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The dual control volume grand canonical molecular dynamics (DCV-GCMD) method,
designed to enable the dynamic simulation of a system with a steady-state chemical
potential gradient is first briefly reviewed. A new, novel implementation of the
method which enables the establishment of a steady state chemical potential gradient
in a multicomponent system without having to insert or delete one of the components
is then presented and discussed.

1. INTRODUCTION

The basis for the DCV-GCMD method! is the idea that if two local “grand canonical
Monte Carlo control volumes” are placed inside the simulation volume of a molecular
dynamics simulation and grand canonical Monte Carlo (GCMC) insertions and dele-
tions are carried out to establish different desired chemical potentials in these control
volumes, equilibration exchanges between the MD simulation volume and the GCMC
control volumes will establish a steady-state chemical potential gradient between the
control volumes.

GCMD methods which employ two local chemical potential control volumes (i.e.
“dual control volume” GCMD) have been applied to bulk diffusion, diffusion and flow
in confined fluids, and diffusion of gases in polymers. Other recent work has included
the development of massively parallel versions of DCV-GCMD for both atomic* and
molecular’ systems.
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*This work was performed at Sandia National Laboratories which is operated for
the DOE under contract number DE-AC04-94A1.85000.
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This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.



2. SIMULATION METHODS

DCV-GCMD can be thought of as a hybridization of MD and GCMC: each atom in
the system is moved with the normal MD algorithm during an “MD phase”. Each MD

phase is followed by a “GCMC phase” in which creations, destructions, and (if desired)
identity swaps of each component are attempted in each GCMC control volume.
Destroyed atoms are simply removed from the simulation while created atoms are
assigned velocities chosen on a Gaussian distribution. After the GCMC phase, the
simulation proceeds with another MD timestep, and so on. The method and compan-
ion parallel algorithms have been discussed elsewhere!*>.

Periodic boundary conditions are applied in the dimensions appropriate for the
simulated system. The density profile, pix), is calculated by dividing the system vol-
ume into bins along the x-axis and averaging the number of atoms of type i in each
bin. The flux between the two control volumes can be measured in three different
ways. In the planar flux method (Figure 1), the net movement of each species type, i,
across a stationary plane is used to calculate the flux. In the control volume method,
the net number of particles added or subtracted in each control volumes is used to
determine the flux. In a third method, flux profiles are calculated using a binning sys-
tem (analogous to that used for the density profiles) for the x-velocities of the atoms of

each type, enabling the flux of component i to be calculated as a function of x-position.
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Figure 1. A schematic of a DCV-GCMD simulation.Two control volumes, A and B, are
used for creations/destructions to achieve spatial chemical potential control of each
species in the system. The flux planes are shown as the dark shaded planes between
the control volumes and at the x-direction periodic boundaries, x = *L /2.

2.1. Chemical Potential Control for Large Molecules

Until recently the DCV-GCMD method has not been applicable to systems with

molecules which are too large to be inserted and deleted. Our approach, originally due



to Van Swol apd Heffelfinger?, is to circumvent the problem of insertion/deletion alto-
gether by the exchange of one field variable, in this case p,, the chemical potential of
the nth component, for total pressure, P. This is accomplished by carrying out inser-
tions and deletions on the other species in the system, i = 1,n-1, to establish con-
stant chemical potential for those species, p;_; ,_;, while keeping the system pressure
constant. This enables the establishment of constant chemical potential for species n,
the large molecular species, for the price of a fixed number of atoms of that species,
N,.

The system pressure is controlled by introducing é pair of moving walls (pistons)
at either end of the simulation box following the method introduced by Lupkowski
and van Swol®. The pistons, free to move in the ‘x-dﬁection, interact with the fluid
atoms via a short-ranged repulsive potential. The repulsive force of the fluid on the
pistons is counteracted by a constant restraining force which is set equal to the
desired system pressure. Each piston is assigned a mass, and its motion in the x-direc-
tion is treated as if it were another particle. As a result, once the system has equili-
brated, the force exerted by the atoms on the piston will fluctuate about that of the
constant restraining force thus maintaining a constant average pressure in the x-
direction in the fluid near the wall. Implicit in this approach is the assumption that

the same pressure is imposed on both pistons, i.e. there is no pressure gradient in the

system.

3. Applications of the DCV-GCMD Method
The DCV-GCMD method has been applied to a variety of systems vﬁth the Len-
nard-Jones model for site-site interactions. The original work on the DCV-GCMD |
method' was designed to check the validity of the method for determining diffusivities
in the presence of a chemical potential gradient. In order to enable comparison to
equilibrium diffusivities obtained from a standard NVT molecular dynamics simula-
tion, a color diffusion “experiment” was carried out: two components, with identical
interaction parameters, were simply “labeled” as species 1 and species 2. Equal and
opposite chemical potential gradients were established and the flux and steady state
density profiles used to calculate the diffusivities of each in the presence of a chemical
potential gradient of that species. However, for the system as a whole (labeling aside),

no chemical potential gradient existed. The diffusivities calculated from the fluxes




and density profiles were found to match those of the corresponding standard NVT MD
simulation'.

The DCV-GCMD method has also been used to investigate “uphill diffusion” in a
bulk ternary Lennard-Jones system?. In order to create nonideal conditions sufficient
to establish the steady-state uphill diffusion phenomena, the Lennard-Jones cross-
parameters were varied until nonideality sufficient to induce the uphill diffusion
effect was obtained.

Another application of DCV-GCMD has been to bonded systems’. This system con-
sisted of the two single-site species, 1 ahd 2, with identical interaction parameters,
plus a polymer component, species 3. The polymer was modeled as a set of linear
chains with 50 interaction sites (beads) each, with neighboring beads linked by FENE
bonds. All beads and species 1 and 2 molecules had an identical mass and Lennard-
Jones interaction parameters. Only species 1 and 2 were inserted and deleted and two
polymer bead densities were investigated, pc® =025 and po® =0.85.

3.1. Constant Pressure DCV-GCMD

In order to test the performance of the pistons in the context of gradient-driven dif-
fusion, we applied the modified DCV-GCMD method to the binary system previously
‘modeled by Heffelfinger and Van Swol' and discussed briefly above. In the first com-
parision, a constant-volume system was simulated using a standard DCV-GCMD sim-
ulation (constant y,, t, T, V). The temperature and chemical potentials in the control
volumes for both species were the same as those used by Heffelfinger and van Swol.
The control volume concentrations, density profiles, and overall density agreed
closely. The corresponding diffusion coefficients, calculated by assuming that
Df = —Jf/ (dp,/dx) and using the methodology of Heffelfinger and Van Swol also
agreed closely. The final ﬂui profiles had two interesting features. Firstly, within
each gradient zone, the flux profiles were uniform. However, for a given gradient
zone, the fluxes of the two components did not balance, nor did the fluxes of a given
component of equal and opposite size in the two gradient zones. The values of the rel-
ative flux JT—J’; in the two gradient zones were almost exactly equal and opposite.
Secondly, within the control volumes, all three flux profiles were relatively noisy, but
varied continuously from the value of the flux in one gradient zone, through zero, to
the value of the flux in the other gradient zone. Ideally (in the limit of an infinite num-
ber of GCMC cycles per MD timestep), the relative flux within each control volume




would be zero, and there would be a discontinuity at each control volume boundary.
The same would be true of the concentration gradients. In practice, both the concen-
tration gradients and the fluxes change rapidly near the boundaries, and are rela-
tively flat in the center of the control volumes.

Having established a benchmark using constant-volume DCV-GCMD, we then
simulated the same system at constant pressure using piston pressure control instead
of inserting and deleting component 2 (constant y;, N,, T, P). This constant-pressure
simulation was started from an empty box with fixed pistons located at +36c and
using insertions and deletions of both species to develop an equilibrated system. From
this conﬁguration, the constant-pressure simulation was executed for 300,000
tiinesteps. The pressure was set at 1.46%/¢ (equal to the average pressure from the
constant-volume simulation). While the number of atoms of component 1 was allowed
to vary through insertions and deletions in the control volumes to achieve the desired
chemical potential of component 1 in control volumes A and B, the number of atoms of

component 2 remained fixed.
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Figure 2. Time evolution of the concentration profile for component 2 in the constant-
pressure DCV-GCMD simulation. Each line represents the average concentration pro-
file accumulated over 20,000 timesteps; plot labels indicate the last timestep sampled.
For clarity all the lines except the lowest have been offset vertically by successive
increments of po® = 0.1. The grey lines represent the boundaries of the control vol-
umes.




The evolution of the concentration profile during consecutive 20,000 timestep
intervals for component 2 is contained in Figure 2. In this figure we can see how the
left buffer shrinks, the right expands, and the central portion of the simulation box
does not change. The right buffer actually grows faster than the left buffer shrinks
because the density of component 2 is lower on the right. The simulation actually ter-

minated when the right piston position exceeded 54c.
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Figure 3. Average concentration profiles sampled between timesteps 100,000 and
200,000 of the constant-pressure DCV-GCMD simulation. The thicker lines are the
profiles from the central region of the constant-volume DCV-GCMD simulation. The
grey lines represent the boundaries of the control volumes.

The density and flux profiles sampled between timesteps 100,000 and 200,000 of
the simulation are shown in Figure 3 and Figure 4. The central portions of the concen-
tration profiles from the constant-volume simulation have been included for compari-
son. The agreement was close, but the constant-pressure simulations suffered a little
more from “bleeding” at the control volume boundary, and consequently exhibited a
slightly smaller concentration gradient. Also, the constant-pressure concentration
profile within the gradient zone is not as perfectly linear as that for the constant-vol-
ume simulation.

The component flux profiles differ dramatically from those obtained by the corre-
sponding constant-volume simulation. In the buffer zones, both components are flow-

ing in the positive x-direction. This behavior is due to the bulk motion of the pistons




) from left to right. In the gradient zone, component 1 is diffusing strongly, in the nega-

tive x-direction, while the flux of component 1 is roughly constant throughout the box.
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Figure 4. Average flux profiles sampled between timesteps 100,000 and 200,000 of the
constant-pressure DCV-GCMD simulation. The dashed lines are the individual com-
ponent fluxes, measured relative to the “stationary coordinate reference frame”, i.e.
the simulation box coordinates. The solid line is the flux of component 1 relative to
component 2 and is an approximation to the true molar diffusion flux. The grey lines
represent the boundaries of the control volumes.

The question remains as to how the diffusion coefficient can be calculated from the

. . - X X
constant-pressure simulation. Clearly, defining D; = -J;/(dp,;/dx) no longer makes
sense, as the system is now undergoing bulk motion. In this case, the molar flux J*

must be replaced by the more general molar diffusive flux Jp*, which is given by’
Tip = Ji=x(J1+75) (0

where x; is the mole fraction of component i. In general, it is necessary to evaluate
Jip*, dp;/dxand D{* as a function of position, and this analysis is carried out
elsewhere®. For now, we have simplified the analysis by invoking the following
approximation, which is exact only at the point where the concentration profiles cross

each other:
Jip = (172)(J1 = 13) = (1/2)(x) = %) (J] + J3)

. )
= (1/2)(J{ = T3)




As can be seen from Figure 4, |]f - f;l is relatively invariant throughout the gradi-
0‘3(m/$)l/2 = 0.0080. In the case of the

63(m/ s)Vzwas 0.0077 in the central gradient

ent zone, having an average value of l]f— J;

constant-volume simulation, ‘JT— J;
zone and 0.0080 in the periodic gradient zone, giving an average value of 0.0079. The
diffusion coefficients calculated using these fluxes are given in Table . While the diffu-
sion fluxes from both simulations are very close, the concentration gradients from the
constant-pressure simulation are lower, resulting in a somewhat higher estimate of
the diffusion coefficient.

Table 1: Concentration gradients, molar diffusion fluxes and transport diffusion coef-
ficients from the constant-volume and constant pressure simulations.

Constant Volume DCV-GCMD Constant Pressure DCV-GCMD

Species | o*dp/dx | Jp*adm/e)? | Dim/e)”so | odpsdx | Jpt S mse)? | DFm/e) /o
1 0.0124 0.00394 0.317 0.0106 0.00399 0.376
2 0.0122 0.00394 0.323 0.0109 0.00399 0.366
Ave. 0.0123 0.0039%4 0.320 0.0108 0.00399 0.371

4. Conclusions

we may have some space here for some brief conclusions ...

5. REFERENCES _

1) G.S. Heffelfinger and F. van Swol, J. Chem. Phys., 100, 7548 (1994).

2) F.van Swol and G. S. Heffelfinger, Mat. Res. Soc. Symp. Proc., 408, 299 (1996).
3) J.M.D. MacElroy, J. Chem. Phys, 101, 5274 (1994).

4) G.S. Heffelfinger and D. M. Ford, accepted, Mol. Phys. (1997).

5) D.M. Ford and G. S. Heffelfinger, accepted, Mol. Phys. (1997).

6) M. Lupkowski and F. van Swol, J. Chem. Phys., 93, 737 (1990).

7) R. Taylor, and R. Krishna, Multicomponent Mass Transfer, (Wiley, 1993).

8) A.P.Thompson and G. S. Heffelfinger, in progress.




M980046
||I|||I||||I|I|I||Il|||||||II|||I|||IIIII|||I||III|||I|

Report Number (1 4N O]~ ~OROC
C 0 NE —RLOWO ==

publ. Date (1) X% GO\ \M
Sponsor Code (18) o /[cl )(F
UC Category (19) LLC C\C@ . Dve /E

DOE




