(p) = 0.

Note that these properties are not independent. In fact, (P1),R(©) =W and R(0) =
@ are independent and sufficient for describing the lower approximations. Likewise,
(P4), R(©) = W and R(#) = 0 are independent and sufficient for describing the
upper approximations.

Instead of using equations (2) and (3), the lower and upper approximations can
be equivalently defined by the following formulas:

BA) = U je(B) (4)
- R4) = U i=(B), (5)
ANB#$

where the mapping, jg : 22 — 2% is called the basic set assignment defined by
je(B) = {w | I'(v) = B}. (6)

143

The basic set assignment jg satisfies the following properties:

(Bl) j=(B) =0,
(B2) U ir(4)=W,
AC®
(B3) forany A,B€ 2% A% B = jg(A)Njx(B) =0

2.2 DECISION RULES INDUCED BY ROUGH SETS

Based on the lower and upper approximations of a proposition A C O, one can
define two kinds of decision rules [12]. For every w € R(A), A contains all the
0’s that are compatible with w. Thus, whenever w € R(A), we can conclude that
the proposition represented by A is true, namely, the proposition {w} implies A,
written {w} — A. That is, the lower preimage of A defines a deterministic decision
rule, “R(A) definitely implies A”, written £(A4) — A. On the other hand, whenever
w € R(A), proposition A is possibly true, namely, {w} possibly implies A, written
{w} ~+ A. This means that the upper preimage of A defines a non-deterministic
decision rule, “§(A) possibly implies A”, written ®(A) ~ A.

When the compatibility relation is given, it is a straightforward task to con-
struct the deterministic and non-deterministic decision rules as described above.
Alternatively, one may use an inductive method to learn these rules from a number
of examples which implicitly define the compatibility relationships between the ele-
ments of two frames [12]. The decision rules obtained by these methods are always
consistent, and no synthesis is required. However, in many practical situations the
decision rules are neither learned from the examples nor derived from a compatibility
relation. Instead, the rules are given by the experts. Since these rules are specified
separately for the individual propositions, inconsistency may occur. That is, there
may exist contradictions among the input rules. Consider the following rules, for
example, ry : {wy, w2} — {6,} and r; : {w;, w3} ~ {6;}. Obviously, these two
rules contradict each other because rule r, says that if the description is w,, 6; is
true, whereas rule r; says that if the description is w,, 8, is not true. Therefore, we
need a method for testing the consistency of the rules provided by the experts.

It is also important to note that new rules can be logically inferred from a given
set of rules. For instance, from {w,} — {#;, 6.}, we know that if the description is
w, either 8, or 0, is true. On the other hand, from {w,} — {6,, 63}, we can conclude
that if the description is w,, either 6, or 63 is true. These two rules implicitly imply

144

that {un} — {6} holds. Thus, an inference mechanism for synthesizing the input
rules are required.

3 KNOWLEDGE SYNTHESIS

Before presenting a method for the verification and synthesis of input rules, we
first define the notions of logical implication and consistency in our approach.

3.1 LOGICAL IMPLICATION AND CONSISTENCY

Let F(A) and F(A) denote subsets of W. A set of decision rules F = {F(A) —
A, F(A) ~ A|A € 2°} given by the experts can be viewed as a pair of mappings, F
and F, from 2° to 2¥. Without loss of generality, we may assume that F(0) = W
holds. Also, if there is no information about proposition A, we assume that F(A4) = §
and F(A) = W. We call F an assignment. In F, each F(A) — A represents a
deterministic rule, and each F(A4) ~+ A represents a non-deterministic rule. The
deterministic rule, F(4) — A, indicates that for every w € F(A), A contains all
the 8's that are compatible with w. However, F(A) does not necessarily contain all
the w’s that are compatible with only the 6’s in A. The non-deterministic decision
rule, F(A) ~ A, says that only those descriptions in F(A) may imply A. That is,
whenever w ¢ F(A), w is not compatible with any 6 in A. However, there may exist
some w’s in F(A) not compatible with any 6 in A.

Let R denote the true compatibility relation that defines the relationships be-
tween the individual elements of ® and W. Given an assignment F, suppose
F(A) C F(A) for all A € 2°. Then, by the definitions of ®(A) and F(4), F(A) C
R(A) C R(A) C F(A) holds for all A € 2°. Also, there may exist a number of com-
patibility relations ®,’s satisfying the condition: F(A) C R;(4) C Ri(4) C F(A)
for all A € 2°. Clearly, any of these R;'s could be the true compatibility relation.

For convenience, we will use X, Y, Z to denote subsets of W and A, B, C to
denote subsets of © in subsequent discussions.

Definition 1. A compatibility relation R satisfies a deterministic decision rule,
X = A, if X C R(A); R satisfies a non-deterministic decision rule, X ~ A, if
R(A) C X. A compatibility relation R satisfies an assignment F, if R satisfies every
decision rule in F.

Definition 2. An assignment F logically implies a deterministic decision rule,
X — A, written F |= {X — A}, if for every compatibility relation R satisfying

F, ® also satisfies X - 4 Simila.rly, F logically implies a non-deterministic rule
X ~ A, written F EA{X ~ A}, if for every compatibility relation ® satisfying F,
R also satisfies X ~, A. We use f~ ¢, denote the set of all the decision rules that
are logically implied by an assignment F'.

Example 1. Let © = {01,02,63} and W = {w,,wz,wa}. Consider an assignment
F given below:

A] £(A) | F(A) ,
]] 0
{6:} {w} {w;}
{6;} {w,} {ws, ws)
{63}) w3}
{01)02} {w2} w
{6,,65} {w,} w
{63,065} {w2, ws) {w2, wy}
{011 02303} W 14

Ri: w R 61, w, R, b2, ws R, 6s;
332 : w; ~5R2 91, wy R, 92, w3 332 93, w3 Rz 0,.

Note that, both R, and ®, satisfy the decisjop rules, {w,, w} — {61, 6,) and

{w, w3}~ {6, 63}. By definition, these two rules are therefore logically implied
by F.

Example 2 Let © = {01,02,03} and W = {wl,wz,ws}. Suppose the assignment
F is defined by:

E({al}) = _F({al}) = {w,},
E£({6:} =F({6,}) = {w,},
£({6,,6,)) = {w1, w5},
I*"({a,,o,}) = {wl,wa}.

(L R ‘|‘I

mien

146

From F({6;}) = {w.}, we obtain w; ® ;. On the other hand, F({6,,6,}) =
{wy, w3} implies that -(w, R 6,) and ~(w, R §;). This means that no compatibility
relation would satisfy this assignment. That is, this assignment is inconsistent.

3.2 COMPUTATION OF THE CLOSURE

Let F* denote the set of all decision rules that can be logically implied by a given
assignment F. Our objective is compute F* by using a set of inference axioms. Our
approach is similar to that for finding the closure of a set of functional dependencies
in a relational database [5].

For our purpose, the inference axioms can be expressed as:

L) X~AandY -»-A= X-Y ~ A

(I) X~-AandY -A=YUW-X)-> A

(I3) X~AY~BandZ~ANB=XNYNZ~ ANB.
() X—-AY—->BandZ—- ANB=(XNY)UZ - ANB.
(Is) X—=ANBandY -2A= XUY - A

(Ie) X— A=Y -+ AforanyY C X.

Ir) X~A=Y~AforanyY D X.

Although these axioms (I;)-(Is) are similar to those introduced by [1], we express
them here as inference rules.

Definition 4. Let I denote a set of inference axioms. With respect to I, the closure
of an assignment F, written Fj", is the smallest set containing F such that the no
axiom cannot be applied to the set to yield an decision rule not in the set.

Definition 5. We say that a set of inference axioms I is sound if any decision
rule X - Aor X ~ Ain Ff isin F*, i.e., Fff C F*. We say that I is complete if
F-C F}.

It can be proved that the above set of axioms I° = {I,,1,,13, 14,15, Ig, I7} is both
sound and complete [16).

Let Fy; denote the closure of F with respect to I°. For every A in 2°, there may
exist many deterministic and non-deterministic decision rules in Ff with A at the
right-hand side. Based on (I,), we know that if X; — A and X; — A are in F},
XiUX;, - Aisin F,t. Similarly, (Is) implies that if Y; ~ A and Y; ~ A are in
Ff,Y1NY; ~ Ais in Ffi. Therefore, for any A in 2°, there exist a deterministic

147

decision rule inf(A) — A and a non-deterministic decision rule sup(A) ~ A in F};
such that whenever X — A is in Fj5, X C inf(A), and whenever X ~ A is in F§,
sup(4) C X.

Definition 6. For any A in 29, inf(4) — A is called the maz deterministic
decision rule of A, if for any X — A in F}, X C inf(A4); sup(A4) ~ A is called the
min non-deterministic decision rule of A, if for any X ~ A in F, sup(4) C X.
The set of all the maz deterministic and min non-deterministic decision rules, Fp =
{inf(A) — A,sup(A) ~ A|A € 2°}, is called the maz-min assignment of F.

Based on the notion of max-min assignments, there is a simple way for checking
the consistency of an assignment. An assignment is inconsistent if and only if

Fy(A) € Fo(A) for some A in 2° [16].

3.3 CONSTRUCTION OF THE MAX-MIN COVER

The process of synthesis is to derive a new set of decision rules which have desirable
properties and cover the original set of rules.

Definition 7. Consider two sets of decision rules (assignments) G and F. G is
equivalent to F if G* = F*. G is a cover of F with respect to a sound and complete
set I of inference axioms, if G = F*.

Based on the above definition, the max-min assignment F, is obviously a cover
of the original assignment F'. We call Fy a max-min cover. Moreover, such a cover
satisfies the properties (P1)-(P8), if one replaces ® by Fo, and ® by Fy. Recall
that one can equivalent define the lower and upper approximations in terms of the
basic set assignment. This suggests that it may be easier to compute the basic set
assignment jr, than to compute Fp directly from the inference axioms. Given below
is an algorithm for constructing the max-min cover.

Input: F = {F(A)— A, F(A)~ A|
A€2°, F(A)#0and F(4) # W)
1. for each rule F(A)~» Ain F do
E(-4) = E(-A) U (W - F(A));
2. for each w, € W do
Find all the A’s where F'(A) # @ such that
wi € E(A)s say, A17 A2’ "')Al;

148

if AlﬂAgn...nA[=ﬂ then

exits to inconsistent,

else
(Initially, (A1 N A2N...N A)=10.)
3. Output: j.

Note that if F(=A) is not assigned a value in the input, we may assume F(A) =
0. This procedure exits to inconsistent if and only if the input assignment F is
inconsistent; otherwise it outputs the basic set assignment of the max-min cover.
The desired decision rules can be easily constructed from formulas (4) and (5).

4 CONCLUSION

In this paper, we have taken an axiomatic approach to investigate the funda-
mental issues in knowledge verification and synthesis. Our approach shares many
salient features of the methods for analyzing functional dependencies in a relational
database. A set of sound and compivte inference axioms has been suggested. Based
on these axioms, an efficient algorithm has been developed for computing the closure
and testing the consistency of the input decision rules.

Although our discussion has focused on a special type of deterministic and non-
deterministic decision rules, the proposed method can be applied to other rule-based
systems.

REFERENCES

(1] Bundy, A. (1985). Incidence calculus: a mechanism for probabilistic reasoning.
Journal of Automated Reasoning, 1, 263-283.

[2] Bundy, A. (1986). Correctness criteria of some algorithms for uncertain rea-
soning using incidence calculus Journal of Automated Reasoning, 2, 109-126.

[3] Hayes-roth, F. (1985). Rule-based systems. Communications of the ACM, 28,
921-932.

149

[4] Lingras, P.J. and Wong, S.K.M. (1990). Two perspectives of the Dempster-
Shafer theory of belief functions. International Journal of Man-machine Stud-
tes, 33, 467-487.

[5] Maier, D. (1983). The Theory of Relational Databases, Rockville, Maryland:
Computer Science Press.

[6] Marek, W. (1986). Completeness and consistency in knowledge base systems.
Proceedings of First International Conference on Ezpert Database Systems, 75-
82.

[7) Nazareth, D.L. (1989). Issues in the verification of knowledge in rule-based
systems. International Journal of Man-machine Studies, 30, 255-271.

[8] Nguyen, T.A., Perkins, W.A., Laffrey, T.J., and Pecora, D. (1985). Checking an
expert systems knowledge base for consistency and completeness. Proceedings

of Ninth IJCAI, 375-378.

[9] Nguyen, T.A., Perkins, W.A., Laffrey, T.J., and Pecora, D. (1987). Knowledge
base verification. AI Magazine, 8, 69-75.

(10] Pawlak, Z. (1982). Rough sets. International Journal of Computer and Infor-
mation and Sciences, 11, 341-356.

(11] Pawlak, Z. (1984). Rough classification. International Journal of Man-Machine
Studies, 20, 469-483.

[12] Pawlak, Z., Wong, S.K.M. and Ziarko, W. (1988). Rough sets: probabilistic
versus deterministic approach. International Journal of Man-Machine Studies,
29, 81-95.

[13] Shafer, G. (1976). A Mathematical Theory of Evidence, Princeton: Princeton
University Press.

[14] Shafer, G. (1986). Belief functions and possibility measures. in Analysis of
Fuzzy Information, Vol. 1, J.C. Bezdek, Ed., CRC Press, 51-84.

[15) Wong, S.K.M., Ziarko, W. and Ye, R.L. (1986). Comparison of rough-set
and statistical methods in inductive learning. International Journal of Man-
Machine Studies, 24, 53-72.

150

[16) Wong, S.K.M., Wang, L.S. and Yao, Y.Y. (1991). Knowledge synthesis in rule-
based systems. Submitted from publication.

[17) Wong, S.K.M., Wang, L.S. and Yao, Y.Y. (1992). Interval structure: a frame-
work for representing uncertain information. Uncertainty in Artificial Intelli-
gence: Proceedings of the 8th Conference, 336-343

[18] Yager, R.R. and Larsen, H.L. (1991). On discovering potential inconsistencies
in validating uncertain knowledge bases by reflecting on the input. IEEE Trans-
actions on System, Man, and Cybernetics, 21, 790-801.

151

A RELATIONAL MODEL FOR IMPRECISE QUERIES!

Weining Zhang, Clement Yu, .
Gaoming Wang, Tracy Pham and Hiroshi Nakajima?

ABSTRACT

In this paper, we propose a fuzzy relational data model that enables a database system
to answer imprecise queries often found in decision-making applications. The model is
based on a fuzzy relation in which values of attributes are atomic and precise, while
the membership of tuples may be fuzzy. A fuzzy tuple relational calculus and a fuzzy
relational algebra, both provide new features, are defined and shown to be equivalent on
their expressive power. The use of these query languages are illustrated by examples.
Techniques that allow an implementation of the model on top of a standard relational
databases system are discussed.

1 INTRODUCTION

The database support to decision-making applications in business, engineering, and science has
become increasingly important. Such a support requires the database system to store and to process
imprecise information that is inherent in human decision-making. The imprecision arises for several
reasons. First, the natural language used in the decision-making process is itself imprecise. Second,
the complexity of the real world and the lack of a complete knowledge of the data in the system
make it too difficult, if not impossible, for a decision maker to describe precisely what he or she is
interested in. Third, decisions are often made based on subjective and qualitative criteria which are
inherently imprecise. Conventional database management systems assume precise data in databases
and can only answer queries whose query conditions must be matched precisely by data in the
answer. Therefore, they do not readily support decision-making applications.

Recently, the research on fuzzy databases combines the fuzzy sets theory, possibility theory, and
fuzzy logic [18, 19]with the relational database technology to handle imprecise data and queries. Two
approaches have been followed. The first approach (2, 3, 4, 5, 12, 14, 20} is to include in the database
domain fuzzy values such as the null value, disjunctive values, and linguistic values represented by
possibility distributions. Query languages including fuzzy relational algebra, calculus, and fuzzy SQL
were proposed to model and to manipulate imprecise data. The resulting systems are integrated and
the fuzziness of the data can be represented both at attribute level (that is, the domain of an attribute
can contain fuzzy values) and at tuple level (that is, the membership of a tuple with respect to a
relation can also be fuzzy). However, it usually requires the reconstruction of database management
system, which is often too costly. Research followed this approach remains mainly theoretical. Issues
of efficient implementation have not been adequately studied. For instance, in [12], although many
theoretical aspects of a fuzzy database are discussed, the implementation is based on a fuzzy prolog
language which is inherently tuple oriented and is not efficient in processing large volume of data.
Recently, some attempt has been made {13] to implement a fuzzy database system on top of a

1 This research is supported in part by NSERC of Canada, Omron Corporstion, and Omron Management Center
of America.

3W. Zhang is with the Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge,
Alberta, T1K 3M4, Canada.

C. Yu is with the Department of Electrical Engineering and Computer Science, University of Illinois at Chicago,
Chicago, Illinois, 60680.

G. Wang and H. Naknjima are with the Omron Corporation, Japan.

T. Pham is with the Omron Advanced Systems, USA.

152

relational database system. However, the system currently provides only a programming interface
to a fuzzy function library to perform limited fuzzy operations on data retrieved from the relational
database. As such, the system represents a loosely coupled fuzzy data dictionary and a conventional
relational database, and provides a less expressive query language as compared with the languages
in this and other papers. The efficiency of query processing in this system is yet unknown.

The second approach [1, 6, 9, 10, 8, 15] is to extend current relational database management
systems to support imprecise queries against precise data. The basic idea is to build front-end
systems that allow users to express queries using imprecise conditions, involving fuzzy sets, while
the data within the databases remain precise. Since such systems are based on the existing database
management systems and their efficient implementations, they are easier to build and are more
cost effective than the first approach. Some prototype systems following this approach are reported
recently [1, 9, 8]. However, the extensions made by these systems are rather ad hoc. For example, In
[8], a query system that supports fuzzy queries involving linguistic quantifiers and its implementation
on top of dBase Il Plus were described. The system was considered as adding additional commands
to the dBase III Plus. But the data model based on which the system works is not defined formally.
Especially, the linguistic quantifiers were not defined in terms of any formal language. The theory
behind the implementation was unclear as well. We feel that a more systematic method to the
problem is needed.

In this paper, we follow the second approach and propose a fuzzy relational data model that
not only provides a theoretic foundation for imprecise (or fuzzy) query against precise data, but
also allows implementation on top of existing relational database management systems. The data
model is based on the fuzzy relation in which components of tuples have precise values, but each
tuple belongs to the fuzzy relation to a certain degree. Two formal query languages, a fuzzy tuple
relational calculus and a fuzzy relational algebra, are defined based on the fuzzy relation and provide
stronger expressive power than those given in the literature. We also extend the notion of a safe
calculus expression, which was not previously addressed in fuzzy databases literatures. Intuitively,
a safe calculus expression denotes a finite relation whose tuples are constructed using symbols in
the given fuzzy database and the given query. We prove that the the algebra and the calculus are
equivalent, that is, any query expressible in one language is also expressible in the other. To our
knowledge, such a result has not been previously reported®. The use of the query languages are
illustrated through examples. Techniques that enable the implementation of the model on top of a
standard relational database management system are also discussed.

The remainder of the paper is organized as follows. In Section 2, some background on fuzzy sets
and imprecise queries is provided. In Section 3, the fuzzy relation is defined. In Section 4, we define a
fuzzy tuple relational calculus. In Section 5, a fuzzy relational algebra is given. The theoretic results
on the equivalence of the two formal query languages are given in Section 6. The discussions of the
techniques for implementing a fuzzy relational database system on a standard relational DBMS is
in Section 7. Section 8 concludes the paper.

2 FUZZY SETS AND IMPRECISE QUERIES

In this section, we briefly present concepts of fuzzy sets and imprecise queries.

2.1 FUZZY SETS

A fuzzy set F in domain D is a collection of elements of D such that each element d € D is associated
with a degree up(d) with which d is a member of F. The degrees of the membership for the set F'
is defined by a membership function up : D — [0, 1], which maps each element in the domain into
a value in [0, 1], where 1 indicates a complete membership, 0 indicates a complete non-membership,

3Although in [12), it was mentioned that the equivalence of their fusey relational algebraic and calculus languages
can be proved, neither a proof nor any reference on the issue was provided.

153

and other values indicate partial membership. For example, let the domain be the age spanning
from 0 to 200. A fuzzy set, Young, may be defined by the function

1 0 <z <25
HY oung(2) = { (1+(232)2)=1 25 <z < 200,
Thus, the age 25 is definitely young; the age 27 is young to a degree of 0.86; and the age 60 is young
to a degree of 0.02.
Standard (or crisp) sets are special fuzzy sets whose membership function maps every element
in the set to degree 1 and all others to degree 0. Set operations, such as union. intersection, etc.,
are also extended to fuzzy sets. For example, if an element a is in fuzzy sets S; with degree 0.4 and

in Sy with degree 0.75, then a is in S;US; with a degree maxz(0.4,0.75) = 0.75 and in Sy NS> with
a degree min(0.4,0.75) = 0.4. Readers interested in the fuzzy sets theory may refer to {18, 19)].

2.2 IMPRECISE QUERY

An imprecise (or fuzzy) query is formulated using linguistic terms whose meaning is imprecise.
Consider a corporation database containing information about employees, departments, etc. Some
imprecise queries may be the following.

“List names of employees who are young and well-paid.”

“List names of departments in which most employees are young.”

In these queries, “young”, “well-paid”, and “most” are linguistic terms, and have the following
characteristics.

1. They are imprecise. For example, it may not be clear whether the age 32 is young or not
young.

2. They are subjective and context dependent. For example, for employees, the age 19 may be
definitely young, for children of employees, the age 19 may be definitely not young.

Linguistic terms used in imprecise queries can be defined using fuzzy sets and may be classified
into four types.

1. Simple fuzzy concepts, such as, “young”, “well-paid”, “about 25", etc.
2. Fuzzy modifiers, such as, “very”, “much”, “more or less”, “a little bit”, etc.
3. Fuzzy relationships, such as, “likes”, “similar to”, “close to”, “far apart”, etc.

4. Fuzzy quantifiers, such as, “most”, “almost”, “a few”, etc.

The formal query languages for fuzzy databases that appeared in the literature support the first
three types of linguistic terms, but not fuzzy quantifiers. The languages in this paper will support
all four types.

3 FUZZY RELATIONS

In this section, we define the fuzzy relation which is an extension of a standard relation {7, 11, 17]
using the concept of fuzzy sets. In our presentation, the standard terminology of relational database
as defined in {16] is used.

154

Definition 3.1 A fuzzy relation scheme F = (A;...., A,) is a set of n distinct attributes. The
domain of A4,, denoted by DOAM(4;). is a set of atomic, precise values. The domain of F, denoted
by DOM(F), is the set {< a;...a, >| a; € DOM(A;)}. A fuzzy relation r with scheme F,
denoted by r(F) (or simply r when the scheme is understood), is a (sub)set of DOM(F) defined
by a membership function y, : DOM(F) — [0,1], such that a tuple t in DOM(F) is in »(F) iff
p#r(t) > 0, where p, (1) is the degree of t wrt r. A fuzzy database is a finite set of fuzzy relations
each of which is with a fuzzy relation scheme. O

By this definition, a standard (or crisp) relation is a special fuzzy relation whose membership
function assigns a degree 1 to every tuple in the relation and a degree 0 to every tuple not in the
relation. Similarly, a standard relational database is a special fuzzy relational database in which
every relation is crisp. Unlike the standard relations, for two fuzzy relations with the same scheme
to be the same, the two fuzzy relations not only must have the same set of tuples, but also must
have the same membership functions.

Our definition of fuzzy relations differs from those in [2, 3, 4, 5, 12, 14, 20] in that the domains
of attributes in our definition contain only atomic, precise values while the domains of attributes
in their definitions may contain fuzzy linguistic values, represented by possibility distributions, and
the null value.

As an example, Figure 1 contains a scheme of a fuzzy relational database that will be referenced
in examples appearing in this paper.

Employee = (Eid, Name, Addr, Age, title, Specialty, Sal, DN o)
Department = (D#, Name, Addr, Chair)

Likes = (Subj, Obj)

CloseTo = (Addrl, Addr2)

Young = (Age)

WellPaid = (Sal)

Most = (Degree)

Very = (Degree)

Figure 1: An Example Fuzzy Relational Database Scheme.

4 A FUZZY TUPLE RELATIONAL CALCULUS

In this section, we present a fuzzy tuple relational calculus based on the fuzzy relations.

4.1 THE SYNTAX

A fuzzy tuple relational calculus expression is defined by R = {t | ¥(t)}, where t is a tuple variable,
and ¥(t) is a fuzzy logic formula. The expression denotes the set of tuples that satisfy formula ¥(t)
with a degree in [0, 1].

The fuzzy logic formula is similar to the standard one with two extensions. First, the membership
degree of tuples wrt fuzzy relations can be used to select (see case 4 of the basis in Definition 4.1)
and to connect (see case 5 of the basis in Definition 4.1) tuple variables. This allows a variable
degree of fuzziness to be specified when selecting tuples from relations, and allows the fuzziness of
tuples in a fuzzy relation to be modified by the fuzziness of tuples in another fuzzy relation. The
latter feature is useful for representing the modification of a linguistic term by another linguistic
term, as in “very young” (see Example 4.2 for more details). Second, two types of fuzzy quantifiers
are allowed. The first quantifier allows the specification of sentences such as “most (almost all, a
few, ...) of t’s that satisfy condition 1 (with a degree greater than 0) satisfy the condition 2 (with
a degree greater than 0)” (see case 6 of the induction in Definition 4.1). For example, the sentence

155

“Most tall men are not very fat” is of this type, where “tall men" is the condition 1, and “not very
fat (men)” is the condition 2. The second quantifier allows the specification of sentences such as
“most (almost all. a few, ...) of the following (k) conditions are satisfied (with degrees greater than
0)" (see case T of the induction in Definition 4.1). Fuzzy quantifiers are linguistic terms representing
unary fuzzy relations whose only attribute has the domain [0,1]. In the sequel, t[A] denotes the
component of a tuple variable { under attribute A.

Definition 4.1 Let r be a fuzzy relation; ¢ and v be tuple variables; 4 and B be attributes; ¢ and

k be constants, where k is in [0,1]; p.(¢) be the degree of t wrt r; and 6 € {=,#,<,<,>,>} be a
comparison operator.
Basis: Any one of the following is a fuzzy logic formula (or simply a formula):

l.ter.

2. t[A] 8 c (or c 6 t[A]).
3. t[A) 6 v[B).
4. p (1) 6 k.
5. pr(t) 6 v[B), where v[B] € [0, 1].

Induction: Let E;, E3, ..., E} be fuzzy logic formulas. Then, the following are also fuzzy logic
formulas.

—

. =E;, where - is logic negation.

E\ A E5, where A is logic AND.

E\ V E,, where V is the logic OR.

(Vt)(Ey(t)), where V is a universal quantifier.
(3t)(E1(t)), where 3 is an existential quantifier.
(Ft:E\(t))(E2(t)), where F is a fuzzy quantifier.
(F (Ey,...,Et)), where F is a fuzzy quantifier.

@ N e o oA W

(E), where () is used to change the priority of evaluating a sub-formula. The priority of the
connectives is given by =, A, V, in that order.

9. Nothing else is a formula, O

Similar to the standard tuple relational calculus, the subset containing operators —E, E; A E,
(E), (3t)(E(t)), (Ft: Ei(t))(E2(t)), and F (Ey,...E}) is sufficient for formulating any expressions
in the calculus. The remaining operators can be obtained as follows.

1. EyVE;=~(~E A "'Ez).
2. Vi(E) = ~3t(~E).

4.2

156

THE SEMANTICS

The (fuzzy) truth value of a fuzzy logic formulais a real value in [0, 1]. where 0 representing “definitely
false”, 1 representing “definitely true”. and other values representing various degree of “partially

true”

. To define the truth value of a formula. let Truth() be a function that maps a fuzzy logic

formula to its truth value. We also define two operators®, @ and &, on the set of real numbers
in [0,1] for computing the fuzzy truth values of conjunctive and disjunctive formulas, respectively.
These operators have the following properties.

1.
2.

12.

© ® N @ o A

a®»0=0,a@1=a
0<a@b<l;

a@b=b@aq

2

@b@c=a@(b@c)=(a@b)Oc
aGb>c@difa=candb>d ora>candb=d.
adl=1 a4 0=a

0<a®b<1;

adb=bda;

.a®b®ec=a®d(b®c)=(add)Dec.
10.
11.

a®b>cadif a > maz(c,d) or b > maz(c,d).
a®b=1-((1-a)d(1-1b)).
a@b=1-((1-a)®(1-0)).

A popular choice of these two operators is that ® = min and @ = marz.

The truth value of a given fuzzy logic formula is obtained from that of sub~formulas based on
following rules.

1.
2.

For any instantiation of t, Truth(t € r) = u.(t).

For any instantiation of t and any constant ¢, Truth(t[A] 8 c¢) = 1 if the condition t[A] 0 ¢
holds, and 0 othervsise. The truth value of t[A] 6 v[B], u,(t) 8 k, and u.(t) 6 v[B] are defined
similarly. That is, the truth values of these basic formulas are binary.

For any formula E, Truth(—E) = 1 - Truth(E).

For any two formulas E; and E3, Truth(E, V E3) = Truth(E))® Truth(E3); and Truth(E; A
Eq) = Truth(E,) ® Truth(E,).

for any formula E, Truth((E)) = Truth(E).

For any formula £, Truth((Vt)(E(t))) = Truth(E(t1)) ® - - - @ Truth(E(tn)), where ty,.. ., tn
are all possible instantiations of t.

. For any formula E, Truth((3t)(E(t))) = Truth(E(t;)) & - - - & Truth(E(t,)), where ty,...,t,

are all possible instantiations of ¢.

4In the literature, @ is also called the t-norm; @ is also called the t-conorm or the s—norm.

157

8. For any fuzzy quantifier F and any formula £, and E.,

Truth((F t: Ei(1))(Ea(t))) = ur(o)

where o = (0, Truth(Ey(t:) A Ea(t:))/(S 2, Truth(Ey(1;): t1.... 1 are all possible
instantiations of ¢ for which Truth(E\(t;)) > 0; and MF is the membership function of the
fuzzy quantifier F. Intuitively, ¢ indicates the average possibility for t; to satisfy both £ and
Ey, given that ¢; satisfies Ey, where the satisfaction is in terms of a degree. We assume that
¢ = 0is Truth(E\(t;)) = 0 for all i. Example 4.4 provides further explanation about this type
of quantification.

9. For any fuzzy quantifier F and any k formulas E, ... Ey,
Truth(F (Ey,..., Ex)) = pp((Truth(Ey) + - - -+ Truth(Ev))/k)

where pp is the membership function of the fuzzy quantifier F. Intuitively, the truth value of
F(Ey, ..., Ek) is the membership degree of the average truth value of E; with respect to the
fuzzy quantifier F. More explanations are given in Example 4.5.

If all relations are crisp, the truth values will become binary, and rules 1 through 7 are exactly
the same as that in the standard tuple relational calculus. On the other hand, rules 8 and 9 are
unconventional.

4.3 SPECIFY QUERIES IN THE CALCULUS

Following examples illustrates the use of the fuzzy tuple relational calculus.
Example 4.1 “Find names of employees who are young with a degree greater than 0.75”.

Answer = {t | (3e,y)(e € Employee A y € Young At[Name] = e[Name]
Ne[Age] = y[Age] A py oung(y) > 0.75)}

This example shows the use of simple fuzzy concepts Employee® and Young, and the use of the
membership degree as a threshold to select tuples for the answer. For any tuple e in Employee
and any tuple y in Young, the truth value of the formula is 0 if any one of the conjuncts has truth
value 0. Otherwise the truth value is determined only by pempioyee(€) ® Ky oung(Y), since all other
conjuncts would have had the truth value 1. If HEmployee(€) = 1, then the degree for t to be in

the answer is the degree for ¢ to be the name of a employee whose age is considered young with a
certainty higher than 0.75. O

Example 4.2 “Find names and titles of all employees who are very young and well-paid”.

Answer = {t | (3e,v,y,w)(e € Employee A y € Young Aw € WellPaidA
v € Very At[Name] = e[Name] A t[Title] = e[Title] A
e[Age] = y[Age] A py oung(y) = v[Degree] A e[Sal] = w[Sal])}

This example illustrates the use of fuzzy modifiers such as the term “very”. For a given set of
tuples e, v, y, and w, the truth value of the conjunction in the formula is determined as follows.
If any conjunct has a truth value 0, the truth value of the conjunction is also 0. If all conjuncts
have truth values greater than 0, the truth value of the conjunction is computed by BEmployee(€) ®
BY oung(¥) ® pvery (V) ® pwentpaia(w). If the term “very” does not appear in the query, the truth
value would be computed by KEmployee(€) ® By oung(y) ® pweilpaid(w) which evaluates to a higher

B As a special case, Employee may be a crisp relation.

158

truth value. This is natural since “very young" is a stronger condition than “young" and therefore
is more difficult to satisfy. Terms such as “very” can be used to modify many other terms such
as “large”, “beautiful”, etc., and the content in their fuzzy relations are determined based on &
operator. For example, if @ is the operator min, a common choice of the membership function of
“very” is pyvery(z) = 2%, Threshold values can be used in this query to fine-tune the fuzziness. For
example, the query can be “Find names and titles of individuals who satisfy the following criteria a
a degree higher than 0.73: they are employees who are very young to a degree higher than 0.55 and
well-paid to a degree higher than 0.85". The threshold values can be incorporated into the query
by adding panswer(t) > 0.73 A pty ey (v) > 0.55 A pwentpaid(w) > 0.85 into the fuzzy logic formula.
The higher threshold value for Well-paid implies that being well-paid is a stronger condition than
being very young. O

Example 4.3 “Find names of employees who live close to work”.

Answer = {t | (Je,c,l)(e € Employee A d € Department Al € CloseToA
t(Name] = e[Name] A e[Addr] = I[Addr1] A d[Addr] = I[Addr2)})}

This example illustrates the use of a fuzzy relationship “close to”. The fuzzy relation CloseTo
describes the similarity between pairs of addresses, thus is used to connect employees with depart-
ments. In fact, the degree of a tuple in CloseTo can be thought as the degree of similarity of the
two components of the tuple., O

Example 4.4 “Find names of departments in which most employees are young.”

Answer = {t | (3d)(d € Department A t[Name] = d[Name]A
(Most e : (e € Employee A e[Dno] = d[D#]))((3y)(y € Young A e[Age] = y[Age])))}

Here, we illustrate the use of the first of the two types of fuzzy quantifiers. In this query, the fuzzy
quantifier “most” is associated with a subset of employees — those who are in the same department
— rather than all possible tuples under the scheme of Employee, as in the cases of “forall” and
“exists”. Conceptually, for each department, we consider each employee in that department to
determine his/her degree of being young, and then measure the department wrt the “most” based
on the departmental average degree of being “young”. Notice that by the definition of the truth
value, for an employee to be considered, he/she must be in the given department with a degree
greater than 0, but his/her degree of being young is allowed to be 0. O

Example 4.5 “Find the name of employees who meet most of the following criteria: young, well-
paid, and interested in traveling.”
Answer = {t | (3e)(e € Employee At[Name) = e[Name]A

(Most ((Jy)(y € Young A ¢[Age] = y[Age]),

(Bw)(w € WellPaid A e[Sal] = w[Sal)),

(301 € Likes A l[Subj] = e[Eid) A l[Ob]] = " Traveling”)))}
This example illustrates the use of the second type of the fuzzy quantifiers. There are three conditions
to be qualified by tuples in the answer, but not all three must be satisfied to 100 percent. For each

employee, the average degree with which all three conditions are satisfied is measured against the
quantifier “most”. O

5 A FUZZY RELATIONAL ALGEBRA

In this section, we define a fuzzy relational algebra based on the fuzzy relations. Like the standard
relational algebra, the fuzzy relational algebra consists of a set of operations on fuzzy relations.
These operations can be divided into two groups, the basic ones and the additional ones.

159

5.1 BASIC OPERATIONS

The set of basic operations in the fuzzy relational algebra are defined below. In the following, let
r(R) and s(S) be two fuzzy relations.

The Cartesian product of r and s denoted by r x s, is a fuzzy relation e(RS), where RS is the
concatenation of R and S. The relation e contains the set of tuples obtained by pairing each tuple
in r with each tuple in s. For each tuple t in e, suppose that ¢ is obtained from t, in » and ts in s,
then the degree of t in e is pe(t) = pr(t1) @ us(ta).

We say that » and s are union compatible if R = (A;,...,A,) and S = (By,..., By), and for
each 1 <i<n, DOM(A;) = DOM(B;).

Let r and s be union compatible fuzzy relations. The union of » and s, denoted by rUs, is a
fuzzy relation e¢(R) (or e(S)) which contains all tuples that are either in r or in s. For each tuple ¢
in e, the membership degree of t wrt € is p.(t) = ur (1) @ ps(2).

The intersection of r and s, denoted by r N's, is a fuzzy relation e(R) (or e(S)) which contains
all tuples that are in both r and s. For each tuple ¢ in e, the membership degree of t wrt ¢ is
He(t) = pr(t) @ ps(2).

The set-difference of r and s, denoted by r — s, is a fuzzy relation e(R) which contains all tuples
that are in r but are not in s with degree 1. For each tuple ¢ in e, the membership degree of t wrt
eis pe(t) = pr(t) ® (1 — ps(2)).

The selection operation is based on a conditional formula which is either an atomic formula
or a more complex formula formed from simpler conditional formula using and (A) and or (V).
The atomic conditioral formulas are of the following form: r.4 6 ¢, r.A 0 s.B, p.() 6 k, and
pr() 6 5.B, where r.A denotes the attribute A of fuzzy relation r; ¢ and k € [0, 1] are constants;
b€ {=.+#<,<,>,2>} and p.() denotes the membership function of fuzzy relation r. Notice that
conditional formulas are ordinary logic formulas, that is their truth values are binary.

The selection of r based on a conditional formula Q, denoted by og(r), is a fuzzy relation e(R)
which contains all taples in r that satisfy Q. For each tuple ¢ in e(E), the membership degree of t
wrt e is pt.(t) = pur(t). '

Let L be a sequence of attributes of scheme R. The projection of r on L, denoted by Il (r), is a
fuzzy relation e(L}). There is a tuple ? in e if there are k > 1 tuples t;,...,t; in r with membership
degrees p.(t),..., ur(tx), respectively, such that for every attribute A in L, t[{A] = t1{A] = --- =
ti[A). The degree of t in € is p.(t) = pur(t1) & -+ - ® pr(tk). Intuitively, the projection is the same as
that in the standard relational algebra except that the duplicate elimination process must also take
care of the calculation of the membership degree. That is, before removing duplicate tuples, each
tuple carries over the membership degree of its original tuple in the operand relation r, and when
the duplicate is removed, the membership degrees of all tuples that are the same on all attributes
in L are used to compute the membership degree wrt the resulting relation.

The renaming of a relation r(R) to e(FE), denoted by e(E) «— r, is the same relation as that of
r, except that the name of the relation, and maybe the names of the attributes, are changed.

The above algebraic operations will reduce to those in the standard relational algebra when all
operands are crisp relations. The next two operations are special to the fuzzy relational algebra
and are motivated to match directly the two types of fuzzy quantifiers of the fuzzy tuple relational
calculus.

Let r and s be union-compatible fuzzy relations, L be a subset of attributes in scheme R, and
F be a unary fuzzy relation whose only attribute has the domain [0, 1]. The Q-mapping of r and s
with respect to L and F, denoted by r Df s, is a fuzzy relation e(L) which is obtained as follows.

1. Group the tuples in r by attributes L.
2. Compute r N 5 and group tuples in r N s by attributes L.

3. Compute a fuzzy relation e;(L) as follows. For each group in r N s, let the value (sub-tuple)
for the attributes L be ;. Then e; contains a tuple I; with a membership degree equals the

160

sum of the membership degrees of the group [; in r N s divided by the sum of the membership
degrees of the group /; in r.

4. Let € be the same as €, except for each tuple l; in ey, p.(I;) = pr(pe, (&)).

The Example 5.4 in Section 5.3 illustrates the use of this operation.

Let ri(Ry),...,rx(Rr) be & > 1 union-compatible fuzzy relations and F be a unary fuzzy
relation whose only attribute has the domain [0, 1]. The Z-intersection of ry,...,r, with respect
to F, denoted by Tp(r;,...,), is a fuzzy relation e(R;) (or e(R;), 1 < i < k). There is a tuple
tine iftisin at least one r;, for 1 < 7 < k. For each t in e, the membership degree of ¢ is

te(t) = pr((pr, (t) + -+ pr(t))/k). The use of this operation is illustrated by Example 5.5 in
Section 5.3.

The formal definition of the fuzzy relational algebra is given below.

Definition 5.1 An expression in fuzzy relational algebra is defined inductively as follows.
1. A fuzzy relational variable is a fuzzy relational expression.
2. If Ey,..., E; are fuzzy relational expressions. Then, so are

(a) Ey x Es.

(b) EyUE,.

(¢) EyNE,.

(d) Ey - E,.

(e) oQ(En).

(f) ML(Ey).

(g) E1 bf E,.

(h) Zp(Ey,..., E).

(i) r(R) — E;, where r(R) is a fuzzy relation with scheme R. O

5.2 ADDITIONAL OPERATIONS

The set of basic fuzzy algebraic operations are sufficient for specifying any expression in the fuzzy
relational algebra. But it is more convenient to define additional operations, as in the standard
relational algebra.

Let r and s be fuzzy relations as defined before, and Q be a conditional formula. The #-join of
r and s, denoted by r Mg s, is a fuzzy relation ¢(RS) where RS is the concatenation of R and S. A
tuple ¢ is in e if there is a tuple ¢; in r and a tuple t; in s, such that t[R] = t,[R)], t[S] = t2[$], and
t1 and t; together satisfy Q. The degree of ¢ in e is p.(t) = pr(t1) ® u,(t2).

It is obvious that the #—join can be obtained by Cartesian product followed by a selection, that
is, r Mg s = og(r x s).

The equijoin of r and s is the same as the 6-join of r and s except that Q contains only equalities.
The natural join of r and s, denoted by r M s, is also the same as its counterpart in the standard
relational algebra except that each tuple in the result has a membership degree computed as in the
f-join.

Notice that unlike the standard relational algebra, the operation r N's may not be equivalent to
r — (r — 5). To see this, assume that the membership degree of a tuple t wrt r is a and that wrt s
is b. By definition, the membership degree of t wrt r N5 is a ® b, and that of t wrt r — (r — s) is
a®(1—-(a®(1—1))). Thus the two expressions are equivalent if a® b= a® (1 - (a® (1 - b))). If
® = min, the two expressions are equivalent. But if ® = x, they are not equivalent.

161

5.3 SPECIFY QUERIES IN THE ALGEBRA

We now express the set of queries appeared in examples in Section 4.3. using the fuzzy relational
algebra.

Example 5.1 “Find names of employees who are young with a degree greater than 0.75”.
IIName (Employee M (Uuyaung(bo.?s Younyg))

In this example, the natural join is on the attribute Age in both Employee and Young. The
threshold value 0.75 is used first to select the ages from the fuzzy relation Y oung. The membership
degree of tuple ¢ in the answer is computed by pEmpioyee(t) © By oung(t.Age). O

Example 5.2 “Find names and titles of all employees who are very young and well-paid”.
liName, Titie(Employee M (Young My, .. ()=Very Degree Very) X WellPaid)

Notice that the modification of Young by Very is obtained by an equijoin where one side of the
join condition involves the membership function of Young. Again, various threshold values can be
used to select tuples from the operand fuzzy relations that participate the joins. For example, the
query “Find names and titles of individuals who satisfy the following criteria to a degree higher than
0.73: they are employees who are very young to a degree higher than 0.55 and well-paid to a degree
higher than 0.85” can be expressed as

opn()>0.73(R - (nName, Title((young pr,.,,():"cry.Degree (a'uv",()>0.55very) M
Employee M (044 11p0.a()>0.85Well Paid))))O

Example 5.3 “Find names of employees who live close to work”.

M Name(Employee M Employee. Addr=CloseTo.Addr1 CloseTo
Mpepartment. Addr=CloseTo.Addr2 Departmeﬂt)g

Example 5.4 “Find names of departments in which most employees are young.”

nDcpartment.Name(Depart ment WEmployee. Dne=Department.D#

(Employee DY, cc pno (Employee M Y oung)))

the sub-expression involving the Q-mapping is computed as the follows.

1. For each department number in Employee, the sum of the membership degree of all employees
in that department is computed.

2. For each department number in Employee M Y oung, the sum of the membership degree of all
young employees in that department is computed.

3. For each department number in Employee M Y oung, the ratio of the sum obtained in step 2
to that obtained in step 1 is obtained.

4. The resulting fuzzy relation contains distinct department numbers in Employee M Y oung,
and for each department number, the membership degree is that of the corresponding ratio
computed in step 3 with respect to the fuzzy relation Most. O

Example 5.5 “Find names of employees who meet most of the following criteria: young, well-paid,
and interested in traveling.”

EMth((HEmponee.Name (Employee M You"g))»
(HEmployee.Name(EmPloyee] WeIIPazd)),

(nEmployee.Name (Employee MEmployee,Eid=Liku .Subj (U'Likes.Obj ="Traveling" Likes))))

162

The three sub-expressions compute the young employees, the well-paid employees, and the travel-
liking employees, respectively. The resulting fuzzy relation contains the name of every employee who
is in any one of the three categories. For each employee name in the result, the membership degree
is computed by first find the average membership degree with which the employee falls into all three
categories, and then find the membership degree of this average wrt the fuzzy relation AMost. O

6 SAFETY AND EQUIVALENCE

Like in the standard tuple relational calculus, not every fuzzy tuple relational expression is useful.
For example, if a fuzzy tuple calculus expression denotes an infinite fuzzy relation, there is no way
to obtain all tuples in the fuzzy relation, and there may be no way to finitely represent the fuzzy
relation, neither. In the following, an expression is said to be infinite if it denotes an infinite fuzzy
relation. In the fuzzy tuple relational calculus, there are two situations in which an expression may
be infinite. In the first situation, the formula involves infinite fuzzy relations, but does not restrict
them. For example, consider a unary fuzzy relation, say FarAway with an attribute Distance whose
domain is the set of integers greater than or equal to 0 (representing kilometers). Assume that the
membership function of FarAway is defined by

0, 0<t<?;
/-‘FarAway(t)= (1+(%)2)-1’ t>2

Then, the expression {t | t € FarAway)} represents the query “List all tuples in FarAway’ and
denotes an infinite fuzzy relation. In the second situation, the operators such as = and V may force
the tuples to be formed using symbols that are neither in the database nor in the given query. For
example, {t | =(t € r A u,(t) = 1)} may be infinite. In the standard tuple relational calculus, a
notion of safety was defined, and only safe expressions are of practical interests. Intuitively, a safe
tuple calculus expression denotes a finite relation in which each tuple is formed using only those
symbols that are either in the database relevant to the query or in the query itself. In the following,
we extend the notion of safety to fuzzy tuple relational calculus expression.

Definition 6.1 Given a fuzzy logic formula ¥. Let SY M(%) be the set of symbols that either

appear explicitly in 9 or are components of some tuples that are in some fuzzy relation mentioned
iny. O

Intuitively, SY M (%) is the set of symbols that are in the relevant portion of the database and in
the given query. Since fuzzy relations may be infinite, SY M (1) may also be infinite. In the following,
we say that a variable is bounded if it is associated with a quantifier, and it is free, otherwise.

Definition 6.2 Let R = {t | ¥(t)} be a fuzzy tuple relational calculus expression. The formula ¥(t)
is said to be range restricted if

1. Whenever t satisfies 9(¢) with a non-zero degree, each component of ¢ is in SY M(¥).

2. For each sub-formula of ¢¥(t) of the form (Ju)(w(u)), if u satisfies w(u) with a non-zero degree
for any free variable in w(u), then each component of u is in SY M (w).

3. For each sub-formula of ¢ of the form (Vu)(w(u)), if any component of u is not in SY M (w),
then u satisfies w with the degree 1. Intuitively, the quantifier “forall” requires checking of
every tuple in the domain of u for the satisfaction of w. But by this definition, tuples with
components formed using symbols outside of SY M(w) need not be checked, since they will
never affect the truth value of the sub-formula.

4. For each sub-formula of ¥ of the form (F u : wi(u))(w2(u)), if any component of u is not in
SY M(w,) then u satisfies w), with the degree 0. Since only those u’s that satisfy w;, with a

163

non-zero degree will contribute to the truth value of this sub—-formula, this definition simply
says that there is no need to check tuples which have at least one component with a symbol
outside of SY M (w,), since such a tuple is automatically out of the consideration.

The fuzzy tuple relational calculus expression is range restricted if the formula ¥(t) is range
restricted. O

Intuitively, if a fuzzy tuple relational calculus expression is range restricted. every component of
every tuple in the answer is a symbol in the database or in the query. Therefore, one only needs to
search for the answer within the set of tuples that can be constructed using symbols in SY A (¢). In
the standard tuple relational calculus, the range restriction alone is sufficient in defining the safety
of the expressions. But in the fuzzy tuple relational calculus, a range restricted expression may still
not necessarily denote a finite fuzzy relation since SY M (%) may be infinite. Thus, we need the
following more general definition of the safety.

Definition 6.3 An expression in the fuzzy tuple relational calculus is finite if it denotes a finite
fuzzy relation and it is safe if it is range restricted and finite. O

For the fuzzy relational algebra, we define a finite expression to be the one that evaluates to a
finite fuzzy relation.

The following two theorems together state that the fuzzy tuple relational calculus and the fuzzy
relational algebra are equivalent in terms of their expressive power. Due to the space limitation,
these theorems are provided without proof. Readers who are interested may refer to [21].

Theorem 6.1 If E is a expression in the fuzzy relational algebra, there is a range restricted expres-
sion in the fuzzy tuple relational calculus equivalent to E. Furthermore, if E is finite, the equivalent
expression in the fuzzy tuple relational calculus is safe. O

Theorem 6.2 Each range restricted expression in the fuzzy tuple relational calculus has an equiv-
alent expression in the fuzzy relational algebra. Furthermore, if the fuzzy tuple relational calculus
expression is safe, the equivalent algebraic expression is finite. O

7 IMPLEMENTATION CONSIDERATIONS

In this section, we briefly discuss techniques that allow an implementation of the proposed data
model. More specifically, we discuss the implementation of fuzzy relations in a standard relational
database, the user interface, and the structure of a front-end system.

In the fuzzy relational database, there are two types of fuzzy relations: the finite ones and the
infinite ones. The implementation of these two types of fuzzy relations is naturally different.

Each finite fuzzy relation can be represented by a standard relation which contains a designated
attribute for the membership degree. This attribute can be made accessible to the user so that
the user may inspect or change the membership degree of any tuple. This allows a fuzzy relation
to represent the personal viewpoints of the user about the fuzzy concept represented by the fuzzy
relation.

There may be several ways to implement infinite fuzzy relations depending on the types of their
membership functions. For instance, a single attribute fuzzy relation with a membership function
pr(z) = z2 over integers is probably best implemented as an ordinary function. A fuzzy data
dictionary (or library) can be maintained and used by a front-end system to provide the mapping
between the fuzzy relation and the function that implements its membership function. The fuzzy
data dictionary itself may partially be stored in the standard relational database as well. For
example, if several infinite fuzzy relations have similar membership functions. There is no need
to implement a distinct function for each of these fuzzy relations. Instead, a generic function can
be implemented which when supplied with appropriate values of parameters can implement the

164

membership function of any one of these fuzzy relations. The set of values of the parameters for
different fuzzy relations must be in the fuzzy data dictionary, and can be stored in a standard
relation.

The fuzzy relational algebraic operations can be implemented in two steps. In the first step,
the standard relational algebraic operations are called for to perform the set-oriented retrieval
operations. In the second step, a post processing is required to perform operations that can not
be accomplished by the standard relational operations, such as joining with infinite fuzzy relations
and calculating the membership degrees of the resulting tuples. For example, to compute the
answer to the query in Example 5.3, the standard relational joins can be performed to obtain the
Join of Employee, CloseTo, and Department. The resulting intermediate relation is necessary to
have three designated attributes for ygmployee(). HCloseTo(), 8Nd UDepartment(), respectively. Then,
the intermediate relation can be scanned to generate the final answer, and during this step, the
membership degree of each tuple in the final answer is computed using values in the three designated
attributes.

The user interface provides facilities to allow a user to query the database and to manipulate the
fuzzy relations. The fuzzy tuple relational calculus and the fuzzy relational algebra do not provide
all functionalities that are provided by the standard relational database languages, such as SQL. A
fuzzy SQL can be provided as the user interface to the fuzzy relational database which is based on
our model. This fuzzy SQL can allow linguistic terms, such as Young, WellPaid, to be used in the
where—clause as a constant. For example, the query in Example 4.2 can be expressed as

SELECT Name, Title
FROM Employee
WHERE Age = Very Young AND Sal = WellPaid

The basic structure of a fuzzy database system consists of a fuzzy SQL based user interface,
a fuzzy data (function) library, a front-end system that performs the two—step implementation of
fuzzy relational algebraic operations, and a standard relational database.

8 CONCLUSION

In this paper, we propose a fuzzy relational data model for answering imprecise query against
precise data. We define the fuzzy relation which is an extension of the standard relation. Two
formal languages, a fuzzy tuple relational calculus and a fuzzy relational algebra, are provided for
specifying the imprecise queries. Examples are given to show the wide range of imprecise queries
expressible by the given languages. The equivalence of the two formal languages has been proved.
We also discuss the techniques that can be used to implement a fuzzy database system based on the
proposed fuzzy relational model.

We are currently developing a fuzzy relational database system based on the ideas presented in
this paper. An interesting issue for future study is the query optimization that involves many fuzzy
relations, both infinite and finite. Another research issue is to build tools to help users to define

fuzzy relations that best suits their needs. We are also interested in further extending our model to
include various fuzzy data.

REFERENCES

(1] P. Bosc, M. Galibourg and G. Hamon, “Fuzzy quering with SQL: Extensions and implementa-
tion aspects”, Fuzzy Sets and Systems, Vol. 28, 1988, pp. 333-349.

[2] B. P. Buckles and F. E. Petry, “A fuzzy representation of data for relational databases”, Fuzzy
Set and Systems, Vol. 7, No. 3, 1982, pp. 213-226.

165

[3] B. P. Buckles and F. E. Petry. “Fuzzy databases and their applications”, in Fuzzy Information
and Dectsion Process, M. M. Gipta and E. Sanchez, Eds., North Holland, 1982, pp. 361-371.

[4] B. P. Buckles and F. E. Petry, “Information-theoretic characterization of fuzzy relational
databases”, IEEE Trans. System Man Cybernet, vol. SMC-13, No. 1, 1983, pp. T4-77.

[5] B. P. Buckles and F. E. Petry, “Extending the fuzzy database with fuzzy numbers”, Information
Sciences, Vol. 34, No. 2, 1984, pp. 145-135.

[6] S. K. Chang and J. S. Ke, “Translation of fuzzy queries for relational database systems”, IEEE
Trans. on Patlern Analysis and Machine Intelligence, Vol. 1, 1979, pp. 281-294.

(7] C. J. Date, An Introduction to Database Systems, two volumes, Addison-Wesley, Readings,
MA, 1986.

[8] J. Kacprzyk, S. Zadrozny, and A. Ziolkowski, “FQUERY III+: a “human-consistent” database
querying system based on fuzzy logic with linguistic quantifiers”, Information Systems, Vol. 14,
No. 6, 1989, pp. 443-453.

[9) J. Kacprzyk and A. Ziolkowski, “Data base queries with fuzzy linguistic quantifiers, IEEE
Trans. Systems, Man and Cybernetics, Vol. 16, No. 3, 1986, pp. 474-478.

[10] J. Kacprzyk and A. Ziolkowski, “Queries with fuzzy linguistic quantifiers using an alternative
calculus of linguistically quntified propositions”, Proc. Second IFSA Congress, Tokyo, Japan,
1987, pp.600-603.

[11] H. F. Korth and A. Silberschatz, Database System Concepts, Second Edition, McGraw-Hill,
New York, NY, 1991.

[12] D. Liand D. Liu, A Fuzzy Prolog Database System, Research Studies Press, Taunton, England,
1990.

[13] Fuzzy LUNA — Fuzzy Database System Library User’s Manual, and Fuzzy LUNA — Fuzzy
Database System Library Reference Manual, OMRON Corparation, 1992.

[14] S. Shenoi and A. Melton, “An Extended Version of the Fuzzy Relational Database Model”,
Information Sciences, Vol. 52, 1990, pp. 35-52.

[15] V. Tarani, “A conceptual framework for fuzzy query processing — a step towards very intelligent
database systems”, Information Processing and Management, Vol. 13, 1977, pp. 289-303.

[16] J. D. Ullman, Principles of Database Systems, Computer Science Press, Rockville, MD, 1983.

[17] J. D. Ullman, Principles of Database and Knowledge-Base Sysiems, Vol. I, Computer Science
Press, Rockville, MD, 1988.

[18] L. A. Zadeh, “Fuzzy set”, Information and Control, Vol. 8, 1965, pp.338-353.
[19] L. A. Zadeh, “Fuzzy Logic”, IEEE Computer, April, 1988, pp. 83-93.

[20] M. Zemankova and A. Kandel, “Implementing imprecision in information systems” , Information
Sciences, Vol. 37, 1985, pp. 107-141.

[21] W. Zbang, C. Yu, G. Wang, T. Pham, and H. Nakajima, “A Relational Model for Imprecise
Queries”, Technical Report, Dept. of EECS, Univ. of Illinois at Chicago, Chicago, IL., 1992,

33.
34.
35.

36.
37.

38.
39-188.

189.
190.
191.
192.
193.
194.

INTERNAL DISTRIBUTION

B. R. Appleton 20. K. Rahmani

J. E. Baker 21. D. B. Reister

A. L. Bangs 22. J. C. Schryver

M. Beckerman 23. P. F. Spelt

R. J. Carter 24. E. C. Uberbacher

O. H. Doerum 25. M. A. Unseren

J. R. Einstein 26. R. C. Ward

C. W. Glover 27-28. Laboratory Records
. K. S. Harber Department

J. P. Jones 29. Laboratory Records,

H. E. Knee ORNL-RC

R. C. Mann 30. Document Reference

E. M. Oblow Section

F. G. Pin 31. Central Research Library
. S. A. Raby 32. ORNL Patent Section

EXTERNAL DISTRIBUTION

Dr. Peter Allen, Department of Computer Science,
Columbia University, New York, NY 10027

Dr. Wayze Book, Department of Mechanical Engineering, J. S. Coon
Building, Room 306, Georgia Institute of Technology, Atlanta, GA 30332
Professor Roger W. Brockett, Wang Professor of Electrical Engineering
and Computer Science, Division of Applied Sciences, Harvard University,
Cambridge, MA 02138

Dr. Steven Dubowsky, Massachusetts Institute of Technology,
Room 469A, 77 Massachusetts Ave., Cambridge, MA 02139

Professor Donald J. Dudziak, Department of Nuclear Engineering,
110B Burlington Engineering Labs, North Carolina State University,
Raleigh, NC 27695-7909

Dr. Avi Kak, Department of Electrical Engineering, Purdue University,
Northwestern Ave., Engineering Mall, Lafayette, IN 47907

Professor Dr. Jan Komorowski, Knowledge Systems Group, Faculty of
Computer Science and Electrical Engineering, The Norwegian Institute
of Technology, The University of Trondheim, O.S. Bragstads plass 2E,
N-7034 Trondheim, NORWAY

Dr. James E. Leiss, Rt. 2, Box 142C, Broadway, VA 22815-9303

Dr. Oscar P. Manley, Division of Engineering, Mathematical, and
Geosciences, Office of Basic Energy Sciences, ER-15, U.S. Department
of Energy - Germantown, Washington, DC 20545

Professor Neville Moray, Department of Mechanical and Industrial
Engineering, University of Illinois, 1206 West Green St., Urbana, IL 61801
Dr. Zbigniew Ras, University of North Carolina at Charlotte, Department
of Computer Science, Kennedy Bldg., Charlotte, NC 28293

Dr. Wes Snyder, Department of Radiology, Bowman Gray School of
Medicine, 300 S. Hawthorne Dr., Winston-Salem, NC 27103

Professor Mary F. Wheeler, Department of Mathematical Sciences,
Rice University, P.O. Box 1892, Houston, TX 77251

167

450 Computer Science,

Building 3,

195. Office of Assistant Manager for Energy Research and Development,
U.S. Department of Energy, Oak Ridge Operations Office, P.O. Box 2001,
Oak Ridge, TN 37831-8600
196-197. ’(I‘)fﬁce of Scientific Technical Information, P.O. Box 62, Oak Ridge,
N 37831

168

