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ABSTRACT Groundwater flow models require specification of 
several input parameter fields which are inferred from 
limited data. In this paper the hydraulic conductivity 
and recharge rate are estimated for an unconfined aquifer 
under steady flow conditions. Usually point observations 
of conductivity and head are available for the estimation 
of the distributed conductivity field and the recharge 
rate. Use of numerical flow models require that these 
fields be prescribed as average values over finite 
elements. The geostatistical solution to this problem 
uses linear estimation to obtain the distributed 
conductivity field and the recharge rate. Monte Carlo 
simulations are used here to compute the covariances 
associated with the head data. Results obtained for both 
artificial and real data show that the head data is 
effective in improving the estimates that would result 
using conductivity data alone. The use of Monte Carlo 
simulations results in a method which can be used under a 
wider variety of modeling conditions than previous 
applications of the geostatistical approach.

INTRODUCTION

Groundwater flow models require specification of several physical 
input parameter fields. Such parameter fields might be the 
hydraulic conductivity or transmissivity, storage coefficient, 
recharge rate, etc. These parameter fields are all characterized by 
two things. First, they are all spatially distributed parameter 
fields. In other words, these fields vary throughout the aquifer. 
Second, our knowledge regarding the values of these fields is 
limited to randomly located, error-prone, point measurements. 
Typically, these measurements include variations of the parameter at 
a scale smaller than the scale of interest in the flow model. The 
calibration problem is one of providing estimates of these spatially 
distributed fields aggregated to finite regions for use in flow 
models. These fields must be inferred from the available 
measurements.

Along with model input parameters mentioned above, observations 
of output variables are also usually available. The primary output 
variable is the hydraulic head. Predicting the input parameters 
based on available observations of the output variables is generally
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referred to as the "inverse problem". A comprehensive review of 
work in this area is presented by Yeh (1986). Inverse solutions 
were developed in an attempt to find parameters which reproduce head 
measurements. Pure inverse methods attempt to solve the flow 
equation in reverse. In other words, the conductivities are found 
as a function of the head measurements. These methods generally 
produce ill-posed problems. Also, actual observations from the 
parameter fields (i.e. conductivities) are not used. Improvements 
on pure inverse methods generally involve using the conductivity 
measurements to stabilize or limit the inverse solution.

The geostatistical approach to the inverse problem follows the 
description given above (see Hoeksema & Kitanidis, 1984, 1985b,
1989) . Sparse, point observations of head and conductivity are used 
to estimate the complete, spatially distributed conductivity field. 
The geostatistical approach finds the estimates as a linear function 
of all of the available data. The primary computational technique 
used is cokriging which requires covariances between all of the 
measurements and the quantities to be estimated.

The work presented in this paper is an extension of the 
geostatistical approach to the inverse problem as presented in 
Kitanidis & Vomvoris (1983) and Hoeksema & Kitanidis (1984, 1985b, 
1989). The geostatistical approach can be presented as a five step 
procedure. 1.) The input parameter fields are treated as
realizations of some random function or process. A model is 
proposed which specifies the spatial correlation structure of these 
unknown input parameters in terms of a few unknown mean and 
covariance function parameters. 2.) The differential equation of 
flow is used to get the mean and covariance associated with the 
heads as a function of the mean and covariance parameters given in 
step 1. 3.) The mean and covariance parameters introduced in
step 1 are estimated using the available observations of both head 
and conductivity. 4.) The mean and covariance function parameters 
estimated in step 3 are validated. 5.) Finally, the input 
parameter fields (i.e. conductivity, recharge rate, etc.) are found 
using linear estimation techniques.

In the work of Hoeksema & Kitanidis (1984, 1985b, 1989) a 
linearized form of the flow equation was used to obtain the head 
covariances as a linear function of the transmissivity covariance 
function. This approach simplified the task of obtaining the head 
covariances. The resulting method was limited to the case of 
confined aquifers with prescribed head boundaries and no recharge.
It also required that the variations in transmissivity were small. 
The primary goal here is to make the method more generally 
applicable by using Monte Carlo simulations to obtain the head 
covariances. This results in a more general method but it involves 
a loss in computational efficiency. The application presented in 
this paper is for the particular case of an unconfined aquifer with 
both prescribed head and zero flux boundary conditions. The 
recharge rate is an additional parameter.

This paper will first present the development of the five steps 
described above. It will highlight the differences between this 
application and those described in the Hoeksema and Kitanidis 
papers. Next, the results of implementation of this method in 
several test cases will be presented.



DETAILS OF THE GEOSTATISTICAL APPROACH

1. Specify the model for spatial variability of input parameters

In the first step of the geostatistical solution a model is proposed 
for the mean and covariance function of the input parameters. The 
input parameters will be the natural logarithm of the saturated 
hydraulic conductivity (hereafter referred to as simply InK) and the 
recharge rate. The conductivity is assumed to follow a log-nomal 
distribution. Two forms of InK are used in this work. Point InK 
refers to available point measurements and element InK refers to 
values that would be used in a flow model. The InK is considered to 
be spatially distributed but the recharge rate will be modeled as a 
constant over the aquifer. The variable used to represent InK is Z 
and the variable used to represent the recharge rate is S. Point 
InK values will be represented as Zp while element InK will be ZE.
The unknown parameters in the mean and covariance model will be 
estimated in step 3. The spatial variability model for point InK is 
given by the following specification of mean and covariance:

E [ZpJ = Z„ = constant (1)

cov(zP1,zPj) = Etczpi-z^) (Zp^)] = e^) + e2 expK/e3) (2)

In (1) Zm is the mean InK which is assumed constant. In (2) ^ 
represents the separation distance between the two points i and j, 
and 5(^) is the Kronnecker delta function (5(^) is zero if ^0 and 
one if ^=0) . The mean parameter is 7^ and the covariance parameters 
are 0!, 02, and 03 (in vector form, 0) . The parameter 03 is the 
variance of unstructured InK variability which is due to measurement 
error and variability of the InK field on a small scale. The 
parameter 02 is the variance of structured InK variability which is 
associated with separation of the measurements points (i.e. 
measurements of InK near to each other tend to be more highly 
correlated than measurements far from each other). The correlation 
length associated with the structured InK variability is 03. In 
geostatistical terminology, the model presented here is equivalent 
to an exponential variogram (sill = 20, + 202) with a nugget (nugget 
= 20^ . Other covariance models can be used. The model presented in 
(2) has been found to be useful for a wide variety of problems (see 
Hoeksema & Kitanidis, 1985a) and is the only one used in this work.

The values of InK used in a groundwater flow model are usually 
average values defined over a finite domain. Since estimates will 
eventually be computed for these area-averaged values we need to 
expand the covariance model to handle them as well. An element InK 
is simply the average of a point InK over the domain of interest.
The models for mean and covariance of element InK are then the 
following:

EtZ^] = Zm (3)

(4)



(5)Cov{ZP£, ZEj) ——- f Cov(Zp1, Zp-i) dD
DjJdj

The domains of integration, Di and Dj, are the elements of the flow 
model. The covariance functions in (4) and (5) for one dimensional 
elements can be evaluated in a closed form. For a two-dimensional 
element Gauss quadrature is used for the numerical integration.

The recharge rate is assumed to follow a normal distribution.
The mean and variance model for recharge rate is simple. Since the 
recharge rate is assumed in this application to take on a single 
value over the entire aquifer all that is needed is a mean and 
variance. It is assumed that the modeler has some prior estimate of 
the recharge rate taken as the mean, S,,,. Also, the modeler has some 
measure of the uncertainty associated with the recharge rate 
estimate. This uncertainty is quantified in terms of a recharge 
rate standard deviation, os.

2. Obtain the Mean and Covariance for Output Variables

The second step in the geostatistical solution is that of obtaining 
mean and covariance relationships for the output variables. In this 
step the head-related covariances are determined. These covariances 
will be determined as functions of the (as yet undetermined) InK 
covariance parameters, 0.

The differential equation of flow in an unconfined aquifer with 
a horizontal base and recharge under steady conditions and 
simplified by the Dupuit-Forchheimer approximation (see Freeze & 
Cherry, 1979) is the following:

(Kh^) +^- (Kh^)+S=0 
ox ox ay ay (6)

In (6) K is the saturated hydraulic conductivity, S is the recharge 
rate, and h is the hydraulic head using a horizontal base as the 
datum. Rewriting (6) in terms of the head-squared (V = h2) and in 
terms of InK, Z, results in the following:

f^+|z|i:+fz+|z|z+2Se-^o
dx2 dx dx dy2 dy dy (7)

The equations of flow are simplified by the use of head-squared, V, 
instead of head, h. In fact for the case of a uniform conductivity 
field the flow equation is linearized by this substitution. For 
this reason V will be used as the primary output variable instead of 
h (h data are easily transformed to V) . The goal, then, is to 
obtain the covariances for V measurements using the relationships 
given in (1) through (5) and the equation of flow (7) .

The Monte Carlo (MC) simulation procedure is used to determine 
the relationship between the head related covariances, Cov(V1,V:j),
Cov(V^,ZB:)), and Cov(V±,Zp^) and the InK covariance model parameters. 
Also the relationship between EfVJ and 0 will be sought. Since 0! 
is a measure of the uncorrelated random noise in the point InK 
measurements, it has no influence on the head and therefore does not



affect the above covariances. Also, the value of 93 will be simply 
assumed and not estimated. Therefore the required functional 
relationship is between these covariances and 02 only. It is 
impossible using MC simulation to establish an analytical expression 
for each of these covariance as a function of 92. Instead, a 
piecewise linear relationship will be developed by setting 0! to zero 
and finding the above covariances for several uniformly distributed 
values of 02.

For a specific value of 02 many unconditional simulations of InK 
are generated. For the several examples presented later in this 
paper the number of simulations required to obtain stable 
covariances ranged between 5000 and 8000. A set of random element 
InK values, Z/, are first generated which follow the model described 
in (3) and (4) . This set of InK's represents the values associated 
with the elements in the flow model. Next, a set of point InK 
values is generated, Zpk. This set follows the model specified in 
(1) and (2) and is conditioned on the element values generated above 
(and therefore are consistent with (5)). These point values are 
generated to represent possible point observations at the nodes of 
the model. The k superscript refers to the kth Monte Carlo 
simulation of these fields. Next, a random value of recharge rate 
is generated, SK, based on the values of S,*, and os. The head 
simulation is obtained by using the element InK simulation, ZEk, and 
the simulated recharge, Sk, as input to a flow model. Finally, the 
appropriate covariances and means are computed by averaging the 
results from all of the simulations.

3. Estimate Mean and Covariance Model Parameters

The third step of the geostatistical solution involves estimating 
the InK mean and covariance model parameters using the available 
measurements. The mean InK, 7^, is estimated using a simple average 
of the measured values. The mean InK is only used in generation of 
InK simulations (step 2) and not in either covariance parameter 
estimation or in estimation of the InK field itself (step 5).

Since the head related covariances are determined as a function 
of the InK covariance parameters it makes sense to use all of the 
available data (both InK and V) to estimate these parameters. The 
approach followed in Hoeksema & Kitanidis (1985b) is to assume a 
reasonable value for the correlation length, 03 (see Hoeksema & 
Kitanidis, 1985a), and then use maximum likelihood estimation (MLE) 
to estimate 0! and 02. The MLE procedure used is described in detail 
in Kitanidis & Lane (1985) . The MLE procedure used requires the 
measurement covariance as function of the parameters. Equation (2) 
gives the InK measurement covariance as a function of 0 and the 
Monte Carlo simulations described in step 2 give the head-squared 
covariances as a piece-wise linear function of 0.

The MLE procedure used assumes that all of the data are jointly 
normally distributed. It is generally assumed that InK is normally 
distributed. For small variations in InK (i.e. 02 < 1.0) the head- 
squared given by (7) is nearly linear in InK (see Hoeksema & 
Kitanidis, 1984). Head-squared will then be considered to be 
normally distributed also. The normal distribution assumption is 
required only during the estimation of the parameters 0X and 02 (and



not in the estimation of the InK field by cokriging). This is a 
reasonable thing to do for two reasons. First, the InK estimation 
procedure using cokriging (step 5) is quite insensitive to the 
actual values of these parameters therefore the error associated 
with 0! and 02 estimates should not adversely effect the final 
results. Second, MLE provides reasonable least squares estimates of 
the parameters even when the data are non-Gaussian (see Kitanidis, 
1985) .

4. Validation of the Estimated Covariance Model Parameters

The procedure used in this work to validate the results of 
covariance model parameter estimation is the same as that used in 
Hoeksema & Kitanidis, (1984, 1985b). Model validation can be 
accomplished by tests performed on a set of uncorrelated residuals 
obtained from the parameter estimation procedure. If the 
assumptions regarding the normality of the data are correct and the 
estimated covariance model parameters are indeed maximum likelihood 
then this set of residuals should have a zero mean and unit 
variance. Tests can be performed to check the above assumptions.

5. Prediction of the Input Parameters Using Linear Estimation

Linear estimation procedures are used to determine the best 
estimates of the input parameter fields. In our case the input 
parameters are the element InK field and the recharge rate. The InK 
field is estimated using cokriging and in this case the recharge 
rate is found using a simple least squares procedure. This 
estimation is the heart of the calibration process. Cokriging seeks 
to find the best, unbiased, minimum variance estimate of the unknown 
quantities as a linear function of the available measurements. The 
measurements in this problem are the point observations of InK and 
head-squared. The form of the cokriging equations used in this work 
appear in Hoeksema, et. al. (1989). The cokriging equations require 
the covariance values established in the first three steps.

To estimate the recharge rate it is first assumed that cokriging 
finds the best estimate of the InK field. Then the linear 
relationship between head-squared and recharge rate is used to fit 
the best recharge rate to the head-squared data using a simple least 
squares technique. For a given hydraulic conductivity field the 
recharge rate and the head-squared are linearly related. If Vsi is 
the head-squared at measurement point i associated with the cokriged 
InK field and the mean recharge rate, Sn, and Vi is the same except 
for a value of recharge rate equal to S, then

Vi = vsi + CMS - Sm) (8)
(A measurement point is a location where measurements of head and 
therefore V are available). The can be easily computed by 
selecting an arbitrary (S-Sm) and using the flow model to obtain the 
resulting VL at each point. The estimated recharge rate, S, is then 
the value of S in (8) which minimizes the difference between Vi and 
the measured (true) values designated as Vti.



(9)
£«i(Vtl-Vsl)

2=1

RESULTS OF MODEL TESTING

So far this paper has presented an application of geostatistics to 
the problem of groundwater model calibration using MO simulations 
for computing the head-squared covariances. The testing of this 
approach is done via the use of two computer programs. The first 
program is designed to generate artificial data sets for testing the 
method. The second program performs the calibration for both 
artificially generated data and for real problems.

One-dimensional example

The first test case presented is a one-dimensional aquifer. The 
aquifer properties were generated with a mean InK, Z„, of -11.0, and 
InK covariance model parameters 0 of 0.1, 1.5, and 100 m. The 
recharge rate mean and standard deviation, Sm and as, were set to 
0.5(10)"7 m s'1 and 0.2 (10)'7 m s"1. The total model length was 200 m 
with 21 nodes, zero flux left end boundary, and prescribed head- 
squared (25 m2) right end boundary. The data generation program used 
an actual recharge rate of 0.393 (10)'7 m s'1.

The solid lines in Figs 1 and 2 show the generated fields. In 
each figure the lower line shows the generated element InK field and 
the upper line shows the generated head-squared field. Two 
different calibration runs were made. R.UN1DA used 7 point InK 
measurements and 7 head-squared measurements uniformly distributed
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FIG. 2 One-dimensional example - RUN1DB.

over the model length (Fig. 1). The second run, called RUN1DB, is 
intended to show the influence of head-squared data on the estimate 
of InK when only minimal InK data are available. RUN1DB uses the 
same 7 head-squared measurements as RUN1DA but it used only 2 point 
InK measurements (see Fig. 2) . Note that the InK measurements are 
error prone point values which tend to deviate from the element 
values.

The estimated element InK from the calibration is shown as a 
dashed line in Figs 1 (RUN1DA) and 2 (RUN1DB) . Also shown is the 
estimated head-squared which is found by using the estimated InK and 
recharge rate as input to a flow model. Fig. 1 shows that 7 
measurements of head and conductivity are sufficient to reproduce 
the essential features of the true fields. The effect of a non-zero 
0! term is seen in that the estimated element InK does not pass 
directly through the point InK measurements. Fig. 2 shows the 
effect of the head data in the InK estimation. Even though only two 
point measurements of InK were used the primary shape of the true 
InK is reproduced.

The recharge rate is also estimated. The actual value used in 
the generation of the data was 0.393(10)"7 m s'1. The predicted 
recharge rate is 0.450 (10)'7 m s'1 for RUN1DA and 0.369 (10)'7 m s'1 for 
RUN1DB. Since the RUN1DB conductivity estimate is generally lower 
than the RUN1DA estimate the resulting recharge rate must be 
estimated lower to maintain reasonable head-squared values.

Several statistics can be used to measure the performance of the 
calibration. For generated data the true fields are known, so the 
average squared errors associated with the element InK estimates and 
with the nodal head-squared estimates can be computed. For 
comparison, similar statistics are computed for the case of an 
element InK field equal to the mean of the point InK measurements.
To obtain a head-squared estimate from this mean InK model a 
recharge rate is used which minimizes the difference between the 
estimated head-squared field and the available (7 in this case)



head-squared measurements. For RUN1DA the average squared error of 
InK estimation is reduced from 0.354 for the mean model to 0.132 for 
the geostatistical calibration. The reduction for the average 
squared error of head-squared estimation is reduced from 6.58 m2 to 
0.669 m2. These error reductions demonstrate the effectiveness of 
the calibration.

Two-dimensional example

A two-dimensional run was also made to test the method. The model 
is rectangular with sides of 200 and 120 m in length. The 
boundaries were zero flux along 3 sides and prescribed head along 
the fourth. The mean InK was set to -11.0 with covariance 
parameters (0) of 0.25, 0.9, and 100 m. The recharge rate was 
generated by the program to have a value of 0.303 (10)“7 m s-1.

The calibration run used 7 head and 7 InK measurements. Like 
the one-dimensional case an average squared error of estimation can 
be conputed for both element InK and nodal head-squared. In the 
move from the mean model to the geostatistical calibration, the 
average squared error of estimation was reduced from 0.514 to 0.155 
for InK and from 15.0 m2 to 11.6 m2 for head-squared. The recharge 
rate was estimated as 0.352 (10)"7.

Two-dimensional case study

A preliminary calibration was performed using data from a 
hydrogeologic study of an old landfill near Holland Michigan, USA 
(Prein & Newhof, 1989). The site, now used as a park, is 
approximately 20 ha and is bounded on 2 sides by a small creek. The 
creek forms the prescribed head boundary for the flow model. Eight 
head measurement and 5 conductivity measurements were available from 
monitoring wells. The head measurements varied from 6.57 to 7.15 m 
above the base of the aquifer. The conductivity measurements varied 
from 3.04 (10r4 to S^edO)-4 m s’1 (InK from -8.10 to -7.51) .

The only measure of performance available for this calibration 
is the error between the actual head-squared measurements and the 
head-squared estimates at measurement points. The mean model, as 
described above, gives an average squared error of head-squared 
estimation at measurement points of 0.582 m2. The geostatistical 
calibration results in an average squared error of 0.0585 m2 with an 
estimated recharge rate of 0.383(10)_7 m s_1. This reduction in error 
is quite significant considering the relatively flat head field.

CONCLUSIONS

This report has described the application of the geostatistical 
approach to the problem of calibrating a groundwater flow model. 
The method uses Monte Carlo simulation to obtain head related 
covariances and is applied to the particular case of flow in an 
unconfined aquifer with recharge. As developed in this study the 
method predicts both the conductivity field and the recharge rate. 

The primary goal of this work was to show the feasibility of



using M3 simulations with geostatistics to perform model 
calibration. The results of tests done on artificial aquifer models 
show that the method works quite well when compared to using just 
the mean InK value. The quality of the results are based on both 
matching the predicted InK field with the true field but also by 
comparing the predicted heads to the true heads. The tests done 
using only two InK measurements show that much of the basic InK 
variation can be recovered from the head data.
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