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Abstract

Because VLSI implementations do not cope well with highly

" interconnected nets—the area of a chip growing as the cube
of the fan-in [25]—this paper analyses the influence of lim-
ited fan-in on the size and VLSI optimality of such nets.

Two different approaches will show that VLSI- and size-

optimal discrete neural networks can be obtained for small
(i.e. lower than linear) fan-in values. They have applica-
tions to hardware implementations of neural networks. The
first approach is based on implementing a certain sub-class
of Boolean functions, FF, ,, functions [34]. We will show that

. this class of ﬁmcttons can be implemented in-VLSI-optimal
(i.e., minimising AT ) neural networks of small constant
fan-ins. The second approach is based on implementing
Boolean functions for which the classical Shannon’s de-
composition can be used. Such a solution has already been
used to prove bounds on neural networks with fan-ins lim-
ited to 2 [26]. We will generalise the result presented there

_to arbitrary fan-in, and prove that the size is minimised by
small fan-in values, while relative minimum size solutions
can be obtained for fan-ins strictly lower than linear.

Finally, a size-optimal neural network having small con-

stant fan-ins will be suggested for IF, ,, functions.

Keywords—neural networks, VLSI, fan-in, Boolean cir-
cuits, vthreshold circuits, IF, ,, functions.
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1. Introduction

In this paper we shall consider feedforward neural net-
works (NNs) made of linear threshold gates (TGs). A neu-
ron (i.e., linear TG) will compute a Boolean function (BF)
£:{0,1}"— {0,1}, where one of the k input vectors isZ,=
@0 1+ Znt) € {0,1)" and f(Z,) = sgn (X020 wizii+6),
with the synaptic weights w; € R, thresholds 0 €IR, and
sgn the sign function. Two cost functions commonly asso-
ciated to a NN are: (i) depth, which is the number of layers
(or the number of edges—if we consider unit length for all
the edges connecting the TGs) on the longest input to output
path; and (ji) size (or node complexity), which is the num-
ber of neurons (TGs). Unfortunately, these measures are not
the best criteria for ranking different solutions when going
for silicon [21], as “comparing the number of nodes is in-

" adequate for comparing the complexity of neural networks

as the nodes themselves could implement quite complex
functions” [41].

The fact that size is not a good estimate for area is ex-
plained as: (i) the area (of one neuron) can be related to its
associated weights; and (ii) the area of the connections is—
in most cases—neglected. Here are several alternatives of
how the area could scale in relation to wezghts and thresh-
olds:

o for purely digital implementation, the area scales at

" least with the cumulative size of the weights and
~ thresholds (the bits for representing these weights and
thresholds have to be stored);

e ' for certain types of analog implementations (e.g., us-

ing resistors or capacitors), the same type of scaling



is valid (in particular cases, analog implementations
can have binary encoding, thus the area would scale
with the cumulative log-scale size of the parameters);

e there are some types of implementations (e.g., tran-
sconductance ones) which offer a constant size per
‘element, thus scaling only with I vy fan-ins.

All these ‘cost functions’ are linked to VLSI by the as-
sumptions one makes on how the area of a chip scales with
the weights and the thresholds [5, 9, 10]. That is why sev-
eral other measures (i.e., ‘cost functions’ )—be51de size—
have already been used:

e the total number-of-connections, or %,y fan-ins, has

been used by several authors [1, 25, 30, 33];

o the total number-of-bits needed to represent the
weights and thresholds 3 yy (X, logl wi [1+[logl © m!
has been used by others [22, 23, 41];

o the sum of all the absolute values of the weights and
thresholds ¥ yy (X ;1wil+1061) has also been advo-
cated [5, 10, 18, 19, 21], wh11e another similar ‘cost
function’ is X yy (X, wi¥ +87), which has been used
in the context of genetic programming for reaching
minimal NNs [44].

The sum of all the absolute values of the weights and

thresholds has also been used as an optimum criterion for:
(i) linear programming synthesis [32]; (ii) defining the
minimum-integer TG realisation of a function [27]. Re-
cently [3], the same measure (under the name of “fotal
weight magnitude”) has been used in the context of com-
putational learning theory. It was proven that the generali-
sation error of NNs used for classification depends on the
size of the weights—rather than the number of weights—by
showmg that the misclassification probability converges at

arate of O {(cA) Y/lm'}. Here A is the sum of the magnitude
of the weights, | is the depth, m is the number of examples,
and c is a constant.

With respect to a"elay, two VLSI models have been com-

monly in use [38]:

e the simplest one assumes that delay is proportlonal to
the input capacitance, hence a TG introduces a
delay proportional to its fan-in; _

e a more exact one considers the capacitance along any
wire, hence the delay is proportional to the length of
- the connecting wires.

It is worth emphasising that it is anyhow desirable to

limit the range of parameter values [42] for VLSI imple-

mentations—be they digital or analog—because both the
maximum value of the fan-in [28, 40] and the maximal ratio
between the largest and the smallest weight [23, 24, 29, 42]
cannot grow over a certain (technological) limit.

U Inthis paperLxlis the floor of x, i.e. the largesf integer less than or equal

to x, and [x1is the ceiling of x, i.e. the smallest integer greater or equal
to x. In this paper all the logarithms are to the base 2, except explicitly
‘mentioned otherwise.

The focus of this paper will be on NNs having limited
fan-in (the fan-in will be denoted by A). We will present
both theoretical proofs and simulations in support of our
claim that VLSI- and size-optimal NNs can be obtained for
small fan-ins. For simplification, we shall consider only
NNs having n binary inputs and p binary outputs (if real
inputs and outputs are needed, it is always possible to quan-
tize them up to a certain number of bits such as to achieve
a desired precision [4, 7, 11, 24]). In Section 2 we shall
present a theoretical proof for the F, ,, class of functions,
showing that their VLSI-optimal implementation is
achieved with small constant fan-ins. Section 3 deals with
BFs, and details the generalisation of a result from [26] to
arbitrary fan-ins. Based on that generalisation we will show
that the size can be minimised for small fan-ins. Finally, in
Section 4 we will suggest how to implement F, ,, functions
in size-optimal NNs having small constant fan-ins.

Conclusions, open questions and further directions for

* research complete the paper. Due to space limitations some

of the lengthy mathematical proofs suggested in [6 7] have
been omitted, but can be found in [9, 10].

2. VLSI-optimal neural implementations of
IF, ,, functions

F, ,, is the class of BFs of n variables having m groups
of ones in their truth table. Obviously, any BF can be rep-
resented by a suitable collection of its true values (ones),
but for achieving that the number of groups of ones grows
exponentially (i.e. IF, ,»/2 completely covers B, the set of
all n-ary BFs). This class of functions has been introduced
and analysed by Red’kin [34]; he constructively proved that
a depth-3 NN has size . ’

Proposition 1 (Theorem 1 from [34]) The complexity re-
alisation (i.e., number of threshold elements) of F, ,; (the
class of Boolean functions f(x, x, ... x,_ x,) that have ex-
actly m groups of ones) is at most 2 \f_ +3. ’

The construction has: a first layer of |'(2m)1/ A TGs
(COMPARISONS) with fan m n and weights < 274 asec-
ond layer of ZF(m /2)Y?1 TGs of fan-in=n +|'(2m)1/2'|
and weights <2"; one more TG of fan-in=2[(m/ 2)
and weights e {- 1 +1} in the third layer.

Red’kin also proved that if the implementation of BFs
of this type is restricted to circuits having no more than
three layers, than the upper bound—following his method

- of synthesis—is equal to the lower bound obtained from

capacity considerations. Although this construction is size- -
optimal, it is not VLSI-optimal as the weights and thresh-
olds are exponential.

Another solution was detailed in [20, 21] and later im-
proved in [5, 15, 16]. It has a first layer of COMPARISONs



* followed by a second layer of MAJORITY gates. This solu-
tion relies on the classical COMPARISON of two binary num-
bers X=x,_X,_; ... x, Xpand Y=y, _, ¥,_5 ... ¥ ¥, which
‘is a BF defined as: :

1 if X>Y (X2Y)

>@) _ o>
€ 7=CT&D = {0 if X<Y (X<Y)’

It is known from previous work that COMPARISON cannot
be computed by a single TG with polynomially bounded
mteger weights, but can be computed by a depth-2 NN with

‘O ) TGs and polynomially bounded weights [2]. This
last result has been improved as follows.

Proposition 2 (Lemma 6 [37]) The COMPARISON function
can be computed in a depth-3 neural network of size 3n with
polynomially bounded integer weights.

This constructive solution (we shall call it SRK) has a
first layer of n AND gates computing x; A y;, and 7 OR gates
computing x; v y;, followed by a layer of n— 1 AND gates:

By = (e ad) A {A L (V)
and a third layer having one OR gate:

Cn = '(xn-l Ayn-l) Vv (V Z;(z) Bk) :

This depth-3 NN has size gax = 3n — 1, thresholds < n, fan-

in < n, and all the weights *1.

Proposition 3 (Proposition 2 and 3 [7]) The COMPARISON
of two n-bit numbers can be computed by a A-ary tree neu-
ral network having integer weights and thresholds which
are: (i) polynomially bounded for all the values of the fan-in
3 <A <O (logn); (ii) super-polynomially bounded for all
the values of the fan-in O (logn) < A <O (log n) and (iii)
"exponenttally bounded for all the values of the fan-in
O (log n)<A<2n -

This constructive class of solutions (which we shall call

- are lower than 2

B_a), was proposed in [18, 19], and is based on decompos-
ing COMPARISON in a tree structure. The NN has a first layer
of ‘partial’ COMPARISONs C,” and CZ (LA/2] bits from X
and A /2] bits from Y) followed by a A-ary tree of TGs
combining these partial results. The fact that the BFs im-

" plemented by the nodes are linear separable functions was

proven in [17, 21]. The network has:

depthg = [logn / (logA - 1)1, and

sizegn =T4(n—1)/A=21~ depthyg,

with fan-in of A or A — 1. The weights and the thresholds
/2 (for 3< A< 2n).

Proposition 4 (Theorem 3 [35]) The size complexity of
COMPARISON implemented by generalised symmetric func-
tions is © (n/logn).

This constructive solution (we shall call it ROS) has a
first layer of ‘partial’ COMPARISONs C, (equivalent to C;)
and C (equivalent to Cz,,,) having m input bits from X and
m input bits from Y. The first layer has 2[n/m1~1 TGs of
fan-in=2m. The second layer has [n/m]l—1 AND gates
with fan-in=2,3, ... ,Tn/ml:

= ck A (A]f";'ﬂ c).
fn/ml

The thlrd layer has one OR gate C X, Y)=V | Bk, and
by taking m =llognl+ 1, sizegos =3[ n/(lognl + 1)1 -1.

The NN has depth-3, weights and thresholds < 2Mog"1 4nd
fan-in<[n/(lognl+ 1)1. :

Proposition 5 ( Corollary 2 [39]) The COMPARISON can be
computed by a depth-2 linear threshold network of size
2[n/Nall, with weight values at most 2% and with an
upper bound of 2 [Nn 1+ 1 for the maximum fan-in.

This constructive solution (we shall call it VCB) has a
first layer of ‘partial’ COMPARISONs (¥n 1 input bits from
X and 7 1 input bits from Y), and the second layer com-
putes the carry-out of the 21 binary ADDITION with carry.

Table 1 (from [7])
Size, we:ghts and fan-ins of dlfferent solutions for COMPARISON (normal operand lengths).

Solution | ycp [39] | B2r1(6] | SRk [37] | mos[35] | vem[39] |s_a[18,19]|B.a[18, 19]
Length depth =2 depth =3 depth =4
32-bits | Size . 13 12 95 19 - 18 19 45
Max. weight 64 32 32 64 16 8 3
.| Max. fan-in 13 12 32 12 -9 8 5
64-bits | Size 17 16 191 31 26 39 63
Max. weight 256 128 64 128 64 8 5
Max. fan-in 17 16 64 14 13 ~ 8 7




Table 2 _
Different estimates for the AT?2 of compARISON for SRK, B_4, B_log, ROS and VCB.

AT%OS = O(nz/ logzn)
AT2y =0(n 3

Delay Depth Fan-in Length
Area .
Size ATZs = O (¥m) ATZ, = O (nlog’n) @) |AT%s = O (n*m)
AT%s = O (n/logn) AT 1og= O [nlog’n/logXlogn)] | AT3es = 3-n>/logn
AT = 0 () AT, = 0(nim) ATE og= 4-n>/logn
AT,%_,(,g = O|[nlogn/ "logz(logn)] AT%OS = 0(n3/ log3n) Ait"%_4 £4-n°
AT2, = O(nlog’n) ATL, =0 | ATZ. = 270374
> vy fan-ins AT&CB =0(m AT§_4 = O (nlog’n) &) AT%_.OQE 4n’
ATZ o= O [nlog’n/logX(logn)] | AT3 og= Onlog*n/log*(logn)] | ATy = 4n3
ATZ, = O(nloghn) ATZ, =0@?) A2, =5n°

AT%s = 0_(n4/1§g4n)
ATk = 0 (%

AT%OS = O(n4/log2n)
AT =0 ()

S o (S wikieh| AT2, = O (nloghn) 1) | AT, = O (nloghn) @

ATZ, = 0@

ATZs = 0 (n*/logn)
ATdw = 0(n?)
AT, =0(n'/22"%

ATZ 0= O [n¥i logn/logX(logn)] | AT3 10 = O [niilog’n /log*(logn)]| AT3 j0g= O (7 /logn)
AT%OS = 0(n4/ log3n)
AT%HK =0 (’l_4)

AT, =0(n3/*2"™

AT% = O (n*/1ogn)
AT%RK = 0("4)
AT2, = 03?2

Although size-optimal (like [34]), this solution is not very
_ attractive from the VLSI complexity point of view as hav-
" ing exponentially growing weights. The complexity results
-are similar to those of a particular solution belonging to the
B_A class [6, 7]: take A = 2 [vn 1—which leads to B_2[Vr# 1—
and the NN has depth = 2,.size =[2Vr 1, with weights and
thresholds of at most 27" |
For normal length COMPARISONs Vassiliadis et al. [39]
claim improvements over ROS [35] and SRK [37]. We pre-
sent in Table I the results reported in [7]. Both VCB and
B_21% 1achieve better performances than SRK and ROS. For
depth =2, B_21r 1outperforms VCB (both for 32-bit and for
:.64-bit operand lengths), while for depth =3, B_2{vs1 has
lower weights and fan-ins, but slightly more gates. Still, B_A
has two main advantages: (i) being a class of solutions it
can be used for other depths (see the last column of Table

D); (i) because the weights and the fan-ins are lower, the’

area should also be lower.
It is known that a VLSI design is considered optimum
when judged on a combined measure AT? [38], thus:

ATk = Gn-1)x32 =0(n)

2 4n-1) 1ogn 2 - 2A
AT, < X . =0(nl / AlogA
o4 [A-—Z} [logA—l] (nlog'n/ Alogh)

AT = 3[n/(logn1+ 1)1x3% = 0 (n/logn).

The natural extension of the circuit complexity results to
VLSI complexity ones is by using the closer estimates for
the area and the delay (as discussed in Introduction).

Proposition 6 If the area of a neural network is estimated
as Y yyfan-ins, there are neural networks computing the
COMPARISON of two n-bit numbers which occupy between
0 (n) and O (n*) area: '

A = ("2 +11n=6)/2  =o0m?

4(n-1) logn 4n |
Ag, < A an
Ba < "[A—sz’[logA-l]*[A]

2
i n n
A < 4 + - | ———— + o | ————
flros AT L’log’rﬂ+l] o2 [Flogn1+l-’

= 0m/logkn).

0 (n)

™)
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Figure 1. The AT2 values of coMPARISON—plotted as a 3D surface—versus the number of inputs n and
the fan-in A for 4 <A < 20: (a) n<64; (b) n<256; (c) n<1024; (d), (e), and (f) show the contour plots for
the same cases. Clearly a ‘valley’ is formed, and that the ‘deepest’ points constantly lie somewhere be-

tween A minim=06 and A maxim=9.

Proposition 7 If the area of a neural network is estimated
as Xy (Z;1wil+101), there are neural networks comput-
ing the COMPARISON of two n-bit numbers which occupy be-

2 . :
tween O (n) and O (n“) area:

Aspc = n%+15n-9)/2 =0@n?

2472 8nA—6n-5A
A A-2

2
-] n n
(4n - ZJX ’.Flogn'l + 1-I * [I’logrfl + 1-’

=0 leogn) .

=0@®-2%"Y)

Ag, <

A

AROS

Proposition 8 If the delay of one neuron is proportional to
its fan-in, there are neural networks computing the COM-
PARISON of two n-bit numbers which require between
O (logn) and O (n) time:

TShK = 2n+2 = o(n’)

. [ . logn . :
T, < A-1x|—282_| 4+ 1 = 0(Alogn/logA
s < (- x| ] (Alogn /logh)

Tros < ZX[’Vﬁo—g%Ti‘-’ + rlogn1 + 1)= O(n /logn).

Proposition 9 If the delay in a neural network is propor-
tional to the length of the wires, there are neural networks
computing the COMPARISON of two n-bit numbers which re-
quire O (n) time: :

’ TSRK = (3n'_ 1)/2$ TB_A < n, TROS <n.

For all these different estimations of A and T, the AT?
complexity values have been computed, ordered, and can
be seen in Table 2. .

Not wanting to complicate the proof, we shall determine
the VLSI-optimal fan-in when implementing COMPARISON
(in fact an JF, , function) for which several solutions were
detailed in Propositions 2 to 9. The same result is valid for
F, ,, functions as can be intuitively expected as:

e ‘the delay is determined by the first layer of COMPARI-

SONSs; while : _
e the area is mostly influenced by the same first layer .

of COMPARISONS (the area for the implementing the

MAJORITY gate can be neglected [15, 211).

From the alternatives presented in Table 2, we have cho-
sen Xy (X;1wil+181) for area and depth for delay, but
other estimates lead to similar results (the optimal AT? be-
ingO (n logzn) in four out of nine cases-——see Table 2). To
get a better understanding, the AT 2 values have been com-
puted for variable fan-ins and for different number of inputs
n, and can be seen in Figure 1. ’ ‘ '
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Figure 2. The AT 2 yalues of COMPARISON for different number of inpdts n and fan;in A for the intervals:
(a) 4 < n< 32; (b) 32 < n<256; and (c) 256 < n < 1024. Details showing the optlmum fan-in for the same
intervals: (d) 4 < n<32; (e) 32 < n<256; and (f) 256 < n<1024.

Proposition 10 The VLSI-optimal neural network which
computes the COMPARISON of two n-bit numbers has small-
constant fan-in ‘neurons’ with small-constant bounded
weights and thresholds.

Proof From Propositions 3and 7:

At = 227 8nA—6n—5A [Iogn]z

A - A-2 logA
1)

0 {nlogn - 22/% (Alog?s)}
and we compute the derivative:

d(AT? _
A%A -2)2 logA

dA

x (8nA3logA —22nA%logA

+ 12nAlogA - 5A%logA + lOAzlogA

16 .2
~ 12" nA logA+l 2nAlogA n anogA
10 2 32 .2 88 . 48
l 2A 10 A In 2uA +ln2uA 1112"
2 40
A ln2A]

This—unfortunately—involves transcendental functions of
the variables in an essentially non-algebraic way. By con-

sidering the simplified ‘complexity’ version (1) we have:"

d(AT%/d A

d {nlog’n- 222 /(Alog’A)} 7dA

2472 (m2 1 _2
Alog’A | 2 A AlnA
which when equated to zero leads to InA (AIn2-=2)=4
(again a transcendental equation). This has A, = 6 as in-
teger solution, and because the weights and the thresholds

are bounded by 24 (Proposmon 3) the proof is con-
cluded. Q

To gei a better understanding, the AT? values have been
computed for variable fan-ins and different number of in-
puts n, as can be seen in Figure 1, while Figure 2 presents

~ exact plots of the AT measure which support our previous

claim A gptim = 6...9 (as the proof has been obtained using
‘several approximations: neglecting ceilings, using the com-
plexity estimate, etc.).

3. Size-optimal neural implementations of BFs 7’

We start from the classical construction developed by
Shannon [36] for synthesising one BF with fan-in'2 AND-OR
gates. It was extended to the multioutput case and modified
to apply to NNs by Horne & Hush [26].



Proposmon 11 (Theorem 3 [26]) Arbitrary Boolean logic
functions f: {0,1}" — {0, 1}* can be implemented in a
neural network of perceptrons restricted to fan-in 2 with a
node complexity of © {u2"/ (n+logw)}. The resulting ar-
chitecture requires O (n) layers.

Sketch of proof The idea is to decompose each output BF
into two subfunctions using Shannon’s Decomposition
[36]:

. f(xl Xy oee Xpoy xn)=21ﬁ)(x2 vee

By doing this recursively for each subfunction, the output
BFs will—in the end—be implemented by binary trees.
Horne & Hush [26] use a trick for eliminating most of the
lower level nodes by replacing them with a subnetwork that

Xy %) F X i (g e Xy X) -

computes all the possible BFs needed by the higher level

nodes. Each subcircuit eliminates one variable and has three
nodes (one OR and two ANDs), thus the upper tree has:

$i28 yper = 3 2" 120 i =3ue" -1y O@

nodes and depth .., =2 (n — q). The subfunctions now de-

pend on only g variables, and a lower subnetwork that com-

putes all the possible BFs of g variables is built. It has:
i q

Sizelawer= 3'21'1122 <4'22 (3)

nodes and depth = 2q (see Figure 2 from [26]). That ¢

which minimises the size of the two subnetworks is deter-

mined by solving d (size) /dg = 0, and gives:
= log [n+ logn — 2 log(n + logw)] .

By substituting this value in (2) and (3), the minimum
size:

size= 3p-2""% = 332" (n+logp)
is obtained. Q

We will use a similar approach for the case when the
fan-in is limited by A.

Proposition 12 Arbitrary Boolean functions f:{0, 1} -
{0, 1} * can be implemented in a neural network of percep-
trons restricted to fan-in A in O (n/logA) layers.

Proof We use the approach of Horne & Hush [26] and
hmlt the fan-in to A. Each output BF can be decomposed
in24 subfunctlons (ie., 281 anD gates). The OR gate
would have 247! inputs. Thus, we have to decompose it
in a A-ary tree of fan-in=A OR gates. This first decompo-
sition step eliminates A — 1 vanables and generates a tree
of:

depth = 1+[(A-1)/logAl,
size =287 14[@4 - p/s@a-1).

Repeating this procedure recursively k times, we have: '

depth,,, =k-{1+[(A- 1) /logAT} @

upper

i e = (2574171 /(A= DY - B2 6

=size- {2¥@-D_1}/708 -1
=2K4-Da+1/a
~ pkAk, ©)

where the subfunctions depend only on g=n— kA vari-
ables. We now generate all the possible subfunctions of g
variables with a subnetwork of:

depth,,., =l(n-kA)/Al-{1+[(A—1)/logAl} (6)

SIZ€ oper

= {247 L r@A" 1o 1) /(A= 1))} - Sk g2

= size {220+22A+H-.+22n—(k+l)A} |

< ize+n-22 0t I @ -
e @

= 2A 22
The mequahty (7) can be proved by induction. Clearly,

size 2% < (size+1)-2 2° . Let us consider the statement
true for o; we prove it for o + 1:

0 oA (a+1)A
size- {22 +...42% } + size- 22
. (a+1)A (a+1)A
< size-Z2 +22
. 0 [+7: oA
size- {22 +...42% } < (size+1)-22

(due to hypothesis), thus:

. . zuA 2((:L+1)A
(size+1)-2 <2

and computing the logarithm of the left side:
204 4 log (szze+ 1) |
=2% 4 log{ZA_l+r(2A ! 1)/(A—1)1}
< 2?‘A + log{22 1+24-1/Aa+1}
PPL VU |

< 2(a+1)A



s

" From (4) and (6) we canbestimate depth g, and from (5)
and (8) size g, as

depth g, = {k+L(n—kA)/Al} - {1+[(A-1)/logAT}
= (n/A)- (A/logh+1) -' )

= n/logA = O (n/logh)

sizegr, = W-size- {2¥G"D_1}/(a-1)
‘ n-(k+1)A

+ (size+1)-22

n—-kA-A v
< poakky 24 .92 (10)

‘concluding the proof. Q

Proposition 13 All the critical poirits of size gr, (1, 1, k, A)
are relative minimum and are situated in the (close) vicinity
of the parabola kA = n - log (n + logp).

Proof To determine the critical points, we equate the par-
tial derivatives to zero. Starting from the approximation
(10) of size yr, We compute Osize gp, / 0k = 0:

b 2KA=k 102y (A= 1)

“KA-A
+28.27 (n2)- 2" ¥4 (In2)- (-4 = 0
n—-kA-A ‘
(L(A-1)/A/(n2)} -2 %A~ k-n = 22
and using the notations kA=, B=p (A-1)/(A In2), and
taking logarithms of both sides:

logB+2y—k—n = 2""Y"4 (11)

which has an approximate solution Y= n — log (n + log).

The same result can be obtained by computing with fi-
nite differences (instead of approx1matmg the partial de-
rivative):

size g, (W, 1, k+ 1, A) = size gg, (U, 1, K, A) =0

n-kA-A

} =0

n—-kA-A

size - {p,-2kA'k - 2?2

TL ST

and after taking twice the logarithm of both sides and using
the same notations we have:

log{logh + Y(1-1/A)} = n-y-A
n-{A+log (1-1/A)} -log{y+A/(A-1) - logn}

-2
|

]

n - A - log (y+logp), A (12)

which has-as the approximate solution:

v = n-log(n + logp). ‘
Starting again from (10), we compute size gz, / 9A = O:

n—kA-A

n2M )k + 24 (n2) 22

n-kA-A

(n2)2" =22y (k) = 0

n=-y-A

_28.92"

+ 248922

n-y-A

wk-277F = k(n2)- 277722

pk- 27"k ¥-n

n=y-A

n-y-A
= k(In2) - 22 ~ 28,9771, 92

n=-y~-A

pk-22-k=n o (pan2)-27TA") .22

n-y
(W/In2) - 285" = {1278 (kn2)} - 22

which—by neglecting 2 T+ay {k (In2) - 2"} —gives:

logB+2y-k-n =2""Y74

i.e., the same equation as (11).
These show that the critical points are situated in the

(close) vicinity of the parabola kA = n —log (n +logl).

From Proposition 12 and 13 it follows that size-optimal
neural implementations of BFs are obtained for small fan-
ins (i.e., from constant to at most n — logn < n). The exact
size:

SiZe BFs = SiZe lower + “’ . SiZe upper

has been computéd for rhany different values of n, u, A and
k. Some results of those extensive simulations are plotted
in Figure 3. From Figure 3(a), (b) and (c) it may seem that

. k and A used in the proof of Proposition 12 have the same

influence on size pr. The discrete parabola-like curves ap-
proximating kA = n — log (r + logp) can be seen in Fzgure

3(d), (e) and (f).

Proposition 14 The absolute minimum size g, is obtamed :
for fan-in A=2. ’

Sketch of proof We will analyse only the critical points by
using the approximation kA = n-logn. Intuitively the
claim can be understood if we replace this value in (10):

n—n+logn—-A

n—logn—k + 2A.22

. * .
Sizegr, = W-2

’ logn
< M.zn—logn + 2A.22 £
C=p2Yn+ 242"

which clearly is minimised for A =2. . a
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Figure 3. The size (in logarithmic scale) of NNs implementing arbitrary BFs for: (a) n=16; (b) n=64; (c)
n =256 (clipped at 2'°°), and the contour plots for the same cases (d), (e), (f)- ' ‘

The detailed proof computes size pr, (1, W, k, A) for those
k = (n-logn)/A (ie., size ;F, (n, W, A)), and shows that:

Size g, (7 Wy A+ 1) = siz€ 5, (n, 1, A) > 0.

Hence, the function is monotonically increasing and the
minimum is obtained for the smallest fan-in A = 2. Because
the proof has been obtained using successive approxima-
- tions, several simulation results are presented in Table 3. It
" can be seen that while for relatively small n the size-optimal
solutions are obtained even for A= 16, starting from
n 2 64 all the size-optimal solutions are obtained for A =2.
- It is important that the other relative minima (on, or in the
vicinity of the parabola kA = n —logn) are only slightly

larger than the absolute minimum. They might be of prac-
tical interest as leading to networks having fewer layers:
n/logA instead of n. Last, but not least, it is to be men-

" tioned that all these relative minimum are obtained for fan-
‘ins strictly lower that linear, as A <n —logn.

4. Size-optimal neural implementations of
IF, ,, functions

A similar result can be obtained for JF, ,, as the first
layer is represented by COMPARISONS (i.e., IF, |) which can
be decomposed to satisfy the limited fan-in condition [10,
16, 17, 21]. '

Minimum sizegg, for different values of nand p=1.

Table 3

1024 =210

n |8=23|16=24|32=25| 64=2% | 128=27 | 256=2% | s512=2° 2048 =211
size | 110 | 1470 | 349,530 |1.611x 10°|6.917 x 10'8]5.104 x 10382.171 x 1076{ 1.005 x 10 1*| 1.685 x 10°"’
Al 4 | 8 16 2 2 2 2 2 2

K 4 8 16 58 122 248 504 1014 2038
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Figure 4. The reduced size (in logarithmic scale) of NNs implementing IF,, » functions for m=2°%" (a)

¢ =0.1; (b) € = 0.5; (c) £ = 0.9; and the contour plots for the same cases (d), (e), (f). The lowest values are

obtained for very small constant fan-in values.

Proposition 15 (Lemma 1 & Corollary 1 [21]) The CoM-
PARISON of two n-bit numbers can be computed by a A-ary
tree neural network having integer weights and thresholds
bounded by 227? for any 3<A<n.

The size complexity of the NN implementing one IF, ,,
function is [21]:

. 1
sizeg, = 2nm-{—— + ..

1 (13)
V7R }

depth
@2

where depthg , =logn / (logA — 1)1, but a substantial en-
hancement is obtained if the fan-in is limited. Due to the
limitation, the maximum number of different BFs which
can be computed in each layer is: '

2n/A _2A(A/2)

(2n/A)- 28,
A/2

2n/A 'A(A/Z)depthu—l (14)
depth g , -1 2 ST
BA
@2
For large enough m (needed for achieving a certain pre-
" cision [10, 23, 42]), and/or large enough n, the first terms

of the sum (13) will be larger than the equivalent ones from
(14). This is equivalent to the trick from [26], as the lower
levels will compute all the possible functions using only

limited fan-in COMPARISONs. Hence, the optimum size be-

comes.
k el depth
) AA/2) e
sefin = | ¥ A ¥
i=1 4472 =1 872

explained as the same BFs are computed redundantly. In

" terms of fan-in, several exponentially decreasing terms will

be replaced by double exponential increasing terms.

Following similar steps to the ones used in Proposition -
13, it is possible to show that the minimum size is obtained

for A=3. To get a better understanding we have done ex-
tensive simulations by considering that m =2 *". Some of

.the results of these simulations can be seen in Figure 4.

They show that it is always possible to obtain a significant
reduction of the size by properly choosing a small constant

* fan-in. It is to be mentioned that the size reduction is by a
huge factor which is of the form 2 *" ™ for very small fan-

ins A pim=4...6.



5, Conclusions and further work

The paper has focused on sparsely connected NN, i.e.
having either (small) constant fan-ins, or at most logarith-
mic in the number of inputs n. Using different cost func-
tions—which are closer estimates than size and depth for
the area and the delay of a VLSI chip—we have been able
to prove that VLSI-optimal implementations of I, ,, func-
tions are obtained by small constant fan-ins. .

Concerning size-optimal solutions, we have shown that:

o arbitrary BFs require small—but not necessarily con-

stant—rfan-ins (at most n — logn);
- o JF, , functions require small constant fan-ins.

Some of these results have already been applied to opti-
mising the VLSI design of a neural constructive algorithm
[5, 14, 15]. We are working on a mixed constructive algo-

rithm which—after quantizing the input space as in [4, 11,

12, 13]—could synthesise IF, ,, functions, arbitrary BFs, or
a mixture of them such as to reduce the area of the resulting
VLSI chip. This could also have applications to automatic
synthesis of mixed analog/digital circuits [8, 16]. An alter-
native solution currently under investigation [14] is to use
such a synthesis step after quantizing the input space as de-
tailed in [24].
~ Future work should concentrate on:
-e linking such results with the ‘Occam’s razor’ [44] and
the ‘minimum description length’ [43];
o finding closer estimates (i.e., other cost functions) for
" optimal mixed analogue/digital implementations.
The main conclusion is that VLSI-optimal solutions can
be obtained for small constant fan-ins. We mention here
that there are similar small constants relating to our capacity
of processing information [31].
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