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Abstract

To use the all-tetrahedral mesh generation existing today, we have explored
the creation of a computationally efficient eight-node tetrahedral finite el-
ement {a four-node tetrahedral finite element enriched with four mid-face
nodal points). The derivation of the element’s gradient operator, studies in
obtaining a suitable mass lumping, and the element’s performance in appli-
cations are presented. In particular we examine the eight-node tetrahedral
finite element’s behavior in longitudinal plane wave propagation, in trans-
verse cvlindrical wave propagation, and in simulating Tayvlor bar impacts.
The element samples only constant strain states and,therefore, has 12 hour-
glass modes. In this regard it bears similarities to the eight-node, mean-
quadrature hexahedral finite element. Comparisons with the results obtained
from the mean-quadrature eight-node hexahedral finite element and the four-
node tetrahedral finite element are included. Given automatic all-tetrahedral
meshing, the eight-node, constant-strain tetrahedral finite element is a suit-
able replacement for the eight-node hexahedral finite element in those cases
where mesh generation requires an inordinate amount of user intervention
and direction to obtain acceptable mesh properties.



1 Introduction

Computer software designed for predicting the transient dynamic; large de-
formation, large strain, inelastic response of solids and structures based on
the finite element method and explicit time integration requires fast, simple
element formulations. That is, since it is expected in every calculation that
the deformation will be finite and the material will be strained beyond the
elastic range, the geometry and the associated gradient operators must be re-
constructed, as well as complex stress-strain models evaluated at every step.
As a result, finite elements derived for explicit transient dynamic software use
the simplest and barest constructions possible for computational efficiency
while retaining an essential representation of the physical behavior.

To date it has been possible to derive constant stress, eight-node hexahe-
dral finite elements that satisfv the above expectations - for example, I'lana-
gan and Belytschko [1981] and Flanagan and Taylor [1989)]. Unfortunately,
a tetrahedral finite element comparable to the constant stress, eight-node
hexahedron does not vet exist. On paper the linear displacement, four-node
tetrahedron appears to have the simplest and barest consiructions possible
for computational efficiency while retaining an essential representation of the
physical behavior. It is, however, an abysmal performer for solids. Unfortu-
nately, the linear displacement, four-node tetrahedral finite element continues
to be used. (For extremely large deformations it is virtually impossible to
turn the element inside out since it mnust pass through a zero volume state. As
a result, one always obtains numbers but rarely obtains meaningful answers.)

A recent Ph.D. thesis by Camacho, [1996] has a very careful exposition
of the issues facing a developer seeking to find an improved tetrahedral ele-
ment with capabilities that come close to what is available from a trilinear
displacement, eight-node hexahedron.

Here we want to address transient dynamic applications, such as acci-
dent simulations of nuclear waste shipping containers and collateral damage
estimation from accidental explosions as opposed to lower energy dynamic,
quasi-static, or static simulations.

The approach that has been adapted here is to seck a minimally enriched
linear displacement, four-node tetrahedral finite element as opposed, to say,
a minimally simplified quadratic displacement, 10-node tetrahedral finite el-
ement, cf., Camacho [1996].




2 Governing Equations

2.1 Motion

The objective in a transient dynamic finite element program is to compute
the motion of the body expressed in terms of displacement, velocity, and
acceleration of every nodal point as a function of time for the entire simula-
tion period. The theoretical development begins by formally introducing the
concept of motion as a function that describes the position or configuration
of the body at every instant in time.

A body V is given that occupies a finite region of Euclidean space. Sub-
Jected to prescribed body forces and surface tractions, the body 1" undergoes
the motion z* = x'(X,t). The particles of the body are identified by the
coordinates X®. They are referred to as material coordinates, and the re-
lation of the particles to the coordinates X'* does not change in time. The
places in space that the particles occupy during the motion are identified by
the coordinates z', termed the spatial coordinates. The function x* describes
the motion of the particles X* through space as a function of time ¢. It is
the motion X' that is sought.

The place occupied by the body at ¢ = 0 is taken as the reference config-
uration. In this configuration the body is assumed to be strain free, though
not necessarily stress free. Only material coordinates X'® that coincide with
the spatial coordinates z' in the reference configuration are considered. Thus,
in the reference configuration x'(X<,0) = X°.

While the material that follows can be considered to be expressed in
terms of an arbitrary curvilinear coordinate system, it is sufficient to view
the presentation as expressed in terms of a rectangular Cartesian coordinate
system. Repeated upper and lower index pairs indicate a sum; lower case
Latin and Greek indices have the range one to three, and upper case Latin
indices (to appear later) range over the number of nodes in the element.

2.2 Equations of Motion

The Principle of Virtual Work provides the formal structure for developing
the essential details of a finite element spatial discretization. In the termi-
nology of functional analysis, the Principle of Virtual Work is a statement
of the problem in the “weak” form. The terminology simply means that
the Principle of Virtual Work admits solutions to the problem that are less



smooth than are required by the differential equations (“strong” form). In
particular the discontinuities in derivatives occurring at element boundaries
are admissible in the Principle of Virtual Work.

Since the finite element method is, in fact, a means of constructing an
approximate solution to the problem, it is instructive to clearly identify the
differential equations represented by the Principle of Virtual Work. The
Virtual Work expression is given by

dw = / p:ik(sukdv-l—/; tkméuk,mdv—[ pfk5ukdv—fi; s*6upda, (1)
| A S i 1

and is required to vanish at all points along the path of motion for all vari-
alions Suy satisfving the displacement boundary conditions on S*. The in-
tegration is performed over the current configuration of the body 1°, where
p is the mass density in that configuration, £* is the acceleration, t*™ is the
Cauchy stress — the stress in the current configuration, f* is the body force
density in the current configuration, and s* is the surface traction that is
acting on S!. The comma denotes differentiation: u;; = Ou;/dz’.

The divergence theorem is emploved to reveal the diflerential equations
of motion. In anticipation of using finite element approximations and the
Galerkin method to generate approximate solutions, the case where dug m is
only piecewise continuous is considered [Jones, 1964; Prager, 1967; and Key,
1971]. Interior surfaces, where the discontinuities of duk,m occur, are denoted
by S°. Only surfaces S° that are stationary with respect to the material are
considered. The situation is pictured in Figure 1 where ny is the normal to
S0 and the symbols + and — denote the respective sides of the surface. The
result is '

_/;, (pxk - tﬁ’: —_ Pfk) 6‘U,kdv+/so (tim - t_’im) nméukda
; (2
+ A (tk"‘nm - s") durda = 0. )

The differential form will vanish if and only if the integrand in each integral
vanishes. The resulting expressions are the equations of motion,

t": +pff =pi*in V, (3)
the jump condition at a contact discontinuity,
(tim — tf’") Nm =0on S°, (4)
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Figure 1: The body 1 with surface traction s* on the boundary S! and a
prescribed motion on the boundary S2. An interior boundary S° with a unit

k

normal vector n” is pictured.

and the traction boundary conditions,
t*™n,, = s*(t) on S'. (5)

Solutions obtained by using finite element approximations result in Equations
3, 4, and 5 being satisfied in an average sense — that is, within individual ele- -
ments and along individual element boundaries these equations are satisfied
in a mean or integral sense.

To Equations 3, 4, and 5 must be added the displacement boundary
conditions on the surface S?. These are called kinematic constraints and
must be satisfied explicitly at each nodal point occurring on the surface $?
by controlling the motion of the nodal points explicitly. The displacement
boundary conditions are

x' (X®,t) = k'(t) on S, (6)

where k' prescribes the configuration of the boundary as a function of time.
Only initial conditions that are homogeneous in position at time equal to



zero are considered. Thus, the initial conditions are given by

X' (X®,0)=X>inV,

. ey - ()
x (X%,0) =0 (X?) in V,

where v prescribes the initial velocities at time equal to zero.

It is important to realize that these remarks are completely general with
regard to the scale of deformation being considered. By using the current
geometry — that is, the geometry as the body deforms - the Principle of
Virtual Work assumes this very clean form. (This form of the Principle
of Virtual Work may be contrasted with the form needed for static and
quasi-static implementations where a configuration other than the current
configuration must be used. The result is a series of transformations between
the current configuration of the body and the geometry of the configuration
used to develop the equations of motion. The attendant statement of the
Principle of Virtual Work while exactly the same condition mathematically
as used here, is much more complicated on paper and in code due to the
explicit presence of the transformations.)

Again when the finite element Galerkin method is used to generate ap-
proximate solutions to Equation 1, it is Equations 3, 4, and 5 to which ap-
proximate solutions will be generated. Equation 6, the boundary condition
on displacements, must be satisfied explicitly by the finite element Galerkin
functions.

3 Tetrahedral Finite Elements

3.1 Gradient/Divergence Operator

This section provides the foundation for the subsequent development of the
gradient /divergence operator for the proposed eight-node tetrahedron. The
approach adapted for developing a mean strain rate quadrature for the eight-
node tetrahedron is that given by Flanagan [1981] and Flanagan and Be-
lytschko [1981]. While an initial reaction might be that the approach and
notation of Flanagan are cumbersome, they provide the structure needed to
achieve a closed-form solution for the integration of an arbitrary hexahedron
in particular and, equally important, an explicit and unambiguous identifi-
cation of the orthogonal hourglass modes that span the improper null space
of the mean strain rate quadrature.




The approach of Flanagan possesses a high degree of generality that be-
comes evident when additional finite elements are considered whether based
on a constant stress state or higher-order variation in stress, ¢/f., Key and Hoff
[1995]. Elements generated by this approach result in a de facto satisfaction
of the first-order Irons patch test, provided a linearly varving motion can
be represented exactly by the displacement assumptions within the element
domain. With only minor modifications the material in this section is based
on the work of Flanagan [1981].

Kinematics. Solid finite elements relate the spatial coordinates z' to the
nodal coordinates z} through isoparametric shape functions N! as follows:

2 = SiN(E) (®)

In accordance with index notation convention, repeated subscript-superscript
pairs imply summation over the range of that pair. The lower case subscripts
and superscripts have a range of three, representing the spatial coordinate
directions. Upper case subscripts and superscripts have a range that corre-
sponds to the number of element nodal points.

The same shape functions are used to define the element displacement
field in terms of the nodal displacements u;;, .

Uu; = ‘u,'INl(fi) . . (9)

Since these shape functions apply to both spatial coordinates and displace-
ments, their material derivative (represented by a superposed dot) must van-
ish. Hence, the velocity field is given by

v; = v;;NI(Ei) . (10)
The velocity gradient v;; is defined as follows:
Vij = ’U,'[IVfi . (ll)

By convention a comma preceding a lower case subscript denotes differenti-
ation with respect to the spatial coordinates, hence, v; ; denotes dv;/dz’.

As will be seen below, we do not need to make the form of the shape
functions N/(€') explicit; we only need them conceptually to obtain a fun-
damental result relating the computation of a gradient/divergence operator
to taking a derivative of the finite element’s volume.



Mean Strain Rate Quadrature. The Principle of Virtual Work gives
the following relationship for the element nodal forces f i due to the diver-

gence of the stress field,

‘U,‘[f” = ‘/‘. tijd,'jdv . (12)

Since the Cauchy stress tensor ¢/ (force per unit area in the current configu-
ration) is symmetric, the velocity gradient may replace the stretching tensor,
di; = v(;;), above. To obtain an explicit representation of the nodal forces
fil one must introduce a finite element. The objective of the material to
follow is a rigorous development of the explicit expressions for computing fH
from the motion.

The integral in Equation 12 is evaluated using a constant stress, thereby
considering only a mean strain rate within the element. The preceding ex-
pression is approximated by

v,'[fil = ‘-"t—'.jlj‘,',j . (13)
The assumed constant stress field is represented by #/, which will be referred
{o as the mean stress tensor. It is assumed that the mean stress depends only

on the mecan strain. Mean kinematic quantities are defined by integrating
over the element as follows:

Ui j = (1/‘) /‘ ‘U,"jd‘U . (14)

The gradient operator B! is defined by

Bl = [ Nidv . (15)
The mean velocity gradient, applying Equation 15, is then given by
By = (1/V)va Bl . (16)
The nodal forces are then given by the divergence operation,
f1=19B] . (17)

Computing nodal forces by this integration scheme requires evaluation
of the gradient operator B! and volume. These two tasks can be linked by
using z'; = ¢, which when used in Equation 15 vields

B! = /‘ (2ENT) jdv = V6 . (18)
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Consequently, the gradient operator B! may alternatively be expressed by

; oV
B, = A (19)
Thus, obtaining a mean gradient/divergence operator B/ has been reduced
to finding the volume of an element 1(z}) in closed form.

Remark: There is a consistency requirement that the shape functions N’
must satisfv for the above derivation to hold — namely, b; N I must be able to
reproduce ezactly a linear function where the by are constants.

3.2. Four-Node Tetrahedral Element

For a four-node linear tetrahedron, the element volume in closed form is
easilv constructed from vector operations with its edges,

V= [ do = elel - o) (ed - o)(ah - 2)/6 - (20)

As a result, the gradient operator for the four-node tetrahedron is given by

1
B; = —6_ (3/34224 - y24234)
1
Bﬁ = '6 (y13214 - yHle)
1 (21)
Bg = g (y14212 - y12214)
, 1
B; = 6 (3/12213 - y13212)

where {z}} = {z1,y1,21} and z1; = z; — z; et cetera. To obtain the compo-
nents B} and B! the coordinate permutations contained in Table 1 are used.

As is well known the four-node linear tetrahedral element provides ex-
ceptionally poor computational results for solids. In the next section our
purpose is to enrich the four-node tetrahedral element with the expectation
of providing results comparable in quality and numerical efficiency to that
obtained with the eight-node hexahedral elements extant today.



Table 1:
Permutation of Coordinates for Use with Equation 21

B! | Coordinates || B! | Coordinates || B! | Coordinates

B! y z B! z B! T oy

T

3.3 Eight-Node Tetrahedral Finite Element

The minimum number of additional degrees of freedom is obtained by adding
a nodal point to each of the faces of a four-node tetrahedron. Considering a
displacement of a face node, it can be observed that a displacement normal
to the face will have a greater effect on the volume change of the element
than on changes in shear distortion. Conversely, a displacement tangential
to the face will have a greater effect on the shear distortion of the element
than on a volume change. \We defer until later the question of whether to
use only the normal displacement at each face node, only the two tangential
displacements at each face node, or all three degrees of freedom.

Ordinarily the addition of nodal points to a linear element engenders the
introduction of quadratic terms in the shape functions. However, since our
objective here is to use only the mean strain produced by movement of the
element’s nodal points, we have some liberty in how we relate deformation
within the element interior to the movement of each nodal point.

Here we choose to use a linear “sub-tetrahedron” based on the three
vertex nodal points of the face and the newly introduced mid-face nodal
point, Figure 2. Thus, the volume of the eight-node enriched tetrahedron is
given by the volume of the original or parent four-node tetrahedron Vg and
the volume changes introduced by movement of the mid-face nodes,

Vo= ‘6(1"135'2,13 :1:3) + ‘l(zllv .’E;, 11!3 zfl,)
+ ‘2(:3,23;3’2}1’1!5) + ‘s(zé’xiaxsvxé) (22)
+ Vi(zi, zi, 7, 7).
The mean gradient/divergence operator B! is given by

Bl — oV, oV dVy, 0Vs 0V

‘T 9zy | Ozy  Ozy Oz Oz (23)
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Figure 2: A linear four-node tetrahedron (i,7,k.l = 1,2,3.4) to which has
been added four mid-face nodal points (m,n,o,p = 5,6,7,8). A linear “sub-
tetrahedron” is associated with each mid-face nodal point so that - for ex-

ample, (4,k,l,m = 2,3,4,5).

Since it is desirable to keep the element implementation and subsequent
interpretation of results as straightforward as possible, we are going to retain
all three degrees of freedom at each mid-face nodal point. Retention of all
three degrees of freedom at the mid-face nodal points will allow the vertex
nodes and the newly introduced mid-face nodal points to share, with maxi- -
mum flexibility, the task of representing the shear or deviatoric part of the
solution and the bulk part of the solution.

The mean gradient/divergence operator only describes six uniform strain
states. Strain states with higher-order variation are ignored - that is, the
eight-node tetrahedron is “under integrated.” Because the element is under
integrated, we are left with a number of hourglass modes - twelve to be
precise.

At this point it is worthwhile to examine the stiffness properties of the
eight-node mean-quadrature tetrahedral element. For comparison purposes
the stiffness properties for three separate. isolated tetrahedra — that is, three
separate single finite elements will be examined. The equilateral tetrahedron
shown in Figure 2 is used in turn to represent three different tetrahedral
elements: (1) a fully integrated four-node linear tetrahedral element, (2) an
eight-node mean-quadrature tetrahedral element, and (3) as it happens to
work out, an assembly of 11 non-overlapping four-node linear sub-tetrahedra.
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(This ability to describe the eight-node mean-quadrature tetrahedron as an
assembly of 11, four-node linear tetrahedra is not only useflul for examining
the benefit of retaining just the 6 uniform strain states but allows a convenient
representation of the shape functions. It is also possible to obtain the same
eight-node mean-quadrature gradient/divergence operator of Equation 23 by
using a volume-weighted assembly of the operators belonging to the 11 four-
node linear tetrahedral decomposition, although not as efficiently calculated.)

Table 2 shows the eigenvalues calculated for each of the three separate
single-element stiffness matrices. Note that in the case of the eight-node
mean-quadrature tetrahedron, the largest eigenvalue corresponds to a vol-
umetric deformation eigenvector; and the five smaller, repcated eigenvalues
correspond to constant pure-shear eigenvectors. The remaining 18 zero eigen-
values correspond either to the “hourglass” modes not supported by the mean
quadrature or to the 6 rigid body modes.

One pure-bulk and five equal pure-shear eigenvalue-eigenvector pairs 1s
the desired result. The separation into pure-bulk and pure-shear modes was
confirmed by computing a Rayleigh quotient with each eigenvector paired
first with an element stiffness matrix based only on the bulk modulus and
second with an element stiffness matrix based only on the shear modulus.

We do not have an interpretation for the differences in eigenvalue magni-
tudes between the fully integrated four-node linear tetrahedral element and
the eight-node mean-quadrature tetrahedral element.

3.4 Lumped Mass Representation

The eight-node mean quadrature tetrahedral element does not immediately
suggest how the mass should be apportioned between the vertex nodal points
and the mid-face nodal points. For dynamic simulations it is important to
obtain the correct distribution of mass between the vertex nodal points and
the mid-face nodal points. Both for speed and for accuracy, a lumped mass
matrix is preferred over a consistent mass matrix when using an explicit
central difference time integration scheme, Krieg and Key [1973].

Standard practice is to generate a consistent mass matrix first, and then
perform a row sum to obtain the diagonal lumped mass matrix. For this task
the shape functions represented by the 11 non-overlapping four-node linear
tetrahedral decomposition are convenient. Since the shape functions are
nonoverlapping across the individual subtetrahedra, each of the 11 individual
mass matrices need only be calculated and assembled. Each individual mass
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Table 2:
Eigenvalues for Three Separate Tetrahedral Elements.
Young’s modulus = 107, Poisson’s ratio = 0.25

Single Single Assembly of
Four-Node | Eight-Node | Four-Node
Tetrahedron | Tetrahedron | Tetrahedra
4.7138 x 10° | 6.8061 x 108 | 13.087 x 10°
1.8855 x 10° | 2.7475 x 10° | 9.188 x 10°
1.8855 x 10° | 2.7475 x 10 | 9.188 x 10°
1.8855 x 108 | 2.7475 x 10% | 8.231 x 10°
1.8855 x 108 | 2.7475 x 10% | 8.231 x 10°
1.8855 x 108 | 2.7475 x 108 | 4.843 x 10°
0 0 4.843 x 108

0 0 0

matrix is computed with the formula, Hughes [1987],

m;; = /‘ pN;N; dv , (24)
and has the form
2111
. EL 1 211
111 2

The lumped mass matrix for the eight-node mean-quadrature tetrahedral
element resulting from this.approach places 11/108 of the total mass at each
vertex nodal point and 16/108 of the total mass at each mid-face nodal point.
Unfortunately, the dvnamic performance of the eight-node mean-quadrature
tetrahedral element with this mass lumping is not what it should be. We
have resorted to considering various combinations of vertex and mid-face
nodal point mass distributions. Shown in Table 3 is a number of the mass-
lumping variants examined together with the six eigenvalues, (k—Am)¢ = 0,
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Table 3:

Eigenvalues (x108) for Various Mass Representations.
Column headings: vertex weighting & mid-face weighting

11 16 1 171 1 11 1
Consistent 103 & 108 | 67 & ols%12l3 & %% 4-Node Tet
8.4599 4.4402 5.1774 5.8572 | 8.8730 1.5985
3.8515 1.7765 2.0715 2.3434 | 3.5500 0.6396
3.8515 1.7766 2.0713 2.3432 | 3.5497 0.6395
2.9712 1.7762 2.0711 2.3431 | 3.5496 0.6394
2.9712 1.7756 2.0705 | 2.3423 | 3.5-84 0.6392
2.380- 1.7756 2.0705 | 2.3423 | 3.5484 0.6392

obtained from using them with the equilateral tetrahedron shown in Fig-
ure 2. In addition, the separation into pure-bulk and pure-shear modes was
confirmed by computing a Rayleigh quotient with cach mode shape paired
first with an element stiffuess matrix based only on the bulk modulus and
second with an element stiffness matrix based only on the shear modulus.
It is seen that with any of the mass lumping schemes, the desired property
of having the response represented by one bulk deformation mode and five
equal-energy shear deformation modes is independent of the mass lumping.
The eigenvalues by themselves do not suggest an apportionment between the
vertex nodal points and the mid-face nodal points either.

The most rational criteria for mass lumping we have been able to generate
is to examine the results from wave propagation simulations. In doing so two
positive results occurred simultaneously: (1) the correct stress wave arrival
time occurred in the vertex nodal points and mid-face nodal points when
the mass lumping was 1/6 and 1/12, respectively, and (2) excitation of the
hourglass modes due to the passage of the stress wave was near zero for this
mass lumping.

Using a constant pressure instantaneously applied on one end of a bar
that is constrained to have no lateral motion produces a planar longitudinal
wave propagating down the bar. By selecting a cross section and examining
the arrival time, the quality of the mass lumping at the nodal points can be

14




evaluated. Figure 3 shows the axial velocity history of an elastic wave as it
arrives at the middle of the bar. The arrival time is correct based on when
the “mid-height” of the wave front reaches the nodal points on the cross
section. The planarity of the wave is shown by how closely the individual
nodal point responses match. (No artificial bulk viscosity was used with the
explicit central difference time integration algorithm in order to enhance any
differences in behavior between the vertex and mid-face nodal points.)

Figure 4 shows the bulk, deviatoric, and hourglass strain energy (cor-
rected for arrival time) in each of six elements constituting a unit cell at the
middle of the bar. (The hourglass strain energy is multiplied by 100 and
is the strain energy that would occur if the hourglass deformation were to
be applied to an eight-node tetrahedron obtained by assembling 11, four-
node linear tetrahedral elements, a “fully integrated” eight-node tetrahedral
element.)

To assess in what way the mid-face nodal points serve to increase the el-
ements capacity to represent the deformation, a Rayleigh quotient was com-
puted using the “incremental” deformation provided by the mid-face nodal
points paired first with an element stiffness matrix based only on the bulk
modulus and second with an element stiffness matrix based only on the shear
modulus. The result is a nearly equal contribution to the bulk strain energy
and to the deviatoric strain energy. (By “incremental” deformation we mean
the additional deformation provided by a mid-face nodal point bevond that
movement implied by the bounding vertices - for example, with reflerence to
Figure 2, Aul = ul — (ul + uf +u')/3.)

3.5 Surface Traction

A satisfactory representation of surface traction as equivalent nodal loads
is a prescription needed to complete the element’s implementation. Since
the underlying shape functions are piecewise linear, the traction on each
triangular surface facet is converted to a total force and distribuled one-
third to each nodal point. (For triangular facets consistent lumping results
in one-third of the integrated surface pressure applied to each of the three
vertex nodal points.)

15



Axial Velocity

5.0e—04

Figure 3: The axial velocity at a vertex (dashed curve) and mid-face (solid
curve) nodal point in the middle of a bar 50 units long subjected to a step
in pressure on one end and [ree on the other end. Young’s modulus = 107,
Poisson’s ratio = 0.25, density = 2.61 x 10™*. The mesh consists of 30 unit
cells; each unit cell is composed of 6, eight-node mean-quadrature tetrahedral
elements. Lateral boundary conditions on the bar result in a planar, uniaxial
strain wave. The simulation is based on a mass lumping of one-sixth of the
total mass at each vertex nodal point and one-twelth of the total mass at

each mid-face nodal point.

3.6 Orthogonal Hourglass Control

The mean stress-mean strain rate formulation considers only the linear part
of the velocity field. The remaining portion of the nodal velocity field is
the so-called hourglass field. Excitation of these modes may lead to severe,
unresisted mesh distortion. A method for isolating the hourglass modes so
that they may be treated independently of the rigid body and uniform strain
modes is required. This is accomplished by developing an hourglass “gradi-
ent operator.” With an hourglass gradient operator, hourglass strains can
be computed from the element’s velocity field. By introducing a “modulus,”
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Time After Wave Arrival

Figure 4: Bulk, shear and hourglass strain energy histories in a unit cell of 6,
eight-node mean-quadrature tetrahedra at the middle of a bar 50 units long.
The simulation is based on a mass lumping of one-sixth of the total mass at
each vertex nodal point and one-twelth of the total mass at each mid-face

nodal point.

hourglass restoring forces can be generated and, thereby, prevent uncon-

trolled growth of the hourglass modes.
The linear velocity field on which the mean strain rates are based is given

by
oHN = (121 + (1V)(e - §2357)B)) . (26)

The hourglass velocity field v} may be defined by removing the linear por-
tion of the velocity field. Thus,

1

or in terms of the nodal velocities,
‘USG =V — ‘U",,Z[ e (1/‘)(:1:‘} - :E‘;IZ[)U,'JB‘;-] y (28)

where
Vip = év;;El, and z! = i;:c'IZI .
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The hourglass velocity field, Equation 28, is in the improper null space of the
gradient operator Bf. The linear velocity field, Equation 26, spans 12 degrees
of freedom: 3 rates of rigid body translation, 3 rates of rigid body rotation,
and 6 uniform strain rates, which means that the hourglass subspace is the
remaining 12 degrees of freedom.

Since we do not vet have an easy decomposition of the hourglass subspace
into nonconstant bulk and shear modes, a rather direct approach is used.
Thus, an hourglass strain rate ¢;; is developed by operating on the hourglass

velocities v/{°,

| Gir=vii /8 , (29)
where § is a generalized element dimension [Flanagan and Belytschko, 1984].
Using the hourglass projection operator H;’ implicit in Equation 28, the
strain rate becomes
Gir = (Hy' [8)vis . (30)
To control the hourglass modes, generalized forces Q! are defined that
are conjugate to gis, so that the work rate is given by

vitfiic = VQqr . (31)

Utilizing the projection operator H,’, the contribution to the nodal forces
due to hourglass resistance is given by

e =VQ7H] 6 . (32)
The hourglass restoring forces are calculated from
Q7 = 2pand 8 g1 (33)

where 24.q, is the tangent shear stiffness obtained from the deviatoric con-
stitutive behavior of the mean stress and mean strain state in the element,
and ¢ is a scaling. The scaling € assures the level of the hourglass restoring
forces remains below that of the mean stress state.

Ideally the nonconstant hourglass shear strain rates would be assigned a
stiffness derived from the tangent shear behavior and the nonconstant hour-
glass bulk strain rates would be assigned a stiffness derived from the tangent
bulk behavior. Here the nonconstant bulk and shear modes are mixed, and
the tangent shear modulus is used for all of the hourglass modes. The choice
is arbitrary. The tangent modulus assures that the evolution of the hourglass
restoring forces “parallels” that of the mean deviatoric stress state.
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The invariant time derivative of the generalized forces Q'/ accounts for
the finite rotations expected in the application of the eight-node tetrahedral
element in analyzing transient dynamic phenomena. The derivative is given
by

s A i
Qz — Qa _ wthJ , (34)

where w;; is the spin, wi; = (vij — vj4)/2-
The hourglass restoring forces fj{; are added to those obtained from the
divergence of the mean stress state so that the complete result is

fiI — (t'IJBJI + ‘,'QiJHJl/é') ) (35)

4 Results

4.1 Irons Patch Test

The first-order Irons patch test [Zienkiewicz and Taylor, 1989] provides a
necessary condition an element must satisfy to insure convergence. In this
test an irregular spatial discretization is required to determine if constant
strain/stress states are reproduced. (Satisfving the first-order Irons patch
test does not insure an “efficient” element. In particular it savs nothing
about the ability of a collection of elements to reproduce a linearly varying
strain/stress result.)

Since a four-node, linear displacement tetrahedral mesh passes the first-
order Irons patch test, the purpose of revisiting the test for the current
enriched eight-node tetrahedron is to insure that nothing has been lost in the
proposed enrichment. The result of the first-order Irons patch test applied to
an irregular mesh of enriched eight-node tetrahedra is a perfect reproduction
of the constant strain/stress result in the interior of a cube subjected to
an imposed linear displacement on the exterior, MacNeal and Ilarder [1985].
Implicit in this computation is the use of a linear elastic stress-strain material
model.

For this element the imposition of a second-order Irons patch test is more
significant since the element is a constant-strain (mean quadrature) element
with hourglass control that was obtained by enriching a four-node linear
displacement tetrahedron. Subjecting a collection of elements to a linear
strain field will reveal the extent to which the well known locking of the
four-node linear displacement tetrahedron has been ameliorated.
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Figure 5: Displacement contours on a 10x 10 % 10 cube subjected to quadratic
surface displacements in order to produce a body-force-free linear strain field

for a second-order Irons patch test.

To produce a second-order Irons patch test, the cube of elements pictured
in Figure 5 is subjected on the surface to the following prescribed quadratic
displacement field,

u = 4x 1078 (y? + 22 — 222 + 2zy + 222 + 5y2)
v = 4x1078(z? + 22 — 2y* + 2zy + 572 + 2yz) (36)
w = 4x1078(z? + y? — 227 + dzy + 222 + 2y2)

for a range of Poisson’s ratio (0, 0.1, 0.2, 0.3, 0.4, 0.499). This particular
quadratic displacement field requires no auxiliary body forces to maintain
the linearly varying strain/stress field and does not generate any volume
change. Of particular interest is the amount of deviatoric strain energy and
volumetric strain energy generated as a function of Poisson’s ratio. (Linear
elastic models for ductile metals typically have values for Poisson’s ratio
between 0.25 and 0.33; nearly incompressible materials are modeled with
values of Poisson’s ratio approaching 0.5.)

The results for both the four-node and the mean quadrature eight-node
tetrahedral elements are displayed in Table 5, along with the results for
the eight-node hexahedral element. As can be seen in Table 5, the eight-
node hexahedral elements exhibit no volumetric strain energy until values
of Poisson’s ratio approaching 0.5 are used, and then only small amounts
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Table 5:
Deviatoric and Volumetric Strain Energy Totals
Obtained from a Second-Order Irons Patch Test.

Poisson’s Eight-Node Four-Node Eight-Node
Ratio Hexahedron Tetrahedron Tetrahedron

0.000 1146.8 r’d-off | 1152.8 0.627 | 1134.6 0.456
0.100 1042.5 r’d-off | 1048.0 0.767 | 1031.7 0.379
0.200 955.63 r’d-off | 960.69 0.994 | 945.95 0.300
0.300 882.12 r'd-off | 886.84 1.429 | 873.43 0.222
0.400 819.10 r’d-off | 823.64 2.653 | 811.33 0.135
0.499 765.00  0.100 | 770.36 233.5 | 758.11 0.020

of parasitic volumetric strain energy are present. The standard four-node
tetrahedral element exhibits small amounts of parasitic volumetric strain
energy until values of Poisson’s ratio of 0.5 are approached at which time
unacceplably large values of parasitic volumetric strain energy are generated.
The eight-node tetrahedral element proposed here exhibits small values of
parasitic volumetric strain energy until values of Poisson’s ratio of 0.5 are
approached at which time the parasitic volumetric strain energy begins to
vanish. This surprising result can only bode well for elastic-plastic analvses
where the deviatoric strain field is significantly larger than the volumetric
strain field.

4.2 Uniaxial-Strain Compression

Of considerable practical importance is knowing the correct method of ob-
taining consistent nodal forces from an applied surface traction. Using the
previously discussed procedure of putting nodal forces normal to each trian-
gular facet subjected to pressure in the eight-node letrahedron, the magni-
tudes of which are %pA facet, produces the displacement contours shown in
Figure 6.

With this method of computing equivalent nodal forces, the axial dis-
placement varies linearly from the restrained face to the loaded face and is
constant over the cross section. The stress within the interior of the cube is

21



Figure 6: Axial displacement contours on a 10 x 10 x 10 cube subjected to
constant pressure on one face with the lateral surfaces constrained to produce

a uniaxial-strain result.

constant. These results taken together confirm that consistent nodal forces

have been obtained.

4.3 Cylindrical Shear Wave

Since the elements here pass a first-order Irons patch test, constant or nearly
constant strain domains are not a severe test. However, wave fronts where
the strain is changing rapidly from element to element will test the element’s
ability to avoid volumetriclocking. A test for volumetric locking of a finite el-
ement mesh can be generated by subjecting a plane strain disk to an imposed
torsional deformation on its inner radius while holding the outer radius fixed.
A cylindrically divergent, pure transverse shear wave is generated. Any pres-
sure in the solution domain is solely due to inherent numerical shortcomings
in the finite element approximations for the gradient /divergence operator.
Three meshes are examined: (1) a hexahedral mesh in which each element
block is a copy of the seven-element MacNeal and Harder [1983] first-order
Irons patch test, (2) a classical four-node linear displacement tetrahedral
mesh, and (3) a mean quadrature eight-node tetrahedral mesh, Figure 7.
This form of an irregular hexahedral mesh is used [or two reasons: (1)
a mesh that is nonaligned with the solution is obtained and is, therefore,
comparable to the tetrahedral meshes which by nature are rarely aligned

2
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with the solution, and (2) comparable element totals are obtained for all
three meshes.

In the elastic solution stress levels are on the order of 300.000 psi. To
evaluate the amount of pressure generated relative to the effective stress
(magnitude of the deviatoric stress), a Figure of Merit F(t) is computed at
each time step by taking the ratio of the total bulk internal energy to the
total shear internal energy,

/"pe’,:dv )
Fli)= 77— (37)
/" t™" emn dv

The ideal value for the I'igure of Merit F in the clastic case is zero, F(t) = 0.
Figure 8 shows the Figure of Merit F for all three meshes during the time
that the elastic shear wave propagates from the inner boundary to the outer
boundary of the disk and returns to the inner boundary. While the Figure of
Merit F for all three meshes is low, they stand approximately in the ratios
of 20:10:1. The eight-node hexahedral mesh provides the best result being
closest to zero, the four-node tetrahedral mesh remains the poorest performer
having the largest Figure of Merit values, and the eight-node tetrahedral
mesh lies between the other two Figure of Merit results.

Following the indications of the second-order Irons Patch Test results
where the mean quadrature eight-node tetrahedron showed unexpected ca-
pabilities in the face of a nearly-incompressible elastic calculation, the cylin-
drical shear wave calculation was repeated with an isotropic, linear hardening
elastic-plastic material representation (vield stress = 2.0 x 10* psi and hard-
ening modulus = 1.0 x 108 psi).

The ideal value for the Figure of Merit F in the elastic-plastic case is
also zero, F(t) = 0. Figure 9 shows the Figure of Merit F for all three
meshes during the time that the elastic-plastic shear wave propagates from
the inner boundary to the outer boundary of the disk and returns to the
inner boundary. While the Figure of Merit F for all three meshes is low,
they stand approximately in the ratios of 70:1:1. For the elastic-plastic case
the eight-node hexahedral and eight-node tetrahedral meshes both provide
the best result being closest to zero; the four-node tetrahedral mesh remains
the poorest performer having the largest Figure of Merit values.
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Table 6:

Taylor Bar Impact Results for OFHC Copper.
Initial Length Lo = 25.4 mm; Initial Diameter D = 7.62 mm

Final Experimental | Johnson | Eight-Node Eight-Node

Dimension Measurement | [1988] | Hexahedron | Tetrahedron
Length 16.2 mm 17.2 mm | 17.2 mm 17.2 mm
Diameter at 0.2Lo 10.1 mm - 9.6 mm 9.6 mm
Base Diameter 13.5 mm 146 mm | 144 mm 14.1 mm

4.4 Taylor Impact Tests

Experimental results from Taylor impact tests provide data with which to
make comparisons. The large plastic flows that occur to the cylindrical metal
specimens used in the Taylor impact test provide exceptional mesh distortions
thereby testing a range of geometric shapes for which the element geometry
must provide reliable gradient and divergence calculations. Others have used
Tavlor impact experiments to test constitutive models as well. ¢f., Johnson
and Holmquist [1988]. Figure 10 shows the final calculated shape of what
was originally a right circular cylinder of OFHC copper traveling 190 meters
per second and impacting a flat, hardened steel target. To conduct the
simulation, an implementation of the Johnson-Cook constitutive model was
used, along with the following properties for OFHC copper: Young’s modulus
E = 124 GPa, Poisson’s Ratio v = 0.34, density p = 8960 kg/m?>, specific
heat C, = 383 J/kgK, melt temperature T.. = 1356 K, room temperature

* = 295 K, the constant .4 = 90 MPa, the constant B = 292 Mpa, the
exponent n = 0.31, the constant C = 0.025, and the exponent m = 1.09,
Johnson and Cook [1983].

Table 6 tabulates the experimental results, calculated results from John-
son [1988], calculated results based on an eight-node hexahedral finite ele-
ment, and calculated results based on the mean-quadrature eight-node tetra-
hedral finite element. All of the calculated results are close to each other and
stand in the same relationship to the experimental results. This outcome
is typical for a simulation based on the Johnson-Cook constitutive model,
Johnson and Cook [1983]. (An improved correlation with the experimentally
observed results can be obtained with a Zerilli-Armstrong constitutive model,
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Johnson [1988].) For the purposes here it is clear that the mean-quadrature
eight-node tetrahedron performs well in this simulation.

5 Conclusions

One is led to the conclusion that of the three finite elements examined, the
mean-quadrature implementation of the eight-node hexahedron due to ['lana-
gan and Belytschko [1981] remains numerically the more effective element.
However, for simulations where the deviatoric strain field is significantly
larger than the volumetric strain field (e.g., simulations based on nearly-
incompressible elastic or elastic-plastic material behavior), the eight-node
tetrahedron is an equally viable choice. To the extent that mesh generators
can automatically fill arbitrary volumes smoothly and efficiently with tetra-
hedra, the eight-node tetrahedron proposed here is a satisfactory alternative
to an eight-node hexahedral finite element and meshes requiring an inordi-
nate amount of user intervention and direction to generate. The four-node
linear displacement tetrahedron does not provide useful results in any case.

The use of mid-face nodes while leading to a large number of degrees of
freedomn does admit a compatible family of low-order mean-quadrature finite
elements: an eight-node hexahedron, an eight-node pentahedron (a wedge
with a mid-face node on each triangular end face), a 9-node Egyptian pyramid
(mid-face nodes on each triangular face), and the eight-node tetrahedron
presented here.
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Figure 7: Hexahedral and tetrahedral “flat washer” meshes (inner radius =
1; outer radius = 5; thickness = 1) used to model a cylindrically divergent,
elastic, transverse shear wave (Young’s modulus = 1.0 x 107 psi; Poisson’s
ratio = of 0.25; density = 2.61 x 107 Ibf-sec?/in*). The inner radius has an
imposed twist; the outer radius is fixed.
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Figure 8: Values of F(t), Figure of Merit, for the time it takes the elastic
transverse shear wave to travel {rom the inner radius to the outer radius and
back for all three meshes. (F(t) for the eight-node tetrahedral mesh is the
solid line. F(t) for the eight-node hexahedral mesh is the uniformly dashed
line. F(t) for the four-node tetrahedral mesh is the short-long dashed line.)
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Figure 9: Values of F(t), Figure of Merit, for the time it takes the elastic--
plastic transverse shear wave to travel from the inner radius to the outer
radius and back for all three meshes. (F(t) for the eight-node tetrahedral
mesh is the solid line. F(t) for the eight-node hexahedral mesh is the uni-
formlyv dashed line. F(t) for the four-node tetrahedral mesh is the short-long

dashed line.)
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Figure 10: The final deformed shape of an OFHC copper rod impacted at
190 m/s based on a simulation using a Johnson-Cook constitutive model.
The left half of the figure is the result obtained using a mean-quadrature
eight-node tetrahedral finite element mesh. The right half of the figure is
the result obtained using a mean-quadrature eight-node hexahedral finite
element mesh. (The mid-face nodal points in the tetrahedral mesh are not

displaved.)
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