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ABSTRACT

One-pass three-dimensional (3-D) depth migration potentially offers more ac-
curate imaging results than does conventional two-pass 3-D migration, in vari-
able velocity media. Conventional one-pass 3-D migration, done with the method
of finite-difference inline and crossline splitting, however, creates large errors in
imaging complex structures due to paraxial wave-equation approximation of the
one-way wave equation, inline-crossline splitting, and finite-difference grid disper-
sion.

After analyzing the finite-difference errors in conventional 3-D poststack wave
field extrapolation, the paper presents a method that compensates for the errors
and yet still preserves the efficiency of the conventional finite-difference splitting
method. For frequency-space 3-D finite-difference migration and modeling, the
compensation vperator is implemented using the phase-shift method, or phase-
shift plus interpolation method, depending on the extent of lateral velocity varia-
tions. The compensation operator increases the accuracy of handling steep dips,
suppresses the inline and crossline splitting error, and reduces finite-difference
grid dispersions. Numerical calculations show that the quality of 3-D migration
and 3-D modeling is improved significantly with the finite-difference error com-
pensation method presented in this paper.

INTRODUCTION

Single-pass, as opposed to two-pass, 3-D wave-cquation migration has been ad-
vocated for imaging of common-midpoint (CMP) stacked 3-D seismic data for some
vears, primarily where velocity varies both vertically and laterally (Yilmaz, 1987).
Finite-difference implementations of one-pass 3-D migration often use the inline (@)
and crossline (y) splitting technique in each step of wave field extrapolation (Brown,
1983). While the splitting technique affords computational efliciency, known errors of
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positioning steeply dipping reflectors result, especially when the - and y- directions
are away from the dominant dip direction of the area.

Many approaches had been taken in the past 10 years to overcome the problem
of mispositioning steep dips due to the x-y splitting in 3-D migration. Ristow (1980)
suggested further splitting along the two diagonal directions (x = +y), besides split-
ting along & and y in each downward extrapolation step. Kitchenside (1988) used
the method of phase-shift migration plus finite-difference residual wave-field extrap-
olation to reduce the error due to splitting. Graves w..d Clayton (1990) proposed
implementing a phase-correction operator using finite-differences with damping func-
tion (to ensure stability) in their 3-D paraxial wave-equation modeling of seismic wave
field. Hale (1990) proposed a 3-D, explicit finite-difference migration using McClellan
transforr.ations, as an alternative to z-y splitting.

Instead of using phase-shift migration plus finite-difference residual wave-field ex-
trapolation in Kitchenside's approach, I use the conventional finite-difference migra-
tion plus phase-shift residual wave-field extrapolation to improve the accuracy of 3-D
finite-difference migration. Without any changes to the existing conventional one-pass
3-D implicit finite-difference migration in the migration part, I simply add the error
compensation as a phase-shift filter at certain steps of downward extrapolation. The
method presented in this paper compensates not only for the splitting error, but also
for steep-dip positioning error and finite-difference dispersion error, by using Gazdag’s
(1978) method of phase shift, where, instead of using the wave equation, I use what I
shall call the finite-difference-error compensation equation. In the presence of strong
lateral velocity variations, again, the method of Gazdag’s phase shift plus interpo-
lation (Gazdag and Sguazzero, 1984) is used to implement the finite-difference-error
compensation equation.

PARAXIAL EQUATIONS and INLINE-CROSSLINE SPLITTING

The 3-D acoustic wave equation for upcoming waves in the frequency-space domain
(w,z,y, z) can be written as,

aP _ w UQ(.’L', Y, Z) 02 62
= T G g P (1)

where P = P(w,x,y,2) is the wave field, w is radial frequency, « is the lateral
coordinate along the inline direction, y is the lateral coordinate along the crossline
dire.tion, z is depth, and v(x, y, 2) is velocity.

To solve equation (1) in the (w, z,y, z) domain numerically, the square-root oper-
ator must be expanded and approximated with a certain order of paraxial equation,
depending on the accuracy of approximation. Using the continuous fractional expan-
sion (Claerbout, 1985) of the square root operator and factorization of the expansion
(Ma, 1982), equation (1) can be approximated with the following paraxial equation
of order 2n,
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or
7 = el +zl+ﬂ, (2)

v(z,y, 2)

where «; and f; are expansion coefficients given by Lee and Suh (1985), S = S, +S,
and S = (v¥(w,y,z2)/w?)0?/02%, S, = (V¥(z,y,2)/w?)d? /Dy

The higher the order 2n, the better equation (2) approximates equation (1) in
handling steep dips. In practice, the paraxial equation with n=1 yields good accuracy
for dips up to 65 degrees (Yilmaz, 1987). Equation (2) can be solved using a splitting
method, resulting in the following sequence of (n 4 1) equations,

oP W

Fr v(z,y,2) F,

_(?_I__) _ tw CY[S

0z a U(.’L‘,y,Z)l'FIBlS

8P w 0/25 :
el P 3
ik 0@ )1+ B | ®)
or w a, S P

9z w(my,2)1+6,5

3-D migration or modeling involves extrapolation of the wave field using equation
(1). Therefore, when using the splitting method, we need to solve the above (n + 1)
equations in each step of extrapolation. The solution of each equation in (3) is
used as boundary condition to solve for the next equation in (3), until all (n + 1)
equations are solved for any single step of wave fieid extrapolation. Solving the first
equation in (3) is simply a multiplication of the wave field P by a plase-shift operator
exp(iw/v(z,y, 2)).

The last n equations in (3) all have the same formn but with different constant
coefficients a; and f;. Let’s examine the numerical solution to a representative one
of them,

oP w aS
e v(fv,y,Z)HﬁSP' 4)

In the w-z-y domain, implicit finite-difference schemer are usually used to solve the
paraxial wave equation, because of their unconditional numerical stability (Clacrbout,
1985). However, direct solution of equation {4) by an implicit finite-difference scheme
will require solving a large (na - ny x nz - ny) sparse-matrix equation, with cnormous
computational effi * (Claerbout, 1985). A more practical but less accurate method
is to use further splicting of equation (4) along inline 2 and crossline y dircetions

3
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(Brown, 1983). That is, instead of solving equation (4) in each step of extrapolation,
we solve successively

9_12 _ w aS, p

0z  v(z,y,2)1+8S,

OP w aly .
9z  w(my,z) 1408, P (5)

Now, using an implicit finite-difference scheme, we solve a (nz x nz) matrix equa-
tion for different y’s (difference lines) and then solve for a (ny x ny) matrix equation
for different z’s (difference CMP positions). The computational count in doing so is
proportional to nx - ny, a significant reduction from the direct solution method (i.c.,
without the x-y splitting). The approximation made in the z-y splitting method,
however, will cause significant errors in handling steep dips, especially along diagonal
lines x = %y, as analyzed in the next section.

ERROR ANALYSIS AND COMPENSATION

Equation (5) is obtained by first approximating equation (4) with the following
differential equation,

o°rP w a(S; + Sy) + 2a4S,S, p
8z v(z,y,2) L+ B(S: + 8,) + B2S.S,
_ w Sy Py aS, P, (6)

v(z,y,2) 1+ 6S; v(z,y,2) 1+ 0S5,

and then use splitting to separate the z-dependent and y-dependent operators. The
approximation is valid only if S;Sy is zero or sufficient small.

Substituting equation (6) (with corresponding «; and f;) for the second, the third,
. and the last equations in (3), we recognize that equation (1) is actually replaced
with the following equation,

opr z t ()’gS

el + —=Y P, 7

0z (my,,, [1 Zl—i—ﬁ.w ?:II—FﬂiSy] (7)
Let’s define the finite-difference error E as the difference between the original

single square-root operator and the sum of the two split finite-difference operators

plus 1, given below,

E = J1+5.+5,- U*Z %y

,,11+[3, ,Z,Hﬁ.syl' (8)
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As will be explained later in this section, the physical meaning of F is the tim-
ing error (in seconds) created per sccond of downward extrapolation in the finite-
difference method. Given the dip angle (8) of reflector and the inline azimuth angle
(¢) (the angle between the = axis and the dip direction of the reflector) as shown in
Figure 1, one can extend the S,-8 relation in 2-D (Claerbout, 1985) to obtain the
(Sz, Sy)-(6, ¢) relation in 3-D,

S, = (cosp-sinf)?,
S, = (sing-sinf)?. 9)

Therefore, E can be rewritten as,

E = \/1 — cos2psin?f — sin2¢sin26

" acostpsin’ " a;sin’gsin?d
—(1 .
(1+ ; 1 + Bicos?psin?d 2 1+ ﬂ,'si712¢.9i7129) (10)

i=1

.
.
.
o®
.

F1G. 1. 3-D model of a single dipping reflector. 8 is the dip angle of the reflector. ¢
is the azimuth angle between line of interest and dip of reflector.

Figure 2 shows a contour plot of E (when n — o00) as function of § and ¢. When
n — 0o, E accounts only for the finite-difference z-y splitting error and can be written
as,

=
il

\/1 — cos2¢sin?0 — sin?¢psin?f

—(\/1 — cos2¢sin26 + \/1 — stn?¢sin?f — 1) . (11)
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Clearly, the inline and crossline splitting error increases as the dip angle 6 increascs,
and is largest along the diagonal lines * = £y (¢=45 degrees) when dip 6 is fixed.
The fact that the phase error varies with azimuth means that waves propagate with
different velocities along different azimuth directions, a numerical anisotropy due to
the inline and crossline splitting. The anisotropy of wave propagation will cause
mispositioning of migrated dipping reflectors and hence misleading interpretation of
complicated structures. For example, for a reflector dip of 65 degrees, the timing
error after one second of downward extrapolation of the surface data will be 123 ms.
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F1G. 2. Contour plot of inline and crossline splitting error. The splitting crror is
defined as the time error (s) per one second of downward extrapolation.

To compensate for the finite-difference errors and yet still retain the efficiency of
the splitting method, we need to solve an extra phase-compensation equation at each
step of wave field extrapolation,

I v(x,y, 2

or [ e )E] P. (12)

The finite-difference error compensation equation in (12) can be solved using any
of several familiar numerical methods used to solve wave equations. The square-root
operator in E have to be expanded and approximated to a certain order of parax-
ial equation, if the finite-difference method is to be used. For example, expanding
the operator F in equation (8) and ignoring higher-order terms gives the first-order
paraxial equation for the error compensation,
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or _ _vlwye) 0 & (13)

0z wd  Ox? Jy?
Solving equation (13) using a first-order forward explicit finite-difference scheme along
the z axis will result in an unconditionally unstable solution, because the norm of the
transfer function is alway greater than or equal to 1. Damping of growing amplitudes
must be applied in order to ensure stability (Graves and Clayton, 1990), if the explicit
scheme is to be used. Implicit schemes (without z-y splitting), on the other hand,
though unconditionally stable, require relatively heavy computation, which we tried
to avoid by using the -y splitting method to solve equation (4) in the first place.

Since the error E is small in a single step of wave field extrapolation, the effect of
the compensation process is similar to that of residual migration (Rothman, 1985),
in that waves propagate very little in one extrapolation step. Therefore, when lateral
velocity variation is moderate, it is reasonable to use a reference velocity v,(z) (for

example, velocity averaged over (z,y)) to replace v(z,y, z) in equation (12) and thus
benefit from a phase-shift solution,

va(2)

Since a phase-shift operator which is a linear function of frequency w corresponds
to a time shift in the time domain, we recognize that E is actually the timing error of
the finite-difference splitting for one Az /v (or timing error per one second of downward
extrapolation).

P(z+ Az) = P(z) exp( EAZ) . (14)

It turns out that my approach is similar to that of Kitchenside (1988). Kitchenside
implemented the first square root operator (the 3-D wave equation) in equation (8)
with the phase-shift migration using a minimum velocity v,(z). He then combined
the remaining operators in equation (8) (using velocity v,(2)) with the operators in
equation (1) (using velocity v(z,¥y,2)) to obtain a residual wave-field extrapolation
equation. Instead of using the implicit finite-difference method, he solved the resid-
ual wave-field extrapolation equation by the explicit finite-difference method. Since a
laterally invariant velocity function is used in implementing the operators in equation
(8), naturally, I choose to use the accurate phase-shift operator for every operator
in equation (8), which leaves the migration part of solving equation (3) unchanged
from the conventional implicit finite-difference method. One major advantage of my
approach is that the commonly-used, conventional, 3-D finite-difference migration
need not be changed and the error compensation only applies as a phase-shift filter
at certain depth steps. Both Kitchenside’s and my approaches will have the accuracy
of the phase-shift migration (i.c., without steep-dip limitation, no z-y splitting error,
and no finite-difference dispersion), when velocity is a function of depth only. When
velocity varies laterally, we both can use Gazdag’s method of phase-shift plus inter-
polation (Gazdag and Sguazzero, 1984) to get better accuracy. However, since I use
the phase-shift method to solve the residual phase-error compensation equation (12)
while Kitchenside uses the phase-shift method to solve the wave equation (1), the
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error of my approach, using the phase-shift plus interpolation, shall be smaller than
that of Kitchenside’s approach, when velocity varies laterally. As will be explained
later, the residual error compensation can be applied every few depth steps of extrap-
olation while the 3-D wave equation in Kitchenside’s approach has to be solved cvery
depth step, therefore, my approach is also more efficient than that of Kitchenside.

It is important that all the aspects, including the Crank-Nicolson scheme (Claer-
bout, 1985), the finite-difference approximation of derivatives (Claerbout, 1985), and
the so-called 1/6 trick (Clacrbout, 1985), of the conventional implicit finite-difference
solution to equation (3) be taken into consideration when solving equation (12). Af-
ter some algebra, the solution to equation (12), if the conventional implicit finite-
dilference method is used in migration, is given by,

Az]xHaJ+7b’xHCJ+7(l x P(z), (15)

va() je1 by oy ¢ = id;

P(z+ Az) = eaplitk, —

where,

= G K-

va(2)
1= lAe 4 (e
7 Az ’

va(2)a; 2

by = —2L1 = 1
J % ) ( G)
= LoD+ ()R
7 Az ’
4 = va(2)ajk? |

2w

7 in equation (16) is the so-called 1/6-trick value used to improve the accuracy of using
the second-order finite-difference to approximate the second spatial derivative, with
typical v value of 0.14. k2 and k2 are approximations to the true lateral wavenumbers
that result from the second- order finite-difference approximations of the derivative
operators —9?/9xz? and —8%/dy?, respectively, as expressed below (Claerbout, 1985),

ro 2 —=2cos(k.Ax)

N
|

i Ax? ’
- 2 — 2cos(k,Ay)
k2 = e 1

Figure 3 shows the impulse response of the finite-difference-error compensation
operator computed by the phase-shift method, for a frequency of 20 Hz and a depth
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step of 100 m. The operator is anisotropic, with maximum data adjustment along
the diagonal lines and no action along either x = 0 or y = 0 lines. The effective arca
over which the operator applies become smaller as frequency becomes higher and as
the aepth step becomes smaller. In practice, the error compensation operator need
be applied only once every few depth extrapolation steps. Because of the narrowness
of the effective width of the operator, a 2-D convolutional method, can also be used
efficiently to handle lateral velocity variation, but caution must be taken to avoid
numerical instability. ‘

inline (x) inline (x)
-310 -2.0 -110 (.) 1.0 2|O 3‘0 -310 -gO -1IO 9 1lO 2|O 3|O

K 30 =

F1G. 3. Impulse response of the finite-difference splitting-error compensation operator |
for a frequency of 20 Hz and a compensation step of 100 m. Sampling intervals along x,
y and z are 12.5 m. Velocity is constant, 2000 m/s, in the model. Data manipulation
takes place mostly along the diagonal directions of the x-y plane, where x is the
inline coordinate and y is the crossline coordinate. (a) real part of the response; (b)
imaginary part of the response.

The accuracy of using equation (14) with one reference velocity v, to compensate
for the finite-difference splitting errors in the presence of lateral velocity variation
is the same as that of using Kitchenside’s method. When lateral velocity variation
is large, Gazdag’s method of phase-shift plus interpolation (Gazdag and Sguazzero,
1984) can be used to solve equation (12). Defining n, to be number of reference
velocities used to solve equatic * (14), and A; and ©; to be the amplitude and the
phase of the solution P;(z + Az) to equation (14) using reference velocity vy, we can
then use polynomial interpolation of the n, individual solutions Py(z 4+ Az) to obtain
the solution P(z + Az) = A exp(i®) at location (x,y, z),
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A = polint(V3

a 4’4(1, na, 'U”(:lj1 y, :)) ’
©

Il

1)01'1?7;.1‘.(1/’0‘3, O, na, v’ (x,y,2)) , (18)

"
is the reference velocity vector, A, = (A4;, Ay, ..., 4,,) is the amplitude veetor and
O = (01,0,...,0,,) is the phase vector. The interpolation is performed along v?
axis because, as indicated in equation (13), the leading term in the phase error duc
to the finite-difference splitting is proportional to v3.

where polint is the polynomial interpolation function, V, = (vi(z),va(2), ..., v, (2))

Figure 4 shows the percentage of root-mean-squared (rms) relative phase crror
(after applying the constant-velocity phase-shift compensation) as a function of per-
centage of lateral velocity variation, along the diagonal line (¢=45 degrees) with dip
angle of 45 degrees, for n,=1, 3 and 5. The rms relative phase error p,,, is defined
as

' prms

2
1 _/t""“ [IJ(U) - pslﬂil(v) - pcom;)(v) dv , (19)
v

(vma.'r - Umin) p(”)

where Vg, is the maximum velocity, v, is the minimum velocity, p(v) is the correct
phase computed using the wave equation (1), puyi(v) is the phase computed using the
splitting equation (7), peomp(v) is the phase interpolated from the n, phases computed
from the compensation equation (14). The lateral velocity variation vy is defined as,

min

Vieg = Uynaz — Umin ‘ (20)
Umin

The original percentage error using the conventional splitting method, in this case, is
3.53. Therefore, as shown in Figure 4, even for 100 percent lateral velocity variation,
the relative phase error is 2.5 percent if only one constant-velocity phase-shift com-
pensation (i.e., without interpolation) is used, still a reduction of 30 percent of phase
error from the conventional finite-difference splitting method (without the phase com-
pensation). The relative phase error drops to 0.35 percent, if five reference velocities
are used in the phase compensation to give the interpolated phase. Figure 4 helps us
determine the number of reference velocities needed, for given acceptable phase error
and given lateral velocity variation.

In media of strong lateral velocity variation, the 3-D migration with my approach
of compensating finite-difference splitting error has higher accuracy than Gazdag’s
method of phase shift plus interpolation, because interpolation is applied to the com-
putation of the residual phase error ( that is much smaller than the phase itself) whilc
Gazdag applied interpolation to the computation of the phase. If the residnal phase
error compensation is done every 10 depth steps with three reference velocities, the
cost of 3-D migration using my method will be that of the conventional 3-D finite-
difference migration plus 3/10 of that of single-velocity 3-D phase-shift migration.

10
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different numbers of reference velocities

/7

P—
—

0.50 //\/\/\/v
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F1G. 4. Percentage of the remaining phase error as a function of percentage of
lateral velocity variation for azimuth angle of 45 degrees and dip angle of 45 degrees.
Number of reference velocities used in the error compensation, shown in the highest,
the middle, and the lowest curves, is one, three and five, respectively.

IMPLEMENTATION AND EXAMPLES

3-D poststack migration downward continues tue input CMP stack and obtains
the migrated images from the downward extrapolated wave field at t = 0. During
each step of downward extrapolation of the wave field, the first equation in (3) is
solved first, next, the last n equations in (3) are solved sequentially using the a-y
splitting method, and, then, every few depth steps the finite-difference-crror compen-
sation equation (12) is solved using the phase-shift method. In the frequency-space
domain, one-pass 3-D depth migration with finite-difference-error compensation is
implemented as follows, ‘

input 3-D stack P(x,y,z =0,t)

FFT[ P(x,y,z2=0,t)] = P(x,y,z =0,w)
Qlz,y,z,t =0) = 0.

for z = Az,2Az, ..., Zpas

{

for all z,y,w { P(z,y,w) = P(a,y,w) x exp(=-2—Az) }

v(r,y,2)

for all y,w

{

11
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fori=1n{ §> = Jeofp)
}
for all z,w
{
fori:l,n{%ﬁl = T(?u;_,z")ﬁ%%j }
}
for certain 2 steps and all w { & = ﬁ:ﬁP }

for all w { Q(z,y,2) = Q(z,y,2) + P(z,y,w) }
for all r,y,w { P(z,y,w) = P(z,y,w)~ Q(z,y,z)/nw }
}

output 3-D migrated data Q(z,y, z)

As seeu here, the image is obtained by summing the downward-continued wave
field along the w axis, giving the wave field at t = 0. The subtraction of in.age
() from the downward extrapolated wave field P in the last step of each downward

extrapolation step reduces the FFT wrapround along the time axis (Kjartansson,
1979).

Similarly, implementation of 3-D poststack forward modeling in the frequency-
space domain is as follows.

input 3-D reflectivity Q(z,y,z,t = 0)
P(z,y,z =0,w) = 0.
for z = Zmazsfmazr =~ AZ, RS Az

{

for all z,y,w { P(z,y,w) = P(a,y,w) x emp(v(;,‘;’z)Az) }

for all y,w

{

S op tw oS
fori=1n{g = winmanl )

}

for all z,w

12
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{

- ar w___QiSy
fori=1,n 9z T v(xy,z) 1465, }
I oL _ w E
for certain 2 steps and au w{s = v(r,y.Z)P }

for all T, Yy,w { P(:L‘,y,(d) = P(Zlf,y,(d) +Q(myyaz) }

}
FFTY P(z,y,2 =0,w) | = P(z,y,z=0,t)
output 3-D stack P(z,y,2 = 0,t)

Instead of summing the downward extrapolated wave field along the frequency
axis as when doing the 3-D migration, the reflectivity function @ is added to the
upward continued wave field F at each depth level to become exploding sources at
t = 0. The surface-recorded, 3-D poststack data are obtained from the wave field
upward extrapolated to z = 0.

Because the finite-difference splitting error in cach depth step is small, though
cumulative error may be large, the error compensation can be applied every few
depth steps of extrapolation to reduce the computational effort of the compensation
process. With the compensation step being eight depth-extrapolation steps, tests
showed that the error compensation process increases the total computational cost
by about 15 percent.

Figure 5 compares impulse responses of 3-D migration without and with the error
compensation. An impulse is placed at £ = y = 0 and at time ¢t = 28 in the
input 3-D stack. A migration operator with order 2n = 2 is used in both tests.
As expected, the conventional 3-D migration (without error compensation) gives a
result that departs from the ideal - a hemisphere. The depth slices of the conventional
approach display diamond-shape (as opposed to the correct circular) responses caused
by the anisotropy of the finite-difference splitting method. Note also the build up of
evanescent energy near the center of the impulse response. This evanescent energy
becomes dominant at shallow depth slices. With phase-shift implementation of the
finite-difference error compensation operator, on the other hand, the 3-D migration
gives a more nearly circular and correctly positioned impulse response. Also, as
shown in Figure 5. because the phase-shift method propagates only the nonevanescent
energy, the error compensation has the additional advantage of suppressing evancscent
energy generated by the finite-difference implementation of wave equation migration.
Furthermore, the accuracy of imaging steep dips is improved to 90 degrees, since the
velocity in the model is constant.

Figure 6 compares impulse responses of 3-D modeling without and with finite-
difference error compensation. An impulse is specified at = y == 0 and at z = 12 in

13
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inline (x)

depth (z)

(b)

F1c. 5. Comparison of impulse responses of 3-D migrations without [(a), (¢), and
(¢)] and with [(b), (d), and (f)] the finite-difference error compensation. Sampling
intervals along z, y, 2 and t are 1, with constant velocity v = 2, in the computation.
A 65-degree extrapolation operator is used in botli cases. (a) and (b): cube display
of half volume of 3-D impulse response.
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F1G. 5. (¢) and (f): depth slices at 2 =25, 2 =15 and 2 = 5.
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the input 3-D reflectivity model. Again the paraxial equation of order 2n = 2 is used
in both cases. Figures 6(c¢) and 6(d) show the diffractions generated with the two
approaches aloug the diagonal line & = y. The error in arrival time of the diffraction
at the edges is ag large as about 10 time samples, though the totel travel time is about
45 time samples, a relative error of more than 20 percent! With the finite-difference-
error compensation, the impulse response of the 3-D modeling is more accurate and
has less evanescent energy present than does that of the conventional approach.

A more geologically plausible model is tested and results are shown in Figure 7.
The model has four reflectors, with the medium velocity varying linearly with depth,
0(z) = 150042 x z(m/s). The first reflector is an upward hemisphere truncated with
a horizontal bed. The strikes of the two dipping interfaces, with dips of 45 degrees

~and 60 degrees, respectively, are perpendicular to the diagonal line @ = y. Beth
dipping interfaces are truncated with horizontal beds. The fourth reflector is simply
horizontal. The 3-D phase-shift method is used in forward modeling of the wave
field. 3-D frequency-space depth migration of order 2n = 2 without and with finite-
difference-crre » compensation is used in migration of the 3-D stack. Figure 7 displays
six rows of pictures, with four pictures in each row. The pictures in cach row are,
in order, the reflector model, 3-D phase-shift modeling, conventional 3-D frequency-
space depth migration without crror compensation, and 3-D frequency-space depth
migration with error compensation. The migration with the compensation gives more
accurate images and higher dip accuracy of the hemisphere than does the migration
without the compensation, as shown in Figures 7(b), 7(¢) and 7(e). In Figure 7(d),
vertical sections at @ = 0 show that the 60-degree dipping reflector is undermigrated
and weakened in the migration without the compensation. The anisotropy of the 3-D
migration due to the inline and crossline splitting gives the diamond-shape image of
the original circle on the depth slice of migrated 3-D data, as shown in Figure 7(c).
The anisotropic error is suppressed by the error compensation process.

CONCLUSION

The accuracy of conventional one-step, z-y splitting, 3-D depth migration and
modeling can be improved by doing the finite-difference-crror compensation during
the wave field extrapolation. When lateral velocity variation is moderate, the com-
pensation can be simply done using phase-shift method, The modified 3-D wave field
extrapolation method retains the efliciency of the splitting approach, yet overcomes
problems of mispositioning of steep dip events and creating undesirable dispersicn
and evanescent energy in the conventional 3-D wave field extrapolation method.

Phase-shift plus interpolation method, or other numerical methods, such as the
2-D convolutional method with a stable convolution operator, must be used to solve
the compensation equation, when strong lateral velocity variations are present in the
area.
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ror compensation. Bach group in Figure 7 shows, in order, the reflector model, 3-D
phase-shift modeling, migration without the compensation, and migration with the
compensation. (a) Cube displays.
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