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Abstract

This paper presents sufficient conditions for the
design of strictly positive real (SPR), fixed-order
dynamic compensators. The primary motivation for
designing SPR compensators is for application to
positive real (PR) plants. When an SPR compensator is
connected to a PR plant in a negative feedback
configuration, the closed loop is guaranteed stable
for arbitrary plant variations as long as the plant
remains PR. This paper gives equations that are a
modified form of the optimal projection equations,
with the separation principle not holding in either
the full- or reduced-order case. A solution to the
design equations is shown to exist when the plant is
PR (or just stable). Finally, the closed loop system
consisting of a PR plant and an SPR compensator is
shown to be S-structured Lyapunov stable.

Introduction

This paper considers the design of SPR, fixed-order
dynamic compensators. In previous work, we addressed
the design of stable compensators [1,2]. The results
of [1,2] are extended in this paper by taking
advantage of the Kalman-Yakubovich Lemma to guarantee
an SPR compensator in the state space setting. It is
well known that if the compensator is SPR and the
plant is PR, then the closed loop is stable for
arbitrary variations in the plant parameters as long
as the plant remains PR. Note that the plant must be
square (number of inputs equal to number of outputs)
if the compensator is to be designed SPR.

Problem Statement and Kalman-Yakubovich Lemma

The system to be controlled is given by:
x(t) - Ax(t) + Bu(t) + wl(b), (€))

y(® - Cx() + w2(D) (@)

where the A, B, and C plant matrices may not be well
known. The white noise processes Wj and w2 are zero
mean with intensities Vj 1 0 and V2 > 0, respectively.
The problem is to design an SPR, fixed-order dynamic
compensator

*c(t) " AcXc(t) + Bey(t) (€]
u(t) - Cexc(t) @@
of order ne which minimizes the performance objective

J(Ac,Bc,Co) - lim E[x(D)TRIx(t) + uT(MOR2u(®],  (5)
t7

where xc¢ is the compensator state of order nc; Ac, Bc,
and Cc are the compensator matrices; Rj and R2 are the
state and control weighting matrices and E(*) denotes
the expectation operator. Since the internal
realization of the compensator does not affect the
cost, the compensator will be limited to a minimal
realizations, i.e. (Ac, Bc) controllable and (Cc, Ac)
observable. The Kalman-Yakubovich Lemma is used to
guarantee that the compensator is SPR.
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Lemma 1 (Kalman-Yakubovich Lemma [3]): Given a stable
matrix A and a minimal realization (A, B, C) of H(s),
there exist positive definite matrices L and Q such
that

AQ + QAT - -L ©)
and
B - QCT (@)
if and only if
H(s) - C(sl - A)'IB ®)

is SPR. This form of the lemma is actually the dual
of that in [3],

Compensator Positive Realness and Upper
Bound Minimization Problem

The results of [1] demonstrate that a stable
compensator can be found by suitably overbounding the

compensator covariance. The expected cost in equation
(5) can easily be shown to be

J - tr(QR), )

where Q is the closed loop covariance defined as

Q - lim E(xx ), ao
t-KC

and
an
0 CCRZCC—
The closed loop system can be written as:
AQ + QAT + V - O, a2

where A is the closed loop matrix and the matrices in
equation (12) may be partitioned as follows:

A BC v ©)
3 v - T
LBCC Ac ] L 9 BcV2BcJ
C«l 512
Q (13a,b,c)
022

The lower right block of equation (12) can be expanded
as:

AA + Vc + BcV2Bc + BcCM2 + NN (14)

In general, Ac is not even guaranteed stable since the
forcing terms in the Lyapunov equation (12) need not
be nonnegative definite. By appending suitable terms
to (12), however, the forcing terms can be made
nonnegative definite, resulting in guaranteed
stability of Ac when the modified equation (12) has a
nonnegative definite solution. By appending only
terms that are at least non-negative definite, the new
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value of Q2 becomes both a solution to the Lyapunov
equation for Ac and a covariance bound for Q2 in
equation (12). If the modified forcing term is
positive definite and Q2 > 0, then Q2 is a solution to
the Lyapunov equation (6) of the Kalman Yakubovich
Lemma. Equation (7) of the Kalman-Yakubovich Lemma
then requires simply that:

B - Q.. 15)
c z c
The following theorem formalizes the process.

Theorem 2:
that

Let the symmetric matrix O > 0 be such

n(VQI2> > - W * BeC5I2 * (16)

and for given Ac, Bc, and Ce satisfying equation (15),
suppose that

(A, [V + fi]lD) stabilizable a7

and that there exists Q 2 0 satisfying

0 - AQ + QAT + V + fi, (18)
where
0 o' ~l Q12
e o i ° Tk @y
Then,
A is asymptotically stable, (20)
Qs Q @D
J < r(QR) - J, 22)
Ac is stable, and (23)
(Ac, Bc, Cc) has an SPR transferfunction. 24)

Proof That (17) _implies (20) when a nonnegative
definite solution Q exists to (18) is a standard
consequence of Lyapunov equation solutions.

Subtracting equation (12) from equation (18) gives:
AQ-Q+@Q-QAT+1fi-0 (25)

Since A is stable and fi20, Q - Q20 which proves
(21), from which (22) immediately follows. Rewriting
the lower right block of equation (18) gives

ACQ2 + Ve + BCV2BC + BcCQI2 + QLcTBe + 0 " °- (26)

Condition (16) guarantees that the forcing term of
equation (26) is positive definite and the assumed
existence of a nonnegative definite Q2 (since Q 2 0)
implies that Ac is stable. In [1], it is further
shown that Q2 > 0 and thus satisfies equation (6).
Since condition (15) is assumed to hold, (24)
immediately follows. [ ]

At this point we choose a form for fi that satisfies
equation (16).

Proposition 1: Let

n - OBCCTCV + WA2T'1QI2 + t1 > 0 27)

where T is an arbitrary positive definite matrix; then
fi satisfies (16) when a — | and ~ - 1 for any ¢ > O.

Proof. We know that

(B CT*S + QLI "I*) (B CT* + Q~T'*5)1 a 0 (28)
c 1z c iz

and adding the nonnegative definite term involving V2
and the positive definite term involving ¢ to the left
side gives:

BcCQ12 + QI2CTBC + BcCTcTBc + N2T\2=2

+ B VB + tl >0, 29)
c 2 ¢

BCCTCV + QATAQN + ¢l > - BcV2B»
> BeCQI2 ' QI2CTBI- (30)

Since the left side of (30) is precisely the chosen fi
when a - 3 - 1, equation (16) is satisfied. Note that
if T is chosen such that CTClI < V2, then an SPR
compensator is guaranteed for a - 0. Of course, if q,
f) > 1, then equation (16) will still be satisfied;
however, the objective is to keep a and fi as small as
possible such that the deviation from the original
problem is minimized. n

Conditions (15) and (18) are now incorporated into an
upper bound minimization problem to guarantee an SPR
compensator.

Upper Bound Minimization Problem: Determine (Ac, Bc,
Cc) and nonnegative definite Q that minimize

J - (QR) 31)

subject to equations (15) and (18) with fi given by
equation (27). Solution of this problem gives an SPR
compensator. The actual cost is guaranteed to be less
than or equal to J (and the actual covariance less

than Q).

Sufficient Conditions for a Strictly Positive Real
Fixed-Order Dynamic Compensator

Recall that a square matrix is nonnegative (positive)
semisimple if it has a diagonal Jordan form and
nonnegative (positive) eigenvalues. [4] A positive
semisimple matrix may be thought of as a non-symmetric
matrix that is similar to a (symmetric) positive
definite matrix.

Lemma 2: Suppose P, Q are nxn nonnegative definite
matrices. Then PQ is mnonnegative semisimple.
Furthermore, 1if rank(QP) - nc, then there exist ncxn
matrices G, T and a positive semisimple ncxnc matrix
M, unique except for a change of basis, such that: [4]

AA

QP-G MT, 32)

rGl1-" (33)
C

Any G, M, and T satisfying Lemma 2 will be called a G,
M, F-factorization of QP. Since QP is nonnegative
semisimple, the eigenvalues of QP are all nonnegative
and QP has a generalized inverse (QP)t given by G~™'l!
[4] . The following simplified notation will be used
in this section:



o A AA +

2 - (BP - CQP)(ﬁIl + QP), (3A)

V' - v2 + QCTcT 35

where R2 - fVj, with f a normegative design variable,
has been assumed so that convenient, closed form
expressions may be found for Ac, Bc, and Cec. The

generalized inverse in equation (34) may be replaced
by a regular inverse if f > 0 since then fl1)) + QP > 0.

Theorem £: Assume that condition (17) holds and
suppose there exist nonnegative definite matrices P,
Q, P, and Q satisfying

0 - (A + QrTV2"1C)Q + QA + QSTV2"IC)T + Vx

+ POT"\ + + ¢cQ, (36)

0 - ATP + PA + Rx + OT'IQP + "PQT'l

- fS VANAZ + cP, 37

0 - [A - B+ QCT)VA'Li: - hellQ

+ QA - (B + QCT)V2"2 - h£IIT
- QT aQ - QSaV~ ASQ, (38)
0 - [A + QZTV2"IC - PQT'I - h£I]TP
+ P[A + QETV2*1C - OQT'l - HEI] + (39)
rank(Q) - rank(P) - rank(QP) - n_, (40)

with a—">—1 and £ > O.
Bc, Ce) given by

Then the compensator (Ac,

AC - F[A + 0Zv2 " e

- (B + QCT + QZT)VA1Z - Wl - £1]6T A1)
" _
Be - - FQzIvA! (42)
¢ — - vilzdf (43)
c 2

using a G, M, F-factorization of QP, assures that the
triple (Ac, Bc, Cc) has an SPR transfer function and
that conditions (20)-(23) also hold.

Conversely if (Ac, Bc, Cc) solves the upper bound
minimization problem with (Ac, Bc, Cc) having an SPR
transfer function, then there exist real mxn

nonnegative definite matrices Q, P, Q, and P and

0 <o, 0S1 and ¢ > 0 that satisfy equations (36)-
(40) with Ac, Bc, and Cc given by equations (41)-(43).

Proof See [1].

Remark X’ These optimal projection equations consist
of 4 modified Ricatti/Lyapunov equations that are
coupled in both the full- and reduced-order cases.
Thus, as expected, the separation principle is not
valid in either case. Because the "binary" SPR
condition has been imposed, one should not expect
equations (36)-(40) to reduce to the usual separated
equations of LQG theory because there is no simple way
to relax the SPR requirement.

Remark From an examination of the basic form of
the optimal projection equations [4] specialized to
the full-order case (i.e., LQG), it may be noted that
there are other methods of attaining full-order SPR
compensators (and perhaps reduced-order also) that are
simpler than that presented here. In fact, any one of
the full-order optimal projection equations could be
modified to guarantee compensator stability after the
optimization is complete, coupled with requiring a
fixed relationship between Bc and Cc by deleting the
normal expression for either Bc or Cc This is
similar to the method employed in Ref. [5]. This
alternative disregards the inherent coupling between
Bc and Cc. With normal LQG, B¢ is dependent on V2 and
Cc is dependent on Rj. Since Bc and Cc must be related
by a fixed matrix (Q2 in the method presented here),
the dependence on V2 and R2 is coupled. The method
presented here considers this coupling in deriving the
sufficient conditions for an SPR compensator. This is
not meant to imply that a compensator designed using
equations (36)-(43) is Che optimal SPR compensator.

Remark 2: When solving equations (36)-(39) to get an
SPR compensator, a and p less than one may yield an
SPR compensator. In fact, a - p - 0 may give an SPR
compensator. The condition a - /! - 1 is the limiting
case that guarantees an SPR compensator.

Application of the Positive Real Design
Equations to Stable Plants

This section addresses the existence of solutions to
equations (36)-(39) when the plant is open loop
stable. That there exist SPR compensators of any
order that stabilize a stable plant is trivial. The
real questions are whether equations (36)-(39) are
guaranteed to have a solution and whether a given
algorithm can find that solution. Only the first
question will be discussed here. The second question
obviously depends on the algorithm chosen to solve the
equations. The following discussion assumes that the
infimum of the auxiliary cost is attained. Note that
existence of a feasible solution to equations (15) and
(18) using the chosen 0 implies the existence of an
optimal feasible solution to the upper bound
minimization problem. Then the converse of Theorem 6
assures a nonnegative definite solution to equations
(36)-(39). To show that a feasible solution exists to
equations (15) and (18), choose Bc - 0 and Ce - O,
which clearly satisfies equation (15) for any Q2.
With these choices, expand equation (18) with (l given
by equation (27) and a, p, and T left variable to give

S Q1 Q12 Q1 Q12 AT
0 A .QL Q2. Q22 Q2. o A
cl cJ
Vi O
0. 44
0 /SQ T “H

+£1



Expansion of the cross term in equation (44) indicates
that QI2 is dependent only on A and A, and hence is
independent of Qj and Q2. Thus, the forcing term in
equation (44) is nonnegative definite and finite.
Then for any stable Ac of any order, Q exists and is
nonnegative definite by Lyapunov's theorem. Note that
this result holds for all 0 < a, p s | and arbitrary t
& 0.

S-Structured Lyapunov Stability of Positive
Real/Strictlv Fosltlve Real Feedback Systems

Boyd and Yang [6] have discussed the concept of S-
Structured Lyapunov Stability (S-SLS). Let X denote
the set of real numbers and Xwn denote the set of real
m X n matrices.

Definition 1 [6]: Let S be an n x n matrix that is a
subspace of X"’L A 6 X”? is S-structured Lyapunov
stable if there is a P € S such that P - Pl > 0 and
ATP + PA S 0.

S is referred to as a structure and may, for example,
consist of diagonal or block-diagonal matrices. Note
that if S - Xnro then A is S-SLS if and only if A is
stable (essentially unstructured Lyapunov stability).
Thus, in general S-SLS is a stronger condition than
just Lyapunov stability. The following theorem
concerns the interconnection of a positive real plant
with a strictly positive real compensator in a
negative feedback system.

Theorem X- Let s be given by:

nxn n xXn
X fi X,c C (45)

which denotes the set of block diagonal matrices with
two diagonal blocks, the first a real mxn matrix and
the second a real nc x nc matrix. Also let the triple
(A, B, C) be positive real and the triple (A«., Bc, Cc)
be strictly positive real. Then the matrix

A - 46)
A
I c c
i.e., the negative feedback connection of (A, B, C)
and (Ac, Bec, Cc) is S-SLS.
Proof. See [2]. [

The proof in [2] proceeds by showing that

Q - and L “7)
QJ

satisfy the Lyapunov equation

AQ + QAT + L - O, (48)
indicating that the closed loop is S-SLS.

Theorem 7 may provide some insight into the mechanism
of the maximum entropy modelling approach to control.
Specifically, in [7], it is noted that the maximum
entropy approach suppresses off-diagonal elements of
the closed-loop covariance when high uncertainty
exists. This leads to reduced position feedback of
uncertain modes, while the wvelocity feedback of
uncertain modes remains. The hypothesis in [7] is

that the resultant control of highly uncertain modes
is a dissipative rate feedback, similar to positive
real feedback. Theorem 7 shows that positive
real/strictly positive real negative feedback
connections lead to complete suppression of Che off-
diagonal blocks of a solution to a certain block-
structured Lyapunov equation.

Conclusions

This paper presents a method for designing SPR,
dynamic compensators of order less than or equal to
that of the plant. An overbounding technique on the
state covariance combined with the Kalman-Yakubovich
Lemma then guarantees that the compensator is SPR. If
the plant is stable (or positive real), the design
equations are guaranteed to possess a solution.
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