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ABSTRACT Groundwater flow models require specification of
several input parameter fields which are inferred from
limited data. In this paper the hydraulic conductivity
and recharge rate are estimated for an unconfined aquifer
under steady flow conditions. Usually point observations
of conductivity and head are available for the estimation
of the distributed conductivity field and the recharge
rate. Use of numerical flow models require that these
fields be prescribed as average values over finite
elements. The geostatistical solution to this problem
uses linear estimation to obtain the distributed
conductivity field and the recharge rate. Monte Carlo
simulations are used here to compute the covariances
associated with the head data. Results obtained for both
artificial and real data show that the head data 1is
effective in improving the estimates that would result
using conductivity data alone. The use of Monte Carlo
simulations results in a method which can be used under a
wider variety of modeling conditions than previous
applications of the geostatistical approach.

INTRODUCTION

Groundwater flow models require specification of several physical
input parameter fields. Such parameter fields might be the
hydraulic conductivity or transmissivity, storage coefficient,
recharge rate, etc. These parameter fields are all characterized by
two things. First, they are all spatially distributed parameter
fields. In other words, these fields wvary throughout the aquifer.
Second, our knowledge regarding the values of these fields 1is
limited to randomly located, error-prone, point measurements.
Typically, these measurements include variations of the parameter at
a scale smaller than the scale of interest in the flow model. The
calibration problem is one of providing estimates of these spatially
distributed fields aggregated to finite regions for use in flow
models. These fields must be inferred from the available
measurements

Along with model input parameters mentioned above, observations
of output variables are also usually available. The primary output
variable is the hydraulic head. Predicting the input parameters
based on available observations of the output variables is generally
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referred to as the "inverse problem". A comprehensive review of
work in this area is presented by Yeh (1986). Inverse solutions
were developed in an attempt to find parameters which reproduce head
measurements. Pure inverse methods attempt to solve the flow
equation in reverse. In other words, the conductivities are found
as a function of the head measurements. These methods generally
produce ill-posed problems. Also, actual observations from the
parameter fields (i.e. conductivities) are not used. Improvements
on pure inverse methods generally involve using the conductivity
measurements to stabilize or limit the inverse solution.

The geostatistical approach to the inverse problem follows the
description given above (see Hoeksema & Kitanidis, 1984, 1985b,
1989) . Sparse, point observations of head and conductivity are used
to estimate the complete, spatially distributed conductivity field.
The geostatistical approach finds the estimates as a linear function
of all of the available data. The primary computational technique
used is cokriging which requires covariances between all of the
measurements and the quantities to be estimated.

The work presented in this paper is an extension of the
geostatistical approach to the inverse problem as presented in
Kitanidis & Vomvoris (1983) and Hoeksema & Kitanidis (1984, 1985Db,
1989). The geostatistical approach can be presented as a five step
procedure. 1.) The input parameter fields are treated as
realizations of some random function or process. A model is
proposed which specifies the spatial correlation structure of these
unknown input parameters in terms of a few unknown mean and
covariance function parameters. 2.) The differential equation of
flow is used to get the mean and covariance associated with the
heads as a function of the mean and covariance parameters given in
step 1. 3.) The mean and covariance parameters introduced in
step 1 are estimated using the available observations of both head
and conductivity. 4.) The mean and covariance function parameters
estimated in step 3 are validated. 5.) Finally, the input
parameter fields (i.e. conductivity, recharge rate, etc.) are found
using linear estimation techniques.

In the work of Hoeksema & Kitanidis (1984, 1985b, 1989) a
linearized form of the flow equation was used to obtain the head
covariances as a linear function of the transmissivity covariance
function. This approach simplified the task of obtaining the head
covariances. The resulting method was limited to the case of
confined aquifers with prescribed head boundaries and no recharge.
It also required that the variations in transmissivity were small.
The primary goal here is to make the method more generally
applicable by using Monte Carlo simulations to obtain the head
covariances. This results in a more general method but it involves
a loss in computational efficiency. The application presented in
this paper is for the particular case of an unconfined aquifer with
both prescribed head and zero flux boundary conditions. The
recharge rate is an additional parameter.

This paper will first present the development of the five steps
described above. It will highlight the differences between this
application and those described in the Hoeksema and Kitanidis
papers. Next, the results of implementation of this method in
several test cases will be presented.



DETAILS OF THE GEOSTATISTICAL APPROACH
1. Specify the model for spatial variability of input parameters

In the first step of the geostatistical solution a model is proposed
for the mean and covariance function of the input parameters. The
input parameters will be the natural logarithm of the saturated
hydraulic conductivity (hereafter referred to as simply InK) and the
recharge rate. The conductivity is assumed to follow a log-nomal
distribution. Two forms of InK are used in this work. Point InK
refers to available point measurements and element InK refers to
values that would be used in a flow model. The InK is considered to
be spatially distributed but the recharge rate will be modeled as a
constant over the aquifer. The variable used to represent InK is 7Z
and the variable used to represent the recharge rate is S. Point
InK values will be represented as 7Zp while element InK will be ZE.
The unknown parameters in the mean and covariance model will be
estimated in step 3. The spatial variability model for point InK is
given by the following specification of mean and covariance:

E [ZpJ = Z, = constant (1)
cov(zPl,zPj| = Etczpi-z") (zp”)] = @) + el expKl/e) Vi
In (1) ZM is the mean InK which is assumed constant. In (2)

represents the separation distance between the two points i and j,
and 5(") 1s the Kronnecker delta function (5(%) 1is zero if 70O and

one if 7=0) . The mean parameter is 7% and the covariance parameters
are 0!, 02, and 03 (in vector form, 0) . The parameter 0} is the
variance of unstructured InK variability which is due to measurement
error and variability of the InK field on a small scale. The
parameter 02 is the variance of structured InK variability which is
associated with separation of the measurements points (i.e.
measurements of InK near to each other tend to be more highly
correlated than measurements far from each other). The correlation
length associated with the structured InK variability is 03. 1In
geostatistical terminology, the model presented here is equivalent
to an exponential variogram (sill = 20, + 202) with a nugget (nugget
= 20% . Other covariance models can be used. The model presented in
(2) has been found to be useful for a wide variety of problems (see
Hoeksema & Kitanidis, 1985a) and is the only one used in this work.

The values of InK used in a groundwater flow model are usually
average values defined over a finite domain. Since estimates will
eventually be computed for these area-averaged values we need to
expand the covariance model to handle them as well. An element InK
is simply the average of a point InK over the domain of interest.
The models for mean and covariance of element InK are then the
following:

EtZz*] = Zm (3)

(4)



Cov{ZPf, ZEj) —- f Cov (Zpl, Ip-i) dD
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The domains of integration, Di and Dj, are the elements of the flow
model. The covariance functions in (4) and (5) for one dimensional
elements can be evaluated in a closed form. For a two-dimensional
element Gauss quadrature is used for the numerical integration.

The recharge rate is assumed to follow a normal distribution.
The mean and variance model for recharge rate is simple. Since the
recharge rate is assumed in this application to take on a single
value over the entire aquifer all that is needed is a mean and
variance. It is assumed that the modeler has some prior estimate of
the recharge rate taken as the mean, §,. Also, the modeler has some
measure of the uncertainty associated with the recharge rate
estimate. This uncertainty is quantified in terms of a recharge
rate standard deviation, os

2. Obtain the Mean and Covariance for Output Variables

The second step in the geostatistical solution is that of obtaining
mean and covariance relationships for the output variables. In this
step the head-related covariances are determined. These covariances
will be determined as functions of the (as yet undetermined) InK
covariance parameters, 0.

The differential equation of flow in an unconfined aquifer with
a horizontal base and recharge under steady conditions and
simplified by the Dupuit-Forchheimer approximation (see Freeze &
Cherry, 1979) 1is the following:

(Kh*) +%- (Kh*)+S=0
ox ox ay ay (6]

In (b)) K 1is the saturated hydraulic conductivity, S 1is the recharge
rate, and h is the hydraulic head using a horizontal base as the
datum. Rewriting (6) in terms of the head-squared (V = h2) and in
terms of InK, Z, results in the following:

£fr+|z|i:+£=z+|z| z+2Se-"0
dx) dx dx dy! dy dy (7)

The equations of flow are simplified by the use of head-squared, V,
instead of head, h. In fact for the case of a uniform conductivity
field the flow equation is linearized by this substitution. For
this reason V will be used as the primary output variable instead of
h (h data are easily transformed to V) . The goal, then, 1is to
obtain the covariances for V measurements using the relationships
given in (1) through (5) and the equation of flow (7) .

The Monte Carlo (MC) simulation procedure is used to determine
the relationship between the head related covariances, Cov (V1,Vi),
Cov (V*,ZB)), and Cov (Vi,Zp") and the InK covariance model parameters.
Also the relationship between EfVJ and 0 will be sought. Since 0!
is a measure of the uncorrelated random noise in the point InK
measurements, it has no influence on the head and therefore does not



affect the above covariances. Also, the value of 9 will be simply
assumed and not estimated. Therefore the required functional
relationship is between these covariances and 02 only. It is
impossible using MC simulation to establish an analytical expression
for each of these covariance as a function of 92 Instead, a
piecewise linear relationship will be developed by setting 0! to zero
and finding the above covariances for several uniformly distributed
values of 02.

For a specific value of 0 many unconditional simulations of InK
are generated. For the several examples presented later in this
paper the number of simulations required to obtain stable
covariances ranged between 5000 and 8000. A set of random element
InK values, 7/, are first generated which follow the model described
in (3) and (4) . This set of InK's represents the values associated
with the elements in the flow model. Next, a set of point InK
values is generated, Zpk. This set follows the model specified in
(1) and (2) and is conditioned on the element values generated above
(and therefore are consistent with (5)). These point values are
generated to represent possible point observations at the nodes of
the model. The k superscript refers to the kth Monte Carlo
simulation of these fields. Next, a random value of recharge rate
is generated, SK, based on the values of §) and os. The head
simulation is obtained by using the element InK simulation, ZEk, and
the simulated recharge, Sk as input to a flow model. Finally, the
appropriate covariances and means are computed by averaging the
results from all of the simulations.

3. Estimate Mean and Covariance Model Parameters

The third step of the geostatistical solution involves estimating
the InK mean and covariance model parameters using the available
measurements. The mean InK, 7% 1s estimated using a simple average
of the measured values. The mean InK is only used in generation of
InK simulations (step 2) and not in either covariance parameter
estimation or in estimation of the InK field itself (step 5).

Since the head related covariances are determined as a function
of the InK covariance parameters it makes sense to use all of the
available data (both InK and V) to estimate these parameters. The
approach followed in Hoeksema & Kitanidis (1985b) 1is to assume a
reasonable value for the correlation length, 03 (see Hoeksema &
Kitanidis, 1985a), and then use maximum likelihood estimation (MLE)
to estimate 0! and 02. The MLE procedure used is described in detail
in Kitanidis & Lane (1985) . The MLE procedure used requires the
measurement covariance as function of the parameters. Equation (2)
gives the InK measurement covariance as a function of 0 and the
Monte Carlo simulations described in step 2 give the head-squared
covariances as a piece-wise linear function of 0.

The MLE procedure used assumes that all of the data are jointly
normally distributed. It is generally assumed that InK is normally
distributed. For small variations in InK (i.e. 02 < 1.0) the head-
squared given by (7) 1is nearly linear in InK (see Hoeksema &
Kitanidis, 1984). Head-squared will then be considered to be
normally distributed also. The normal distribution assumption is
required only during the estimation of the parameters 0f and 02 (and



not in the estimation of the InK field by cokriging). This is a
reasonable thing to do for two reasons. First, the InK estimation
procedure using cokriging (step 5) 1is quite insensitive to the
actual values of these parameters therefore the error associated
with 0! and 02 estimates should not adversely effect the final
results. Second, MLE provides reasonable least squares estimates of
the parameters even when the data are non-Gaussian (see Kitanidis,
1985)

4, Validation of the Estimated Covariance Model Parameters

The procedure used in this work to validate the results of
covariance model parameter estimation is the same as that used in
Hoeksema & Kitanidis, (1984, 1985b). Model validation can be
accomplished by tests performed on a set of uncorrelated residuals
obtained from the parameter estimation procedure. If the
assumptions regarding the normality of the data are correct and the
estimated covariance model parameters are indeed maximum likelihood
then this set of residuals should have a zero mean and unit
variance. Tests can be performed to check the above assumptions.

5. Prediction of the Input Parameters Using Linear Estimation

Linear estimation procedures are used to determine the best
estimates of the input parameter fields. In our case the input
parameters are the element InK field and the recharge rate. The InK
field is estimated using cokriging and in this case the recharge
rate is found using a simple least squares procedure. This
estimation is the heart of the calibration process. Cokriging seeks
to find the best, unbiased, minimum variance estimate of the unknown
quantities as a linear function of the available measurements. The
measurements in this problem are the point observations of InK and
head-squared. The form of the cokriging equations used in this work
appear in Hoeksema, et. al. (1989). The cokriging equations require
the covariance values established in the first three steps.

To estimate the recharge rate it is first assumed that cokriging
finds the best estimate of the InK field. Then the linear
relationship between head-squared and recharge rate is used to fit
the best recharge rate to the head-squared data using a simple least
squares technique. For a given hydraulic conductivity field the
recharge rate and the head-squared are linearly related. If Vsi is
the head-squared at measurement point 1 associated with the cokriged
InK field and the mean recharge rate, Sn, and Vi is the same except
for a value of recharge rate equal to S, then

Vi = vsi + CMS - 9 (8)

(A measurement point is a location where measurements of head and
therefore V are available). The can be easily computed by
selecting an arbitrary (S-SM and using the flow model to obtain the
resulting VI at each point. The estimated recharge rate, S, is then
the value of S in (8) which minimizes the difference between Vi and
the measured (true) values designated as Vti.
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RESULTS OF MODEL TESTING

So far this paper has presented an application of geostatistics to
the problem of groundwater model calibration using MO simulations
for computing the head-squared covariances. The testing of this
approach is done via the use of two computer programs. The first
program is designed to generate artificial data sets for testing the
method. The second program performs the calibration for both
artificially generated data and for real problems.

One-dimensional example

The first test case presented is a one-dimensional aquifer. The
aquifer properties were generated with a mean Ink, Z,, of -11.0, and
InK covariance model parameters 0 of 0.1, 1.5, and 100 m. The
recharge rate mean and standard deviation, SM and as, were set to
0.5(10)"7T m s'l and 0.2 (10)'T m s"1. The total model length was 200 m
with 21 nodes, zero flux left end boundary, and prescribed head-
squared (25 m2) right end boundary. The data generation program used
an actual recharge rate of 0.393 (10)'T m s'l.

The solid lines in Figs 1 and 2 show the generated fields. In
each figure the lower line shows the generated element InK field and
the upper line shows the generated head-squared field. Two
different calibration runs were made. R.UNIDA used 7 point InK
measurements and 7 head-squared measurements uniformly distributed
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FIG. 2 One—-dimensional example - RUN1DB.
over the model length (Fig. 1). The second run, called RUN1DB, is
intended to show the influence of head-squared data on the estimate
of InK when only minimal InK data are available. RUN1IDB uses the
same 7 head-squared measurements as RUNLIDA but it used only 2 point
InK measurements (see Fig. 2) . Note that the InK measurements are

error prone point values which tend to deviate from the element
values

The estimated element InK from the calibration is shown as a
dashed line in Figs 1 (RUN1DA) and 2 (RUN1DB) . Also shown is the
estimated head-squared which is found by using the estimated InK and
recharge rate as input to a flow model. Fig. 1 shows that 7
measurements of head and conductivity are sufficient to reproduce
the essential features of the true fields. The effect of a non-zero
0! term is seen in that the estimated element InK does not pass
directly through the point InK measurements. Fig. 2 shows the
effect of the head data in the InK estimation. Even though only two
point measurements of InK were used the primary shape of the true
InK is reproduced.

The recharge rate is also estimated. The actual value used in
the generation of the data was 0.393(10)"T m s'l. The predicted
recharge rate is 0.450 (10)'T m s'l for RUNIDA and 0.369 (10)'7T m s'l for
RUN1DB. Since the RUN1DB conductivity estimate is generally lower
than the RUN1DA estimate the resulting recharge rate must be
estimated lower to maintain reasonable head-squared values.

Several statistics can be used to measure the performance of the
calibration. For generated data the true fields are known, so the
average squared errors associated with the element InK estimates and
with the nodal head-squared estimates can be computed. For
comparison, similar statistics are computed for the case of an
element InK field equal to the mean of the point InK measurements.
To obtain a head-squared estimate from this mean InK model a
recharge rate is used which minimizes the difference between the
estimated head-squared field and the available (7 in this case)



head-squared measurements. For RUN1IDA the average squared error of
InK estimation is reduced from 0.354 for the mean model to 0.132 for
the geostatistical calibration. The reduction for the average
squared error of head-squared estimation is reduced from 6.58 ml to
0.669 m2. These error reductions demonstrate the effectiveness of
the calibration.

Two-dimensional example

A two-dimensional run was also made to test the method. The model
is rectangular with sides of 200 and 120 m in length. The
boundaries were zero flux along 3 sides and prescribed head along
the fourth. The mean InK was set to -11.0 with covariance
parameters (0) of 0.25, 0.9, and 100 m. The recharge rate was
generated by the program to have a value of 0.303 (10)“T m s-1.

The calibration run used 7 head and 7 InK measurements. Like
the one-dimensional case an average squared error of estimation can
be conputed for both element InK and nodal head-squared. In the
move from the mean model to the geostatistical calibration, the
average squared error of estimation was reduced from 0.514 to 0.155
for InK and from 15.0 m? to 11.6 m! for head-squared. The recharge
rate was estimated as 0.352 (10)"7.

Two-dimensional case study

A preliminary calibration was performed using data from a
hydrogeologic study of an old landfill near Holland Michigan, USA
(Prein & Newhof, 1989). The site, now used as a park, 1is
approximately 20 ha and is bounded on 2 sides by a small creek. The
creek forms the prescribed head boundary for the flow model. Eight
head measurement and 5 conductivity measurements were available from
monitoring wells. The head measurements varied from 6.57 to 7.15 m
above the base of the aquifer. The conductivity measurements varied
from 3.04 (10r!i to S~edO)-4 m s'l (InK from -8.10 to -7.51)

The only measure of performance available for this calibration
is the error between the actual head-squared measurements and the
head-squared estimates at measurement points. The mean model, as
described above, gives an average squared error of head-squared
estimation at measurement points of 0.582 m2. The geostatistical
calibration results in an average squared error of 0.0585 m? with an
estimated recharge rate of 0.383(10) 7 m s 1. This reduction in error
is quite significant considering the relatively flat head field.

CONCLUSIONS

This report has described the application of the geostatistical
approach to the problem of calibrating a groundwater flow model.
The method uses Monte Carlo simulation to obtain head related
covariances and is applied to the particular case of flow in an
unconfined aquifer with recharge. As developed in this study the
method predicts both the conductivity field and the recharge rate.
The primary goal of this work was to show the feasibility of



using M3 simulations with geostatistics to perform model

calibration. The results of tests done on artificial aquifer models
show that the method works quite well when compared to using just
the mean InK value. The quality of the results are based on both

matching the predicted InK field with the true field but also by
comparing the predicted heads to the true heads. The tests done
using only two InK measurements show that much of the basic InK
variation can be recovered from the head data.
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