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I.  INTRODUCTION

In the sheared magnetic field of a tokamak, shear AlfvEn waves in the
vicinity of a rational surface are unable to satisfy W2 - kg v2 because the
parallel wavevector kil is proportional to x , the distance from the rational
surface, while the Alfven speed Vv* is roughly constant. Because of this
dependence of k, on x the behavior of shear Alfvdn waves in a sheared
magnetic field has remained a mystery. Recently, some insight into the nature
of resistive drift-Alfvdn modes in a sheared magnetic field has been provided
by the investigation of Hsu, et al.1 Here, a general treatment is
presented which permits the recovery of both a new class of resistive drift-
Alfvdn modes and the finite 8 corrections to the electrostatic dissipative
drift wave. The new modes are believed to be the extension of shear Alfvdn
waves to sheared magnetic fields and in the absenceof adensity gradient
satisfy to ~k,I(x=p S)vf[A, where p =T p. T.‘i_xvitp p- the ion gyroradius
and Te and Tthe electron and ion temperature. One of these shear Alfven
modes becomes unstable in an inhomogeneous plasma for large enough 8- However,
the simple analytic results are limited to extremely small ve/w* for which
the rapid spatial variation of the fields casts doubt upon the validity of a
differential formulation for the unstable mode. Here, vg and o* are the
electron collision and electron diagmagnetic drift frequencies and 8 = AirNgT"./B2

with Ng the electron number density and B the magnitude of the magnetic field.

In the following section the relevant differential equation is solved by
a method of matched asymptotic expansions and the appropriate eigenvalue equa-
tion obtained. In Section Il a discussion of the subtleties of analyzing the

eigenvalue equation is given and a proper analysis performed to recover a new



set of drift-AlfvEn modes. In addition, the retention of ion inertia in the
solution of Section Il allows the finite 3 corrections to the electrostatic
dissipative drift wave to be recovered. In Section Ill these corrections are
evaluated and result in a further stabilization of the drift mode. In the

Appendix the derivation of the appropriate equations is summarized.

I1.  SOLUTION OF DIFFERENTIAL EQUATION

In order to generalize the work of Hsu et al.”™™ to include the inertia of

2
the ions, the techniques of Catto et al. are combined with methods similar to
those employed in Reference 1 in order to solve the coupled Poisson equation
and parallel Ampere's law derived in the Appendix. Combining Egs. (A2) and (A4)

as indicated at the end of the Appendix, the equation to be solved is

X 1-i(xr/x) y2x2

where x is normalized to the ion gyroradius, prime denotes d/dx, and
E = -d$/dx with §$ the potential. Equation (1) is obtained from the
coupled Poisson and Ampere's system by assuming d2/dx2 >» k2, where
k is the poloidal wave vector, and by demanding that ¢ be even in x

about the rational surface at x = 0. In Eq. (1) the following definitions

are employed:

* cox 1/2
0-to L™ tox + 1)
(OT + (0% y = L ot 00T + (0*
; ¢
x3LA to(tox + to*) 9 XmLs tove
L’nz%* Y I
with tof = kCTe/eBLn , X = Te/Ti , LS and Ln the shear and density

scale lengths, and m and M the electron and ion masses. Equation (1)



is derived from a number conserving Krook model by assuming that wvg > uw>, kil vg

where is the electron thermal speed.
In Ref. 1 the y+0 Ilimit was treated. Here the y2x2 term is retained
so that the equation in the outer region, x2 >x2 , becomes
L] ’?I = o
. - y2X2 1" “2°E 2
, . 21 2 , .
In the inner region, x“<A and Aly” , the equation is the same as for
the inner region of Ref. 1,
1 - i(xr/x) E t (Av/XME - 0. (3)

However, rather than write the solution of Eq. (3) for dE/dx in terms of
associated Legendre functions, Eq. (3) can be solved directly to obtain the

series solution odd in x; namely.

m
11

Ax3 F(1 - /I+~o _ 1. xX2/i x 3),
-1 f4e-r (4)

where A is a constant,
o = - 4AV)1/2, (5)

and F is the hypergeometric function,

r(c) B rcn + a) r(n + b) tn
r(a) r(b) 0 F(n + c¢) n!
n=

F(a, b;c;t)

with F a gamma function. For x2 > x% a linear transformation for the



3
hypergeometric function may be employed to write E as

T - - -
£ = Ar(S/Z)x (a + %) (x2/xA) exp(in/2) " .rﬂ v Qnd e B ) 5A.2/2)
r(f+ 5
r(-a -i) 2/x2 iTr/2 ’;A~3 r/ 2 2U

ri -

In writing (6), -ir/2 < argco < 31m/2 has been employed.

To solve Eq. (2) the method employed in Appendix B of Ref. 2 is used.
Because both solutions are not given there, the essential details are presented

in the next two paragraphs. Taking

E = exp(-ipx2/2) ~ a’x2n+6 7)
n=0
and
= exp(-iyx2/2) J bnx2n+(5 1 8)
X - p2x2 =0

and demanding that Egs. (7) and (8) give the same E! yields
(2n + B6)an - iya”j = Ab* - y bn_1; (9)
while inserting Egs. (7) and (8) into (2) gives

va - ap 4 = (20 +8 - Db+ ipb (10)



For n =0, Egs. (9) and (10) give the indicial equation 6(6-1) + Av = 0

having the roots

1 a+1
6, o 1z (1 _a (ID
Eliminating an_1 and from Egs. (9) and (10) results in

2n + 6) - iyv
n A+(iy(2n)+ 63{ 1) an

which can be inserted into (9) or (10) to obtain

(y)h 2n + 6 - 1 + (Afiy) 16 + Mron + &5 “T ~(iuw4) + (Aldiy)
n nl [6 -1+ (Aliy)] T(n + 6 + |-)r[|-6 - | - (iyv/4) + (Aldiy)

where unlike Ref. 2, Eq. (12) is valid for both 6+ =a+ 1 and 6_ = -a;

that is, a”™ =an(6 = 6%).
Writing

E = exp(-ipx2/2) <~ [a<+)x2n+1+° + Caf-'x2"-0

(13)
n=0
the constant C is determined from the condition that the wave be outgoing
as X The result is
(Aliy) - 1 - a T(] + a)yr[(A/diy) - (iyv/4) - 4 - 1
c = - (14)
a4

(i) Aliy) + o - a)F |(A/diy) - (iyv/4) + \ + jo

(12)



Matching the x-*O Ilimit of the outer solution (13) to the x+° of
the inner solution (6), results in two equations which can be combined to
eliminate A and obtain the desired eigenvalue equation,

(Aliy) - 1 - alr(o + PDr(a + Jr)[r(i - |)|2r (Aldiy) - (iyv/4)- ~ - |

1 + _— = O.

(yXp) * [(Aliy) + ajr(-a + ~)r(-a - |DIr(] + (iyv/4) + |- 15)

Equation (15) can be shown to reduce to the result of Ref. 1 for y+0 or,
more precisely, for |[|A/4y| > 1. Equation (15) is appropriate as long as
sz <1 and A > yzxg' since these are the conditions for the validity of
the matched asymptotic analysis. Finally, it is useful to note that the
eigenvalue equation is unchanged if a->-a -1 so that only Rea > -1/2

need be considered.

I11. ANALYSIS OF EIGENVALUE EQUATION

When y 0, Eq. (15) is valid provided Ax?‘ < 1. For
Ax% 0, the y 0 version of Eq. (15) requires that a approach
a half integer. Unfortunately, the matching fails for a = 1/2, 3/2, 5/2,...
since for such values of a a seemingly higher order term in (x’\/x)2 from
F(1 ~ A>é ~J -a+ é ix9‘/x0) becomes the same order as the leading term
from F( + .1 a+ |, ix*x2) in Eq. (6). If the 1/2, 3/2, 5/2,...

oo

limits of the x-> inner solution and the x+0 outer solution are written
down taking account of this subtlety then it is found that the inner and outer
solutions cannot be matched. Indeed, because the eigenvalue equation is

unchanged if a”-o - 1, the only remaining half integer value of a to be



considered is a = -1/2. Fortunately, the case a-*-1/2 does not suffer
from the preceding difficulty because it is the case for which the higher
order term and the leading term of F(1 - ; -a + ixXN/xN) are
the same. As a result, a->-1/2 will be shown to be the source of the

new class of drift-Alfvdn modes.

A simpler, but less general, way of seeing that a =1/2, 3/2, 5/2,...
are not permitted is to note that a = (2£ - 1)/2 with £ =1, 2, 3,...
results in Av = —(£2- 1/4) < 0 where Av w2 for Ln->°°. As a result,
instability appears to be possible. However, if Eq. (1) is multiplied by

E*, integrated from -°° to +°°, and integrated by parts assuming that

E'E*I* = O, then for y->0 there results for Ln->° the expression

<02l (v/x2) 0

Taking the real and imaginary parts shows that there can be no unstable or
marginally stable modes for Ln”°. Consequently, this simple, independent
check also leads to the conclusion that a = 1/2, 3/2, 5/2... cannot be

allowed.

Returning to the eigenvalue equation, letting o0 = — + ¢ with |e|] « 1,
and employing (yx2)£ > exp(i2Trn) as e->0 with n==1 +2, £3,...,

reduces Eq. (15) to

r

(16)

e = a+ N~ i2TrnUn(i/ux2) - ip (Aldiy) - (iyv/4) | - 21 (Aliy) f1_47_2A5/4)
where i]j(t) = (d/dt) £nr(t) and vy is Euler's constant. Equation (16) is not
valid for n = 0 because for a = -1/2 the inner and outer solutions do not

match, as can be verified by substitution into the a > -1/2 limits of Egs. (6),

(13), and (14).



To lowest order Egq. (16) gives a = -1/2, resulting in Av = 1/4 or

o o 12
uo/w* = t 1+ L /T3y (17)

Equation (17) is believed to be the lowest order dispersion relation for shear

Alfvdn waves in a sheared magnetic field. In order to obtain the higher order

corrections to Wg, the limit |A/4u| > 1 is considered in order to simplify

Eq. (16). Using Av - 1/4, ijjt) ~ £&n t for t > 1, and i[;(5/4) = 4 - y - (11/2)
: - . i-1 i

- 2¢fn4 , Eq. (16) gives e - izirn £n(ilOv/xp so that writing w = Ug +

yields

wi 4TAn2LA/TBLA

9 7 121 ! 2
1+ 'Ln/TBLs) iln (i 10(3M/mve) (cogi + co¥)

(18)

where Wg is given by (17) and the upper and lower signs correspond to those
of Eq. (17). Consequently, if Wgi + co* > 0 the lower sign in Eq. (17) can

result in an instability with a growth rate

2u3n2LNTBLA
Imoj, /to* (19)
. 2.11/2
I+ (LZ\/TBU) 50 (10BM/mve) (tOgT + cot) + T2/4
A
n A 112
where cogloo* = A 1 t+ (LMTBLY) The instability occurs whenever
exceeds a critical value given by the condition that cogt + co* > 0 ; namely,
(r +1)6 > TI=L2 = Bcrit (20)

Equation (19) is expected to be appropriate whenever |Ax%‘ <1 and [|Aldy| > 1

so that using Av - 1/4 gives the inequalities



mv
4M(o)aT + a)) < © <

*

n

21)
16L, oO(T + 1) (0)QT + (0%) 1/2

For 7 ~ 1 the right portion of inequality (21) leads to the conclusion that
the assumption |X/4y| > 1 is appropriate as long as B « 1. Because the
derivation of Eq. (1) is valid only when compressional Alfvdn waves are

neglected (3 « 1)> there is no need to consider the yv » 1 limit of the

4>[(A.l4iy) - (iyv/4)] function in Eq. (16). Consequently, the y 0 Ilimit

employed by Hsu et al.™ is capable of recovering this shear Alfven mode.

However, the y ‘1 0 limit is not appropriate for (J 0 as will be shown

at the end of this section.

It is important to realize that even though the growth rates of the radial
eigenmodes appear to increase as n0 , the assumption |a?*| < oo severely
restricts the range of validity of Eq. (19). For n = 1, Eq. (19) is valid
only if (10BM/m)(aj*/ve) > exp(4Ti) = 3 x 10%, that is, for extremely small
values of ve/w* . Of course, Eq (15) is valid more generally, and so can
be employed to follow this mode for arbitrary Vg/w* . Whether instability
persists for a larger range of parameters is presently being investigated
by numerical solutions of Eq. (1) and Eq. (15), and will be considered in a
later paper. The important point for the moment is that a new class of drift-

Alfvdn modes has been found. These new drift-Alfvdn modes are believed to be

10
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the form a shear Alfven wave takes in a sheared magnetic field. Note that
for Eq.(17) reduces to two identical modes of opposite phase velocities,

to - k,(x = Ps)v®* . The shear Alfven wave given by the upper sign of Eq. (17)

appears to be related to the mode observed numerically by Tsang et al.”

Finally, it must be noted that in this p-*0 Ilimit the asymptotic form
of E goes like exp(-xA ). Because the original differential equation,
Eq. (1), is derived under the assumption that E(x) varies on a spatial

scale larger than an ion gyroradius, the description presented here for

y+0 is strictly valid only if |A ' | < 1. For the upper sign in Eq. (17),
[A] < 1 can be satisfied for most parameters, while for the lower sign
x > 1 and | > to* is required. Flowever, both the condition for

instability, Eq. (20), and x > 1, |oo] £ co* cannot be satisfied for the lower
sign of (17). As a result, for an unstable a = -1/2 mode |A] > 1, with
[A] approaching unity only for |(Jo < co*, co*/x . Consequently, the unstable
modes may require an integral formulation in order to decide upon their
validity. But because the analysis for the unstable modes is restricted to
extremely small ve/oj*, Eq. (15) is presently being solved numerically to
determine whether the modes remain unstable for larger ve/co* and if so,

|A] can be evaluated to see whether it is less than unity.

In order to obtain the mode that reduces to the dissipative drift wave5

for 370 , Eq. (15) can be analyzed by considering |a] < 1. Letting
(A/diy) - (iyv/4) + (1/4) + (a@/l2) = e (22)

with |e] « 1, and neglecting terms of O(ea) , e is found to be
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1/2 X
- X - iy (23)
For 3+ 0, these two equations can be solved for Xl/iy . Rejecting the
extraneous which will not satisfy |e] « 1, and recalling that Eq. (15)
2 2 1/2
is only valid for yx < 1 gives Xy - -1 - (Tryxr) so that the
5 21/2
result of Guzdar et al. is recovered. For (yx’:s ~yv < 1, Egs. (22)
and (23) can be solved by taking X = -iy to lowest order. The resulting
. . . . 2 2 2\1/2 . .
expression is Xl/iy = - 1+iyv + 2y v + (nyX or using w = to* except
in X,
(© —w, -i(T + 1)1r _ _ L 232(T-+ 1)L2  /irmL v \ 2
. . i + ieo + Dj:" + -j : (24)
n

Consequently, the finite 3 corrections stabilize the mode still further.

In addition, for x*"+ 0, Eq. (22) with e = 0 and the full a retained
is a legitimate solution of Eq. (15). Solving Xy - iyv + (I-4xv) 2 = g
gives Xl/iy = -1 - iyv so that shear stabilization appears to remain
effective for all 3. The other radial eigenmodes can be recovered by
letting e-*-e-n inEq. (22), with n = 1,2,.._, and redoing the analysis

of Eq. (15).

Finally, it should be noted that there are no other obvious values of
a to expand about in analyzing Eq. (15) since seemingly higher order terms

in xz‘/x2 in Eq. (6) become important whenever Rea > A Consequently,

only the range =—i < Rea < need be considered.
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V. DISCUSSION

The eigenvalue equation for resistive drift-AlfvE£n modes is derived.
A careful analysis of the eigenvalue equation reveals the existence of a new
set of resistive drift-AlfvEn modes. These new modes are believed to be the
extension of shear Alfven waves to a sheared magnetic field. One of these
shear Alfven modes can become unstable in the presence of a density gradient
for large enough 6. However, the simple analytic results are limited to
extremely shall ve/w* for which the rapid spatial variation of the fields
calls into question the validity of the differential formulation for the
unstable mode. Larger values of ve/to* are being investigated numerically.
Finally, the retention of ion inertia in the analysis allows the finite B
corrections to the electrostatic dissipative drift wave to be evaluated.

They are found to result in further stabilization.
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APPENDIX

In order to derive Eq. (1) the unperturbed distribution function F

is taken to be of the form

F - N('1l')(M/2TTT)3/2exp (-Mv2/2T),

with A AvxrrVip , fi = BB, y = v,h + v1(*cosc|) + nx$ coscf>) , and 2mp

the poloidal flux so that the poloidal magnetic field Bp = R”3cxVij with t

the toroidal angle and R the distance from the axis of symmetry to the point
of interest (|V<;| = 1/R). This form for F is appropriate to lowest order
when the collision frequency is greater than the bounce frequency and
magnetic drifts are neglected. For simplicity the concentric magnetic
coordinates r, O, £ will be employed, where r is the distance from the
magnetic axis to the point of interest and 6 is the poloidal angle. In

this system R = Ro + rcosQ B = (BoRo/R)[E£ + (e/q)6] with Ra the distance
from the axis of symmetry to the magnetic axis, e = r/Ro, and q the safety
factor. The distinction between n and g will not be retained in the

foil owing.

Assuming that the perturbed vector potential may be written as A = An
because only 3 « 1 are of interest, seeking solutions of the form

exp(-i ot + ik-r), defining the perturbed distribution function f via

f=g9- (ZeF/cT)(cf + V*A,)

with  v* = (cRT/ZeN)3N/3ll , and employing the gyrokinetic® variables

R=r+ fT'yxn and vy , then the gyro-averaged equation for ¢ becomes
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(co - knV,,)g = (ZeF/cT)(to - a)*)(c<l> - VHA,,)Jo(k,Vi/fi)
(Al)
+ <C1 + (ZelcT)(c<D + v*A,)Co>
where CQ and are the unperturbed and perturbed Fokker-Planck collision
operators, = (217) A ...), and c¢o* = (m/qQRO)v* with m the poloidal

mode number.

The perturbed current J, can be formed from Eq. (Al) in the usual fashion
by integrating over all y, multiplying by Ze, and summing over all species.

2
Combining the result with the parallel Ampere's law k#,,

(At/cdd,, gives

x(A:l - bA,) - a($" - b%) (A2)
where x is normalized to the ion gyroradius p*, b = (kp*.) , k = m/r,
and a = vk*c/co with k' = k/l_s and v as defined in the text. In obtaining

(A2), kjl > -87~/3x" is employed.

In order to form the Poisson equation a number conserving Krook model is
3
employed in Eq. (Al), namely, + (ZelcT)(c<i> + v*A,)Co = -ve[g - (F/N)/d vg].
Inserting the Krook model, returning to the t variable, and carrying out the

3
¢ integral in d v = dfd v, dVj* vA gives

[1 -(ive/N)/d3vF(co + ive - kllv,)-1]1/d3vg =

(A3)

r r V/Jchd - ViiAn

(ZirZelcT) (to - .™)E dv, fg dv, M° iv<; . k| V|
where E 0 for the ions. Carrying out the integrations for the electrons

and ions, taking vg » |Kk,ilve , vg >> |eo| > |k,|v», kp*. < 1, and kpg -> 0
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where vg and are the electron and ion thermal speeds and pg is the

electron gyroradius; and inserting the resulting expressions into the quasi-

neutrality conditions gives

- b$ = (Al - i(xr/x)2] 1 - y2x2M[$- (WA, /k,C)] (A4)

where kil = k'.x and the definitions in the text are employed; again
k2 -* -92/9x2 is used.

For 9 /9xp » b, Eq. (A2) becomes xA|| = a$" which can be integrated

2
(from x = 0 to x) once to obtain (An/x)! = (a/x )$' for § even and A, odd.
0-1 ??
Dividing Egq. (A4) by A[1 - i(xr/x) ] - y x and differentiating, (A,/x)'

may be eliminated to obtain Eq. (1).
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