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The FASTBUS subsystem of the LANSCE data acquisition system consists of a
single FASTBYUS crate segment with four custom modules and a QPI interface for
the VAX. Since experiments at the LANSCE facility always include a time-of-
flight parameter for the deterted neutron and may optionally include
additional position parameters characterizing the event, a time stamp is
generaled for each event by the Programmable Master Clock (PMC) module. The
time and any position information are latched into the Time-0f-Flight buffer
(TOF) module. After all events associaled with a single neulron bursi{ have
been captured in a frame bhuffer internal to the TOF module, each event is
analyzed by the MAPPER module and reduced t¢ a histogram address to increment
in the BULKSTORE module. Software access to the histogram is previded through
the QPI interface.

Performance of the FASTBUS subsystem far exceeds the LANSCE system
requirements. Data can be captured in the TOF module at average rates up to
10 MHz. The frame buffers presently imp'emented in the TOF modules allow two
independent lists of up to 16000 cvents to he saved concurrently. Designed
wvith a FIFO bulfcr ahead of the maln trame buffers, bursts of data with up te
64 cvents are acquired at rates up to 20 MHz. A palr of latches in front of
the FIFO allows cvent pafrs: to be received withouo data loss for time
separation down to 2hns. Failure to store an event can be detccted down to
pulse palry sopmation times of 10ns.  Alter capture in the TOF module, data s
moved into the MAPPER module with block transfers, separated into time and
position components, processed via look up tables, and vecombined as a linear

comblnation to form a histogram address.  FASTBUS eyceles consisting of only



address cycles are used to quete increment requests within the BULKSTORE
modules. As currently implemented, the mapping and hlstogramming processes

operate at sustained rates up to 2 MHz.

Softva.e is provided to the experimenter for generalized data acquisition
nerls as vell as to initialize the FASTBUS environment and read the
accumulated histograms. This data acquisition command language is thoroughly
integrated irto the operating system supported command language and therefore
can take advantage of all of the features of the rich VMS environment.
Because the software is implemented irn a highly modular fashion, suites of
utility softvare modules are available to the general user community to

support development of specialized monitoring or data analysis software.

The software system utilizes dynamic data structures extensively to support
run time configuration of the FASTBUS as well as experimental control
functions. This anproach allovws an experimenter to allocate data structures
dynamically for memory control blocks, device descriptors, etc. withou: regard
for artificial limits which exist in preallocated COMMON blocks.

Consequently, the software is cxtremely robust and does not require

maintenance revisits to adjust preallocated limits.

The softwvare system also supports a subsystem which permits each user to
customize the contents and format of the data flles into which the
experimental environment and contents of the histograms are saved at the
conclusion of a run. This facility permits a user to select, at run time,
speclfle features of the experimental environment (hardware setup and control

functions) us well as specific histograms to be included in the data file.



The file is then written in a special format to support extremely fast access
to the information stored therein.

Although the graphics software is immature at this time, use of the GKS
international standard has substantially accelerated our implementation
process. Limited use of special features of the workstation interface have
been employed pending DEC’s implementation of support for the new industry
standard X-Windows under the VMS operating system.
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Abstract

The next generation of data acquisition systems for the Los
Alamos Ncutron Scattering Center consists of a FASTBUS sys-
tem controlled by a DEC VAXstation II/GPX. The FASTBUS
subsystem features four custom high-performance modules inter-
faced 1o the VAX through the commercialized version of the QPI.
Control and analysis is supported with the multiwindow graphics
capability of the workstation.

Ictroduction

Roots for the development of the new data srquisition system for
the Los Alamos Neutron Scattering Center {LANSCE) began o
grow in 1981. Once funding was assured for the the Protor
Storage Ring (PSR), it was clear that existing data scquisition
facilities at the Weapons Neutron Research (WNR) facility would
be overwhelmed with impossible count rates from the incrcased
neutron fluxes. Designs for the PSR and modified target
configuration indicated thal neutron fluxes for LANSCE experi-
ments would increase by a factor of approximately 250. Artici-
pating the design of a new system, the facility users defined and

published the "Requircments of Data Acquisition and Analysis for
Condensed Matter Studics at the WNR/PSR"!. The document

addressed burst and average count rate issues, defined data com-
paction algorithms, and estimated storage rcquirements for both
on-linc histograms and disk storage. The basic funclionality of
support software was also described.

In responsc to the requireinenis document, the compuler support

group developed and published a preliminary design, "P-9
Proposed WNR Facility Data Acquisition System for_the PSR
Era"2 Central i the design were application specific FASTBUS
modules hosted in a VAX/VMS environment.  All real-time duta
collection was accomplished in the FASTBUS hardware while the
VAX provided control and limited analysis capability. As the
design moved toward implementation, the advent of new VAX
nroducts enabled the use of the miniaturized microVAX family.
Continued technological changes have allowed evolution of the
design from that first reported in the literatured to the final im-
plementation presented here,

In the 'ollowing section this paper summarizex the data acquisi-
tion requirements for the LANSCE system. The next section
presents the basie design goals established by the implementers
for the develonment project to assure a useful and fexible dnte
acquisition system.  ‘The configuration section discusses the
relationship between the FASTEUS hardware and the homt VAX
system, as wvell as the wetwork envitonment which couples the
various LANSCE instruments together, ‘The last sections nddross
the principal featuzes of the FASTRUS hurdware and associated
data acquisitionfanalysis sof>ware,

ala Acquiijtjo

While the hardware requirements arc aligned closely to time-of-
flight measurement techniques, the sofiware requirements tend 10
be far more generic. These requirements are summarized below.

Neuuron fluxes from the LANSCE target produce extremely high
burst count rates. For iustruments consisting of arrays of
smallzr detector elements, peak instrument burst rates may reach
45 MHz for durations of 10 psec, with rates falling off from the
peak finally reaching time averaged rates of 1 MHz. In other
instruments consisting of a fcvw indivisible detectors, e.g. a large
surfacc area detector, burst count rates in a single element can
approach 2 MHz. In all cases it is required that dead.ime correc-
tions be less than 0.5%.

As LANSCE uses time-of-flight techniques to measure the encrgy
of the neutron, all events must be time siamped. Additional par-
allel information may be included with ecach event. It must be
possible to reduce time and paralle] information to form a com-
pact descriptor sddress for the puipose of gencrating a his-
togram. A mapping capability may cnable data compaction for
the parallel information associated with surface arca detectors.
The descriptor a'gorithm must be flexible enough to i clude pe-
riodic frame dependence,

Histogram memory requirements vary [rom instrument 1o insiru-
mcent but the largest requires at least 3 million channels for stor-
age. To reduce the chance of histogram overflow during incre-
menting, all channels in the histogram memory must be at least
24 bits wide.

Software must provide the interface for run control. This in
cludes run definition and run sequencing. A set of runs must
exccute without intervention and must process any environn.cen-
tal changes from a list of commands. Should the need arise, the
experimenter must be able 1o interrupt and alter the predefined
sequence,  Control should be accomplished via simple keyboard
commands.

The system must provide the user a fast, flexible end physically
meaningful method for displaying spectra during acquisition and
for runs already completed.  Linear ind logarithmic plots must be
posgible for cach axis.  Vor mulliparameter datg, it must be pos.
sible w display projections on a single axis or onto two-dimen-
sional contours, Transformations betweer various physical units
must be poessible.  Control should be accomplished via simple
keyboard commands,

Data archiving must be automatic upon completion of the .
As soon as the instrument data file is created on the local disk.,
the file must be scheduled for transfer via the network to o cen
tral data mrchive syitem, The local copy of the incuument dats
fle st remain on the loeal disk Tor 4 minimum of 48 hours.



Should the capacity of the local disk approuch exhaustion, the
user must be wamed. The user must be able to catalog the last
5000 runs performed on the instrument.

lmplementation Goais

For the implementation of the new LANSCE data acquisition
systems, the computer staff places a high valuc on the develop-
ment of an extremely reliable and easily maintainable system.
To effect these goals, a great deal of attention is focused on the
functional decomposition of the requirements and their assign-
ments within modules to be designed both for the hardware and
sofiware. Details of the sofiware development methodology are
published elsewhere4-6. A this point it is sufficient 1o say that
the software is fully engineered and formally tested prior to use
by the experimenters. Similarly, the hardware modules are for-
mally tested with a complete suite of custom software-driven di-
agnostics which test exhaustively all features of the modules.
Both cunit testing of individual modules as well as integrated
systcm tests are performed.

In addition to reliability and maintainability, we stress develop-
ment of an interface that is a logical extension of that with
which our "typical” user is already familiar. Complete integra-
tion with the VMS operating sysiem appears natural since all of
our in-house users routinely analyze their data on VAX/VMS
systems. Extermnal users generally have VAX/VMS expericnce
from other laboratory environments. Not only is command in-
vocation patterned afier VMS, but error reporting and interactive
“help"” as well. For the graphics intcrface, we prefer to break our
reliance on command driven dialog rnd adopt 2 more Macintosh-
like appearance with emphasis un input via a mouse or tablet.
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Based on experience with other data acquisition system imple-
mentations, we feel that the novice user is often permitted to do
irreparable damage to his data inadvertently. From the start we
include security features which inhibit illogical operations which
could corrupt the data or the data acquisition environment. We
recognize that under certain circumstances a user bypass must be
provided, but this bypass may only be enabled by the manager
of the effected neutron scattering instrument.

Configurati

As shown in Figure 1, the LANSCE data acquisition system
configuration is highly distributed with a local area network
(Ethernet) binding the various components together loosely.
Each neutron scattering instrument has a separate autonomous
data acquisition system with computer, FASTBUS, and other
interface equipment. Centralized resources provide a data
archive, access to line printers and color hard copy devices,
magnetic lape drives, data analysis computers, and access to the
laboratory-wide network. Distributed throughout the experi-
mcntal and office areas are numecrous terminal servers which
allow convenient user access to the various data scquisition and
anaysis systems. Dial-up modems are interfaced directly to the
network to enable equivalent flexibility for the remote user.
Pcrsonal worksiatjons coupled to the network ultimately will
provide great computer power to each experimenter.

The date acquisitior system dedicated to a ncutron scattering
instrument is fundamentally a DEC VAXstation/GPX with special
peripheral equipment. This building block computer consists of
the microVAX processor, an Ethernct interface, cartridge tape
with interface, and the GPX graphics processor and monitor.

Terminals

&

Communications

™

Fipure 1. The LANSCE facility confipuration,
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Figure 2. Data Acquisition configuration for typical LANCSE instrument.

The small hard disk included with the system is discard:< in fa-
vo: ol a *hird party disk sutsystem which offers 302 Muytes of
formatted capacity. The memosy is expanded tc 9 Mbytes. For
instrument control and data colleclion, commercial interfaces are
installed for CAMAC :nd FASTLUS, respectively. The
FA~TBUS interface is a commercialized version of the QPI
developed at Fermilab. All the above equi;ment is installed in
an eight slot backnlan~ and mounted in a 5.25" hiyh pnckage.

The 5.25" high computer, FASTBUS, CAMAC and a general pur-
posc NIM bin arc all mounted togrth~c in an 80" higzh rack.
Figure 2 illustrates the hardware components reqied for each
instrument’s data acquisition system.

"the CAMAC instrumentation is uscd primarily for instrument and
sumple environment conuol. The most commoa ay.nlicaiony
include stepping motor and temperature control.  Lming the
tzansition period to FASTBUS data collection syuters. the
CAMAC crate :emains a good location for simple scalers and
preset sealers.  Frequently, a CAMAC crawe at the computer ix
connected vig a serinl ighway to o remote crate located at the
neutron scauvering instrument,

The role of FASTBUS within ¢ data acquisition system 18
deseribed below in detail.  Here it is sufficiznt to poiat out tha,
all real tie data pequisition tasks are allocated to the raalm of
FAS: BUS while the VAX provides the platform for our uver
fricndly interface and co plementary analysis computer power,

The multiwindow color workstation monitor is the primary
interface for the experimenter. At his discretion, multiple win
dows may be opened for commund entry or graphics presenta
tion.  Although somewhat congtrained by memory 1esourees, the

experimenter may configure the number and size of windows to
fit the requirements for his control, monitoring, and analysis
needs. The impact of the workstation on our interface design is
profound, a: is discussed beiow,

While nomally our use of the aetwork is heavy, it is not an es-
sential component should cquipment malfunction or maintenance
[ ze it out of service, Under these condiiions the experiment
may continue bul it is nccessary for the experimenter to enter all
commands at the compuler console. Storage of data may be lim-
ited to the capecity of the local 302 Mbyte disk. Unlimsed ca-
pacity iz available if thc experimenter utilizes the low perfor-
manze hul high capacity cartridge lape.

EASTBUS Hardware

The seal.time data acquisition is accomplished with a et o four
euitom FASTBUS medulss plus a commercial interface module for
the microVAX.  As ... most nrutron measuren »mts, the flight
time over a fixed leagth pech characterizes the neutron enerpy
and is the primary parameter ol any measurement,  Henee the
first of our modules is a time interval generator,  The second s
simply n buffer serving ‘o derndomize the data and to capture all
events wsociated with a single burst of neutrons from the pulsed
source,  These tvo modules are both simple slaves,  The third
madule has both slave and master functions. At the completion
of a neutron burst, this module reads and processes the data
capired in the buffer module and generates addresses o in-
crement in a histogrum storage module, The last custom maodule
is the histogram xtorage module, amd it is purely a slave. The
interface module 1z the Kinetic Systems model F914, 0 compmer
ciolized version of the QP developed at Fermilab, ‘The flow of
data between these modules iy shown in Fipure 3,
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Figure 3. Data flow for FASTBUS hardware,

EMC

Expanding on this briel introduction, we begin a more dclailed
explanation of system opcration starting with the Programmable
Master Clock (PMC), the time interval generator. The PMC ac-
cepts an external start signul from the pulsed target sysiem and
begins incrementing a binary scaler. Uniform time channel
widths of 50, 100, and 200 ns may be software selected, A local
1 Mbit memory w'thin the the module allows neighboring uni-
form timec channels to be combined to form logical time bins
consisting of multiples of the basic clock frequency. As logical
time bin boundaries are encountered, a graycode rounter imple-
mented with PALs is incremented.  The graycode count is
distributed to all TOF bulfer modules via the suxiliary bus,

The specification of the logical time bins is accomplished
through the use of predefined parameterized algorithms.
Generally, thesc algorithms specify the logical time bin width as
a linear function of the time interval.  Under sofltware control,
the appropriate bits in the | Mbit memory are set o identify the
bin boundaries. Similarly, software loads the PMC hardware
register which identifies the time interval during which operation
is enabled, TMIN to TMAX. Incrementing the graycode counter
is inhibited until TMIN and after TMAX. Front panel outputs
corresponding 1o logic levels Tor TMIN and TMAX ure provided
as control inputs for the TOF and MAPPER modules.

For time-of-flight measurements, system deadlime must be con-
stant in order to apply dradtime corrections. If the data acquisi-
tion system is strobed at the arrival of an event, some time in-
terval must elapse before another strobe can be accepted by the
system. If this time interval is kmown and constant, then based
on the counts observed in a channel, the effect at later times can
be computed. However, if the deadtime is not known, then the
shadow cast by any event is of unknown length in lime and rig-
orous corrections are impossible. Thus careful monitoring of
deadiime losses in time-of-flight measurements is critical. Nor-
mally, deadiime losses are monitored and should a failure to store
as a result of deadtime be detecied, then all of the data associated
with the flawed burst are discarded.

The time-of-flight input buffer (TOF) correcily handles these
deadtime issues. Failure to ciore an event can be detected down
io pulse pair separation times of 10 ns. To buffer all events as-
sociated with a single burst of neutrons, two independent frames
are provided which allow concurrent lists of 16K events in each.
Designed with a FIFO buffer shead of the main frame buffers,
bursts of data with up to 64 events are acquired at rates up to 20
MHz. A pair of latches on front of the FIFO receives event pairs
without dats loss for pulse pair separation down to 25 ns.

Each TOF module supports inputs from four independent detec-
tors. The data path for each input is parallel up to the point that
data emerge from the FIFO. At this point data enter the shared
frame buffer. Contention for storage is resolved with a round-
robin algorithm so that no single channel can lockout other
channels’ requests for storage.

The TOF module combines time data from the PMC and parallel
data from the detector system. The allocation of bits to eitner
time or parallel data is flexible within limits. Generally, a min-
imum of 12 bits of time, 10 bits of parallel data, and 2 bits of
encoded input number are included in the 32 bit event descriptor
inserted in the frame buffer. The other 8 shared bits can be
allocated to time and parallel data in any combination, e.g. 4
bits of time and 4 bits of parallel data or 6 bits of time and 2
bits of parallel data. The allocation is performed with separatc
jumpers for each of the four input channels. Both time and par-
allel data inputs arc provided through the auxiliary conncclor.

Timing strobes for the four channels arc cabled through front
panel LEMO connectors. Each channel also has an external en-
able/disable LEMO connector which may be used to enable
sclectively active input channels. Other front panel inputs in-
clude the TMIN signal generated by the PMC module. The TOF
accepts time ctrobes only during the period between TMIN and
TMAX, i.e. the time during which the signal TMIN is at a high
logic level.

The TOF includes a front panel connector for a signal provided
to reset the frame counter. ‘This counler increments at the com-
pletion of cach frame so that should experiments require frame
dependence for time resolved studies, the frame number in a se-
ries could be provided 1o the MAPPER processor. The resct in-
put allows synchronization of the TOF counter with external pe.
riodic conditions applied in the sumple enviro.:ment.

MAEPER

At the completion of data collection for a single frame at time
TMAX. the MAPPER processor module processes the frame that
we designate the analysis frame. The PMC module provides o
TMAX signal which initiates the MAPPER process.  Firs. the
MAPPER interrogates the TOF buffer 1o determine il an unflawed
frame is availoble, aid il so how many events are present  The
frame count, TOF module slot number, and spectrum lenpth are



CSR 1

MODULE

R’ DA

ENCODED

\ A

[FRANME 1 10
IAS

POSITION

12

MASK

| MAsSK___|

T 16 T 24 T 18

¥ 20
GRAYCODE
CONVERTER

LOOKUP
MEMORY

SPECTRUM
LENGTH

—1 MULTIPLIER

REGISTER

OUTPUT
FIFO
vV

CSR 11

Figurc 4. Block diagram [or data paths in the MAPPER.

also rcad from a control register at this time. If valid daa are
available, then the master processor in the MAPPER moves
event data inlo an internal input buffer. Concurrently, a second
sequencer processor removes cvents from the input buffer, ap-
plies a data compaction algorithm, and places the reduced data in
a second buffer, the cutput buffur, After filling the input buffer,
the master processor lakes data from the output buffer and uses
these data as addresses of the channels to increment in the
histogramming mcmory. As in filling the input buffler, the
output buffer is processed as blocks of data. The master
processor continues to alternate between filling the input buffer
and emptying the output buffer vntil all the events in the frame
have been processed.

While the MAPPER docs its werk, the TOF fills its other [rame
buffer, the acquisition frame. Should the MAPPER fail to finish
processing the anslysis frame at the time the TOF wishes to
switch frames, then the TOF simply discards the data present in
the current acquisition frame, nnd rewrites new data therein. A
signal provided on a [ront panel LEMQ connector on the TOQF
indicates that a frame hus been lost,

Al first glance the compaction algorithm for the MAPPER ap-
pears hopelessly complex. However, with the help of the block
diagram in Figure 4, the process is [ar more apparent. As noted
above, the frame count, TOF slot number and spectrum length are
read from the TOF prior to transfer of data from the frame. This
information is saved within the MAPPER in control and status

register (CSR) 1 and used throughout the processing of the
frame. Next the master processor begins filling the input buffer
through CSR 10. Under the control of the sequencer, data [lows
through to the output buffer finally arriving at CSR 11. Afier
emerging from the input buffer, an event is decomposed into
time and parallel data. The two bits of encoded input channcl
number are separaied immediately ard appended to the other
module slot bits to provide a input index number unique for each
channel of cach TOF. The shared bits arc masked and specificd
bit fields concatenated with those ficlds simply passed through.
The time bits are first converted from graycode to binary, and arc
then biased by an amount proportional to the frame count. This
24 bit sum then passes directly to the mulliplier logic.
Similarly, paralle]l daia is biased by an amount determined by the
unique input index. Unlike the biased time. data, the biased
parallel data is used as an address in a 64K deep lookup table
which provides an indirect 16 bit result o the multiplier logic.
Nolec that only the low 16 bits of the biased parallel data are
effective in addressing the lookup able.

The multiplier logic operates in one of two modes. Either the
mapped parallel data is multiplied by the spectrum length and
added 1o the time, or the time is multiplied by the spectrum
length and added to the mapped parallel data. The choice is dic-
tated by the application. Generally, for instruments consisling
of arrays of individual detector elements, it is desirable w oper-
ate in the latter mode so that one has time varying most rapidly,
and thus has time-of-flight spectra for ¢ach detector element,



For surface area detectors, on the other hand, it is generally more
degirable 10 reverse the order so thai the parallel (position) data
is most ;.pidly varying thereby to produce a surface histogram
for each time slice. In this case the 24 bit time value is masked
to only 16 bits since the mvu'tiplier can process cnly 16 bit
operands. The mode for the mwultiplier is set with a bit in CSR
- 0.

As with the PMC modv'es, software algorithms are provided bty
the data acquisition system to load appropriate values in the
table lookup memory and to establish the various biases for
most conventional experiments. Currently a single algorithm is
supported for the MAPPER which allows definition of an arbi-
trary number of ficids within the parallel data; the user may
specify a compression factor for each field. This factor need not
be an integral power of 2. For more exotic applications, the
user may define hit pattemns as required by the experiment and
the system softv-are simply movcs these values to the specified
hardware memories.

BULXSTORE

Compacted data from the MAPPER form the addresses which are
incremented within the RULKSTORE modules. Th= BULKSTORE
is desigried to treat a data space address connection that is not
accompanied by any data cycles as an increment-address
command. The address is captured in a FIFO buffer directly from
the data space next transfer address (NTA) register. At speeds
governed by memory cycle times, the specified internal address
is accessed, incremented, and replaced in memory. Normal
FASTBUS block transactions are also supporied by the
BULKSTORE to enable efficient histogram clearing, monit-ring,
and data read operations at run completion.

The current implemeniation of the BULKSTORE module offers 2
Mwords of histogramming memory in each module. The intcrnal
word length is 24 bits of which one bit is reserved for parity.
No crror correction is available. Curently uncier design is a suc-
cessor module which. based on 1 Mbit chip technology, will of-
for 8 Mwords per module with error detection and correction for
24 bit words.

(icncral FASTBUS Fealures

To ensurc reasonable access to the large memories present in
each custom FASTBUS module type, block mode transactions arc
implemented throughout. Logical addressing modes are also
supported by the module suite. Logical addressing is particularly
critical in the BULKSTORE module for use with our MAPPER
data compaction algorithms.

Although it is tempting during design to introduce special dedi-
caled buses between modules 1o simplify Lthe design and tc en-
hance performance, our designs adhere (o the standard trans-
actions for interrindule communication defined for FASTBUS
systems. A: a corsequence the MAPPER module is significantly
more complicated than it otherwise might have been. This is
particularly apparent at the bus interfaces where block input and
- block output must be buffered. However, since the design is
suictly generic FASTBUS, when changing requirements dictatc a
processor with greater flexibility, albeit with lower performance,
it will be possible to substitute a commercial product with an
onboard gencral purpose processor for this custom module.

External input signals for the TOF are brought in through the
auxiliary connector. These inputs include four sets of parallel
data for each of the four scparate channels in the module and a
single parallel bus with the time information. We associated the
lime inputs with the parallel detector inputs und feel that in this

case use of FASTBUS protocols for PMC/TOF commumication is
neither effective nor appropriate.

Dawa Acquisition Sof
Integration with DCI

During the early stages of the sofiware requirements definition, it
was decided to integrate our Data Acquisition Command Language
(DACL) system into the Digital Equipment Corporation VMS en-
vironment o the maximum degree. The advantages of this poli-
cy are immediately obvious. VMS constitutes a versatile, ma-
ture, sltable software development environment with many
powerful built-in features which would otherwise require local
support to develop and maintain. Particularly interesting among
these facilities are the command lar.guage interpreter which sup-
ports the standard DCL command language, the online help
facility, and condition handling and messages.

All DACL commands are implemented as extensions to the stan-

dard DCL command lmgunge7. This is accomplished using the
VM Comunand Language Definition (CLD) utility and complete-
ly eliminates the need for local personnel to develop, modify
end maintain a command language interpreter for the data
acquisition system software user interface. As a consequence,
DACL commands exhibit the same syntax and semantics as stan-
dard DCL commands and reside in the same command tables. The
CLD provides a modular, high-level mecheanism for integrating
new commands into the system withoul creating any impact
upon existing data acquisition software. In addition, it provides
the means for supporting several versions (e.g. production and
development versions) of a software product simuliancously, and
allows a user to select dynamically at run time the version which
is to be executed.

Even more important thai: the benefits accrued by the develop-
ment community are the advantages nreeived by the users.
Most LANSCE users are already familjar w.*h the DCL command
language from previous interactions with computers of the VAX
family. Consequently, the DACL system appears as merely an
extension of an already comfortable environment. Overheads
associated with familiarizing the user community with (yet) an-
other command language with its own syntax and semantics are
eliminated entirely, and transition into the DACL. environment is
cased considerably. Because DACL is thoroughly integrated with
the DCL system, no special action is required to enable the data
acquisition system: a DACL command may be executed from any
point at which a DCL command is valid.

Integration with DCL offers numerous additional functional
benefits. In addition to the daia acquisition functionality which
is locally defined for DACL commands, the DACL system has at
its disposal all of the features of the DCL system. DACL com-
mands can be included in DCL command files where they may
exploit the control structures, symbol substitution mechanisms,
arithmetic operations, lexical functions, condition handling and
input/output capabilities of the DCL system. In this manner, the
DACL system constitutes an extension to a powerful, procedural
programming environmen., and frees local personnel from the
responsibility of maintaining the vast majority of that
environment's features. Indeed, some LANSCE scientists have
utilized these flexible DCL/DACL features to provide data
acquisition "shells" for their instruments.

DCL (and by cxtension, DACL) also provides a flexible user in-
terface which adapts to the level of expertise of individual users.
Commands and qualificrs arc meaningfully named and are therc.-
fore easily assimilated and retsined by the casual user. In their
unabbrevisted form they provide a self-documenting feature for



interactively execuied commands or command procedures. Expert
users, however, can employ terse, abbreviated forms of all com-
mand names and qualifiers in their interactions with the system.

The structure of a typical DACL command is shown schematical-
ly below:

$ NAME/SYNTAX /[qualifiers parameter

The NAME of the command specifies the class of hardware mod-
ule, data acquisition facility or activity which will be operated
upon by the command. The /SYNTAX component specifies the
generic operation to be performed. For example, the command
name MEMORY refers to a class of commands which perform
histogram memory management for the DACL system. Particular
memory management operations are specified by appending a
[SYNTAX qualifier to the command name. Extending this
example, MEMORY/ALLOCATE specifies an operation 1o define
and reserve storage for a histogram data area. Similarly,
MEMORY/LIST causes the contents and/or characteristics of a
data area to be written to an output device (or to a file).
MEMORY/DELETE removes a histogram data arca Jefinition and
releases the memory associated with it, and MEMORY/MODIFY
permits a user to change data area characteristics.

A rypical DACL command accepts a single parameter on the
comunand line. The parameter is considered to be the object
upon which the command operates. In the case of the MEMORY
commands specified above, the parameter would specify an indi-
vidual data area or group of data areas to be allocated, listed,
deleted or modified, respectively. DCL rules require positional
syntax for parameters. To avoid the confusion which always ac-
companies positional parameters, the DACL system permits no
more than one parameter on a command line.

Most DACL commands accept one or more nonpositional quali-
fiers on the command line. Qualifiers serve 1o modily the com-
mand action thereby to customize the result. Qualifiers may be
required or optional, and may have an associated, user-specified
value (or list of values). In the case of the MEMORY example
refersnced above, qualifiers would be provided to specify his-
togram characteristics such as dimension, protection, and data
type. The combination of qualifiers and a single parameter al-
lows the user to provide position independent information on
the command line and results in a far simpler user interface.

The VMS CLD utility provides a high-level language for defining
the command name, associated syntaxes, qualifiers and parame-
ters for cach DACL command. This facility supports definition
of defuult values, validation criteria and disallowed combina-
tions of command clements, and specifies the image o be
executed when the command is invoked. Once 8 command
definition is compiled and integrated into the DCL environment,
the DCL command language interpreter handles all parsing, vali-
dation and paramecler passage between the command and the un-
derlying exccutable image.

VMS facilities arc also employed for condition handling and for
issuing messages. All slalus messages issued by any DACL
software emanate from the VMS message facility. This policy
allows the development tcain to maintain central libraries of
gencric messages which are accessible 1o all DACL software.
The message facility permits cach generic message o be cus-
tomized at excculion time with numeric or textual inserts.
Through this approach, all DACL messages share a common
format which is consistent with the format used by other VMS
applications. In addition, reuse ol messages is encouraged,
thereby reducing the number of ways in which a particular error
condition is presented o the user 0 only one,  Finally, use of
the VMS message fucility allows condition values to be propa-

gated back to the DCL level from any DACL command, thereby
allowing the user to test sutomatically the completion status of a
command within a command procedur=, and to take meaningful
action based on the result of the test.

The VMS onlinz help facility is employed to provide online
documentation for all DACL commands and messages. The entire
DACL user's guide is available online to any computer user. Be-
cause the commands are integrated into DCL, the format of the
help screens and organization of the help libraries is identical to
those for standard DCL commands, thereby further reducing the
overhead incurred by an unfamiliar user in becoming acquainted
with DACL. Furthermore, every message that can be issued by
the DACL system has a help file entry which elaborates upon the
meening of the message and suggests a course of action for the
user to follow to resolve the error condition.

The software which underlies the DACL commands is organized
into a single program for each command name/syntax combina-
tion. This :oftware is written exclusively in Pascal using sound
design and development lechniquess'll within the context of a
rigorous software engineering methodology. Software is highly
modular (only one routine per file) and is rigorously specified,
designed and documented before implementation. Each program
is verified and validated by executing a formal suite of validation
tests. Because of the thoroughness with which all software is
specified, designed, implemented and tested, the DACL system
has proved 1o be an extremely reliable environment, and one
which is very easy to modify and maintain.

The DACL software is characterized by an open architecture
which permits the ordinary user to access system internals in a
high-level fashion. The system supports libraries of standard
interface routines which permit a user to interact simply with the
data acquisition environment. This provides users with simple
building blocks from which they can construct sophisticated
custom software for performing specialized monitoring, control
or analysis tasks which arc unique to their instrument or
experiment. The standard routines are black-box solutions which
are easily comprehended by a user and which provide controlled
and synchronized access to the internal data structures.

The entire DACL system is comprehensively dr -umented at all
levels.  All design and maintenance documentation is kept cur-
rent and placed inline within all Pascal sources. This documen-
tation includes three levels of procedural documentation as well
as an informal data dictionary. In addition, all commands and
library routines are documented at the user level and this docu-
mentation is published in the facility software user's guide.

The DACL Henp

Every data acquisition system Lhat relies on more than one pro-
gram to perform its funclions requires a set ol global control
data structures in which the system configuration is recorded and
which can be used to communicate information among the vari-
ous constitucnt computer programs. Traditionally, these data
structures have been implemented as statically allocated global
data structures of predeclared length (usually COMMON blocks).

Within most environmenis, such statically-defined control struc-
ures muy create more problems than they solve. The design and
implementation difficultics arc obvious and quite significant. A
designer must foresce every control structure and substructure that
will be required by the sysiem, and must be able to predict the
amount of storage 1o preallocale for ecach. This generally results
in cach control structure being overallocated to allow for "future
expansion”.  This approach promotes extremely inefficient
utilization ol resources and provides litle additional flexibility.



Most control structures have largc amounts of unused slorage
associated with them and in the event that a control structure
overflows its preallocated storage there is no possibility of
allocating any of the unused resources of another structure.
Consequently, the overhead associated with Lhis data structure
organization is continually increasing and the efficiency of the
sysiem is always on the decline.

In the LANSCE environment the traditional approsch has other
serious deficiencies. Data acquisition requirements vary
drastically across the spectrum of supported instruments and ex-
periments.  What may be adequate control structurc storage allo-
cations for one instrument or experiment are likely to be entire-
1y too small for riuother and excessive for o tnird. Even more
importantly, the mix of required control structures variex widely
across the various experiment and instrument configurations.
Foi example, some experiments requirc large numbers of inde-
pendent histogram data areas whereas others utilize only a few.
Therefore, in order to use the traditional approach, the each
control structure must be extensively overallocated thereby 1o
accommodate the demands of the worst casc configuration of
each eperiment. This imposes a huge overhcad upon every
experi-nent and reduces all experiments to the lcast common
denominator in terms of efficiency.

Conventional systems that utilize siatic allocation schemes also
exhibit severe functional problems. Regardless of the space
available in other (possibly unused) contrel structurcs, the user
is strictly constrained in the number of control structures of n
particular class which can be defined. For example, such a sys.
tem may preallocate storage for 100 histogram data areas. This
places an absolute upper bound on the number of data arcas
which may be allocated. There is no capability for "borrowing”
unused resources from an undersubscribed structure. Extending
the allocation for a particular control structure requir~s extensive
modification of the existing system, follow.d by a global sys-
tem rebuild. Similar drastic action is required whenever a new
control structure is added. As a result, the system becomes func-
tionally rigid. New applications must be posponed until the rc-
quired system software applications are performed, thereby sti-
fling the creativity and spontancity of the user community,
Compounding this problem, conventional approaches generally
implement thesc structures as arrays in an obsolete programming
language. This virtually guaranteer a closed architecture which
makes access by other applications difficult and extremely prone
to error.

A far more appropriate and effcclive policy for allocating control
structures for the DACL systom borrows ideas which have been
used for many yecars in computer operating systems and modern
programming languages. This approuch climinates the problems
of static allocation by implementing a locally developed facility
which dynamically (at run-time) sllocates control structures from
a common pool of preallocuted slnragclz. Owing to its lunc-
tional equivalence (and analogoux syntax) to the dynamic vari-
ables and pointers which can be found in modem programming
languages such ax Pascal and Ada!3, we designate this facility
the DACL. Heep.

The implementation detuils of the DACL Heap are completely
hidden from the majority of the LANSCLE data acquisition user
community.  For thowe individuals who are developing applica -
tions which must interface with it, the only functional difference
between the DACL Heap and its Pascal or Adal? counterparts is
the system-global and nonvolatile nature of the DACL, [acility,
The DACL Heap is acceskible by every image in the system and
rotains ils integrily acruss image executions,

The DACL Hcap consists of a data base of singly linked lists of
logical descriptors. Each linked list cormresponds to a particular
class of control structures, €.g. memory control blocks (for his-
togram data areas), scaler descriptors, preset scaler descriptors,
descriptors for each of the FASTBUS and CAMAC hardware mod-
ules known to the system, efc. Each descriptor is 128 bytes in
length and is subdivided into fields to contdin the information
necessary to describe the entity represented thereby. Of these
128 bytes, five are preempted by the system. The DACL Heap
currently supports a maximum of 256 descriptor classes of which
approximately fifty are predefined by the DACL system. The
remainder are available to be customized by the user community.

The DACL Heap is implemented within a YMS global section
which has the capacity to hold 10000 descriptors. Each descrip-
tor represents a single entity (a single histogram data area, for
c..ample). All control structures arc comprised of linked lists of
related descriptors within the DACL Heap. As a result, no prede:
fined limit exists (within the 10000 record maximum size) for
the size of a particular control structure. In addition, only those
conlro] structures which are specifically allocaied by a data ac-
quisition application are ever present within the DACL Heap, and
these structures always consume the minimum storage necessary,
Consequently, control structure allocation becomes efficicrit and
compact.

Each descriptor is comprised of a standard partition (the five
bytes of system overhead) and » control-structure-dependent par-
tition. The standard partition is subdivided into two pointers,
designated NEXT and MCRE, respecitively, and a control structure
identifier called the TAG. These fields or cupy the first five
bytes of every descriptor. The rcraaining 123 bytes of control-
structure-dependent information is partitioned into fields as nec-
essary lo describe the entity associated with the control siructure
(as specified by the current value of the TAG). The TAG may as-
sume any of 256 enumeration values.

The NEXT pointer refercuces the next logical entity in the con-
trol structure. Although control structurcs may be multiply
linked, they arc ncver linked bidirectionally. The DACL Heap
implementation also reccgnizes that 123 bytes of control-struc-
ture-dependent information is not necessarily sufficient 1o de-
scribe completely every DACL entity. It therefore provides the
capability to deline an cxtension descriptor which can be
uniquely parititioned to accommodale the overflow from the pri-
mary descriptor. The exiension descriptor is always referenced
from the primary descriptor via the MORE pointer. An cxlen.
sion descriptor is a distinct DACL Heap construct with a standard
partition (including a MORE pointer) of its own; it can be ex.
tended as weil. Conacquently, a single logical entity can be
represented within the DACL heap as a linked list consisting of
a primary descriptor and an unlimited number of extension
descriptors, all linked through the appropriate MORE pointers.
In this spirit, the DACL Heap also supports a dynamic string fa-
cility which permits strings ot any length 10 be represcnted and
climinates the nccessity of declaring a maximum length for any
DACL.-Heap-resident character string.  Figure -5 is a schematic
representation of a typical DACL. Heap logicul descriptor.  Figure
6 illustrates scveral ways in which logical descriptors can be
linked together 1o form control structures,

The DACL. Heap facility provides a complete set of library resi.
dent utility functions for interfacing with the control structures
which reside therein,  Included arc utilities to allocate descriptors
from the common pool and to rclease (deallocute) unneeded de-
scriptors back into the pool. A suite of utilities is provided to
maintain (insert into and delete from) the control structure linked
liste.  Wtilities for resetting the DACL, Heap and Tor listing its
canlents are also provided, as well as o set of procedures which
support the dynamic string facility. Becanse the DACL heap is a
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Figure 6. Typical DACL.-Heap-resident control structures.

resource which may be shared by many processes and/or uscrs, n
pair of utilities is provided which employs the VMS Distributea
Lock Manager to mediate access to Heap contents. By making
cxtensive use of recursion, the DACL Heap utilitiex can process
control structures which are linked in very complex ways,

The DACL Heap utilities perform extensive error checking and
validation to ensurc that the integrity of the Heap is not com.
promised. They allow the details of the DACL Heap's
implementation to be effectively hidden from all programmers,
thercby forcing the use of the standard interfaces, These inter
faces protect the contents of the DACL Heap from the most error
prone operations and significantly reduce the possibility of data
corruption due to improper access,

The DACL, Heap in designed 10 provide a simple, consistent in-
terface for non-DACL applications as well. Although its archi
tecture is deliberately kept open to encourage access by a wide
range of applications, considerable effort has been expended o
keep ity underlying stiucture and implementation details hidden
from all programmers and datn acquisition users,  One method for

accomplishing this goal is to reference cach DACIL Heap
descriptor by a unique, user-specitied name which is assignad
when the descriptor is allocated. This approach eliminates the
necd for users to specify otherwise meaningless offsets into low
level data structures and helps to keep the DACL Heap interface
at a very high level. As a bonus, it provides a 'ngically consis-
tent, sell-documenting framework in which LANSCE users cun
operate.  The implementation of DACL Heup descriptors ax
Pascal records further simplifies referencing the information
stored therein. Data must be referenced by record and fiekd numne
so the possibility of data corruption duc to incorreet offsets into
n datn structure is eliminated,

In summary, the DACL Heap provides a practical alternative to
traditional, statically-allocated control structures.  [ts imple
mentation is functionally more powerful and more efficient in its
utilization of resources than aro static structures. It offers the
additi- ial advantage of significantly enhancing system adapl
ability and robustness and climinates the need for frequent soft
ware modifications by system  personnel o implement user
requested exhineements,



State Machine Featurcs

One of the major operational deficiencies of many broadly func-
tional systems is the ability to execute syntactically valid com-
mands in a semantically invalid sequence or context. As the
functionality and complexity of systums incrcases, the opportu-
nity for committing such errors also rises dramatically. This is
a particular problem at LANSCE owing to the large number of
new or unfamilier users. Of particular concern are errors that
compromise data integrity. Owing o the great expense incurred
in producing the LANSCE neutron beams, and the high user de-
mand for access to the facility, such errors can have serious eco-
nomic, political and scientific repercussions.

Individual data acquisition commands and facilities can be de-
signed to enhance their own hardiness and reliability, and cer-
tainly this strategy has been exploited 1o the maximum degree in
the DACL system. However, a consistent architectural approach
is required to make the system, as a whole, more robust. in
order 1o achieve tiis goal within DACL, we decided to implement
the entire software system as a state machine. This im-
plementation defines four valid data acquisition states for the
DACL system:; INITIALIZE state, RUN state, HALT state and
PAUSE state. The prevailing state uf the system is maintained
in a control structure in the DACL Heap. At any time during data
acquisition or setup, the DACL system is required to be in one
(and only one) of these states. This approach postulates that
. there are no dangerous commands, merely dangerous contexts,
ard that these contexts may be identified and defused prior to
cominand exccution.

The DACL state machine implementation defines a set of valid
data acquisition states for each DACL commend. Upon invoca-
tion, the first task of every command is to check the prevailing
state of the DACL system against its valid set. If the prevailing
state does not maich one of the valid states an crror message is
issued and the command gracefully exits without performing any
further processing. As such, commaud execution is restricted to
occur from within a sensible context, and the vast majurity of
scmantic errors car. be identified and automatically avoided prior
lo causing any danage. To further aimplify the implementation,
the data scquisitivn state validution process is execuled by s
single, library-resiu~nt, utility function, thereby supporting the
casy integration of state machine features int» all DACL
communds.

The possibility of inadvertently placing the DACL system into
an undesired state (as the result of a side cflect of a valid com-
mand cxecuted in an appropriste context) must also he conaid-
cred. The DACL state machine implementation prevents the oc-
currence of this situation by defining a sot of state transition
commands. Thesc commands represent the only means by which
a user may change the data acquizition state of the DACL, rystom,
There is one (and only one) state transition command for each
valid datn acquisition state transition,  Furthermore, the state
transition commands have no functionality beyond changing the
DACL siate; all other DACL commands are expressly forbidden
from changing the data acquisition state.  Hence, the data acqui-
sition state can never be changed impiicitly and the problem of
side effecly is climinated.

The various DACL dawn acquixition states are shown schematical-
ly in Figure 7 along with the the DACL, commands that invoke
valid data acquisition state transitions. ‘The INITIALIZE stato s
provided for data acquisition configuration operations,  Opera-
tions which define or mndify DACL. control structures, or which
download hardware modules are valid if exceuted from this data
acquisition state.  The HALT state provides a well defined state
for the data acquisition aystem to be in prior to the beginning of
v run and after the conclusion of 4 run. The RUN state s

. ENDRUN  BEGIN INITIALIZE
RESUME
GAUSE INITIALIZE
IN RUN
BEGINRUN  c\ 0 INITIALIZE

Figure 7. The DACL state machine.

initially reachable only from the HALT state. Upon eatering the
RUN state, data acquisition hardware modules are automatically
started and the time and date of the beginning of the run is fixed
and stored in the DACL Heap. The RUN state may be exited
only by entering the PAUSE st2te. Upon transition into PAUSE,
data acquisition hardware is automatically inhibited. The PAUSE
state is provided to allow the user to interrupt the data acquisi-
tion without terminating the data acquisition run. In addition,
data can only be saved to a disk file from the PAUSE siatc.
From the PAUSE state the user may re-enter the RUN state 10
resume data acquisition, or may terminate the run by re-entering
the HALT state. In the former case, the data acquisition hardware
is re-enabled ancd restarted. In the lauer case, the run is
terminated, the run number is incremented and an ending time
and date stamp for the run is fixed and stored in the DACL Heap.

Early in the design effort for the stcte machine facility it was
recognized that situations would arisc in which enforcement of
the state machine features could cause significant inconvenience
and provide no real benefits. In diagnoetic environments, for
example, it is often convenient to bypass state machine fcalures
thereby to cxpedite the debugging or testing function without
being furced to issue numerous state transition commands. For
this reason a mechanism was dovised by which a privileged user
(system manager, developer or Icad instrument scientist) can en-
able a thechanism for bypassing :ata acquisition state checking.
If this feature is enabled, state checking can be bypassed by any
user for the current execution of a givea command by including o
standard qualifier on the command line when the command ix in
voked. 1t hax beon our experience that this feature is used only
rarcly, and has never been used during production data acquisi
tion.

Intredugtion: The DACL eystem is desigaed to function as o
comprehensive acquisition, control and dala management system
for all experiments mounted at the LANSCE facility. Tt is tho
oughly integrated with both the VAX/VMS and FASTRUS envi
renments, and ir coniunction with standard features of each
environment, provides all necesnary functionality to configure
the experiment, snd to supervise ita exccution, to provide statuy
information which documents the progress and health of the ex
periment, (o display data in a variety of formats and to perform o
number of other functions in support of data storage, manage
ment , manipulation and retrieval, nx well ax hndware develop
ment and dingnostic activities,



The commands that comprise the DACL sofiware system can be
logically partitioned into five facilities. The Resource com-
mands address the configuration and management of the various
hardware cnd software resources associated with data acquisition
at LANSCE. Included among these are a suite of commands to
configure, download and interrogate the locally developed
FASTBUS hardware modules which are the backbone of the data
acquisition system. Additional commands are provided to con-
figure and conurol a variety of commonly used CAMAC modules
includiig scalers, prosel scalers, temperature controllers and
stepping motor conwollers. Add:tional rerource commands are
provided to manage and examine the contents of the DACL Heap,
ard to perform memory management for histogram data nreas.

DACL Control commands provide the functionality required
. vontrol the execution of an experiment. All data acquisition
state commands are included in this category, as well as com-
mands to int-rrogate the system for its current stetus. In uddi-
tion, an automated facility for processing data acquisition tasks
in a background mode is included among the Control commands.

The DACL Data Management facility is compriscd of commands
which control the creation of specially formatted files in which
experiment data and configuration information can be stored at
the conclusion of a run, as well as commands which automatical-
ly catalog and archive these files. The Data Management facility
supporis a library of siandard utility subprograms which permit a
user to access archived data in various ways. Also supported is a
command which permils a user to perform algebraic operations
on entire data histograms.

The DACL Graphics facility provides a suite of commands for
confizuring and executing dsta plots in ncar time on a varicty of
devices, DACL graphics capabilities range from simple, low
performance, inonochrome histogram plotting to high perfor-
mance, workstation-based, color plots of multiple histograms
and transformed lata.

The DACL. FASTBUS Diagnostics facility is a conprchensive
suite of locally developed commands which ate used in conjunc-
tion with the cebugging and checkout of locally developed
FASTRUS hardware modules. Included within this facility is a
suite of low level commands which perform basic FASTRUS
transactions as well as a complete set ol diagnostic commands
for ench FASTBUS module.

The DACL Resource Conunands: This fucility provides the func-
tionulity 1o managec all of the various resources required for
LANSCE data acquisition. 1t provides support for all hardwarz
maodules used hy an experiment as well as DACL Heap and his-
togram data arca memory management functions.

The hardware modules supported by the DACL Resource Tacility
include the four locally developed FASTBUS modules: the Pro
grammable Master Clock (supported by the PMC command), the
Time .of-Flight Duffer module (TOF commane), the MAPPER
module (MAPPER commuud) and the Bulk Memory module
(RULKSTORE command).  Supported CAMAC modules include
scalern (the SCALER commuand), preset sealers (PRESET SCALER
command), temperature controllers (TEMPERATURE) and step
ping motor controllers (MOTOR),

With only minor variations, the hardware Resource commanda all
employ the same set of generic ayntaxes to specily operations
upon hardware modules,  ‘These ayntaxes include /ALLOCATILE,
[CLEAR, ANITIALIZE, /LIST, MODIEY, INEW and READ. Ad
ditlonal qualifiers and a conunand parameter may e used in con
Jjuerion with the command name and syntax to specily dutn o1

control information for the operation specified by the command
name/syntax combination.

In order to make the exisience of a module known to the DACL
system, the user must employ the appropriate Resource facility
command with the /ALLOCATE syntax to create a logical de-
scriptor for the particular module and to insrt the descriptor into
the 1ppropriate control structure linked list in the DACL Heap.
The /ALLOCATE operation associales a use:-specified name
(which is provided as the command parameter) with the module
and stores the name in the module descriptor. It also provides
module configuration data specified with command quslifiers.
The configuration data is also storzd in the DACL-Heap-resident
logical descriptor. For example the following command defincs
a logical descriptor for a FASTBUS Bulk Memory module (which
the user has chosen to name HISTOGRAMS) located at FASTRBUS
geographical address 20:

$ BULKSTORE/ALLOCATE ,SLOT=20 HISTOGRAMS

In general, /ALLOCATE operations can be performed only from
the INITIALIZE data acquisitior. state,

The /INITIALIZE syntax causes information resident in a mod-
ule's logical descriptor to be downloaded into the specified
module, thereby readying the module for the data acquisition
task. Generally, the module 1o be initialized is specified by
name in the command parameter although the /ALL qualifier may
be specified instead of & module name. In the event that /ALL
is specified, all allucated modules in the control structure
specified by the command name (e.g. BULKSTORE) are down-
loaded. An /INITIALIZE ope:ation can only be performed from
the INITIALIZE data acquisition state. In order to initialize the
Bulk Memory module which was allocated in the preceding ex-
ample, either of the following cummands may be used:

$ BULKSTORE/NITIALIZE HISTOGRAMS
or

$ BULKSTORE/NITIALIZE /ALL

The /MODIFY ayntax is similar in lunction to the /ALLOCATE
syntax. It permits a user to change the characteristics of a hard
ware module which is already allocated. The /MODIFY syntax
scurches tho appropriate control structure for a descriptor which
corresponds to the name specified by the user in the command
parameler. The descriptor is updated with new information as
specified through jualifiers which are included vn the command
line. The MODIFY syntax daoes not download any new informa
tion w the affected module--only the DACL -Heap-resident o
scriplor is changed, In order to communicate the changes to the
hardware module, it must be reinitialized. /MODIEY operations
are permiticd from cither the INITIALIZE or the HALT data ae
quisition state,

The /NEW syntax reinitinlizes the control structure associated
with the command name.  This causes all logical deseriptors
which are currently present in the contral structure to be deleted
and deallocated,  Upon completion of a /NEW operation, no
entitics of the associated control atructure are known to the sys
tem. A /NEW opcration may be performed only from the
INITIALIZE data aequisition stme,

The /LIST syntax permity a user to display one or more members
of a particular control structuee. ‘The /LINT operation senrches
the associaled control structure Tor the deseriptor which cone
sponds to the name specificd m the command parameter, The
contents of the Jogical desetiptor are then formatted into a repon



which is :ssued lo the appropriate output device or file (as speci-
fied by the user). Aliernatively, the user may specily /ALL in-
siead of providing & name in the command parameter. In this
case, the repor: contains an entry for each currently allocated
entity associated with the control structure. A /LIST operation is
valid from any data acquisition state,

The /READ and /CLEAR syntaxes arc generally associated with
modules that contain local memories. The /READ syntax causes
the contenus of the local memory or storage register to be read
and the associated logical descriptor to be updated with the
value. The /CLEAR syntax causes the local memory or register
to be zeroed. /CLEAR operations are generally permitied from
cither the INITIALIiZE or the HALT data acquisition states.
/READ operations are permitied from any data acquisition state.

The Resource faciiity also supports commands to mansge DACL
Heap resources as well as histogram data arca memory. Two
DACL Heap commands arc provided. HEAP/NEW provides a
mechanism for resctting the DACL Heap to a known state.
When this comn.and is issued, all existing DACL Heap records
sre deallocated (returned to the common pool), all pointers are
cleared and 1 predefined set of descriplors is allocated te config-
ure the DACL sysicm in its default statc. HEAP/LIST gencrates s
report which displays the standard partition of each record which
is currently alincated in the DACL Heap.

The DACL histogram data area memory management subsystem
provides the user with great flexibilily to configure histogram
memory in a varicly ol ways to support a data acquisition task,
Under the DACL system, histogram daia arcas may be allocated
from cither FASTBUS memory or {from VAX resources (a global
section). Three cluuses of data area are supported: FASTBUS,
SCRATCH and VAX. FASTRUS duta arcas are sllocated from the
memory resident in an allocated Bulk Memory module. FAST-
BUS nmemory may be used for data acquisition only. VAX and
SCRATCH drta arcus are allocated from a VAX global section,
VAX datn arcns are usced exclusively for datn acquisition;
SCRATCH areas niay be used for any purpose ot the discretion of
the experimenter,

The MEMORY/ALLOCATE command defines a logical descriptor
for cach histogram data aren required by the experiment.  The
name and substructure of the data arca ix specified as the com-
mand paramecier; claxs and other configuration information is
apecified via qualifiers gpecified on the command line, Included
in the configuration iv.formation which may be speerfied are data
type (8-,16- and 32-bit intcgee, 3¢ and 64 bit real), datn area
dimension (1-d and 2 d data arcas wre supported), protection code
and an optional title of unlimited length,  FASTRUS and VAX
duta areas may be allocuted only from the INITIALIZE data aequi
sition state,  SCRATCH data areas may be allocated from uny
data nequisition state.,

The DACL. system provides o mechanism for allocating groups of
related data arens which share o common name.  An optional
structure xpecifier may he associated with any datn area name in
the commuand parameter of the MEMORY/ALLOCATIE command.
This specifier is of the form [g:s] where g specifies die number
of groups of histegrams to he associatrd with the data area
name, and g specifies the number of subareas (histograms) per
proup. AN other configuration information specificd on the
command line then applies at the subarea level.  For example,
the datn arca specificntion . MONITOR]2:5) 1efers to 2 data aren
containing ten histogramx organized into two  groups of five
histograms each. 1 the MEMORY/ALLOCATE command apeci
fies n dimension of 1O channels for the data area, each com
ponent histogrom will be 1O channels long,  Individual his
wprams within the datn arca may e referenced using an identical
specifier notation,

The histogram data area memory management system also pro-
vides commands to release data histogram memory
(MEMORY/DEALLOCATE). clear histogram memory
(MEMORY/CLEAR), modify the characteristics of a histogram
data area (MEMORY/MODIFY), list the contents and/or
characteristics of a histogram data area (MEMORY/LIST) and
clear the memory management data structures (MEMORY/NEW).
Execulion of each of these commands is subject to data acquisi-
tion state validation,

The DACL Control Commands: The Control facility is imple-
mented as two subsections. The first addresses the functionality
required for the DACL state machine; the second specifies a sub-
system for automatic run submission and control.

The state machine features of the DACL system ere supported by
the Control facility state transition commands. Four basic tran-
fition commands are provided: BEGIN, END, PAUSE and
RESUME. The BEGIN and END commands each require a
parameter which specifics the data acquisition state to be
initiated or terminated. The only function of any state transition
command is to change the data acquisition state from ths current
state (o a specified rosult state. The data acquisition state from
which any transition command may be executed is well defined
and is validated prior to exccution of the state change. Sec
Figurc 7 for a summary of the effect of cach state transition
command.

The Contro!l facility supplements the state change commands
with the STATUS command. Invocation of this command
generates a report to the user's terminal which specifies, among
other things, the current data acquisition state of the system, the
last command lo be executed, general descriptive information for
the experiment and the state of various control and status (lags.

The Control facility also suppoits a suite of commands for auto-
matic submission, execution and control of data acquisition tasks
in a background mode. Dala acquisition tasks arc defined using
combinations of DACL and DCL in DCL. command procedures.
The PRL command may then be used to define and modily the
sequence of execulion ol any nimbher of existing data acquisition
command files by modilying the pending runs list, a DACL.-sup-
ported data structure vzhich contains the file specifications of all
pending data acquisition command files. The PRL command uti-
lizes the EDT full screen editor for its user interface, thereby to
provide a familinr low overhea. environment in which the user
can operate.

The RUN_SURMITTER facility interacts with the pending runs
list, automatically creates detacked processes for each data aesqui
gition command file und exerutes them zerinlly.  Thix Tacility
performs all necessary synchronization with DACL resonrees and
processes to execute the data sequisition task, and provides sia
tus information 1o the user through screen messages and VMS
mail messages.  Additional commands permit the user to delete
currently exccuting data nequisition jobs und use preset scalers o
control th+ execution of the detached data aequisition processes,

The DACL Data Management Facility: 'The DACL Data Manage
ment facility provides the functionality 1o save experiment data
and configuration information to a disk file, ax well a3 to aue
matically archive and catalog the resulting filr in the LANSCE
data archive.  In addition, this facility suppons libraries ol
utility modules 1o simplify user aceexs o saved undfor achived
datn ax well as o high level data manipulation subsysiem,

AL the conclusion of a data aequisition sessions, the uset usially
desires o suve the data which has been collected (an well o
some  patameters which speeity the confipuration ol the
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experiment) to a disk file prior to reconfiguring for a subscquent
run. The conventional approach to the design of such datu [files
utilizes n sequentially organized file with a rigidly defined
internal format.

The disadvantages of the sequential file approach are quite seri-
ous. I[n an environment such as LANSCE where the dala file
format must service n-any different users and spectrometers, there
are two immediate alverss consequences.  First, the file format
must bz defined in a manner which nccommodates all possible
information which may be required by any application. This of-
ten results in data tiles which contain large amounts of irrelevant
or unnecessary information.  The second consequence results
from the fact that changing the file format (to accommodate o
new application, for example) makes atl previously wnitten files
obsolete (and unreadable).  System personnel are then burdened
wil' the overhewds associated with modilying the lile format as
well s with the additional effort which must be expended to
modify utilities which read and write the data files.  In most
cases it is also necessary to develop utilities which can convert
absolete files into the (current) standard format,

Sequential organization also sulfers severe pedformanee aver
heads,  Access to individual entities within ¢ ¢ file (a spueitic
data et inoa group of 100, for example) can be slow and
cumbersome,  Updaung the file (o inelude data analysis
processing status o1 other previously unavailable infornmation) is
difficult,

The DACL approach abandons sequential files in fuvor of the in
dexed sequential access mode (ISAM) organization,  ISAM (iles
permit either indexed or sequentinl aceess as reguired by the ap
pication,  Any 1econd in the file can be very rapidly nceessed
using the indexed mode.  The indexed aceess may then he fon

lowed by series of sequential accesses o read a iarge amount of

informatjon,

The DACE data file dexign paritions a datg Ble into two see
tions: an abstract block and a data block. The resulting Instiu
ment Data File (IDE) then contams all mtogmanon sequined w

characierize the associated run. A schematic representation of a
typical IDF is presented in Figure 8,

The abstract block contains information which describes the ex-
perimental stale and conditions. Any infermation that is resi-
dent in the DACL Heap may be specified for inclusion in the ab-
suact Elock. At any time before or during a run, the user may
specify which DACL Heap control structurass arc to be automati-
cally »laced in the abstract block when the data is saved. This
information is specified in a text file called the Abstract
Descriptor File (ADF). An ADF may be created or modified using
a text cditor, and contains a list of the control structure tags
which identify the control structures o be merged into the b
stract block when the dawa is saved.

When the abstract block is built, a unique key is composed for
cach logical descriptor which is included. Keys are constructed
in 0 manner which permits the cortesponding control structures
to be exactly recreated in the DACL Heap, exclusively from in
formation contained in the abstract block,  The user may con
struct an ADF which is customized for the particular experiment
or may choose to reference the more generic defanlt ADE provid
ed by the sysiem, Often the lead scieatist for cach spectrometer
defines a default ADEF waieli iz emploved by all users ol (hat
instrument.  In this manner, the abstract block can be auton
ically constructed 1o contain all pertinent  confipuration
information without the inclusion of supcifluous contipuraion
records,

The IDE data block contains the data collected during the un,
orgunized by histogram name, group and subarea.  Data s
togramy are decomposed into the data block in o manner simila
to abstract records,  Data block record lengths are extremely
large, approximately 32000 bytes.  Thix enables the system 1o
store or retrieve typical histograms with only a small numiwr ol
high level file necess.

The maor advantage of the TDE Ole fonmat s ik Hesabalin
Hecause the Tile format s dymamically defined at vun nme, 101 -
need contam only it intormation: which is ditectly pertment e



the application. Data files are therefore very compact and can be
read or wrilten without incorporating complex protocols. All
files can be read and written by the same set of utilities, regard-
less of the information they coniain or when it was wrilten.
Consequently, no file ever becomes obsolete. Finally, access to
the information stored in an ISAM file is very efficient. Perfor-
mance is comparable to that of a sparscly populated hash

table!4, but does not suffer the larze resource overhead necessary
to make hash tables efficient.

The SAVE/DATA command performs the necessary processing to
create an IDF from the experiment data and the appropriate
DACL-Heap-resident  logical descriptors. The command
parameter specifies the file specification of the ADF which will
be referenced in building the abstract block. Command line
qualifiers allow the user to specify whether the data should be
stored in the data block in compressed format and whether the
IDF should be sutomatically cataloged in the LANSCE data
archive. The user may also specify a short identification string
to be associated with the IDF.

The SAVE/DATA command may only be execuied from the
PAUSE daia acquisition state. Furthermore, the system inter-
venes to prevent the user from entering the HALT statc
(terminating the run) until data has been saved or until the user
has rxpressly informed the system (via the NOSAVE command)
that the data is to be discarded. Upon creation, the IDF is auto-
matically time stamped with the beginning and ending datc and
time for the run as well as other information including instru-
ment name, experimenter and run number.

The DACL system automatically moves uscr data files from the
satellite microVax computers associated with each instrument to
a central repository on a non-data-acquisition network node. The
network process that performs this task periodically searches the
data acquisition directories on the satellite computers for IDF's
which arc marked for cataloging. Whenever such a file is identi-
fied it is copied across the Ethernct to the central rcpository.
An ISAM file contuining a directory of all caialoged IDF's is
then updated and a VMS mail message (stating that the IDF has
been archived and cataloged) is sent to the appropriate user on
the satellite computer. At the current time, the IDF is
antomatically deleted from the satellite system upon siuccessful
archiving. A futurc enhancement will retain archived IDF's on
ihe satellite, but will mark these filex as archived. A sepurate
command will be provided 1o allow users 1o automatically delete
archived files from their systems,

In the event that a user does not specily the catalog option vhen
an IDE is buils. the IDE will not be archived by the DACL ys-
tem. At any ‘ater time, the user may invoke the CATALOG
commanmd 0 mark such an IDE for archiving. In this event, the
automated  archiving system  will automatically perform the
archiving operation,

When a file is archived in the LANSCE dasa repository, the sys
fem assigns it unigque name which is consiructed from the name
of the source instrument and the current date and tune.  Respon-
sibility for management of the file then passes from tie user to
system personnel,  Commands are provided ta the uxers which
allow them w peruse the contents of the datn archive and retrieve
a copy ol any IDF for subsequent data analysis activities, ‘I'he
ARCHIVE/LIST command ix provided to allow the user to per-
form wildearded searches of the data aichive on combinations
various keys including all or a substring of experimenter name,
instrument name, run number, date/time, identification string or
data location,

The LANSCE data mehive curently exists on oa large magnetic
disk.  Frovisions are made for moving oll 1DE's 10 magnetic

tape as the medium begins 1o fill. A future enhancement is cx-
pected to replace these magnetic media with optical technology.

Included in the DACL Data Management facility is a rich set of
library-resident utility routines which support user access lo
IDF's. These routincs permit the user to restore dats from an IDF
cither into a local buffer or into a prealliocated histogram data
area. Other routines allow searches of the data archive to be
performed under program control. Additional routines are pro-
vided Lo allow a program to restore selected DACL heap control
structures from an IDF. These routines are carefully documented
in the facility software user's guide. The existence of these
utilities has helped to establish an enviroament in which users
can develop cusiom software 1o interact with the data in IDF's
with virtually no assistance from system personnel.

The Data Management facility also supports a complementary
data manipulation facility through the CALCULATE command.
This command provides the functionality to perform channel-by-
channel algebraic manipulations upon data arees, scalers and
constants. [t permits a user to specify a mathematical formula in
ordinary infix algebraic notation. Naming conventions are cm-
ployed to idenlify cach entity in the formula as a data arca,
rcaler value, constant or DCL symbol. The command performs
all necessary lype conversions and validation to compute the re-
sulting data arca contents.

The DACL _Graphics Facility; The Craphics [acility is imple-
mented on two levels. The most primitive leve! supports plot-
ting of a single data histogram to a low performance,
monochrome terminal such as a VT240. This graphics systemn is
completely command driven. The user is first required to execute
the DiSPLAY/ALLOCATE command to allocate a plot display
parameters table (DPT) in the DACL Heap. Included on the
DISPLAY/ALLOCATE command line are qualifiers which provide
plot configurntion information such as axis style, format (lincar
or logarithmic) and ruling, histogram name, marker style, etc.
This information is inserted into the DPT wherc it resides until
needed to configure a plot.

Additional DISPLAY syntaxes are provided to modify an exist-
ing DPT (/MODIFY), 10 delete a DPT (/DELETE), to list the plot
characterisu.cs contnined in all or in a specific DPT (/LIST), o
resct the DPT control struclure (/NEW), and to save the contents
of a DPT in a disk file (/SAVE).

The PLOT command accesses the DPT which is specified in the
commanl purameter and creates a plot on the cefault output de-
vice (th: user's terminal) according to the characteristics recorded
in the LPT. Because the plotling soitware is builc upon the CGS
graphicz system plotting is very slow and user interaction is
limited to simple zooms and cursor locator operations,  Hard
copy can be obtained through sereen dumps o n jocal LASO ur
LNO3 printer.  There is no metafile capability.

The secomd level supported by the DACL Graphics facility con
sistx of a workstation based, intermedinte performance, interae
tive color graphics system. ‘This system s initiated by invol
ing the VIEW command. ‘This command createy color plots of
user specified histograms on the VR2Y0 monitor of the VAXsta
Wn/GPX vorkstation.  Unlike the PLOT command which re
yuires a predefined DI 1 specify the name of the histogram and
the plot  characteristics, the MIEW comnund permits the user 1o
specily dynamically all plot chmseteristics ax well as the his
tograms o he plotied,

Alter the VIEW command is invoked, essentially all interaction
with the plot is performed thiough the workstation mouse
(occasional Keyboapd ameraction is requited o specify anave



label or a histogram name). The plot is configured with
numerous Macintosh-li'te features to allow the user to adjust
how the plot is drawn on the vorkstation screen. Scroll bars
and handles are provided on each axis 10 allow the user 1o select
axis scales and regions of interest in a very dynamic fashion. A
hierarchy of pop-up menus is provided o allow other more com-
plex plot layout, control and sclection operations.

Currently, one to six histograms may be ploited on the same
axis set. A menu-driven selection proccss permits a user lo
easily choose which histograms arz to be plotied and what their
plotting characteristics will be. Muitiple line and marker styles
and various colors are user-selectable for each histogram. A user
may dynamically modily the plotting characteristics of any his
togram, or delete entire histograms from the plot through mouse
interactions. The combination of menu-driven and mouse
selection operations provides a very natural environment with
which our users have rapidly become familiar.

As the user interacts with the VIEW plot, a DACL-Heap-resident
control structure called the window parameter table (WPT) is
continuoucly updated with the current plot characteristics. Upon
exiting the VIEW command (through the QUIT menu choice), and
unless otherwise specified by the user, the current WPT

automatically becomes the default configuration for the next in-,
vocation of the VIEW command. The user may also invoke a*

menu option which automatically saves the current plet conligu-
ration (including the names of the histograms being ploticd) 1o a
named WPT which can be explicitly refercnced by a subsequent
invocation of the VIEW command.

VIEW is built upon the ANSI standard Graphics Kernel Sysiem
(GKS) and inherits a significant amount of ils functionality
therefrom. Plouing perfcrmance is orders of magnilude better
than can be achieved with the CGS based system, Dynamic re-
sizing of the ploiting window on the wcrkstation screen is pos-
sible. High level routines are provided to support mousc-driven
user interaction, and a graphics metafile facility is available.
Currently hardcopy is produced in grayscale format on local
LNO3 laser printers. Acquisition of a color hardeapy device o
support these systems is under siudy.

EASTBUS Diagnostics; The DACL system provides a compre-
hensive suitc of FASTBUS diagnostics commands. At the lowgst
level, DACL. commands are provided to perform basic FASTHUS
transactions including read and write cycles in single word or
block mode as well as arbitration and address cycles,

In addition to the low level DACL FASTBUS commands, the
system supporls a comprehensive suite of diagnostic commands
for cach locally-developed FASTBUS hardware module.  ‘These
commands provide a suite of tests which allow cach module 10 be
thoroughly exercised prior 1o entering the production data ac.
quisition environment. The diagnostic commands are partitioned
in a manner which allows the complate test suite 10 be executed
for a given module, or selective testing to be performed.  As
such, the commands are extremely useful for vahdation of new
madules as well as for iselating specific problems with hardware
which ix already in service,

Summary,

A single prototype data acquisition system was first installed and
used in December, 1985 during the final days of PSR commis
sioning.  Hoth hardware and software worked well although the
software consisted of the minimum required for daa collection,
Only a lew bugs were identified by the users owing to the
thoughtiul enginecting and rigorous testing,  Onee the protatype
systerm was returned 1o the developers, additional esting revealed

as yet undiscovered errors. In the summer of 1986, four addi-
tional systems were placed in service with all known errors re-
moved.

The hardware performance exceeds that specified in the require-
ments. With the deadiime detection operating below 10 ns,
dcadtime corrections for worst case conditions are less than
0.02% for single input channel rales of 1.7 Mhz for peak inter-
vals of 10 psec assuming Poisson stalistics, more than an ordcr
of magnitude better than the requirements. The system operales
with count raies averaging more than 2 MHz, a [actor of two
better than the specification required.

While the software implementation as yct does not fully meet all
the requirements, duc to limited staffing resources, it does exceed
it in somec arcas. For example, the impacl of workstation
systems significantly allers the graphics interface from tlut
specified. We are far more satisfied with the [unctionality and
casc-of-use for our menu driven graphics interface than could
have been possible with the conventional command driven
approach.

To date the LANSCE dala acquisition systems appear reliable and
1obust. We arc satisfied that the featurcs designed into the sys-
tems will be invaluable as these systems now enter their mainte-
nance phase.

c w cme

This work was performed unuer the auspices of the U.S.
Deparunent of Energy.
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