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SUMMARY

Estimation of temperature sensor characteristics by the noise
analysis method is presented in this part of the final report on In-
Situ Response Time Testing of Platinum Resistance Thermometers. Tem-
perature fluctuations in hotleg and coldleg fluid during normal reactor
operation are recorded and random data analysis techniques are applied
to obtain information about the sensor performance. The noise signal
is modeled using autoregressive time series modeling strategy of the

form

n
Ve T2 3 Vs T Y
i=1

where {yk} is the stationary sensor output and {vk} is the temperature
fluctuation noise. The model evaluation consists of the following four
steps: (1) Estimation of model parameters.(2) Selection of optimal
model order, n. (3) Model validation to check for the assumptions made
in the analysis. (4) Evaluation of sensor characteristics from the model.
Chapter 1 is an introduction to the noise analysis approach de-
scribed in this report. Some basic notions about probability and useful
definitions are summarized in Chapter 2. Chapter 3 provides an overview
of time series models for stationary random signals. Model parameter
estimation, selection of optimal order and model validation methods are
described in Chapter 4. Estimation of response time characteristics from
the autoregressive model is detailed in Chapter 5, which also includes
results for a simulated fifth order system. In Chapter 6, we present the
details of the methodology applied to RTD noise signal from an operating

power plant. The Tlimitations of the method are discussed. Results from
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tests at four pressurized water reactors are summarized. Summary and
concluding remarks are given in Chapter 7.

The limited bandwidth of the noise signal and in some cases the
absence of any distinct break frequency in the power spectrum results
in either an incorrect (too large) value for the time constant or
failure of the method. Based on the analysis and comparison with the
lToop current step response testing method it is concluded that the
noise analysis technique may be used as a tool for monitoring degra-
dation of sensor characteristics, rather than for predicting quanti-

tative values of the time constants.
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CHAPTER 1
INTRODUCTION

Random noise techniques in measurements on nuclear reactor systems
are developed to measure the dynamic behavior or as a tool for system
surveillance with a minimum of interference during normal operation.

The microscopic output noise can be considered as "the response
of the system to an input representing the statistical nature of the
underlying process." (See Uhrig [UT]). The coolant temperature fluctu-
ations during normal operation of a reactor are caused by random variations
in neutron flux and random variations in the heat transfer taking place
in the core and steam generator.

Noise signals may be interpreted by modeling the response using a
time series model. If {yk} is a sequence of measurements of a random
process, and if {vk} is a noise sequence causing the {yk} , then the input-

output relationship can be represented by the linear transformation:

[o]
.

n ™8

YT B2 Vet biViei * V- (1.1

i=1 i=1
This representation assumes that there are no externally controlled
perturbations. In other words, the statistics of {vk} is not known
a priori. Special cases of the above model have been used for specific
applications. The above model may be generalized to represent the dynamics
of multivariable systems. Discussion of time series models is given in
Chapter 3.

In the present context, the finite order time series modeling pro-

cedure is applied to the noise signals recorded from temperature sensors



installed in the hot leg and cold leg sections of nuclear power reactors.
The data acquisition is performed during normal operation of the power
plant, requiring a minimum of instrumentation. The data can be processed
on site with the aid of a minicomputer and the sensor response character-
istics may be estimated. The method can thus be standardized as an integral
part of the plant monitoring system.

One method that is potentially useful for sensor response time esti-
mation is frequency domain analysis of fluctuating signals. In the frequency
domain method, the time constant is estimated from the power spectral density.
The noise power spectrum may be obtained using the FFT algorithm. The time
constant estimate may be derived either by fitting a transfer function to
the power spectral density or by geometric construction. The time series
method discussed in this report needs no such approximations, and all the
calculations are made numerically.

Chapter 2 contains a brief introduction to the elements of prob-
ability and definitions of some useful statistical quantities. We will
introduce the time series modeling of noise signals in chapter 3. Chapter
4 describes the estimation of the models, and the associated power
spectrum. Determination of optimal model order and the model validation
are also given in chapter 4. In chapter 5 the determination of impulse
response and step response from the noise model are presented. The
techniques, based on the exact solution to a continuous system and re-
cursive estimation from the model directly, are verified by simulating
known systems. Evaluation of RTD (Resistance Temperature Device) char-
acteristics such as impulse and step responses, power spectrum, and time
constant is presented in chapter 6. The RTD data were obtained from tests

at Millstone 2, St. Lucie, Turkey Point and Oconee 1 pressurized water



reactors. Discussion and concluding remarks are summarized in chapter 7.

ATl the results are presented in Appendix C.

1.1 System Identification

Fundamental to the use of time series analysis, is the problem of
determining the appropriate model, representative of the given data.
The estimation of this empirical model parameters along with the proper
choice of the model is called system identification. We use a finite

order autoregressive model to represent the noise signal.

tv

It ™~ >3

Yo B TV (1.3-1)

;
The determination of the optimal order, n, is a decision making problem.
Figure (1.1) describes the steps in system identification. The optimal
model can then be used to determine the power spectrum, impulse response,

step response, and the system time constant.
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CHAPTER 2

ELEMENTS OF PROBABILITY THEORY

In this chapter we shall briefly review the topics on probability
pertinent to the discussion to follow. For more detailed treatment
the reader is referred to the book by Papoulis [P1] on "Probability,
Random Variables, and Stochastic Processes."

2.1 Random Variable, Random Process and Distribution Function

2.1.1 Definition. A Random Variable is a number assigned to

the outcome of an experiment and defined by the function X(p) where
p is the outcome of the experiment.

2.1.2 Definition. Let a given experiment be repeated n times.
If an event A occurs Ny times, then the probability P(A) that the

event A would occur during the experiment is defined by

P(A) s (2.1.1)

= Tim
N>
2.1.3 Definition. We thus define a probability space as the
triple (2, S, P) - where Q is the space or outcome of the experiment,
S is the set of all possible events of @ (also called the Borel field),
and P is the positive number assigned as the probability of a given
event.
We have the following axioms for the probability
P(A) >0

P(S) =1

P(0) = 0, 0 is the null event.



If the events A and B are mutually exclusive, then

P(AUB) = P(A) + P(B). (2.1.2)

2.1.4 Conditional Probability. Given an event R with nonzero

probability, P(R)>0, we define the "conditional probability of event

A given R" by
p(are) = ELARL (2.1.3)

This can be interpreted as

P(A/R) = (2.1.4)

"ar/"R

i.e., if we discard all trials in which the event R did not occur
and retain the sub-sequence of e trials. in which it occurred, then
P(A/R) equals the relative frequency of the occurrence of the event
A in that sub-sequence.

2.1.5 Distribution Function. Given a real number, x, we define

the event {X<x} which consists of all outcomes p such that X(p) < x.
The distribution function of the random variable X is defined as

F (x) = P{X<x} (2.1.5)

for any number x from - to +=,
The distribution function has the following properties
a. F(-=) =0, F(+=) =1

b. F(x]) < F(xp) for x; < X5» that is, it is a nondecreasing

1
function of x.

c. It is continuous from the right

F(xT) = F(x).



2.1.6 Random Process. We are given the probability space

(2, S, P). To every outcome, p, we assign, according to a certain
rule a time function

X(t,p)
real or complex. This family of functions X(t,p) is called a
stochastic process.

We can define X(t,pi) as the time function for specific outcome.
For a given time, we can define X(ti,p) as a quantity dependingon o,

A random process {(henceforth denoted by X(t)) can be a very
irregular process such as the motion of a particle due to its
impact with the surrounding medium (Brownian motion). The electro-
motive force of a generator, although well-defined process, can be
treated as a stochastic process

X(t) = A sin (wt+e) (2.1.6)
where the amplitude A, phase ¢, and the frequency » are random
variables.

We define the distribution function as

F(x,t) = P{X(t) < x}. (2.1.7)

Thus, given two numbers,x and t;,the function F(x;ti)equa]s the
probability of the event {x(t9.5 x} consisting of all outcomes p
such that, at the specified time t],the functions X(t) of the

process do not exceed the given number x.

x(t) | A11 possible processes

 BRacn mm
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2.2 Probability Density Function

If the derivative of the distribution function FX(x) with

respect to x exists then we define

P (x) = g—x Fyo(x). (2.2.1)

Since the derivative need not exist, we classify the random variable
as of continuous type and discrete type.

2.2.1 Random Variables of Continuous Type. We have the

following properties for continuous random variables.

a. p(x) >0

b. s~ p(x) dx = F(») - F(==) =1

-0

c. F(x) =X p) de

=0

X2
d. F(xp) - F(x) = Ix, p(e) deg

X
_ 2
e. P{x; <X < X} = fx] p(g) dg
fo. PIX=x}=0
4 Fx)
1
0 = X

2-2



Fig.

2.2.2 Random Variables of Discrete Type

A
x

[
1
w

F(x) is of the staircase type with discontinuities at the point
X (see Figure (2.3)). Let P be the jump of F(x) at the point Xy
then

Pix = x;3 = Poo= F(x;) - F(x;) (2.2.2)

We also have

Fx(x) =P < x}=1 Pk-= Xi} » 1 such that x; < x (2.2.3)
i

2.2.3 Random Variables of Mixed Type. In general, a random

variable (r.v.) may consist of lattice type as in (2.2.2) and continuous
variation as in (2.2.1). Then the r.v. is of mixed type as shown

in Figure (2.4)
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Fig. 2-4

2.3 Examples of Distribution and Density Functions

We define below a few distribution and density functions that
appear in common practice.

2.3.1 Gaussian or Normal. A r.v. is normally distributed if

its density function is a Gaussian function,

o

p(x) F(x)

Fig. 2-5 Fig. 2-6
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The density is defined as

2
plx) = L e L))
2’[1’0’2 20 (23.1)

where n = mean value of the Gaussian random variable
2

(o

variance of the Gaussian random variable.

We define the following

n=EI[x]= s xp(x) dx (23.2)

(23.3)

Q
[l
m
i
—
b
1
=3
~
-
i
'\.
—
x
1
=3
~—
©
—
x
~—
Q.
>

1
m
o
x
N
(-
1
3
N

A function closely related to the Gaussian density is the error

function defined as

X 1 o2
erfx = f exp{ %— } dy (23 .4)
- \IZTT
X ‘-
Thus  F(x) = 5 p(y) dy = erf (———?fl——ﬁ (23.5)
and  F(n) = (23.6)
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2.3.2 Cauchy Distribution

p(x) = —J%f;— (2.3.7)
o X

NI
|-

Fig. 2-7

2.3.3 Gamma Distribution

cb+] b -ex
p(x) = xe " U(x) (23.8)

r(b+1)

p(x)4
Gamma density

0 4;X
Fig. 2-8
r(n) = s M1 g% dx, n >0}

0
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2.3.4 Uniform Distribution.‘

_ 1
p(x) = o a<x< b (2.3.9)
ép(x) 41 F(x)
1
b-a f-----
0 a b > x
Fig. 2-9 Fig. 2-10

2.3.5 Poisson Distribution. If a r.v. X is of discrete type,

taking values. at the points 0, 1, 2, . . . with

Pix=k} = e~ . k=0,1,...3 A >0 (2.3.10)

then X has a Poisson distribution with parameter A>0.

2.3.6 Bionomial. If X is of discrete type taking values at the

points k =0, 1, . . ., nwith

PUx=k} = () p* q@ = ,p+q=1 (2.3.11)
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We say that it has a binomial distribution.

Example: Probability that k tossings out of n tossings of a coin are heads.

2.4 Joint Probability Density Function and Multivariable
Gaussian Density

Given n random variables X], X2’ . o e Xn’ we define the

distribution function

F(x], XZ"“’Xn) = PgSXy seeaX < X} (2.4.1)

and the density function

aF (x],...,xn)
P(Xpseeesx) = (2.4.2)
aX]s sz..., X

n

Denote the vector (X;, X, . . ., X ) = X. The r.v.'s denoted by

X are jointly normally distributed if their joint probability density

function has a Gaussian form. In this case

p(x) = exp = 172 (x-n) T (x-n)? (2.4.3)

1
(2m)™2 @et 312

vector of mean valves = (n-la . . e ﬂn)

=

(]
il

covariance matrix (nxn) whose i-jth element is defined by

C'ij = E[(X'i-n'i) (Xj"ﬂj)] (2.4.4)
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The above definition assumes that the inverse C—] exists. We denote

the multivariate Gaussian density by

p(x) = G(n,C) (2.4.5)

2.4.1 Joint Characteristic Function (CF). We define the

Joint CF as

o(s) = E[exp(3n' )], §=J-T (2.4.6)
Assuming that p(x) = G(0,C) we have
2(w) = exp[~1/24'Cu] (2.4.7)

Note that the above definition of ¢(w) uses the covariance matrix C
instead of its inverse. This is a distinct advantage of the definition
®(w). Further ¢(w) is nothing but the Fourier transform of the joint
density function. The Gaussian function is the only function whose
Fourier transform is also of the same form.

2.4.2 Sums of Random Variables and Central Limit Theorem.

Theorem: If X X2, . e s Xn are jointly Gaussian, then the sum

'I’
Y =X +...+X alsohas a Gaussian density; that is if X = G(n,C)

then
n n n
y=6(z Ny D) C'IJ) (2.4.8)
i=] i=1 j=1

One of the remarkable properties of the Gaussian distribution is the

so-called central 1imit theorem.
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Theorem: If Xi’ i=1,2, .. ., nare a set of independent and

identically distributed random variables, then letting

Y
Yo = 5 X. (2.4.9)

it follows that as noe, Yn approaches a Gaussian random variable.
Thus if X, = (0, 6°), i =1, 2, . . ., n then
Yn > G(0, 02) as n becomes large.
The central Timit theorem is useful in assumptions made about
random processes and in proving certain asymptotic properties of

estimation and identification methods.

2.5 Independent, Uncorrelated and Orthogonal Random Variables

Before we discuss these ideas, let us define some terms which
are fundamental and appear all the time in future chapters.
Definition. If X and Y are two r.v.'s then the covariance function

between X and Y is defined as

Cy = E LR (y-3)] (2.5.1)

Definition. If X(t) and Y(t) are two random processes, we define

the following terms
Autocovariance of X: E[(X(t]) - X) (X(tz) - X)] (2.5.2)
Autocorrelation of X: E[X(t]) X(tz)] (2.5.3)

Cross Covariance of X and Y: E[(X(t]) - X) (Y(tz) -Y)] (2.5.4)

Cross Correlation of X and Y: E[X(t;) Y(t2)] (2.5.5)
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The expectation is defined as follows:

EDx(ty) y(t))] =_£ L xyp(X,tq,y,tp)dxdy (2.5.6)

2.5.1 Independent r.v.'s. Two random variables, X, Y are

said to be independent if

pX<x, Y<ylr=p{X<xtplf=<yl (2.5.7)
Fy(oy) = FL(x) Fuly) (2.5.8)
and  p, (x%.y) = py(x) p (y) (2.5.9)

Thus, we also have

ELXY] = E[X] ELY]. (2.5.10)

2.5.2 Uncorrelated r.v.'s. Two r.v.s X and Y are said to

be uncorrelated if

E[(X-X) (Y-Y)] = 0 or E[XY] = E[X] ETY]. (2.5.11)

It follows from the definition of independence that if two r.v.s

are independent, they are also uncorrelated.

2.5.3 Orthogonal r.v.'s. Two random variables X and Y are said

to be orthogonal if
E[XY] = 0. (2.5.12)
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For two vector r.v.s X and Y we say that they are orthogonal if

E[X Y'] = 0 matrix. (2.5.13)

These concepts are very important in the estimation problems to
derive meaningful algorithms. For most random processes, these
conditions are satisfied (or nearly satisfied) and since we are
interested in asymptotic properties, such assumptions are not far

from truth.

2.6 Stationary Random Processes

2.6.1 Stationary Processes. We say that a stochastic process

X(t) is stationary in the strict sense if its statistics are not
affected by a shift in the time origin.

For an nth order density function, we must have

p(x‘l ’x2’00’xn;t] 9t2,... ,tn)

(2.6.1)
= p(x]’x23\--sxn;t] + T',...,tn + T)

Thus for first order density

p(x,t) = p(x,t+r) > the first order density is independent of

time.
Hence, E[X(t)] = n = constant. (2.6.2)

The second order density becomes

p(x] sxz ;t]stz) = P(X] ’Xz;t] + T, t2 + T) ===
P(XpsXpstyaty) = plxpsxps ) (2.6.3)

Hence, E[X(t) X(t+t)] = Rxx(r). (2.6.4)
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2.6.2 Wide Sense Stationary Process. We say that a process

X(t) is stationary in the wide sense (or weakly stationary) if
E[x(t)] = constant, E[x(t) x (t + 1)] = RX(T) (2.6.5)

Note that the wide sense stationarity involves only first and second
order moments.

Two processes are jointly stationary in the wide sense if

each satisfies (2.6.5) and

ELx(t + oly(t) 1 =R, (1) (2.6.6)

Remark: If a process X(t) is normal and stationary in the wide sense
then it is stationary also in the strict sense (because all moments
of X(t) are expressed in terms of the first two moments).

2.6.3 Markov Process. A process X(t) is Markov if the

statistics of the future depend only on the present and are independent

of the past.

If t] < t2 < ... 1t , then

n

Pix(t) < xp Ix(t_q)seees (1) = PRI(E) <x gx(t, 1)} (2.6.7)
In terms of density function

P{X(tn) IX(tn_]),...,X(t])} =p {X(tn) Ix(tn_])} (2.6.8)
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We will use this property to express dynamic system models as Markov
processes.

2.6.4 Power Spectrum. The power spectrum (or spectral density)

S(w) of a process X(t) is the Fourier transform of its autocorrelation.

S(w) = Z T ) de (2.6.9)

Conversely

R(x) = —— % s(0) eI du (2.6.10)

ks -0

If x(t) is a real random process then
R(t) = R(-t) and S (w) = S( -w) (2.6.11)

Note that the above definition of the spectral density is true only

for stationary processes.

2.6.5 White Noise. A random process of primary importance in
engineering applications is the so called white noise. This is a
stationary process with all the components independent. This of
course means they are uncorrelated. In general, it is also assumed
that as function of time they have zero mean and the same covariance

function.
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If Kk’ k=1, 2, . . . is a white noise process vector with

mean zero, we have

t, . .
E[éiﬁj ] = Rdij’ for all i and j (2.6.12)

where 51j 1if i =]

0 otherwise.

The autocorrelation function of a white noise process is a delta

function, that is

E[x(t) x(t +1)] = No () (2.6.13)

where N0 is a constant value. The spectrum is therefore constant

for all frequencies.

{R() $ S

N
N 4 0

—Y
4

Fig. 2-11 Autocorrelation and Spectrum of White noise

Note that since R(t) is not differentiable, the white noise is a

process with infinite discontinuities and not physically feasible.
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2.7 Ergodic Random Processes

Statistical quantities may be calculated using the average of an
ensemble of sample functions. Fig. (2-1) shows such an ensemble.
At a given time t = t;, the mean value of the random process x(t)}

and its autocorrelation function can be calculated as follows:

N
n(ty) = 1im1 = x,(tq) (2.7-1)
x* -1 'N— k=1 k' 1
] N
Rx(t],t], + 1) = lim N-k21 X (t]) xk(t] + ) (2.6-2)
N+ o

In most cases the above statistics can also be calculated by using
just one sample function in the ensemble. Thus the mean value and

the autocorrelation function of the kth sample is given by

U
nX(k) = lim é xk(t) dt (2.7-3)
T—)oo
1 T
RX(T,k) = lim — f xk(t) Xk(t + 1) dt (2.7-4)
T o

If {x(t)} is stationary and nx(k) and Rx(r,k) do not differ when
computed over different sample functions, the random process is said
to be ergodic. Thus if a process is ergodic the ensemble average
is equal to the time average. Note that only stationary processes can
be ergodig.

The concept of ewrgodicity can be used to approximate certain
statistics such as the mean and correlationfunctions by replacing
the ensemble average by time average, or approximating statistical

quantities by summatiaon over time,
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2.7-1 Estimation of mean and autocovariance functions for stationary

process.

In problems of data processing using digital computers it is only
possible to have measurements of a signal available at discrete time
points. Two of the quantities often computed are the mean and auto
convariance functions.

Let {xk, k=1,2,...,N} be the sequence of measurements of a random

process {xk}. Then we define the mean as

-

\

1

n, =— I X (2.7-5)

X Nk=1 K
and the autocovariance function as

'I N-k

R (k) = =% 121 (x5 = ny) (X5 = ) (2.7-6)
Some authors use autocovariance and autocorrelation to mean the
same equation (2.7-6). (2.7-6)

For definitions of other statistical quantities see Bendat and Piersol

[B1, Ch.6].



CHAPTER 3

LINEAR STATIONARY TIME SERIES MODELS

A general description of the time series models is presented.
Special cases of interest are discussed. There are many c¢lassical and
recent references in the field of time series analysis. Some of these
are monographs and, the others are published in technical journals and
conference proceedings. The references listed at the end are those that

are appropriate to the present discussion.

3.1 General Linear Processes:

Let {xk}k and {Eik}k’ i=1,2,...,p, denote jointly stationary
ergodic progesses. Let {xk} be a sequence of white noise process.

Then the process {xk} may be represented in general, in the form

v CiYeoi (3.1-1)
'|=

{Ai’Bki’ K=1525¢c.5P> Ci’ i > 1} are matrices with constant coefficients.
Let y, beann x1 dimensional vector and gﬁ(-) be m dimensional for
i=1,2,...,p. Let v be m dimensional{y.(.) , i=1,...,p} is an input
sequence of known statistics. A special case of importance is the
univariate signal {y,} produced by the linear aggregation of the white
noise {vk} given by

a Y * iil bovi_s + Vv (3.1-2)

[ e IRN

‘yk=

i=1
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An infinite representation (3.1-2) is not feasible and often may
be incorrect. A parsimonious use of parameters is often derived
with finite orders for the autoregressive and moving average terms
as follows:

n m
Ioay, 3t I biv DtV (3.1-3)

Y © k-1
i=1 i=1

Such a representation is often called the autoregressive moving average
(ARMA) process. A complete description of such models is given in Box

and Jenkins [B2].

The use of time series models for forecasting, control and spectral
estimation has been the subject of works by Parzen [P2], Mann and Wald
[M1], Hannan [H1, H2], Anderson [A1], Quenouille [Q1], Kashyap and
Rao [k 1], Rosenblatt [R]];Rao [R2], Akaike [A2] and others [A3].

Many special cases of the ARMA process are obtained as follows.

n m
ARMA process: 'y, = 121 ay,_; t 121 bivk-i+ Vi (3.1-4)
: (3.1-5)
Autogressive process: y, = I a.y, .tV 3.1-5
ko flkei T
m
Moving Average Process: Yy = 121 bivk-i vV (3.1-6)
n
Regression Models: Y = E A & i t Vi (3.1-7)
i=1
3.2 Stationarity and Invertibility of ARMA Processes
Using the backward shift operator
i -
Dv, = Vios (3.2-1)
the ARMA model may be written as
S (- 2 a0t (- F baby (3.2-2)
Yk 294 R R :

i=1 i=1
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n .
The convergence of the series ¥(B) = (1 - = aiD1)'] ensures that
i=1

the process {yk} has a finite variance. This is equivalent to the
conditien that roots of the equation

n i

1- 2 aiD =0 (3.2-3)

i=1

must be outside the unit circle. Thus when the noise process is stationary

the above condition ensures that the process {yk} is also stationary.

The concept of invertibility is concerned with recovering {vk}

from the semi-infinite history of observations {yk}. Writing (3.2-2) as

m . n .
- iy=1 i
Vi = (1 - .§ biD Yy (1 - .E aiD ) Yy (3.2-4)
i=1 i=1
the linear process is invertible if the infinite process expansion of
m .
m(B) = (1 - = b1.D1)'1 converges. This is equivalent to the condition
i=1
that the roots of the equation
m i
1- 1= biD =0 (3.2-5)
i=1

1ie outside the unit circle. The conditions of invertibility are independent
of the conditions of stationarity of the time series. Both stationarity
and invertibility are necessary conditions for the consistency of parameter

estimates.

3.3 Estimation of the power spectrum

Using the estimated values of the ARMA parameters an estimate of the
power spectrum can be obtained. The ARMA process can be treated as a
linear transformation with the Fourier transform of the filtier given by

m .
1- 3 bl,e-JZ'nfkT
k=1 "

H(f)= . 1fl <

l_-l

(3.3-1)
n . 2T

] - > ake-J ZTTfkT

k=1
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(f)  (3.3-2)

1
If {v,} is a white noise sequence va(f) has a constant value in Ifl < 2T

and lH(f)l2 itself represents the power spectrum of the process {yk}.

. TN
Then the output spectrum Syy(f) is given by Syy(f) = [H(f)I Suv

Equation (3.3-2) can also be stated conversely using the Paley - Wiener

condition [P3].

Theorem: If the spectrum Syy(f) satisfies the Paley-Wiener condition

w en 1S ()1
s ”2' df < o . (3.3-3)
o 1+ f

then the process {yk} can be generated by passing white noise through

the filter whose Fourier transform H(f) is such that

C lH(f)]2 = lSyy(f)l, where C is a constant.

In the discussion of autoregressive process we will obtain an

estimate of the error in the power spectrum as obtained from (3.3-1)

3.4 Use of Autoregressive Models for Random Noise Signals

The choice of one type of model over the other depends on the type
of signal to be modeled. Any one of the models of equations (3.1-3) -

(3.1-7) may be suitable for a given time series.
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Let the time series {yk} be a purely random,weakly stationary process.
Pure randomness implies that that are no super-imposed frequency components
1ike a sine: wave or any periodic signal, or a DC component. If a DC
component is present, this is removed by subtracted the mean value of
the time series from the original data. Thus under these conditions the
{yk} is generated by a sequence of noise pulses such that {yk} has a

representation

Y = biviei + Vi (3.4-1)

1

™8

i=1

where {vk} is a white noise sequence with
— — 2 -
E[vk] =0, E[Vjvk] = o, Sjk’ Vi,k (3.4-2)

We notice a mapping here between the spaces {vi,i < k} and {yi, i<k},

Thus Yy can be approximated by

N o~=

Yy = aY_i t Vg (3.4-3)

i=1

arbitrarily closely with increasing n. We can consider

nm~™ms

¥y as the projection of Y onto the space (or manifold) of
1

{yk_.i’ 1.=.|,o..n}
For stationarity of the process,the roots of the equation

1- 5 anD'=0 (3.4-5)
i=1
must lie outside the unit circle. These observations provide the

rationale for the use and application of autoregressive models both for

power spectrum estimation and evaluation of dynamic response characteristics.



CHAPTER 4
ESTIMATION OF OPTIMAL AUTOREGRESSIVE PROCESSES
AND MODEL VALIDATION

Since the form of the empirical model may not be known a priori we
assume that these are represented by models described in Chapter 3, with
constant coefficients. There are cases where the functional form of the
predictors is changed so that a more efficient representation is obtained.

Such autoregressive (AR) processes are referred to as generalized AR processes.

Yk = 3ifs Wpaq) + vy (4.1)

™3

i=1
The function fi(') may be a logarithmic, squared or any other function
such that (4.1) is asymptotically stable (see [K1], ch.3). In this chapter

we restrict ourselves to the constant coefficient AR processes of the form

il ™=

Y T AYk-i VK (4.2)

i=1
We will obtain the estimates of {ai,i=],2,...,n}, their properties and
compare them to the least squares and maximum likihood estimators. Selection
of an optimal class and the validation of the selected model is discussed

in detail. Estimation of the power spectrum and its error bounds are given.

4.1 Estimation of AR Parameters

AR model estimation both for prediction and for spectral estimation
has been studied by several authors - Yule [Y1], Walker [W1], Hannan [H2],
Akaike [A4-A9 ], Anderson [A10]. We discuss the Yule-Walker equations

and their properties as related to maximum likelihood and Teast squares.
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Let the time series under observation be a realization of the auto-

regressive process defined by

™M >

‘yk a'i’yk-'i + Vk’ k=1,2..... (4.1-1)

i=1

{vk} is a white noise sequence - v, are uncorrelated with statisties
= 24 _ 2
E[vk] =0, and E[vk ] =¢" for all k. (4.1-2)

Define the autocorrelation function of the stationary process {yk} for

lag k, as
Since {yk} is a real process, Ck is symmetric

C, =C,  for all k. (4.1-4)

-k

A recurrence relation for the autocorrelation functions of a
stationary AR process is found by multiplying equation (4.1-1) by Yi-k

to obtain

Y-tk * Yook Vi (4.1-5)

n
Ytk Yt T 2

i=1
Taking the expected value in (4.1-5) and noting that Y¢. s independent
of V| we get

n
Iooaklyy vy (4.1-6)

ELy, el = =

Using definition (4.1-3) the above equation becomes

k>0 (4.1-7)

nmo™3

C a.c .
k i=1 i k-1
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The correlations are computed from the observed time series as

~ o~

‘yk‘y'i‘l'k’ k =0,1,2,... (4.1-8)
N
I Yo i=1,2,... (4.1-9)

Where N is the number of observations. Equation (4.1-7) can be written

for k = 1,2,...,n giving

¢y = a1c0 + azc] L, a,Cn-1

c, + cC, + ... + (od
& T a 2.%n-2

7 2“0

€y = a1C 1 YA, 5t ... tacy (4.1-10)

Equation (4.1-10) are called the Yule-Walker equations (see [B2], Ch.3).
The parameters a., i=1,2,...,n are obtained by solving (4.1-10). Rewriting

the set of linear equations in matrix form we obtain:

ST — 7 o)
C1 Cg C1 + -+« - Chg a
Co €1 € -+ - Cpo a,
(4.1-11)
¢ Chol Cpo2 * -+« g | an—

or

c = Pa (4.1-12)
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P is an (nxn) symmetric Toeplitz matrix [G1]. (A matrix T is called a
Toeplitz matrix if all the elements along the same diagonal are equal,

tij = ti-j)‘ Taking the inverse gives the estimation

2= plc (4.1413)

Notice that we have been able to determine a without the knowledge of the

noise variance 02.

4,1-1 Estimation of Noise Variance

Multiply both sides of (4.1-1) by Yi and take the expected value giving

ELyC] =

™M
——ad

i a; E[ykyk-i] + E[ykvk] (4.1-14)

n
Noting that E[ykvk] = E[( z aYp-q * vk)vk] = E[vkz] gives
i=1

n
_ 2
or 8% = c - 3 A (4.1-16)
0 E 2 .

Notice that the noise variance is obtained as a function of the estimates

of AR parameters.

4.1-2 The Least Squares Estimation

The least squares problem of estimating a using N observations may
be stated as the minimization problem

N
min & (yk -

a.y, «)2 (4.1-17)
. iv k=1
a k=1 i

™3

1
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The solution to the above problem is given by
2= ()T ATy (4.1-18)

Where A is (Nxn) matrix defined below.

A = Yo 0 . . . . 0
Y Yo - . . . 0
) ) o (N x n) matrix
n T

(4.1-19)

IN-1 IN2Z ® - yN—n

Once the a is estimated the noise sequence may be estimated as the residual

estimate

8. i o k=1,2,00 00N, (4.1-20)

A2

271 ,
5% = Elv, A1 = g ) (4.1-21)

By comparing the Yule-Walker equations and (4.1-18) it is evident that

the least squares estimate approaches the Yule-Walker estimate as N » .
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4.1-3 The Maximum Likelihood Estimation

This method is based on the assumption that a joint probability

density function (pdf) of the observations may be constructed. Let

p(xﬁ, a, %) be such a density function where xﬂ = {y,

oooooo

In many cases the evaluation of p(XN,_) is very complicated. Alternately

a conditional Tikelihood function is defined as

2
L= p(y" | 2,0 ,y,) (4.1-22)

Where Y, is the initial state. The maximum likelihodd estimator is defined

by

N 2
max p(y |a,o 5 ¥,) (4.1-23)
2
a,o

2
We search for the value of (a,o ) for which the conditional pdf becomes
maximum. In general we assume that a belongs to some subset of the
parameter space so that the assumptions of stationarity and stability of

the systems are satisfied.

Let the uncorrelated noise sequence {vk} be distributed as a Gaussian

2 2
distribution with mean zero and variance o . Vi v G (0,0 ), Then the

joint conditional pdf becomes

=

2
py Tay o) =t ep =z (¥ -

2
)
(2n02)N/2 262 k=1 i

n
51 sy, ;)7 (4.1-223)

It is convenient to use the natural logarithm of p. Thus we have

=Y anene?) - 1 (y -7 a
"2 " Yy i Yk-i
k=1 i=]

It is clear from above that since 2¢n L is a monotonic function of L,

)2 (4.1- 29

maximizing L is the same as maximizing an L. This is also equivalent to
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minimizing - an L

N 1 N n 2
-l = > an(2m02) + — ) (yk -z aiyk-i) (4.1-26)
202 k=1 i=1]
The problem may be restated as
min - enL = nin g(yN, a, 02) (4.1-27)
(a,02) (a,02)
To obtain {ai, i=1,2,...,5n}:
gy, a.0?) = 0, is1,2,..m) (4.1- 28

Equs. (4.1-28) are the same as the least squares solution of section

(4.1-2). Once the {ai} are obtained we form

N oy _ N o1 N n 2
g(.y 28, O ) = '2' 2n(2Tr0 ) +232 z (’yK - g-la'i‘yk-'!)
k=1 1=
d N n
g N 1 2 _
Y =533 L (‘yk - Zz a1yk_1) =0 (4.]" 29)
k=1 i=]
, 1 N n 2
o =& I (yk— z aiyk-i) (4.1-30)
k=1 i=1

The above equation is the same as (4.1-21).

Thus we see a matching of the Teast squares and the Gaussian conditional
maximum likelihood estimators. As pointed out in section (4.1-2) the

least square estimation and the Yule-Walker estimation are equivalent for
N - =, All the three techniques have asympotitically the same property.
We say that a given solution is asymptotically efficient if it approaches
the maximum likelihood estimator in the Gaussian sense. Thus even without
the assumption of a form for the density function we can obtain consistent

estimators similar to the CHML estimator in the Gaussian case.
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4.1-4 Error Convariance of AR Parameters

Using the asymptotic oroperties of the errors in the estimates of a

we can derive an expression for the error convariance of a. The following

theorem is proved in [A7,H2].

Theorem 4.1-1 Let {yk} be generated by a stationary AR process
described by (4.1-1). Then 3 and 5? converge to a and % in probability
one, Moreover<JTf (a - 3) has a distribution which converges as N » =
to that of a normally distributed vector with zero mean and covariance

. 2 ~ 21 . .
C L ]
matrix o vy where ny 1s n X n matrix
A 2 ~=]
- ) 4,1-27
,fN (a -3) ~ G0, 0 ny) ( )

Remark: The covariance matrix may be estimated as

A2
A A T . o A |
E[(a - @) (a - Q) ] K Cyy
Where
B T
ny N Co C] s Cn-]
¢, ¢ . C,os
Cn-'l Cn-2 - L] o CO
— -

4.2 Estimation of Power Spectrum

It is not our intention to rely on evaluation of the power spectrum of
the process Yi to estimate sensor time constants. However, the AR para-
meters may be used to find an estimate of Syy(f) for comparison with power
spectrum estimates obtained by other methods. The following relation is used:

2
S,y(F) = [H(A|® s, (f) (4.2-1)
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Where Syy(f) is the power spectrum of {yk}
va(f) is the power spectrum of {vk}

H(f) is the linear transformation obtained from the AR model. Thus

A 2
S, (f) = o°T , f <
vy - =
Lo o -ionfkT | 2
k=1 K

1
2T (4.2-2)

where va (f)= 52T and f is in Hertz.

T = Sampling time in seconds

It is possible to obtain an expression for the variance of the power
spectrum by using the result of the previous section that the error in
E:is distributed asymptotically as a Gaussian function.

Define the following:
n

ACF) =1- 3
k=

A =i2nfKT
. age (4.2-3)

n ; . :
SACE) = - 2 &\ke'12”fkT
k=1

(4.2-4)

{Aﬁk} is the error in the estimate of {ak}, discussed in section

(4.1-4). The total differential of ASyy(f) of Syy(f) for the differentials
Aak = 3k -2 and Aoz 532 - 02 is
aS. (f) a2 n A
AS. (f = A + z 3S.  (f Aa 4,2-5
sy () AL S0 8 (4.2-5)

3.0 k=1 Sak
We are interested in obtaining a value for the Timit distribution of
AS  (F)
Yo

Syy(f)

(4.2-6)

It is shown by Akaike [A6] that the expected value of (4.2-6) as N » =

is given by
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AS 2 | | 2
A 2 A VA(F
Ee (‘§Xz"92 = B (E%' )T+ Eg | A(F)
yy

(4.2-7)

This result is obtained by using the earlier results (see[A6], theorem 2)

that the 1imit distribution of JN aa and Jﬂ‘Aoz are mutually independent.

In (4.2-7) A|A(f) | 2 is given by

2

A A(F) | ° = A(f) BA(F) +A(F)  sA(f)

Where denotes complex conjugate.

The first term in (4.2-7) is evaluated as

2 m
Ao vz 14
Ew —_i ) - N ( 4 ])
[¢] (0]
Where m, = E[vk4]. For aGaussian noise m, = 3ot

(4.2-8)

(4.2-9)

The following are the steps in computing the variance of the power spectrum

from AR model.

n .
2 e-12nfkT

1. Define A(f) K

[f]
-
1

k=1

L7 ah emionfkT

k=1 K

AA(F)

{Agk}2=] are obtained from the error covariance matrix defined as

follows
A a] CO C]
A a2 C'l CO
: = gE_ diag
N
A an Cn-] Cn-z

n-1

n-2
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2. Caleulate a |A(F)| 2 = A(F) BA(F) + () A(f)
3. Compute
AS (f) m 2
_ 14 A IACRNS 2
Var (o) = w1V e
m 2
ssw(6) = G - D+ U PP s
o
where
02T
s, (F) = g ,
|1 N -ientkT |2
k=1 K

4.3 Selection of Optimal Autoregressive Models

A model that is chosen based on a given criterion should also pass
all the validation tests (discussed in sec.4.4). As we have mentioned
earlier an optimal model of an AR process may not be the best model for
a given data. But we assume that this is indeed the case and restrict
ourselves to the selectijon of the best model in this class. Many common
criteria such as least squares may not lead to good models. A criterion
must be sensitive to changes in the model order; the prediction capability
of the model must be reflected by the criterion function. Bayes' minimum
probability of error criterion is the most versatile of the methods

described below.

It is important to realize that the selection of a best model is a
decision making process. There may be cases when it is difficult to choose
a model based on the absolute optimum of the criterion function. We suggest
that in such a situation all the tests described below may be applied to
be satisfied simultaneously. We want to avoid using rather arbitrary

quantities such as significance levels to minimize the subjectivity of
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decision. The hypothesis testing method, which uses these quantities
will be described since it compares models of different orders based
on a significance of the change in model order. The methods for order
selection are:

(a) Likelihood Approach (Akaike [A2], Kashyap [K1])

(b) Final Prediction Error (FPE) (Akaike [A7])

(c) Hypothesis Testing (Wilks [W1], Kashyap [K1]).
(d) Bayesian Probability Criterion (Kashyap [K4])
4.3.1 The LikelihoodApproach

This method is based on computing the maximum value of the log
likelihood function for a given order n. Once the conditional maximum
likelihood (CML) estimate 8 = (a, 8) is obtained then an average value

of the Tog likelihood function given 6 is derived. The following theorem

gives this value.

Theorem 4.3-1. Let é_ be the CML estimate of 6, based on the

observations XN- Then

ELen p(y" 1001 = smp (N8 -(n+ ) (4.3-1)
For a proof of this theorem see [K1 , p184].

We note that &n p(xﬂ | 8 ) would have been the correct log 1ikelihood
value if xﬂ had come from a model characterized by §, Since §_is only
an estimate of 6 this additional ignorance about 9, manifests itself in
a reduction in the likelihood by a quantity (n+1). The optimal model is
chosen such that the expression in (4.3-1) is a maximum. This decision
rule was first proposed by Akaike [A2] based on considerations different

from that given in [K1].
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Decision Rule 1: For a given model of order n estimate the CML

parameters 6. Calculate

L=anp(y | 8)-(n+1) (4.3-2)

Choose the model for which L is the maximun.

REMARK: Calculation of L requires the knowledge of the distribution of
the noise sequence {vk}. In many cases the assumption of {vk} to have a
Gaussian distribution will be close to reality. As discussed in section
4.1, the least squares and the Yule-walker equations will give the same
consistent estimates as the Gaussian maximum likelihoodestimate. Thus

the assumption is not very restrictive.

Calculation of L: With the above assumption we first calculate

nm>s
<1}

Vie T Y - k=1,2,...,N (4.3-3)

.yk
i

1 i7k-1?

Vk is also called the prediction error, residual or the innovations

process. With the above definition

p(.xN | §) = W exp {- ‘2‘3?2‘ kg] ’v‘kz} (4.3-4)
L= (ans) - L ? -+
2 2 k=1
By taking the negative of L
N N A2 Y
-L={§ n (21r)+]}+—2- n G +E§T kz] vyt

Since the first term is a constant, not a function of model order we

can rewrite the above as

2 n A
Ly = %- an () +-E%T— z vE +n (4.3-5)
g
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n = number of independently variable parameters. If the estimate of

2
o 1is given by

8' :J— x A
N Vi o (4.3-6)
substitution in (4.3-5) gives
N A2y LN
L] == (o) + >

Once again neglecting g- and multiplying by 2 gives

2
AIC=Nzn () + 2n (4.3-7)

We call AIC as the criterion such that

2
min AIC= N ¢n (G ) + 2n* (4.3-8)
where n* is the optimum model order.

4.3-2 Final Prediction Error (FPE) Criterion

The final prediction error is defined as

FPE = E[(.YN‘S)N)Z] (4-3"9)
where

A n A

Yy = I ain_i (4.3-10)

i=1

The 31'5 are determined using {yk, k=1,2,...,N}. This was proposed by
Akaike in 1970 [A7] as a method of choosing an optimal order n such

that the FPE is a minimum. The evaluation of FPE assumes that as N
increases, the dependency of S(N) will be completely vanishing. In other
words the estimates of a are independent of the present or recent

values of the data and that QN depends on the statistics of

{¥y_y» 1=1s...n}. Based on this and the estimates of a using the
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Yule-Walker equation Akaike derived an expression for the FPE as

_ Nin
(FPE). = §7r S(n) (4.3-11)
where
n N
S(n) =co -~ = a;c, (4.3-11)
i=1
1 n-i
and c; —N;iki] Ye Yiri (4.3-12)

If the noise statistic has a Gaussian distribution then it can be
shown that the (FPE)h asymptotically approaches the 1ikelihood criterion

given by AIC of equation (4.3-7).

Theorem 4,.3-2 If the noise statistic of {vk} has a Gaussian distribution

then

. 1
Tim #n (FPE)n = N-(AIC) (4.3-13)

N > o

N+n
N

-n
As N ~ =, S(n) - 62,a consistent estimate of o2.

Proof: (FPE)n S(n)

an (FPE), = end2 + gen (1 + %) - on (1-%)

nh . n My .. n
2n (1 +-ﬂ) = and an (1 N) i
A 2n
= 2 =LAl
Ln (FPE)n o + S
l—(AIC) = gng? + gﬁ- from egn. (4.3-7)
>
. 1
Tim 2n (FPE)n = N-(AIC)

N+oo



a4

4.3-3 Hypothesis Testing

This procedure, also called the likelihood ratio test, is used for
small samples in testing the various hypotheses concerning the parameters
of a normal distribution. This is treated by several authors. Ue refer

to the work by Wilks [W1], Chapter 13,

We apply this theory to compare two classes of models, one with
n, parameters and the other with N, parameters, n, > ng. Based on
the observation {y],....,yN},we define a quantity ”d(XN) as a

statistic which is a function of x”.

Decision rule D: ny (xﬂ) < ng > accept ny (4.3-14)
> ng accept n,

Where N, is a threshold. The value of'no is fixed based on the property
of the statistic nd(x”).

Define the likelihood ratio as

N
n(yy = maxpp {y = (4.3-15)

where P and p, are conditional probability density functions with ny
and Ny parameters.

Then the 1ikelihoodratio test is given by

n (@M < n, * accept ny (4.3-16)
n (XF) > n, > accept n,

Where n  is a suitable threshold.

The probabilities of errors associated with the above decision are

classified as follows.
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Probability of type I error
= Prob {n(xﬂ) > ng l XN belongs to model n, }
Probability of type II error
= Prob {n(xﬂ) < Mg | XN belongs to model n,}

Decision Rule: The following decision rule is developed by Wilks. It

it stated in the following form so that the decision rule under ny has a
standard distribution.
Let N = No. of observations

Ay = No. of AR parameters for model 1.

no= No. of AR parameters for model 2.

Let V(g,nT) Residual sum of squares for model 1,

V(g_nz) = Residual sum of squares for model 2.
Define
F=N-M Vig, ny) - V(g np) (4.3-18)
nz- n] V(_e__s n2)

Using a theorem due to Cochran (see W[1], p212)

v (8,n) - V(Q}Q?} and V(6,n,) are independently distributed according
to xz- distributions with (nz—rﬁ) and (N-nz) degrees of freedom. In
order to derive this the noise statistics are assumed to be normal. It
then follows that the function F has a F-distribution

with (nz-n]) and (N-n2) parameters-F(nz-n], N-nz). The probability
distribution of F is independent of the parameters (g,oz). The F-
distribution is tabulated and we can choose a threshold o to yield

a particular value of the error probability of type I. But we cannot
determine the type II error probability. The type I error probability
is chosen as 0.05 or 0.02 etc. The ambiguity of this choice suggests
that the decision rule basedon AIC or FPE be used., The value of F,

however, gives an estimate of the type I error probability when using
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the likelihood criterion or final prediction error criterion.

Remark: We want the number F in (4.3-18) to be less than some threshold.
We choose this threshold by computing the 100x% point E] and see if F

< Fy. We do not want F to be greater than F,. Set the Timit by letting
P(F>Fa) = o = area under the F- distribution curve between F& and =,

Then the error probability of type I is prechosen as a. See figure (4.1).

For description of xz and F-distributions see Appendix 4A.

'

p(F)]

p(F>F)=a

G rs

o
T e
-

Figure 4.1

For a given value of o, if F<Fa then we can stop the estimation procedure
and choose n2(>n]) as the optimal order. If n, and ny are successive

orders then n2-n]=1 and we have to compute F(1,N-n2).

4.3.4 Bayesian Comparison Criterion

The Bayes' criterion is derived such that the probability of error
in selecting an optimal model is minimized [K4]. The decision rule states
that if there are n models with parameters (n], Nos « o o5 nm) then choose
the model whose a posteriori probability P(nilxﬂ) is a maximum. This

criterion has the property of asymptotic consistency and gives a quantitative
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explanation of the "principle of parsimony" defined in the construction
of empirical models. Moreover the effect of the assumption of prior
probabilities is negligible for large N. The decision rule is transi-

tive and the probability of error of the optimal decision rule is given by
Probability of Error = 1 - max P(nilxw) (4.3-19)

The decision rule is given by

D(XN) = argument max P(ni]lﬁ) (4.3-20)

ie{1,2,...,m}

That is, choose n such that the a posteriori probability is a maximum. For
autoregressive processes with Gaussian distributions, the criterion is given
b
Y _ 9
BPC = Neno - nan N-nfen(-Yy) -1 (4.3-21)

g
v
where °v2 is the variance of {vk}, cyz is the variance of {yk}. Choose

n such that BPC is a maximum.

4.3.5 Discussion Among the four model selection methods presented above
the Bayesian approach is very versatile, requires less ambiguity and gives
good results in practice (see discussion in reference [K4]). In fitting
AR models the model order from the likelihood criterion may be larger than
is necessary to pass validation tests.

The final prediction error in the AR case gives results close to
the 1ikelihood method. Both the tests may be implemented to reinforce the

validity of the model.
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The hypothesis testing approach is valid for large N. Only then the
assumption of F-distribution is valid. There are instances where the first
two methods may not produce an absolute minimum of the criterion function.
After reaching an elbow shape the values of AIC or FPE may oscillate. See
Figure 4.2. If this happens the F-test could be used to make a valid
judgement about the model order without increasing the model order to an
arbitrarily large number. Since this approach compares the change in error
from one to the next model the F-test can be used in conjunction with the

likelihood or prediction error tests.

4.4 Validation of Empirical Models.

After an optimal model is obtained, the model must be tested for the
assumptions made regarding the statistics of the observations. It is
important to realize that the best model obtained above may not always
adequately represent the data. We have not taken into account any periodic
or sinusoidal variations in the signal. Also additional input variables
may not have been considered.

The first validation test is to check the whiteness of the noise
sequence {vk}. One may use the residual sequence and compute the auto-
correlation of the residuals to calculate an index and compare this against
a desired level of significance. Since we are interested in checking if
the model is satisfactory, the arbitrariness of the significance level will
not introduce any error. The output data itself may be tested for spectral
density and correlogram.

In the following we present several validation tests. Simultaneous
verification of these tests will exhibit any deficiency in the model. For

details see [K1, B2].
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4.4.1 Autocorrelation Check Using Prediction Error

The major assumption in the model is that the background noise is a
white noise sequence. Such a noise process has the property that the adjacent
points of the series are not correlated. The correlation function must have
the characteristics of an impulse function. The spectrum of the noise

sequence must be flat within the band, limited by the folding frequency.

The residual or prediction error estimate is calculated as

A n ~
Vi T Y T B g kElZs N (4.4-1)

i=1
If the parameters a of the AR model are known exactly, then it is

shown by Anderson [A11] that the estimated autocorrelation
o (v) = Clv)/C (v) (4.4-2)

of the noise sequence would be uncorrelated and distributed approximately
normally about zero with variance %-and hence with a standard deviation of
1//N. When we only have an estimate 3, the residuals can be determined

as in (4.4-1). The autocorrelation of {Ck} is then determined and plotted.
It is shown by Box and Pierce [B3] that this value may underestimate the
error in pk(V) at Tow lags, but can be employed as a good estimate of

error at moderate or high lags. The whitness of the noise is then checked
by comparing a given number of pk(V) against a 95% confidence level given
by i_1.96/JN. If less than 5% of the autocorrelation functions are outside

this 1imit, then the whiteness is assumed with 95% confidence.

4.4,2 "Portmanteau" Lack of Fit Test (Box and Jenkins, [B2])

This is a goodness of fit test. Since taking the CK(v) individually

and checking their boundedness is similar to testing a random sequence,
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an indication is often needed of whether the first few correlation functions
taken as a whole indicate inadequacy of the model.

Let Ck’ k=0,1,2,... be the autocorrelations of {vk}. The estimate of

the residual spectrum S(w) is

S(u)= 1 etk (4.4-3)

S0

If {vk} is white then S{w) = S(0) ¥w and the mean square deviation of S(w)

from S(0) is

LT (s(e) - s(0)2 do = 3 ¢ (4.4-4)
2m k=1

-T

We can test the whiteness of{vk} by evaluating (4.4-4). In practice the
series must be truncated and Ck replaced by their computed values., It is
shown by Box and Pierce [B3] that

M

Q=M 1 2% (¥ (4.4-5)
k=1
where
Nk N,
G W= 2oV Ve /B,
i=1 i=1

is approximately distributed as XZ(M-n). If the model is inadequate the
average value of Q will be inflated. This test is a form of hypothesis
testing where the value of Q is compared with a value of x2 with (M-n)
degrees of freedom, chosen according to an accepted value of the error

probability. M is chosen between 0.01N and 0.1N depending on the size of N.

4.4-3 Bandwidth of Residual Power Spectrum

If the noise sequence is a white noise process, the spectrum will be

flat in the band -Q%r-f_f < E%—-Hertz. The flatness of the spectrum

can be checked by calculating the estimate of va(f) as follows:
n
LN
a. Determine Vie =Yg - E

»
i Yo o Ke1e2,00 M.

1
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~ 1 N-k
b. Determine C, (V) = z
N

A A _
Viv.i"'k ) k" 1,2,.-.,’4.

c. Calculate the Fourier transform of Ck(Q) as follows:

M

Sw(f) = T e L e & (4.4-6)
Since Ck is symmetric (4.4-6) becomes
() ; !
S. (f)=C +2 % C, cos 2nfkT, Ifl < - (4.4-7)
w © k=1 K = oot

va(f) may be calculated and plotted. Satisfaction of all the above
three diagnostic checks assures the appropriateness of the model and
provides the needed confidence about the statistical assumptions on the

driving noise.

4,4.4 Comparison of Spectral Estimates

The estimate of the power spectrum obtained from the AR model (see
section 4.2) can be compared with the power spectrum obtained by Fourier
transforming the given data. The latter can be obtained by using Fast
Fourier Techniques (FFT) and an appropriate window function such as
Kaiser-Bessel, Hamming or Parzen windows.

The Kaiser-Bessel window is defined as follows:

= ky2.1/2
W(k) = IO[B{] - ('N') } ] s 1kl ..<._N
1,(B) (4.4-8)
0 s Ikl >N
. Bk
Io(x) = 5 [ -z ]2 is the Bessel Function of order zero.
k=0 k!

window parameter. Values of p=3.384 to B= 7.865 are commonly used.

P
P

Jenkins and Watts [J1]. Figure (4.3) shows the shape of the Kaiser-Bessel

5.658 is recommended. For definitions of other window functions see
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W(k)
window.

Kaiser-Bessel Window

Figure 4.3

The time series is multiplied by the corresponding window function.
to smooth out the effects of data truncation, The stability

of the AR spectral estimate is given by the asymptotic variance

4
2. 10 AlA(F) |2 12 2
|85, (£} = (jo™ -1) + [ () [2 173 s, (F) (4.4-9)

(Comparison to classical spectral estimator is discussed by Kaveh and

Cooper [K3])

4.,4,5 Test for Normality: The assumption of normality of the noise

statistics is not a very serious one. For most of the analysis this
assumption is not at all necessary. However, it would be informative to
see if the data has a normal distribution.

One simple test is to plot the estimate of the residual sequence
{Vk} and see if 95% of these lie within 1_2; where g% is the estimated
variance of the noise. A test such as this is once again a hypothesis
testing scheme by assuming a level of significance in the curve of
normal probability density.

Another test which evaluates the goodness of assumed density is

called the Kolmogorov-Smirnov goodness-of-fit test. This is also a
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hypothesis test and gives the answer by evaluating a single number. This

stastistical test is described below.

Kolmogorov=Smirnov {(K-S) Test:

Let p(v) be the probability density function of the noise process. Let

us postulate that this has a normal distribution.

v2

p(v) = S — _ez" (4.4-10)

V 21a?

N
Let V= {VyVy,...,v\} be the sequence of estimated values of residuals.

Define
1 if Vi SV
Gi(v) = (4.4-11)
0 otherwise
Then the empirical distribution Srév) of the sample yﬂ is given by
N
sy(v) = ¢ %i(v) (4.4-12)
i=1 TN

The postulated distribution function is given by

F(v) =\f p(v) dv (4.4-13)

It can be shown that if F(v) is indeed the correct distribution then

SN(v) converges to F(v) in probability (see Gibbons [G1]).
The K-S statistic (for a given sample) is defined as

D=0 18 (V) = F(W) (4.4-14)

This Dy statistic can be shown to be independent of the continuous

distribution F(v). It is called distribution-free statistic.
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The probability P(DN < Z) has been derived in Gibbons. For a given

probability of error of the first kind, denoting
P(DN > DNa ) = a (4.4-15)

we can either calculate or refer to a table of K-S statistic, and determine

DN' Then, if DN >DN“ reject the hypothesis that SN(V) has the distribution

postulated as F(v). If DN g_DNa then the postulated distribution F(v)
9

is acceptable at a level of significance of 100(1-0)%. For finite N < 50

the values of DNtxare tabulated in Gibbson for o« = 0.01 and o = 0.05.

For large N, an asymptotic expression is derived by Kolmogorov as follows.

Z
Tim P(D, > —)= 1 -L(Za) (4.4-16)
where
L(z,) =2z (-1)71 exp (-2i2 zg) (4.4-17)
i=1

The values of this probability for values of z, are tabulated by
Smirnov [S2].

The above approximation is close enough for N > 50,

4.4-6 Discussion: This concludes the summary of the techniques. We have pre-
sented the five important tests one can carry out with straight forward cal-
culations and use of proper tables. Appendix 4A gives more definitions of
various distributions mentioned in this chapter, together with some useful
tables. The knowledge of the distribution of noise processes is useful if the
analyst needs to generate synthetic data simulating the actual process

for any future analysis. The reader is encouraged to refer to the books

and papers referenced in this chapter and extend the methodology presented
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here to suit his/her special needs. It is important to realize that the
empirical model building, though based on sound theoretical analysis,
requires a good understanding of the problem under study and needs modi-

fication if necessary.
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APPENDIX 4A

In this appendix we will outline the probability density functions

of important distributions that appear in statistical inference.

4A.1 Normal or Gaussian Distribution

. . . . 2
If x is a normal random variable with mean s variance oy = denoted

by x ~ N (ux, oi) then

7 =% "¥x ~ N(0,1) (8A-1)

Ix

It is desirable to denote the value of z which corresponds to a

specific probability P(z) = 1-a

Z
P(z,) = /% p(z) dz = P{z < za}= 1-a (4A-2)

fP(z) dx = P{Z > Z } =a
7 o

[+ ]
The value of Zu that satisfies the above is called the 100a% point.

(4A-3)

Table (4A-1) gives values of Z, as a function of a.

4A-2 Chi-Squared Distribution

Let Zss i=1,2,...,n be such that z; ™ H(0,1) Define the new random

variable
x.2=212+ 24 ... +122 (8A-4)

The random variable xn2 is the Chi-squared variable with n degrees of
freedom; degrees of freedom , represents the number of independent or
free variables entering into the expression. The density function of
2 . .

is given by

X
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n 2
p(in | n) = n/z] . (XZ)—Z— - 1 e A /2, Xz >0 (4A-5)
2751 (%)

Where F(EQ is the gamma function defined as

m-1

r(m) X1 e™X dx, m>0 (4A-6)

It
o 8

The 100 a % point of the xz distribution with n degrees of freedom

is denoted by %Zh,a

Xé p (D) &l = P8, > o, L) =« (4A-7)

sC n,a

2

n,o'

Table (4A-2) gives values of

4A.3 Student t Distribution

Let y have a in distribution with n degrees of freedom and
z ~ N(0,1). Define
t, = — (4A-8)
y/n
The random variable tn is the Student t variable with n degrees of

freedom and its probability density function has the form

' Sn ;'l} L L )
p(tn) = 1+ - nl* 72 (4A-9)
Jn r(!zl) n
The 100a% point of the t-distribution will be denoted by t.n . that is
/ p(t,) dt = Plt ot (4A-10)
n,o

Values of tn , are listed in table (4A-3).

4A.4 The F-Distribution

Let 2 and ¥y be two independent random variables such that
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.Y] v (Xzs n])a .yz v (XZ, nz). Define

y1/ny Y1y
c ) ] (4A-11)
My YolNp Yoy

The random variable Fn],n2 has an F-distribution with ny and n, degrees

of freedom and its probability density function is given by

n
1
Tin + n (n )-—-—— n
1 2 172 1
p(F ) = %—————} — F{-— -1} ,F>0 (4A-12)
nyn, 2 N, 2
n n Ny MNg/2
r _l% r )220 [0+ —F]
2 2 2
The 1000% point of F-distribution will be denoted by Fn _—
'|9 2’
? p(F) dF = P{Fn n,s> Fnyun ;al = o (4A-13)
1°72° 12722
Nyshosa

Table (4A-4) shows the values of Fn1n2;a2

4A.5 The Kolmogorv-Smirnov statistic

Define

D, = sup [S,(x) = F(x)] (4A-14)

where F(x) is any continuous distribution function.

P{D, < é% + v} = 0 | , forvz0
(+9 B+9 B+
j- \( ‘{ f(u],uz,...,un)
(2171 - v) (2% - v) —z—g—n'—]—- ) dun...du1
for 0 <v <22;]
1 for v >  2n-1
2n
h
wnere ne  for 0 < up < Uy <...< U< 1 (4A-15)

f(u] ,uz,...un) ={

The values of Dn o such that P{D>D, o are tabulated in table (4A-5a).

0 otherwise
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The asymptotic expression is given by

1im P{Dn 5_—§—} = 1(z) »2>0
n -+
where
L(z) =1 -2 k;] (-1)%] exp (-2k%22 (4A-16)

The asymptotic expression for P{D.n > fgg and the corresponding values of

i
z  are listed in table (4A-5b).



TABLE 4A-1 CUMULATIVE NORMAL DISTRIBUTION - VALUES OF P

' P
,¢AZZ§25§EEEEEI.E-._

z
P
Values of P corresponding to zp for the normal curve.

z is the standard normal variable. The value of P for -zp equals one minus the value of P for +zp.

e.g., the P for -1.62 equals 1 -.9474 = ,0526.

Z, 00 01 02 03 .04 05 06 07 08 09
.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
. .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
.2 .5793 .5832 .5871 L5910 .5948 .5987 .6026 .6064 .6103 .6141
.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
.5 .6915 .6950 .6985 L7019 .7054 .7088 L7123 L7157 .7180 L7224
.6 .7257 .7291 .7324 .7357 .7389 L7422 .7454 .7486 .7517 .7549
.7 .7580 L7611 .7642 .7673 .7704 L7734 .7764 .7794 .7823 .7852
.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
.9 .8159 .8186 .8212 .8238 . 8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 . 8461 . 8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 . 8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 L9131 .9147 .9162 L9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 . 9345 . 9357 .9370 .9382 .9394 . 9406 .9418 .9429 .9441
1.6 .9452 . 9463 .9474 .9484 .9495 . 9505 .9515 . 9525 .9535 .9545
1.7 . 9554 . 9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 . 9656 . 9664 .9671 .9678 . 9686 . 9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

L9




TABLE 4A-1 (Continued)

b .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
2.0 .9772 .9778 .9783 9788 9793 .9798 .9803 .9808 .9812 .9817
2.1 . 9821 .9826 .9830 .9834 .9838 .9842 . 9846 . 9850 .9854 .9857
2.2 .9861 .9864 . 9868 .9871 .9875 .9878 . 9881 . 9884 .9887 . 9890
2.3 .9893 . 9896 .9898 .9901 9904 .9906 .9909 L9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 9927 .9929 .9931 .9932 .9934 9936
2.5 .9938 . 9940 .994] . 9943 .9945 .9946 . 9948 .9949 .9951 .9952
2.6 .9953 . 9955 .9956 .9957 .9959 9960 .9961 . 9962 .9963 .9964
2.7 .9965 . 9966 .9967 9968 .9969 9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 9978 .9979 .9979 .9980 .9981
2.9 .9981 9982 .9982 9983 9984 9984 .9985 . 9985 .9986 9986
3.0 . 9987 . 9987 . 9987 .9988 .9988 ..9989 .9989 .9989 .9990 9990
3.1 .9990 . 9991 . 9991 .9991 .9992 .9992 .9992 .9992 .9993 9993
3.2 .9993 .9993 .9994 9994 9994 ..9994 .9994 . 9995 .9995 .9995
3.3 . 9995 .9995 .9995 9996 9996 .9996 . 9996 .9996 .9996 .9997
3.4 .9997 9997 .9997 9997 9997 . 9997 . 9997 . 9997 .9997 9998

29



TABLE 4A-1 CUMULATIVE NORMAL DISTRIBUTION-VALUES OF Z,

Values of z
p

corresponding to P for the normal curve.

z is the standard normal vdriab]e.

P .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
00 | ----- -2.38 -2.05 -1.88 -1.75 -1.64 -1.55 -1.48 -1.41 -1.34
.10 -1.28 -1.23 -1.18 -1.13 -1.08 -1.04 -0.99 -0.95 -0.92 -0.88
.20 -0.84 -0.81 -0.77 -0.74 -0.71 -0.67 -0.64 -0.61 -0.58 -0.55
.30 -0.52 -0.50 -0.47 -0.44 -0.41 -0.39 -0.36 -0.33 -0.31 -0.28
.40 -0.25 -0.23 -0.20 -0.18 -0.15 -0.13 -0.10 -0.08 -0.05 -0.03
.50 0.00 0.03 0.05 0.08 0.10 0.13 0.15 0.18 0.20 0.23
.60 0.25 0.28 0.31 0.33 0.36 0.39 0.41 0.44 0.47 0.50
.70 0.52 0.55 0.58 0.61 0.64 0.67 0.71 0.74 0.77 0.81
.80 0.84 0.88 0.92 0.95 0.99 1.04 1.08 1.13 1.18 1.23
.90 1.28 1.34 1.41 1.48 1.55 1.64 1.75 1.88 2.05 2.33

Special Values
.001 .005 .010 .025 .050 .100
-3.090 -2.576 -2.326 -1.960 -1.645 -1.282
.999 .995 .990 .975 .950 .900
3,090 2.576 2.326 1.960 1.645 1.282

€9



TABLE 4A-2 PERCENTILES OF THE x

2

DISTRIBUTION

o 2 P 2 2 2 2 2 2
X, 005 X.01 X, 025 X, 05 X.10 X 90 X. 95 X 975 X 99 X,995
1 .000039 .00016 .00098 .0032 | .0158 2.71 3.84 5.02 6.63 7.88
2 .0100 .0201 .0506 .1026 | .2107 4.61 5.99 7.38 9.21 10.60
3 .0717 115 .216 .352 .584 6.25 7.81 9.35 11.34 12.84
4 .207 .297 .484 71 1.064| 7.78 9.49 11.14 13.28 14.86
5 412 .554 .831 1.15 1.61 9.24 11.07 12.83 15.09 16.75
6 .676 .872 1.24 1.64 2.20 | 10.64 12.59 14.45 16.81 18.55
7 .989 1.24 1.69 2.17 2.83 | 12.02 14.07 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 3.49 | 13.36 15.51 17.53 20.09 21.96
9 .73 2.09 2.70 3.33 4.17 | 14.68 16.92 19.02 21.67 23.59
10 2.16 2.56 3.25 3.94 4.87 | 15.99 18.31 20.48 23.21 25.19
11 2.60 3.05 3.82 4.57 5.58 | 17.28 19.68 21.92 24.73 26.76
12 3.07 3.57 4.40 5.23 6.30 | 18.55 21.03 23.34 26.22 28.30
13 3.57 4.1 5.01 5.89 7.04 | 19.81 22.36 24.74 27.69 29.82
14 4.07 4.66 5.63 6.57 7.79 | 21.06 23.68 26.12 29.14 31.32
15 4.60 5.23 6.26 7.26 8.55 | 22.3] 25.00 27.49 30.58 32.80
16 5.14 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00 34.27
18 6.26 7.01 8.23 9.39 | 10.86 | 25.99 28.87 31.53 34.81 37.16
20 7.43 8.26 9.59 10.85 | 12.44 | 28.4] 31.41 34.17 37.57 40.00
24 9.89 10.86 12.40 13.85 | 15.66 | 33.20 36.42 39.36 42.98 45.56
30 13.79 14.95 16.79 18.49 | 20.60 | 40.26 43.77 46.98 50.89 53.67
40 20.71 22.16 24.43 26.51 29.05 | 51.81 55.76 59.34 63.69 66.77
60 35.53 37.48 40.48 43.19 | 46.46 | 74.40 79.08 83.30 88.38 91.95
120 83.85 86.92 91.58 95.70 |100.62 | 140.23 | 146.57 | 152.21 158.95 | 163.64

¥9



TABLE 4A-3 PERCENTILES OF THE t DISTRIBUTION

65

df t 60 t 70 t 80 .90 t g5 t 975 t g9 t 995
1 .325 727 1.376 3.078 6.314 12.706 31.821 | 63.657
2 1289 617 1.061 1.886 2.920 4.303 6.965 9.925
3 1277 -584 1978 1.638 2.353 3.182 4.54] 5.841
4 27 569 ~941 1,533 | 2.132 2.776 3.747 1.604
5 1267 1559 1920 1.476 2.015 2.571 3. 365 4.032
6 .265 553 .906 1.440 1.943 2.447 3.143 3.707
7 1263 549 '896 1.415 1.895 2.365 2.998 3.499
8 1262 546 1889 1.397 1.860 2.306 2.896 3,355
9 1261 543 883 1.383 1.833 2.262 2.821 3.250

10 1260 542 879 1.372 1.812 2.228 2.764 3.169

1 .260 540 .876 1.363 1.796 2.201 2.718 3.106

12 1259 1539 873 1.356 1.782 2.179 2.681 3,055

13 1259 1538 -870 1.350 1.771 2.160 2.650 3.012

12 \258 1537 868 1.345 1.761 2.145 2.624 2.977

15 258 536 866 1.34] 1.753 2.131 2.602 2.947

16 .258 535 .865 1.337 1.746 2.120 2.583 2.921

17 1257 534 863 1.333 1.740 2.110 2.567 2.898

18 1257 "534 862 1.330 1.734 2.101 2.552 2.878

19 (257 1533 861 1.328 1.729 2.093 2.539 2. 861

20 1257 1533 860 1.325 1.725 2,086 2.528 2.845

21 257 532 859 1.323 1.721 2.080 2.518 2.831

22 [256 532 858 1.321 1.717 2.074 2.508 2.819

23 256 1532 858 1.319 1.714 2.069 2500 2.807

22 1256 '531 857 1.318 .71 2,064 2.492 2.797

25 1256 531 856 1.316 1.708 2.060 2,485 2.787

26 .256 531 .856 1.315 1.706 2.056 2.479 2.779

27 256 153) -855 1.3] 1.703 2.052 2.473 2,77

28 256 531 855 1.313 1.701 2.048 2.467 2.763

29 256 1530 854 1.31] 1.699 2.045 2462 2756

30 256 1530 -854 1.310 1.697 2.042 2.457 2.750

40 255 529 .851 1.303 684 2.021 2.423 2.704

60 254 527 "848 1.296 1.671 2.000 2390 2.660

120 “254 '526 845 1.289 1.658 1.980 2.358 2.617

- 1253 524 842 1.282 1.645 1.960 2326 2.576
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TABLE 4A-4. PERCENTILES OF F- DISTRIBUTION

See Table A-5, pp T-6 - T-9 of Experimental Statistics, National Bureau
of Standards Handbook 91, 1963.
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TABLE 4A-5a

95%-POINTS eN,.99 AND 99%-POINTS en,.99

FOR KOLMOGOROV'S STATISTIC

(1 (2) (3) _(4) _(5) _(6) (7)
N eN,.95 eN,.99 sN,.95 eN,.99 eN,.95 eN,.99
eN,.95 eN,.99

2 .8419 .9293 L9612 1.1509 1.142 1.238

3 .7076 .8290 .7841 .9397 1.108 1.134

4 .6239 L7341 .6791 .8138 1.088 1.109

5 .5633 .6685 .6074 L7279 1.078 1.089
10 .4087 .4864 .4295 .5147 1.051 1.058
15 .3375 .4042 .3507 .4202 1.039 1.040
20 .2939 .3524 .3037 .3639 1.033 1.033
25 .2639 .3165 .2716 .3255 1.029 1.028
30 .2417 .2898 .2480 .2972 1.026 1.025
40 .2101 . 2521 L2147 .2574 1.022 1.021
50 .1884 .2260 .1921 .2302 1.019 1.018
60 L1723 .2067 .1753 .2101 1.018 1.016
70 .1597 L1917 .1623 .1945 1.016 1.015
80 . 1496 .1795 .1518 .1820 1.015 1.014
90 L1412 .1432 1.014
100 .1340 .1358 1.013

TABLE 4A-5b
Asymptotic Approximation to Dn 0 za/ n
P(Dn L/ vn) 0.20 0.15 0.10 0.05 0.01
1.07 1.14 1.22 1.36 1.63




CHAPTER 5
ESTIMATION OF RESPONSE CHARACTERISTICS

The impulse and step responses of the dynamic system modeled by the
fitted autoregressive process are derived. The time constant is estimated
from the step response. The methods are tested by simulating known systems

of order two and five to include a wide range of dynamics.

5.1 A First Order System

The standard definition of the time constant is given for a first order
system. Consider the following system:

x + ax = u(t) (5.1-1)
The unit step response of (5.1-1) with x(0) = 0 is given by

x(t) = L (1-e72) (5.1-2)

Letting t = %—gives

1, _1 (.1, _ 0.632
X(g? = 3‘(]-e) 3 (5.1-3)
X(=) = %3 steady state value. (5.1-4)

When the time t= %3 the value of x(t) attains 0.632 of the steady state
value, T = %— sec, which is the time required for the step response of
a stable first order system to attain 0.632 of its steady state value, is

generally referred to as the time constant of the system.

We observe that a closed form expression similar to (5.1-3) cannot
be obtained for a system of order greater than one. Still, we can
define t as the time at which the response of the system to a step input
will achieve 0.632 of steady state value. Such a point on the response

curve can be determined numerically.
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5.2 Impulse, Step and Ramp Responses From the Autoregressive Model

Consider the AR process determined for a given noise measurement

n
yk = Z a_iyk_.i + Vk, k=1,2,.oo (5.2"])
i=1
The dynamics of the process is represented by the AR parameters. The
dynamic information (transient and steady state) is given by the poles
of the equivalent z-transform. Without evaluating the poles the impulse

response is determined. The step response is then obtained by integrating

the impulse response.

5.2.1 Type I Respones: In Section 3.4 it was pointed out that the AR

process can be considered as the approximation to an infinite order
moving average process for increasing values of n. When the system is
stable it follows that

n -]
i=1 i=1
It then follows that the coefficients bi represent the impulse
response of the system such that Vi T 0 for k > 1 and Vo = constant. From
this observation, we can derive the impulse response from AR process by

recursively computing y, as a function of previous y when v, = 0,
k k

k>1 and Vg © constant. The impulse response is calculated using

1 . yoI = constant. (5.2-3)

For systems with more than one pole the impulse response has the value
yOI = 0. Hence in actual calculations the impulse response will be close
to the real case if we let yOI = 0 and y]I = constant and then evaluate

{ ykI} using (5.2-3). We will refer to the impulse response obtained
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this way as the Type I response.

5.2.2 Type II Response: Here the impulse response is derived by analogy

to an nth order continuous system.

Consider an nth order continuous system given by

n n-1
g__)i + a d

dt"

d
o4, I H% + anx(t) = u(t) (5.2-4)

1 dtn-]

The unit impulse response of (5.2-4) is

x (1) = U7 ] ) (5.2-5)
s'4a;st.ta oS ta

Now if we take the Laplace transform of (5.2-4), letting u(t) = 0 and all
the initial conditions equal to zero except x(n']) (0) = dn'] x(0) , we get

dtn-]
(n-1)
x(s) = X] (0) (5.2-6)
n n-
s° + a;s toota s ta
The response to an initial condition of x(”'])(o) =1 1is
xe(t) = L1 1) (g) = 1 ) (5.2-7)
s+ a]sn'1 to.ota gstay

(5.2-5) and (5.2-7) are the same In one case the impulse response is
obtained using a unit impulse input and in the other a nonzero initial

condition on the (n-1)th  derivative is used.

A method which approximates the continuous case is obtained by using

a differencing scheme. Denote by {dF, d2,...,dE_]} the first (n-1) th
k

derivatives of fyk}. These derivatives are approximated as follows.

1.1 1
de = Yk = Y1
2 1 1
de = d) - dy_y
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n-1 _ n-2 n-2
dk = dk - dk-] (5.2-8)

By letting dn'] # 0 and all lower order differences equal to zero, the
impulse reponse will be evaluated recursively. A new expression in terms
of a;, 1=1,2,...,n and {y,» dy, df, ceesd]™ 1 is derived. The resulting

response has the form

I _ I 1 2 n-1
Vi = MYy T Ay A e H A (5.2-9)

The coefficients Ai are functions of AR parameters such that the relation-
ships (5.2-8) are satisfied. The result of this procedure is called

TYPE II response. Values of Ai for different model order are given in table (5.1).

Example: Computation of Ai for a fourth order system is illustrated below.

4
Consider Y = I a5 Y (5.2-10)
Define the following:
1 _
d = Yk = Y (a)
2 _ 1 1
dk = dk - dk-] (b)
3
d” _ ,2 2
k = 9 - 9 (c)
_ 1
From (a) yy_p = ¥ 1= 9y (d)
2
from (b) d _ 4l 1
kel = dy 3 = dyp = dyy - (¥ p = %)
Using (d) in above equation y, 5=y, - ZdL_] + dﬁ_] (e)
from (c) &5, =d%  -d?

k-1 k-1 k-2
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1
k-2 = dg-3)

]
[=N

Y3 * Vi3 = Vi

) 1 1 2
=y - oy = dey) 2y m2dy g A ) -y,

) 1 2 3
Or Ypoq = Yyo1 = 3y * 3y - 4 (f)

Using (d-f) in (5.2-10) gives

_ 1 2 3
Y = a1 F A A3 Agdy (5.2-11)

where a; = a;y *a, tag +a,, A, = -(a2 + 2a3 + a4),

A

3 = ag + 3a4, A4 = -a4.

5.2.3 Computation of Step Response

Once the impulse response is determined as outlined in (5.2-1) and

(5.2.2), the step response is derived by integrating the derived impulse

response.
t
Xg (t) = r X (1) d= (5.2-12)
o ,

A simple trapezoidal integration scheme is used to evaluate the step

response since the integrand is available only at sample points.

5.2.4 Ramp Response and Delay Time Evaluation

It is often useful to know how the RTD responds to a ramp change
in the fluid temperature. The steady state error in the ramp response
and the delay time in attaining the same response level as the ramp
input can be computed by integrating the step response to obtain the
ramp response. Thus

Xp (t) = Xg (t) dr (5.2-13)

O - ¢t
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The RTD delay time is then calculated by estimating the lag time between
the ramp response and the input ramp whose sTope is the same as that of

ramp response.

5.3 Verification of the Methods Using Known Systems.

The methods developed above are verified using known systems. We
will consider a second order system with inequal poles. For more examples
see reference [R3].

Consider the continuous system

6(5) = TFITET D) (5.3-1)

Synthetic data with white noise as the input is generated and an optimal

AR model is fitted.

The analysis is based on a sample size of N = 4000 with a sampling interval
of At = 0.05 sec.

Results: A 4th order AR model is fitted:
¥, = 2.1218y, 4 - 1.4159y, , + 0.34375 y, ..

-0.05322y, _, + v (5.3-2)

k

Fig. (5.3-1) shows a sample of the time series. Fig. (5.3-2) is a plot of
the calculated autocorrelation function. The estimated power spectrum
from the AR model is shown in fig. (5.3-3). Figures (5.3-4) and (5.3-5)
are the estimated impulse and step response of the model. The system step
response is shown in fig. (5.3-6). The comparison of time constant is as

foliows:
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The true time constant, t = 1.5848 sec.
Type I estimate, = 1.6353 sec.
Type II estimate, T,= 1.6465 sec.

Note that both estimates essentially give the same value for t. This
example and others show that the impluse response can be successfully
obtained by fitting a finite order AR process to the noise data, instead
of the large dimensional moving average model. The AR model estimation
requires solution to a Tow order system and the uncertainty of nonlinear

optimization as in a moving average case is not present.
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TABLE 5.1

In this table are given the values of Ai’ i=1,2,...,n as a

function of the autoregressive parameters a;, i=1,2,... 50, {Ai}

are used to determine the TYPE 2 impulse response from the equation

n-1
yI(k) = A]yI(k']) + _E A

Xi(k']) s N > 2
i=1

i+l

yI(k) = A]yl(k‘]) , n=l
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i+ A3 =ag+ 3a4 + 6a5 + 10a6,

n =1
A1= ay.
n = 2
A'l = a-l + a2, AZ = -a2 .
n = 3
AQ = ap +a, tag, A, =-(a2 +2a3), Ay =
n_ = 4
A] =a; ta,ta;ta, A, = -(a2 +2a, +3a4),
A3 = a3 +3a4, A4 = —64,
n = 5

. 5 4
A, = © a,, A, = -1 ida,,,, A a

LI T R~ je1  1¥17 73 3
n = 6

6 4

A, = 2 a., A,= -3 1ia

Vo T2
Ay = -(a4 + dag + 10a6), Ag = ag + 5a5, Ag = -ag.
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a] a2 a3 a4 a5 a6 a7 38 ag
Al 1 1 1 1 1
A, A -2 -3 4 -5 -6 -7 -8
As 1 3 6 10 15 21 28
Ay 1 -4 210 -20  -35 -56
As 1 5 15 35 70
A 1 -6 21 -56
A, 1 7 28
Ag 1 -8
Aq 1

10

1 & & &y &F 3 a7 23 8 39
' D R D 1 1 1 1
A, 4 -2 -3 4 5 -6 -7 -8 -9
A 1 3 6 10 15 21 28 36
Ay 4 -4 -0 -20 -3 -56 -84
As 15 15 3% 70 12
Ag 1 -6 21 -5 -126
A; 1 7 28 8
Ag 1 -8 -3
Aq 1 9
A 1




n =11

3 3 3 ¥ ¥ a5 & 8 3 3 3
A, 11 11 1 1 1 1 1
A, 1 -2 -3 -4 -5 -6 -7 -8 -9 -10
A, 1 3 6 10 15 21 28 3 45
Ay -1 -4 -10 -20 -35 -56 -84 -120
Ac 1 5 15 35 70 126 210
A 1 -6 -21 -56 -126 -252
A, 1 7 28 8 210
Ag 1 -8 =36 -120
Aq 1 9 45
Mo -1 -10
Ajq 1

n= 12

34 2, 3 4y ¥ & & dg 3 ¥y 3y Ay
A, 11 T 1 1 1 1 1 1 1 1
A, 1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -1
Aq 1 3 6 10 15 21 28 36 45 55
Ay -1 -4 -10 -20 -35 -56 -84 -120 -165
Ac 1 5 15 35 70 126 210 330
Ag -1 -6 =21 -56 -126 -252 -462
A, 1 7 28 84 210 462
Ag -1 -8 -3 -120 -330
Aq 1 9 45 165
Ao -1 =10 -55
Aq 1T n
Aqy -1




CHAPTER 6
APPLICATION OF NOISE ANALYSIS APPROACH TO
RTD RESPONSE TIME MEASUREMENT

Autoregressive modeling is applied to RTD data from four reactors.
The results are summarized in table 6.2. The time constants from noise
analysis are compared with those available from LCSR tests. Appendix C
shows the plots of autocorrelation function, AR power spectrum, sensor
step response and residual (white noise) spectrum for the sensors listed
in table 6.2. The detailed procedure for estimating and verifying the
empirical noise model and determination of sensor parameters is given
below. A discussion of the noise results, limitations and applicability
for quantitative sensor analysis is presented in section 6.3. Based on
the available reactor data it has been concluded that the noise analysis
may be used as a tool for monitoring changes in sensor characteristics

and not for estimating an accurate value for the time constant.

6.1 Estimation of Optimal AR Model

Figure (6.1) shows a portion of the Millstone 2 hotleg temperature
during normal operation at 50% power. Autoregressive models of order up
to 12 are fitted using Yule-Walker equations (4.1-11). The data is
processed in blocks of N = 2000 and a total sample size = 32000. Sampling

. . . . 2
time = 0.125 sec. Estimates of parameters a, noise variance o

v information

criterion of Akaike, the final prediction error (FPE), the F-test index and
Bayes Probability Criterion (BPC) are calculated for each model order, n.
Table (6.1) is a listing of the output showing model parameters and their

standard deviations. We have also shown the Bayes' probability criterion
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TABLE 6.1
COMPUTER LISTING OF RESULTS FOR MILLSTONE 2 RTD

A sample computer analysis listing of RTD noise signal evaluation
is given below:

The model order is varied forn =6 ton = 12

Definition of Variables

N = No. of points in each data block.

NSKIP

No. of points skipped at the beginning of data file.

ISKIP = Every ISKIPth point is selected from the data file.
DELTAT = Sampling time (second).

The estimation is based on 16 blocks of data.

INFO CRIT = Akaike Information Criterion; equation (4.3-7).
FPE = Final Prediction Error; equation (4.3-11).

STD DEV1

Standard deviation of Vi equation (4.1-21).
STD DEV2

Standard deviation of v, ; equation (4.1-16).

F-TEST INDEX = Hypothesis testing criterion for model order; equation (4.3-18).
BAYES PROBABILITY CRITERION = Criterion for model order; equation (4.3-21).
PHI(I)

ith autoregressive parameter in the equation
n

Ve © 2 4 Yiei F Ve
'|=

EPS(I)

Standard deviation of the ith parameter a,.
RTD TIME CONSTANT = Obtained for step response which is calculated from (5.2-12).
DELAY IN RAMP RESPONSE = Obtained from ramp response which is calculated

from (5.2-13).

PORTMANTEAU TEST INDEX, PORT = Equation (4.4-5) (for whiteness test).
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TABLE 6.1

MILLSTONE 2 RTD--MILSTN.DT8-~-CH 4~-16 BLOCKS OF N=2000

NOISE ANALYSIS OF RTD DATA ¢ N = 2000
NSKIP = 3§12 ISKIP = 1 DELTAT (SEC) = 0.12500E+00
NO. OF BLOCKS TO AVERAGE = 16

KKK K oK KK K K 3K K KKK K K K KK KKK K AR K K K KKK K KKK K K KKK KKK K KKK

MEAN OF BLOCK 1 = -0,15556E+01
MEAN OF BLOCK 2 = -0,13772E4+01
MEAN OF :BLOCK 3 = -0.15350E+01
MEAN OF BLOCK 4 = -0.22332E+01
MEAN OF BLOCK 5 = -0.20990E+01
MEAN OF BLOCK 6 = —0.,23858E+01
MEAN OF BLOCK 7 = -0.21155E+01
MEAN OF BLOCK 8 = ~0.21671E+01
MEAN OF BLOCK 9 = -0,15587E+01
MEAN OF :BLOCK 10 = ~0.40639E+00
MEAN OF BLOCK 11 = -0.,60427E+00
MEAN OF BLOCK 12 = -0:13062E-01
MEAN OF BLOCK 13 = ~0,26416E+00
MEAN OF BLOCK 14 = ~0.56598E+00

MEAN OF EBLOCK 15 -0,93297E+00
MEAN OF BLOCK 16 = ~0.60872E+00
KKK KKK IR KK KKK KKK KK KKK KKK KKK KKK K KKK IR KKK KKK KKK KK

AUTOREGRESSIVE ORDER = 6

INFO CRIT =-0.12044988E1+06 FPE = 0.,23027E-01
STD DEV1 = 0.13139E+00 STD DEV2 = 0.,15172E4+00
F - TEST INDEX = 0.,00000E+00

BAYES PROBRABILITY CRITERION = 0.12030374E+06

PHICI) EPSC(I)

0,11787E+01 0.354842E~-02
-0.560383E+00 0.84699E-02
0.69818E+00 0.89302E-02
~0,32748E+00 0.89302E-02
0.,22491E4+00 0.84699E-02
~0.18325E+00 0.54842E-02

RTD TIME CONSTANT = 0.77361E+01 SEC

3388 K 3 ¢ 3 30 2 3 3K 20 3K 3 3K 38 30 S 3K 3 2 3 3 3¢ 3k 2 3K ok 3k 3k ke ok e ok ok ke e ke e ek ke sk ok K
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AUTOREGRESSIVE ORDER = 7

INFO CRIT =-0.12045824E4+06 FFE = 0.,22976E-01
STh DEV1 = 0.135122E+00  STD DEV2 = 0.13154E400
F - TEST INDEX = 0.70848E+02

RAYES FRORARILITY CRITERION = 0.12028798E+06

FHICI) EFS(I)
0.11695E+01 0.55725E~-02
~0.359261E+00 0.85528E~-02
0.468182E+00 0.91050E-02
~0.29260E+00 0.97318E-02
0.19473E+00 0.91051E~02
~0.12437E+00 0.85528E-02

-0+ 49946E~01 0.95723E-02

RTD TIME CONSTANT = 0.49863E+01 SEC

RKRKKRK KK KK RKRKK KKK KKAAKKKK KKK KKK AKAKKK KKK KK AKKKK KKK KK

AUTOREGRESSIVE ORDER = 8

INFO CRIT =-0.12082015E+06 FFE = 0.22748E-01
STD DEV1 = 0.15022E+00 STD DEV2 = 0,15079E+00
F ~ TEST INDEX = 0.42708E+03

EAYES FROBARILITY CRITERION = 0.,12062716E4+06

FHICI) EFS(I)
0.11639E4+01 0.55425E-02
~0.60648E4+00 0.85240E~-02
0.70356E+00 0.91088E-02
~0.32528E+00 0.98023E-02
0.27084E+00 0.98023E-02
~0.19033E+00 0.91088E-02
0.80555E~01 0.85240E-02
~04+11161E4+00 0.35425E-02

RTIN TIME CONSTANT =

KKK A KA KKK K K KK AR AR KK K K K KKK 3K K K KKK KoK o oK ok K ok oK ok oK

0.55399E401 SEC
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AUTOREGRESSIVE ORDER = 9

INFO CRIT =-0,12082763E+06 FPE = 0.22635E-01
STD DEV1 = 0,15006E+00 STD DEV2 = 0,15041E400
F - TEST INDEX = 0,70201E+02 b

BAYES FROEARILITY CRITERION = 0,12061082E+06

FHICI)

0.11587E401
-0+ 60270E+00
0.+69462E400
-0, 31255E400
0.25560E+00
~0.15757E+00
0,52168E~01
~0.57129E-01
~0.46783E~01

EFS(I)

0.55712E-02
0.85264E~02
0,91605E-02
0.99071E~02
0.99578E-02
0.99071E~02
0.91605E-02
0.,85264E~02
0.55712E-02

RTD TIME CONSTANT = 0.50787E+01 SEC

KKK K KKK oK KK K KK oK 3K K oK KK 3 3K KK KK K 3K KoK KKK K KK KK K KKK KKK KK Kk K

AUTOREGRESSIVE ORDER = 10

INFO CRIT =-0.12086235E+06 FFE = 0.22597E-01
STD DEVI = 0,14983E+00 STD DEV2 = 0.,15028E+400
F.- TEST INDEX = 0,97532E+02

RAYES FROBARILITY CRITERION = 0.12062191E+06

FHICI) EPS(I)
0.11562E+01 0.35687E~02
~0.60582E4+00 0.85193E~02
0.69742E4+00 0.921511E-02
=0.32119E+00 0.99308E-02
0.26957E+00 0.10044E-01
~0.17467E4+00 0.10044E-01

0.90097E~01
~0+90046E~01
0.16472E~01
-0.54577E~01

RTD TIME CONSTANT =

0.99308E~02
0.21511E-02
0.85193E-02
0.55687E-02

KKK A KKK KKK KK KK K K K KK K KK K 3K K K KK KKK K KK KoK KK kK Kk Kk kK

0.45927E4+01 SEC
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AUTOREGRESSIVE ORDER = 11

INFO CRIT =-0.12079948E+06 FPE = 0.22564E-01
STD DEV1 = 0.14983E400 STD. DEV2 = 0.15017E4+00
F - TEST INDEX =-0,11879E400

BAYES PROBABILITY CRITERION = 0.12053500E+06

FHIC(I)

0.11553E+01
-0+ 60554E+00
0.69598E+00
~0+31967E+00
0.26663E+00
-0+ 17012E+00
0.84719E-01
~0.78323E-01
0.62637E~02
~0,35168E-01
~0.16792E-01

EPS(I)

0.55771E-02
0.85198E~02
0.91649E-02
0.99435E~02
0.10091E~01
0.10156E-01
0.10091E-01
0.99435E-02
0.91648E-02
0.85198E~02
0.55770E-02

RTD TIME CONSTANT = 0.44701E+01 SEC

KKK A KK KK AR oK KKK K K KK KKK KKK R A KKK KK KKK KK KoKk K

AUTOREGRESSIVE ORDER = 12

INFO CRIT =-0,12075052E4+06 FPE = 0.22640E-01
STDh DEVL = 0.,14979E+00 STD DEV2 = 0.15041E+00
F -~ TEST INDEX = 0.13783E+02

BEAYES FROBABILITY CRITERION = 0.120446208E+06

PHICI)

0.11552E+01
~-0.60573E+00
0.69598E+00
~0.32008E+00
0.26705E+00
~-0.17102E+00
0.86108E~-01
~0.80021E~-01
0.99583E-02
-0.38374E-01
-0.10481E-01
~0.,53024E-02

RTD TIME CONSTANT =

EFS(I)

0.35766E~02
0.85202E-02
0.91629E-02
0.99510E-02
0.10100E-01
0.10198E~-01
0.10198E~-01
0.10100E~-01
0.99509E-02
0.91629E-02
0.83202E-02
0+35766E-02

KKK KKK K K K K KKK K KKK K K K KK KA KK KKK KR KKK KK KK KKKk

0.44140E+01 SEC
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RESFONSE FOR
DELAY IN RAMF

AR
RESFONGE =

93

ORDER = 10

0.,43988E+4+01 SEC

HOKOK KK K kK ok ok ok ok ok K ok Ok 3K KK K K0k K skok koK ok sokoalok ook ok Kokkok Kok

FORTMANTEAU TEST INDEX FOR NDEG = 60

FORT =

RESIDUAL AUTOCORRELATION RASED ON N =

0.,37623E-01
~0.,21279E~-01
0.42026E-03
0.31263E-01
~0.41141E~-02
~0.16818E~01
~0+14016E~02
0.18179E~01
=0, 991L62E-02
0.18343E-01
~0,53864E-02
0.77100E~02

0670645402
99% CONFIDENCE LEVEL FOR

-0,72310E-02
0,11021E-01
~0.13483E-01
~0.26491E-02
-0,37438E-02
0.21862E-01
~0.17417E-01
-0.31852E~-01
0.61767E-02
0.11861E~-01
0.15451E-01
0.13687E-01

RESTIDUAL

0.23475E-01
0.18612E-01
~0.55146E-02
~0,.52537E-02
~0,13102E~-01
-0.71339E-02
0.28137E-01
0.76785E-02
0.13765E-01
0.25518E-01
~-0.14731E-02
-0, 59785E-02

4000

=0 67F2PE-02
=0 20291E-02
0.25894E-01
0,15740E-01
0.38132E-02
~0.45102E~02
0.446544E-02
~0.21804E-01
~0.14974E-01
~0,23206E~-02
0.10945E-01
0.29022E-01

AUTOCORRELATION = 0.,40Q0737E-01

=0, 23210E-02
~0.12740E-01
-0, 25492801
~0.,25358E-01
0.29543E-02
-0,13508E~01
~0+14584E~-01
0.39708E-01
0.12477E-01
~0+11053E-01
-0.18793E~01
~0+17673E-01
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which is given by [K4]

2
BPC = -NIn % -nn (y) - n TnN +n (6.1-1)
where v
N = no. of data points
= model order
o, = variance of noise process Vi
Oyz = variance of signal Yk

The model order is chosen such that BPC is a maximum. From the computer
1isting the optimal order is n = 10. We will not choose the model order based
on F-test to avoid the ambiguity of choice.

The AR(10) model

Yy = %51 a Vi vy (6.1-2)
has the following set of parameters
a; = 1.1562
a, = -0.6058
ag = 0.6975
a = -0.3212
g = 0.2696
ag = -0.1747
a, = 0.0901
ag = -0.09005
ag = 0.0165
= -0.0546
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Figure (6.2) shows the computed autocorrelation function and (6.3)
is the power spectrum computed from the AR (10) model. The break frequency
obtained as the intersection between low frequency and high frequency
asymptotes is 0.05 Hertz. The power spectrum from direct Fourier transform
is shown in figure (6.4). Notice that both curves give the same value for
the break frequency. Thus, the time series model provides an alternative
method of estimating the power spectrum. Frequency response testing in
nuclear reactors is described in reference [K3].

The impulse and step responses by Type 1 method derived from the AR
model are shown in figures (6.5) and (6.6). The estimated time constant is

T = 4,59 sec.

6.2 Model Validation

The important assumption made in the analysis is that the driving
function is a white noise sequence. We have described three tests in
section (4.4). If {vk} is uncorrelated then the autocorrelation function
must be an impulse function. Figure (6.9 ) is a plot of the residual auto-

correlation function, Ck(G) where
n ~
Ve T Ve LA (6.2-1)

The normalized values of correlation function are shown. The variation in
this correlation function must be within + 112§-= 0.031 for N = 4000.
Y N

For small Tags this bound underestimates the correlation values. But for
lags greater than, say, the model order the 95% level is satisfied. The

"Portmanteau" lack of fit test is applied by calculating the index
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MILLSTONE 2-HOTLEG TEMPERATURE SENSOR
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Figure 6.6 Step Response from AR Model (Millstone).
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M
Q=N 3 °F W (6.2-2)
k=1

If the assumption is satisfied then Q is distributed as a X2

function
with M degrees of freedom, with N = 4000, M = 60, Q = 67.06. From table

(4A-2) for degrees of freedom M = 60 and a 95% significance level

2 -
X o95 = 79.08

Thsu, Q(69.06) <x2

£ 95 (=79.08). The final check is performed by the
graphical plotting of the spectrum of the residual sequence. This is
shown in figure (6.10). The flatness of the spectrum is a further

evidence of model adequacy.

6.3 Discussion

Table (6.2) is a summary of RTD noise test results from four PWR's --
Millstone 2, St. Lucie, Oconee 1, and Turkey Point. The model order, time
constant and ramp delay time are listed for each sensor. Note that in
several cases the method failed to construct an autoregressive model.
These cases are indicated as "failed". The following observations are

made from reactor test results.

A. Failure of the Noise Model to fit the Data:

In several cases the AR modeling strategy was unable to predict a
noise model. These were encountered in attempting to analyze noise data
from coldleg sensors. A Fourier analysis of such data showed that either
the power spectrum of the signal showed peaks at several frequencies as in
figure (6.11) or, the spectrum had no break throughout the Tow and high

frequency range as in figure (6.12). The log-log plot shows a Tinear trend
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Summary of RTD Noise Tests
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TABLE 6.2

Data File Name Model Order Time Constant Delay Time
(second) (second)

Millstone 2

Sensor 1 MILSTN. DT8 10 4.59 4.40

Sensor 2 Failed _——— ————

Sensor 3 Failed —— ———
St. Lucie

Sensor 1 STLUCE. T63 6 4.84 4.81

Sensor 2 6 8.23 8.14

Sensor 3 Failed ———— ————

Sensor 1 STLUCE. T07 8 6.90 6.76

Sensor 2 10 8.49 8.37

Sensor 3 Failed _— ————
Oconée 1

Sensor 1 OCONEE. T55 4 6.77 6.74

Sensor 2 4 3.61 3.53

Sensor 3 Failed _— _——
Turkey Point TURKEY .T35

Sensor 1 7 0.382 0.353

Sensor 2 10 0.389

0.347

Number of data samples used = 32000.

Sampling time for all data except TURKEY.

Sampling time for TURKEY.

T35 is 0.02 sec.

T35 is 0.125 sec.
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in the noise spectra. Such behavior in the spectrum does not satisfy the

assumptions made in the analysis and hence results in a failure.

B. Variation in Time Constants

It is evident from the results of table 6.2 that for St. Lucie and
Oconee 1 there is wide variation in time constant among the sensors. It
is observed that the time constants for the hotleg sensors are smaller
than those for the coldleg sensors. There is no explanation available
for this at this time. It may be possible that the coldleg temperature
variation has a smaller bandwidth compared to the hotleg temperature
noise.

It has been further observed that the time constant estimates for
both of the Turkey Point sensors have practically the same value (see
table 6.2). This consistent estimate shows that the noise properties of
the temperature signal are similar in the hotleg and coldleg. The
sensors are installed in a bypass loop thus causing uniformity in the

noise properties.

C. Comparison of Noise Analysis and LCSR Test

Table 6.3 gives a comparison between the noise analysis and LCSR
results for the available common data. From the St. Lucie test it is
seen that the noise analysis, in general, gives a higher value for the
time constant. This conservative estimate is probably due to bandlimited
noise. If the bandwidth of driving noise is close to or smaller than
the sensor bandwidth, this causes a distortion in the output signal

spectrum, in effect moving the break frequency towards a lower value.
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TABLE 6.3

Comparison of Noise Analysis and LCSR Results RTD Tests at St. Lucie

Plant ID No.

1111y
1121X
1121Y

Time Constant from
Noise Analysis
(second)

8.23

6.90

8.49

Time Constant from
LCSR Test (second)

3.52
4.94
5.80
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Figures C-6 and C-10 are AR power spectra for two St. Lucie sensors with
time constants estimated to be 4.84 sec. and 8.23 sec. The sensor with
a smaller time constant has a larger break frequency compared to the
break frequency of the higher time constant sensor. Thus the signal
bandwidth is a 1imiting factor in estimating an accurate value of the
time constant.

Such Tlimitations are not prevalent in an LCSR test and hence the
quantitative estimate is closer to the actual value.

From the above observations it has been concluded that the noise
analysis method can be used as a tool for monitoring changes in the
sensor characteristics. The application of noise analysis for quanti-
tative time constant evaluation is invalid in some cases because essential
conditions for validity of the method are not satisfied in the operating

plant.



CHAPTER 7
SUMMARY AND CONCLUDING REMARKS

In the previous chapters we have described the use and application of
time series models to normal fluctuating signals from temperature sensors.
The application is not just Timited to these noise signals. Any signal
that has a random variation characterized by uncorrelated noise may be
modeled by AR processes. For systems when this is not satisfied a more

generalized model must be constructed.

7.1 Summary

In chapter 2 a brief description of elements of probability theory
is given. The topics are central to the discussion of this report. Chapter
3 provides an overview of time series models, generally called the auto-
regressive moving-average (ARMA) process. The model can also be used to
estimate the spectral density of the signal.

The important topics of model estimation for AR processes, optimal
model order determination and validation of fitted model are discussed in
chapter 4. It is suggested that the optimal model be determined using the
Bayes' maximum a posteriori probability (BPC) criterion. The validation
of the assumption of white driving noise is carried out by computing the
residual autocorrelation and applying proper tests.

Estimation of sensor characteristics such as impulse, step and ramp
responses is described in chapter 5. From these the sensor time constant
and ramp delay time are derived. The entire procedure is numerical in
nature without involving any geometric approximation. Chapter 6 describes

in detail the procedure for one RTD. Results from tests at Millstone,
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St. Lucie, Oconee and Turkey Point reactors are summarized in chapter 6
and appendix C.

The AR parameter estimation requires matrix inversion. As the model
order increases, the inversion of a large matrix may be necessary. To
avoid this procedure, a recursive method of estimating successively the
higher order parameter set as a function of lower order parameters is

given in appendix A.

7.2 Concluding Remarks

Throughout this work the general structure of the noise model is
fixed. The autoregressive model requires that the input noise spectrum
be flat in the bandwidth of interest. In general this assumption often is
not satisfied. This causes variation in the information contained in the
output signal. The results have shown that the time constants obtained
from the noise analysis are consistently on the higher side, or in some
cases, the analysis simply fails and provides no results at all. In some
instances the results are close to the LCSR test and in other cases they
vary widely. The noise analysis time constant for the fast sensors
(Turkey Poiht) shows less variation between the hotleg and coldleg sensors.

It is noticed that the noise power spectrum at Tow frequencies is
often not flat. This apparent behavior in the spectrum is better predicted
by fitting a generalized ARMA model which makes no restricted assumptions
about the noise statistic. This procedure has been applied to sensors for
which larger time constants were predicted by the AR modeling as shown in
table 6.2. It is reported [U3] that this modification improves the time

constant estimates by 25 to 40 percent over the AR modeling.
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Discussion of this procedure is beyond the scope of this report.

Since the nojse signal measurement is influenced by many factors,
such as - Tocation of sensor, extraneous noise interference, property of
randomness in temperature fluctuation - the quantitative estimate of the
time constant using autoregressive noise modeling is subject to error.

The approach may be used as a means for sensor monitoring. During the

life of the sensor if variation in time constant is noticed, this may be
caused either due to degradation in sensor performance or because of

changes in noise characteristics. At this point an LCSR test may be
performed to check for the time constant itself. Based on the above obser-
vations we have to conclude that the AR modeling can be used with confidence

only as a means of monitoring changes in sensor characteristics.



REFERENCES

[A1] T. W. Anderson, An Introduction to Multivariate Statistical Analysis,
John Wiley & Sons, Inc., New York, 1958

[A2] H. Akaike, "A New Look at the Statistical Model Identification", IEEE
Tran., Aut. Cont., Vol. AC-19, pp 716-723, 1974,

[A3] Special Issue: System Identification and Time Series Analysis,
IEEE Tran. Aut. Cont., Dec. 1974.

[A4] H. Akaike, "A Method of Statistical Identification of Discrete
Time Parameter Linear Systems," Ann. Inst. Stat. Math
(Tokyo), Vol. 21, pp 225-242, 1969

[A5] H. Akaike, "Fitting Autoregressive Model for Prediction," Ann.
Inst. Stat. Math (Tokyo),Vol. 21, pp 243-247, 1969.

[A6] H. Akaike, "Power Spectrum Estimation Through Autoregressive
Model Fitting," Ann. Inst. Stat. Math (Tokyo), Vol. 21,
pp 407-419, 1969.

[A7] H. Akaike, "Statistical Predictor Identification," Ann. Inst. Stat.
Math (Tokyo), Vol. 22, pp 203-217, 1970

[A8] H. Akaike, "A Fundamental Relationship Between Predictor Identification
and Power Spectrum Estimation, "Ann. Inst. Stat. Math (Tokyo),
Vol. 22, pp 219-223, 1970

o

[A9] H. Akaike, "Autoregressive Model Fitting for Control," Ann. Inst.

Stat. Math (Tokyo), Vol. 23, pp 163-180, 1971.

[A10] T. W. Anderson, "On Asymptotic Distributions of Estimates of Parameters
of Stochastic Difference Equations,” Ann. Math. Stat., Vol.
30, pp 676-687, 1959,

[A11] R. L. Anderson, "Distribution of the Serial Correlation Coefficient,"
Ann. Math. Stat., Vol. 13, pl, 1942.

[B1] J. S. Bendat and A. G. Piersol, Random Data: Analysis and
Measurement Procedures, John Wiley & Sons, Inc., New York, 1971.

[B2] G. E. P. Box and G. M. Jenkins, Time Serjes Analysis: Forecasting
and Control, Holden-Day, San Francisco, 1970.

[B3] G. E. P. Box and D. A. Pierce, "Distribution of Residual Auto-
correlations in Autoregressive Integrated Moving-Average
Time Series Models," Jour. Amer. Stat. Assoc., Vol. 65, 1970.

[G1] U. Grenander and G. Szego, Toeplitz Forms and Their Applications,
University of California Press, Berkeley, 1958.

115



[G2]

[H1]
[H2]

[91]

[K1]

[K2]

[(M]

(P1]

[P2]

[p3]

(Qi]

[R1]

[R2]

[R3]

(R4]

[s1]

[s2]

116

J. D. Gibbons, Nonparametric Statistical Inference, McGraw-Hill
Book Co., N. Y., 1971

E. J. Hannan, Time Series Analysis, Methuen, London, 1969

E. J. Hannan, Multiple Time Series, John Wiley & Sons, Inc., New
York, 1970

G. M. Jenkins and D. G. Watts, Spectral Analysis and Its Applications,
Holden-Day, San Francisco, 1968

R. L. Kashyap and A. R. Rao, Dynamic Stochastic Models From Empirical
Data, Academic Press, New York, 1976.

T. W. Kerlin, Frequency Response Testing in Nuclear Reactors,
Academic Press, New York 1974

H. B. Mann and A. Wald, "On the Statistical Treatment of Linear
Stochastic Difference Equations", Econometrica, Vol. 11,
p 173, 1943.

A. Papoulis, Probability, Random Variables and Stochastic Processes,
McGraw-Hi1l Book Co., New York, 1965

E. Parzen, "An Approach to Time Series Analysis", Ann. Math. Stat.,
Vol. 32, pp 951-989, 1961.

R. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex
Domain, Amer. Math. Soc., Providence, 1943

M. H. Quenouille, Analysis of Multiple Time Series, Hafner, New York, 1957.

M. Rosenblatt (Editor), Time Series Analysis, Proc. of the Symp.
at Brown University, June 1962, John Wiley and Sons, Inc.,
New York, 1963.

C. R. Rao, Linear Statistical Inference and Its Applications, John
Wiley & Sons, Inc. New York, 1965.

In-Situ Response Time Testing of Platinum Resistance Thermometers,

Annual Progress Report, Jan. 1977, Dept. of Nuclear Engineering,
The Univ. of Tenn; EPRI Report NP-459.

"Periodic Testing of Electric Power and Protection Systems," U.S.
Nuclear Regulatory Commission, Regulatory Guide 1.118, June 1976.

H. W. Sorenson, "Least-Squares Estimation: from Gauss to Kalman", IEEE
Spectrum, Vol. 7, pp 63-68

N. V. Smirnov, "Table for Estimating the Goodness of Fit of Empirical
Distributions, "Ann. Math. Stat. Vol. 19, pp 279-281, 1948.



117

[T1] J. A. Thie, Reactor Noise, Rowman and Littlefield, Inc., New York, 1963.

[T2] M. G. Natrella, Experimental Statistics, Handbook 91, National
Bureau of Standards, 1966

[T3] Z. W. Birnbaum, "Numerical Tabulation of the Distribution of Kolmogorov
Statistic for Finite Sample Size," J. Am. Stat. Assoc., Vol. 47,
p. 431, Table 2, 1952,

[Ul] R. E. Uhrig, Random Noise Techniques in Nuclear Reactor Systems,
The Ronald Press Co., New York, 1970.

[W1] G. Walker, "On Periodicity in Series of Related Terms," Proc. Royal
Soc., Vol. A131, p 518, 1931.

[W2] S. S. Wilks, Mathematical Statistics, John Wiley & Sons, Inc.,
New York, 1963, Chapter 13.

[Y1] G. U. Yule, "On a method of investigating periodicities in disturbed
series, with special reference to Wolfer's Sunspot numbers,"
Phil. Trans. Vol. A226, P267, 1927.

[K3] M. Kaveh and G. R. Cooper, "An Empirical Investigation of the properties
of the Autoregressive Spectral Estimator," IEEE Tran. Info. th.,
vol. IT-22, pp 313-323, 1976.

[u2] B. R. Upadhyaya and T. W. Kerlin, "Response Time Testing of Temperature
Sensors Using a Noise Analysis Method," Tran. Am. Nucl. Soc., Vol. 26,
p 445, 1977,

[K4] R. L. Kashyap, "A Bayesian Comparison of Different Classes of Dynamic
Models Using Empirical Data," IEEE Tran. Aut. Cont., Vol. AC-22,
pp 715-727, 1977.

[U3] B. R. Upadhyaya and T. W. Kerlin, "Modified Noise Analysis Method for
the Estimation of Temperature Sensor Response Time Characteristics,"
Tran. Am. Nucl. Soc., June 1978.



118

APPENDIX A

Recursive Estimation of Autoregressive Models

In chapter 4 we described the estimation of AR models using Yule-

Walker equations. The parameter estimate is given by

_ =1
as= Pn C (A-1)

Where Pn is the n x n matrix of correlation functions of the observation

{yk}. If P is the correlation matrix of order (n + 1) then we can

n+l
write this in terms of Pn as

Prsl = n
Cn-'l
P, . (A-2)
G
LF" Cn—]' . C] CO'J
Instead of determining the inverse of Pn+1 directly we can express P;l-l
in terms of P;!
Let us rewrite Pn+1 as
Pn+1 - pn in (A-3)
¢ ¢
“nl ~o
T . . .
where in = (Cn Cn-] . e .C1). Then the inverse of Pn+1 is given by
r -
-1 -1 T -1 -1
. (Pp *+ P Ea1 & Py ) Pn L
-1 - A A
Psl (A-4)
T -1
~Cn1 P 1
A A
n -+
_ T 5-1 .
A= Gy = tmiPr Gy (A-5)
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APPENDIX B

Kolmogorov-Smirnov Goodness-of-fit Test
of the Normality of the given Time Series

In chapter 4 we presented the statistical test to ascertain the good-
ness of a given assumed distribution of a time series. In this appendix
we will describe this procedure as applied to the Millstone 2 temperature

data.

B.1 Computation of Distribution Functior

Consider H data points {yk, k=1,2,..,n} with mean zero. The probability
density function
N
=
p(y) = m (8.1)
where W is a narrow interval centered at y and Ny is the number of data

values which fall in the range y + W.
Select the number of intervals of widthW equal to M such that

M= Ymax ~ Ymin (B.2)
W

Define the end point of the ith interval as

d + iW, i=0,1,2,..,M. (B.3)

i~ Y min
Define {Ni’ i=0,1,...,M} as

N0

[number of y such that y §_d0]

[number of y such that d, <Y ﬁ_d]]

Ny = [number of y such that dy ; <y < dy]

The procedure will sort out N data values such that
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N= 2 N; (B.4)

B.2 Distribution and Density Functions

Now we define the probability

?’1. =Prob [d, ; <y <d;]= r_l_'l__
N (B.5)
i= 0,1,2, ...,M.

The density function is estimated as
N
5.

A
Pi = h, 51,2000 (B.6)
The distribution function is given by
i
Fo= = B, i20,1,2,...,M (B.7)
=0

For a given Normal density with mean zero and variance 02, N(O,oz)
2

. exp {-LX (B.8)
2ng2 202

ply) =

The distribution function is

2
F(y) = L ¥ exp 1- %52 } dy (B.9)
2Tgs - i

F(y) is computed numerically using a trapezoidal integration scheme at

the same points as the Fi are calculated.

B.3 Application to the Millstone Hotleg
Temperature noise data

The first step in computing the Kolmogorov-Smirnov test is to estimate
P; and Fi as discussed in section B.2. The best fitting normal density is

determined such that the squared error between Fi and F(y) is a minimum.
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This is done by incrementing the variance o2 in steps so that a minimum
value of
M 9

Error = I (Fly;) - F3) (B.10)
is obtained.

Figures (B.1) and (B.2) show the estimated values of the amplitude
probability density function and the corresponding distribution function.
These are compared with a normal density and distribution function whose

standard deivation is

o= 1,082 (B.11)
Determine the quantity

m;xlF(yN)- FNI= DN (B.12)

The value of DN is determined as

Dy = 0.00833, N = 31787

To apply K-S test, for a given significant level o

P {DN > DN 0L} = a 1is selected and the corresponding value of
DN o is obtained from table (4A5b) of K-S statistics.
For N = 31787, o« = 0,05, Dy . 0.00763
For N = 31787, a = 0.01, Dy . 0.00914

Thus, we have DN,0.05 < DN < DN,O.O]. The normality of the given time

series is satisfied for a significance level between 95% and 99%.
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APPENDIX C
RESULTS OF RTD NOISE ANALYSIS FOR FOUR POWER REACTORS

In this appendix results from RTD tests at Millstone, Oconee,
St. Lucie and Turkey Point power plants are summarized. Thgre are
nine RTD's and for each plots of autocorrelation function, AR power
spectrum, step response and residual power spectrum are shown. The

results are tabulated in section 6.3, table 6.2.
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Figure C.24 Oconee 1 -- Residual Power Spectrum (T55, Sensor 1).
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Figure C.25 Oconee - Signal Autocorrelation Function (T55).
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Figure C.26 Oconee - AR Power Spectrum (T55).
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Figure C.28 Oconee 1 -- Residual Power Spectrum (T55, Sensor 2).
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Figure C. 30 Turkey Point - AR Power Spectrum (T35).
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Figure C.32 Turkey Point -- Residual Power Spectrum (T35, Sensor 1).
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Turkey Point - Signal Autocorrelation Function (T35).
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Figure C. 34 Turkey Point - AR Power Spectrum (T35).
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Turkey Point - Step Response from AR Model (T35).
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Figure C.36 Turkey Point -- Residual Power Spectrum (T35, Sensor 2).
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