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Three-dimensional electromagnetic modeling in the Laplace domain

Introduction

In modeling electromagnetic responses, Maxwell’s equations in the frequency domain are
popular and have been widely used (Nabighian, 1994; Newman and Alumbaugh, 1995; Smith,
1996, to list a few). Recently, electromagnetic modeling in the time domain using the finite
difference (FDTD) method (Wang and Hohmann, 1993) has also been used to study transient
electromagnetic interactions in the conductive medium.

This paper presents a new technique to compute the electromagnetic response of three-
dimensional (3-D) structures. The proposed new method is based on transforming Maxwell’s
equations to the Laplace domain. For each discrete Laplace variable, Maxwell’s equations are
discretized in 3-D using the staggered grid and the finite difference method (FDM). The resulting
system of equations is then solved for the fields using the incomplete Cholesky conjugate
gradient (ICCG) method.

The new method is particularly effective in saving computer memory since all the
operations are carried out in real numbers. For the same reason, the computing speed is faster
than frequency domain modeling. The proposed approach can be an extremely useful tool in
developing an inversion algorithm using the time domain data.

‘,

Maxwell’s equations in the Laplace domain

The coupled space and time dependent electromagnetic fields are described by Maxwell’s
equations as

V x E(r, t) = –~
aH(r, t) t?M(r, t)

at ‘p i3t

VxH(r, t)=:
~E(r, t)

+ a(r)E(r, t)+ J(r, t)
at

(1)

(2)

where E and H are the electric and magnetic fields respectively, M and J are the impressed
magnetic and electric currents density, respectively, #is the magnetic permeability, ois the

electric conductivity and ~is the electric permittivity.
If we perform a Fourier transformation on equations (1) and (2), we obtain Maxwell’s

equations in the frequency domain

V x I?(r, 0) = –@uH(r, 0) – iquM(r, 0) (3)

V x H(r, m) = {o(r) + ifm5}E(r, 0) + J(r, 0) (4)

Equations (3) and (4) are well-known formulas and widely used for electromagnetic modeling.



In this paper Laplace transformation is used instead of Fourier transformation. The Laplace
transform of the time domain function F(t) is defined as

r’f(~) = F(t)e-”dt

If we perform Laplace transformation to equations (1) imd (2) with the following initial
condition,

E(r,O) = H(r,O) = M(r,O) = J(r,O) = O

we obtain Maxwell’s equations in the Laplace domain (Chen, 1985)

V x e(r, s) = –@h(r, s) – pxm(r, s)

V x h(r, s) = {o(r) + s}e(r, s) + j(r, s)

(5)

(6)

(7)

(8)

where e, h, m and j denote the Laplace transforms of E, H, M and J, respectively.

Electromagnetic fields in a homogeneous half space

Let us consider a homogeneous half space model with a vertical magnetic dipole (VMD)
source illustrated in Fig. 1. We write Maxwell’s equations in the air (z<O)

v x eA (r, S)= –pOshA (r, s) – i.f@Mr,S) (9)

VxhA(r, s)={cO(r) +:.s }eA(r, s) (lo)

where eAand hAare the electric and magnetic fields in the air, respectively, PO, CO and SOare the

magnetic permeability, the electric conductivity and the electric permittivity in the air,
respectively. We can also write Maxwell’s equations in the earth (z>O)

Vxe, (r, s)=–#,sh~(r, s)

Vxh~(r, s)={ol(r) +&ls}e~(r, s)

(11)

(12)

where e~ and h~ are the electric and magnetic fields in the earth respectively, PI, 01 and &lare the

magnetic permeability, the electric conductivity and the electric perrnittivity in the earth
respectively.

In the case of a VMD source illustrated in Fig.2, we obtain the following Hehnholtz equations
from equations (9) through (12).
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Fig. 1 Homogeneous half space model with vertical magnetic dipole source.
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Fig.2 Magnetic dipole function used as a VMD source.



V*FA + ko2FA = –/@76(X – X’)d(y – Y’)6(Z – z’)

V*FE +k12FE =0

where k. and kl are given by

ko2 = –~oaos – poSos2

k12=–pplS-p1E,S2

Here FA and FEdenote the scalar potentials in the air and the earth, respectively.
Using boundary conditions at the air-earth interface, the theoretical formulas for scalar

potentials are obtained as follows:

FA == (?-’”1’-2’1+ ‘0‘y]6?’”(’+2’)If
1

Lo (h-)u
4X Yo + Y1 Yo

FE.~~ 1 e-y’z+y”z’l.lo(%)da
Yo + Y1

where yO and yl are defined as

y~ = +.2 +p“a”s + #osos2,

and the horizontal distance r is given by

y, =Ja2+plals+p,&,s2

(13)

(14)

(15)

(16)

(17)

(18)

(19)

dr= (x–x’)2+(y–y’)2 . (20)

Each component of the electric and magnetic fields can be derived using the following relations.

8FA (9FA
‘A,x = ‘—

@’
‘A,y = — ‘A,z =0

ax ‘

~ _ 1 ~2FA
——, hA,Y=

1 32FA—

[)
——, hA,z=1- ~+ ko’ FA

“x #uos axaz p~s ayaz p(p az

8FE ~FE
‘E,.’ = ‘— eE,y =~,

?Y’

-o‘E,z –

(21)

(22)

(23)
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~ _ 1 a2FE
, hE,Y=

1 a2FE

()

1 az——— ——, hE,Z=— —+klz FE
‘“ p,s axaz P,sayaz jJ, S azz

(24)

where e~~ e~,Yand e~Zdenote the x, y and z components of electric fields in the air, h~x,h~~and h~~
denote the x, y and z components of magnetic fields in the air, e,X,e~yand e~Zdenote the x, y and z
components of electric fields in the earth, h~~,h~,Yand h~~denote the ~, y and z components of
magnetic fields in the earth respectively.

Assuming #l = #0 and S1 = EO,we obtain the theoretical formulas for the electromagnetic

fields both in the air and earth using the relations in equations (21) through (24) as follows.
In the air (z<O), we obtain

/xom(y – y’) r’[-Yolz-z’l + Yo – 71 ~Yo(z+z’)
‘A,x = e

1
5, (h-)da

4nY Yo + Y] Yo

/uonz(x– x’) If -yolz-z’l + Yo – Y] eyo(z+z’)
‘A,y = — e

1

5, (Ar)(.u
4m Yo + Y1 Yo

‘A,z =0
‘,

h
Zn(x– x’)

r[,

z–z’ e –Yolz-z’l 1_Yo – YI eYO(Z+Z’) A2J (Ar)dA
A,x =

471rs z–z’
1

Yo + YI

(25)

(26)

(27)

(28)

h
ln(y – y’)

if,
z – z’ e-yolz-z’l _

1

Y. – YI eYO(Z+Z’) ~2J (~r)d~
A,y =

4?lrs
(29)z–z’ 1

Yo + Y]

r[
h ~ e-y”iz-z’l+ ‘0 –‘* ey”(z+z’)1~Jo (Ar)dA

“z = 4m
(30)

Yo + Yl Yo

In the earth (z>O), following equations are obtained

eEx =Lom(y–y’)1
r

e-y’z+yOz’12J1(Ar)d2
2?lr Yo + Y1

/Jom(x – x’) 1
‘E,), = —

1
e-T1z+YOz’A2J1(A-)L!A

2n?- Yo + Y]

(31)

(32)

‘E,z =0 (33)
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hE,X=
ln(x – x’)

I“
Yl ~-y,z+yoz’~2J(~r)~~

2?l?-s
1

Yo + Y1

h =m(y– y’) y~
E, y c

e-’’z”z”~’l,.l, (Ir)dl
2n?-s Yo + Yl

h,,z =~
1

le
-“’+’”’’2.3.10(Ar)da

2m Yo + Y1

(34)

(35)

(36)

Finite difference method using Staggered grid

We applied the finite difference method using a staggered grid to discretize the three-
dimensional subsurface structure. In the discretization, Maxwell’s equations for the secondary
electromagnetic field are used because the source for the secondary field is smoother than that for
the primary fieid, and fine spatial discretization is not required around the primary source.

Maxwell’s equations with an impressed magnetic source in the Laplace domain become

Vxe=–psh–psm (37)

Vxh=(o+&s)e (38).,

The total electromagnetic fields are expressed as the sum of the primary field and the secondary
field.

e=e(l’) +e(m (39)

h =h(p) +h(~) (40)

where suffix ‘p)and ‘Srepresent the primary and secondary fields, respectively. The primary
electromagnetic fields satisfy the following equations.

Vxe(p) =–psh(P) –psm (41)

Vxh(p) =(o, +~s)e(p) (42)

where o. is the “normal” (layered-earth) conductivity with the body not present. Substituting

equations (41) and (42) into equations (37) and (39), we obtain Maxwell’s equations for the
secondary fields as

Vxe(s) =–psh(s) (43)

Vxh(s) =~e(s) +(~–~.)e(p) (44)
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Taking the curl of equation (44) and substituting the result into equation (43), we obtain the
second-order partial differential equation for the electric field

Using the relationship V x V x A = –V*A + V(V -A), equation (45) can be rewritten as

– Vze(s) + V(v . e(s)) + ~(~ + ss)e(s)=–#S(cT – 0. )e(p). (46)

Each component of equation (46) can be given by

t32ex(s) t32ex(s) a2ey(s)+ i32ez(s)— + P S(CX+ Ss)ex(s)
W - az* + ax+ axaz (47)

= –p s(crx – cr.)ex(p)

a2ey(s)a2ey(s)+ a2ex(s) + t22ez(s)— +p s(cy +s s)ey
(s)

ax*– az2 ayax *az
=–~S(OY–c7.)eY(p) “

i32ez(s)i226?z(s)+i32ex(s)+ a2ey(s)
axz – a/

+ A s(o, + S s)e, (s)
azax ady

=0

(48)

(49)

In this paper the integral form of equation (47), (48) and (49) are used to discretize 3-D structure.

~1[i32ex(s)i?2ex(s)+a2ey(s)+a2ez(s)

1

+pS(crx + .s s)ex(s) d.xdyciz
@ - azz ax~ axaz

= Jfj-ps(c. -c.)e.(p)~dydz

(50)

Jf[a2ey(s)a2ey(s)+ a2ex(s) + i72ez(s)— +p s(cry + &s)ey 1‘s) dxdydz
axz – azz ayax *az

= ~~~-p.(~, -c.)ey(p)~dydz

(51)



!1[~2ez(s) f32ez(s)+ ~2ex(s) + ~2e,(s)+ps(az + ss)ez 1‘s) dxdydz—
3X2 – ay2 azax azay

=0

x (i)

Y Y (0

& (i+I,j, k) t?~(i+l,j, k) (i+l,j+l, k)

ex(i, j, k)

&(i+l,j, k)
(i,j+l, k)

T
~y(i,j, k) +

I
I
I

& (i,j, k)
R

ez (i,j+l, k)(i+l,j, k+l)
———————————_____(\

“~, ~x (i,j, k)
Az(k)

\ \ \
Ax(i)

N\ \ \
ey (i,j+l, k) \‘,

,: 1
(i,j, k+l) &— Ay~_)—~ (i,j+~, k+O

Fig.3 Staggered grid for electrc)magnetic modeling.

Using the staggered grid illustrated in Fig.3, we can obtain the approximated equations

[

AX(i)&-(k) + AX(i)&-(~)
+ p{ 6X(i, j, k) +ss }Mi)AW)&-(k)

Ay(j -1) Ay(j)

1

+ k(i) A~(j) + Ax(i)AJ(j) e (s,

A.z(k-1)
~ (i, j,k)

AZ(k)

Ax(i)&-(k) e m . Ax(i)&-(k) e w— ~ (t, j-l, k)– ~ (i, j+l, k)
Ay(j -1) Ay(j)

Ax(i)A7(j) e m . Ax(i)AJ(j) e w .— ~ (t, j,k-l)– ~ (r,j,k+l)
&(k -1) AZ(k)

{+ &–(k) eY‘s)(i+l, j,k)–eY(s) (i+l, j–Lk)-eY ‘S)(i, j,k) + eY‘S)(i,j - l,k) }

(52)
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(+A~(j) e, ‘S)(i+ I,j,,k)-ez(s)(i + 1,j,k -l)–ez(s) (i, j,k)+eZ(s)(i, j,k -1) ~

= –ps{EX(i, j,k) – O. }Mi)A7(j)&(k)eX(p) (i,j,k) (53)

[

Ay(j)&-(k) + Ay(j)&-(k)
{ b-t pS =Y (i, j, k) +ss ‘(i) Ay(j)&-(k)

AX(i -1) AX(i)

1

+ h–(i)Ay(j) + h–(i)Ay(j) ~ ~~,

&(k -1) &(k)
~ (i, j,k)

Ay(j)&-(k) ~ (S) Ay(j)&–(k) e u)
~ (i-l, j,k)–

AX(i -1) AX(i)
~ (i+l, j,k)

AZ(i)Ay(j) ~ ~~, &Z(i)Ay(j) e (s,—
Az(k -1)

~ (i, j,k-l)– ~ (i, j,k+l)
AZ(k)

+ &–(k){eX(s)(i, j -i-1,k) – eX‘s)(i -1, j +l,k) – eX(S)(i, j,k) + eX(s)(i -1, j,k) }

{+ h–(i) e,(s) (i, j+l, k)–e, ‘S)(i,j+l, k -1) –ez(s) (i, j,k) +ez(s) (i, j,k –1) }

= –p S{ay(i j, k) }– CT. &–(i)Ay( j)&–(k) eY‘p)(i, j, k)

[

.,
A~(j)Az(k) + AjZj)Mk)

+ j.cr{3Z (i, j, k) +ss }b–(i)AjZ j)Mk)
,!b(i -1) AX(i)

+ @i) Az(k) + @i)A.z(k)

1

eZ
Ay(j -I) Ay(j)

‘s)(i, j, k)

A~(j)&(k) e (S) A~(j)Az(k) e (S)

AX(i -1)
~ (i-l, j,k)–

b(i)
~ (i+l, j,k)

&–(i)&(k) e (S) b–(i)&(k) e (S)—
Ay(j -1)

, (i, j-l, k)– , (i,j+l, k)
Ay(j)

+ A~(j){ex(s) (i, j,k +1)– eX(s)(i– 1,j,k +1)– e,(s) (i, j,k) + ey(s)(i -1, j,k) }

{+ h–(i) ey ‘s)(i, j,k+l)–eY ‘S)(i,j -l, k + 1)–eY(s) (i, j,k)+ eY(s)(i, j–l, k) }

(54)

(55)

where

&f(i) =
h(i -1)+ AZ(i)

A~(j) =
Ay(j -1)+ Ay(j)

N!(k) =
Az(k -1)+ &(k)

2’ 2’ 2
(56)
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CT(i,j – I, k – l)Ay( j – I)Az(.k– I) + o(i, j, k - l)Ay( j)Az(k – I)
Bx(i, j,k) =

{Ay(j -I)+ AXj)HMk - I)+ AZ(k)}
(57)

~(i, j – 1,k)Ay(j – l)h(k) + o(i, j, k)Ay(j)Mk)
\-. ,

+ {Ay(j -1)+ Ay(j)xAz(k -1) + Az(k)}

CY(i-I, j, k - l)b(i – l)&(k - 1)+ CT(i,j, k – l)b(i)&(k - 1)
6Y (i, j,k) =

{Ax(i-1) + Ax(i)xz!u(k - 1)+&(k)]

+ CY(i– 1, j, k)h(i – I)&(k) + CT(i,j, k)Ax(i)Az(k)

{Ax(i -1)+ Lb(i)){k(k -1) + AZ(k)}

(58)

CY(i-1, j - I,k)b(i – l)Ay(j – 1)+ CT(i,j – l,k)&t(i)Ay(j - 1)
Z7z(i, j, k) =

{Ax(i -1)+ Ax(i)xAy(j -1) + Ay(j)}
(59)

+ CT(i– 1,j, k)h(i – l)Ay(j) + c(i, j, k)h(i)Ay(j)
. .

{b(i -I)+ Ax(i)~Ay(j - 1)+ Ay(j)}

In previous equations (57) through (59), 5X, Z7Yand 3, mean the average conductivity in x, y

and z directions respectively.

Calculation procedure and boundary conditions

Combining Equations (53) through (55) and boundary conditions result in a linear set of
equations that can be written in matrix form

Ax=b (60)

where A is the coefficient matrix, x is the electric field vector which consists of eX,eYand eZ,and b
is the source vector obtained from the primary electric fields. We use the Dirichlet boundary
condition in which the secondary field is assumed negligible at the boundary, so

~ (s) (s) (s)
x =ey =ez =0 (61)

on the six boundary surfaces (x= 4s0, y = b, z = b).

New digital linear filters (Guptasarma and Singh, 1997) are used to calculate source terms
given by equations (31) and (32). Figures 4 and 5 show the numerical examples of the primary
electric and magnetic fields due to the VMD source on the surface of the homogeneous half
space. The p component of electric fields in the air is given by (equations (25) and (26))

y–y’ x–x’.—
‘A,p = ‘A,x +— ‘A..Yr r

(62)

The z component of magnetic fields is calculated using equation (30).
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Fig.4 Horizontal electric fields in t~e Laplace domain due to the VMD source (lA-m’)
on the homogeneous (0.OIS/m) half space.

lo-ffi

10-07

1048

1o-w

10”’0

10-”

10-’2

10-’3

.J---.-.-- -

. . . . -, ..- . . . . -

---- .? --- .-, . . . . . . . --

.- .. . ..- ..--.--

----- ---- ----

-. -,- ---- ,---- .

----- - -., -----

-, -----,-- -----

10-’4 d , , ,,,,1 t ,,1,,1 ,,,,,1 ,,,,1 ,,,,,1 t ,,,,,,1 ,,,,
10-02 104’ 10°0 10°’ 10°2 10°3 10°4 10°5 10°6

Laplace variable, s
(a=O.OIS/m, r=100m)

Fig.5 Vertical magnetic fields in the Laplace domain due to the VIVID source (l A-m’)
on the homogeneous (0.OIS/m) half space.

12

. . . .. . . ..— .——



The coefficient matrix A becomes a large sparse matrix. In order to solve the set of linear
equations, the incomplete Cholesky conjugate gradient (ICCG) method is used (Smith, 1996, for
example). It is well known that the ICCG method is effective in solving a set of linear equations
that has a large sparse matrix. In this work, FORTRAN subroutines for ICCG method developed
by Dongarra et al. (1982) are used to solve the linear equations. The method used in the ICCG
solver uses a preconditioned based on an incomplete L,U factorization. These subroutines can be
used to solve symmetric as well as non-symmetric systems.

After calculating the secondary electric fields, the secondwy magnetic fields can be obtained
using integral form of equation (43)

~e(s) . dl = –ps ~~h(s) . nda

Each component of magnetic fields can be calculated by the approximated equations

{

1 ey(s)(i, j, k -4 1)– ey(s)(i, j, k) + e,(s)(i, j, k) – e,(s)(i, j +-1,k)
L?x(s)(i, j,k) = —

/us &(k) Ay(j)
}

{

by(s)(i, j,k) = ~ “ ‘s)(i, j, k) – ez(s) (i, j, k +1)+ e,(s) (i + 1,j, k) – e,(s) (i, j, k)

/us AZ(k) AX(i) }

{

1 ex(s)(i, j + l,k) – ez(s)(i, j,k) + ey(s) (i, j,k) – ey ‘s)(i+ 1,j,k)
hz(s) (i, j,k)=—

/us Ay(j) AX(i)
}

Finally total electric and magnetic fields can be calculated by equations (39) and (40).

Numerical examples

(63)

(64)

(65)

(66)

In order to test the computer program we developed, a simple three-dimensional model
illustrated in Fig.6 is used. An equally spaced grid model (20x20x 20) is used to calculate the

electromagnetic fields. As each grid spacing has a length of 20m, the model space becomes
380nz x 380nz x 380nz in volume. In electromagnetic modeling, we have to consider the air region
above the ground surface. The upper 380rn x 380nz x 120nz volume is used as the air region that
has a conductivity of O S/m, and the lower 380nz x 380vz x 260m volume is used as the earth
region (0.0 lS/m) that contains an anomalous body ( 1 S/m).

Fig.7 shows the relation between the number of iterations and ICCG residual. We can see that
the ICCG residual decreases smoothly. With the convergence criterion of ICCG residual set to 10
‘0,300 iterations are required and CPU time is about 260 sec to complete the crdculation using a
PC (266MHz Pentium II, 128MB memory).

The distributions of the secondary electric fields of x and y directions on the ground surface are
shown in Fig.8 and Fig.9. The total electric fields on the ground surface are shown in Fig. 10 and
Fig.11.

13



1

+

100m *“u
1 y (East)
1
1

---- - ------&-
(P-75,Y=1OO,2=0)

Planview

~ ‘(Emt)
m=O.01 (S/m) 60m

Q
------

-1 (Sk) 40J33

----- -

Fig.6 Three-dimensional conductivity body (100nz x 100nz x 40nz) in a homogeneous half space.

10-0’

10-02

10-03

10-04

C3
o 10-07
g

10-08,

‘>

. . . . . . . . . . ----- ,---- --. , -- ----- . . . . . . . ----- ----- -

:- . . . . . . .. . ----- ------ ------ - . . . . . - .’ -.. . . . .

. ..-. . . . . . ------ -“---- ---

--------- . . . . . . . . . . . . . . . . . ------ ---

. . . . . . ..- . . . ------ ---,--- ----

. . . . . . . . . . ----- ------ -- .-, -.. ----------- .-.

I --;-------;’’’’”%
..........-----.,--------

10-09 ....... L..

10-’0 .-............................AL..............

10-” , 0 , , I , , t t I 8 , t , I,,, I,,,,It,,t
150

Number of iteration

o 50 100 200 250 300

Fig.7 The relation between number of iteration and ICCG residual.

14



, , “, , ,
1 , ,

-.”. -. . . . . . - . . -“- ..:: ,.
. . . . . . . . . . ..

, . .>- . ,,,=.=
.Yv-

. ‘7 . . ...2....
i... ...-. ~.”;,,”, ,

.,. :

*... :..1

-100I.150 J

.-.. .1

Y-axis (West - East}

Fig.8 The secondary electric fields of x-direction on the ground surface,

‘50&lm

ex‘s)X10-12 (.s =104) -

.150/:7:9::., ,0100150

-150 -100 -50

-w
y-axis (West - East)

Fig.9 The secondary electric fields of y-direction on the ground surface, eY(S)x 10-12 (s= 104)

15



150- - :’. ‘::~:,’. “’:. “. “-.” ;
., ..,.,. .. -.=,. .,,*, .

,. ’.,.,.

.,,.

s

. .

... .

-150-’

-150 -100 -50 0 50 100 150

Y-axis (West - East)

Fig. 10 The total electric fields of x-direction on the ground surface, eX

, 1 I ,1
1 ,

,.. /

1 “/’ ,. ..
,50 .. *,,,. ‘0 ‘.’”. .“.. , . ● . . ... ..

● *.*.. # * “’”7 $... ;,+
/

I “*- *’ -/ ..-/..... . . ..

’00]: :.,::jf;..:[:”.c-’;:

“3

:/

o
~ ***

(n . . ..—
x ,.
(u

-50 -”..

l’.

.*.

,.. .

-150 *W***-* ● *,
., ,-

,. .=1 a 1
-150 -100

I

-50 0 50 100 1:

Y-axis (West - East)

Fig. 11 The total electric fields of y-direction on the ground surface, eY

1
400.0

200.0

50.0

20.0

- 10.0

4.0

2.0

1.0

0.5

0.0

-0.5

-1.0

-2.0

-4.0

-10.0

-20.0

-50.0

; -200.0

-400.0

X10-’2(s=104).

!
400.0

200.0

50.0

20.0

10.0

4.0

2.0

1.0

0.5

0.0

-0.5

-1.0

-2.0

-4.0

-10.0

-20.0

-50.0

-200.0

-400.0

X10-’2(.s=104).

16



Fig.

L
,., ..’

,
, $ ,

4

-150 -100 -50 0 50 100 150

Y-axis (West - East)

1
0.25

0.20

0.15

0.10

0.05

“. 0.00

... -0.05
,,-

-0.10
‘.,

. .. -0.15

.,

‘“ :-0.20

I -0.25

-0.30

2 The second magnetic fields of z~direction on the ground surface, hZ(S)x 10-*2 (s =‘ 04 )

,
! 1 I I 1

. . ,., ;- - --,,
7

-’ ..,,,: ,,, .-.. ,;. . . . . ‘.’ )Y‘:<..,. ..’ ..:;
150- ,,-. . . .

y, ,, ,.,., .:, .”..
------ .,

.. . . . . .. . .
.. :..*. . . . .“”*’ -

... - ‘, ‘& ‘“ j:; ;;.,.,::.:” :*-‘ “ : :,0 “’ ,{:

., ’...4.”=
,,,,~~”” :

&

‘//

: ;: J :..”: ;$;.
. .... ... .’..- 4:

.. ;,-, ... ,. ,. .:’
,. .* . “..’.’;!’*.* . ...,.,”.. . . ”*.*..-*,,“, .’.,.

,.*’. .
-, .,-” ,,, ,..

., ,., ,.
,,. . ,, “,’ ‘r’Qy+i’?? a. . .

! ‘:& :$$~:i:-s~~-o$ -

,, .,;i:.’.,. : ‘. :“, . ‘., ‘. ..-” .”.. -, /j
, 1 , , , $

-150 -100 -50 0 50 100 150

Y-axis (West - East)

1
, ,: 400.0

200.0

.’ 50.0

20.0

10.0

4.0,.
2.0

1.0..
0.5

; 0.0

.0.5

,. -1.0

-2.0

-4.0

-10.0

‘“ -20.0

-50.0

-200.0

-400.0

Fig. 13 The total magnetic fields of z-direction on the ground surface, h, x 10-12 (s= 104).

17



In Figures 8 through Fig. 11, the dashed-line-square indicates the location of anomalous
conductive the body and black star indicates the location of the VMD source. From the
distributions of the secondtuy electric field illustrated in Fig.8 and 9, we can see that a positive
anomaly appears on the conductive body between two negative anomalies and maximum positive
anomaly occurs at the nearest corner of anomalous conductive body.

In Figures 10 and 11, the total electric fields, both eXand e,, are almost divided into two
(negative and positive) parts across the line y=100m and x=-75m respectively. There is no
evident anomaly in the distributions of total electric fields because the magnitude of the
secondary fields is very small compared to that of the primary field. However, we can see the
distorted contour lines around the edges of anomalous conductive body.

Using equation (66) and the secondary electric fields on both the x and y directions (Figures 8
and 9), we can calculate the secondary magnetic field illustrated in Figure 12. In Figure 12, the
maximum negative anomaly appears at the nearest comer of anomalous conductive body and the
maximum positive anomaly appears at the opposite comer.

Figure 13 shows the total magnetic field in the z-direction on the ground surface due to
anomalous conductive body. The distribution of the total magnetic fields becomes concentric
circles with the center at the VMD source, because the secondary magnetic field is too small
compared to the primary field.

Conclusion

We have developed a new technique to simulate electromagnetic fields of three-dimensional
structures. The new technique is based on Maxwell’s equations in the Laplace domain. The
discretization of Maxwell’s equations in the Laplace domain is performed by the finite difference
method using a staggered grid. A numerical modeling code has been written based on the new
approach to calculate electromagnetic fields due to 3-D anomalous body. The program can handle
the permittivity distribution as well as the conductivity distribution and is applicable to 3-D
transient electromagnetic inversion study in the future.

The new method requires less computer memory (almost half) than that used in other methods
based on Maxwell’s equations in the frequency domain. The computing speed is also faster than
the frequency domain modeling using the same three-dimensional grid. This is because all
components of electromagnetic fields in the Laplace domain are real numbers and all
computation are performed in real arithmetic.

We believe that this technique will become an important tool for analyzing data obtained from
transient electromagnetic survey in the future.
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