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Abstract 

Thls repor t  presents the destgn, p e r f o m n c e  
and cost  o f  a solar-powered w t a l  hydride heat 
pump and pcwer system f o r  use on a residence. 
This system was f t r s t  conceived o f  and i t s  feast- 
b t l t t y .  demonstrated by Dieter  Gruen, et .  al . .  a t  
Argonnc National Laboratory. The system design, 
which t s ' l i m t t e d  by heat transfer. was optimized 
v ia an t t e r a t i v e  computer program. The design 
process s t a r t s  w t th  opttmtzing the t h e m 1  trans- 
po r t  proper t ies o f  the hydride-bed-heat exchanger. 
then traces temperatures and pressures through 
the operating cycles. The coe f f t c ten t  o f  per for -  
mance (COP) o f  the overa l l  'system I s  then deter- 
mined from the t h e m 1  losses due t o  cyc l tng the 
hydride beds and due t o  the a u x i l i a r y  power con- 
suned by f reon pumps and air-moving fans. The 
system, uslng h igh temperature so la r  c o l l e c t o r  

. input  a t  210°F t o  28O0F, provides heattng w l t h  a 
' COP o f  approx tmte ly  1.6 and cool ing w l t h  a COP o f  

approxlarately 0.6. and e l e c t r t c a l  power dur ing 
spring and f a l l .  a l l  f o r  a cost comparable t o  a 
so la r  rbsorpt ton cooler. 

I. lntroduct ton 

The use o f  so la r  energy f o r  buf ld tng heattng 
and cool tng has been a target  f o r  the past decade. 
The &vat l a b l e  technology (absorptton and rankine 
cyc le powered vapor compression r e f r i g e r a t i o n )  
have had lo *  coe f f i c ien ts  o f  performance (COP). 
and thus large so la r  co l l ec to r  stzes. These 
large so la r  co l l ec to rs  are then inac t l ve  f o r  most 
o f  the spring and f a l l  when heating and cooltng 
are not  needed. .., 

-. . - - The Hydride ~ b n v e r s t o n  and Storage system 
(HYCSOS) provides heating. cooltng and e l e c t r t c a l  
power fm so la r  energy o r  other low q u a l t t y  tnput 

,heat. I t  would thus provide e l e c t r t c a l ,  heat. 
and at r -condi t ion ing output from the so lar  co l l ec -  
to rs  on a year-round basis. The cost f o r  a HYCSOS 
which can do a l l  these functtons t s  the same o r  
less than f o r  a so la r  dr iven absorption u n t t  o f  

' the  same cool ing capacity. 

This i nves t iga t ion ' s  aims are: destgning a 
. restdent ia l  HYCSOS system. evaluating the per for -  
mance o f  that  design. and establ ish ing the cost 
o f  tha t  design. Previous investigations have 
establ ished HYCSOS f e a s i b l l t t y  i n  the 100 ton 
size.1 

, 
11. Theorettcal Operatton 

The property o f  metal hydrides tha t  I s  u t t -  ' 

l t z e d  f o r  heat pump operation i s  tha t ,  a t  a given 
temperature and near constant pressures. w t a l  . 
a l l oys  such as LaNi A1 and Cant absorb hydro- , 

gen wt t h  the r e l e a d - 8 f  s6bstantia15amounts o f  , 
heat. M i th  heat input  the process I s  reverstble. ! 

Ftgure l2 shows the charac te r l s t f c  pressure canpo- ' 

s.ttton curve f o r  LaNl A1 a t  d f f f e r e n t  temper- 
atures. The use o f  t f l ~6 tw8 'd tss tmt la r  w t a l  a l l o y  : 
systems whtch possess d t f fe ren t  hydrtdtng lsothems 
enables one t o  pump heat from a lower t o  an I n t e r -  ' 
mediate temperature w l t h  heat i upp l ted  from a ; 
htgher temperature. 

Ftg. 1. Dissoctatton Pressure o f  LaN14m6A10.4Hn 
. . 

I n  I t s  stmplest form a hydrlde heat pump would 
consts t  o f  two hydrtde beds (each contatning a 
d i f fe ren t 'hyd r tde )  interconnected t o  a l low hydrogen 
gas t o  f low between them. Means would be provided 
f o r  the Input  o f  h igh temperature heat (from so la r  
concentrattng co l l ec to rs )  ; f o r  heat re jec t ton  t o  o r  
heat acquis t t fon frm the atmosphere; and f o r  heat 
tnput t o  o r  heat re jec t ton  from the butldtng. The 
heat pumping act ton o f  the system Involves a four-  
step process. Ftgures 2 and 3 i l l u s t r a t e  the 
theoret tca l  process whtch I s  described belon. 

I n  the f t r s t  step o f  the process, htgh temper- 
a ture (so la r )  heat I s  applted t o  the f t r s t  bed 
causing I t  t o  desorb hydrogen a t  htgh pressure. 
Because o f  the pressure d i f f e r e n t i a l  between the 
beds. the hydrogen f lows t o  the second bed whtch 
I s  a t  an intermediate temperature. The hydrogen 
I s  absorbed by the second bed w i t h  a release of 



Ftg. 2. B lock 'Dlagrm o f  Theorettcal Hydrtde Heat 
P u q  Operatton. 
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Fig. 3. Theorettcal Hydrtde Heat Pump Cycle. 

d t m  teoperature heat. I n  order t o  keep the 
second bed constant a t  the tntermediate tempera- 
ture. the released heat I s  re jected t o  the bu i ld ing  
(heating code) o r  t o  the atmosphere (cooltng mode). 

Durtng the second step the hydrogen I n t e r -  
connect i s  closed. and the two beds are cooled. : 

the f t n t  bed t o  an tntermediate temperature and ' ' 

the second bed t o  a lor te1:wrrsture. l h i s  step I s  
necessary f o r  the correct  pressure di. f ferentta1 t o  
ex ts t  between the beds f o r  reverse hydrogen and 
heat flow durtng the next step. 

The hydrogen interconnect I s  opened agatn dur- 
i n g  the t h t r d  step. Heat from the but ld tng (cool -  ; 
tng mode) o r  from the atmosphere (heattng, mode). 
causes the second bed t o  desorb hydrogen a t  a pres- 
sure s u f f i c t e n t  t o  cause I t  t o  f low t o  the f t r s t  
bed whtch I s  now a t  an intermediate temperature. 
The hydrogen I s  absorbed by the f t r s t  bed w t th  the 
release of medtum temperature heat. To keep the i 
f i r s t  bed constant a t  the intermedtate temperature. 
the released heat I s  re jected t o  the b u i l d i n g  . 
(heating mode) o r  t o  the atmosphere (cooltng mode). 

At t h i s  po ln t  the hydrogen interconnect I s  
closed and Step Four begtns. During t h i s  step 
both beds are heated--the f i r s t  bed t o  a h igh tem- 
perature and the second bed t o  an tntermedlate 
temperature--tn preparation f o r  the s t a r t  o f  the 
next four-s tep cycle. 

It should be noted tha t  the c o e f f t c i e n t  of 
performance COP) of t h t s  theoret tca l  cyc le i s  1.0 
f o r  cooltng 12.0 fo r  heating) I f  the net  energy t o  
heat and cool the beds (Steps 2 and 4) t s  zero. I n  
other  words. the heat added t o  the f i r s t  bed a t  
high temperature (Step 1) I s  equal t o  the heat 
added t o  the second bed a t  l ove r  temperature (Step 
3) and the sum t s  re jected t o  the atmosphere a t  

, 

the intennedtate temperature (Steps 1 and 3). 

The beds must be.brought from one temperature 
t o  another. The energy t o  heat and cool the beds. ' 

whl le  less than the hydr id ing energy. decreases 
. j 

! 
the COP. The thermal losses are propor t ional  t o  i 
the temperature swing o f  the hydrtde beds and t o  
the t o t a l  'thermal mass' o f  the hydrtdes and t h e i r  
associated heat t ransfer  mechantsms. The lower . i 
the "thermal mass' the htgher the performance. 

To provide a near-conttnuous heat pumptng 
ac t ion  the HYCSOS concept uses fou r  hydride beds. 
two w i t h  LaNi H and two w t th  CaNt H o r  LaNi . . 
A1 H . ~ h u s . ' t ~ e  respective beds 5aR exchangkx 
he$tnduring the temperature change pertods (Steps 

I 
j 

2 and 4). and w i t h  the exception o f  these pertods 
the heat pumping ac t ion  ts  conttnuous. I 

The .slope o f  the pressure-cmposttton l t n e  
f o r  the hydride mater la ls  as shown i n  Figure 1 
means tha t  f o r  the hydrogen t o  be dr iven out of 
one hydride bed t o  the other  hydride bed a t  the 
end o f  a desorption-absorption pertod, the desorb- 
ing bed m s t  produce hydrogen a t  a pressure which 
i s  higher than the highest hydrogen pressure for  
the rece iv ing  a l l o y  on the "plateau' o f  I t s  pres- 
sure-composition curve. But the hydrogen from 
the desorbing bed i s  a t  the lowest pressure o f  i t s  
'plateau' on I t s  pressure-composttion curve. 

This requi res higher desorption temperatures 
than the simple re la t i onsh ip  o f 'F tgu re  3. The 
stngle s o l i d  l i n e s  o f  Ftgure 3 become double l i n e :  
the absorbing pressure versus temperature and the 
desorbing pressure versus temperature. The ab- 
sorbing pressure i s  higher then the desorbing 



. . 
p r r s ~ u r r ~ b t  a given Lenoereturt ,  : tusing g rea te r  
twu le ra t c re  swings i n  operat ion and l a r e r  

' e l f t c i e n y  .(COP). 

The a l l o y  c a p o s t t \ o n  LaNt A1 ( f o r  t he .h tgh  
t - ra turc  bed) t r  var ted t n  oSd6r f o  opt tmlze the 
performance o f  the system a t  var ious design t m p e r -  
a tures .  

The operat ton of t he  hydrtde power c y c l e  I s  
s h a m  i n  F igures 4 and 5. Only t he  two h igh  tem- 
pe ra tu re  (CaNt5I4,) beds a re  cycled. 

Ftg. 4. Theoret ica l  Hydride Power Cycle Operatton 

a I 
I 

I 
k -IN 1-a- l+1Cn1l 

Flg .  5. E l e c t r i c a l  Power Generation Cycle 

The power generat ion cyc le  s t a r t s  w t t h  t he  
h tgh twnperature. The a d d l t t o n  of heat and t he  
opentng of the expander f low va lve i n i t t a t e  t he  
p w e r  cyc le .  The ho t  hydrogen a t  h tgh pressure 
(about 10 atmospheres) I s  expanded t so the tma l l y  by 
t he  add t t t on  of heat t o  t he  expander dur tng expan- 
slon. Th is  edd t t i ona l  heat I s  much l ess  than the 
desorpt ton energy (about 1100 B tu / l b  H compared 
t o  6400 B t u / l b  H desorbed). The theo fe t l ca l  
e f f i c i e n c y  f o r  t i e  isothermal expansion (work o u t  
d i v i d e d  by desorpt ton and l so the rma l l za t i on  energy) 
I s  0.15. Thts  t s  comparable t o  the output  of  o the r  
power cyc les  worktng between 250°F and 95OF. 

The expanded hydrogen i s  absorbed by t he  
second CaNt H bed whtch I s  h e l d  a t  t he  medtum tem- 
pera ture  by5tAe removal o f  heat. A f t e r  t he  h tgh  
temperature bed has desorbed a l l  of  I t s  hydrogen. 
the h lgh  temperature bed I s  cooled t o  t he  medium 
temperature 'and the medt um temperature bed (now 
satura ted w i t h  hydrogen) i s  warmed t o  t he  h tgh tem- 
perature. Th i s  I s  Step 2 t n  F igure  4. The hydro- 
gen I s  n o t  al lowed t o  leave t he  bed wht l e  I t  I s  :. 
be ing heated. The hydrogen-saturated bed I s  then . 
desorbed i n  Step 3 by the a d d i t t o n  of heat j u s t  as 
t n  Step 1. Step 4 I s  a repeat  o f  Step 2. 

111. System Design 

The concept f o r  t he  HYCSOS system I s  t o  use a 
se t  of  f o u r  hydr idc  beds. The heat t r a n s f e r  t n t o  
the beds, and between the  HYCSOS beds and the  out -  
door a t r  heat exchanger. t he  tndoor a t r  heat  ex- 
changer, and t he  so lar .heat  l n p u t  I s  provtded by 
condensing and evaporat ing f r e m  1,oops. The HYCSOS 
beds generate h igh  pressure hydrogen which can be . 

expanded through an expander-a l te rnator  t o  produce 
e l e c t r i c i t y  when n o t  needed f o r  heat o r  coo l l ng  v i a  
a heat pump act ion.  F igure  6 shows a schema ti,^ o f  
t he  HYCSOS system analyzed t n  t he  heat ing and 
coo l  i ng modes. 
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. '. , ' -  
, Due to the h lgh  cost o f  the hydride mater ia ls  

(5-7 S/ lb)  i t  i s  necessary f o r  the hydrtde beds t o  
cyc le very r a p i d l y  add f requent ly  I n  order t o  w x t -  
mize the output pe r  u n i t  hydride weight. To f a c i l -  
i t a t e  rap id cyc l i n4  the hydrtde beds were designed 
t o  wx imtze  heat t rans fe r  wh i le  minimizing hydrogen 
pressure drop and preventlng migrat ion of the 
hydride pa r t i c les .  Figures 7. 8 and 9 i l l u s t r a t e  
the design. 

---- LJ . . . . .  
I,.. U.: l.... i . l , . ; , U t .  7 
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Fig. 8. Hydrlde Bed Heat Exchanger Cross-Sectton 

The hydride I s  tmbedded i n  open-pore aluminum 
foam ca l led  ~ u o c e l . ~  Duocel i s  made o f  hlgh ther-  
ml conduc t i v i t y  aluminum. The conduct ty i ty  o f  
Duocel o f  5% density. t.e.: 95% void. I s  about 
2.5% o f  tha t  o f  high p u r i t y  aluminum s o l i d  material. 
This i s  due t o  the meandering nature o f  the thermal 
path i n  the network o f  aluminum stands and due t o  
the somewhat loner  bulk conduct iv i ty  o f  the 6061 
a l l o y  from which the Duocel i s  wde.  I n  order t o  
augrrent the thermal conduct iv i ty  I n t o  the hydride 
from the freon passages, f t n s  are f o m d  tntegra l  
w i t h  the Duocel perpendicular t o  the freon pass- 
ages. The f t n s  are spaced 15 t o  the tnch. The 
density o f  the foam between the f i n s  as we l l  as f i n  
thickness can be var ied I n  order t o  mdximize the 

F19. 7. Hydride Bed Heat Exchanger Assembly and 
Sinole Layer. 

Fig. 9. Hydride Bed Heat Exchanger Cross-Section 

the thermal conductton from the freon t o  the hy- 
d r ide  whtle minimizing the mass o f  aluminum. 

Duocel I s  a l so  used f o r  the hydrogen and freon 
passages due t o  i t s  s t ruc tu ra l  r i g i d t t y  and h igh 
heat t rans fe r  proper t ies.  The bed t s  a layered 
assembly o f  repeating elements, Ftgures 8 and 9 
showing d e t a i l s  o f  one repeattng element from two 
views a t  r i g h t  angles t o  each other. Fiberglass 
paper f i l t e r s  are used t o  prevent carry  over of the 
small hydride f lakes. 

The number o f  repeattng e lerents  I n  a spec t f i c  
.design i s  f t xed  by the rated capaclty o f  the system 
and by the heat t rans fe r  character is t tcs o f  a gtven 
repeattng-element design. Primary sealtng 4s 
accompl {shed by brazing o f  the vartous manifolds 
and repeattng elements. A secondary hydrogen seal 
and s t ruc tu ra l  support which res t ra ins  the in te rna l  
pressure forces f o r  the array o f  repeattng elements 
i s  provided by enclosing the assembly i n  a f t t t e d ,  
l ightweight .  aluminum cy l inder .  This assembly . 
requtres tapertng o f  the stack o f  repeating e le-  
ments to  conform t o  the cross-section o f  the con- 
tainment cy l tnder .  A t yp ica l  destgn resu l t s  i n  a 
complete bed assembly whtch 1s a r i g h t  cy l tnder .  
f o u r ' t o  s i x  tnches I n  diameter, and one t o  two f e e t  
I n  length. As may be seen i n  Figure 7, freon heat- 
t rans fe r  f l u i d  flows through the array I n  the 
d t rec t ton  o f  the axts o f  the cy l inder .  Hydrogen 
f lows perpendtcular t o  the ax is .  

Other system components Include valves. pumps 
and a l r - f reon heat exchangers. The valve sub- 
system must d i r e c t  the various flows o f  freon and 
hydrogen durtng cyc l tng and mode changes. The 
cyc l i ng  con t ro l  must provtde f o r  two interchanged 
absorptton-desorption cycles and f o r  regeneratton 
between each cycle. The mode changtng contro ls  
must provtde f o r  heattng and air-condi t tontng wt t h  
heat pump act ion,  heattng ustng d i r e c t  so lar  input. 
power generation w i t h  heattng, and power generatton 
w t th  outdoor heat re jec t ion .  The freon pumps con- 
s i s t  o f  f i v e  small cen t r t fuga l  pumps on a s ing le 
sha f t  dr iven by one m t o r .  The overa l l  freon sys- 
tem i s  shown i n  Figure 10. The tndoor and outdoor 
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loops use f reon-a t r  beat exchangers o f  the Ouocel Table 1. HYCSOS Component Stztng and Power 
'type-described I n  Refere?ce 3. .. Consumptlon 

I 

Flp. 10. Overal l  Freon Schemattc . 
The expander i s  an isothermal f ree-p ls ton.  

double-acttng type where the p i s ton  forms an e le-  
ment o f  a rec iprocat ing a l te rna to r .  The valves are 
ttmed by the p o s i t i o n  and ve loc t t y  o f  the p is ton.  
The expander operates as a r e s u l t  o f  the pressure 
d i f ference between s l m l l a r  hydride beds'operated . 
a t  d i f f e r e n t  temperatures. For HYCSOS the low tem- 
perature i s  e i t h e r  the indoor temperature (when 
heating t s  required) o r  outdoor ambient. 

- A c m u t e r  program was developed t o  a s s t s t ' t n  
the destgn process. The design heat t ransfer  ra te.  
the aluminum foam and f i n  thermal conduct tv l ty  
augmentation o f  the hydride. the outside a t r  tem- 
perature drop, and the aluminum doping o f  the hy- 
dr ide m t e r i a l  were a l l  varied t o  optimize the 
cost and performance (COP) o f  the HYCSOS system. 
The system was optimized f o r  s i x  design tempera- 
tures (temperatures f o r  r a t  d w in te r  heat pump 8 operation). Tables 1 and 2 shows the r e s u l t  of 
the design program process f o r  three s,tres of 
HYCSOS w i t h  e l e c t r i c a l  power generatton and f o r  
the range o f  design temperatures. 

I V .  Cost and Performance 

The system p r i c e  was estimated by tnc lud lng 
the cost o f  a l l  components an assembly charge and 

' 

a genertc markup of 2 . 4 ~  ( f o r  d ts t r tbu t ton ,  p r o f t t .  
and s e l l i n g  costs) .  The computer program was used 
t o  optlmtze cost and performance assuming an 
increase I n  COP o f  0.1 f o r  the 22,000 BtuH s t r e  
was worth $600 (by reductng c o l l e c t o r  s l ze ) .  Table 
3 shows the propor t ton o f  the system p r l ce  and the 
amount attributable t o  the major components. 

The system performance i s  descr4bed.b~ the 
Coef f tc tent  o f  Performance (COP), and the system 
output o f  heat-and o f  cool ln?. The systems are . 
designed t o a  des tgnpo in t .  The heat lngdesign 
po in t  and cool ing design po in t  use the A R I  stan- 
dards f o r  Indoor condtt ions (68OF indoors i n  wlnter  
and 78-F indoors I n  sumner). I n  addit ion. the 
A R I  sumner outdoor destgn temperature i s  95°F and 
the winter  outdoor design po in t  1s 47'F. The out- : 

put  a t  17OF I s  also used by the A R I .  The HYCSOS 
was destgned t o  8 varying set o f  outdoor w in te r  , 

destgn temperatures. 

Table 4 gtves the system performance a t  the 
heatlng and cool lng design temperatures. COP both 
tncluding .the e l e c t r t c a l  draw and excludtng I t  are 
given. 

Table 2. : Results o f  Oeslgn Opttmizatlon 
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Flg. 11. Heattng Output Relattve t o  Destgn Potnt  
Solar Inpu t  

I Table 4. HYCSOS Design Potnt  Performance 

t The e l e c t r i c a l  output wht le  heattng I s  less 
than the e l e c t r t c a l  output wht le  r e j e c t i n g  the 
heat outdoors because the power requirements f o r  

i the tndoor fan i s  higher than the outdoor fan. The 
i use o f  a lower indoor fan speed would r e s u l t  I n  a 

s m h a t  h igher  net  average power dur ing .power 
generation w i t h  indoor heattng. 

I 

. The performance of the HYCSOS a t  condtttons 
whtch are more severe and mt lder  than those a t  the 
design po in t  I s  tmportant f o r  determtning the 
seasonal p e r f o m n c e  and u l t tma te ly  the cost 
effect iveness. Figures 11 and 12 show the heattng 

! .  and cool ing output f o r  temperatures other  than a t .  
the design temperatures. 

A so lar  absorption cool tng system i o  provtde 
3 tons o f  cool ing cu r ren t l y  r e t a t l s  f o r  $3000 
excluding a cool ing tower. which t s  expenstve, and 
an indoor heat exchanger. The HYCSOS system t o  
provide 3 tons o f  cool ing would cost $3700 t o  
$3800, inc lud ing a l l  heat exchangers. HYCSOS also 
provtdes heating w i t h  a COP greater  than one and 
e l e c t r i c a l  power, although ,it requi res a htgher 
so la r  input  than the absorption u n i t  (250" t o  280°F 
as compared w t th  180°F), and has s l i g h t l y  lower 
cool ing COPS. Thus t h i s  HYCSOS systems, whtch can 
be packaged s im i la r  t o  a conventional heat pump. 
coarpares favorably w i t h  a so la r  absorptton cooltng/ 
d t r e c t  so lar  heating unt t. 

Ftg. 12. Cooling Output Relattve t o  Design Potnt  
Solar  Input  
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Abstract 
? 

Ftgure l2 shows the charac te r t s t t c  pressure compo- ' 
s t t i o n  curve f o r  LaNt A1 a t  d t f f e r e n t  temper- 
atures. The use o f  t f l ~ 6 t w 8 . % t s s t m t ~ a r  metal a l l o y  : 
systems whtch possess d t f f e r e n t  hydr td lng lsothermr 
enables one t o  pump heat from a lower t o  an I n t e r -  ' 
medtate temperature w t t h  heat h p p l l e d  from r ; 
htgher temperature. 

- p destgn. p e r f o m n c e  ) 
and cost o f  a so la r -pwere  metal hydride heat 
pump and p w e r  system f o r  use on a restdence /' This system was f t r s t  concetved of and I t s  east- . 
b t l t t y  demonstrated by D ie te r  Grven, e t .  81.. a t  
Argonne National Laboratory. The system design, 
which l s ' l i m f t e d  by heat t ransfer ,  was optimtzed 
vta an I t e r a t i v e  computer program. The design 
process s t s r t s  w t t h  opttmtzing the t h e m 1  trans- - po r t  proper t ies o f  the hydride-bed-heat exchanger, 
then traces temperatures and pressures through 
the operat ing cycles. The coe f f l c ten t  o f  per for -  
mnce (COP) o f  the overa l l  'system 1s then deter- 
mined from the thermal losses due t o  cyc l tng  the 
hydride beds and due t o  the aux t l t a ry  power con- 
suned by f reon pumps and air-moving fans. The 
system. ustng h igh temperature so la r  c o l l e c t o r  
tnput a t  210°f t o  280°f. provides h w t t n g  wl t h  a ' COP o f  approxtmately 1.6 and cooltng w t th  a COP o f  
a p p m x t m t e l y  0.6. and e l e c t r t c a l  power dur ing 
sprtng and f a l l ,  a l l  f o r  a cost comparable t o  a 
scjlar absorptton cooler. 

I. lntroduct ton . 
c-. . 

The use o f  so la r  energy f o r  bu t ld tng  heattng 
'and cool tng has been a target  f o r  the past decade. 

The avat ldb le technology (absorptton and rankine 
cyc le pwered  vapor compression r e f r i g e r a t i o n )  
have had lo*  c o e f f i c i e n t s  o f  p e r f o m n c e  (COP). 
and thus large s o l a r  c o l l e c t o r  stzes. These 
large so la r  co l l ec to rs  are then in'act ive f o r  most 
o f  the spr ing and f a l l  when h e a t t h  and cool tng 
&re no t  needed. - .  - . \ 

The Hydride Conversfon and Storage System 
(HYCSOS) provides heating. cooltng and e l e c t r t c a l  
power frutn so la r  energy o r  other l w  q u a l t t y  tnput 

'1 , heat. I t  r w l d  thus provide e l e c t r t c a l ,  heat. 
and at r -condi t ion ing output from the so la r  co l l ec -  
to rs  on a year-round basis. The cost fo r  a HYCSOS 
which can do a l l  these functtons I s  the same o r  
less than f o r  a s o l a r  dr iven absorptton u n t t  o f  

' t h e  same coo l ing  capacity. 

Thts i nves t iga t ion ' s  aims are: destgnlng a 
r r s l d e n t i a l  HYCSOS system. evaluat ing the per for -  
mance o f  tha t  design. and establ tsh ing the cost  
o f  tha t  design. Previous tnvest igat tons have 
establ ished HYCSOS f e a s t b t l t t y  I n  the 100 ton 
stze.1 

Ftg. 1. Dissoclat t  on Pressure o f  LaNt4.6A10.,Hn 

I n  t t s  stmplest form a hydrtde heat pump would 
consts t  o f  two hydride beds (each contatn ing a 
d i f f e r e n t  .hydrlde) interconnected t o  a1 low hydrogen 
gas t o  flow between them. Means would be provtded 
fo r  the input  o f  h tgh temperature heat (from s o l a r  
concentrattng co l l ec to rs ) ;  f o r  heat re jec t ton  t o  o r  
heat acqu is l t f on  from the atmosphere; and f o r  heat 
tnput t o  o r  heat re jec t ton  from the bul ld tng.  The 
heat pumptng ac t lon  o f  the system tnvolves a four-  
step process. Flgures 2 and 3 i l l u s t r a t e  the 
theore t f ca l  process whtch I s  described b e l w .  

11. Theoretical Operatton I n  the f t r s t  s tep o f  the process. htgh temper- 
a ture (so la r )  heat I s  appl ted t o  the f t r s t  bed 
caustng t t  t o  desorb hydrogen a t  htgh pressure. 
Because o f  the pressure d t f f e r e n t t a l  between the 
beds. the hydrogen f lows t o  the second bed whtch 
I s  a t  an tntermedtate temperature. The hydrogen 
I s  absorbed by the second bed w l t h  r release of 

The proper ty  o f  metal hydrtdes t h a t  I s  u t l -  
14zed f o r  heat pump operatton i s  tha t ,  a t  a gtven 
temperature and near constant pressu:res. metal 
a l l oys  such as LaNt A1 and CaNl ! absorb h idro-  
gen "4th the releas$-6f sfibstantial%mounts of 
heat. Y t t h  heat i npu t  the process t s  reverstple. 


