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SUMMARY

Estimation of temperature sensor characteristics by the noise 

analysis method is presented in this part of the final report on In- 

Situ Response Time Testing of Platinum Resistance Thermometers. Tem­

perature fluctuations in hotleg and cold!eg fluid during normal reactor 

operation are recorded and random data analysis techniques are applied 

to obtain information about the sensor performance. The noise signal 

is modeled using autoregressive time series modeling strategy of the 

form

*!< = £ ai yk-i+ vk
i=l

where {y^} is the stationary sensor output and {v^} is the temperature 

fluctuation noise. The model evaluation consists of the following four 

steps: (1) Estimation of model parameters.(2) Selection of optimal

model order, n. (3) Model validation to check for the assumptions made 

in the analysis. (4) Evaluation of sensor characteristics from the model.

Chapter 1 is an introduction to the noise analysis approach de­

scribed in this report. Some basic notions about probability and useful 

definitions are summarized in Chapter 2. Chapter 3 provides an overview 

of time series models for stationary random signals. Model parameter 

estimation, selection of optimal order and model validation methods are 

described in Chapter 4. Estimation of response time characteristics from 

the autoregressive model is detailed in Chapter 5, which also includes 

results for a simulated fifth order system. In Chapter 6, we present the 

details of the methodology applied to RTD noise signal from an operating 

power plant. The limitations of the method are discussed. Results from

S-l



tests at four pressurized water reactors are summarized. Summary and 

concluding remarks are given in Chapter 7.

The limited bandwidth of the noise signal and in some cases the 

absence of any distinct break frequency in the power spectrum results 

in either an incorrect (too large) value for the time constant or 

failure of the method. Based on the analysis and comparison with the 

loop current step response testing method it is concluded that the 

noise analysis technique may be used as a tool for monitoring degra­

dation of sensor characteristics, rather than for predicting quanti­

tative values of the time constants.



CHAPTER 1

INTRODUCTION

Random noise techniques in measurements on nuclear reactor systems 

are developed to measure the dynamic behavior or as a tool for system 

surveillance with a minimum of interference during normal operation.

The microscopic output noise can be considered as "the response 

of the system to an input representing the statistical nature of the 

underlying process." (See Uhrig [Ul]). The coolant temperature fluctu­

ations during normal operation of a reactor are caused by random variations 

in neutron flux and random variations in the heat transfer taking place 

in the core and steam generator.

Noise signals may be interpreted by modeling the response using a 

time series model. If {y^} is a sequence of measurements of a random 

process, and if {Vj,} is a noise sequence causing the {y^} , then the input- 

output relationship can be represented by the linear transformation:

2
i=l ai yk-i + 2

i=l
b.v, . + i k-i (1.1)

This representation assumes that there are no externally controlled 

perturbations. In other words, the statistics of {v^} is not known 

a priori. Special cases of the above model have been used for specific 

applications. The above model may be generalized to represent the dynamics 

of multivariable systems. Discussion of time series models is given in 

Chapter 3.

In the present context, the finite order time series modeling pro­

cedure is applied to the noise signals recorded from temperature sensors
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installed in the hot leg and cold leg sections of nuclear power reactors.

The data acquisition is performed during normal operation of the power 

plant, requiring a minimum of instrumentation. The data can be processed 

on site with the aid of a minicomputer and the sensor response character­

istics may be estimated. The method can thus be standardized as an integral 

part of the plant monitoring system.

One method that is potentially useful for sensor response time esti­

mation is frequency domain analysis of fluctuating signals. In the frequency 

domain method, the time constant is estimated from the power spectral density. 

The noise power spectrum may be obtained using the FFT algorithm. The time 

constant estimate may be derived either by fitting a transfer function to 

the power spectral density or by geometric construction. The time series 

method discussed in this report needs no such approximations, and all the 

calculations are made numerically.

Chapter 2 contains a brief introduction to the elements of prob­

ability and definitions of some useful statistical quantities. We will 

introduce the time series modeling of noise signals in chapter 3. Chapter 

4 describes the estimation of the models, and the associated power 

spectrum. Determination of optimal model order and the model validation 

are also given in chapter 4. In chapter 5 the determination of impulse 

response and step response from the noise model are presented. The 

techniques, based on the exact solution to a continuous system and re­

cursive estimation from the model directly, are verified by simulating 

known systems. Evaluation of RTD (Resistance Temperature Device) char­

acteristics such as impulse and step responses, power spectrum, and time 

constant is presented in chapter 6. The RTD data were obtained from tests 

at Millstone 2, St. Lucie, Turkey Point and Oconee 1 pressurized water
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reactors. Discussion and concluding remarks are summarized in chapter 7.

All the results are presented in Appendix C.

1.1 System Identification

Fundamental to the use of time series analysis, is the problem of 

determining the appropriate model, representative of the given data.

The estimation of this empirical model parameters along with the proper 

choice of the model is called system identification. We use a finite 

order autoregressive model to represent the noise signal.

yk = if1 Vk-i + vk t1-1-1)

The determination of the optimal order, n, is a decision making problem.

Figure (1.1) describes the steps in system identification. The optimal 

model can then be used to determine the power spectrum, impulse response, 

step response, and the system time constant.
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Figure (1.1) Steps in System Identification



CHAPTER 2

ELEMENTS OF PROBABILITY THEORY

In this chapter we shall briefly review the topics on probability 

pertinent to the discussion to follow. For more detailed treatment 

the reader is referred to the book by Papoulis [PI] on "Probability, 

Random Variables, and Stochastic Processes."

2.1 Random Variable, Random Process and Distribution Function

2.1.1 Definition. A Random Variable is a number assigned to 

the outcome of an experiment and defined by the function X(p) where 

p is the outcome of the experiment.

2.1.2 Definition. Let a given experiment be repeated n times.

If an event A occurs n^ times, then the probability P(A) that the 

event A would occur during the experiment is defined by

P(A) = 1 im (2.1.1)
n-x>°

2.1.3 Definition. We thus define a probability space as the 

triple (n, S, P) - where a is the space or outcome of the experiment,

S is the set of all possible events of ft (also called the Borel field), 

and P is the positive number assigned as the probability of a given 

event.

We have the following axioms for the probability

P(A) > 0

P(S) = 1

P(0) = 0, 0 is the null event.
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If the events A and B are mutually exclusive, then

P(AUB) = P(A) + P(B). (2.1.2)

2.1.4 Conditional Probability. Given an event R with nonzero 

probability, P(R)>0, we define the "conditional probability of event 

A given R" by

P(A/R)
P(AflR)
“pTrT ‘

This can be interpreted as 

P(A/R) = nAR/nR

(2.1.3)

(2.1.4)

i.e., if we discard all trials in which the event R did not occur 

and retain the sub-sequence of nR trials in which it occurred, then 

P(A/R) equals the relative frequency of the occurrence of the event 

A in that sub-sequence.

2.1.5 Distribution Function. Given a real number, x, we define 

the event {X<x} which consists of all outcomes p such that X(p) £ x.

The distribution function of the random variable X is defined as 

F (x) = P{X<x} (2.1.5)

for any number x from -«> to +«>.

The distribution function has the following properties

a. F(-o°) = 0, F(+o°) = 1

b. F(x^) _< F(x2) for x^ < x^, that is, it is a nondecreasing 

function of x.

c. It is continuous from the right

F(x+) = F(x).
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2.1.6 Random Process. We are given the probability space 

(jj, S, P). To every outcome, p, we assign, according to a certain 

rule a time function

X(t,p)

real or complex. This family of functions X(t,p) is called a 

stochastic process.

We can define X(t,p^) as the time function for specific outcome. 

For a given time, we can define X(t..,p) as a quantity depending on p.

A random process (henceforth denoted by X(t)) can be a very 

irregular process such as the motion of a particle due to its 

impact with the surrounding medium (Brownian motion). The electro­

motive force of a generator, although well-defined process, can be 

treated as a stochastic process

X(t) = A sin (wt+e) (2.1.6)

where the amplitude A, phase e, and the frequency u are random 

variables.

We define the distribution function as

F(x,t) = P{X(t) £ x}. (2.1.7)

Thus, given two numbers,x and tp the function F(x;t|) equal s the 

probability of the event {x(tj) £ x} consisting of all outcomes p 

such that, at the specified time tp the functions X(t) of the 

process do not exceed the given number x.

All possible processes

Fig. 2-1
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2.2 Probability Density Function

If the derivative of the distribution function F^(x) with 

respect to x exists then we define

px(x) =lrFx(x)- (2-2J)

Since the derivative need not exist, we classify the random variable 

as of continuous type and discrete type.

2.2.1 Random Variables of Continuous Type. We have the 

following properties for continuous random variables.

a. p(x) 0

b. /" p(x) dx = F(«) - F(-°°) = 1
—CO

c- F(x) = £> p(5)

Xp
d. F(x2) - F(Xl) = /x^ P(0 d5

xp
e. P{x1 l X £ x2> = /x^ p(5)

f. P{X = x} = 0

F(x)

Fig. 2-2
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2.2.2 Random Variables of Discrete Type

Fig. 2-3

F(x) is of the staircase type with discontinuities at the point 

(see Figure (2.3)). Let p^ be the jump of F(x) at the point x^, 

then

P ix = x.} = P. = F(xi) - F(xT) (2.2.2)

We also have

Fx(x) = P {x _< x} = s Pix = x.} , i such that x- _< x (2.2.3)

2.2.3 Random Variables of Mixed Type. In general, a random 

variable (r.v.) may consist of lattice type as in (2.2.2) and continuous 

variation as in (2.2.1). Then the r.v. is of mixed type as shown 

in Figure (2.4)



10

2.3 Examples of Distribution and Density Functions 

We define below a few distribution and density functions that 

appear in common practice.

2.3.1 Gaussian or Normal. A r.v. is normally distributed if 

its density function is a Gaussian function.

F(x)

Fig. 2-5 Fig. 2-6
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The density is defined as

P(x) exp{ - (x~n) }

\ 2ttct
2a (2.3 .1)

where n = mean value of the Gaussian random variable 

2
a = variance of the Gaussian random variable.

We define the following

n = E [x] = / x p(x) dx (2.3 .2)

2 2 2
a = E[(x-n) ] = / (x-n) p(x) dx (2.3 .3)

2 2
E[x ] - n

A function closely related to the Gaussian density is the error 

function defined as

erfx
x
/

\j 2tt

exp{" } dy (2.3 .4)

Thus
x

F(x) = /
— 00

p(y) dy erf (—^----- )
a

1
2

(2.3 .5)

and F(n) (23 .6)
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2.3.2 Cauchy Distribution

p(x) = -#4- (2.3.7)
a +X

Fig. 2-7

2.3.3 Gamma Distribution

P(x)
cb+1

r(b+l)
xbe"*x U(x) (2.3.8)

Gamma density

Fig. 2-8

00 1
{rC-n) = / xn e~x dx, n > 0 }

o
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2.3.4 Uniform Distribution.

p(x) = -------- , a < x < b
b-a

(2.3 .9)

Fig. 2-9 Fig. 2-10

2.3.5 Poisson Distribution. If a r.v. X is of discrete type, 

taking values, at the points 0, 1, 2, . . . with

P {x=k} = e“x , k=0,l,...; x > 0

k:

(2.3.10)

then X has a Poisson distribution with parameter x>0.

2.3.6 Bionomial. If X is of discrete type taking values at the 

points k = 0, 1, . . ., n with

P{ x=k} = (£) pk qn"k , p + q = 1 (2.3 .11)
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We say that it has a binomial distribution.

Example: Probability that k tossings out of n tossings of a coin are heads.

2.4 Joint Probability Density Function and Multivariable 
Gaussian Density

Given n random variables , Xg. . . ., Xn, we define the 

distribution function

F(x.|, *2..........xn) — P {X-j^Xi V (2.4.1)

and the density function

p(x-|»•..
(x-| 9 • • •

9x-j j ax2..., ^
(2.4.2)

Denote the vector (X-j, X2.................Xn) = )(. The r.v.'s denoted by

X^ are jointly normally distributed if their joint probability density 

function has a Gaussian form. In this case

p(x)
(2tt) •n/2 {det C} 1/2 exp {- 1/2 (x.-n)T(r1 (x-n)> (2.4.3)

n = vector of mean valves = (n-p . . •»

C = covariance matrix (nxn) whose i-jth element is defined by

C
ij EEU^-n-j) (xj-nj)] (2.4.4)
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The above definition assumes that the inverse C~^ exists. We denote 

the multivariate Gaussian density by

p(x) = GU.C) (2.4.5)

2.4.1 Joint Characteristic Function (CF). We define the 

Joint CF as

<l*(w) = E[exp(jwT)()], j=/-T (2.4.6)

Assuming that p(><) = G(0,C) we have

9>(cj) = exp[-l/2ajcaj (2.4.7)

Note that the above definition of $(w) uses the covariance matrix C 

instead of its inverse. This is a distinct advantage of the definition 

$((jj). Further $(w) is nothing but the Fourier transform of the joint 

density function. The Gaussian function is the only function whose 

Fourier transform is also of the same form-

2.4.2 Sums of Random Variables and Central Limit Theorem. 

Theorem: If X^, X2> . . ., Xn are jointly Gaussian, then the sum

Y = X-j + . . . + X also has a Gaussian density; that is if X_ = G(_n,C)

then

n n n
y = G( E n-j, E £ C.^) (2.4.8)

i=l i=l j=l

One of the remarkable properties of the Gaussian distribution is the 

so-called central limit theorem.
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Theorem: If X., i = 1, 2, . . ., n are a set of independent and

identically distributed random variables, then letting

n
— z 
n i=l i (2.4.9)

it follows that as n^«>, Yn approaches a Gaussian random variable.

Thus if Xi = (0, a ), i = 1, 2 
2

Yn -+ G(0, a ) as n becomes large.

» • • • 9 n then

The central limit theorem is useful in assumptions made about 

random processes and in proving certain asymptotic properties of 

estimation and identification methods.

2.5 Independent, Uncorrelated and Orthogonal Random Variables 

Before we discuss these ideas, let us define some terms which 

are fundamental and appear all the time in future chapters. 

Definition. If X and Y are two r.v.'s then the covariance function 

between X and Y is defined as

Cxy = E [(x-x)(y-y)] (2.5.1)

Definition. If X(t) and Y(t) are two random processes, we define 

the following terms

Autocovariance of X: E[(X(t-|) - X) (X^) - X)] (2.5.2)

Autocorrelation of X: E[X(t-j) X^)] (2.5.3)

Cross Covariance of X and Y: E[(X(t-|) - X) (Y^) - 7)] (2.5.4)

Cross Correlation of X and Y: E[X(t^) Y^)] (2.5.5)
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The expectation is defined as follows:

ECx^) y(t2)] =_/ _/ xypCx.t-j.y.^Jdxdy (2.5.6)

2.5.1 Independent r.v.'s. Two random variables, X, Y are

said to be independent if

p (X <_ x, .Y <_ y }= p {X <_ x} p {Y <_y} (2.5.7)

Fxy(x,y) = Fx(x) Fy(y) (2.5.8)

and Pxy(x,y) = Px(x) py(y) (2.5.9)

Thus, we also have

E[XY] = E[X] E[Y]. (2.5.10)

2.5.2 Uncorrelated r.v.'s. Two r.v.s X and Y are said to 

be uncorrelated if

E[(X-X) (Y-Y)] = 0 or E[XY] = E[X] E[Y]. (2.5.11)

It follows from the definition of independence that if two r.v.s 

are independent, they are also uncorrelated.

2.5.3 Orthogonal r.v.'s. Two random variables X and Y are said

to be orthogonal if 

E[XY] = 0. (2.5.12)
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For two vector r.v.s and we say that they are orthogonal 

E[_X Y^] = 0 matrix.

if

(2.5.13)

These concepts are very important in the estimation problems to 

derive meaningful algorithms. For most random processes, these 

conditions are satisfied (or nearly satisfied) and since we are 

interested in asymptotic properties, such assumptions are not far 

from truth.

2.6 Stationary Random Processes

2.6.1 Stationary Processes. We say that a stochastic process 

X(t) is stationary in the strict sense if its statistics are not 

affected by a shift in the time origin.

For an nth order density function, we must have

P(xi,X2>..>xn;ti,t^ 9••.

(2.6.1)
— P(Xl»X2,'**,^fl,'t] + T, . . . , t^ + T)

Thus for first order density

p(x,t) = p(x,t+x) -> the first order density is independent of

time.

Hence, E[X(t)] = n = constant. (2.6.2)

The second order density becomes

P(xi 5X2 5t-j ^2) — p(x-| ,X2»t-j x, t2 t) ■fr' 

p(x1 ,X2?t-, ,t2) = p(x-j ,X2*, t)

Hence, E[X(t) X(t+x)] = Rvv(t).
XX

(2.6.4)
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2.6.2 Wide Sense Stationary Process. We say that a process 

X(t) is stationary in the wide sense (or weakly stationary) if

E[x(t)] = constant, E[x(t) x (t + t)] = Rx(t) (2.6.5)

Note that the wide sense stationarity involves only first and second 

order moments.

Two processes are jointly stationary in the wide sense if 

each satisfies (2.6.5) and

E[x(t + x)y(t) ] = R^y(x) (2.6.6)

Remark: If a process X(t) is normal and stationary in the wide sense

then it is stationary also in the strict sense (because all moments 

of X(t) are expressed in terms of the first two moments).

2.6.3 Markov Process. A process X(t) is Markov if the 

statistics of the future depend only on the present and are independent 

of the past.

If t, < t0 < . . . t , then 12 n

P &(tn) _<_ xn 't!)} = F* fc(tn) <_Xn!x(tn_i)} (2.6.7)

In terms of density function

Pix(tn) |x(tn_1),...,x(t1)} = p {x(tn) IxU^-,)} (2.6.8)
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We will use this property to express dynamic system models as Markov 

processes.

2.6.4 Power Spectrum. The power spectrum (or spectral density) 

S(w) of a process X(t) is the Fourier transform of its autocorrelation.

S(o>)
00

/
00

-jwT
e R(t) dx

(2.6.9)

Conversely

R(x) = —^— f S(u) eJa)T dw (2.6.10)
2 IT

If x(t) is a real random process then

R(x) = R(-x) and S (to) = S( -oj) (2.6.11)

Note that the above definition of the spectral density is true only 

for stationary processes.

2.6.5 White Noise. A random process of primary importance in 

engineering applications is the so called white noise. This is a 

stationary process with all the components independent. This of 

course means they are uncorrelated. In general, it is also assumed 

that as function of time they have zero mean and the same covariance 

function.
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If X^» k = 1, 2, ... is a white noise process vector with 

mean zero, we have

ELx^Xj^] = RS-jjj fo^ all i and j (2.6.12)

where 6^. = 1 if i = j 

= 0 otherwise.

The autocorrelation function of a white noise process is a delta 

function, that is

E[x(t) x(t +t)] = Nq <6(t) (2.6.13)

where NQ is a constant value. The spectrum is therefore constant 

for all frequencies.

Fig. 2-11 Autocorrelation and Spectrum of White noise

Note that since R(t) is not differentiable, the white noise is a 

process with infinite discontinuities and not physically feasible.
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2.7 Ergodic Random Processes

Statistical quantities may be calculated using the average of an 

ensemble of sample functions. Fig. (2-1) shows such an ensemble.

At a given time t = t-j, the mean value of the random process lx(t)} 

and its autocorrelation function can be calculated as follows:

N
nv(t1) = lim 1 E xjt-,) 

x 1 N k=l K 1

1 N
tyW + t) = lim ^ x (t-|) xk(ti "*■ t)

k=l
N-»- 00

(2.7.1)

(2.6-2)

In most cases the above statistics can also be calculated by using

just one sample function in the ensemble. Thus the mean value and

"ththe autocorrelation function of the k n sample is given by

■i t
nx(k) = lim j / xk(t) dt 

o
T ->• »

i t
R (t.k) = lim - / x. (t) x. (t + t) dt x T q k k

(2.7-3)

(2.7-4)

If { x(t)} is stationary and nx(k) and Rx(t,k) do not differ when 

computed over different sample functions, the random process is said 

to be ergodic. Thus if a process is ergodic the ensemble average 

is equal to the time average. Note that only stationary processes can 

be ergodiq.

The concept of etrgodicity can be used to approximate certain 

statistics such as the mean and correlation functions by replacing 

the ensemble average by time average, or approximating statistical 

quantities by summation over time.
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2.7-1 Estimation of mean and autocovariance functions for stationary 

process.

In problems of data processing using digital computers it is only 

possible to have measurements of a signal available at discrete time 

points. Two of the quantities often computed are the mean and auto 

convariance functions.

Let {x^, k=l,2,...,N} be the sequence of measurements of a random 

process Lx^}. Then we define the mean as

1 N
nx=-L z x. (2.7-5)

X N k=l K

and the autocovariance function as 

N-k

Vk) = M if1 (xi “ ^xi+k " nx^ (2.7-6)

Some authors use autocovariance and autocorrelation to mean the 

same equation (2.7t6). (2.7-6)

For definitions of other statistical quantities see Bendat and Piersol 

[Bl, Ch.6].



CHAPTER 3

LINEAR STATIONARY TIME SERIES MODELS

A general description of the time series models is presented. 

Special cases of interest are discussed. There are many classical and 

recent references in the field of time series analysis. Some of these 

are monographs and, the others are published in technical journals and 

conference proceedings. The references listed at the end are those that 

are appropriate to the present discussion.

3.1 General Linear Processes;

Let {^}k and i = 1,2..........p, denote jointly stationary

ergodic progesses. Let {y^} be a sequence of white noise process. 

Then the process {y^} may be represented in general, in the form

= E 
i=l Ai4- i=l B1i— 1,k-i + •••+ E

i=l
B .u , . 

pi p,k-i

+ E C v. , (3.1-1)
i=0

^■Ai*Bki* ..........P» , i 1} are matrices with constant coefficients.

Let be an n x 1 dimensional vector and u^(*) be m dimensional for 

i=l ,2,... ,p. Let y be m dimensional.^. (•) , i=l,...,p} is an input 

sequence of known statistics. A special case of importance is the 

univariate signal {y^} produced by the linear aggregation of the white 

noise {v^} given by

oo oo

yl< = 4, Vk-i + biVk-i + vk
(3.1-2)
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An infinite representation (3.1-2) is not feasible and often may 

be incorrect. A parsimonious use of parameters is often derived 

with finite orders for the autoregressive and moving average terms 

as follows:

n m

*k= ! Vk-i + z biVi + vk
i=l i=l

(3.1-3)

Such a representation is often called the autoregressive moving average 

(ARMA) process. A complete description of such models is given in Box 

and Jenkins [B2].

The use of time series models for forecasting, control and spectral 

estimation has been the subject of works by Parzen [P2], Mann and Wald 

[Ml], Hannan [H1,H2], Anderson [Al], Quenouille [Ql], Kashyap and 

Rao D<1], Rosenblatt [Rl^ Rao [R2], Akaike [A2] and others [A3].

Many special cases of the ARMA process are obtained as follows.
n m

ARMA process: yk = ^ vk (3.1-4)

n
Autogressive process: y^ = e a^.y^ . + v^ (3.1-5)

m
Moving Average Process: = e b^v^ . + v^ (3.1-6)

n
Regression Models: y^ = E a^ + v^

3.2 Stationarity and Invertibility of ARMA Processes

(3.1-7)

Using the backward shift operator

1)1 vk = Vi (3.2-1)

the ARMA model may be written as

n . i m .
y. = (1- E a.D1) 1 (1- E b .D1 )v.

K i=l 1 i=l 1 K
(3.2-2)(3.2-2)
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II . -I
The convergence of the series ¥(8) = (1 - z a.D1)" ensures that

i=l 1
the process {y^} has a finite variance. This is equivalent to the 

condition that roots of the equation

n
1 - Z a.D1 = 0 (3.2-3)

i=l 1

must be outside the unit circle. Thus when the noise process is stationary 

the above condition ensures that the process {y^} is also stationary.

The concept of invertibility is concerned with recovering {v^} 

from the semi-infinite history of observations {y^l. Writing (3.2-2) as

m . 1 n .
vk = (1 - Z b.D1) 1 (1 - ^ a.D1) yk (3.2-4)

i=l i=l

the linear process is invertible if the infinite process expansion of 

m i -i
ir(B) = (1 - z b.D ) converges. This is equivalent to the condition 

i=l 1
that the roots of the equation 

m
1 - Z b.D1 = 0 (3.2-5)

i=l 1

lie outside the unit circle. The conditions of invertibility are independent 

of the conditions of stationarity of the time series. Both stationarity 

and invertibility are necessary conditions for the consistency of parameter 

estimates.

3.3 Estimation of the power spectrum

Using the estimated values of the ARMA parameters an estimate of the 

power spectrum can be obtained. The ARMA process can be treated as a 

linear transformation with the Fourier transform of the filter given by

1 - z bke-^fkT

H(f)= ------------, Ifl < - (3.3-1)
n 2T

1 - s ake-j2"fkT 
k=l
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v
-> H y

Then the output spectrum S (f) is given by Syy(f) = IH(f)l2 svv^^ (3.3-2)

1
If {vk} is a white noise sequence $vv(f) has a constant value in Ifl _< 2T 

o
and lH(f)l itself represents the power spectrum of the process

Equation (3.3-2) can also be stated conversely using the Paley - Wiener 

condition [P3].

Theorem: If the spectrum S

» l s (f)l
r y y

J 2
1 + f^

yy (f)

df

satisfies the Paley-Wiener condition

(3.3-3)

then the process {y^} can be generated by passing white noise through 

the filter whose Fourier transform H(f) is such that

C IH(f)l2 = IS (f)1, where C is a constant.

In the discussion of autoregressive process we will obtain an 

estimate of the error in the power spectrum as obtained from (3.3-1)

3.4 Use of Autoregressive Models for Random Noise Signals

The choice of one type of model over the other depends on the type 

of signal to be modeled. Any one of the models of equations (3.1-3) - 

(3.1-7) may be suitable for a given time series.
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Let the time series {y^} be a purely random,weakly stationary process. 

Pure randomness implies that that are no super-imposed frequency components 

like a sine wave or any periodic signal, or a DC component. If a DC 

component is present, this is removed by subtracted the mean value of 

the time series from the original data. Thus under these conditions the 

{yk> is generated by a sequence of noise pulses such that {y^} has a 

representation

oo

= bivk-i + vk t3-4-1'

where {v^} is a white noise sequence with

E[vk] = 0, E[VjVk] = k» Vj,k (3.4-2)

We notice a mapping here between the spaces {v.-,i £ k} and {y.., i^k}.

Thus y^ can be approximated by

*k= j, ai\-i+ vk <3-4-3>

arbitrarily closely with increasing n. We can consider 

n
z a.jyk_.j as the projection of yk onto the space (or manifold) of 

i=l

{yk_iS i=l,...n}

For stationarity of the process,the roots of the equation 

n
1 - z aiD1 = 0 (3.4-5)

i=l

must lie outside the unit circle. These observations provide the 

rationale for the use and application of autoregressive models both for 

power spectrum estimation and evaluation of dynamic response characteristics.



CHAPTER 4

ESTIMATION OF OPTIMAL AUTOREGRESSIVE PROCESSES 

AND MODEL VALIDATION

Since the form of the empirical model may not be known a priori we 

assume that these are represented by models described in Chapter 3, with 

constant coefficients. There are cases where the functional form of the 

predictors is changed so that a more efficient representation is obtained.

Such autoregressive (AR) processes are referred to as generalized AR processes.

yk ' ^ Vi ^k-i>+ vk (4-1)

The function f^(*) may be a logarithmic, squared or any other function 

such that (4.1) is asymptotically stable (see [Kl], ch.3). In this chapter 

we restrict ourselves to the constant coefficient AR processes of the form

yk = ,=1 Vk-i + Vk (4'2)

We will obtain the estimates of {a. ,i=l ,2,... ,n}, their properties and 

compare them to the least squares and maximum likihood estimators. Selection 

of an optimal class and the validation of the selected model is discussed 

in detail. Estimation of the power spectrum and its error bounds are given.

4.1 Estimation of AR Parameters

AR model estimation both for prediction and for spectral estimation 

has been studied by several authors - Yule [Yl], Walker [Wl], Hannan [H2], 

Akaike [A4-A9 ], Anderson [AID], We discuss the Yule-Walker equations 

and their properties as related to maximum likelihood and least squares.
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Let the time series under observation be a realization of the auto­

regressive process defined by 

n
Yk - e a.yk_i + v^, k = 1,2.......... (4.1-1)

i=l

{vk} is a white noise sequence - v^ are uncorrelated with statistics

E[vk] = 0 , and E[vk^] = for all k. (4.1-2)

Define the autocorrelation function of the stationary process {y^} for 

lag k, as

ck= E !>t

Since {y^} is a real process, is symmetric

(4.1-3)

Ck = C_k for all k. (4.1-4)

A recurrence relation for the autocorrelation functions of a 

stationary AR process is found by multiplying equation (4.1-1) by yt_k 

to obtain

yt-k yt = j, Vt-iyt-k + yt-k vk (4-’-5)

Taking the expected value in (4.1-5) and noting that yt_k is independent 

of vk we get

E[yt-kyt] = 1fl aiE[yt-iyt-k]

Using definition (4.1-3) the above equation becomes

(4.1-6)

ck = 1f1 aiCk-i’ k > 0 (4.1-7)
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The correlations are computed from the observed time series as 

i N-k _
Ck ='FPk .z, y^i+k’ k = 0,1i=l 

1 N
yi ~ Yi " N kf1 yk’ 1=1

(4.1-8)

(4.1-9)

Where N is the number of observations. Equation (4.1-7) can be written 

for k = 1,2,...,n giving

C1 ~ alc0 + a2Cl + ••• + ancn-l 

c2 = a-jC, + a2cQ + ... + ancn_2

cn " alcn-l + a2Cn-2 + ••• + anc0 (4.1-10)

Equation (4.1-10) are called the Yule-Walker equations (see [B2], Ch.3).

The parameters a^, i=l,2,...,n are obtained by solving (4.1-10). Rewriting 

the set of linear equations in matrix form we obtain:

1

o

__
__

1

c0 C1 * • • • cn-l

i

C
U —

1

C2 C1 c0 • • • • cn-2 a2

• = • •

• . •

• • •

• • •

cn cn-l cn-2 • ' ' c0 an
i_ —J — —

(4.1-11)

(4.1-12)
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P is an (nxn) symnetric Toeplitz matrix [Gl]. (A matrix T is called a 

Toeplitz matrix if all the elements along the same diagonal are equal, 

t.jj = Taking the inverse gives the estimation

a) = P_1c (4.1413)

Notice that we have been able to determine ^without the knowledge of the 

noise variance

4.1- 1 Estimation of Noise Variance

Multiply both sides of (4.1-1) by y^ and take the expected value giving

E[y^] = £ a. E[ykyk_i] + E[ykvk] (4.1-14)
i -1

n 2
Noting that E[ykvk] = E[( aiyk-i + vk^vk^ = E^vk ^ gives 

n 2
co = * aici + E[vk ] (4.1-15)

O n
or d- = cn - Z a.c. (4.1-16)

u i=l 1 1

Notice that the noise variance is obtained as a function of the estimates 

of AR parameters.

4.1- 2 The Least Squares Estimation

The least squares problem of estimating a_ using N observations may

be stated as the minimization problem

N n 2
min z (y^ - z a.y. .)

a k=l k i=l 1
(4.1-17)
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The solution to the above problem is given by

a = (AV ATy (4.1-18)

Where A is (Nxn) matrix defined below.

y0 0 . . .

yl y0 * * '

Kn-1

yN-l N-2 N-n

(N x n) matrix

(4.1-19)

Once the a_ is estimated the noise sequence may be estimated as the residual 

estimate

n
yk - £ ^iyk-i * ^ 1>2,...,N.

i —1

An estimate of the noise variance is then given by

32 = E^k2] = IT V

(4.1-20)

(4.1-21)

By comparing the Yule-Walker equations and (4.1-18) it is evident that 

the least squares estimate approaches the Yule-Walker estimate as N -> °°.
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4.1-3 The Maximum Likelihood Estimation

This method is based on the assumption that a joint probability 

density function (pdf) of the observations may be constructed. Let 

p(^» a, o^) be such a density function where ^ = {y-j y^}.

In many cases the evaluation of p(y\cO is very complicated. Alternately 

a conditional likelihood function is defined as

L = p(xN | a ,cj2,yo) (4.1-22)

Where yQ is the initial state. The maximum likelihood estimator is defined 

by

, N . 2 \max p(y_ |a,a , yQ)

a,a

(4.1-23)

We search for the value of (a^,a ) for which the conditional pdf becomes 

maximum. In general we assume that a^ belongs to some subset of the 

parameter space so that the assumptions of stationarity and stability of 

the systems are satisfied.

Let the yncorrelated noise sequence {v^} be distributed as a Gaussian
2 2

distribution with mean zero and variance a . ^ G (o,a ), :Then the

joint conditional pdf becomes

, N , 2x 1p(y I a, a ) =- exp {■ 1
£ (yt - s a.y. Y} (4.1-24)

2a2 k=l "k i=l U'|J,k-i(2lTa2)N/2

It is convenient to use the natural logarithm of p. Thus we have

N -I N n p
ml m{2vo2) - -1- e (yk - e a. yk_^)

2ct2 . . . n
k=l i=l

(4.1-25)

It is clear from above that since Jin L is a monotonic function of L, 

maximizing L is the same as maximizing Jin L. This is also equivalent to
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minimizing - Jin L

N 1 U
-JlnL = -s- «,n(2ira2) + ------ e

2a2 k=l

The problem may be restated as

N 2
min - JinL = min g(y , a_, a ) 

(a,a2) (a,a2)

(yk - * ai^k-i ^ (4.1- 26)

(4.1- 27)

To obtain {a., i=l ,2,... ,n}:

g(y > a,a2) = 0, i=l ,2,... ,n) (4.1- 2^

Equs. (4.1-28) are the same as the least squares solution of section 

(4.1-2). Once the {a-} are obtained we form

, N
g(y .a.!

N n
j2) = tj- Jln(2ira2) +2^2 £ (yK - 2 Vk-i)1

k=l

a2

Mi N n o
"a'T3 E (yk " E aiyk-i) =0 

k=l i=l
1 N n 2

N Z (yk- £ aiyk-i>
k=l i=l

(4.1- 29) 

(4.1-30)

The above equation is the same as (4.1-21).

Thus we see a matching of the least squares and the Gaussian conditional 

maximum likel ihood estimators. As pointed out in section (4.1-2) the 

least square estimation and the Yule-Walker estimation are equivalent for 

N -* °°. All the three techniques have asympotitically the same property.

We say that a given solution is asymptotically efficient if it approaches 

the maximum l ike! ihood estimator in the Gaussian sense. Thus even without 

the assumption of a form for the density function we can obtain consistent 

estimators similar to the CML estimator in the Gaussian case.
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4.1-4 Error Convariance of AR Parameters

Using the asymptotic properties of the errors in the estimates of

we can derive an expression for the error convariance of a^. The following

theorem is proved in [A7,H2].

Theorem 4.1-1 Let {yk} be generated by a stationary AR process 

described by (4.1-1). Then a_ and a converge to a^ and a in probability 

one. Moreover-/n" (a^ - £) has a distribution which converges as N ^ 00 

to that of a normally distributed vector with zero mean and covariance

2 imatrix a 0^“'where C is n x n matrix.

4.2 Estimation of Power Spectrum

It ts not our intention to rely on evaluation of the power spectrum of 

the process yk to estimate sensor time constants. However, the AR para­

meters may be used to find an estimate of S (f) for comparison with power 

spectrum estimates obtained by other methods. The following relation is used

(a. - a) 'v G(0, a2 C-p (4.1-27)

Remark: The covariance matrix may be estimated as

Where

Cyy C C
0

Ct c 0 c

cn-1

n-2

C 0

Syy(f) = |H(f)|2 Svv(f) (4.2-1)
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Where S (f) is the power spectrum of {y^}

S (f) is the power spectrum of {v^}

H(f) is the linear transformation obtained from the AR model. Thus

32T
1

- 2T
1 - z Vi2lTfkI

k=l K

(4.2-2)

where $vv (f)= ct2T and f is in Hertz. 

T = Sampling time in seconds

It is possible to obtain an expression for the variance of the power 

spectrum by using the result of the previous section that the error in 

a' is distributed asymptotically as a Gaussian function.

Define the following:

A(f) = 1 - " a. e
k=l K

AA(f)
n

- E
k=l

A Q-i2TTfkI Aa. e k

(4.2-3)

(4.2-4)

{Aa^} is the error in the estimate of discussed in section

(4.1-4). The total differential of AS (f) of Syy(f) for the differentials

^ j 2 ^2 2 .
Aak = ak ~ ak an° Aa =cr “ a 15

AS (f) = aSyy(f) Aa2 + E 3.S (f) Aa. (4.2-5)
yy o —JJ.____ N

9,a k=l 3ak

We are interested in obtaining a value for the limit distribution of

AS,v(f)

Vf)
(4.2-6)

It is shown by Akaike [A6] that the expected value of (4.2-6) as N -* °° 

is given by
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E. (^)2 ■ E- & )2 + E, 2 )2 (4.2-7)

This result is obtained by using the earlier results (see[A6], theorem 2) 

that the limit distribution of JIT Aa and Aa^ are mutually independent.

In (4.2-7) A|A(f) | ^ is given by

A |A (f) | 2 = A(f) aAU) + A(f) AA(f) (4.2-8)

Where -------- denotes complex conjugate.

The first term in (4.2-7) is evaluated as

E oo )2 = J A - 1) (4.2-9)
a a

Where m4 = E[vk4]. For a Gaussian noise m4 = 3a4.

The following are the steps in computing the variance of the power spectrum

from AR model.

1. Define A(f) = 1 - " J .-iEitEkT 
k=l K

A A(f)
n A -i ?irfk T

= - X &a e TK 1
k=l k

{Aa. I? , are obtained from the error covariance matrix defined as k k=l
follows _1

A a^ C0 C1 * * * Cn-1

A &2 C1 C0 ‘ • •• cn_2

m 2
= a diag •

•
N

•

•

A a n

•

Cn-1 Cn-2 * ’ * C0
» —
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2. Calculate A |A(f)j ^ A(f) IK(fT + MfT AA(f)

3. Compute

where

4.3 Selection of Optimal Autoregressive Models

A model that is chosen based on a given criterion should also pass 

all the validation tests (discussed in sec.4.4). As we have mentioned 

earlier an optimal model of an AR process may not be the best model for 

a given data. But we assume that this is indeed the case and restrict 

ourselves to the selection of the best model in this class. Many common 

criteria such as least squares may not lead to good models. A criterion 

must be sensitive to changes in the model order; the prediction capability 

of the model must be reflected by the criterion function. Bayes' minimum 

probability of error criterion is the most versatile of the methods 

described below.

It is important to realize that the selection of a best model is a 

decision making process. There may be cases when it is difficult to choose 

a model based on the absolute optimum of the criterion function. We suggest 

that in such a situation all the tests described below may be applied to 

be satisfied simultaneously. We want to avoid using rather arbitrary 

quantities such as significance levels to minimize the subjectivity of
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decision. The hypothesis testing method, which uses these quantities 

will be described since it compares models of different orders based 

on a significance of the change in model order. The methods for order 

selection are:

(a) Likel ihood Approach (Akaike [A2], Kashyap [Kl])

(b) Final Prediction Error (FPE) (Akaike [A7])

(c) Hypothesis Testing (Wilks [Wl], Kashyap [Kl]).

(d) Bayesian Probability Criterion (Kashyap [K4])

4.3.1 The Li kel i hood Approach

This method is based on computing the maximum value of the log 

1 i.kel ihood function for a given order n. Once the conditional maximum 

likelihood (CML) estimate = (a_, &) is obtained then an average value
St

of the log likelihoodfunction given is derived. The following theorem 

gives this value.

a

Theorem 4.3-1. Let 0_ be the CML estimate of _e, based on the 

Nobservations . ihen

E[£n p(^N | e )] = *n P (£N I £) - (n + 1) (4.3-1)

For a proof of this theorem see [Kl , pi84].

N
We note that An p(y^ | ) would have been the correct log likelihood

N A A
value if had come from a model characterized by 6_. Since is only 

an estimate of e this additional ignorance about manifests itself in 

a reduction in the likelihood by a quantity (n+1). The optimal model is 

chosen such that the expression in (4.3-1) is a maximum. This decision 

rule was first proposed by Akaike [A2] based on considerations different 

from that given in [Kl].
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Decision Rule 1: For a given model of order n estimate the CML

parameters Calculate

Choose the model for which L is the maximum.

REMARK: Calculation of L requires the knowledge of the distribution of

the noise sequence {v^}. In many cases the assumption of {v^} to have a 

Gaussian distribution will be close to reality. As discussed in section 

4.1, the least squares and the Yule-walker equations will give the same 

consistent estimates as the Gaussian maximum likelihoodestimate. Thus 

the assumption is not very restrictive.

Calculation of L: With the above assumption we first calculate

v^ is also called the prediction error, residual or the innovations 

process. With the above definition

Since the first term is a constant, not a function of model order we 

can rewrite the above as

L = £n p (x1 | e) - (n + 1) (4.3-2)

N (4.3-3)

k=l *
(4.3-4)

L N

2

2 I " ^9
An (2ira ) - —2 E v. - (n + 1)

2a k=l K

By taking the negative of L

II o
E vj, + n

k=l K

2a

n -2E vk +n
k=l

(4.3-5)
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n = number of independently variable parameters. If the estimate of
2

a is given by

a2 ■) n
S = N Z v.2 , (4.3-6)

k=l K

substitution in (4.3-5) gives

L-| = TJ- an {a2) + ^ + n

Once again neglecting and multiplying by 2 gives

AIC = N an (a2) + 2n

We call AIC as the criterion such that 

min AIC= N an (a ) + 2n*

(4.3-7)

(4.3-8)

where n* is the optimum model order.

4.3-2 Final Prediction Error (FPE) Criterion

The final prediction error is defined as 

FPE = E[(yN-yN)2] (4.3-9)

where

Vn-I (4.3-10)

The a^'s are determined using {y^, k=l,2,...,N}. This was proposed by 

Akaike in 1970 [A7] as a method of choosing an optimal order n such 

that the FPE is a minimum. The evaluation of FPE assumes that as N 

increases, the dependency of a(N) will be completely vanishing. In other 

words the estimates of a_ are independent of the present or recent 

values of the data and that ^ depends on the statistics of

i=l».-»n}. Based on this and the estimates of £ using the
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Yule-Walker equation Akaike derived an expression for the FPE as

(4.3-11)

where

S(n) = c0 - z a.c.
i=l 1 1

A
(4.3-11)

(4.3-12)

If the noise statistic has a Gaussian distribution then it can be 

shown that the (FPE) n asymptotically approaches the likel ihood criterion 

given by AIC of equation (4.3-7).

Theorem 4.3-2 If the noise statistic of {v^} has a Gaussian distribution 

then

lim An (FPE)n = ^ (AIC) (4.3-13)

Proof: (FPE)n = ^ S(n)

As N °°, S(n) + a2,a consistent estimate of a2.

An (FPE)n = Ana2 + An (1 + ^j) - An (1-^)

£n (1 + ^ “ Ti and *n (1 " ^ “"I

An (FPE) = Ana2 + ^ . 
n N

(AIC) = Ana2 + from eqn. (4.3-7)

N *

lim An (FPE)n - 1 (AIC) 

N -*■ 00
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4.3-3 Hypothesis Testing

This procedure, also called the likelihood ratio test, is used for 

small samples in testing the various hypotheses concerning the parameters 

of a normal distribution. This is treated by several authors. We refer 

to the work by Wilks [Wl], Chapter 13.

We apply this theory to compare two classes of models, one with 

n.| parameters and the other with ng parameters, n2 > n-j. Based on 

the observation {y-j,.....y^} ,we define a quantity as a

statistic which is a function of

Decision rule D: (y.N) — no ^ accept n-j (4.3_i4)

L > ^o accept n2

Where nQ is a threshold. The value of n0 is fixed based on the property 

of the statistic

Define the likelihood ratio as

„(/) = max P2 (/ I e) (4.3-15)

where p-j and P2 are conditional probability density functions with n-| 

and n2 parameters.

Then the like! ihood ratio test is given by

i(/)£n0^ accept n, (4.3-16)

n (^ ) > ^ accept n2

Where n0 is a suitable threshold.

The probabilities of errors associated with the above decision are 

classified as follows.
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Probability of type I error 

= Prob {n(y^) > I belongs to model n-j }

Probability of type II error 

= Prob {n(£N) £ ti0 | y.N belongs to model n^}

Decision Rule: The following decision rule is developed by Wilks. It

it stated in the following form so that the decision rule under n-| has a 

standard distribution.

Let N = No. of observations

n-|= No. of AR parameters for model 1.

nf No. of AR parameters for model 2.

Let Vfeyij) = Residual sum of squares for model 1.

V(e_ 02) = Residual sum of squares for model 2.

Define

p _ N — 1)2 V!£, n-|) - V(£, 02) 2_■]

n2_ n-j V (6 a rip
Using a theorem due to Cochran (see W[l], p212)

{V (£»n-j) - V(0_,r^)} and V(e^n2) are independently distributed according 
2

to x " distributions with (n2-.nj) and (N^) degrees of freedom. In 

order to derive this the noise statistics are assumed to be normal. It 

then follows that the function F has a F-distribution 

with (n2-n-|) and (N-n2) parameters-F(n2-n-|, N-n2). The probability 

distribution of F is independent of the parameters (a^,a ). The F- 

distribution is tabulated and we can choose a threshold n0 to yield 

a particular value of the error probability of type I. But we cannot 

determine the type II error probability. The type I error probability 

is chosen as 0.05 or 0.02 etc. The ambiguity of this choice suggests 

that the decision rule basedon AIC or FPE be used. The value of F, 

however, gives an estimate of the type I error probability when using
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the likelihood criterion or final prediction error criterion.

Remark: We want the number F in (4.3-18) to be less than some threshold. 

We choose this threshold by computing the 100oc/o point and see if F 

< Fa. We do not want F to be greater than Fa. Set the limit by letting

P(F>Fa) = a = area under the F- distribution curve between F' and °°.a

Then the error probability of type I is prechosen as a. See figure (4.1).
?

For description of x and F-distributions see Appendix 4A.

P(F > FJ

Figure 4.1

For a given value of a, if F<Fa then we can stop the estimation procedure 

and choose n2(>n-j) as the optimal order. If n2 and n-| are successive 

orders then n2-n-|=l and we have to compute FOjN^).

4.3.4 Bayesian Comparison Criterion

The Bayes1 criterion is derived such that the probability of error 

in selecting an optimal model is minimized [K4]. The decision rule states 

that if there are n models with parameters (n^, n^, . . ., n^) then choose 

the model whose a posteriori probability P(n^|y^) is a maximum. This 

criterion has the property of asymptotic consistency and gives a quantitative
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explanation of the "principle of parsimony" defined in the construction 

of empirical models. Moreover the effect of the assumption of prior 

probabilities is negligible for large N. The decision rule is transi­

tive and the probability of error of the optimal decision rule is given by

Probability of Error = 1 - max P(n^|y^) (4.3-19)

The decision rule is given by

D(yN) = argument ie{^2,...,m} P(ni^N) (4.3-20)

That is, choose n such that the a posteriori probability is a maximum. For 

autoregressive processes with Gaussian distributions, the criterion is given

by 2
9 a

BPC = N£na * - n£n N-nUn^-) -1} (4.3-21)

av
2 2where av is the variance of {v^}, is the variance of {y^}. Choose 

n such that BPC is a maximum.

4.3.5 Discussion Among the four model selection methods presented above 

the Bayesian approach is very versatile, requires less ambiguity and gives 

good results in practice (see discussion in reference [K4]). In fitting 

AR models the model order from the likelihood criterion may be larger than 

is necessary to pass validation tests.

The final prediction error in the AR case gives results close to 

the likelihood method. Both the tests may be implemented to reinforce the 

validity of the model.
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The hypothesis testing approach is valid for large N. Only then the 

assumption of F-distribution is valid. There are instances where the first 

two methods may not produce an absolute minimum of the criterion function. 

After reaching an elbow shape the values of AIC or FPE may oscillate. See 

Figure 4.2. If this happens the F-test could be used to make a valid 

judgement about the model order without increasing the model order to an 

arbitrarily large number. Since this approach compares the change in error 

from one to the next model the F-test can be used in conjunction with the 

likelihood or prediction error tests.

4.4 Validation of Empirical Models.

After an optimal model is obtained, the model must be tested for the 

assumptions made regarding the statistics of the observations. It is 

important to realize that the best model obtained above may not always 

adequately represent the data. We have not taken into account any periodic 

or sinusoidal variations in the signal. Also additional input variables 

may not have been considered.

The first validation test is to check the whiteness of the noise 

sequence Iv^}. One may use the residual sequence and compute the auto­

correlation of the residuals to calculate an index and compare this against 

a desired level of significance. Since we are interested in checking if 

the model is satisfactory, the arbitrariness of the significance level will 

not introduce any error. The output data itself may be tested for spectral 

density and correlogram.

In the following we present several validation tests. Simultaneous 

verification of these tests will exhibit any deficiency in the model. For 

details see [Kl, B2].
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4.4.1 Autocorrelation Check Using Prediction Error

The major assumption in the model is that the background noise is a 

white noise sequence. Such a noise process has the property that the adjacent 

points of the series are not correlated. The correlation function must have 

the characteristics of an impulse function. The spectrum of the noise 

sequence must be flat within the band, limited by the folding frequency.

The residual or prediction error estimate is calculated as

- n /S
Vk = yk - E aiyk-i’ k=l»2,...,N (4.4-1)

i=l

If the parameters a_ of the AR model are known exactly, then it is 

shown by Anderson [All] that the estimated autocorrelation

pk(v) = Ck(v)/C0(v) (4.4-2)

of the noise sequence would be uncorrelated and distributed approximately 

normally about zero with variance ^ and hence with a standard deviation of 

l/</N. When we only have an estimate the residuals can be determined

as in (4.4-1). The autocorrelation of {v^} is then determined and plotted.

It is shown by Box and Pierce [B3] that this value may underestimate the 

error in Pk(v) at low lags, but can be employed as a good estimate of 

error at moderate or high lags. The whitness of the noise is then checked 

by comparing a given number of Pk(v) against a 95% confidence level given 

by + 1.96//N. If less than 5% of the autocorrelation functions are outside 

this limit, then the whiteness is assumed with 95% confidence.

4.4.2 "Portmanteau" Lack of Fit Test (Box and Jenkins, [B2])

This is a goodness of fit test. Since taking the CK(v) individually 

and checking their boundedness is similar to testing a random sequence.
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an indication is often needed of whether the first few correlation functions 

taken as a whole indicate inadequacy of the model.

Let C^, k=0,l,2,... be the autocorrelations of {v^}. The estimate of 

the residual spectrum S(u)) is

S(u)= z Cke~ika) 

k=-°°
If {vk} is white then S(cj) 

from S(0) is

(4.4-3)

= S(0) Vw and the mean square deviation of S(co)

1 7T O 00 0
— / (S((o) - S(0)) dto * E C. (4.4-4)

2" k-i

We can test the whiteness of {.vk> by evaluating (4.4-4). In practice the 

series must be truncated and Ck replaced by their computed values. It is 

shown by Box and Pierce [B3] that

Q

where

N -z PkZ (v) 
k=l K

(v)
N-k

E
i=l

N
E

i=l

(4.4-5)

o
is approximately distributed as x (M-n). If the model is inadequate the 

average value of Q will be inflated. This test is a form of hypothesis 

testing where the value of Q is compared with a value of x with (M-n) 

degrees of freedom, chosen according to an accepted value of the error 

probability. M is chosen between 0.01N and 0.1N depending on the size of N.

4.4-3 Bandwidth of Residual Power Spectrum

If the noise sequence is a white noise process, the spectrum will be 

flat in the band -g-j— £ f £ 2!-Hertz. The flatness of the spectrum 

can be checked by calculating the estimate of S (f) as follows:
^ 11 A

a. Determine vk = yk - 2 aiyk n- > k=l,2,...M.
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b. Determine C^(v)
N-k

ft vivi+k * k= 1>2»***>M*
1 - I

c. Calculate the Fourier transform of C^v) as follows:

S (f) = z Cke-i2irfkT , Ifl < 1 (4.4-6)
vv k=-M K " 21

Since is symmetric (4.4-6) becomes

M i
Sxn,(f) = C0 + 2 Z C. COS 2irfkT, Ifl < 1 (4.4-7)w o k=] k 2T

S (f) may be calculated and plotted. Satisfaction of all the above 

three diagnostic checks assures the appropriateness of the model and 

provides the needed confidence about the statistical assumptions on the 

driving noise.

4.4.4 Comparison of Spectral Estimates

The estimate of the power spectrum obtained from the AR model (see 

section 4.2) can be compared with the power spectrum obtained by Fourier 

transforming the given data. The latter can be obtained by using Fast 

Fourier Techniques (FFT) and an appropriate window function such as 

Kaiser-Bessel, Hamming or Parzen windows.

The Kaiser-Bessel window is defined as follows:

w(k) I0[pn - (£)2}1/2]

VO

, Ikl < N

(4.4-8)

I0(x)

) , Ikl > N
/Xvk 

00 V7V o
E [ -=— ] is the Bessel Function of order zero. 

k=o k!

p= window parameter. Values of p*3.384 to B= 7.865 are commonly used. 

j3= 5.658 is recommended. For definitions of other window functions see 

Jenkins and Watts [Jl]. Figure (4»3) shows the shape of the Kaiser-Bessel
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w(k)
window.

0

Kaiser-Bessel Window

k

Figure 4.3

The time series is multiplied by the corresponding window function, 

to smooth out the effects of data truncation^ The stability 

of the AR spectral estimate is given by the asymptotic variance

(Comparison to classical spectral estimator is discussed by Kaveh and 

Cooper [K3])

4.4.5 Test for Normality: The assumption of normality of the noise

statistics is not a very serious one. For most of the analysis this 

assumption is not at all necessary. However, it would be informative to 

see if the data has a normal distribution.

One simple test is to plot the estimate of the residual sequence:
A A *o

{vk> and see if 95% of these lie within + 2a where a is the estimated 

variance of the noise. A test such as this is once again a hypothesis 

testing scheme by assuming a level of significance in the curve of 

normal probability density.

Another test which evaluates the goodness of assumed density is 

called the Kolmogorov-Smirnov goodness-of-fit test. This is also a

(4.4-9)
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hypothesis test and gives the answer by evaluating a single number. This 

stastistical test is described below.

Kolmogorov-Smirnov (K-S) Test:

Let p(v) be the probability density function of the noise process. Let 

us postulate that this has a normal distribution.

p(v) = _— e^a (4.4-10)
/?1TCJ2

,N
Let V = {v1v2,...svN} be the sequence of estimated values of residuals. 

Define

^•(v)
1 if v. <_ v 

0 otherwise
(4.4t11)

Then the empirical distribution S^(v) of the sample is given by

Sn'(v) = s ui 
i=l

6,(v) (4.4-12)

The postulated distribution function is given by

F(v) = f p(v) dv (4.4-13)

It can be shown that if F(v) is indeed the correct distribution then

S (v) converges to F(v) in probability (see Gibbons [Gl]).
N

The K-S statistic (for a given sample) is defined as

D = Sup I S (v) - F(v)| 
N v N

(4.4-14)

This Dfj statistic can be shown to be independent of the continuous 

distribution F(v). It is called distribution-free statistic.
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The probability P(D-N <_!) has been derived in Gibbons. For a given 

probability of error of the first kind, denoting

) = a (4.4-15)

we can either calculate or refer to a table of K-S statistic, and determine

D . Then, if D >D reject the hypothesis that SM(v) has the distribution 
N' N Na

postulated as F(v). If D < D then the postulated distribution F(v)
N Nfa

is acceptable at a level of significance of 100(l-a)%. For finite N £ 50

the values of Dm. are tabulated in Gibbson for a = 0.01 and a = 0.05.
N a

For large N, an asymptotic expression is derived by Kolmogorov as follows.

Z
lim P(Dn > -£)= 1 -L(Za) (4.4-16)
N ->• « \]H

where

L(z ) = 2 z (-1)1"1 exp (-2i2 z2) (4.4-17)u Ct
i=l

The values of this probability for values of za are tabulated by 

Smirnov [S2].

The above approximation is close enough for N > 50.

4.4-6 Discussion: This concludes the summary of the techniques. We have pre­

sented the five important tests one can carry out with straight forward cal­

culations and use of proper tables. Appendix 4A gives more definitions of 

various distributions mentioned in this chapter, together with some useful 

tables. The knowledge of the distribution of noise processes is useful if the 

analyst needs to generate synthetic data simulating the actual process 

for any future analysis. The reader is encouraged to refer to the books 

and papers referenced in this chapter and extend the methodology presented
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here to suit his/her special needs. It is important to realize that the 

empirical model building, though based on sound theoretical analysis, 

requires a good understanding of the problem under study and needs modi­

fication if necessary.



57

APPENDIX 4A

In this appendix we will outline the probability density functions 

of important distributions that appear in statistical inference.

4A.1 Normal or Gaussian. Distribution
2

If x is a normal random variable with mean u , variance a - denoted
X X

by X 'V N (y^ cj2) then

Z = X "yx * N(0,1) (4A-1)

ax

It is desirable to denote the value of z which corresponds to a 

specific probability P(z) = 1-a

Z
P(za) = fa P(Z) dz = P{Z Za}= 1-a

/P(z) dx = P{Z > Z } =a
z a

a
The value of Z that satisfies the above is called the 100a% point, a

Table (4A-1) gives values of la as a function of a.

(4A-2)

(4A-3)

4A-2 Chi-Squared Distribution

Let z^, i=l,2,...,n be such that z. ^ N(0,1) Define the new random 

variable

X-
2

n (4A-4)

2
The random variable xn is the Chi-squared variable with n degrees of 

freedom; degrees of freedom , represents the number of independent or 

free variables entering into the expression. The density function of 

»-n2 is given by
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p(*2n I "> ■ 2,1/21i. (n} (x2)" - 1 e'^2, x2 > 0 (4A-5)

Where r(^) is the gamma function defined as

00 i
r(m) = / x111- e"x dx, m>0 (4A-6)

0
2

The 100 a %. point of the x distribution with n degrees of freedom 

2
is denoted by # 'n

x{>clP(x2)d)(2=P{x2n>x2niC<} = c, (4A-7)

Table (4A-2) gives values of x^n a-

4A.3 Student t Distribution
2

Let y have a x n distribution with n degrees of freedom and 

z -v N(0,1). Define

(4A-8)

The random variable t is the Student t variable with n degrees of

freedom and its probability density function has the form

rHiL L, .‘2
n

P(tn) =- [1 + r n ] 1 2 ; (4A-9)

Jm- r(|)

The 100a% point of the t-distribution will be denoted by t, that is
n,a,

00

f p(t ) dt = P{t >t } = a
x, n n n j ct
n,a

Values of t are listed in table C4A-3). 
n,a

(4A-10)

4A.4 The F-Distribution

Let y-j and y2 be two independent random variables such that
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2 2y-| ^ (x . n-|), y2 'V (x , n2). Define

_ Vnl _ V2
hn:1,n2 y2/n2 y2n1

The random variable ^n-j ,n2 has an F-distribution with n-j and n2

of freedom and its probability density function is given by

nl

P«V! > ■

1 ft)r i^ii11 * ^
The 100a% point of F-distribution will be denoted by F

15n2’a

p(F) dF = P{^n-|,n2;> *rni,n2;a}/
Fn n .

^1,n2’a

Table (4A-4) shows the values of ^n-|n2;a.

4A.5 The Kolmogorv-Smirnov statistic 

Define

Dn = sup |S,n(x) - F(x) |

where F(x) is any continuous distribution function.

P{Dn< 1 + v} 0 for v _< 0

U-) (In-) (^+»)

j" J / »u2*

(s-v)(l‘v) (tH1—) dun

n 2n-l 
for 0 <v <--2n--

for v > 2n-l

where

f ( U-j j u2 $ • •. u^)
nl for 0 < u-| < u2 <...< un< 1 

.0 otherwise

The values of Dn a such that P{Dn>Dnja}

(4A-11)

degrees

(4A-12)

(4A-13)

(4A-14)

.. .du-|

(4A-15)

are tabulated in table (4A-5a).
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The asymptotic expression is given by

lim P{Dn = L(z) ,z>0
n

n -> oo

where
oo

L(z) = 1 - 2 E exp (-2k2z2)
k=l

The asymptotic expression for P{D.n > Za} and the corresponding
Jr\

za are listed in table (4A-5b).

(4A-16) 

values of



TABLE 4A-1 CUMULATIVE NORMAL DISTRIBUTION - VALUES OF P

Values of P corresponding to zp 

z is the standard normal variable. The value of P for

e.g., the P for -1.62 equals

ZP
for the normal curve.

-z„ equals one minus the value of P for +z . 
P P

1 -.9474 = .0526.

zp
.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767



TABLE 4A-1 (Continued)

ZP

Oo

.01 .02 .03 .04 .05 .06 .07 .08 .09

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 ..9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 ..9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998



TABLE 4A-1
r

CUMULATIVE NORMAL DISTRIBUTION-VALUES OF z

Values of corresponding to P for the normal curve, 

z is the standard normal variable.

p .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.00 -2.38 -2.05 -1.88 -1.75 -1.64 -1.55 -1.48 -1.41 -1.34

.10 -1.28 -1.23 -1.18 -1.13 -1.08 -1.04 -0.99 -0.95 -0.92 -0.88

.20 -0.84 -0.81 -0.77 -0.74 -0.71 -0.67 -0.64 -0.61 -0.58 -0.55

.30 -0.52 -0.50 -0.47 -0.44 -0.41 -0.39 -0.36 -0.33 -0.31 -0.28

.40 -0.25 -0.23 -0.20 -0.18 -0.15 -0.13 -0.10 -0.08 -0.05 -0.03

.50 0.00 0.03 0.05 0.08 0.10 0.13 0.15 0.18 0.20 0.23

.60 0.25 0.28 0.31 0.33 0.36 0.39 0.41 0.44 0.47 0.50

.70 0.52 0.55 0.58 0.61 0.64 0.67 0.71 0.74 0.77 0.81

.80 0.84 0.88 0.92 0.95 0.99 1.04 1.08 1.13 1.18 1.23

.90 1.28 1.34 1.41 1.48 1.55 1.64 1.75 1.88 2.05 2.33

Special Values

P .001 .005 .010 .025 .050 .100

z -3.090 -2.576 -2.326 -1.960 -1.645 -1.282
P

P .999 .995 .990 .975 .950 .900

ZP
3.090 2.576 2.326 1.960 1.645 1.282



TABLE 4A-2 PERCENTILES OF THE x2 DISTRIBUTION

s'

Values of corresponding to P

df 2 2 2 2 2 2 2 2 2 2
x.005 x.01 x. 025 x.05 x.10 x.90 x. 95 x. 975 x. 99 x.995

1 .000039 .00016 .00098 .0039 .0158 2.71 3.84 5.02 6.63 7.88
2 .0100 .0201 .0506 .1026 .2107 4.61 5.99 7.38 9.21 10.60
3 .0717 .115 .216 .352 .584 6.25 7.81 9.35 11.34 12.84
4 .207 .297 .484 .711 1.064 7.78 9.49 11.14 13.28 14.86
5 .412 .554 .831 1.15 1.61 9.24 11.07 12.83 15.09 16.75

6 .676 .872 1.24 1.64 2.20 10.64 12.59 14.45 16.81 18.55
7 .989 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09 21.96
9 1.73 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21 25.19

n 2.60 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.73 26.76
12 3.07 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22 28.30
13 3.57 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 29.82
14 4.07 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14 31.32
15 4.60 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58 32.80

16 5.14 5.81 6.91 7.96 9.31 . 23.54 26.30 28.85 32.00 34.27
18 6.26 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81 37.16
20 7.43 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57 40.00
24 9.89 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98 45.56
30 13.79 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 53.67

40 20.71 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 66.77
60 35.53 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38 91.95

120 83.85 86.92 91.58 95.70 100.62 140.23 146.57 152.21 158.95 163.64
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TABLE 4A-3 PERCENTILES OF THE t DISTRIBUTION

df
t.60 t.70

oC
O 

+-> '
1

t.90 t.95 t.975 t.99 t.995

1 .325 .727 1.376 3.078 6.314 12.706 31.821 63.657
2 .289 .617 1.061 1.886 2.920 4.303 6.965 9.925
3 .277 .584 .978 1.638 2.353 3.182 4.541 5.841
4 .271 .569 .941 1.533 2.132 2.776 3.747 4.604
5 .267 .559 .920 1.476 2.015 2.571 3.365 4.032

6 .265 .553 .906 1.440 1.943 2.447 3.143 3.707
7 .263 .549 .896 1.415 1.895 2.365 2.998 3.499
8 .262 .546 .889 1.397 1.860 2.306 2.896 3.355
9 .261 .543 .883 1.383 1.833 2.262 2.821 3.250

10 .260 .542 .879 1.372 1.812 2.228 2.764 3.169

n .260 .540 .876 1.363 1.796 2.201 2.718 3.106
12 .259 .539 .873 1.356 1.782 2.179 2.681 3.055
13 .259 .538 .870 1.350 1.771 2.160 2.650 3.012
14 .258 .537 .868 1.345 1.761 2.145 2.624 2.977
15 .258 .536 .866 1.341 1.753 2.131 2.602 2.947

1 16 .258 .535 .865 1.337 1.746 2.120 2.583 2.921
17 .257 .534 .863 1.333 1.740 2.110 2.567 2.898
18 .257 .534 .862 1.330 1.734 2.101 2.552 2.878
19 .257 .533 .861 1.328 1.729 2.093 2.539 2.861
20 .257 .533 .860 1.325 1.725 2.086 2.528 2.845

21 .257 .532 .859 1.323 • 1.721 2.080 2.518 2.831
22 .256 .532 .858 1.321 1.717 2.074 2.508 2.819
23 .256 .532 .858 1.319 1.714 2.069 2.500 2.807
24 .256 .531 .857 1.318 1.711 2.064 2.492 2.797
25 .256 .531 .856 1.316 1.708 2.060 2.485 2.787

26 .256 .531 .856 1.315 1.706 2.056 2.479 2.779
27 .256 .531 .855 1.314 1.703 2.052 2.473 2.771
28 .256 .531 .855 1.313 1.701 2.048 2.467 2.763
29 .256 .530 .854 1.311 1.699 2.045 2.462 2.756
30 .256 .530 .854 1.310 1.697 2.042 2.457 2.750

40 .255 .529 .851 1.303 .684 2.021 2.423 2.704
60 .254 .527 .848 1.296 1.671 2.000 2.390 2.660

120 .254 .526 .845 1.289 1.658 1.980 2.358 2.617
00 .253 .524 .842 1.282 1.645 1.960 2.326 2.576
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TABLE 4A-4. PERCENTILES OF F- DISTRIBUTION

See Table A-5, pp T-6 - T-9 of Experimental Statistics, National Bureau 

of Standards Handbook 91, 1963.
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TABLE 4A-5a

95%-POINTS eN>.99 AND 99%-POINTS e ,.99 

FOR KOLMOGOROV'S STATISTIC

(1)
N

(2)
eN>•95

(3)
eN> *99

(4)
lN,.96

(5)
V-99

(6)
•95

(7)
e^j,. 99

eN’'95 e|\|s *99

2 .8419 .9293 .9612 1.1509 1.142 1.238
3 .7076 .8290 .7841 .9397 1.108 1.134
4 .6239 .7341 .6791 .8138 1.088 1.109
5 .5633 .6685 .6074 .7279 1.078 1.089

10 .4087 .4864 .4295 .5147 1.051 1.058
15 .3375 .4042 .3507 .4202 1.039 1.040
20 .2939 .3524 .3037 .3639 1.033 1.033
25 .2639 .3165 .2716 .3255 1.029 1.028
30 .2417 .2898 .2480 .2972 1.026 1.025

40 .2101 .2521 .2147 .2574 1.022 1.021
50 .1884 .2260 .1921 .2302 1.019 1.018
60 .1723 .2067 .1753 .2101 1.018 1.016
70 .1597 .1917 .1623 .1945 1.016 1.015
80 .1496 .1795 .1518 .1820 1.015 1.014
90 .1412 .1432 1.014

100 .1340 .1358 1.013

TABLE 4A-5b

Asymptotic Approximation to a = zj /fT

P(D„ >1J « 0.20 0.15 0.10 0.05 0.01

z
a

1.07 1.14 1.22 1.36 1.63



CHAPTER 5

ESTIMATION OF RESPONSE CHARACTERISTICS

The impulse and step responses of the dynamic system modeled by the 

fitted autoregressive process are derived. The time constant is estimated 

from the step response. The methods are tested by simulating known systems 

of order two and five to include a wide range of dynamics.

5.1 A First Order System

The standard definition of the time constant is given for a first order 

system. Consider the following system:

x + ax = u(t) (5.1-1)

The unit step response of (5.1-1) with x(0)’ = 0 is given by

x(t) = 1 (l-e"at) (5.1-2)

Letting t = — givesct

(5.1-3)

x(0°)
1
a’ steady state value. (5.1-4)

When the time t= -L the value of x(t) attains 0.632 of the steady state
a

value, t = -^ sec, which is the time required for the step response ofa

a stable first order system to attain 0.632 of its steady state value, is 

generally referred to as the time constant of the system.

We observe that a closed form expression similar to (5.1-3) cannot 

be obtained for a system of order greater than one. Still, we can 

define t as the time at which the response of the system to a step input 

will achieve 0.632 of steady state value. Such a point on the response 

curve can be determined numerically.
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5.2 Impulse. Step and Ramp Responses From the Autoregressive Model

Consider the AR process determined for a given noise measurement 

n
yk - ^ ^i^k-i vk’ (5.2-1)

i=l
The dynamics of the process is represented by the AR parameters. The 

dynamic information (transient and steady state) is given by the poles 

of the equivalent z-transform. Without evaluating the poles the impulse 

response is determined. The step response is then obtained by integrating 

the impulse response.

5.2.1 Type I Respones: In Section 3.4 it was pointed out that the AR 

process can be considered as the approximation to an infinite order 

moving average process for increasing values of n. When the system is 

stable it follows that

n 00

^k = E aiyk-i 
i=l

+ vk = E biVi + vk 
i=l

(5.2-2)

It then follows that the coefficients b^ represent the impulse 

response of the system such that = 0 for k >_ 1 and Vg = constant. From 

this observation, we can derive the impulse response from AR process by 

recursively computing yk as a function of previous y when vk = 0 ,

k>J and Vg = constant. The impulse response is calculated using

yk
I IE a.yk . , y = constant.

1=1 " Iy_£ =o, a > o

(5.2-3)

For systems with more than one pole the impulse response has the value 

yg1 = 0. Hence in actual calculations the impulse response will be close 

to the real case if we let yQI = 0 and y-j1 = constant and then evaluate 

{ yk*} using (5.2-3). We will refer to the impulse response obtained
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this way as the Type I response.

5.2.2 Type II Response: Here the impulse response is derived by analogy

to an nth order continuous system.

Consider an nth order continuous system given by

£? + 31 ^ + • • ^Vl K+ (5.2-4)

The unit impulse response of (5.2-4) is

XjU) -1
{
sn + a/"1 + •+ Vl 5 + an

(5.2-5)

Now if we take the Laplace transform of (5.2-4), letting u(t) = 0 and all

the initial conditions equal to zero except x (n-1) (0) = dn"l x(0) , we get 
..n-1

x(s) x(n-1)(0) (5.2-6)

sn + a, s11 ^ + ... +a , s + a i n-1 n

The response to an initial condition of x^n_^(0) = 1 is

xIC(t) = L"1 { _________ x(n"1) (0) = 1_________  } (5.2-7)

sn + + ... + an__^ s + an

(5.2-5) and (5.2-7) are the sama In one case the impulse response is 

obtained using a unit impulse input and in the other a nonzero initial 

condition on the (n-l)th derivative is used.

A method which approximates the continuous case is obtained by using

a differencing scheme. Denote by {d*, d?,... .d^-1} the first (n-1) thk k K

derivatives of These derivatives are approximated as follows.

d

d

1
k

2
k

- y I
k-1

- d 1
k-1
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(5.2-8)

By letting d11"1 + 0 and all lower order differences equal to zero, the

impulse reponse will be evaluated recursively. A new expression in terms

112 n 1of a.j, i=l,2,...,n and {y^, d^, d£, ...>d£" } is derived. The resulting

response has the form

yk = Alyk-1 + A2dk-1 + A3dk-1 + + And
n-1
k-1

(5.2-9)

The coefficients l\. are functions of AR parameters such that the relation­

ships (5.2-8) are satisfied. The result of this procedure is called

TYPE II response. Values of A^ for different model order are given in table (5.1). 

Example: Computation of A^ for a fourth order system is illustrated below.

4
Consider yk = z a^ yk_i (5.2-10)

i=l

Define the following:

dk = yk - yk-l
(a)

(b)

(c)

From (a) yk_2 = yk_ -j - 

from (b) . dl^ _

Using (d) in above equation yk_3

(d)

^yk-2 " yk-3^ 

yk-l " 2dk-l + dk-l
(e)

= d 2
k-1

- d 2
k-2

3
From (c) dk_1
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or yk-4 yk-l " 3dk-l + 3dk-l - dk-l 

Using (d-f) in (5.2-10) gives

yk = alyk-l + A2dk-1 + A3dk-1 + A4dk-1

(f)

(5.2-11)

where a-j = a-j +a2 +a3 +a4, A2 = -(a2 + 2a3 + a^),

A3 - a^ + 3a^,

5.2.3 Computation of Step Response

Once the impulse response is determined as outlined in (5.2-1) and 

(5.2.2), the step response is derived by integrating the derived impulse 

response.

A simple trapezoidal integration scheme is used to evaluate the step 

response since the integrand is available only at sample points.

5.2.4 Ramp Response and Delay Time Evaluation

It is often useful to know how the RID responds to a ramp change 

in the fluid temperature. The steady state error in the ramp response 

and the delay time in attaining the same response level as the ramp 

input can be computed by integrating the step response to obtain the 

ramp response. Thus

t
x$ (t) = / Xj (t) dr (5.2-12)

o

t
XR (t) = / xs (x) dx (5.2-13)
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The RID delay time is then calculated by estimating the lag time between 

the ramp response and the input ramp whose slope is the same as that of 

ramp response.

5.3 Verification of the Methods Using Known Systems.

The methods developed above are verified using known systems. We 

will consider a second order system with inequal poles. For more examples 

see reference [R3],

Consider the continuous system

G(S) = (S + i,!s + 2) (5.3-1)

Synthetic data with white noise as the input is generated and an optimal 

AR model is fitted.

The analysis is based on a sample size of N = 4000 with a sampling interval 

of At = 0.05 sec.
*

Results: A 4th order AR model is fitted:

yk = 2.1218yk_i - 1.4159yk_2 + 0.34375 yk_3.

-0.05322yk_4 + vk (5.3-2)

Fig. (5.3-1) shows a sample of the time series. Fig. (5.3-2) is a plot of 

the calculated autocorrelation function. The estimated power spectrum 

from the AR model is shown in fig. (5.3-3). Figures (5.3-4) and (5.3-5) 

are the estimated impulse and step response of the model. The system step 

response is shown in fig. (5.3-6). The comparison of time constant is as 

follows:



OU
TP
UT
 C
EX
PT
)

74

Cj
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Figure 5.3-1 Synthetic Noise Signal for a second order system 
with transfer function

G (S) = --------3----------
(S+l)(S+2)
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Figure 5.3-2 Autocorrelation Function for data of figure 5.3-1.
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Figure 5.3-3 Power Spectrum from AR (4) Model for Signal 
of figure 5.3-1
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Figure 5.3-4 TYPE 2 Impulse Response from AR (4) Model
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Figure 5.3-5 TYPE 2 Step Response from AR (4) Model.
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The true time constant, x = 1.5848 sec.

Type I estimate x-i= 1.6353 sec

Type II estimate X2= 1.6465 sec.

Note that both estimates essentially give the same value for x. This 

example and others show that the impluse response can be successfully 

obtained by fitting a finite order AR process to the noise data, instead 

of the large dimensional moving average model. The AR model estimation 

requires solution to a low order system and the uncertainty of nonlinear 

optimization as in a moving average case is not present.
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TABLE 5,1

In this table are given the values of , i=l,2..........n

function of the autoregressive parameters a^, i=l,2,...,n. 

are used to determine the TYPE 2 impulse response from the

n-1
yjdO = A^jU-l) + z Ai+1 X.(k-l) , n > 2

i=l

Yjlk) = A-jYjCk-l) s n=l

as a 

{A.}

equation
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al a2 a3 a4 a5 a6 a7 a8 a9 a10 all

111111111 11

-1 -2 -3 -4 -5 -6 -7 -8 -9 -10

1 3 6 10 15 21 28 36 45

-1 -4 -10 -20 -35 -56 -84 -120

1 5 15 35 70 126 210

-1 -6 -21 -56 -126 -252

1 7 28 84 210

-1 -8 -36 -120

1 9 45

-1 -10 

1

n = 12

al a2 a3 a4 a5 a6 a7 a8 a9 a10 an al 2

A1 1 1 1 1 1 1 1 1 1 1 1 1

a2 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

A3
1 3 6 10 15 21 28 36 45 55

A4 -1 -4 -10 -20 -35 -56 -84 -120 -165

A5 1 5 15 35 70 126 210 330

A6
-1 -6 -21 -56 -126 -252 -462

A7 1 7 28 84 210 462

A8
-1 -8 -36 -120 -330

A9
1 9 45 165

Ain -1 -10 -55

A12 -1



CHAPTER 6

APPLICATION OF NOISE ANALYSIS APPROACH TO 

RTD RESPONSE TIME MEASUREMENT

Autoregressive modeling is applied to RTD data from four reactors.

The results are summarized in table 6.2. The time constants from noise 

analysis are compared with those available from LCSR tests. Appendix C 

shows the plots of autocorrelation function, AR power spectrum, sensor 

step response and residual (white noise) spectrum for the sensors listed 

in table 6.2. The detailed procedure for estimating and verifying the 

empirical noise model and determination of sensor parameters is given 

below. A discussion of the noise results, limitations and applicability 

for quantitative sensor analysis is presented in section 6.3. Based on 

the available reactor data it has been concluded that the noise analysis 

may be used as a tool for monitoring changes in sensor characteristics 

and not for estimating an accurate value for the time constant.

6.1 Estimation of Optimal AR Model

Figure (6.1) shows a portion of the Millstone 2 hotleg temperature

during normal operation at 50% power. Autoregressive models of order up

to 12 are fitted using Yule-Walker equations (4.1-11). The data is

processed in blocks of N = 2000 and a total sample size = 32000. Sampling
2

time = 0.125 sec. Estimates of parameters a^, noise variance information 

criterion of Akaike, the final prediction error (FPE), the F-test index and 

Bayes Probability Criterion (BPC) are calculated for each model order, n. 

Table (6.1) is a listing of the output showing model parameters and their 

standard deviations. We have also shown the Bayes* probability criterion



O
U

TP
U

T

Figure 6.1 A sample of Millstone RTD data.
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TABLE 6.1

COMPUTER LISTING OF RESULTS FOR MILLSTONE 2 RTD

A sample computer analysis listing of RTD noise signal evaluation 

is given below:

The model order is varied for n = 6 to n = 12

Definition of Variables 

N = No. of points in each data block.

NSKIP = No. of points skipped at the beginning of data file.

ISKIP = Every ISKIPth point is selected from the data file.

DELTAT = Sampling time (second).

The estimation is based on 16 blocks of data.

INFO CRIT = Akaike Information Criterion; equation (4.3-7).

FPE = Final Prediction Error; equation (4.3-11).

STD DEVI = Standard deviation of v^ ; equation (4.1-21).

STD DEV2 = Standard deviation of v^ ; equation (4.1-16).

F-TEST INDEX = Hypothesis testing criterion for model order; equation (4.3-18). 

BAYES PROBABILITY CRITERION = Criterion for model order; equation (4.3-21).

PHI(I) = ith autoregressive parameter in the equation

yk ‘ ai yk-i + V

EPS(I) = Standard deviation of the ith parameter a..

RTD TIME CONSTANT = Obtained for step response which is calculated from (5.2-12) 

DELAY IN RAMP RESPONSE = Obtained from ramp response which is calculated

from (5.2-13).

PORTMANTEAU TEST INDEX, PORT = Equation (4.4-5) (for whiteness test).
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TABLE 6.1

MILLSTONE 2 RTD—MILSTN*DT8—CH 4—16 BLOCKS OF N=2000

NOISE ANALYSIS OF RTD DATA i N ■ 2000
NSKIP = 512 ISKIP - 1 DELTAT (SEC) ■ 0*12500E+00
NO* OF BLOCKS TO AVERAGE = 16

MEAN OF BLOCK 1 = -O.15556E+01 
MEAN OF BLOCK 2 * -0.13772E+01 
MEAN OF BLOCK 3 = -0*15350E+01 
MEAN OF BLOCK 4 « -0.22332E+01 
MEAN OF BLOCK 5 = -0*20990E+01 
MEAN OF BLOCK 6 = -0*23858E+01 
MEAN OF BLOCK 7 = -0*21155E+01 
MEAN OF BLOCK 8 = ~0*21671E+01 
MEAN OF BLOCK 9 = -O*15587E+01 
MEAN OF BLOCK 10 » -0*40639E+00 
MEAN OF BLOCK 11 = ~0*60427E+00 
MEAN OF BLOCK 12 = -0*rl3062E-01 
MEAN OF BLOCK 13 = ~0«26416E+00 
MEAN OF BLOCK 14 * -0.56598E+00 
MEAN OF BLOCK 15 ■ -0*93297E+00 
MEAN OF BLOCK 16 = ~0.60872E+00

AUTOREGRESSIVE ORDER = 6
INFO CRIT =-0.12044988E+06 FPE » 0»23027E-01 
STD DEVI = 0*15139E+00 STD DEV2 = 0*15172E+00 
F - TEST INDEX = 0»00000£+00 
BAYES PROBABILITY CRITERION = 0*12030374E+06

PHI(I)

0*11787E+01 
-0♦60383E+00 
0.69818E+00 

-0♦32748E+00 
0.22491E+00 

-0«18325E+00

EPS(I)

0*54842E-02
0.S4699E-02
0*89302E-02
0.89302E-02
0*84699E”02
0.54842E-02

RTD TIME CONSTANT ■ 0»77361E+01 SEC
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AUTOREGRESSIVE ORDER = 7INFO CRIT =“0»12045824E+06 FPE = 0.22976E-01
STD DEVI = O*15122E+00 STD DEV2 = 0,15154E+00
F - TEST INDEX * <K70848E+02
BAYES PROBABILITY CRITERION * <)♦ 12028798E+06

PHKI)

0« 11695E+01 
-0♦59261E+00 
0468182E+00 

~0♦29260E+00 
0+19475E+00 

-0♦12437E+00 
-0*49946E-01

EPS(I)

0»55725E-02 
0♦85528E-02 
<K91050E-02 
0«97318E-02 
0♦91051E-02 
0.85528E-02 
0»55725E-02

RTD TIME CONSTANT ■ 0.69863E+01 SEC

AUTOREGRESSIVE ORDER ■ 8
INFO CRIT =-0.12082015E+06 FPE ■ 0»22748E-01 
STD DEVI - 0»15022E+00 STD DEV2 * 0.15079E+00 
F - TEST INDEX - 0.4270SE+03 
BAYES PROBABILITY CRITERION = 12062716E+06

PHKI)

0 ♦ 11639E+01 
-0♦60648E+00 
0.70356E+00 

~0*32528E+00 
0.27084E+00 

-0.19053E+00 
0*80555E~01 

-0»11161E+00

EPS(I)

0♦55425E-02 
0.85240E--02 
0.91088E-02 
0*98023E-02 
0»98023E-02 
0» 91088E-02 
0*85240E-02 
0*55425E-02

RTD TIME CONSTANT * 0»55399E+01 SEC
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AUTOREGRESSIVE ORDER « 9INFO CRIT =“0♦12082763E+06 FPE = 0»22635E-01
STD DEVI » 0♦15006E+00 STD DEV2 » 0.15041E+00
F - TEST INDEX « 0*70201E+02BAYES PROBABILITY CRITERION ~ 0»1206i082E+0A

PHKI)

0111587E+01 
“0♦60270E+00 

0.69462E+00 
-0.31255E+00 
0♦255A0E+00 

~0«15757E+00 
0*52168E-01 

“0J»57129E~01 
-0.46783E-01

EPS(I)

0*55712E~02 
0 * 85264E-02 
0*91A05E-02 
0*99071E~02 
0.99578E-02 
0♦99071E-02 
0 ♦91605E--02 
0»85264E-02 
0.55712E-02

RTD TIME CONSTANT = 0*50787E+01 SEC

AUTOREGRESSIVE ORDER =10
INFO CRIT =-0»12086235E+06 FPE = 0.22597E-01 
STD DEVI = 0,14983E+00 STD DEV2 = 0*15028E+00 
F - TEST INDEX = 0.97532E+02 
BAYES PROBABILITY CRITERION = 0.12062191E+06

PHKI)

0*11562E+01 
“0*60582E+00 
0«69749E+00 

-0*32119E+00 
0*26957E+00 

-0*17467E+00 
0*90097E“-01 

~0*90046E-01 
0*16472E-01 

-0.54577E-01

EPS(I)

0«55A87E-02 
0,85193E-02 
0»91511E-02 
0.99308E-02 
0*10044E-01 
0*10044E~01 
0+99308E-02 
0.9151IE-02 
0.85193E-02 
0.55687E-02

RTD TIME CONSTANT = 0.45927E+01 SEC

**************************************************
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AUT0RE6RESSIVE ORHER = 11
INFO CRIT =~0♦12079948E+06 FPE = 0.22566E-01
STD DEVI = O*14983E+00 STD DEV2 « 0«15017E+00
F - TEST INDEX =-0.11879E+00BAYES PROBABILITY CRITERION = 0.12053500E+06

PHKI)

0.11553E+01 
-0.60554E+00 
0.69598E+00 

“0.31967E+00 
0.26663E+00 

-0.17012E+00 
0.84719E—01 

“0.78323E-01 
0.62637E-02 

“0.35168E-01 
-0.16792E-01

EPS(I)

0.55771E-02 
0.85198E-02 
0.91649E-02 
0.99435E-02 
0.10091E-01 
0.10156E-01 
0.10091E“01 
0.99435E-02 
0.91648E-02 
0.85198E-02 
0.55770E-02

RTD TIME CONSTANT » 0.44701E+01 SEC

«}|c}K3(C}K««}|c*^4(»«3K3K«**!|C3K«!tc]|c}K«««}K}K3|c«3K]K}K«3K}K««3K«]K«]K*«4cjK]K*

AUTOREGRESSIVE ORDER = 12
INFO CRIT =-0♦12075052E+06 FPE = 0.22640E-01 
STD DEVI = 0.14979E+00 STD DEV2 = 0.15041E+00 
F - TEST INDEX = 0.13783E+02 
BAYES PROBABILITY CRITERION = 0.12046208E+06

PHKI) EPS(I)

0.11552E+01 0.55766E-02
“0.60573E+00 0.85202E-02
0.69598E+00 0»91A29E-02

-0.32006E+00 0.99510E-02
0.26705E+00 0.10100E-01

-0.17102E+00 0.10198E-01
0.86108E“01 0.10198E-01

-0.80021E“01 0.10100E-01
0.99583E-02 0.99509E-02

-0♦38374E-01 0.91629E-02
-0.10681E-01 0♦85202E-02
-0 * 53024E-02 0.55766E-02

RTD TIME CONSTANT = 0.44140E+01 SEC
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RAMP RESPONSE FOR AR ORDER =10
DELAY IN RAMP RESPONSE = 0.43988E+01 SEC

PORTMANTEAU TEST INDEX FOR NDEG = 60 
PORT = 0♦67064E+02
99% CONFIDENCE LEVEL FOR RESIDUAL AUTOCORRELATION = 0,40737E~0.t

RESIDUAL AUTOCORRELATION BASED ON N ~ 4000

0»37623E-01 -0»72310E-02 0»23475E-01 -0 4 67929E -02 •••0 4 23210E-
-0♦21279E~01 0«11021E-01 0 418612E-01 ■•••0 4 2029IE-02 -O4I274OE-
0«42026E-03 -0♦13483E-01 ~0 4 55146E-02 0425894E~01 ••"0 ♦ 25492E--
0*31263E-01 -0♦26491E-02 ~0♦52537E-02 0415740E-01 “0♦25358E-

~0»41141E-02 -0«37438E-02 -0*13102E-01 0 4 38132E-02 0 * 29543E-
-0♦16818E-01 0*21862E-01 -0♦71339E-02 ~0 4 45102E-02 -0 413508E-
-0«14016E-02 -0 ♦ 17417E--01 0 4 28137E-01 0 4 46544E-02 --0 * 14584E-
0♦18179E-01 -0.31852E-01 0 4 76785E" 02 “0 4 21804E- 01 0 4 39708E--

-0♦99162E-02 0♦61767E-02 0 *13765E”01 •-0.14974E--01 0412477E-
0♦18343E-01 0♦11861E-01 0 * 25518E--01 •“0 4 93206E-02 •••0 4 11053E-"

-0*53864E~02 0♦15651E-01 -0 414731E“02 0 410945E--01 -0418793E-
0♦77100E-02 0 *13687E-01 -0 4 59785E-02 0 4 29022E“0i ••••0 ♦ 17673E-

02
01
01
01
02
01
01
01
01
01
01
01
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which is given by [K4]

2

BPC = -N In v2 - n In - n InN + n (6.1-1)

where v

N = no. of data points 

n = model order

= variance of noise process v^
2

= variance of signal yk

The model order is chosen such that BPC is a maximum. From the computer 

listing the optimal order is n = 10. We will not choose the model order based 

on F-test to avoid the ambiguity of choice.

The AR(10) model 

10
yk = £ ai yk-i + vk t6-1-2)

has the following set of parameters 

a] = 1.1562 

82 = -0.6058 

a3 = 0.6975 

a4 = -0.3212 

a5 = 0.2696 

ag = -0.1747 

ay = 0.0901 

3g = -0.09005 

3g = 0.0165

aio:
-0.0546
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Figure (602) shows the computed autocorrelation function and (6„3) 

is the power spectrum computed from the AR (10) model» The break frequency 

obtained as the intersection between low frequency and high frequency 

asymptotes is 0.05 Hertz. The power spectrum from direct Fourier transform 

is shown in figure (6.4). Notice that both curves give the same value for 

the break frequency. Thus, the time series model provides an alternative 

method of estimating the power spectrum. Frequency response testing in 

nuclear reactors is described in reference [K3].

The impulse and step responses by Type 1 method derived from the AR 

model are shown in figures (6.5) and (6.6). The estimated time constant is 

t = 4.59 sec.

6.2 Model Validation

The important assumption made in the analysis is that the driving 

function is a white noise sequence. We have described three tests in 

section (4.4). If {v^} is uncorrelated then the autocorrelation function 

must be an impulse function. Figure (6.9 ) is a plot of the residual auto-
a

correlation function, C|<(v) where

/v n -

vk = *k - l Vk-i
i=l

(6.2-1)

The normalized values of correlation function are shown. The variation in

this correlation function must be within ± ^ °-96 = 0.031 for N = 4000.
/~N

For small lags this bound underestimates the correlation values. But for 

lags greater than, say, the model order the 95% level is satisfied. The 

"Portmanteau" lack of fit test is applied by calculating the index
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Q

M

N X

k=l

(6.2

2

If the assumption is satisfied then Q is distributed as a x function 

with M degrees of freedom, with N = 4000, M = 60, Q = 67.06. From table 

(4A-2) for degrees of freedom M = 60 and a 95% significance level

x2.96 - 79.08

Thsu, Q(69.06) <x2.qc (=79.08). The final check is performed by the 

graphical plotting of the spectrum of the residual sequence. This is 

shown in figure (6.10). The flatness of the spectrum is a further 

evidence of model adequacy.

6.3 Discussion

Table (6.2) is a summary of RTD noise test results from four PWR's -- 

Millstone 2, St. Lucie, Oconee 1, and Turkey Point. The model order, time 

constant and ramp delay time are listed for each sensor. Note that in 

several cases the method failed to construct an autoregressive model.

These cases are indicated as "failed". The following observations are 

made from reactor test results.

A. Failure of the Noise Model to fit the Data:

In several cases the AR modeling strategy was unable to predict a 

noise model. These were encountered in attempting to analyze noise data 

from coldleg sensors. A Fourier analysis of such data showed that either 

the power spectrum of the signal showed peaks at several frequencies as in 

figure (6.11) or, the spectrum had no break throughout the low and high 

frequency range as in figure (6.12). The log-log plot shows a linear trend



R
ES

ID
U

A
L S

PE
C

TR
U

H

0 * 10 

FREQUENCY - HZ
Figure 6.10 Residual Power Spectrum (Millstone).



106

TABLE 6.2

Summary of RTD Noise Tests

Data File Name Model Order Time Constant 
(second)

Delay Time 
(second)

Millstone 2

Sensor 1 MILSTN. DT8 10 4.59 4.40

Sensor 2 Failed — —

Sensor 3 Failed — —

St. Lucie

Sensor 1 STLUCE. T63 6 4.84 4.81

Sensor 2 6 8.23 8.14

Sensor 3 Failed — —

Sensor 1 STLUCE. T07 8 6.90 6.76

Sensor 2 10 8.49 8.37

Sensor 3 Failed — —

Oconee 1

Sensor 1 OCONEE. T55 4 6.77 6.74

Sensor 2 4 3.61 3.53

Sensor 3 Failed — —

Turkey Point TURKEY .T35

Sensor 1 7 0.382 0.353

Sensor 2
___________ ,___________________________

10 0.389 0.347

Number of data samples used = 32000.

Sampling time for all data except TURKEY. T35 is 0.125 sec. 

Sampling time for TURKEY. T35 is 0.02 sec.
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in the noise spectra. Such behavior in the spectrum does not satisfy the 

assumptions made in the analysis and hence results in a failure.

B. Variation in Time Constants

It is evident from the results of table 6.2 that for St. Lucie and 

Oconee 1 there is wide variation in time constant among the sensors. It 

is observed that the time constants for the hotleg sensors are smaller 

than those for the coldleg sensors. There is no explanation available 

for this at this time. It may be possible that the coldleg temperature 

variation has a smaller bandwidth compared to the hotleg temperature 

noise.

It has been further observed that the time constant estimates for 

both of the Turkey Point sensors have practically the same value (see 

table 6.2). This consistent estimate shows that the noise properties of 

the temperature signal are similar in the hotleg and coldleg. The 

sensors are installed in a bypass loop thus causing uniformity in the 

noise properties.

C. Comparison of Noise Analysis and LCSR Test

Table 6.3 gives a comparison between the noise analysis and LCSR 

results for the available common data. From the St. Lucie test it is 

seen that the noise analysis, in general, gives a higher value for the 

time constant. This conservative estimate is probably due to bandlimited 

noise. If the bandwidth of driving noise is close to or smaller than 

the sensor bandwidth, this causes a distortion in the output signal 

spectrum, in effect moving the break frequency towards a lower value.
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TABLE 6.3

Comparison of Noise Analysis and LCSR Results RTD Tests at St. Lucie

Plant ID No. Time Constant from Time Constant from
Noise Analysis 
(second)

LCSR Test (second)

1111Y 8.23 3.52

1121X 6.90 4.94

1121Y 8.49 5.80
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Figures C-6 and C-10 are AR power spectra for two St. Lucie sensors with 

time constants estimated to be 4.84 sec. and 8.23 sec. The sensor with 

a smaller time constant has a larger break frequency compared to the 

break frequency of the higher time constant sensor. Thus the signal 

bandwidth is a limiting factor in estimating an accurate value of the 

time constant.

Such limitations are not prevalent in an LCSR test and hence the 

quantitative estimate is closer to the actual value.

From the above observations it has been concluded that the noise 

analysis method can be used as a tool for monitoring changes in the 

sensor characteristics. The application of noise analysis for quanti­

tative time constant evaluation is invalid in some cases because essential 

conditions for validity of the method are not satisfied in the operating 

plant.



CHAPTER 7

SUMMARY AND CONCLUDING REMARKS

In the previous chapters we have described the use and application of 

time series models to normal fluctuating signals from temperature sensors. 

The application is not just limited to these noise signals. Any signal 

that has a random variation characterized by uncorrelated noise may be 

modeled by AR processes. For systems when this is not satisfied a more 

generalized model must be constructed.

7.1 Summary

In chapter 2 a brief description of elements of probability theory 

is given. The topics are central to the discussion of this report. Chapter 

3 provides an overview of time series models, generally called the auto­

regressive moving-average (ARMA) process. The model can also be used to 

estimate the spectral density of the signal.

The important topics of model estimation for AR processes, optimal 

model order determination and validation of fitted model are discussed in 

chapter 4. It is suggested that the optimal model be determined using the 

Bayes1 maximum a posteriori probability (BPC) criterion. The validation 

of the assumption of white driving noise is carried out by computing the 

residual autocorrelation and applying proper tests.

Estimation of sensor characteristics such as impulse, step and ramp 

responses is described in chapter 5. From these the sensor time constant 

and ramp delay time are derived. The entire procedure is numerical in 

nature without involving any geometric approximation. Chapter 6 describes 

in detail the procedure for one RTD. Results from tests at Millstone,
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St. Lucie, Oconee and Turkey Point reactors are summarized in chapter 6 

and appendix C.

The AR parameter estimation requires matrix inversion. As the model 

order increases, the inversion of a large matrix may be necessary. To 

avoid this procedure, a recursive method of estimating successively the 

higher order parameter set as a function of lower order parameters is 

given in appendix A.

7.2 Concluding Remarks

Throughout this work the general structure of the noise model is 

fixed. The autoregressive model requires that the input noise spectrum 

be flat in the bandwidth of interest. In general this assumption often is 

not satisfied. This causes variation in the information contained in the 

output signal. The results have shown that the time constants obtained 

from the noise analysis are consistently on the higher side, or in some 

cases, the analysis simply fails and provides no results at all. In some 

instances the results are close to the LCSR test and in other cases they 

vary widely. The noise analysis time constant for the fast sensors 

(Turkey Point) shows less variation between the hotleg and coldleg sensors.

It is noticed that the noise power spectrum at low frequencies is 

often not flat. This apparent behavior in the spectrum is better predicted 

by fitting a generalized ARMA model which makes no restricted assumptions 

about the noise statistic. This procedure has been applied to sensors for 

which larger time constants were predicted by the AR modeling as shown in 

table 6.2. It is reported [U3] that this modification improves the time 

constant estimates by 25 to 40 percent over the AR modeling.
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Discussion of this procedure is beyond the scope of this report.

Since the noise signal measurement is influenced by many factors, 

such as - location of sensor, extraneous noise interference, property of 

randomness in temperature fluctuation - the quantitative estimate of the 

time constant using autoregressive noise modeling is subject to error.

The approach may be used as a means for sensor monitoring. During the 

life of the sensor if variation in time constant is noticed, this may be 

caused either due to degradation in sensor performance or because of 

changes in noise characteristics. At this point an LCSR test may be 

performed to check for the time constant itself. Based on the above obser­

vations we have to conclude that the AR modeling can be used with confidence 

only as a means of monitoring changes in sensor characteristics.
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APPENDIX A

Recursive Estimation of Autoregressive Models

In chapter 4 we described the estimation of AR models using Yule-

Walker equations. The parameter estimate is given by

a = P_1C (A-l)— n —

Where P is the n x n matrix of correlation functions of the observation n

{y^}. If Pn+-| is the correlation matrix of order (n + 1 ) then we can

write this in terms of P„ asn

Cn Cn-1*

'n-1

(A-2)

J
-1Instead of determining the inverse of P +-j directly we can express Pn+-j

in terms of P”1 n

Let us rewrite P +-| as

P„n —n I

CT. C -nl o

(A-3)

where C^-j = (Cn Cn_-| . . .C-j). Then the inverse of Pn+-| is given by

(P-1 + P"1 C . C1, P“1) -P"1 C ,v n n -nl -nl n y n -nl
,-l

-CT P"1 nl Kn

X = C0 - c^p-1 Cnl

(A-4)

(A-5)
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APPENDIX B

Kolmogorov-Smirnov Goodness-of-fit Test 
of the Normality of the given Time Series

In chapter 4 we presented the statistical test to ascertain the good­

ness of a given assumed distribution of a time series. In this appendix 

we will describe this procedure as applied to the Millstone 2 temperature 

data.

B.l Computation of Distribution Function

Consider N data points k=l,2,..,n} with mean zero. The probability 

density function

P(y)=}$ (B.l)

where W is a narrow interval centered at y and N^ is the number of data

values which fall in the range y ± W.
2

Select the number of intervals ofwidthW equal to M such that

M = ymax " ^min (B.2)
W

Define the end point of the ith interval as

di = y min + iW, i=0,l,2,..,M. (B.3)

Define {N., i=o,l..........M} as

Nq = [number of y such that y dQ]

N. = [number of y such that dQ < y 1 d^]

Nm = [number of y such that dM_1 < y < d^]

The procedure will sort out N data values such that
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M
E N 

i=0
i (B .4)

B.2 Distribution and Density Functions 

Now we define the probability

P . = Prob [d . •, < y l d .] = ^i_
1 1"1 1 N

i= 0,1,2,

The density function is estimated as
A

A = P •
pi _ ^ i=l,2,...,M

(B.5)

(B.6)

The distribution function is given by
1 A

F. = E P., i=0,l,2,...,M
1 j=0 J

(B.7)

2 2
For a given Normal density with mean zero and variance o , N(0,a )

p(y) = exp {-— }
72it a2

(B.8)
2a2

The distribution function is

£
F(y) = y exp {- ^ ) dy

/27ra^ -00
(B.9)

F(y) is computed numerically using a trapezoidal integration scheme at 

the same points as the F.. are calculated.

B.3 Application to the Millstone Hot!eg 
Temperature noise data

The first step in computing the Kolmogorov-Smirnov test is to estimate 

p^ and F. as discussed in section B.2. The best fitting normal density is 

determined such that the squared error between F.. and F(y) is a minimum.
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This is done by incrementing the variance a2 in steps so that a fninimum 

value of

M
Error = E (F(y.) - F.) (B.io)

i=0

is obtained.

Figures (B.l) and (B.2) show the estimated values of the amplitude 

probability density function and the corresponding distribution function. 

These are compared with a normal density and distribution function whose 

standard deivation is

a = 1.082 (C.n)

Determine the quantity

myX lF(V ~ FNI = DN (B-12)

The value of is determined as 

Dn = 0.00833, N = 31787

To apply K-S test, for a given significant level a

P {D^ > = a is selected and the corresponding value of

Dm is obtained from table (4A5b ) of K-S statistics.
N,a

For N = 31787, ct = 0.05, DN = 0.00763
I' sct

For N = 31787, a = 0.01, DNjC( = 0.00914

Thus, we have ^ g 05 < < 0 01 nornia^''ty of the given time

series is satisfied for a significance level between 95% and 99%.
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Figure B.l Comparison of Probability Density Functions for Millstone 2 Hotleg Temperature.



D
IS

T F
U

N
C

TI
O

N
S

*NQRHPlL. STD □£,

Figure B.2 Comparison of Distribution Functions for Millstone 2 Hotleg Temperature.
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APPENDIX C

RESULTS OF RID NOISE ANALYSIS FOR FOUR POWER REACTORS

In this appendix results from RTD tests at Millstone, Oconee, 

St. Lucie and Turkey Point power plants are summarized. There are 

nine RTD's and for each plots of autocorrelation function, AR power 

spectrum, step response and residual power spectrum are shown. The 

results are tabulated in section 6.3, table 6.2.
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Figure C.l Millstone - Signal Autocorrelation Function (DT8).
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Figure C.2 Millstone - AR Power Spectrum (DT8).
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Figure C.3 Millstone - Step Response from AR Model (DT8).
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Figure C.4 Millstone 2 -- Residual Power Spectrum (DT8).
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Figure C.5 St. Lucie - Signal Autocorrelation Function (T63).
(Sensor 1)
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Figure C.6 St. Lucie - AR Power Spectrum (T63).

(Sensor 1)
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Figure C.7 St. Lucie - Step Response from AR Model (T63).
(Sensor 1)
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Figure C.8 St. Lucie — Residual Power Spectrum (T63, Sensor 1)
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Figure C.9 St. Lucie - Signal Autocorrelation Function (T63). 
(Sensor 2)
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St. Lucie - AR Power Spectrum (T63). 
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Figure C.n z5*- ^ie “ Step Response from AR Model (T63).
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Figure C.l2 St. Lucie — Residual Power Spectrum (T63, Sensor 2).
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Figure C.13 St. Lucie - Signal Autocorrelation Function (T07).
(Sensor 1)

00



PO
WE
R 
SP
EC
TR
UM

r>o

-if
o

M
O

O04

K1 'U '<■

1—IT TT I 'f 1 I ‘I' b « ^ * .....I " I""" I1 I "i i i |

I I
i I

I I

r—i—rr
’tik or6er *

TT ■or

“3

“S

I
O

10 4
,i. i ,i

10 3
_______ Jl____ ». i 0.1___

10“2 iO”1
FREGUEKCY - HZ

Figure C.14 St. Lucie - AR Power Spectrum (T07).
(Sensor 1)
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Figure C.15 St. Lucie - Step Response from AR Model (107).

(Sensor 1)
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Figure C.16 St. Lucie -- Residual Power Spectrum (T07, Sensor 1).
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Figure C.17 St. Lucie - Signal Autocorrelation Function (T07).

(Sensor 2)
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Figure C.18 St. Lucie - AR Power Spectrum (T07).
(Sensor 2)
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Figure C.19 St. Lucie - Step Response from AR Model (T07).

(Sensor 2(

-ps
CO



RE
SI

DU
AL

 S
PE

CT
RU

M
ORDER • '

0 * 10 
FREQUENCY - HZ

Figure C.20 St. Lucie -- Residual Power Spectrum (T07, Sensor 2).
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Figure C.21 Oconee - Signal Autocorrelation Function (T55).
(Sensor 1)
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Figure C.22 Oconee - AR Power Spectrum (T55). 
(Sensor 1)
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Figure C.23 Oconee - Step Response from AR Model (155).

(Sensor 1)
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Figure C.24 Oconee 1 — Residual Power Spectrum (T55, Sensor 1).
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Figure C25 Oconee - Signal Autocorrelation Function (T55).
(Sensor 2)
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Figure C.26 Oconee - AR Power Spectrum (T55). 
(SensorZ )
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Figure C. 27 Oconee - Step Response from AR Model (155).

(Sensor 2)
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Figure C.28 Oconee 1 -- Residual Power Spectrum (T55, Sensor 2).
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Figure C.29 Turkey Point - Signal Autocorrelation Function (T35). 

(Sensor 1)
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Figure C. 30 Turkey Point - AR Power Spectrum (T35). 
(Sensor 1)
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Figure C.31 Turkey Point - Step Response from AR Model (T35).

(Sensor 1)
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Figure C.32 Turkey Point — Residual Power Spectrum (T35, Sensor 1).
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Figure C.33 Turkey Point - Signal Autocorrelation Function (T35).
(Sensor 2)
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Figure C. 34 Turkey Point - AR Power Spectrum (T35). 
(Sensor 2)
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Figure C. 35 Turkey Point - Step Response from AR Model (T35).
(Sensor 2)
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Figure C.36 Turkey Point — Residual Power Spectrum (T35, Sensor 2).


