

U.S. Department of the Interior
U.S. Geological Survey

**Gravity and magnetic data across
the Ghost Dance Fault in WT-2 Wash,
Yucca Mountain, Nevada**

by

H.W. Oliver and R.F. Sikora

94-413-A, Geophysical Documentation

Open-File Report 94-413-A

*Prepared in cooperation with the Nevada Field Office
U.S. Department of Energy
(Interagency Agreement DE-AI08-92NV10874)*

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

MASTER

Menlo Park, California
1994

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

U.S. DEPARTMENT OF THE INTERIOR

BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY

Gordon P. Eaton, Director

The use of trade, product, industry, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

For additional information write to:

Chief, Geologic Studies Program
Yucca Mountain Project Branch
U.S. Geological Survey
Box 25046, MS 421
Denver Federal Center
Denver, CO 80225

Copies of this report can be purchased from:

U.S. Geological Survey
Earth Science Information Center
Open-File Reports Section
Box 25286, MS 517
Denver Federal Center
Denver, CO 80225

Table of Contents

	Page
Abstract	1
Introduction	2
Acknowledgments	2
General geology and drill holes	4
Gravity data	5
Density data	8
Magnetic data	10
Preliminary results	10
Conclusions and recommendations	15
Description of diskette	17
References	17

Tables

1. Principal facts for gravity stations along profiles A-A' (fig. 2)	6
2. Magnetic measurements along profile A-A'	11

Illustrations

Figure 1. Index map showing new gravity and ground magnetic profile A-A' and its location relative to the potential repository at Yucca Mountain	3
Figure 2. Topographic index map showing location of profile A-A' and all gravity stations	7
Figure 3. Bouguer gravity profiles along A-A' (fig. 2) for reduction densities 1.6, 1.8, 2.0, 2.2, and 2.4 g/cm ³ .	9
Figure 4. Total magnetic field measurements along profile A-A' (fig. 2)	12

Units, Conversion Factors, and Vertical Datum

All elevation and distance measurements in this report are in feet (ft) or miles (mi), because that is the unit used by the LBL surveyors.

Multiply	By	To obtain
feet (ft)	0.3048	meter (m)
mile (m)	1.609	kilometer (km)
square mile (mi ²)	2.590	square kilometer (km ²)

Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NOVD of 1929)—a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

Gravity measurements are in milligals (mGal)

$$\begin{aligned}1 \text{ mGal} &= 10^{-3} \text{ cm/sec}^2 \text{ (acceleration)} \\&= 10^{-3} \text{ dyne/gram mass (force)}\end{aligned}$$

Magnetic measurements are in nanoteslas (nT)

$$1 \text{ nT} = 1 \gamma \text{ (gamma)} = 10^{-5} \text{ gauss}$$

Remanent magnetization measurements are in amperes per meter (Am⁻¹)

$$1 \text{ Am}^{-1} = 10^{-3} \text{ emu/cm}^3$$

For additional information on conversion factors between English (fps), metric (cgs), and the International System (SI) units, see U.S. National Bureau of Standards (1977).

Abstract

Detailed gravity and ground magnetic data were obtained in September 1993 along a 4650 ft-long profile across the Ghost Dance Fault system in WT-2 Wash. Gravity stations were established every 150 feet along the profile. Total-field magnetic measurements made initially every 50 ft along the profile, then remade every 20 ft through the fault zone. These new data are part of a geologic and geophysical study of the Ghost Dance Fault (GDF) which includes detailed geologic mapping, seismic reflection, and some drilling including geologic and geophysical logging. The Ghost Dance Fault is the only through-going fault that has been identified within the potential repository for high-level radioactive waste at Yucca Mountain, Nevada.

Preliminary gravity results show a distinct decrease of 0.1 to 0.2 mGal over a 600-ft-wide zone to the east of and including the mapped fault. The gravity decrease probably marks a zone of brecciation. Another fault-offset located about 2000 ft to the east of the GDF was detected by seismic reflection data and is also marked by a distinct gravity low.

The ground magnetic data show a 200-ft-wide magnetic low of about 400 nT centered about 100 ft east of the Ghost Dance Fault. The magnetic low probably marks a zone of brecciation within the normally polarized Topopah Spring Tuff, the top of which is about 170 ft below the surface, and which is known from drilling to extend to a depth of about 1700 ft. Three-component magnetometer logging in drill hole WT-2 located about 2700 ft east of the Ghost Dance Fault shows that the Topopah Spring Tuff is strongly polarized magnetically in this area, so that fault brecciation of a vertical zone within the Tuff could provide an average negative magnetic contrast of the 4 Am^{-1} needed to produce the 400-nT low observed at the surface.

Additional magnetic data and limited gravity data are needed to determine the north-south extent of the geophysical anomalies and to better define the rather striking anomalies discovered in this initial survey.

Introduction

A gravity and magnetic investigation of the Ghost Dance Fault was begun as part of an effort to help geologically characterize Yucca Mountain as a potential site for the storage of commercial spent nuclear fuel and high-level radioactive waste. The Ghost Dance Fault is considered one of the more important structural features, as it is the only through-going fault that has been identified within the proposed repository area (Spengler and others, 1993; see fig. 1, this report). Seismic reflection, vertical seismic profiling (VSP), and cross-hole seismic profiling data are also being obtained across the Ghost Dance Fault by the Lawrence Berkeley Laboratory (LBL) in conjunction with this study (Majer and Karageorgi, 1994).

Acknowledgments

Dr. Cameron Ainsworth assisted with the staking and both the gravity and ground magnetic field measurements in September 1993. E.L. Majer and his coworkers at LBL surveyed in all of our gravity stations, and they used them also for their seismic control. Elaine Ezra of EG & G, Las Vegas, compiled a new 1:6,000-scale topographic map of the immediate area of WT-2 Wash (EG&G, 1993) which proved invaluable for plotting our data points and making inner-zone terrain corrections to our gravity data.

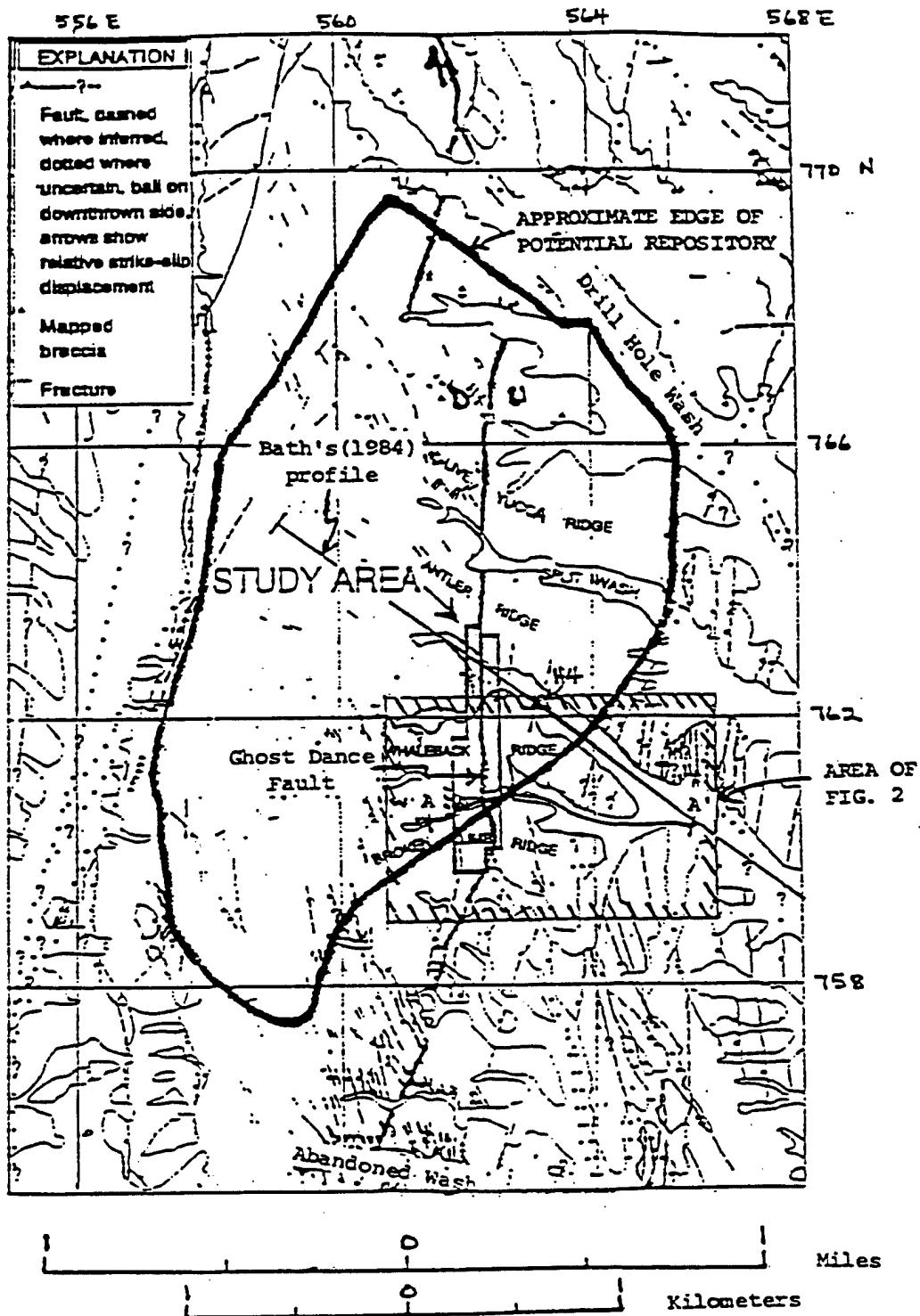


Figure 1. Index map showing new gravity and ground magnetic profile A-A' and its location relative to the potential repository, the Ghost Dance Fault, and geologic "study area" and Bath's (1984) ground magnetic profile through "H4 Wash" north of Whale Back Ridge. Reference lines are Nevada State coordinates in thousands of feet. After Spengler and others (1993, fig.1). Scale 1:27,600.

General Geology and Drill Holes

Miocene volcanic tuffs make up the geologic section in the potential repository area and their stratigraphy and nomenclature has been recently revised by Sawyer and others (in press). The Tiva Canyon Tuff crops out over most of the area and has an age of 12.7 Ma (Hudson and others, 1994, table 1). This tuff is underlain by the two thin units (generally less than 100 ft thick) known as the Yucca Mountain and Pah Canyon Tuffs, and these tuffs are underlain by the 12.8 Ma Topopah Spring Tuff. Within the WT-2 Wash area, drilling in WT-2, UZ-7, and WT-2, and geologic mapping have established that the thickness of the Tiva Canyon Tuff there ranges from about 160 ft at UZ-7 to 260 ft at WT-2. The Tiva Canyon Tuff is underlain by only 10 to 20 ft of Yucca Mountain and Pah Canyon Tuffs. The Topopah Spring Tuff was found to be about 1000 ft thick in well WT-2 (R.W. Spengler, personal commun., 1994). The top of the Topopah Spring Tuff is a very important boundary magnetically, because it represents the bottom of reversely polarized volcanic strata in the WT-2 Wash area.

Structurally, Yucca Mountain consists of a series of north-trending, east-tilted, 0.6- to 2.5-mi wide structural blocks bounded by north-trending westward-dipping, high-angle faults (U.S. Geological Survey, 1984). The Ghost Dance Fault is one of these north-trending faults (fig. 1) and is thought to displace volcanic strata by about 100 ft in the WT-2 Wash area. Detailed mapping by Spengler and others (1993) indicates that the Ghost Dance Fault is not a single fault but "represents the major fault within a previously unrecognized zone of minor faults, fractured rock, and stratal flexing that extends over a width of at least 700 ft."

Gravity Data

Gravity data (table 1) were collected at stations spaced 150 ft apart along profile A-A' across the Ghost Dance Fault (fig. 2) using LaCoste and Romberg gravity meter G17C. Gravity-meter performance and calibration factors were checked in March 1993 over the Mt. Hamilton gravity meter calibration loop in California (Barnes and others, 1969), and its performance qualifies under USGS Technical Procedure GPP-01, Rev. 2, Gravity Methods (1991). Gravity data were reduced using the Geodetic Reference System of 1967 (International Union of Geodesy and Geophysics, 1971) and referenced to the International Gravity Standardization Net 1971 gravity datum (Morelli, 1974, p. 18) via base station MERC at the USGS core library building at Mercury, Nevada (Ponce and Oliver, 1981, p. 13). Because of recent building construction near base station MERC, the gravity value there now has a new value of 979,518.91 mGal, determined by repeated ties to nearby station TCCA, which is located on basement rocks (D.A. Ponce, written commun., 1993).

Gravity stations were surveyed using an electronic-distance-measurement instrument, and station elevations are accurate to within about 0.1 ft relative to a reference bench mark. Terrain corrections were computed to a radial distance of 104 mi and involved a 3-part process: (1) Hayford-Bowie zones A and B with an outer radius of 223 ft were estimated in the field with the aid of tables and charts, or sketched and later calculated in the office, (2) Hayford-Bowie zones C and D with an outer radius of 1935 ft were calculated by averaging compartment elevations on a circular template based on Hayford's system of zones (Swick, 1942, p. 66), and (3) terrain corrections from a distance of 0.37 mi to 104 mi were calculated using a digital elevation model and a procedure by Plouff (1977). Small amplitude errors in some of the profiles may be related to small errors in the terrain

Table 1. Principal facts for gravity stations along profile A-A' (fig. 2). The distances between successive stations are all 150 ft. Abbreviated heading are as follows: "TC A-D 2.67" shows a station listing of Inner zone terrain corrections for Hayford zones A-D corresponding to an assumed terrain density of 2.67 g/cm³; "Total TC 2.67" refers to the total terrain correction for Hayford zones A-D extending to a distance of 103.6 km from each station using a 2.67 g/cm³ density; "CBA 2.67" is the complete Bouguer anomaly for a 2.67 g/cm³ assumed density. CBA listings for other assumed densities such as 2.50 g/cm³, 2.40 g/cm³, etc., are also shown.

Station No.	Latitude (Deg Min)	Longitude (Deg Min)	Elevation (ft)	Observed gravity (mGal)	Free Air Anomaly (mGal)	Simple Bouguer A-D Anomaly (mGal)	Total TC (mGal)	CBA (mGal)	CBA (mGal)			CBA (mGal)			CBA (mGal)		
									2.67	2.67	2.67	2.50	2.40	2.20	2.00	1.80	1.60
G103	36 49.84	116 27.38	4324.2	979469.13	-14.31	-161.79	111	2.74	-160.37	-151.07	-145.60	-134.66	-123.72	-112.78	-101.84		
G102	36 49.85	116 27.36	4309.4	979470.30	-14.55	-161.53	123	2.82	-160.01	-150.75	-145.30	-134.40	-123.51	-112.61	-101.72		
G101	36 49.85	116 27.33	4292.9	979471.50	-14.90	-161.31	89	2.45	-160.17	-150.92	-145.48	-134.60	-123.71	-112.83	-101.95		
G1	36 49.87	116 27.28	4260.9	979473.09	-15.59	-161.19	.97	2.49	-160.01	-150.81	-145.40	-134.59	-123.77	-112.95	-102.13		
G2	36 49.87	116 27.28	4260.6	979473.33	-15.38	-160.97	.86	2.37	-159.90	-150.70	-145.28	-134.46	-123.63	-112.81	-101.98		
G3	36 49.87	116 27.26	4249.4	979474.61	-15.91	-160.84	.94	2.43	-159.71	-150.55	-145.17	-134.40	-123.62	-112.85	-102.08		
G4	36 49.88	116 27.33	4233.8	979475.70	-16.30	-160.70	.87	2.30	-159.61	-150.49	-145.12	-134.38	-123.65	-112.91	-102.18		
G5	36 49.89	116 27.21	4220.6	979476.56	-16.69	-160.64	.81	2.25	-159.60	-150.58	-145.22	-134.51	-123.80	-113.09	-102.38		
G6	36 49.90	116 27.18	4205.8	979477.52	-17.14	-160.50	.93	2.35	-159.52	-150.46	-145.13	-134.46	-123.79	-113.13	-102.46		
G7	36 49.91	116 27.15	4193.1	979478.41	-17.46	-160.47	.92	2.32	-159.44	-150.40	-145.08	-134.45	-123.81	-113.16	-102.54		
G8	36 49.91	116 27.13	4181.2	979479.40	-17.59	-160.49	.91	2.30	-159.38	-150.17	-145.12	-134.36	-123.65	-113.05	-102.44		
G9	36 49.90	116 27.10	4171.6	979480.20	-17.68	-159.95	.81	2.10	-159.06	-150.06	-144.76	-134.17	-123.58	-112.99	-102.40		
G10	36 49.90	116 27.07	4155.6	979481.46	-17.93	-159.66	.97	2.32	-158.62	-149.66	-144.39	-133.85	-123.31	-112.78	-102.24		
G11	36 49.90	116 27.04	4143.2	979482.49	-18.06	-159.36	.98	2.31	-158.33	-149.40	-144.15	-133.64	-123.13	-112.62	-102.12		
G12	36 49.89	116 27.01	4131.0	979483.49	-18.19	-159.08	.89	2.21	-158.15	-149.24	-144.26	-134.86	-123.51	-112.54	-102.06		
G13	36 49.88	116 26.99	4119.7	979484.41	-18.32	-158.82	.77	2.08	-158.02	-149.13	-143.89	-133.43	-123.51	-112.96	-102.03		
G14	36 49.87	116 26.96	4108.3	979485.24	-18.54	-158.66	.82	2.11	-157.02	-148.95	-143.74	-133.31	-122.87	-112.44	-102.01		
G15	36 49.86	116 26.94	4095.6	979486.45	-18.51	-150.20	.59	1.87	-157.60	-148.74	-143.53	-133.11	-122.69	-112.28	-101.86		
G16	36 49.85	116 26.91	4082.8	979487.48	-18.67	-157.92	.53	1.80	-157.39	-148.56	-143.36	-132.97	-122.58	-112.19	-101.80		
G17	36 49.84	116 26.88	4074.2	979488.20	-18.74	-157.70	.49	1.74	-157.23	-148.41	-143.22	-132.85	-122.48	-112.10	-101.73		
G18	36 49.83	116 26.86	4063.5	979489.06	-18.88	-157.47	.44	1.68	-157.05	-148.26	-143.08	-132.73	-122.38	-112.03	-101.68		
G19	36 49.83	116 26.83	4052.5	979489.98	-18.99	-157.21	.37	1.60	-156.87	-148.09	-142.93	-132.60	-122.27	-111.94	-101.62		
G20	36 49.03	116 26.80	4041.0	979490.69	-19.36	-157.19	.32	1.54	-156.91	-148.15	-143.00	-132.70	-122.40	-112.09	-101.79		
G21	36 49.83	116 26.77	4030.0	979491.61	-19.48	-156.92	.25	1.46	-156.73	-147.99	-142.85	-132.57	-122.29	-112.01	-101.72		
G22	36 49.83	116 26.74	4020.0	979492.34	-19.69	-156.79	.26	1.46	-156.60	-147.88	-142.75	-132.50	-122.24	-111.98	-101.73		
G23	36 49.83	116 26.71	4008.7	979493.23	-19.66	-156.58	.18	1.37	-156.47	-147.77	-142.66	-132.42	-122.19	-111.96	-101.72		
G24	36 49.83	116 26.68	3998.8	979494.01	-20.01	-156.39	.19	1.37	-156.28	-147.61	-142.50	-132.29	-122.09	-111.88	-101.67		
G25	36 49.83	116 26.68	3988.6	979494.84	-20.14	-156.17	.20	1.39	-156.04	-147.39	-142.30	-132.12	-121.94	-111.76	-101.58		
G26	36 49.83	116 26.62	3979.8	979495.57	-20.24	-155.97	.19	1.35	-155.80	-147.24	-142.16	-132.00	-121.84	-111.68	-101.52		
G27	36 49.82	116 26.59	3972.4	979495.92	-20.57	-156.05	.13	1.28	-156.02	-147.40	-142.33	-132.18	-122.03	-111.89	-101.74		
G28	36 49.82	116 26.56	3964.5	979496.51	-20.72	-155.93	.14	1.28	-155.90	-147.30	-142.23	-132.11	-121.98	-111.85	-101.73		

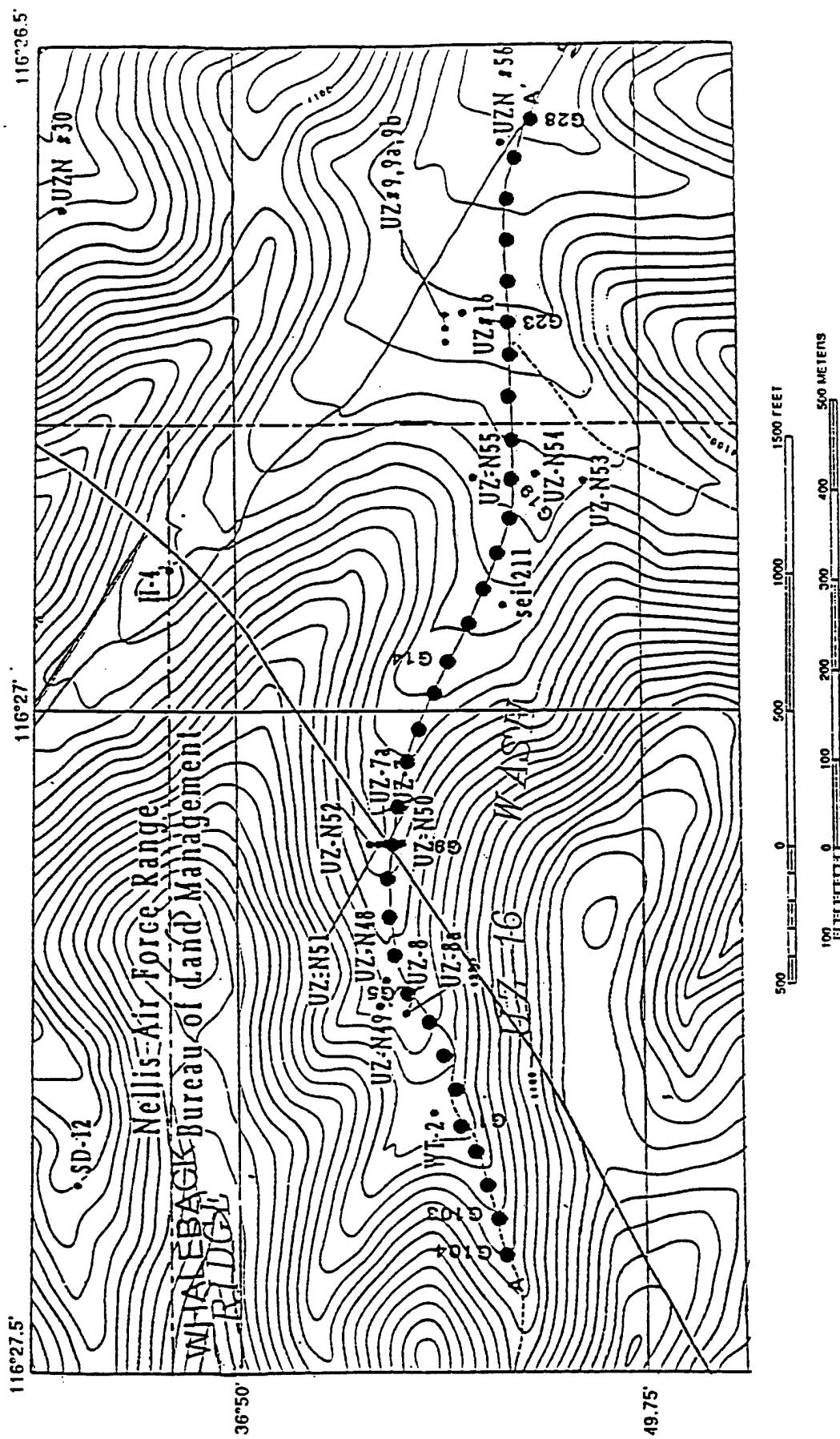


Figure 2. Topographic index map showing location of profile A-A' and all gravity stations. G103 is the westernmost gravity station and the station numbers progress easterly as G102, G101, G1, G2, ..G6, ..G28. All G stations are 150 m apart (fig. 3). Ground magnetic measurements were also made at all G stations as well as many intermediate points (fig. 4). Scale 1:6,000.

corrections, particularly where profiles cross topographic features such as hills. Gravity data were reduced to complete Bouguer anomalies using reduction densities of 1.6, 1.8, 2.0, 2.2, 2.4, and 2.67 g/cm^3 , and include earth-tide, instrument drift, free-air, Bouguer, latitude, curvature, and terrain corrections.

In general, the observed gravity data are accurate to about 0.03 mGal, and the Bouguer anomalies are accurate to about 0.1 mGal. Principal facts of the gravity data are listed (table 1), and the data are plotted along profile A-A' (figure 3). The smoothness of the profiled data, particularly in the interval between G10 and G19, suggests that the relative accuracy of the Bouguer anomalies in this area may be good to $\pm 0.05 \text{ mGal}$, although the single-station gravity high at station G102 may indicate that Bouguer anomalies at this station could be too high by about 0.15 mGal. The terrain correction for zones A-D for this station is the largest of all stations (1.23 mGal), and large terrain corrections cause greater uncertainties, perhaps as much as 0.2 mGal in this case.

Density Data

No new density data were obtained from the WT-2 Wash area. However, Snyder and Carr (1984, table 1) report an average value of 2.1 g/cm^3 for the density of the Tiva Canyon Tuff; this tuff forms most of the topography in the study area. Study of the variations in Bouguer anomalies (fig. 3) suggests that a reduction density of 2.0 g/cm^3 provides the flattest curve over the western third of the profile (between G103 to G10); the 2.0 g/cm^3 curve in this interval is therefore independent of the eastward drop-off in elevation shown on the elevation profile. The eastern two-thirds of the profile (G11-G12) shows an eastward increase in gravity for all densities, and this regional gravity rise is

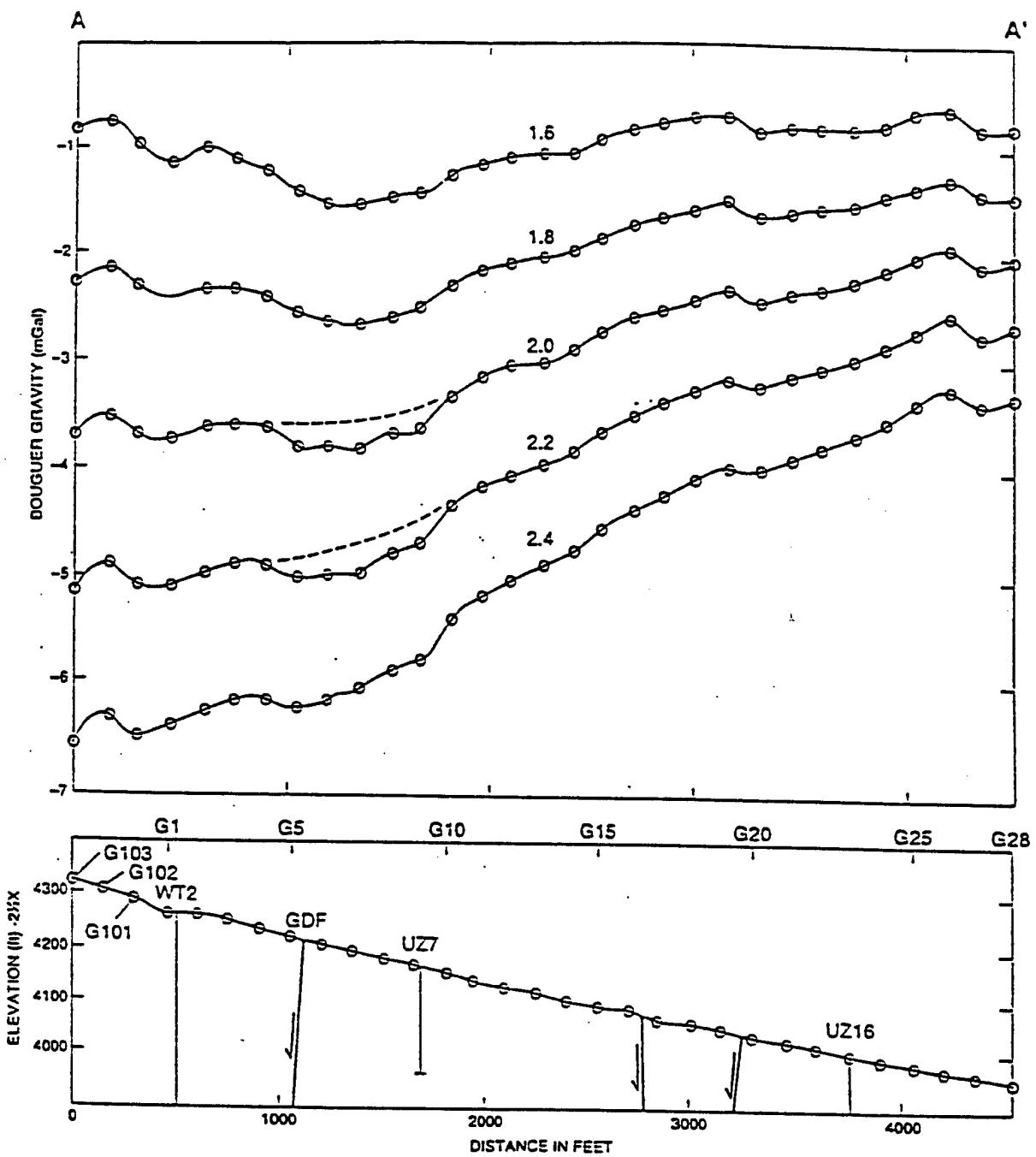


Figure 3. Bouguer gravity profiles along A-A' (fig. 2) for reduction densities 1.6, 1.8, 2.0, 2.2, and 2.4 g/cm³. The elevation profile shows the location of the Ghost Dance Fault (GDF), two other faults near G16 and G20 based on seismic reflection studies (Majer and Karageorgi, 1994), and drill holes WT-2 and UZ-16. Vertical exaggeration of the elevation profile is 2.5.

known to be caused by an eastward rise in Paleozoic basement rocks in precisely this area (Oliver and Fox, 1993; Oliver and Ponce, in press; Oliver and Mooney, 1992).

Magnetic Data

Ground magnetic data were obtained along profile A-A' (table 2, fig. 4). A Geometrics portable proton precession magnetometer model G-816 was used to collect data with the sensor 8 ft above the surface. The whole 4650 ft-long profile was initially measured at 50-ft intervals, and later repeated between G4 and G8 across the Ghost Dance Fault with a reduced spacing of about 20 ft.

A three-component magnetometer log of drill hole WT-2 was made to a depth of about 1640 ft by P.H. Nelson (written commun., 1994). These new data confirm that magnetically reversely polarized strata extend from the surface to a depth of 230 ft, below which the strata (the Topopah Spring Tuff) are normally magnetized to a depth of about 1700 ft. For perspective, the magnetic stratigraphy at Yucca Mountain is summarized by Oliver and others (1990, Table 2.2-2).

For a regional perspective of the magnetic field within and surrounding the potential repository, see Oliver and others (1991, fig. 3) and Kirchoff-Stein and others (1989).

Preliminary Results

The gravity data plots do not indicate any striking anomalies along A-A', but a distinct decrease of about 0.2 mGal at G5 corresponds with the mapped location of the Ghost Dance Fault. Relative to the regional trend shown as dashed lines on the 2.0 and 2.2

Table 2. Magnetic measurements along profile A-A'. Elevations of the magnetic stations are 8 ft higher than the corresponding gravity stations (Table 1) because the magnetic sensor is at the top of an 8 ft pole. Elevations of intermediate magnetic measurements were linearly interpolated between the surveyed stations G104, G103, G102, etc. and are prefixed by an x.

Station Number	Distance (ft)	Elevation (ft)	Total Magnetic Field (nT)	Station Number	Distance (ft)	Elevation (ft)	Total Magnetic Field (nT)
G104	0	4340	50907	G9100	1900	x4168	51115
G103b	50	x4338	50908	G10	1950	4163	51177
G103a	100	x4335	50899	G1050	2000	x4159	51166
G103	150	4332	50913	G1010	2050	x4155	51150
G102b	200	x4327	50941	G11	2100	4151	51106
G102a	250	x4322	50947	G1150	2150	x4148	51102
G102	300	4317	50953	G1110	2200	x4143	51070
G101b	350	x4311	50950	G12	2250	4139	51088
G101a	400	x4315	50950	G1250	2300	x4135	51084
G101	450	4300	50953	G1210	2350	x4131	51084
G1b	500	x4292	50979	G13	2400	4127	51053
G1a	550	x4284	50994	G1350	2450	x4124	51031
G1	600	4276	50977	G1310	2500	x4120	51019
G1050	650	x4277	51000	G14	2550	4116	50988
G1100	700	x4277	51014	G1450	2600	x4112	50971
G2	750	4276	51013	G1410	2650	x4108	50961
G2050	800	x4270	50977	G15	2700	4103	50959
G2100	850	x4263	51009	G1550	2750	x4098	50929
G3	900	4257	51060	G1510	2800	x4094	50876
G3050	950	x4252	51080	G16	2850	4090	50918
G3100	1000	x4247	51076	G1650	2900	x4088	51002
G4	1050	4241	51116	G1610	2950	x4085	51064
G4021	1071	x4239	51143	G17	3000	4082	51037
G4042	1092	x4236	51179	G1750	3050	x4078	51017
G4063	1113	x4233	51206	G1710	3100	x4075	51047
G4082	1134	x4230	51223	G18	3150	4071	51039
G4103	1155	x4227	51211	G1850	3200	x4068	51017
G4124	1176	x4224	51148	G1810	3250	x4064	51047
G5	1200	4222	50981	G19	3300	4060	50929
G5021	1221	x4221	50841	G1950	3350	x4056	50914
G5042	1242	x4220	50771	G1910	3400	x4052	50909
G5063	1263	x4219	50758	G20	3450	4048	50911
G5084	1284	x4218	50698	G2050	3500	x4045	50930
G5105	1305	x4216	50741	G2010	3550	x4041	50966
G5126	1326	x4215	50811	G21	3600	4038	51007
G6	1350	4213	50651	G2150	3650	x4034	50955
G6017	1367	x4213	50895	G2110	3700	x4031	50882
G6034	1384	x4212	50940	G22	3750	4028	50861
G6051	1401	x4211	50979	G2250	3800	x4024	50869
G6a	1418	4209	51000	G2210	3850	x4020	50894
6A017	1435	x4207	51058	G23	3900	4016	50940
6A034	1452	x4205	51116	G2350	3950	x4012	50975
6A051	1469	x4204	51154	G2310	4000	x4009	51000
6A068	1486	x4202	51168	G24	4050	4006	50991
G7	1500	4201	51135	G2450	4100	x4002	50966
G7020	1520	x4199	51195	G2410	4150	x3999	50974
G7040	1540	x4198	51200	G25	4200	3996	50936
G7060	1560	x4196	51194	G2550	4250	x3993	50901
G7080	1580	x4195	51183	G2510	4300	x3990	50890
G7100	1600	x4193	51169	G26	4350	3987	50905
G7120	1620	x4192	51148	G2650	4400	x3991	50973
G7140	1640	x4190	51127	G2610	4450	x3995	51072
G8	1650	4189	51008	G27	4500	4000	51179
G8050	1700	x4185	51149	G2750	4550	x3990	51195
G8100	1750	x4182	51220	G2710	4600	x3981	51080
G9	1800	4179	51234	G28	4650	3972	51042
G9050	1850	x4173	51184				

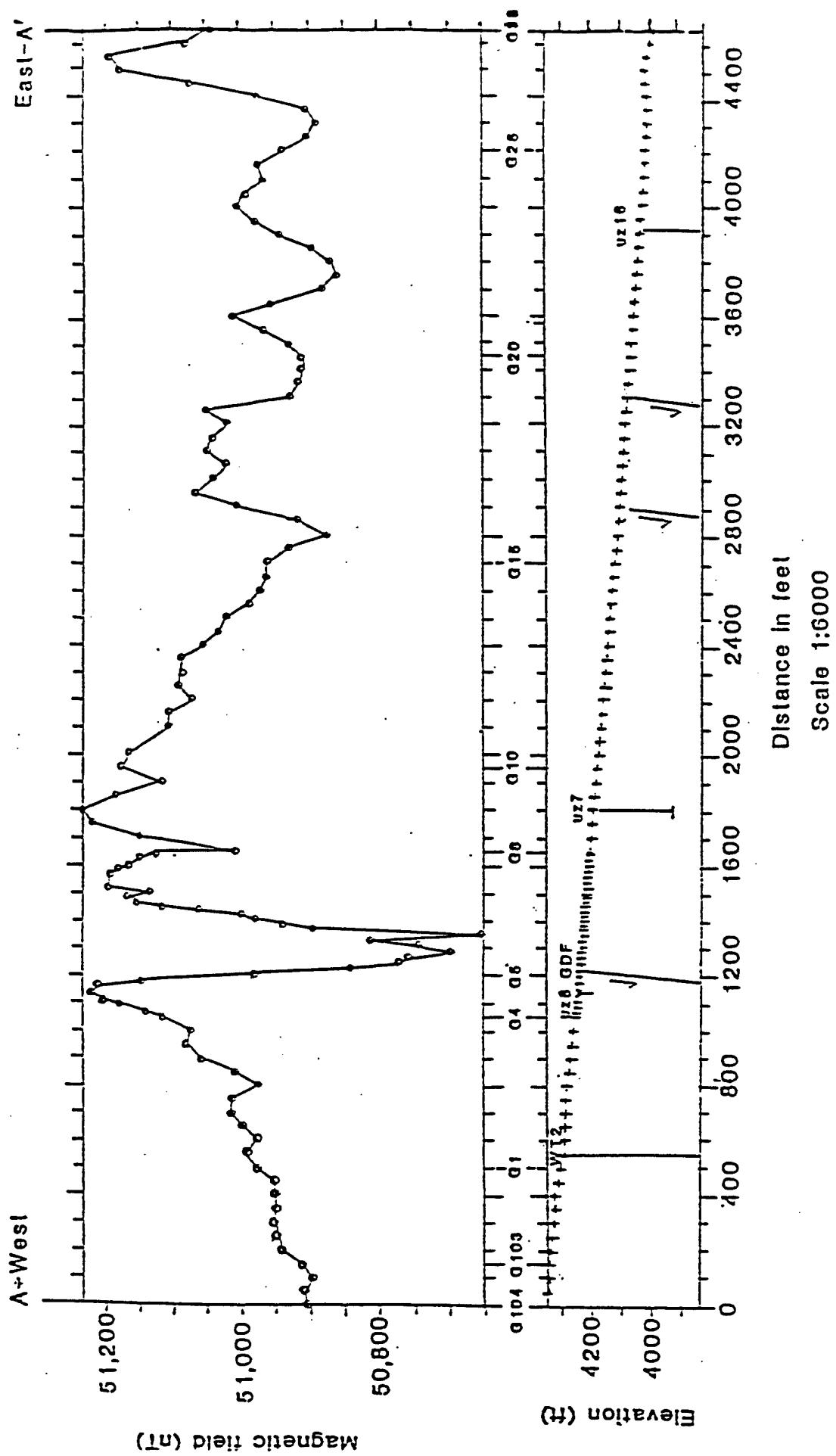


Figure 4.

Total magnetic field measurements along profile A-A' (Fig. 2). Station spacing of 50 ft for the whole profile was decreased to about 20 ft between G1 and G8. The projected location of the Ghost Dance fault (GDF) within WT-2 Wash is near station G5. The two faults shown near distances of 2800 and 3200 ft are based on seismic reflection data (Major and Karagorgi, 1994). Vertical exaggeration of the elevation profile is 1:1.1.

g/cm^3 curves (fig. 3), the 0.2-mGal decrease seems to extend from G5 to G9 and may mark a zone about 600 ft wide of relatively low-density fault breccia. Similarly, another fault with a vertical displacement of about 70 ft near G20 (Majer and Karageorgi, 1994) is also marked by a 0.15-mGal local gravity low. However, a similar fault near G16 does not have a corresponding gravity low or offset.

By contrast, the ground magnetic data plot (fig. 4) shows striking anomalies associated not only with the Ghost Dance Fault but with the other two faults as well. The Ghost Dance Fault anomaly consists of a magnetic low of nearly 400 nT centered only 20 ft east of the projected fault location, with broader magnetic highs of about 200 nT both east and west of the low. The magnetic low is about 200 ft wide, implying an approximate 200 ft wide source zone at the fault. The high to the west is somewhat questionable because the survey line passed about 80 ft south of drill hole UZ-8, which contains a 35-ft deep, 8-in-diameter metal casing. We did not know about this cased hole at the time of our measurements and need to run a N-S profile through UZ-8 to determine the lateral extent of its magnetic effect. However, cased holes typically have only a magnetic high or magnetic low signature and are not bipolar (Frischknecht and others, 1985). Hence, the 400-nT magnetic low at the Ghost Dance fault is not an artifact of the UZ-8 casing but a significant finding and agrees with Bath and Jahren's (1984, fig. 21) finding of a similar magnetic low associated with the Ghost Dance Fault in a truck-mounted-magnetometer profile in the next canyon to the north (fig. 1). Modeling of these magnetic lows is complicated by the fact that the approximate upper 200 ft of earth materials along the whole profile are composed of the reversely polarized Tiva Canyon Tuff with very strong, reversed-polarity, remanent magnetizations in the range of 1 to 6 Am^{-1} in the lower part of the formation (Rosenbaum and Snyder, 1985).

The presence of magnetic rocks in the valley walls above profile A-A' makes the interpretation and modeling of the magnetic profile more difficult (Rasmussen and Pedersen, 1979). However, a comparison of the magnetic anomaly locations (fig. 4) with the proximity to side walls of WT-2 Wash (fig. 2) shows that the local anomalies are virtually independent of this possible problem. For example, the approximately 300-nT eastward rise in the magnetic field between G26 and G27 (fig. 4) occurs in a nearly flat portion of the wash where the sidewalls are gentle (less than 10°) and start rising about 500 ft (150 m) to the north and south of the profile. Thus, this magnetic anomaly must reflect subsurface magnetic structure. A more general westward increase in the magnetic field strength from about 50,950 nT near G14 to about 51,200 nT near G9 (fig. 4) does correlate with a narrowing of WT-2 Wash (fig. 2). However, further narrowing of this wash west of WT-2 does not produce a magnetic rise. Certainly, the sharp magnetic low of over 400 nT near the Ghost Dance Fault is not significantly affected by proximity to the valley walls of WT-2 Wash.

Some modeling of possible sources of the 400 nT magnetic low has been carried out, but nothing tried so far is completely satisfactory. The most promising model is a 200-ft-wide tabular body which may represent a loss of magnetic remanence within the fault zone that penetrates the normally polarized Topopah Spring Tuff. By assuming an average value of magnetization of 4 Am^{-1} for the Topopah Spring Tuff, the magnetic low can be fit rather well. However, brecciation of the upper 160 to 200 ft of Tiva Canyon Tuff would produce a sharper high superimposed on the modeled low, and a significant magnetic high is not observed. There is a sharp 100-nT blip located about 100 ft east of G5 within the 400-nT low that perhaps could be modeled if additional detailed magnetic data became available. Such modeling might show the nature and extent of brecciation associated with the Ghost Dance Fault within the Tiva Canyon Tuff.

Another possible source for the magnetic low associated with the Ghost Dance Fault is a tabular body within the fault zone with a greater reversed polarization than the Tiva Canyon Tuff. A dike-like model with a contrast of 4 Am^{-1} has been tested (Oliver and others, 1993), but there is no geologic evidence for such a body at present. The top of the modeled body is about 30 ft below the surface.

Conclusions and Recommendations

Ground magnetic measurements combined with limited gravity data offer considerable promise for inexpensively tracing the Ghost Dance Fault under alluvial cover and determining the lateral extent of faulting within the system.

To further facilitate this work, two short magnetic lines should be run at right angles across all of the drill holes within 200 ft of A-A' that are known to have steel casing to determine possible effects on the magnetic profile (fig. 4). The most important such well is UZ-8, only 80 ft to the north of the profile at G4082, where the highest magnetic measurement of 51223 nT was measured (table 2). Other such wells include WT-2, UZ-N48, UZ-7, UZ-N50, and UZ-N56. Information on the depth, size, and type of casing needs to be compiled for all these wells. We also recommend obtaining density and magnetic logs for these wells as well as making systematic magnetic susceptibility and remanent magnetization measurements of core samples. A magnetic log is available for UZ-16 (P.H. Nelson, written commun., 1994) which would be very helpful to this study.

Additional ground magnetic measurements are recommended for the following areas: (1) west of A along WT-2 Wash so as to extend the current survey about 1000 ft to the west

and make it coincide exactly with the seismic reflection survey (Majer and Karageorgi, 1994); (2) across the Ghost Dance Fault (GDF) in "H4 Wash" to the north of Whale Back Ridge to check out the GDF magnetic signature reported by Bath and Jahren (1984); and (3) along Whale Back Ridge where the magnetic effect of the GDF will be free from possible sidewall effects. About five detailed ground magnetic profiles spaced about 20 ft apart should also be obtained both to the north and south of that portion of A-A' between G3 and G10 to test the N-S continuity of the 400 nT magnetic low associated with the Ghost Dance Fault measured along A-A' (fig. 4). Someone should also look at the canyon walls, making simple fluxgate polarity checks to see where the profile is relative to magnetic stratigraphy.

Because of the possibility of a reversely polarized tabular body within the GDF zone, detailed geologic inspection of the zone and shallow drilling of the magnetic low might provide important information to help characterize the area. Ground magnetic surveys should also be run across any other faults within Yucca Mountain that are known to contain tabular intrusive bodies such as the basaltic dike in the Solitario Canyon Fault (U.S. Geological Survey, 1984, p. 29).

It would also be helpful to obtain ground magnetic data across the southern extension of the Ghost Dance fault in Abandoned Wash (fig. 1). In this area, the Tiva Canyon Tuff has been eroded and the normally polarized Topopah Spring Tuff is exposed at the surface. Thus, the fault breccia model should produce a simple magnetic low in this area, uncontaminated by any reversely polarizing effects.

Electrical studies in the area of Drill Hole Wash (fig. 1) by Hoover (1982), Smith and Ross (1982), and D.P. Klein and Ernie Hardin (written commun., 1994) suggest that some

fault zones at Yucca Mountain have a lower resistivity because of percolation of water through the opening. Also, the long-term effect of percolation has caused alteration of at least some fault zones and has produced a lower resistivity within the zone. Thus, resistivity and induced polarization measurements should also be considered for further studies of the Ghost Dance Fault zone.

Description of diskette

The data described in this report (tables 1 and 2) are available on 3 1/2-in, high-density, double-sided diskette formatted for Macintosh computer using Microsoft Word. The diskette requires a Macintosh computer/word processor and contains a total of three files:

readme.txt, a description of the gravity and magnetic data;
yw.cba, principal facts of gravity data along profile A-A';
ya.mag, ground magnetic data along profile A-A'

References

Bath, G.D., and Jahren, C.E., 1984, Interpretations of magnetic anomalies at a potential repository site located in the Yucca Mountain area, Nevada Test Site: U.S. Geological Survey Open-File Report 84-120, 40 p. + 4 plates.

EG & G, 1993, Yucca Mountain repository topographic base map, sheet B: EG & G Map, Yucca Mountain Project 93-203.2, scale 1:6,000.

Frischknecht, F.C., Grette, R., Raab, P.V., and Meredith, J., 1985, Location of abandoned wells by magnetic surveys: Acquisition and interpretation of aeromagnetic data for five test areas: U.S. Geological Survey Open-File Report 85-614A, 64 p.

Hoover, D.B., Chornack, M.P., and Broker, M.M., 1982, E-Field ratio telluric traverses near Forty-mile Wash, Nevada Test Site, Nevada: U.S. Geological Survey Open-File Report 82-1042, 14 p.

Hudson, M.R., Sawyer, D.A., and Warren, R.G., 1994, Paleomagnetism and rotation constraints for the middle Miocene southwestern Nevada volcanic field: Tectonics, v. 13, no. 2, p. 258-274.

International Union of Geodesy and Geophysics, 1971, Geodetic Reference System 1967: International Association of Geodesy Special Publication No. 3, 116 p.

Kirchoff-Stein, K.S., Ponce, D.A., and Chuchel, B.A., 1989, Preliminary aeromagnetic map of the Nevada Test Site and vicinity: U.S. Geological Survey Open-File Report 89-446, scale 1:100,000.

Majer, E.L., and Karageorgi, Eleni, 1994, Ghost Dance surface reflection profiles: DOE-YMSCO, YMP-USGS Rock Characteristics-/Lawrence Berkeley Laboratory Milestone Report 3GGF240M, 16 p.

Morelli, C., (Ed.), 1974, The International Gravity Standardization Net, 1971: International Association of Geodesy Special Publication No. 4, 194 p.

Oliver, H.W., and Fox, K.F., 1993, Structure of Crater Flat and Yucca Mountain, southeastern Nevada, as inferred from gravity data: American Nuclear Society Proceedings of the Fourth Annual International Conference on High Level Waste Management, v. 2, p. 1812-1817.

Oliver, H.W., Hardin, E.L., and Nelson, P.H., eds., 1990, Status of data, major results, and plans for geophysical activities, Yucca Mountain Project: U.S. Department of Energy Report YMP/90-38, 236 p.

Oliver, H.W., Majer, E.L., and Spengler, R.W., 1994, Geophysical investigations of the Ghost Dance fault, Yucca Mountain, Nevada (Abs): Geological Society of America Cordilleran Section Meetings, San Bernardino, CA, March 21-23, 1994, Abstracts with Programs, p. 78.

Oliver, H.W., and Mooney, W.D., 1992, Characterizing Yucca Mountain, Nevada, by geophysical methods (Extended Abstract): American Geophysical Union 1992 Fall Meeting Abstract Supplement, p. 490, Abs. T11A-13.

Oliver, H.W., Ponce, D.A., and Sikora, R.F., 1991, Major results of gravity and magnetic studies at Yucca Mountain, Nevada: Proceedings of the Second Annual International Conference on High Level Waste Management, Las Vegas, NV, April 28-May 3, 1991, American Nuclear Society, v. 1, p. 787-794.

Plouff, Donald, 1977, Preliminary documentation for a FORTRAN program to compute gravity terrain corrections based on topography digitized on a geographic grid: U.S. Geological Survey Open-File Report 77-535, 45 p.

Ponce, D.A., and Oliver, H.W., 1981, Charleston Peak gravity calibration loop, Nevada: U.S. Geological Survey Open-File Report 81-985, 20 p.

Rasmussen, R., and Pedersen, L.B., 1979, End corrections in potential field modeling: Geophysical Prospecting, v. 27, no. 4, p. 749-760.

Rosenbaum, J.G., and Snyder, D.B., 1985, Preliminary interpretation of paleomagnetic and magnetic property data from drill holes USW G1, G2, GU-3, VH-1 and surface localities in the vicinity of Yucca Mountain, Nye County, Nevada: U.S. Geological Survey Open-File Report 85-49, 73 p.

Sawyer, D.A., Fleck, R.J., Lanphere, M.A., Warren, R.G., Broxton, D.E., and Hudson, M.R., in press in 1994, Episodic caldera volcanism in the Miocene southwestern Nevada volcanic field: Revised stratigraphic framework, $^{40}\text{Ar}/^{39}\text{Ar}$ geochronology, and implications for magmatism and extension: Geological Society of America Bulletin, v. 106, p. xxx.

Smith, Christian, and Ross, H.P., 1982, Interpretation of resistivity and induced polarization profiles with severe topographic effects, Yucca Mountain area, Nevada Test Site, Nevada: U.S. Geological Survey Open-File Report 82-182, 66 p.

Snyder, D.B., and Carr, W.J., 1984, Interpretation of gravity data in a complex volcano-tectonic setting, southwestern Nevada: Journal of Geophysical Research, v. 89, n. B12, p. 10193-10206.

Spengler, R.W., Braun, C.A., Linden, R.M., Martin, L.G., Ross-Brown, D.M., and Blackburn, R.L., 1993, Structural character of the Ghost Dance fault, Yucca Mountain, Nevada: High Level Radioactive Waste Management, Proceedings of the Fourth Annual International Conference, Las Vegas, Nevada, v. 1, p. 653-659.

Swick, C.A., 1942, Pendulum gravity measurements and isostatic reductions: U.S. Coast and Geodetic Survey Special Publication 232, 82 p.

U.S. Geological Survey, 1984, A summary of geologic studies through January 1, 1983, of the potential high-level radioactive waste repository site at Yucca Mountain, southern Nye County, Nevada: U.S. Geological Survey Open-File Report 84-792, 103 p.

U.S. National Bureau of Standards, 1977, The international system of units (SI): U.S. National Bureau of Standards Special Publication 330, 41 p.

M98005247

Report Number (14) USGS-DFR--94-413-A

Publ. Date (11) 1994
Sponsor Code (18) USGS, XF
UC Category (19) UC-000, DOE/ER

19980622 070

DTIC QUALITY INSPECTED 1

DOE