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MODIFIED-YEE FIELD SOLUTIONS IN THE AMOS WAKEFIELD CODE *

C. C. Shang and J F. DeFord UCRL-JC 103797

L-626, LLNL, Livermore, CA 94550
DE91 000258Abstract

A new numerical procedure by which field calcula- essence, the limitiug case of MFV or a Modified-Yee pro-
tions in AMOS [1] are upgraded to model rotationally sym- cedure.

metric cavity structures in a more accurate fashion is de- Numerical Procedure
scribed. The development work is aimed at implementing ,
a modifed finite difference update scheme on an irregular The FD-AMOS wakefield code computes fields in the

i

]grid system. Elements of an irregular grid may be cho- rotationally symmetric Cavity. Ilence, the fields are of the
i_sen to better fit object boundaries, resulting in increased form

_solution accuracy. Our approach involves tile placement ' F = fp cos (aC) + fq sin (aC) (1)

l:f field components on a non'orthogonal body fitting grid To perform the corresponding Modified-Yee calculation inand on a dual grid which is orthogonal to the first grid. 2- 1/2 D, placement of six field components on an irreg-

It is found that this procedure retains several important ular grid is required. Fig. 1 shows how the field compo-
computational advantages, including tlm ability to exploit heats are distributed on a sample dual grid system. The
tile implied spatial relationships between nodes. Propa- n0northogonal solid line mesh is the electric field grid, and
gating fields on an irregular grid system have been ob- the dashed line mesh is the magnetic field mesh.
served and comparisons between finite difference AMOS

and Modified,Yee AMOS field calculations are provided.

Introduction o H0
0 E,

Cavitycellswithgeometricalcomplexityareusually _ s,,Hn

, ,modeled with staircased approximations to the Surfaces. , E$(see figure'2)
Depending on the level of the cell complexity, the task

of gridding the device may be either impossible or un-

satisfying. The well-known time domain discretization of J _

Maxwell's equations (Finite-Difference Time-Domain

FDTD)I which was originally proposed by Yee [2], is the
standard field solver currently employed. Itowever, the al-

gorithm's primary limitation for modeling curved surfaces
lies in tile fact that the fields are diutributed on a logically
regular grid system. Fig. 1. Distribution of fields on sample irregular grid.

Holland [3] demonstrates that staircased approxima- It can be readily seen that the two grids overlap in an or-

tions to oblique surfaces cause large errors for the scat- thogonal fashion. In cylindrical coordinates, E¢ nodes are
tering problems encountered iri radar cross section calcu- distributed at intersections of solid lines and He nodes are
lations. The work of Craig and Anderson [4] shows that placed at intersections of dashed segments. The field com-
careful representation of localized features inside a cav- ponents in the r- z plane are located at the intersections

ity yields significant improvements over idealized models, of the two grids ( t --. 'tangential' and n --, 'normal').
Thus, it is often important to increase the geometrical ac- In order to describe the implications of this arrange-
curacy of the model, ment, we rewrite the EM time dependent curl equations

The Modified Finite Volume (MFV) algorithm pro- 0£ -.
posed in [5] shows how electric and magnetic field compo- V x/_ = (r/_ + _-_- + Js (2)nents may be distributed on a nonorthogonal grid system.

This type of field update scheme allows better boundary 0/_

modeling. Ilowever, for the particular problem of the cav- V x/_ = -# 0-7 I_:, (3)" ity cells, one needs a combination of the computationally
efficient FDTD calculations in th'e interior with more ac- in the integral form

curate geometrical MFV type modeling on the simulation

boundaries. Hence, inorder toperform these hybrid cal- iI_®d[=ii(aE+e_t +f_).dft (4)culations, we pursue a field solving scheme which is, in

i i B • di = - /_--_-[-• Work performed under the auspices of the U. S.

Department of Energy by LLNL under contract W-7405- In Fig. 2, tile graphical interpretation of Eqn. 4 - up-
ENG-48. date of an E¢ node - is illustrated. This particular update
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requires tile values of the magnetic fields along the inte- For the general-oriented field component irl the r- z plane
gration path with the contour integral being performed in (Fig. 3), it can be seen that substituting Lqn. 1 into Eqn.
the counterclockwise direction. 4 yields a discretized form given by

.... E, = - - -

, L3 _

_--- _/ _I where rl and r2 are the radial distances to the He, and H¢2
ALs t <_ E

" / Hs -_/[ _-_---I ' . H2/r/ nodes, respectively, At is tile distance between ¢ nodes,
[,' ' :-z aL 2 and R2 > Rr.

1 \J l It should be noted that, if the field component is ori-" '... I'tl. ented with the field direction of positive slope (in r- z),
• _ - - . the sign on n is switched to remain consistent with the

"_ aLl' *" convention of positivo fields in the +z direction. Next, we
examine special cases involving E components which lie in

Fig. 2. Update diagram for E¢ node. the r and z direction. Referring to Fig. 3, one can See

On the right hand side of Eqn. 4, the temporal derivative that as Et becomes z-directed, R2 _ r2 and R1 _ rl.

is performed by differencing the E¢ nodes at a time step Hence, the update forum for Ez follows immediately from
k (previous time step)and k+ 1 (update time). The j Eqn. 7. The update of the Er component is also similar
conduction end source terms are assumed to be at the k + in form to Eqn. 7. The primary difference is that the area

1/2 time step (current time). Itence, the explicit update enclosed by the integration path is RAe, where R is the
equation for E¢ is given purely in terms of H fields and Js. radial distanae to the Er node. Thus, one may write Er as
This update is precisely the same in both cylindrical and ,,

cartesian coordinates and may be written as

" , , [, ){E: g_ +b aL,} _ j_:½'_ E_{_-- hi'] a ,E:+': " (6) ,
7 + _7 By duality, we obtain the discretized forms of the H

field components which are "'

where A is the enclosed area, e and o" are the permittiv-

itYincrement.andthe conductivity, respectively, and AC is the time, .k+l/. {.7 _--.AE_ am} K_e_ + _-t_TIt_-_ (9)To obtain the update equations for field components "'¢ = _a_
at

in the r- z plane, the procedure is similar. However, the
geometry of this case yields a contour path which requires

integration of fields with a sinusoidal variation in ¢. This 2,0{rtE_t-r_E_2+n At E_} if ksn + _[Hnk_l/2
¢ dependence gives rise to a term with n as will be seen. Hkn+I/2 _ {n]-R_] ,, _ .._

"' (io)
_ ,

x

, , _ ,

H_ e H% {I{E_t,R S_ -n at E_,} ._ .e.- _-t/2t:!2 ,, H_._.t/_ __ _ ,,t .a_ - I¢''r + "_ H,.

t at (11)

r- z plane The principal reason for this approach in discretiza-
tion is that one ma)' easily match a FDTD grid to the

' nonorthogonal body fitting grid. In Fig. 1, the edges of
the irregular piece fit exactly into an FD grid. As men-

__A_ ' ct. tioned previously the irregular grid calculations require a
_ . large amount of information storage per node, primarily

Fig. 3. Update for electric field node in the r-z plane, involving the spatial interelationships between nodes. Ii'



, i

there are large in_erior free space 'regions, as in cavities, An effective reflection coefficient is Computed by cal-
calculations are more efficiently performed on finite differ- culating the energy contained in the pulse after it emerges

ence cells where spatial relationships between nodes are from the irregular patch (Ea) and then comparing it to the
implicit, and thus, from a cornputational point of view, do energy contained irl the pulse just prior (Eh) to entering
not need to be stored, the irregular region, i.e.,

Propagation Results R,,f S = {1- --c'-2-a} ' (12)

In this section we perform a Calculation to illustrate Eb
the notion of mixed FDTD and irregular mesh calculations. The effective reflection coefficient (energy) for the
Referring to Figl 4, we perform a numerical propagation patch of single cell thickness was found to be 3.280e_4.

experiment involving a coaxial structure. Calculations involving thicker irregular patches such as the

, ,_._ ._ two cell wide supergrid (Fig. 4) were performed, resulting

....... _ in accuracies similar to those observed in the first case.

.... _. ' The effective reflection coefficient Ibr the two cell wide su-
: .... • pergrid was approximately 5.303e-4

- - -4 Sl_ I_ When modeling curvilinear or oblique surfaces (in r-

or ___ , z) one would not, in most instances use irregular patchesmuch more than two cells thick. The results from the nu-

__: __j_l / dlrectedexcltatlon_ merical pr0pagation tests seem to indicate that, at these

_ ¢ patch thicknesses, the small numerical reflections may be
. ' to some extent typical. However, there could be instances

-,. where an irregular mesh of poor quality (i.e., nodes poorly

: I ..... :Y distributed) might lead to problems in numerical reflec-:i; i I tions, phase velocity, and/or stability. We are investigating

e ct _ the effectiveness of the procedure in the different regimes

_ .[_::!__!!:.iiiii!:iii: :' f_ conductor / in order to gauge the robuslmess of the algorithm.

. i,_.lrregulargrd- [I patch / Conclusions

...... -"- .... q- .... "2 We have demonstrated a field solver on an irregular

Fig, 4. Propagation in a coaxial structure, dual grid system which will match into FD cells. The or-

A gaussian pulse with a 1/r dependence is driven in the thogonality between the overlapping dual grids permits si-
center of the coax (in z). On the left hand side, 'we insert multaneous FD and irregular Modified-Yee calculations.
irregular grid patches that match exactly into the finite This is useful since we may now model simulation bound-
difference cells. At t '= 0, we drive the nodes with a ¢- aries with a greater degree of accuracy, and simultaneously,
directed excitation. Two identical TEM pulses are formed, in regions away from the boundaries, update fields which

with one traveling to right and the other to the left. It remain distributed on finite difference cells.
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