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A new class of resistive drift-Alfvdn modes is discovered. The new 

modes are believed to be the generalization of shear-Alfven waves to sheared 

magnetic fields. In addition, the finite 3 (plasma over magnetic pressure) 

corrections to the electrostatic dissipative drift wave are evaluated.
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I. INTRODUCTION

In the sheared magnetic field of a tokamak, shear Alfv£n waves in the
2 2 2vicinity of a rational surface are unable to satisfy w - k„ v^ because the 

parallel wavevector kM is proportional to x , the distance from the rational 

surface, while the Alfven speed v^ is roughly constant. Because of this 

dependence of k„ on x the behavior of shear Alfvdn waves in a sheared 

magnetic field has remained a mystery. Recently, some insight into the nature 

of resistive drift-Alfvdn modes in a sheared magnetic field has been provided 

by the investigation of Hsu, et al.1 Here, a general treatment is 

presented which permits the recovery of both a new class of resistive drift- 

Alfvdn modes and the finite 8 corrections to the electrostatic dissipative 

drift wave. The new modes are believed to be the extension of shear Alfvdn 

waves to sheared magnetic fields and in the absence of a density gradient

satisfy to ~ k,l(x=p )vfl , where p = T p./T. with p. the ion gyroradius
S A Sell 1

and Te and T^ the electron and ion temperature. One of these shear Alfven

modes becomes unstable in an inhomogeneous plasma for large enough 8- However, 

the simple analytic results are limited to extremely small ve/w* for which 

the rapid spatial variation of the fields casts doubt upon the validity of a 

differential formulation for the unstable mode. Here, vg and oj* are the
2

electron collision and electron diagmagnetic drift frequencies and 8 = AirNgT^./B 

with Ng the electron number density and B the magnitude of the magnetic field.

In the following section the relevant differential equation is solved by 

a method of matched asymptotic expansions and the appropriate eigenvalue equa­

tion obtained. In Section III a discussion of the subtleties of analyzing the 

eigenvalue equation is given and a proper analysis performed to recover a new
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set of drift-Alfv£n modes. In addition, the retention of ion inertia in the 

solution of Section II allows the finite 3 corrections to the electrostatic 

dissipative drift wave to be recovered. In Section III these corrections are 

evaluated and result in a further stabilization of the drift mode. In the 

Appendix the derivation of the appropriate equations is summarized.

II. SOLUTION OF DIFFERENTIAL EQUATION

In order to generalize the work of Hsu et al.'*' to include the inertia of

2
the ions, the techniques of Catto et al. are combined with methods similar to 

those employed in Reference 1 in order to solve the coupled Poisson equation 

and parallel Ampere's law derived in the Appendix. Combining Eqs. (A2) and (A4) 

as indicated at the end of the Appendix, the equation to be solved is

X 1-i(xr/x)‘ 2 2 y x

- 1 -
V 0 , (1)

where x is normalized to the ion gyroradius, prime denotes d/dx, and

E = -d$/dx with $ the potential. Equation (1) is obtained from the
2 2 2coupled Poisson and Ampere's system by assuming d /dx » k , where 

k is the poloidal wave vector, and by demanding that <i> be even in x 

about the rational surface at x = 0. In Eq. (1) the following definitions 

are employed:

1/2(O -to*
y =

Ln“* to(x + 1 )
(OT + (0* ’ L tots 00T + (0*

2
x3L^ to(tox + to*) 2 .

2xmL£s tov e
,22 xr

Ml 2 2L to* n * MLn

with to* = kcT /eBL , x = T /T. , L and L the shear and density * e n e i s n
scale lengths, and m and M the electron and ion masses. Equation (1)
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is derived from a number conserving Krook model by assuming that vg > u>, kM vg 

where is the electron thermal speed.

2 2In Ref. 1 the y + 0 limit was treated. Here the y x term is retained
2 2so that the equation in the outer region, x >x , becomes

>- - y2x2, 1' ?'E = °' (2)

2-1 2In the inner region, x <A and A/y , the equation is the same as for 

the inner region of Ref. 1,

1 - i(xr/x)‘ E‘ + (Av/x^)E - 0. (3)

However, rather than write the solution of Eq. (3) for dE/dx in terms of 

associated Legendre functions, Eq. (3) can be solved directly to obtain the 

series solution odd in x ; namely.

E = Ax3 F(1 - | l+o.i.
2 2 ’ 2 5

x2/i x 3), (4)

where A is a constant,

o = ~ 4Av)1/2, (5)

and F is the hypergeometric function,

F (a, b; c; t) r(c)
r(a) r(b) I

n=0

r(n + a) r(n + b) tn
F(n + c) n!

with F a gamma function. For 2 2 x > xf a linear transformation for the
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3
hypergeometric function may be employed to write E as

E = Ar(5/2)x <
T(a + ±)

r(f + 3f>)'

(x2/x^) exp(in/2) ■1+7 r/i o 1 a. ,1 .2/2, • (1 ” 2 5 " 2 "" 2 5 +2 5 ^ )

r(-a -i)

r(i - t)

(x2/x2) exp(iTr/2)
3^ a
’2 ~ 2 r/3 a a . , 3 . . 2, 2U

F(2 + 2 5 2 ’ a + 2 ’ (6)

In writing (6), -ir/2 < argco < 3tt/2 has been employed.

To solve Eq. (2) the method employed in Appendix B of Ref. 2 is used. 

Because both solutions are not given there, the essential details are presented 

in the next two paragraphs. Taking

E = exp(-ipx2/2) ^ a^x 

n=0

2n+6 (7)

and

-> 2 2X - p x
= exp(-iyx2/2) J bnx2n+(5 1

n=0
(8)

and demanding that Eqs. (7) and (8) give the same E1 yields

(2n + 6)an - iya^j = Ab^ - y bn_1; (9)

while inserting Eqs. (7) and (8) into (2) gives

va - a , = -(2n + 8 - l)b + ipb n n-1 v ; n H n-1 (10)
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For n = 0, Eqs. (9) and (10) give the indicial equation 6(6-1) + Av = 0 

having the roots

6 +
1
2 1 ± (1

a+1
-a

Eliminating an_1 and from Eqs. (9) and (10) results in

(ID

 (2n + 6) - iyv 
n A + iy(2n + 6 - 1) an

which can be inserted into (9) or (10) to obtain

a n

(iy)n 2n + 6 - 1 + (A/iy) T(6 + ^)r n + i5 “ T ~(iuW4) + (A/4iy)

n! [6 - 1 + (A/iy)] T(n + 6 + |-)r[|-6 - | - (iyv/4) + (A/4iy) , (12)

where unlike Ref. 2, Eq. (12) is valid for both 6+ = a + 1 and 6_ = -a ; 
that is, a^ = an(6 = 6±).

Writing

E = exp(-ipx2/2) ^ [a<+)x2n+1+° + Caf-'x2"-0 

n=0
(13)

the constant C is determined from the condition that the wave be outgoing 

as x co The result is

C = -

(A/iy) - 1 - a T(| + a)r[(A/4iy) - (iyv/4) - 4 - i
(14)

(iu)
a4

A/iy) + o - a)F |(A/4iy) - (iyv/4) + \ + jo
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Matching the x-*0 limit of the outer solution (13) to the x + °° of 

the inner solution (6), results in two equations which can be combined to 

eliminate A and obtain the desired eigenvalue equation,

1 +

2(A/iy) - 1 - a]r(o + |)r(a + Jr)[r(i - |)| r 
—

(yXp) ^ [(A/iy) + ajr(-a + ^-)r(-a - |)[r(| +

(A/4iy) - (iyv/4)- ^ - |

(iyv/4) + J-

= 0. 

(15)

Equation (15) can be shown to reduce to the result of Ref. 1 for y + 0 or,

more precisely, for |A/4y| > 1 . Equation (15) is appropriate as long as 
2 2 2Ax^ < 1 and A > y xr since these are the conditions for the validity of 

the matched asymptotic analysis. Finally, it is useful to note that the 

eigenvalue equation is unchanged if a->-a -1 so that only Rea > -1/2 

need be considered.

III. ANALYSIS OF EIGENVALUE EQUATION

2When y 0 , Eq. (15) is valid provided Axr < 1 . For
2

Axr 0 , the y 0 version of Eq. (15) requires that a approach

a half integer. Unfortunately, the matching fails for a = 1/2, 3/2, 5/2,...
2

since for such values of a a seemingly higher order term in (x^/x) from
1 -i 9 0

F(1 ~ ^>2 ~ J’’ -a + 2’’ ix^/x ) becomes the same order as the leading term

from F(| + |,|; a + |; ix^/x2) in Eq. (6). If the 1/2, 3/2, 5/2,... 

limits of the x->°° inner solution and the x + O outer solution are written 

down taking account of this subtlety then it is found that the inner and outer 

solutions cannot be matched. Indeed, because the eigenvalue equation is 

unchanged if a^-o - 1 , the only remaining half integer value of a to be
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considered is a = -1/2. Fortunately, the case a-*-1/2 does not suffer 

from the preceding difficulty because it is the case for which the higher 

order term and the leading term of F( 1 - ; -a + ix^/x^) are

the same. As a result, a->-1/2 will be shown to be the source of the 

new class of drift-Alfvdn modes.

A simpler, but less general, way of seeing that a =1/2, 3/2, 5/2,...

are not permitted is to note that a = (2£ - l)/2 with £ = 1, 2, 3,...
2 2results in Av = -(£ - 1/4) < 0 where Av w for Ln->°°. As a result, 

instability appears to be possible. However, if Eq. (1) is multiplied by 

E*, integrated from -°° to +°°, and integrated by parts assuming that 

E'E*!^ = 0, then for y->0 there results for Ln->°° the expression

i(xr/x)2] + T (v/x2) = 0 .

Taking the real and imaginary parts shows that there can be no unstable or 

marginally stable modes for Ln^o°. Consequently, this simple, independent 

check also leads to the conclusion that a = 1/2, 3/2, 5/2... cannot be 

allowed.

Returning to the eigenvalue equation, letting o = -j + e with |e| « 1 ,
2 £and employing (yx ) -> exp(i2Trn) as e->0 with n = ±1, ±2, ±3,...,

reduces Eq. (15) to

e = a + ^ ~ i2TrnUn(i/ux2) - ip (A/4iy) - (iyv/4) I - 21 (A/iy) f1 r1
: -47-2^5/4) ,

(16)

where i|j(t) = (d/dt) £nr(t) and y is Euler's constant. Equation (16) is not 

valid for n = 0 because for a = -1/2 the inner and outer solutions do not 

match, as can be verified by substitution into the a -> -1/2 limits of Eqs. (6),

(13), and (14).
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To lowest order Eq. (16) gives a = -1/2, resulting in Av = 1/4 or

u)0/w* = ±
, ? ? 1/2’

1+ L /t3L,) n s' (17)

Equation (17) is believed to be the lowest order dispersion relation for shear 

Alfvdn waves in a sheared magnetic field. In order to obtain the higher order 

corrections to Wg , the limit |A/4u| > 1 is considered in order to simplify 

Eq. (16). Using Av - 1/4, ijj(t) ~ £n t for t > 1, and i|;(5/4) = 4 - y - (tt/2)

- 2£n4 , Eq. (16) gives e - iZirn 

yields

£n(ilOv/xp i-l
so that writing w = Ug +

2 2 2 2w1 4Tr^n L^/tBL^

? 7 1/21 ■ 2
1 + L /tBL )' n s iln (i 10(3M/mve) (cogi + co*)

(18)

where Wg is given by (17) and the upper and lower signs correspond to those 

of Eq. (17). Consequently, if Wgi + co* > 0 the lower sign in Eq. (17) can 

result in an instability with a growth rate

Imoj, /to*
2u3n2L^/TBL^

2 2 11/2 i + (l^/tbl:)
^ J

5,n (10BM/mve) (tOgT + co*) + tt2/4
(19)

where cog/oo* = ^ 1 1 + (L^/tBL^)
1/2

The instability occurs whenever

exceeds a critical value given by the condition that cogt + co* > 0 ; namely,

(t +1)6 > Tl>Ls2 = Bcrit. (20)

21Equation (19) is expected to be appropriate whenever |Ax^| < 1 and |A/4y| > 1 

so that using Av - 1/4 gives the inequalities
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mv
4M(o)qT + a)*) < 6 < n *

16L, oj0(t + 1) (0)qT + (j0*) 1/2 (21)

For t ~ 1 the right portion of inequality (21) leads to the conclusion that 

the assumption |X/4y| > 1 is appropriate as long as B « 1 . Because the 

derivation of Eq. (1) is valid only when compressional Alfvdn waves are 

neglected (3 « 1)> there is no need to consider the yv » 1 limit of the 

4>[(A./4iy) - (iyv/4)] function in Eq. (16). Consequently, the y 0 limit 

employed by Hsu et al.^ is capable of recovering this shear Alfven mode. 

However, the y -*■ 0 limit is not appropriate for (J 0 as will be shown 

at the end of this section.

It is important to realize that even though the growth rates of the radial
o

eigenmodes appear to increase as n , the assumption |a^| < o)q severely 

restricts the range of validity of Eq. (19). For n = 1, Eq. (19) is valid 

only if (10BM/m)(aj*/ve) > exp(4Ti) = 3 x 10^, that is, for extremely small 

values of ve/w* . Of course, Eq (15) is valid more generally, and so can 

be employed to follow this mode for arbitrary Vg/w* . Whether instability 

persists for a larger range of parameters is presently being investigated 

by numerical solutions of Eq. (1) and Eq. (15), and will be considered in a 

later paper. The important point for the moment is that a new class of drift- 

Alfvdn modes has been found. These new drift-Alfvdn modes are believed to be
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the form a shear Alfven wave takes in a sheared magnetic field. Note that 

for Eq.(17) reduces to two identical modes of opposite phase velocities,

to - k„(x = Ps)v^ . The shear Alfven wave given by the upper sign of Eq. (17) 

appears to be related to the mode observed numerically by Tsang et al.^

Finally, it must be noted that in this p-*0 limit the asymptotic form 

of E goes like exp(-xA ). Because the original differential equation,

Eq. (1), is derived under the assumption that E(x) varies on a spatial 

scale larger than an ion gyroradius, the description presented here for 

y + 0 is strictly valid only if |A ' | < 1 . For the upper sign in Eq. (17),

|A| < 1 can be satisfied for most parameters, while for the lower sign 

x > 1 and |(jo| > to* is required. Flowever, both the condition for 

instability, Eq. (20), and x > 1, |oo| £ co* cannot be satisfied for the lower 

sign of (17). As a result, for an unstable a = -1/2 mode |A| > 1, with 

|A| approaching unity only for |(jo| < co*, co*/x . Consequently, the unstable 

modes may require an integral formulation in order to decide upon their 

validity. But because the analysis for the unstable modes is restricted to 

extremely small ve/oj*, Eq. (15) is presently being solved numerically to 

determine whether the modes remain unstable for larger ve/co* and if so,

|A| can be evaluated to see whether it is less than unity.

5 6In order to obtain the mode that reduces to the dissipative drift wave ’ 

for 3^-0 , Eq. (15) can be analyzed by considering |a| < 1 . Letting

(A/4iy) - (iyv/4) + (1/4) + (a/2) = e (22)

with |e| « 1 , and neglecting terms of 0(ea) , e is found to be

r
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£
1/2

X
X
- iy (23)

For 3 + 0, these two equations can be solved for X/iy . Rejecting the

extraneous which will not satisfy |e| « 1 , and recalling that Eq. (15)
2 2 1/2 

is only valid for yx < 1 gives X/iy - -1 - (Tryxr) so that the
5 ,21/2

result of Guzdar et al. is recovered. For (yx^) ~ yv < 1 , Eqs. (22)

and (23) can be solved by taking X = -iy to lowest order. The resulting
2 2 2\l/2expression is X/iy = - 1 + iyv + 2y v + (nyx^ or using w = to* except 

in X ,

(0-00.,

(0.

-i(t + 1)1  r
tL„

L 232(t + 1)L2 /irmL v \ 2
i + ieo + Djf + -j—

n 'n n
(24)

Consequently, the finite 3 corrections stabilize the mode still further.

In addition, for x^ + O, Eq. (22) with e = 0 and the full a retained
1/2is a legitimate solution of Eq. (15). Solving X/iy - iyv + (l-4Xv) = 0

gives X/iy = -1 - iyv so that shear stabilization appears to remain 

effective for all 3. The other radial eigenmodes can be recovered by 

letting e-*-e-n inEq. (22), with n = 1,2,..., and redoing the analysis 

of Eq. (15).

Finally, it should be noted that there are no other obvious values of

a to expand about in analyzing Eq. (15) since seemingly higher order terms
2 2 1 in x^/x in Eq. (6) become important whenever Rea > ^ • Consequently,

only the range -i < Rea < need be considered.
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IV. DISCUSSION

The eigenvalue equation for resistive drift-Alfv£n modes is derived.

A careful analysis of the eigenvalue equation reveals the existence of a new 

set of resistive drift-Alfv£n modes. These new modes are believed to be the 

extension of shear Alfven waves to a sheared magnetic field. One of these 

shear Alfven modes can become unstable in the presence of a density gradient 

for large enough 6. However, the simple analytic results are limited to 

extremely shall ve/w* for which the rapid spatial variation of the fields 

calls into question the validity of the differential formulation for the 

unstable mode. Larger values of ve/to* are being investigated numerically. 

Finally, the retention of ion inertia in the analysis allows the finite B 

corrections to the electrostatic dissipative drift wave to be evaluated.

They are found to result in further stabilization.
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APPENDIX

In order to derive Eq. (1) the unperturbed distribution function F 

is taken to be of the form

F - N('l')(M/2TTT)3/2exp(-Mv2/2T),

with ^ ^vxrrVip , fi = B/B , y = v„h + v1(^cosc|) + nx$ coscf>) , and 2mp

the poloidal flux so that the poloidal magnetic field Bp = R”3cxVijj with t; 

the toroidal angle and R the distance from the axis of symmetry to the point 

of interest (|V<;| = 1/R). This form for F is appropriate to lowest order 

when the collision frequency is greater than the bounce frequency and 

magnetic drifts are neglected. For simplicity the concentric magnetic 

coordinates r, 0, £ will be employed, where r is the distance from the 

magnetic axis to the point of interest and 6 is the poloidal angle. In 

this system R = Ro + rcosQ B = (BoRo/R)[£ + (e/q)6] with Rq the distance 

from the axis of symmetry to the magnetic axis, e = r/Ro, and q the safety 

factor. The distinction between n and g will not be retained in the 

foil owing.

Assuming that the perturbed vector potential may be written as A = A„n 

because only 3 « 1 are of interest, seeking solutions of the form 

exp(-i oj t + ik-r), defining the perturbed distribution function f via

f = g - (ZeF/cT)(cf + v*A„)

with v* = (cRT/ZeN)3N/3iJj , and employing the gyrokinetic^ variables 

R = r + fT^yxn and y , then the gyro-averaged equation for g becomes
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(co - knV,,)g = (ZeF/cT)(to - a)*)(c<l> - VhA,,)Jo(k,vi/fi)

(Al)
+ <C1 + (Ze/cT)(c<D + v*A„)Co>

where CQ and are the unperturbed and perturbed Fokker-Planck collision 

operators, = (2tt) ^ ...), and co* = (m/qR0)v* with m the poloidal

mode number.

The perturbed current J„ can be formed from Eq. (Al) in the usual fashion

by integrating over all y, multiplying by Ze , and summing over all species.
2

Combining the result with the parallel Ampere's law k^,, = (Att/cJJ,, gives

x(A:! - bA,,) - a($" - b$) (A2)

2
where x is normalized to the ion gyroradius p^., b = (kp^.) , k = m/r,

and a = vk^c/co with k,' = k/l_s and v as defined in the text. In obtaining 

(A2), kjl -> -8^/3x^ is employed.

In order to form the Poisson equation a number conserving Krook model is
3

employed in Eq. (Al), namely, + (Ze/cT)(c<i> + v*A„)Co = -ve[g - (F/N)/d vg]. 

Inserting the Krook model, returning to the t variable, and carrying out the
3

cj) integral in d v = dcf>d v,, dVj^ vA gives

[1 -(ive/N)/d3vF(co + ive - kllv„)-1]/d3vg =

(A3)
2

r r V/Jfcd - V ii A n )
(ZirZe/cT) (to - .*)£ dv„ fg dv, M° iv<; . k| V|| .

where E 0 for the ions. Carrying out the integrations for the electrons

and ions, taking vg » |k,i|ve , vg >> |co| >> |k„|v^, kp^. < 1, and kpg -> 0
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where vg and are the electron and ion thermal speeds and pg is the 

electron gyroradius; and inserting the resulting expressions into the quasi­

neutrality conditions gives

- b$ = (A[1 - i(xr/x)2] 1 - y2x2}[$- (u)A„/k„c)] , (A4)

where kM = k'.x and the definitions in the text are employed; again 

k2 -* -92/9x2 is used.

O p
For 9 /9x » b , Eq. (A2) becomes xA|| = a$" which can be integrated

2
(from x = 0 to x) once to obtain (An/x)1 = (a/x )$' for $ even and A„ odd.

0-1 ? ?
Dividing Eq. (A4) by A[1 - i(xr/x) ] - y x and differentiating, (A„/x)'

may be eliminated to obtain Eq. (1).
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