con S 00 G2 B S

UCRL-JC-103797
PREPRINT =

' "~ Modified-Yee Field Solutions in the
‘ L AMOS Wakefield Code .

C. C. Shang
J. F. DeFord

‘ This paper was prepared for submittal to ‘ o
the T O T U ¥ AR

1990 Linear Accelerator Conference AT R I RIS
Albuguerque, New Mexico o L
September 10-14, 1990 0CT 09 1990

August 29, 1990

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author. ‘

UKLIMITED

e 1S
DISTRIBUTION OF THIS DOCUMENT 13



MODIFIED-YEE FIELD SOLUTIONS IN THE AMOS WAKEFIELD CODE *

C. C. Shang and J. F. DeFord
L-626, LLNL, Livermore, CA 94550

Abstract

A new numerical procedure by which field calcula-

tions in AMOS (1] are upgraded to model rotationally sym-
metric cavity structures in a more accurate fashion is de-

scribed. The development work is aimed at implementing

-a modified finite difference update scheme on an irregular
grid system. Elements of an irregular grid may be cho-
en to better fit object boundaries, resulting in increased
solution accuracy. Our approach involves the placement
-Yof field components on a non-orthogonal body fitting grid
and on a dual grid which is orthogonal to the first grid.
It is found that this procedure retains several important
computational advantages, including the ability to exploit
the implied spatial relationships between nodes. Propa-
gating fields on an irregular grid system have been ob-
served and comparisons between finite difference AMOS
and Modified-Yee AMOS field calculations are provided.

Introduction

Cavity cells with geometrical complexity are usually
“modeled with staircased approximations to the surfaces.
Depending on the level of the cell complexity, the task
of gridding the device may be either impossible or un-
. satlsfymg The well-known time domain discretization of
Maxwell’s equations (Finite- Difference Time-Domain
FDTD), which was originally proposed by Yee [2], is the
standard field solver currently employed. However, the al-
gorithm’s primary limitation for modeling curved surfaces
lies in the fact that the fields are dmtnbuted on a logically
regular grid systern.

Holland [3] demonstrates that staircased approxima-
tions to oblique surfaces cause large errors for the scat-
tering problems encountered in radar cross section calcu-
lations. The work of Craig and Anderson [4] shows that
careful representation of localized features inside a cav-
ity yields significant improvements over idealized models.
Thus, it i1s often important to increase the geometrical ac-
curacy of the model.

The Modified Finite Volume (MFV) algorithm pro-
posed in [5] shows how electric and magnetic field compo-
nents may be distributed on a nonorthogonal grid system.
This type of field update scheme allows better boundary
modeling. However, for the particular problem of the cav-
ity cells, one needs a combination of the computationally
efficient FDTD calculations in the interior with more ac-
curate geometrical MFV type modeling on the simulation
‘boundaries. Hence, in order to perform these hybrid cal-
culations, we pursuye a field solving scheme which is, in

* Work performed under the auspices of the U. S.
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ENG-48.

UCRL-JC--103797

DE91 000258

essence, the limitiug case of MFV or a Modlﬁed Yee pro-
cedure.
Numerlcal Procedure

The FD-AMOS wakefield code computea ﬁelds in the
rotationally symmetnc cavity. Hence, the fields are of the‘

form
F = f, cos (nd) + f, sin (ng) W

To perform the corresponding Modified-Yee calculation in
2-1/2 D, placement of six field components on an irreg-
ular grid is required. Fig. 1 shows how the field compo-
nents are distributed on a sample dual grid system. The
nonorthogonal solid line mesh is the electric field grid, and
the dashed line mesh is the magnetic field mesh.
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Fig. 1. Dlstnbutlon of fields on sample irregular grid..

It can be readily seen that the two grids overlap in an or-
thogonal fashion. In cylindrical coordinates, E4 nodes are
distributed at intersections of solid lines and Hy nodes are
placed at intersections of dashed segments. The field com-
ponents in the r — z plane are located at the intersections
of the two grids ( t — ‘tangential’ and n — ‘normal’).

In order to describe the implications of this arrange-
ment, we rewrite the EM time dependent curl equations

Vx A =0k 42+, )
8H o
VxE=—pe— Y - K, (3)
in the integral form
fH.de // aE+e-—-+J) dA ()
- - 3[-’{‘ -2 ™ -
}{Eodf._—//(/z-a——{-[\,)odfi (5)
In Fig. 2, the graphical interpretation of Eqn. 4 - up-

date of an E4 node - is illustrated. This particular update
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requires the values of the magnetic ficlds along the inte-
- gration path with the contour integral being performed in
the counterclocl\mse dxrectlon
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Fig. 2. Update diagram for E4 node.
On the right hand side of Eqn. 4, the temporal derivative

-is performed by differencing the E4 nodes at a time step

'

k (previous time step) and k + 1 (update time). The J

conduction and source terms are assumed to be at the k+.

1/2 time step (current time). Hence, the explicit update
equation for E¢ is given purely in terms of H fields and J,.
This update is precisely the same in both cylindrical and
cartesian coordinates and may be written as ’

{Z -‘H’ AL} k+3‘ EX{
Ek+1 ’¢ ¢

where A is the enclosed area, ¢ and o are the permittiv-
ity and the conductwnty, respectively, and At is the time
increment.

To obtain the update equations for field components ‘

in the r — z plane, the procedure is similar. However, the

geometry of this case yields a contour path which requires,

integration of fields with a sinusoidal variation in ¢. This
¢ dependence gives rise to a term with n as will be seen.
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Fig. 3. Update for electric field node in the r-z plane.

- For the general-oriented field component in the r —z.plane

(Fig. 3), it can be seen that substituting Eqn. 1 into Eqn.
4 yields a discretized form given by

2.0{r:H::}—r|H:T&-¥n AlH:+#} k+1-

- Jst

- 51 - &)

E:H-l — {R3~R7}

(-2
| (M)

where ry and ry are the radial distances to the Hy, and Hy,
nodes, respectively, Af is the distance between ¢ nodes,
and R; > R;.

It should be noted that, if the field component is ori-
ented with the field direction of positive slope (in r — z),
the sign on n is switched to remain consistent with the

“convention of positive fields in the +z direction. Next, we

examine special cases involving E components which lie in
the r and z direction. Referring to Fig. 3, one can see
that . as F¢ becomes z-directed, R2 — r; and R; — ry.
Hence, the update form for E, follows immediately from
Eqn. 7. The update of the E, component is also similar
in form to Eqn. 7. The primary difference is that the area
enclosed by the integration path is' RA¢, where R is the
radial distange to the E, node. Thus, one may write E, as

k44
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(8)

By duality, we obtain the discretized forms of the H
field components which are

EE =

{~E;1 B{ AL} g
Hk+1/2 A - Kjy +

-
At

+fHE

(9)
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The principal reason for this approach in discretiza-
tion is that one may easily match a FDTD grid to the
nonorthogonal body fitting grid. In Fig. 1, the edges of

the irregular piece fit exactly into an FD grid. As men-

tioned previously the irregular grid calculations require a
large amount of information storage per node, primarily
involving the spatial interelationships between nodes. If



there are large inwerior free space regions, as in cavities,
calculations are more efficiently performed on finite differ-

ence cells where spatial relationships between nodes are
implicit, and thus, from a.computational point of view, do

not need to be stored.

Propagatibn Results

In this section we pefform a calculation to illustrate
the notion of mixed FDTD and irregular mesh calculations.

Referring to Fig. 4, we perform a numerical propagation

~ experiment involving a coaxial structure.
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Fig. 4. Propagation in a coaxial structure.

A gaussian pulse with a 1/r dependence is driven in the
center of the coax (in z). On the left hand side, we insert
irregular grid patches that match exactly into the finite
difference cells. At ¢t'= 0, we drive the nodes with a ¢-

directed excitation. Two identical TEM pulses are formed,

with one traveling to right and the other to the left. It
is found that the pulse, which must propagate through
the irregular patch, emerged on the left of the patch with
minimal reflection (Fig. 5).
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‘Fig. 5. Propagation of the TEM. pulse through the irreg-
ular patch.

An effective reflection coefficient is computed by cal-
culating the energy contained in the pulse after it emerges
from the irregular patch (E£,) and then comparing it to the
energy contained in the pulse just prior (E;) to entering
the irregular region, i.c.,

E,;, .
‘Reff—{l—Eb o (12)

The effective reflection coefficient (energy) for the
patch of single cell thickness was found to be 3.280e-4.
Calculations involving thicker irregular patches such as the
two cell wide supergrid (Fig. 4) were performed resulting
in accuracies similar to those observed in the first case.
The effective reflection coefficient for the two cell wide su-
pergrid was approximately 5.303e-4.

When modeling curvilinear or oblique surfaces (in r—
z), one would not, in most instances, use irregular patches
much more than two cells thick. The results from the nu-
merical propagation tests seem to indicate that, at these
patch thicknesses, the small numerical reflections may be
to some extent typical. However, there could be instances
where an irregular mesh of poor quality (i.e., nodes poorly
distributed) might lead to problems in numerical reflec-
tions, phase velocity, and/or stability. We are investigating
the effectiveness of the procedure in the different regimes

- in order to gauge the robustness of the algorithm.

Conclusions

" We have demonstrated a field solver on an irregular
dual grid system which will match into FD cells. The or-
thogonality between the overlapping dual grids permits si-
multaneous FD and irregular Modified-Yee calculations.
This is useful since we may now model simulation bound-

_‘aries with a greater degree of accuracy, and simultaneously,

in regions away from the boundaries, update fields which
remain distributed on finite difference cells.

References

1. J. F. DeFord, G. D. Craig, and R. R. McLeod, “The
AMOS Wakeﬁe]d Code,” in Proceedings of the Confer-
ence on Computer Codes and the Linear Accelerator
Community, Los Alamos, New Mexico, Jan. 22-25,
1990, pages 265-289.

2. K.'S Yee, “Numerical Solution of Initial Boundary
Value Problems Involving Maxwell’s Equations in
Isotropic Media,” IEEE Transaclions on Antennas
and Propagation. Volume AP-14, May 1966, pages
302-307.

3. R. Holland, “The Case Against Staircasing,” Proceed-
ings of the Sizth Annual Review of Progress in Applied
Computational Electromagnetics,” 19-22 March 1990,
pages 89-95.

4. G.D. Craig and B. Anderson, private communication,
January 1990.

5. N. K. Madsen and R. W. Zlolkowslu “Nurnerical So-
lution of Maxwell’s Equations in the Time Domain
Using Irregular Nonorthogonal Grids,” Wave Motion
0 (1988), pages 583-596.



R —

r—-—**—*-vW~~._._;m.W_,_h
"ﬂ

e —

/1







