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Abstract

This paper presents sufficient conditions for the 
design of strictly positive real (SPR), fixed-order 
dynamic compensators. The primary motivation for 
designing SPR compensators is for application to 
positive real (PR) plants. When an SPR compensator is 
connected to a PR plant in a negative feedback 
configuration, the closed loop is guaranteed stable 
for arbitrary plant variations as long as the plant 
remains PR. This paper gives equations that are a 
modified form of the optimal projection equations, 
with the separation principle not holding in either 
the full- or reduced-order case. A solution to the 
design equations is shown to exist when the plant is 
PR (or just stable). Finally, the closed loop system 
consisting of a PR plant and an SPR compensator is 
shown to be S-structured Lyapunov stable.

Introduction

Lemma 1 (Kalman-Yakubovich Lemma [3]): Given a stable 
matrix A and a minimal realization (A, B, C) of H(s), 
there exist positive definite matrices L and Q such 
that:

AQ + QAt - -L (6)

and

B - QCt (7)

if and only if

H(s) - C(sl - A)'1B (8)

is SPR. This form of the lemma is actually the dual 
of that in [3],

Compensator Positive Realness and Upper
Bound Minimization Problem

This paper considers the design of SPR, fixed-order 
dynamic compensators. In previous work, we addressed 
the design of stable compensators [1,2]. The results 
of [1,2] are extended in this paper by taking 
advantage of the Kalman-Yakubovich Lemma to guarantee 
an SPR compensator in the state space setting. It is 
well known that if the compensator is SPR and the 
plant is PR, then the closed loop is stable for 
arbitrary variations in the plant parameters as long 
as the plant remains PR. Note that the plant must be 
square (number of inputs equal to number of outputs) 
if the compensator is to be designed SPR.

Problem Statement and Kalman-Yakubovich Lemma

The system to be controlled is given by:

x(t) - Ax(t) + Bu(t) + w1(t), (1)

The results of [1] demonstrate that a stable 
compensator can be found by suitably overbounding the 
compensator covariance. The expected cost in equation 
(5) can easily be shown to be

J - tr(QR), (9) 

where Q is the closed loop covariance defined as

Q - lim E(xx ),
t-KC

and

0 C R.C c 2 c-

The closed loop system can be written as:

(10)

(11)

y(t) - Cx(t) + w2(t) (2) AQ + QAT + V - 0, (12)

where the A, B, and C plant matrices may not be well 
known. The white noise processes Wj and w2 are zero 
mean with intensities Vj i 0 and V2 > 0, respectively. 
The problem is to design an SPR, fixed-order dynamic 
compensator

*c(t) " AcXc(t) + Bcy(t)’ (3)

u(t) - Ccxc(t) (4)

of order ne which minimizes the performance objective 

J(Ac,Bc,Cc) - lim E[x(t)TR1x(t) + uT(t)R2u(t)], (5)
t—

where xc is the compensator state of order nc; Ac, Bc, 
and Cc are the compensator matrices; Rj and R2 are the 
state and control weighting matrices and E(*) denotes 
the expectation operator. Since the internal 
realization of the compensator does not affect the 
cost, the compensator will be limited to a minimal 
realizations, i.e. (Ac, Bc) controllable and (Cc, Ac) 
observable. The Kalman-Yakubovich Lemma is used to 
guarantee that the compensator is SPR.

where A is the closed loop matrix and the matrices in 
equation (12) may be partitioned as follows:

A BC '
, v -

< Oc
„ T

B C AL c c J 0 B V.BL c 2 cJ

Q
‘ «1 5l2

.q?2 V
(13a,b,c)

The lower right block of equation (12) can be expanded 
as:

AA + Vc + BcV2Bc + BcC^12 + ^L^c (14)

In general, Ac is not even guaranteed stable since the 
forcing terms in the Lyapunov equation (12) need not 
be nonnegative definite. By appending suitable terms 
to (12) , however, the forcing terms can be made 
nonnegative definite, resulting in guaranteed 
stability of Ac when the modified equation (12) has a 
nonnegative definite solution. By appending only 
terms that are at least non-negative definite, the new
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value of Q2 becomes both a solution to the Lyapunov 
equation for Ac and a covariance bound for Q2 in 
equation (12). If the modified forcing term is 
positive definite and Q2 > 0, then Q2 is a solution to 
the Lyapunov equation (6) of the Kalman Yakubovich 
Lemma. Equation (7) of the Kalman-Yakubovich Lemma 
then requires simply that:

where T is an arbitrary positive definite matrix; then 
fi satisfies (16) when a — 1 and ^ - 1 for any c > 0.

Proof: We know that

(B CT*5 + qLj'1*) (B CT*5 + Q^T'*5)1 a 0 (28)
c Iz c iz

B - Q,c^. (15)
c z c

The following theorem formalizes the process.

Theorem 2: Let the symmetric matrix O > 0 be such
that

n(VQl2> > - Wc * BcC(5l2 * (16)

and for given Ac, Bc, and Ce satisfying equation (15), 
suppose that

(A, [V + fi]11) stabilizable (17)

and that there exists Q 2 0 satisfying

0 - AQ + QAT + V + fi, (18)

where

0 o' ^l Q12
fi - 0, Q - T

0 fi. L q12 q2 J

Then,

A is asymptotically stable, (20)

Q s Q, (21)

J < tr(QR) - J, (22)

Ac is stable, and (23)

(Ac, Bc, Cc) has an SPR transfer function. (24)

Proof: That (17) _implies (20) when a nonnegative 
definite solution Q exists to (18) is a standard 
consequence of Lyapunov equation solutions.

and adding the nonnegative definite term involving V2 
and the positive definite term involving c to the left 
side gives:

BcCQ12 + QI2cTbc + BcCTcTBc + ^2T‘\2

+ B V,B + tl > 0, c 2 c (29)

BCCTCV + Q^T^Q^ + cl > - BcV2B^

’ BcCQ12 ' QI2cTbI- (30)

Since the left side of (30) is precisely the chosen fi 
when a - /3 - 1, equation (16) is satisfied. Note that 
if T is chosen such that CTC1 < V2, then an SPR 
compensator is guaranteed for a - 0. Of course, if a, 
f) > 1, then equation (16) will still be satisfied; 
however, the objective is to keep a and fi as small as 
possible such that the deviation from the original 
problem is minimized. ■

Conditions (15) and (18) are now incorporated into an 
upper bound minimization problem to guarantee an SPR 
compensator.

Upper Bound Minimization Problem: Determine (Ac, Bc,
Cc) and nonnegative definite Q that minimize

J - tr(QR) (31)

subject to equations (15) and (18) with fi given by 
equation (27). Solution of this problem gives an SPR 
compensator. The actual cost is guaranteed to be less 
than or equal to J (and the actual covariance less 
than Q).

Sufficient Conditions for a Strictly Positive Real
Fixed-Order Dynamic Compensator

Subtracting equation (12) from equation (18) gives:

A (Q - Q) + (Q - Q) AT + fi - 0 (25)

Since A is stable and fi20, Q - Q20 which proves 
(21), from which (22) immediately follows. Rewriting 
the lower right block of equation (18) gives

AcQ2 + Vc + BcV2Bc + BcCQ12 + QLcTBc + 0 " °- (26)

Condition (16) guarantees that the forcing term of 
equation (26) is positive definite and the assumed 
existence of a nonnegative definite Q2 (since Q 2 0) 
implies that Ac is stable. In [1], it is further 
shown that Q2 > 0 and thus satisfies equation (6). 
Since condition (15) is assumed to hold, (24) 
immediately follows. ■

At this point we choose a form for fi that satisfies 
equation (16).

Proposition 1: Let

n - obcctcV + W^2t'1q12 + tl > 0

Recall that a square matrix is nonnegative (positive) 
semisimple if it has a diagonal Jordan form and 
nonnegative (positive) eigenvalues. [4] A positive 
semisimple matrix may be thought of as a non-symmetric 
matrix that is similar to a (symmetric) positive 
definite matrix.

Lemma 2: Suppose P, Q are nxn nonnegative definite 
matrices. Then PQ is nonnegative semisimple. 
Furthermore, if rank(QP) - nc, then there exist ncxn 
matrices G, T and a positive semisimple ncxnc matrix 
M, unique except for a change of basis, such that: [4]

A A _

QP-G MT, (32)

rG1-^ (33)
c

Any G, M, and T satisfying Lemma 2 will be called a G, 
M, F-factorization of QP. Since QP is nonnegative 
semisimple, the eigenvalues of QP are all nonnegative 
and QP has a generalized inverse (QP)+ given by G^'1!
[4] . The following simplified notation will be used 
in this section:

(27)



_ A A A +

2 - (BP - CQP)(fi + QP), (3A)n

V’ - V2 + qCTcT (35)

where R2 - fVj, with f a normegative design variable, 
has been assumed so that convenient, closed form 
expressions may be found for Ac, Bc, and Cc. The 
generalized inverse in equation (34) may be replaced 
by a regular inverse if f > 0 since then fl[) + QP > 0.

Proof: See [1].

Remark X' These optimal projection equations consist 
of 4 modified Ricatti/Lyapunov equations that are 
coupled in both the full- and reduced-order cases. 
Thus, as expected, the separation principle is not 
valid in either case. Because the "binary" SPR 
condition has been imposed, one should not expect 
equations (36)-(40) to reduce to the usual separated 
equations of LQG theory because there is no simple way 
to relax the SPR requirement.

Theorem £: Assume that condition (17) holds and
suppose there exist nonnegative definite matrices P, 
Q, P, and Q satisfying

0 - (A + QrTV2"1C)Q + Q(A + QSTV2"1C)T + Vx

+ PQT'\ + + cQ, (36)

0 - ATP + PA + Rx + 0T'1QP + ^PQT'1

- fS V^'AZ + cP, (37)

0 - [A - (B + QCT)V^'1i: - hel]Q 

+ Q[A - (B + QCT)V2"^2 - h£l]T

Remark From an examination of the basic form of 
the optimal projection equations [4] specialized to 
the full-order case (i.e., LQG), it may be noted that 
there are other methods of attaining full-order SPR 
compensators (and perhaps reduced-order also) that are 
simpler than that presented here. In fact, any one of 
the full-order optimal projection equations could be 
modified to guarantee compensator stability after the 
optimization is complete, coupled with requiring a 
fixed relationship between Bc and Cc by deleting the 
normal expression for either Bc or Cc. This is 
similar to the method employed in Ref. [5]. This 
alternative disregards the inherent coupling between 
Bc and Cc. With normal LQG, Bc is dependent on V2 and 
Cc is dependent on Rj. Since Bc and Cc must be related 
by a fixed matrix (Q2 in the method presented here) , 
the dependence on V2 and R2 is coupled. The method 
presented here considers this coupling in deriving the 
sufficient conditions for an SPR compensator. This is 
not meant to imply that a compensator designed using 
equations (36)-(43) is Che optimal SPR compensator.

- /9QT aQ - QSaV^ aSQ, (38)

0 - [A + QZTV2"1C - PQT'1 - h£l]TP 

+ P[A + Q£TV2* 1C - 0QT'1 - HeI] + (39)

rank(Q) - rank(P) - rank(QP) - n ,c (40)

with a-^-1 and £ > 0. Then the compensator (Ac, 
Bc, Ce) given by

*"T -1
ac - F[A + QZ v2 C

- (B + QCT + QZT)V^‘1Z - W’1 - £1]gT (41)

"*T -1Bc - - FQZ V^, (42)

-1" TC — - Vi iZG1 (43)
c 2

using a G, M, F-factorization of QP, assures that the 
triple (Ac, Bc, Cc) has an SPR transfer function and 
that conditions (20)-(23) also hold.

Conversely if (Ac, Bc, Cc) solves the upper bound 
minimization problem with (Ac, Bc, Cc) having an SPR 
transfer function, then there exist real nxn 
nonnegative definite matrices Q, P, Q, and P and 
0 < o, 0 S 1 and e > 0 that satisfy equations (36)- 
(40) with Ac, Bc, and Cc given by equations (41)-(43).

Remark 2: When solving equations (36)-(39) to get an 
SPR compensator, a and p less than one may yield an 
SPR compensator. In fact, a - p - 0 may give an SPR 
compensator. The condition a - /! - 1 is the limiting 
case that guarantees an SPR compensator.

Application of the Positive Real Design
Equations to Stable Plants

This section addresses the existence of solutions to 
equations (36)-(39) when the plant is open loop 
stable. That there exist SPR compensators of any 
order that stabilize a stable plant is trivial. The 
real questions are whether equations (36)-(39) are 
guaranteed to have a solution and whether a given 
algorithm can find that solution. Only the first 
question will be discussed here. The second question 
obviously depends on the algorithm chosen to solve the 
equations. The following discussion assumes that the 
infimum of the auxiliary cost is attained. Note that 
existence of a feasible solution to equations (15) and 
(18) using the chosen 0 implies the existence of an 
optimal feasible solution to the upper bound 
minimization problem. Then the converse of Theorem 6 
assures a nonnegative definite solution to equations 
(36)-(39). To show that a feasible solution exists to 
equations (15) and (18), choose Bc - 0 and Ce - 0, 
which clearly satisfies equation (15) for any Q2. 
With these choices, expand equation (18) with Cl given 
by equation (27) and a, p, and T left variable to give

o

Q1 Q12

0 AcJ
. qL q2 .

+
V1 0 

.0 /SQ^T'

Q1 Q12 -ato-

. q?2 q2 . 0 AcJ

+ £l
0. (44)



Expansion of the cross term in equation (44) indicates 
that Q12 is dependent only on A and A , and hence is 
independent of Qj and Q2. Thus, the forcing term in 
equation (44) is nonnegative definite and finite. 
Then for any stable Ac of any order, Q exists and is 
nonnegative definite by Lyapunov's theorem. Note that 
this result holds for all 0 < a, p s 1 and arbitrary t 
& 0.

S-Structured Lyapunov Stability of Positive
Real/Strlctlv Fosltlve Real Feedback Systems

Boyd and Yang [6] have discussed the concept of S- 
Structured Lyapunov Stability (S-SLS). Let X denote 
the set of real numbers and X"1111 denote the set of real 
m x n matrices.

Definition 1 [6]: Let S be an n x n matrix that is a 
subspace of X"”1. A 6 X”” is S-structured Lyapunov 
stable if there is a P € S such that P - P1 > 0 and 
ATP + PA S 0.

S is referred to as a structure and may, for example, 
consist of diagonal or block-diagonal matrices. Note 
that if S - Xnro then A is S-SLS if and only if A is 
stable (essentially unstructured Lyapunov stability). 
Thus, in general S-SLS is a stronger condition than 
just Lyapunov stability. The following theorem 
concerns the interconnection of a positive real plant 
with a strictly positive real compensator in a 
negative feedback system.

Theorem X- Let s be given by:

nxn n xn
X ffi X,C C (45)

which denotes the set of block diagonal matrices with 
two diagonal blocks, the first a real nxn matrix and 
the second a real nc x nc matrix. Also let the triple 
(A, B, C) be positive real and the triple (A<., Bc, Cc) 
be strictly positive real. Then the matrix

A -
-BC

B C A ■ c c

(46)

i.e., the negative feedback connection of (A, B, C) 
and (Ac, Bc, Cc) is S-SLS.

Proof: See [2]. ■

The proof in [2] proceeds by showing that

Q -
QJ

and L (47)

satisfy the Lyapunov equation

AQ + QAT + L - 0, (48) 

indicating that the closed loop is S-SLS.

Theorem 7 may provide some insight into the mechanism 
of the maximum entropy modelling approach to control. 
Specifically, in [7], it is noted that the maximum 
entropy approach suppresses off-diagonal elements of 
the closed-loop covariance when high uncertainty 
exists. This leads to reduced position feedback of 
uncertain modes, while the velocity feedback of 
uncertain modes remains. The hypothesis in [7] is

that the resultant control of highly uncertain modes 
is a dissipative rate feedback, similar to positive 
real feedback. Theorem 7 shows that positive 
real/strictly positive real negative feedback 
connections lead to complete suppression of Che off- 
diagonal blocks of a solution to a certain block- 
structured Lyapunov equation.

Conclusions

This paper presents a method for designing SPR, 
dynamic compensators of order less than or equal to 
that of the plant. An overbounding technique on the 
state covariance combined with the Kalman-Yakubovich 
Lemma then guarantees that the compensator is SPR. If 
the plant is stable (or positive real), the design 
equations are guaranteed to possess a solution.
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