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Combining Evidence from Several Samples for Testing

Goodness-of-Fit to a Location-Scale Family

Donald A. Piercel

Oregon State University

SUMMARY

Consider the problem of testing goodness-of-fit to a specified

location-scale family when evidence is to be combined from several

i independent samples, from populations with possibly different loca-

tion and scale parameters.  The procedure studied here is that of

computing standardized residuals from each sample and then combining

these into one set to be treated essentially as though they came

from one sample. It is shown that the limiting distribution of any

location-scale invariant goodness-of-fit statistic so applied is

precisely the same as for the corresponding one-sample problem.

iThis work was carried out while the author was visiting Stanford

University.
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1.  INTRODUCTION

Consider the problem of testing goodness-of-fit to a specified

location-scale family of distrioutions, such as the normal, when

evidence is to be combined from several independent random samples,

from populations which may differ in location and scale.  That is,

the null hypothesis is that the cumulative distribution functions of

the  k  sampled populations are  F(x; u„ a.) = H{(x-v.)/c.} ,
3 3 J     J

j = 1,2,...,k , where  H(·)  is specified.

Several authors have discussed methods for this situation; see

Wilk and Shapiro (1968), Pettitt (1977), and Quesenberry, et al (1976).

In the first two of these the suggestion is basically to compute sig-

nificance levels  Pl' P2' ...' Pk  from each sample by using some

standard goodness-of-fit test, and then to combine these significance

levels by Fisher' s method.     That is, compute    X2  =  -2 I log
P 

which

has under the null hypothesis a chi-square distribution with  2k

degrees of freedom.

The objective here is to discuss a quite different approach,

combining the samples before computing a test statistic, which seems

more suitable for alternative hypotheses in which the populations

have roughly the same shape, differing only in location and scale.

This was also the rationale for the method of Quesenberry, et al

(1976), but the approach here is much more direct than theirs.

Let  x..  denote the ith observation from the jth population;
J 1

j   =   1,2, . . . ,k   ;      i   =   1,2, . . . ,n      ;     In    =   n .

Write      (0 ,   6 . )      for
the maximum likelihood estimators, computed separately for each
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of the k samples. Define residuals by e.. = (x .. -8.)/8. .  It
Jl Jl  J   J

seems natural to infer a presumed common shape of the  k  populations

by  considering the distribution  of the entire  set  of    n  =   I n.     re-
J

siduals as one group.  Graphical methods are useful for this purpose,

and additionally one may wish to carry out a related formal signi-

ficance test. The basic result to be pointed out here is that the

limiting distribution of any location-scale invariant goodness-of-fit

statistic computed from the entire set of  n  residuals is precisely

the same as for the one-sample Droblem.

For testing normality a useful reference for results on the one-

sample problem, with estimated parameters, is Pearson and Hartley

(1972). Tables are given there for most of the common types of

goodness-of-fit testS.  For the case of the conventional chi-square

test, it is well-known that the limiting distribution is not pre-

cisely chi-square; see Dahiya and Gurland (1972) for a table of

critical values for testing normality. It should be noted that this

test is rather poor in terms of power. See Shapiro, et al (1968)

and Stephens (1974) for comparative studies.  A modification of the

conventional chi-square test which does have a limiting chi-square

distribution was given by Rao and Robson (1974); see also Moore

(1977).  Thomas and Pierce (1978) gave results on the Neyman smooth

test, with estimated parameters, which can be used for the cases of

normal, exponential, and Weibull (extreme-value) hypotheses.  For

additional results on the Weibull case see Stephens (1977).
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2.  LIMITING DISTRIBUTIONS

Consider first the one-sample problem. We assume that a 10-

cation-scale invariant goodness-of-fit statistic will be a function
Aof the ordered values  of the residuals    e.   =   (x . -0) /8. Equiva-
1 1

lently, such a statistic will be a function of the empirical distri-

A 0 - A 0

bution function  Hn  of  el'
e ; where  n H (e) is the2, "·, en             n

A

number of  ei L e,  i= 1,2,...,n .

Under the null hypothesis the probability distribution of the

A A

stochastic process   Yn ' where   yn (e)  =  /K[Hn (e)  - H (e) ] , depends
A

on  H(·)  and  n  but not on  (U, a) , since  yn(e)  is a location-
A

scale invariant statistic. Further    yn    converges,   as    n  +  00  ,   to  a
-

stochastic process  y  described in Durbin (1973a,b).  No details of

that process are needed here, however, except that its distribution

is the same for all  (u, G) .

Returning to the k-sample problem, write fio),  0) for the
nJ    nJ
A* -*

above processes as defined for each sample, and H.y for thesen n

processes as defined for the pooled set of  n residuals. It is

easily seen that

k
9*   =      I       (n./n) A   f (j),
n   j=l   J      nl

and,   as   the     n    +  00     in  such  a  way  that     n. /n  +  a.   >   0     for  all     j    ,J 1

the process  9*  converges under the null hypothesis to the same

0                                                - (j)
process  y  as do each of the  y .

nJ
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The limiting distribution under the null hypothesis of any

goodness-of-fit statistic which is a suitably continuous function
/'

of  H   is then determined by the distribution of  y , and is the
n

same as for the corresponding one-sample problem. See Durbin (1973b,

Sec. 3.2, 4.4, 4.5) for discussion of the required continuity, which

holds for any of the conventional goodness-of-fit statistics.

3.  AN EXAMPLE

An example of the increased sensitivity which may be gained by

this approach, as opposed to combining separate tests by Fisher's

method, some simulated sampling results are given here for the case

of testing normality. The alternative taken is the type for which

the test is designed, that is all of the samples are from populations

with precisely the same shape, specifically a Weibull distribution

2
with  H(e) =1- exp(-e ) .

The Anderson-Darling test was used both for the separate samples

and for the pooled residuals.  Pettitt (1977) gave formulas for sig-

nificance levels for finite sample size, which were used here.  Using

these results significance levels  Pl' P2' ...' Pk  were computed for

2each sample; these were combined  into     X     =  -2 I log  P.     and an overall
J

(1)
significance level P was computed from the chi-square distribution

with  2k  degrees of freedom. On the other hand, a significance level

P<2   was computed by applying the Anderson-Darling test to the entire

set of pooled residuals, using the asymptotic distribution.
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Only a few trials of this experiment are needed to get a clear

indication of the relative sensitivities, provided that the compari-

son is made in a pairwise sense for each trial, that is for each set

of  k  samples.  Table 1 gives pairs of significance levels for 15

trials, rounded to two decimal places, for the case of 5 samples

each of size 30. In addition, 100 trials were carried out under the

(1)         (2)null hypothesis and the distributions of both P and P were

uniform to within sampling error.

Table 1.  Paired significance levels for 5 samples

of size 30 from Weibull (2), testing for

normality

(1)                             (2)Fisher's Method: P Pooling Residuals:  P

.36 .08

.01 .00

.02 .00

.13 .00

.19 .01

.16 .00

.01 .00

.01 .00

.25 .05

.07 .05

.42 .31

.19 .04

.00 .00

.09 .01

.42 .01
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