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and t h e i r  performance requi rements  wbre s p e c i f i e d .  I t  was found t h a t  i 
I I I 

t h e  l a s e r  f l ow l oops  can ha.ve a  ma jo r  e f f e c t  on t h e  l a s e r  beam qua1 i t y  ; 
I I and o v e r a l l  e f f i c i e n c y .  The p ressur?  wave suppressor ,was i d e n t i f i e d  I 

I as t h e  "most c r i t i c a l  f l ow l o o p  compohent: . The performance o f  vented I 
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s i de -wa l l  suppressors was eva lua ted  bo th  a n a l y t i c a l l y  and experimen- I 
I 

t a l l y  and found capable  o f  meet ing  t b e  per formance requi rements  o f  t h e  I 
I 

C02 and KrF f u s i o n  l a s e r s .  A l l  o theh  l a s e r  f l o w  l o o p  components a r e  
I 

e s s e n t i a l l y  s i m i l a r  t o  those  used i n 1  conven t iona l  , low speed wind I 
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I 
t unne l s  and a r e  t h e r e f o r e  w e l l  c h a r a c t e r i z e d  and can be r e a d i l y  I 
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i n c o r p o r a t e d  i n t o  f u s i o n  l a s e r  , ,  f l d w  qystem des igns.  
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1 . INTRODUCTION 

The general  o b j e c t i v e  o f  t h i s  program was t o  s tudy  t h e  problems of 

develop ing f l o w  systems f o r  r e p e t i t i v e l y  pu lsed gaseous l a s e r s  which can 

meet t h e  requi rements o f  l a s e r - d r i v e n  ICF power genera t ion .  More s p e c i f i -  

c a l l y ,  t h e  o b j e c t i v e  was t o  i d e n t i f y  t h e  most c r i t i c a l  elements o f  such 

f l o w  systems, t o  determine if e x i s t i n g  s t a t e - o f - t h e - a r t  techno log ies  and 

components can be used, and t o  i n i t i a t e  t h e  development o f  those elements 

f o r  which p r e s e n t l y  a v a i l a b l e  s o l u t i o n s  a r e  found t o  be inadequate. 

Another o b j e c t i v e  was t o  compare t h e  d i f f e r e n t  cand ida te  l a s e r  d r i v e r s  

f o r  ICF power genera t ion  on t h e  bas i s  of t h e i r  f l o w  system requi rements 

and t h e  t e c h n i c a l  r i s k s  and d i f f i c u l t i e s  i n v o l v e d  i n  meet ing such 

requi rements.  

The l a s e r s  cons idered under t h i s  program a r e  p r i m a r i l y  t h e  C02 and 

K r F  l a s e r s .  The most impor tan t  requi rements imposed on t h e  f l o w  systems 

o f  these  and s i m i l a r  l a s e r s ,  based on l a s e r - f u s i o n  systems cons ide ra t i ons  

a re :  

a. t h a t  t h e y  produce a un i f o rm  f l o w  i n  t h e  c a v i t y ,  w i t h  a  
h i g h  degree o f  media homogeneity j u s t  p r i o r  t o  t h e  
l a s i n g  pu lse  so t h a t  t h e  l a s e r  beam can be focused on to  
smal l  f u s i o n  t a r g e t s ;  and 

b. t h a t  t h e  power r e q u i r e d  t o  regenera te  and r e c i r c u l a t e  
t h e  gas th rough t h e  c a v i t y  be minimized.  

- - -  

The media homogeneity i n  t h e  c a v i t y ,  p r i o r  t o  each l a s i n g  pu lse ,  

w i l l  be a f f e c t e d  ma in l y  by c a v i t y  i n l e t  f l o w  c o n d i t i o n s  ( i . e . ,  t he  d e n s i t y  

u n i f o r m i t y  o f  t h e  c a v i t y  feed  gas) and by t h e  p ressure  waves produced i n  

t h e  c a v i t y  subsequent t o  each l a s i n g  pu lse .  

The power r e q u i r e d  t o  regenera te  and r e c i r c u l a t e  t h e  gas w i l l  depend 

on t h e  t ype  and e x t e n t  of chemical  and thermal  r egene ra t i on  which i s  

r e q u i r e d  f o r  any s p e c i f i c  l a s e r  system, and i t  w i l l  depend a l s o  on t h e  

pumping power r e q u i r e d  t o  f l o w  and r e c i r c u l a t e  t h e  gas th rough t h e  l a s e r  

system. The l a t t e r  i s  determined t o  a  l a r g e  e x t e n t  by t h e  o v e r a l l  p ressure  

drop i 'n  t he  f l o w  system. 
- 

1-1 
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I 

The simultaneous requirements fdr  entrance flow conditioning and I 
I I 

acoustic wave suppression in a low-pressure-drop recirculating - flow system 

I 
be used in the design of fusion laser, flow systems which can meet thesel 
requirements . I 

I 

- 
- 
- 
36- - 
- 
- 
- 
- 
4 E  

- 

thus represent the major chal lenge. Che  present - pr6grirnrtwas deiigned st0 address ' -- - - I--_ -C_ 

t h i s  chal lenge by developing an analy'ti cal and experimental base which can 
I 

1 
I 

~ i m p l i f i e d c a n a l ~ t i c a l  models , iresented in Section 2 ,  were used to 4- 

1 1 1 -1 . 
3 I 

U) 

establ ish the design and performance I ,requirements for flow systems of 

repet i t ively pulsed fusion lasers .  The requirements on lasing-media u n i -  
I -5;4!& :_ - 

-- L 
LI 

--n 

- 
- U 

- UJ 

+ 
formity are  derived from the beam qua1 i t y  considerations. The requirements " --34- 

I I - 
on flow efficiency are  based on est idates  of overall target  gains and oFher - 

system eff ic iencies .  I I 
I I 

1 

- 
- 

I - 



I 
I 

00ClJMENT NO. - I DOCUMENT NO. 
I 

GE NO. I  
I 
I 

The need f o r  gas temperature co r f t ro l  , t o  smal l  ' f r a c t i o n s  o f  1  O C ,  W A S  
i d e n t i f i e d  as . . an impo r tan t  t e c h n i c a l  Iproblem,-but no a t t emp t  has been mAde 

30 f a r  t o  s p e c i f y  techniques and devilces which can be used t o  meef t h i s 1  

requ i rement  . I  
I 

I  I 
The problem o f  p ressure  .wave sup,pression, p a r t i c u l a r l y  upstream o f  I 

I  
t h e  l a s e r  c a v i t y  and under smal l -preslsure-drop c o n d i t i o n s ,  i s  addressed1 

I I 
i n  Sec t i on  3. Our ma jo r  e f f o r t  i n  t h i i s , a r e a  was toward t h e  development l  

I o f  an exper imenta l  f a c i l i t y  which canl s i m u l a t e  t h e  p ressure  waves generat  

in -pu lsed  l a s e r s .  So f a r  we have use'd t h i s  f a c i l i t y  m a i n l y  t o  he1 p upgfa 

and v a l i d a t e  a  code which can be used; t o  ana lyze  p ressure  wave pr'opagatio 
I I 

and decay i n  t h e  presence o f  v a r i o u s  lpressure wave suppress ion devices.1 
I 

The expe r imen ts  have a l s o  been used t!o h i g h l i j h t  p o t e n t i a l  problems I 

assoc ia ted  w i t h  one p a r t i c u l a r  pressu;re suppress ion dev i ce  ( t h e  vented I 
I 

s ide-wal  1  absorber:  , ieecSect ion ?3 :i) 
I 

Along w i t h  t h e  exper imenta l  e f fo / r - t  we have con t inued  t h e  developme6t 
I o f  ou r  a n a l y t i c a l  capab i l  i t i e s  i n  modlel i n g  p ressure  wave suppress ion 

processes and dev ices .  Recent code d o d i f i c a t i o n s  and compari.sons o f  c o i e  
---------.~----,,,-L - - - - - - - - .  . 

' -I- 
p r e d i c t i o n s  on exper imenta l  r e s u l t s  alre presented i t i  Sec t i on  3.2. , 1 I .  I 
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r- - 1 
I 
1 
I 
I 

2. FLOW SYSTEM STUDIES 
I 

1 I 
The f u s i o n  l a s e r  f l o w  system can1 be viewed as a convent ional  wind 

.- * * ,  :fT 
tunnel  w i t h  t he  1 aser  c a v i  tyf r e p l ~ c i h ' g i t h e t t e ' s t e s e c t i o n  I .  - _  ,- _ 5 0 i ~ h e  :flow - , *  ] o r  

I 
system design must r e f l e c t  t h e  requirements imposed on t h e  l a s e r  as a I 

I I 
I r eac to r  d r i v e r .  The' beam generated by t h i s  1 aser w i l l  have t o  be focused 

down on to  a smal l  t a r g e t Y 2 ; t y p i c a l l y  o:f t he  o rder  o f  1  mm. Th is  requi re4en 

places r e s t r i c t i o n s  on t h e  dens i t y  nonuni formi  t i e s  i n  t he  c a v i t y  j u s t  p;io 
I I 

t o  i n i t i a t i o n . '  The f l o w  system thus must d e l i v e r  a h i g h l y  un i f o rm gas t o  

[ the  l a s e r  c a v i t y .  It must a l s o  be e f $ i c i e n t ;  namely, t h e  power r e q u i r e h  I 
1 ..' 

[ t o  generate t he  cont inuous and u n i f o r k  f l o w m u s t  n o t  be Mia. c.1- , 
. 

I L. - - :A I 
lpared t o  t h e  average power. e x t r a c t e d  ,from t h e  l a s e r .  The ana l ys i s  o f  these I 

I 

/two key aspects o f  f l o w  system requi6ements i s  presented i n  subsect ion 2.1 !I. 
I I 

1 I 
- -The-heat and. overpressure-generated-in- the-cav j  t y -o f -a -pu l  sed-1 aser- 

1 I 
i s  a  major  source o f  f l o w  n o n ~ n i f o r m i ~ t i e s .  These overpressures must be1 t 

Isuppressed t o  some predetermined l e v e l  I ( d i c t a t e d  by the  beam qua1 i ty  i s .  I. 
I requi rements)  , on a t ime sca le  t h a t ! . i i  . shbr te r - than -the.:pul s e - i n t e r v a l  ' 

+- k.* r e  

~ d i w i t h 6 u t t ~ n d " e l c d s t  r . ;  - - &  tosthe;flow . . . - .  sys temypress~ re~d rop  an;iifio$i;j flow 
I 

I 

I I r e c i r c u l a t i o n  power. Meeting the  beim q u a l i t y a n d  f l o w  e f f i c i e n c y  re4u;rei 

lmknts w i l l  depend c r i t i c a l l y  on o u r  a b i l i t y  t o  develop t h e  necessary I I 
I pressure wave suppress'ion techniques !and devices. The s t a t u s  o f  pu l  sedl 

l a s e r  pressure wave suppr'ession i s  b $ i e f l y  reviewed i n  subsect ion 2.1.2! 
I I 

and the  spec ia l  requirements and problems a n t i c i p a t e d  i n  fus ion- type  laBers I 
I 

1 
l a r e  emphasized. I I I I 

I I There are a d d i t i o n a l  problems associated w i t h  r e c i r c u l  a t i n g  fus ion !  I 
1 

l l a s e r  f l o w  systems i h a t  cou ld  severe ly  l i m i t  t he  a b i l i t y  t o  a t t a i n  t h e  I I I 
I r e q u i r e d  opera t ing  cond i t i ons .  The 6 0  f l o w  fea tures  t h a t  w i l l  probabl) I 

1 I 1 r e q u i r e  c a r e f u l  cons idera t ion  are  t h e  temperature u n i f o r m i t y  requ i  rement -- 
. . I I 

lwhich i s  q u i t e  fo rmidab le  f o r  l a r g e  fus ion l a s e r  systems -- and the  c o n t r o l  
1 I 

of f low nonuniformi t i e s  produced by I l o w  separat ion,  f l o w  t u r n i n g ,  and t h i  
1 - 3 . _ -  - 

nonsteady energy a d d i t i o n  ':'tnd - tie'i%~ak$Sb?.ief.j~i &viewiidkin subsection 2 :lie-3 .rk* 
-.A - - - 

;.r rb\&l t rc  ~~ l i ' i sec t lnn  -2. .! . - 5 .  -- - ~ '  I 2- 
I 
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I 

I 
.tC I 

I Requi rements .  
I i I 
I I I 

F i gu re  2-1 i l l u s t r a t e s .  t h e  bas ic l  c o n f i g u r a t i o n  compogent 

o f  a  f u s i o n  1  aser  f i n a l  amp1 i f i e r .  ~ l h e  c a v i t y -  
.I 

t h i s  s t udy  i s  shown i n  F i gu re  2-2.. Tlhe ma jo r  l a s e r  param&Gfs,,which w i l l  

l a f f e c t  t h e  des ign  and  performance b f  / the f l o w -  system, a r e  i n d i c a t e d  o n  ; I 
I I I t h i s  f i g u r e .  As f a r  as t h e '  f l 'ow syst'em i s  concerned, t h e  l a s e r  performancg 

lean be c h a r a c t e r i z e d  by t h r e e  nondimehsional parameters,: t h e  e x t r a c t e d  ! I 
I lenergy d e n s i t y ,  S  (expressed, e.g., i,n J / l  i t - a t m  o r  s i m i l a r  d i m e n s i o n l e j s  I 

Iform), t h e  beam q u a l i t y ,  BQ ( t o  be def ined below) and t h e  pu l se  r e p e t i t i o n  1 
I frequency (PRF). The subsystem used lfor l a s e r  e x c i t a t i o n  o r  i n i t i a t i o n  i I 

I I I (be i t  on e-beam, a  d ischarge  o r  a  p h p t o l y t i c  source) ,  i s  c h a r a c t e r i z e d  I I 
l f o r  ou r  purposes by  t h e  power consumea by t h i s  system, PI. S i m i l a r l y ,  I 
t h e '  f l o w  system i s  c h a r a c t e r i ~ e d m a i n i ~  b y  t h e  power i t  : takes  t d  d r i v e  

I 
t h e  compre2s,or, PF, and t h e  f l o w  ~ a c h l  NO. i n  t h e  c a v i t y ,  M. .  The l a s i n g  I .. 
!media i t s e l f  i s  c h a r a c t e r i z e d  by  t h e  bas p r o p e r t i e s  i n  the,  c a v i t y  (p ressur4  

temperature,  mo lecu la r  weight ,  r a t i o  b f  s p e c i f i c  h e a t s ! T ,  and index  o f  1 
-A 

r e f r a c t i o n ,  n o r  B ) ,  and by t h e G i a h e a t ,  AQ, which develops i n  t h 4  

f?. 1  .l. 1  Beam ~ u a i  i ty and Media ~ o m o ~ b n e i  t y  
I 

I 

For t h e  purpose o f  ' t h i s  s tudy,  t h e  beam q u a l i t y  i s i d e f i n e d  as 
1 

I I 
I 

d !  .. D ' I 
mi n  

BQ , ( 11) 
p 4F I 

I I I 
where h i s  t h e  l a s e r  wavelength, F  i s l  t h e  f o c a l  l e n g t h  o f  t h e  f ocus ing  I 
I I 
m i r r o r ,  D i s  t h e  c h a r a c t e r i s t i c  s i z e  I f  t h e  l a s e r  beam a p e r t u r e \ i n  t h e  I 

I 
'near f i e l d  and h i i d i s  t h e  minimum spb t  s i z e  which can bk ob ta i ned  i n  I I 1 
t h e  f a r  f i e l d  ( k f o c a l  p lane)  t h a t  c b n t a i n s  90% o f  t h e  beam power and I 1 I I 
'energy. 
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Figure  2-1. Schematic o f  a Fusion Laser Flow System 
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Figure 2-2. Schematic of a Laser Cavity 



L-a 
BOTTOM OF PAGE -7 -- ~ .-.-. ~ ~ - .  -- -.. .~ .- r --.-.-A ..-.. -." 

BOTTOM OF PAGE 4 ,, 

- I 
I 
I + -- W U M E N T  NO. . -. 

I I 
- .  - -  --- A -. . 

1 1 - 
should be equal t o  o r  sma l l e r  thbn - 

I , I ; .  

, 

--t- ._  -- --i - 
~. - -.- 
-1 8 - 
- 
- 
- 
- 
-2 4 - 
- 
- 
- 
- 
-3 0 

'. - - *. 

L 

- 
- 
- 
-36 ; - 
- 
- 5.. 

45 
, - .  

- 
-4 2 - 
- 
- 
- 
- 
48 

- - 
-- . 
-- 

- .  

- -1 

- .  1 
, - j - ---I , - I 

assumed t o  be o f  the: ,order  of 1  mm. . -. 
I 

For an i d e a l  diifrac5t'ion-1 i m i  t e d  beam! which has a  un i fo rm p h a ~ e  and a  I ; 
'- 

I 
- i I I - -  

._-_-...- _- .- ...* .-.. .,- . - - .--- ... . -- . -^*^I- 

I I - , , . - . , . . , . - . . - . - .. -. . ,. -.-. I . . .  :.. 4 - 
-6 0 . I 

L 
1 

L ~ L ~ J  c , I  I i 

Gaussian i n t e n s i t y  d i s t r i b u t i o n  a c r o i s  t he  beam, i t  can be shown t h a t  t h e  
I minimum spot  diameter which conta ins  190% o f  t h e  be'am energy i s  g iven  by/ 
I I 

I I '  1 . 8 X F  - - - I 
dmin - d d i f  D 1 

I I 
I 

We w i l l  assume t h a t  t h e i i n p u t  be'am t o  the  f i n a l  a m p l i f i e r  has un i f o rm 
1. 

OPD ( ~ , y )  - / vl= <An> = (;;) f$} (5,) X 
0 '  I I '  

. . I 
I I 

F 1 - . . 1 

I .  '- 
&---* - 

1 ,  1- -- -- 

I 
-t,-- - - - --  .-- I 

I 

-----I='- 

- 
1 (- - 
- 
- 
- 
- 

phase and a  n e a r l y  un i fo rm i n t e n s i t y  [ d i s t r i b u t i o n .  I f  the  amp1 i f i e r  mehium 
2~ - 

- 

I 

.. 

' 1 - - 

1 
has a  p e r f e c t l y  un i fo rm index o f  re fqac t i on ,  - 

- 
focused down t o  a  

n o t  un i fo rm across the  'ampl - 
3( - an aberrated phase and i t s  

'Th5Tiiii if iuZi TpOttSi'zF - 
t i o n s  and on t h e i r  shape o r  d i s t r i b u i i o n  across t h e  beam aper ture.  

- 
The index o f  

composi t ion (which 

are r e l a t e d  t o  t h e  d e n s i t y  v a r i a t i o n s  through I 
I I -. I 

1 .  1 
~ n = n - l I = ~  ( 2 )  

I I - I . I 
I I 

where B i s  the  Gladstone-Dale cons tan t  and pa i s  t he  re fe rence d e n s i t y  'for 
I 

which R i s  known. The o p t i c a l  path d i f f e r e n c e  (measured i n  wavelengths:) 
I I f o r  a  r a y  t r a v e r s i n g  an a m p l i f i e r  o f  , leng th  L ( r e f e r  t o  F igure  2-2) i s  

I g'iven b~ I 
I I 

I I 

L I 
I I 
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- 
- 
- 
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and t h e  phase d i f f e r e n c e  i s  g iven by 

A@(X ,y) = 2II . OPD(x,y) 

We w i l l  now t r y  t o  r e l a t e  t h e  a m p l i f i e r  d e n s i t y  and index o f  re f rac -  

t i o n  ' v a r i a t i o n s  t o  t he  minimum focused spot  s i z e  and beam qual i t y .  Such 

r e l a t i o n s h i p s  w i l l  a l l o w  us t o  determine subsequent ly t he  media homogeneity 

requirements when t h e  des i red  minimum spot  s i z e  and. beam qual i ty are  given. 

When the  phase aber ra t ions  are  ordered and smal l  (say, OPD < 0.1),  

d i f f r a c t i o n  ana l ys i s  leads t o  t he  r e l a t i o n s h i p  

independent o f  the  shape and d i s t r i b u t i o n  o f  t he  aber ra t ions .  For random 

phase abe r ra t i ons  o f  a  l eng th  sca le  A (e.g., such as would be c rea ted  by 

t u r b u l e n t  v e l o c i t y  and dens i t y  f l u c t u a t i o n s  i n  t he  amp1 i f i e r  c a v i t y )  , 
Reference 2-1 shows t h a t  t he  minimum spot  s i z e  i s  g iven  by 

when A < D, and by ' .  . , ' 

when A > D. ~ x p r e s s i o n s  (5a) and (5b) a re  v a l i d  f o r  bo th  smal l  and l a r g e  

aber ra t ions ,  independent of.s'hape, prov ided they  are  randomly d i s t r i b u t e d .  

There are no equ i va len t  s imple expressions f o r  l a r g e  b u t  ordered phase 

aber ra t ions .  I n  such cases the  shape o f  t h e  a b e r r a t i o n  c r i t i c a l l y  a f f e c t s  

t h e  minimum achievable beam q u a l i t y  and spot  s ize .  

A  f i r s t - o r d e r  es t imate  o f  t he  minimum focused spot  diameter ( o r  minimum 

b l u r  c i ' ik1.k) '  and beam qual i t y  can be ob ta ined by us ing  s imp legeomet r i c  : 

o p t i c s  cons idera t ions .  ~ n y  g iven ordered a b e r r a t i o n  can be .  expressed 

as a  F o u r i e r  s e r i e s  o f  m components, i .e . ,  



and s i m i  1 a r l  y , 

The geometr ic beam spreading angle produced by each F o u r i e r  component o f  

t he  abe r ra t i on  f u n c t i o n  i s  g'iven approx imate ly  by 

ei (geo. ) 2 1 

'i 

where Li i s  the  wavelength o f  the  ith component. The t o t a l  spreading angle 

can now be expressed as 

where edif i s  t he  spreading a n g l e o f  t h e  d i f f r a c t i o n - l i m i t e d  beam given by 

A I D .  The minimum focused spot  d iameter  then becomes 

and 



Expressions o f  t h i s  form have been compared w i t h  r e s u l t s  obta ined by more 

r i go rous  methods o f  c a l c u l a t i o n s  ( t y p i c a l  l y  i n v o l v i n g  numerical  s o l u t i o n s  

o f  t he  phys ica l  o p t i c s  equat ions)  and were found t o  g i v e  reasonable f i r s t -  

o rder  est imates.  

Equations (8) and (9 )  are used , i n  t h i s  r e p o r t  f o r  eva lua t i ng  t h e  .. ' 

. e f f e c t  o f  l a r g e  ordered aber ra t ions  (OPD > 0.1 ) on the  minimum spot  s i z e  

and t h e  beam q u a l i t y .  Each such a b e r r a t i o n  w i l l '  have t o  be charac ter ized  

by i t s  maximum OPD and "wavelength" R ( o r  number o f  cyc les )  across . t h e  

beam aper ture,  D. 

Media Inhomogeneit ies 

The res idua l  pressure f l u c t u a t i o n s  are  r e l a t e d  t o  t h e  d e n s i t y  f l u c -  

t u a t i o n s  by the  acous t ic  l i m i t  o f  t he  i s e n t r o p i c  r e l a t i o n  p  % pY, i .e., 

f o r  smal l  r e s i d u a l  f l u c t u a t i o n s  

- - - - 

There i s ,  however, one o t h e r  mechanism by which pressure f l u c t u a t i o n  
I 

i n  t h e  c a v i t y  can generate dens i t y  inhomogeneit ies. I f  a  non - i sen t rop i c  

I f l o w  element i s  l oca ted  upstream o f  t h e  c a v i t y ,  pressure f l u c t u a t i o n  i n  

t he  c a v i t y  w i l l  i m p r i n t  an entropy ( temperature) and dens i t y  v a r i a t i o n  on 
-. the  gas en te r i ng  t h e  c a v i t y .  This  v a r i a t i o n  does n o t  decay w i t h  t ime 

even i f  the  entropy genera t ing  pressure f l u c t u a t i o n s  do. For smal l  pres- 

1 
sure and entropy f l u c t u a t i o n s  i t  can be shown t h a t  

Requirement (11) i s  rough ly  a  f a c t o r  of two o r  so l e s s  r e s t r i c t i v e  than 

the  requirement f o r  res idua l  pressure f l u c t u a t i o n s .  
1 

The requ i red  temperature u n i f o r m i t y ' c a n  be ob ta ined from t h e  l o g a r i t h -  

mic d i f f e r e n t i a t i o n  o f  the  i d e a l  gas law (p  = pRT). Under i s o b a r i c  con- 

d l t i o n s ,  we f i n d  t h a t  
-- 



- .  I 
AT -/-- 

1- 
42 % 1- 

I F  
- 

p1 I 
- 

-42 - I I 42- - - Thus. t h e  requ i red  d e n s i t y  u n i f o r m i t y  [prescr ibes t h e  ' r equ i red  l e v e l  of - 
temperature un i f o rm i  ti. Typ ica l  permi'ssi b l e ~ p / p ~  values r e q u i r e  tempere- 
I I 
t u r e  c o n t r o l  t o  f r a c t i o n s  o f  a  degree.: I 

, . .  I 
I I 

It i s  i n t e r e s t i n g  t o  compare these requirements aga ins t  t h e  i n i t i a l 1  
I I -- d is tu rbance l e v e l s  i n  t h e  l a s e r  c a v i t i  j u s t  a f t e r  t h e  i n i t i a t i o n  process( I - 

- .I I - 
"I The constant-volume ( d e n s i t y )  i n i t i a t i o n  process a l l ows  one t o  s imp ly  I 

I I I 
- 

I I 
LU determine the  temperature (pressure)  ( i se  us ing  t h e  f i r s t  law o f  thermo-i 

5 4 2  L . . I 
-0 dynamics and t h e  gas 1  aw. ' The r e s u l t  ! i s  

U, 
I 

- -0 I 2 .  1 
I 
I 

$311 
- 
- 
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P 

2 1 4 - 
2 pressure suppression o f  between 10 and 10 due t o  t he  medium q u a l i t y  

I - requirements descr ibed p rev ious l y .  The temperature u n i f o r m i t i e s  r e q u i r b d  - 
- I I 

- a l s o  necess i t a te  " c o n t r o l  " by fac to rs :  s i m i l a r  t p  t h e  pressure suppressibn 
I 

. . I - f a c t o r s .  I 
I - 

. . I 
8 . . The requirements on t h e  f l o w  uni i formi ty  a r e  a l s o  connected t o  t h e  , I - 
- 'beam-qual ity s p e c i f i e d  medium homogeriei I n t j  ( ~ p / p ~ )  From the  energy equ8- I 

- t i o n  along a  s t reaml ine,  'C T  + (1/2) 'UL = C, which i s  v a l i d  j u s t  p r i o r  t o  - - P I l 1. - - the  i n i t i a t i o n  pulse, one f i n d s  t h a t l  - 
!4 I '  1 .  
- I 2 k  

A 2  AU - - - 
% (Y-11) M - 

I U 
0 4 )  

p1 
- 

- 
I 

1 -. 
- 

, .  1 
I I I 

- 
;=--- - where7M i s  the  f l o w  Mach number and AU/U i s  t he  l a rge -sca le  velo;ity var iai  - - - I I , . 
1 t i o n  (a l lowed i n  t h e  c a v i t y .  .8 .1 . .  - nil; r:,lci:e m?di1,1,1 cual it;. -- 30- - 
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A t  v e r y  l ow  Mach.numbers (i ;,0.03), t h e  v e l o c i t y  d n i f o r m i t y  i s  not! 
I ---I 

r e s t r i c t i t e ,  however, when M ~ 0 . 3 ,  t h e  AU/U requi rement  may be v e r y  I 
I 

d i f f i c u l t  t o  meet. . Once AU/U becomes smal l  enough, i t  i s  d i f f i c u l t  t o  1 I I 
1 I d i s t i n g u i s h  a v o r t i c a l  o r  large-scal ;  ordered d i s tu rbance  from t h e  smal/lerr 

I 

-1 2 1 s ca le  random inhomogenei t ies  ( t u r b u l e n c e )  . The d e n s i t y  , inhomogeneit iesj  . I 
assoc ia ted  w i t h  t u rbu lence  v e l o c i t y  f l u c t u a t i o n s  a r e  g i ven  by I 

I 
I 

I 
I 
I 

*p. 2  u  1' 2 I -. M (T) 
P 

(11 5 
I I 
I I where u '  ' i s  t h e  rms t u rbu lence  i n t e n s i t y .  . , T h i s  r e l a t i o n s h i p  i s  a  consel- I 

I 
quence of  t h e  f a c t  t h a t  t u r b u l e n t  p ressure  f l u c t u a t i o n s  a r e  r e l a t e d  t o  I 

;2 
t h e  t u r b u l e n t  v e l o c i t y  f l u c t u a t i o n s  th rough AP 2. pu12, and t h a t  AP = C; -.- 

7, I Ap f o r  a d i a b a t i c  \ d i s t ~ r b a n ~ ~ ~ ~ ~  - . I I 
. .  - - -  -. 

I I 
I 

.- - -- - --I. - - . - --.+ . -- - . - I -  
The medium qua1 i ty  requi rements ,descr ibed above a r e  summarized i n  ; 

Table 2-1 and w i l l  be eva lua ted  f o r  s p e c i f i c  f u s i o n  l a s e r  systems i n  I 

I 
(var ious  elements o f  t h e  f l o w  system w ) l l  be eva lua ted  t o  f i r s t  o rde r .  I I - - [ 

.J  - _ I 1. r 

Sect ions  2.2-and-2.3.-The-above-discussion-completes-our-genera1-ana1ysis j -  . . 
\ I  

I s  - - . i t 
-L-- L o f  t h e  l a i e r  gas medium u n i f o r m i t y  repui rements j u s t  p r i o r  t o  i n i t i a t i o n .  . ,a 

!-- 

-0 I n - t he  n e x t  subsect ion,  t h e  o v e r a l l  fa low 1 e f f i c i e n c y  and p ressure-d rop '~  L. 
n -,-‘I w \ requi  - '  r em in t s  w i  11 be examined and the ,  pressure-drop c o n t r i b u t i o n s  o f  t h e q -  - - J-; 

- 

i n  o r d e r  t o  make 

t h e  c l  osed-cycle 

l a s e r  gas around 

-1 2 -- 

-- 
' I ICF  economical l y  f e a h i b l e .  I n  a d d i t i o n  t o  conserv ing  gas, I - - 

I 

system must a l s o  use' a  minimum o f  power t o  t r a n s p o r t  tAe 
I' 

I I & '  
t h e  c i r c u i t  w h i l e  rna!intaining t h e  medium homogeneity 1 1- 

I 
2.1.1.2 Flow E f f i c i e n c y  D e f i n i t i o n  ahd Requirements I 

I I 
The f l o w  system assoc ia ted  w i t h  a  f u s i o n  l a s e r  must be c losed-cyc le  

! requi rements de f i ned  i n  2.1 - 1  -1 .  I I I 1 :  2 
I C 

A schematic o f  a  f u s i o n  l a s e r  f l p w  system i s  shown i n  F igu re  2-1.  hi 1 ' 

i- 

var ious  elements i n  t h e  system w i l l  bk i d e n t i f i e d  now .beginn ing w i t h  the; i ,  C 
I + 

l a s e r  c a v i t y  (denoted as s t a t i o n  1 ) ?  
I 
I 

I I 1;;; 
I I I I  

1 
I , C . - - . -_  I- - 
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The c h a r a c t e r i s t i c s  and ,purposes .o f  t h e  va r ious .e lements  o f  t h e  f l o w  

, - 6 
I system a r e  summarized i n  TBble 2-2. i ~ h e  f l o w  i n  t h e  l a s e r  c a v i t y  i s  i n ? -  - 

- 
t i a l l y  a t  a  g i ven  s t a t e  (ply TI). A f t e r  t h e  l a s e r  gas i s  i n i t i a t e d  (e.kj., 

I - 
w i t h  an e l e c t r i c  d i scha rge ) ,  t h e  con3tant-volume hea t  a d d i t i o n  process 1 - 

I I leads  t o  an overp ressure  Ap and a t e a p e r a t u r e  excess AT. The overpressure l  '- 

- 12 

I i s  suppressed by a c o u s t i c  element; upstream @ and ,downstream @ of  I - 
I - 1 t h e  c a v j t y .  =Both of. these  elements a r e  en t ropy-p roduc ing  and necessar igy  I - 

must c o n t r i b u t e  t o  t h e  f l o w . p r e s s u r e  ldrop p* o f  t h e  e n t i r e  system. A I 
I 

d i f f u s e r  @ i s  needed o n l y  when t h e i g a s  f l o w s  a t  a f a i r l y  h i g h  Mach I 

I 
I t o  e x t r a c t  t h e  excess hea t  depos i ted  ! i n  t h e  c a v i t y ,  t h e  heat  $?nerated I I 

- 

- 1 0 

I 
f l o w  t o  s t a t i c  p ressure  ( p o t e n t i a l  edergy),  w i t h  minimum losses ;  A gas, 

r egene ra to r  @ w i l l  be r e q u i r e d  i f  :he gas undergoes non reve rs i  t i l e  . 

chemica l  changes i n  t h e  c a v i t y . .  ~ e a {  ex;hangers @ and @ a r e  r e q u i r b d .  

- 
by t h e  compressor and heat  t h a t  may tie .added t o  t h e  c y c l e  by t h e  regenela-  

I - 
t i o n  The l o c a t i o n  o f  t h e  hea t  exchangers may. vary ,  and i n  .some - 

number, say M - > 012, . t o  . conve r t  t h e  dynamic head ( o r  k i n e t i c  energy)  o f ;  t h ~  - 
- 
- 
- 

- 24 

I l a p p l  icatb.ons, one hea t  Oxchanger may l s u f f i c e .  ' A  compressbr @ w i l l  be/  I . - 3 0 

I - 
l t h r o u g h  t h e  f l o w  l o o p  a n d t h e  ov'eral l !  pressure d rop  w i l l  determine t h e  I .I - 

1 near t h e  en t rance  t o  t h e  c a v i t y  t o  meet t h e  beam qua.1 i t y  requi rements .  I I - 

I 
power r e q u i r e d  t o  d r i v e  t h e  compressqr. Flow management dev ices  @ w i i  1  

I 
be needed t o  c o n t r o l  t h e  v e l o c i t y  and; temperature f l u c t u a t i o n s  i n  t h e  gas 

- 
IIt i s  p o s s i b l e  t h a t  t h e  f u n c t i o n s  o f  ; v e l o c i t y  and temperature c o n t r o l  cbu lh  

I I - 

36 - 

be combined w i t h  t h e  p ressure  .wave $ ~ . ~ ~ r e s s i o n  f u n c t i o n  o f  t h e  .upstream 
i I 

absorber  @ and performed a , l l  by one element . I 
I I 

I 
d e f i n i t i o n  pe rm i t s  us t o  w r i t e  ' 1  

I 

- 
4 2 
- 

The o v e r a l l  l a s e r  e f f i c i e n c y  qL,! d e f i n e d  a s .  t h e  l a s e r  o u t p u t  power\ 
I I 

p~ d i v i d e d  by t h e  t o t a l  i n p u t  power,! pTOT = PI + P F , +  PR (where PI, PFI 
I 

and PR a r e  t h e  i n i t i a t i o n ,  f l o w  and qhemical r e f e n e r a t i o n  powers, respe{-  

t i v e l y ) ,  i s  a: key parameter i n  t h e  e 4 a l u a t i o n  o f  l a s e r  f u s i o n .  T h i s  I 
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Table 2-2.  Major Elements of a Fusion Laser Flow System 

El e'en 
Number 

a 
@ 

@ 

@ 

@ 

@ 

@ 

@ 

@ 

El emen t Name 

Laser Cavity 

Downstream 
Acoustics 

Subsonic 
Diffuser 

Gas Regenerator 

Heat 
Exchanger (1 ) 

 omp pressor 

Heat 
Exchanger ( 2  ) 

Flow Management 
Devices 

Upstream 
.Icousti cs 

Element F~nct ion ,  Characterization or Requirements 

Requires Homogeneous Medium a t  T I ,  pl Prior to  In i t ia t ion .  
T1 + AT and p1 + Ap Produced After In i t ia t ion .  

Suppresses Ap a t  Low Pressure Drop and Minimizes Reflection into 
Cavi ty  

Recovers Driving Pressure. 

Chemically Reconstitutes the Recirculating Gas. 

Reduces Temperature to Near T I .  

Increases Pressure Sufficiently to Transport Flow. Also Increases 
Temperature to  T1 + ATc. 

Reduced Compressor-Heated Gas Temperature to  T I .  

Produce Uniform Flow a t  pl and T I ;  Control both Velocity and Tempera- 
ture Fl uctuations . 

Suppress Ap a t  Low Pressure Drop Without Perturbing Other Media 
Properties. 
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where qI i s  t h e  i n i t i a t i o n  ( e l e c t r i c i l  ) e f f i c i e n c y ,  qF i s  t h e  f l o w  e f f i c i e n c y ,  r. - 
l 

and q i s  t h e  chemical  r egene ra t i on  e f f i c i e n c y  o f  t h e  l a s e r .  I n  t h i s  I - 
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Gnd-a -y i e l  ~-O~-Y-=-~~G-=-IO ,-resu1 ti rig-in-a-reci rculating-power-fraction-of 
F about 30%. This  f r a c t i o n  i s  r e l a t i v e l y  h i g h  b u t  s t i l l  acceptable.  For  a  

more d e t a i l e d  d i scuss ion  o f T t h i s  sub jec t ,  seeq Ref. 2-2, p. 25. 
\ 9 - -- L .  - -  - - - I 

C R 4 1 
r e p o r t  we w i l l  n o t  d iscuss  t he  gas regene ra t i on  aspects o f  t h e  f l o w  system, 

I 
s i n c e  t h e  two cand ida te  fus ion  1  asers' which a re  s p e c i f i c a l l y  considered, 

1 
here, C02 and KrF, w i l l  r e q u i r e  o n l y  minimal chemical regenera t ion .  I 

1 
I 

Equat ion (16)  i s  thus s i m p l i f i e d  w i t h  t h e  l a s t  r.h.s. t e rm  e l i m i n a t e d .  

The e f f e c t  of t h e  f l o w  e f f i c i e n c y  on i the o v e r a l l  l a s e r  e f f i c i e n c y  can thus 
I 

be r e a d i l y  p r e d i ~ t e d ; ~  I 
I I L  

I '  No a t tempt  was made i n  t h i s  stud) t o  es t ima te  t h e  minimum r e q u i r e d  , 
I 

o v e r a l l  l a s e r  e f f i c i e n c y  f o r  I C F  power genera t ion  o r  t o  eva lua te  t h e  1 I 
b e n e f i t s  which - can be de r i ved  from an inc reased  l a s e r  e f f i c i e n c y .  Simple 

I 
arguments i n d i c a t e ,  however, t h a t  t h e  absol  u t e l y  minimum acceptabl  e  1  aser  

I 
e f f i c i e n c y  i s  o f  t h e  o rde r  o f  one percen t  and t h a t  s u b s t a n t i a l  ga ins  can 

be d e r i v e d  i n  n e t  power p roduc t i on  i k  t h e  l a s e r  e f f i c i e n c y  i s  i nc reased  
I 

from 1  t o  lo%* .  We w i l l  thus  focus our  a t t e n t i o n  on t h i s  range o f  o v e h l l  
I 

l a s e r  e f f i c i e n c i e s .  I I 
1 I - - ----- ,-----------L----------------  I-- I I I 
I I 

I I 

I I I I 
I I 
I I 

I I I 
I I 
I I 
I I 

I I 
1 I 

I 
I 

I 
1 
I 

I I 
I , I' 

- 1 - -  I 
I I 
I I I I 

1 I 
I - --. "- l I -- - 

* - 3  
The 1% minimum e f f i c i e n c y  i s  based dn an assumed p e l l e t  ga in  o f  G = 10, ) 
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- . F igure  2-3 i s  a  p l o t  o f  Equation' (16) w i t h  PR + 0. Given an i n i t i a -  ' . - 
c- * - A -  

c , t i o n  e f f i c i e n c y ,  nI, and a  des i red  la'ser e f f i c i e n c y ,  nL, t h i s  f i g u r e  can I i - - 

I I -- - 
. - ! v a r i e s  from 2% t o  100%. Suppose we choose 5% as t h e  goal f o r  the  o v e r a l l  I - 

conven ien t ly  used t o  determine the  minimum requ i red  f l o w  e f f i c i e n c y ,  1 nF! 
I 

f o r  example, a  l a s e r  w i t h  a  10% i n i t i a t i o n  e f f i c i e n c y .  The I 
I 

w i l l  va ry  from %' 1>.7% t o  9.1% as the  f l o w  e f f i c i e n c y ,  

/qF and the  overal l . .  f l  ow-cycle pressur-e drop. Low values o f  nF pe rm i t  h i g h  - 
- 

lpressure drops i n  the  f l o w  system and, hence,: a l l o w  f o r  the  g r e a t e s t  I - 

< .  - - - 
12- 
-- 

l a s e r  e f f i c i e n c y .  Then, based on F igure  2-3, i f  0.05 5 1 - 1 ~  5 0.1, nF m u i t  
I 

,be w e l l  above 10%. We w i l l  show below t h a t  there  i 's  a  t r a d e o f f  between1 
I 

1 
freedom o f  design t o  meet the  medium 'qua1 i ty requirements. I 

I I 
I 

The f l o w  e f f i c i e n c y  i s  coupled do t h e  f l o w  system pressure drop and 
I 

l t he  l a s e r  energy e x t r a c t i o n .  The connect ion between these parameters i s  

- 
- 
re- 

now der ived .  S p e c i f i c a l l y , ,  t h e  f l o w  e f f i c i e n c y  i s  de f i ned  as 
- -. 
-- 

I -- - 

--- ------- - . - -  - - . . I . .  - .  - -  - 
PL i s  t h e  average power o u t  o f  ;the l a s e r  module and PF i s  t he  power . + 

' I requ i  r e d  t o  r e c i r c h l  a t e  t h e  1  aser gas. The average 1  a'ser power ( i n  w a t t s ) '  
-A- 

+ , ! i s  I I 1 f- 

I 

-- 
BOnOP! OF PAGE 

I 
1 .  PL = p1 V1 'S 'PR? - i (b)i 8 ,  - *  

- . ,  

> 1 
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-Q - 
-3 
-uJ 

where pl i s  t h e  c a v i t y  pressure i n  atmospheres, V1 i s  t h e  c a v i t y  volume' 
I I 

i n  l i t e r s ,  S i s  t h ~  e x t r a c t . ~ r i  e n ~ r g y l d e n s i t y  i n  , ] / l i t - a tm  and PRF i s  t h e  
I I 

pu lse r e p e t i t i o n  frequency. The f l o w  power PF, i n  wat ts ,  r equ i red  t o  p,ump 

t h e  l a s e r  gas around t h e  f l o w  l oop  i s  g iven  by (2-3)  
J - - -- . . .- I 

. . I I , .  I )  -- -1.. 3 ..,. 
/ 

t 
.. 

y-l 
I 

1 
.W 

I 
I PF = (1.013 x  10 2 ) yRF [$)[($ - :I + ' 1 - .  

5 4 'cornp B I . +/ 

I 
U. I 
0 

! 9 ) l  , , $ 
where pl i s  again i n  atm, and V1 i n  l , i t e r s ,  and C i s  t h e  f l u s h  f a c t o r  . 

LU : - - - - .  

g ( d e f l ~ e d  ;as - - t he  - -  volume of gas; - pumped $er pu lse  through t h e  l a s e r  c a v i t y  
L I I 

. . .  -----. - -- 1- . . -  
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Figure 2-3. Overall Laser Efficiency Versus Initiation and 

Flow Efficiencies. I 
1 
I 
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- --- C-- 
' d i v ided  by t h e  c a v i t y  volume, 1, i s  t h e  compressor e f f i c i e n c y ,  . .. . 

ComP r i E -  
T5/T1 i s  t h e  r a t i o  o f  t h e  gas temperature e n t e r i n g  t h e  compressor t o  t h e  , ( - -  

! I I ' temperature i n  t he  cavity,:and p5 andd p6 a r e  t h e  s t a t i c  p ressure  upstream : --.- i - -  - - 
5 - - - - A  - and downstream of t he  compressor, r e s b e c t i v e ~ ~ . .  I f  we combine ' ( 1  7 ) ,  (18)  

I I 
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f l o w  systems w i l l  requi r .e  smal.1 p r e s i u r e  drops, we dan expand Eq. 21 an$ ! - ..- ----- -A - 
I I 30 
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Th i s  express ion i s  accura te  t o  w i t h i n  7% f o r  t 

I I I i 

,. . I .  I  np* I I < 0.2 and q > 1.4 (24)  5  
I I *  

I  
For l a r g e r  pressure drops and/or  smali ler y i t h e  exac t  express ion  f o r  f I , L.: I  
(Eq. 21) should be used. I I 
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candidates.  For an advanced C02 system w i t h  S = 5  J / l i t - a t m ,  and a I 
I 

r e a l i s t i c  f low e f f i c i e n c y  o f  20%, FigGre 2-4 i m p l i e s  an a l l owab le  pressure 

1 .  I C 
The t r a d e o f f  between qF and AP*/ip5 can now be r e a d i l y  presented '(.?tt. k i 2 - 4 )  , 

I 

drop  f o r  t h e  e n t i r e  system o f  10%. T h i s  va lue  f o r  Ap*/p5 i s  a f a c t o r  of  
I 20 t o  30 l a r g e r  than  t h e  t y p i c a l  low-Lpeed w h d  tunne l  pressure drop I 

I 
(210 .004) .  Hence, f o r  t h i  s  example t p e r e  appears t o  be enough ava i  1 a b l  4 
Ap*/p5 t o  meet t h e  requi rements of t h h  f u s i o n  l a s e r  "wind t u n n e l "  which1 

I I 
i n c l u d e  acous t i cs ,  f low management, and heat  exchangers. The va r i ous  I 

I I y c o n t r i b u t o r s  t o  pressure drop i n  t h e  ,system a r e  descr ibed  i n  subsequent 1 

. I  
(see  F igure  2-4).  Note t h e  impor tancb o f  t h e  e x t r a c t i o n  energy d e n s i t y ;  

Th i s  parameter vac i~es by an o rde r  o f  magnitude f o r  d i f f e r e n t  f u s i o n  l a s e r  
I 

I I paragraphs. I I - 
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I , to  d i s t i n g u i s h  i t  f rom i n i t i a t i o n - p r o ' d u c e d  overpressures and w i t h  a  sub' 1.1 - -.-- 
i - 
s c r i p t  t o  i n d i c a t e  t h e  . . .  l o c a t i o n  i f  t h e  pressure losses.  The numbered 1 I I 3 lo 

I ~ ~ u b s c r i ~ t s ,  shown i n  Table 2 - 3  r e f e r  back t o  F igu re  2-1 and Table 2-2.  he I I -:L 
l l e t t e r e d  s u b s c r i p t s  r e f e r t o  losses  d ; s t r i b u t e d  throughdut  t h e  system. ! I - 1 

I I 
I 

Pressure 1,osses i n  f l o w  systems a re  t y p i c a l l y  re fe renced  t o  t h e  
I I 

dynamic pressure o f  t h e  f l :ow.ente. r ing:  t h e  l o s s  element. The dynamic 
2 

I 

pressure  qi i s  de f i ned  as piUi/2 whe$e pi i s  t h e  gas d e n s i t y  and Ui i s  
I 

t h e  gas v e l o c i t y  a t  l o c a t i o n  i i n  t h e  system. The p ressure  drop i s  theh 
I 

g i v e n  by I I I 
, I I 

'2 Ap* = K pi Ui/2 = K q  
I 

i 

I 
where t he  c o e f f i c i e n t  K '  [ t y p i c a l  l y  0(11)] depends upon t h e  s p e c i f i c  pressurk 

I I 

l o s s  source. 1 I 
1 I 

I 
A n a l y t i c  es t imates  f o r  t h e  var ious  pressure-drop elements w i  11 be I 

L- I 
presented below w ~ t h  t h e  de te rm ina t i dn  o f  K as t h e  goa I. We proceed i n !  
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Table 2-3. Sources of Pressure Drop in Fusion Laser Flow Systems 

Pressure Drop Sources 

Heat Addition A P T  

Diffuser AP; 

Pressure Suppressor ~ p $ / A p i  

Flow Turns ( 4 )  A P T  

Flow con-ditioning AP: 

Heat Exchangers [2) A p g l A p j  

Boundary Layer Friction Apf 

Location 

Laser Cavity 

Downstream of Acoustics 

Up/Downstream of Cavity 

Corners of Flow System 

Upstream of Cavity 

Up/Downstream of Compressor 

Entire Flow System 

Features 

Constant Volume Heat Addition 
with Entropy-Producing 
Disturbances. 

_ki-c-tj-o.n-aJ Pressure Drop , Fl ow 
\Separation Should be Avoided.. 1 

Pressure Drop i s  Design Dependent. 

Frictional Losses/Flow 
Disturbances, Design Dependent. 

Includes Convergent Section, 
Screens, Honeycombs (for  velocity 
and temperature control ).  

Pressure Drop Proportional to  
Temperature Change. 

General Frictional Losses, 
Separation Shoul d be Avoided. 
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-u A drop i n  stagnation pressure occurs i n  the l a s e r  cavity due t o  the a 

h e a t  addition caused by the i n i t i a t i o h  process and subsequent lasing. .  I 
I I 
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Subsonic Diffuser 

The behavior of subsonic diffusers i s  described in detail  in Reference 

2-5. The pressure drop through the diffuser i s  given by 

2 
where K3 i s  somewhat geometry-dependent and the dynamic pressure (p3 V3/2) 

i s  evaluated a t  the diffuser in l e t .  Long diffusers with L3/H Z 10 and 

small area rat ios  (Aout l , e t  /A i n l e t  & 2.5) ,  operate e f f ic ien t ly  without 

s ignif icant  s t a l l .  The loss coefficient for  these geometries i s  in the 
. . 

range 0.25 3 K3 2 0.4. 
. . 

Pressure Suppressors . . 

The acoustic suppression elements upstream and downstream of the 

laser  cavity are the key elements of the fusion laser  flow system. They 

are unavoidable i f  we are to-meet the stringent beam quality and flow 

uniformity requirements . Several concepts fo r  performing the pressure 

suppression have been under study for  several years in the pulsed-laser 

community. The two-primary candidates are flow-through absorbers and 

side-wal 1 muffler . . .  absorbers. These suppression elements may represent the 

major contributors to : the  allowable pressure drop for  the fusion laser  

flow system. Due to  the "special" nature of these system flow elements, 

quantitative discussion of pressure drops arising from these elements i s  

dererred t o  Section 2.1.2$2 and to  ' fur ther  specif ic  laser  system discussion 

in Sections 2 .2  and 2 . 3 .  

Flow Turns . . . . . . . 

In a closed-cycle fusion laser  flow system there are typically four 

( 4 )  corners (see ~ i g u r e  2-1') where t h e  flow turns by 90'. The flow 

ericuuiiters losses as i t  turns around the corners; Tf the corner i s  abrupt 

wi'thout vanes then a 100% loss'of dyriamic pressure can resu l t ,  (2-5)  i . e . ,  

KT = 1. Careful design of the corner duct and corner vanes can' lead to  

values of KT as low as 0.. 11 according to  Pope. (2-5) A reasonable value i s  

KT = 0.15, which we will u t i l i z e  for  each corner. Note tha t ,  i f  necessary, 



the vanes can be u t i l i z ed  t o  help cool the hot l a s e r  gas by flowing a 

coolant through the  vanes. 

Flow Conditioning 

The flow conditioning pressure drop sources include any elements i n  

the  flow system spec i f ica l ly  designed t o  minimize and control flow non- 

uniformi'ties as we1 1 as poss ible  thermal i.nhomogenei t i e s .  The main purpose 

of these elements i s  t o  suppress vo r t i c a l  and turbulent  velocity f l  uctua- 

t ions ;  however, thermal management can a lso  be .affected through the use of 

cooled flow conditioning elements i f  necessary. ,Three types of losses a re  
considered. The losses 'associated with flow through the contraction 

section upstream of the cavi ty ,  and with flow through screens and 

honeycombs. 

The loss  coef f ic ien t  f o r  the  contraction section or  contraction cone 
. (2-5) ( i n  wind-tunnel' terminology) i s  given by 

where Cf i s  the skin-fr ic t ion coef f ic ien t ,  t e . i s  the  length of the con- 

. t r ac t ion  section.  and H i s  ' the  cavity height. This loss  term i s  pre- 

dominantly fr ict io 'nal  and i s  typ ica l ly  l e s s  than 3% to t a l  pressure drop 
in: a conventional low-speed wind tunnel. 

3 A t  high Reynolds number (Ud /~v  > 10 ) ,  the screen pressure drop' 

coef f ic ien t  i s  given by 

w,here d i s  the wire diameter 'and B i s  the porosity of . the  screen,  i .e . ,  
B = open area/ to ta l  area.  Screens operate without i n s t a b i l i t i e s  f o r  values 

of 6 Z 0.6.  Typical values of K C p  range from approximately 0.10 t o  

approximately 2. We will  u t i l i z e  a value of Kc2 = 1 f o r  every screen 

employed in 'the flow system.' 

Losses in honeycombs a r e  typ ica l ly  small s ince  they .a re  very open. 

For honeycombs with a length/diameter r a t i o  of 6 and equal tube areas ,  



Pope (2-5)  quotes a range f o r  Kc3 from 0.30 ( c i r c u l a r  tubes) t o  0.20 (hexa- ' 

gonal tubes) .  We w i l l  use a va lue o f  Kc3 = 0.25. 

Heat Exchangers 

The pressure-drop , c o e f f i c i e n t s  f o r  t he  heat  exchangers depend on t h e  

gas entrance and e x i t  temperature, as w e l l  as on t h e  coo lan t  temperature. 

For t h e  f i r s t  heat  exchanger t h a t  serves t o  take o u t  most o f  t he  l a s e r  

c a v i t y  heat  a d d i t i o n ,  we have (2-5).  

where T5 i s  t h e  coo lou t  temperature, e n t e r i n g  the  heat  exchanger. The 

second heat  exchanger serves t o  take  o u t  t he  thermal energy in t roduced 

i n t o  t he  f l o w  by the  compressor. Herlce 

Note t h a t  f u r t h e r  f i n e - t u n i n g  o f  t h e  temperature may be necessary t o  

achieve the  smal l  d e n s i t y  inhomogenei ty l e v e l s  o f .  i n t e r e s t .  Adding an 

e x t r a  heat  exchanger w i l l  n o t  produce much pressure drop because t h e  t o t a l  

temperature change in t roduced by such a heat  exchanger w i l l  be smal l .  

Boundary-Layer F r i c t i o n  

F r i c t i o n a l  losses occur a long t h e  e n t i r e  f l o w  loop. Some o f  these 

losses are  found i n  area-change regions such as t he  c o n t r a c t i o n  upstream 

of t he  c a v i t y ,  t h e  d i f f u s e r  downstream o f  t h e  c a v i t y ,  and the  corner  f l o w  

tu rns .  However, these c o n t r i b u t i o n s  have been separa te ly  taken i n t o  

account a5 descr ibed above. Hence, t h e  boundary- layer f r i c t i o n  losses 

o n l y  need t o  be computed f o r  t he  s t r a i g h t - w a l l  sec t ions .  The pressure drop 

i n  a duc t  o f  l eng th  R i s  
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I 
where KF i s  s imp ly  Cf 2/Dh (where Dh ps t h e  h y d r a u l i c  diameter o f  

I 'cross sec t i on  and Cf i s  t he  s k i n - f r i c t i o n  c o e f f i c i e n t  which i s  Reynolds; 
I 

I 
number dependent and t y p i c a l l y  i n  the: range o f  3 x  t o  The f r i c -  

i I t i o n  c o n t r i b u t i o n  i s  t y p i c a l l y  q u i t e  \mal l  f o r  low-speed wind tunne ls .  , 
1 

I The var ious  p r e s s u r e - d r o p c o e f f i ~ i e n t s  (KS) f o r  t h e  sources descr ibed 
~ 2 .  

I\ 

!above a re  summarized i n  Table 2-4. The major  c o n t r i b u t i o n s  are  under l ibed .  

* 
'Or.. 

- 0 

I 1 
I 

I 

i2. .1.3 Mean-Fl OW Requirements I 
I 
1 

! I ! 

/ The preceding d iscuss ion  has centered around the  pressure drop o f  ; I I 1 
1 
, the f l o w  system and the  (maximum) p e & i s s i b l e  pressure drop. There a r e i  . I 
I 'I I 
la l so  o t h e r  s p e c i f i c  requirements on (he f l o w  i t s e l f ,  e . . ,  t he  gas v e l o c i t y  

1 

i o r  Mach number which must be r e l a t e d  : to t he  c a v i t y  geometry, t he  PRF, I 1 I I I 
'and the  " f l u s h  f a c t o r "  C. These th ree  parameters r e q u i r e  some .d iscussion I I I 
\be fore  s p e c i f i c  f l o w  v e l o c i t y  requ i rehents  can be es tab l i shed.  I I 

r -'---• - .- #7 : -  1 
1 t 

F i r s t ,  cons ider  t h e  c a v i t y  geom<try. ~avi f ies. :eoks. ldeced . - _ _ _  . % _  _ . -  .;in t h i s  , 
I /' 

! r e p o r t  a re  l i m i t e d  t o  rec tangu la r  ge&et r ies  as shown i n  t he  sketch o f  2 ,  '7 
i ~ i ~ u r e  2-5(a) .  The dimension i n  t h e  beam ( o p t i c a l - a x i s )  d i r e c t i o n  i s  

- - 7 -  - - - - - . - - - - - A .  - . 

' i s ,  denoted by:.L.; .This i s .  1  i m i t e d  by smal i -s igna l  -ga in cons idera t ions  - -+-- -- - j t h e  growth o f  pa ras l  --- -- t i c  modes. - I . ~ ~ , t j ~ ~ i t a l l , ~ a n g e  o C . ~ a v . i t y , ~ l k n i t h s  
--a 

,consider  here !is: L' .=:,l'-to-5,m:. The , ~ n i t i a t i o n  he igh t - i i  l i m i t e d -  b y - t h e  '1 - i 
' s p e c i f i c  i n i  t i ia t i6n-  $ T O C & S ~ : ~ .  For  e-beam-control l e d  discharge, H  i; 

--L_- I I 

l i m i t e d  here t o  be approx imate ly  1 9 7 .  These dimensions o f  t h e  l a s e r  I L- r J  I 
/ c a v i t y  a re  "f low-independent" and wi1,l be considered as f i x e d  i n  our  f l o w  

I 
Isyqt.em c a l c u l a t i o n s .  The f l o w  l e n g t h  W remains t o  be determined. It i s  

I I 
Ian impor tan t  parameter f o r  f 1  ow system sca l  i n g  s tud ies .  I 
I I 
I 
I The pu lse  r e p e t i t i o n  frequency (IPRF) requ i red  f o r  l a s e r  f u s i o n  powkr 

Igenerat ion i s  y e t  t o  be determined.  he wides t  range which can be con-/ 

s i de red  i s  1  -to-100 Hz, w i t h  t h e  mosd 1  i k e l y  range l i m i t e d  t o  10-to-20 Hz. 
I I 

Since t h i s  frequency i s  s t r o n g l y  flow-system-dependent , we w i  11 leave i t  
I I 

as a  v a r i a b l e  parameter. There w i l l  ,obviously be o t h e r  impor tan t  consider  
I 

t i o n s  as w e l l  which w i l l  e v e n t u a l l y  determine the  requ i red  pu lse  repet i :  
I 

t i on frequency . I I 
I I 

I 
The mass u t i l i z a t i o n  per  pu lse  o r  " f l u s h  f a c t o r "  C ( t h e  gas volume1 

1 I 
which f lows through t h e  c a v i t y  per  pulse,  d i v i d e d  by the  a c t i v e ,  l as ing ,  

I 1 
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volume) has a  minimum (by  d e f i n i t i o n )  o f  u n i t y .  Because o f  p o t e n t i a l  

m i x i ng  n o n u n i f o r m i t y  and t h e  need f o r  t ime  (space) t o  suppress t h e  i n i t i a t i o n -  

generated p ressure  waves, C > 1. I f  t h e  i n i t i a l  overpressure i s  smal l  

enough, i t  may be p o s s i b l e  t o  achieve va lues  f o r  C t h a t  a r e  c l o s e  t o  u n i t y ;  

a  r e a l i s t i c  goal  f o r  C i s  1.5, however due t o  t h e  medium homogeneity con- 

s t r a i n t s  we w i l l .  u t i l i z e  a  conse rva t i ve  va lue  o f  C = 2  which w i l l  a l l o w  more 

t ime  f o r  a c o u s t i c  q u i e t i n g .  

The' f l o w  v e l o c i t y  requi rement  can now be e s t a b l  ished.  The volume 

passed th rough - t h e  c a v i t y  p e r  pu l se  i s  C x W x H x L a n d  t h e  r e l a t e d  gas 

v e l o c i t y  must be 

U = CW x PRF 

A t  a  g iven  PRF, U r\, W. It i s  convenient  t o  d e f i n e  a  d imension less PRF as 

f o l l o w s :  

- W x PRF - Acous t i c  Time. PRF= a - Pul se I n t e r v a l  

where t h e  acoust ic.  t ime  i s  d e f i n e d  as t he  t ime  i t  takes  a  sound wave t o  

t r a v e l  across t h e  w i d t h  o f  t he  c a v i t y  and t he  pu l se  i n t e r v a l  i s  t he  t ime  

e lapsed between two consecut ive pu lses.  We would l i k e  % << 1  s i n c e  t h i s  

would a l l o w  f o r  ma.ny t r a n s i t s  o f  t he  a c o u s t i c  waves i n  t h e  c a v i t y  r e g i o n  

w i t h i n  a  pu l se  i n t e r ' v a l ,  ' t he reby .p romot ing  success ive pressure suppress ion 

w i t h  each bounce. I f  we now d i v i d e  t h e  v e l o c i t y  (36)  by t h e  a c o u s t i c  

speed 'a, we o b t a i n  ' t h e  Mach number 

Acous t i c  suppress ion w i l l  thus be f a c i l i t a t e d  when M << 1. I n c r e a s i n g  

p ressure  drop w i t h  M a l s o  .suggests t h a t  M << 1. These two r e i n f o r c i n g  

Mach number c o n s t r a i n t s  w i l l  l e a d  t o  r e s t r i c t i o n s  on t h e  p e r m i s s i b l e  

' . va lues n f  W and PRF. 

2.1 . I  .4 Summary o f  Flow 'system Requi rements 

There a r e  e s s e n t i a l l y  two s e t s  o f  requi rements imposed on t he  f l o w  

system o f  a f u s i o n  l a s e r .  ' One p e r t a i n s  t o  the  req l r iked l a s e r  hmm q1.1alit.y 

and t h e  r e l a t e d  c a v i t y  media homogeneity. The desi ' red f o c a l  spo t  s i z e  and 



the  focal  l eng th  o f  t he  focus ing  o p t i c s ,  t he  l a s e r  wavelength, t he  c a v i t y  

dimensions and the  l a s e r  media composit ion and pressure w i l l  determine 

the  l e v e l  o f  c a v i t y  media homogeneity which. must be mainta ined by t h e  ' f l o w  

system. These requirements d ic ta te , .e .g . ,  t h a t  t h e  l a s i n g  medium i n  t he  

c a v i t y  be complete ly  exchanged between successive pulses and t h a t  acous t i c  

suppression and f l o w  c o n d i t i o n i n g  devices be employed i n  .the f l o w  system. . 

Ano the r ' se t  o f  requirements i s  determined by f l o w  e f f i c i e n c y  consider-  

a t i ons .  The f l o w  e f f i c i e n c y  ( l a s e r  power d i v i d e d  by power requ i red  t o  

. r e c i r c u l a t e  the. g.as) must be a t  l e a s t  as good as, o r  somewhat b e t t e r  than, 

t he  i n i t i a t i o n  o r  regenera t ion  e f f i c i e n c i e s .  This  requirement w i l l  d i c -  

t a t e  low-pressure-drop designs f o r  the  f l o w  system. 

These general r equ i  kements (goo's media homogeneity and h igh  f 1 ow 

e f f i c i e n c y )  are b a s i c a l l y  i n  c o n f l i c t .  The o v e r a l l  o b j e c t i v e  'o f  t he .  f l o w  

system s tud ies  can be viewed as an a t tempt  a t  f i n d i n g  the  opt imal  t rade-  

o f f  between these two requirements . 

o w .  n . ,  ,,\~l ' , ,? I  .!*,. .\9 ". \ b  " L , * ' , . ,  
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2.1.2 Pressure Wave Suppression i n . P u l s e d  Lasers 
1 

6- - 
The s u b j e c t  o f  p ressure  wave su ip ress ion  i n  pu lsed  l a s e r s  - 

- considerab le  a t t e n t i o n  f o l  l ow ing  t h e  idevelopment o f  r e p e t i t i v e l y  pu l  sedi, 
I - 

.high  energy gas 1 asers. The atmospheri,c~~~pressure, CO, e l e c t r i c  dischar,ge - 
L 

1 i s e r  was p robab ly  t h e  f o re runne r  o f  l t h i  s c l  a s s  o f  1 asers.  The devel  opL- 12- 
I - 

ment o f  a c o u s t i c  suppressors f o r  pu lsed  CO, l a s e r s  has a f a i r l y  l ong  - 
L 

(see, e.g. Refs. 12-6,_2-7)..\ ~ i m i l a i  ;a t tempts were' made t o  a n a l y z e  
- 

I ,  

' _ I  
Q2 - 8 ~ 2 ~ 9 ) ]  

- 
pressure . wave . generat ion '  and, suppres$ion phenomena i n  pu lsed  CO. 1 asers ., - 

1 I 
More. r e c e n t l y ,  severa l  s t u d i e s  were performed aimed a t  .deve lop ing  p ressure  .. 

I' 

wave suppressors f o r  r e p e t i t i ~ e l y .  pu lsed  DF and KrF 1,asers. @ - T - 2 T q  

I r e v i e w  here t h i s  l i t e r a t u r e .  I t s h o ~ l d  be n o t e d ,  however, t h a t  t h i s  - 

. . 
I  here i s  o-f course a v a s t  body o f  no4 c l a s s i c a l  1 i t k r i t u r e  on acous t i c  I 

I (  . 
wave suppress ion i n  o t h e r  f l o w  systems. S tud ies  r e l a t e d  t o  f a n  and j e t :  

I 
engine no i se  q u i e t i n g  a r e  qxamples. We. w i  11 " n o t  a t tempt  t o  I 

I l i t e r a t u r e  dea ls  m o s t l y  w i t h  suppress ion of lower  o v e r p r e s s u r e ~ ( a c o u s t i c  I e-: 

- 
- 
- 
- 24- 

waves) than t hose  generated i n  p u l s e d  l a s e r s  and t h e r e f o r e  a r e  n o t  alwdys 
I 

appl i c a b l e  t o  t h e  pu lsed  1 aser  p ressyre  suppress ion problem. 1 
I I '  

- - - - -A  - - - - - - - - .  . ---- 
I '- 1 - - 

Pressure wave suppressors which ' a re  used i n  r e p e t i t i v e l y  pu lsed  
I - 

l a s e r s  and i n  o t h e r  s i m i l a r  f l o w  sysfems can be d i v i d e d  i n t o  two generi lc 
I 

types -- those which a c t  on t h e  mean [ f l o w  (which we w i l l  c a l l  " a c t i v e "  I 

which i s  no rma l l y  p l a c e d  upstream o f ; t h e  c a v i t y  i n  r e p e t i t i v e l y  pu lsed  I - 

lasers ,  t o  separate t h e  feed  froni  any d is tu rbances  i n  the '  c a v i t y ,  &n 
1 

b e  cons idered  as a n  a c t i v e  absorber.  I ~ x a m p l e s o f  severa l  a c t i v e  
I . . I 

a r e  presented i n  ~ i ~ u r e  2-6. I I 4%- 
I 

- 
3 6  

- 

absorbers) ,  and those which do n o t  (;ere r e f e r r e d  t o  as " p a s s i v ~ ' a b s o r b b r s ) .  ' I 
- 

I I n  t h e  f i r s t  c l a s s  we i n c l u d e  porous l f low- th rough absorbers,  dus t  o r  drop1,et 
- 
- 

laden absorb ing media (such a i  i n  ~ e i .  /2-ll)(and any ab rup t  changes i n  I 
I . . :  I 

t h e  f l o w  d i r e , c t i o n  and/or c ross  secti,on: I n  a sense, t he  o r i f i c e  p l a t e l  

( R e f .  j2-13)] which do n o t  i n t e r a c t  w i t h  t h e  qu iescen t  mean f l o w  b u t  a f f i c t  
- 

- -3 

I 
t h e  f l o w  and p ressure  f i e l d s  wheneveq p ressure  waves a r e  generated. I 

I  
Typ i ca l  examples a r e  shown i n  F igu re  '2-7. There are,  o f  course, va r i ous  

I I 
combinat ions o f  these two gene r i c  c lasses  o f  absorbers.  Wedge o r  diamond-1 

The second c l a s s  inc ludes a l ' l  s i de -wa l l  absorbers,  o f  e i t h e r  t h e  i 
I 

vented duc t  des ign  (Ref.  12-10)ior t h d  porous s i d e  w a l l  m u f f l e r  des ign .  ! 
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t o  t h e  f l o w  con t rac t i ons  which they  in t roduce,  and have a secondary i 
I . I 

impor tan t  . . e f f e c t  on t h e  waves ,r.,whenever these are  generated, I 
I I 

s i nce  these' waves f o r c e  t h e  f l u i d  i n t o  t he  porous m a t e r i a l  and amp1 i f y  I 

t he  absorp t ion  and a t t e n h a t i  on proce&es. I 

. .. . . 
I I 

I  he pressure wave-suppressors .. - dqscr' ibed b r i e f l y  above a l l  absorb I, 

- I t h e  pressure energy b y  v iscous damping and by shedding o f  v o r t i c i t y  frJp I 
- 1 r i g i d  o r  porous sur faces.  Both a c t i i e  and passive absorbers have t h e  I I - I p o t e n t i a l  f o r  ach iev ing  the  pressure l w 8 ~ e  suppression.; l e v e l  s requ i red  I 

I I I 
f o r  t he  d i f f e r e n t  types ' .o f  r e p e t i  ti ve,j9y pulsed 1 asers.:devel oped t o  date; 

I I (see Refs. j2-7, 2-10 - 2-13),.] 1 .  I 
I I 

I The deve lopmento f  wave suppressors f o r  pu lsed f u s i o n  ltis'ersl 
I 

can b e n e f i t  g rea t l )  from the  exper ieqce gained i n  t he  pas t  work on puls$d 

1 aser  suppressors. I t  should be noted, however, t h a t  lmany pu1 sed 1 aser l .  
.. I 

pressure wave suppressors developed t o  da te  have u t i  1 i zed choked o r i  f i cb 
I 

p l a t e s  upstream o f  t heccav i t y ,  t o  p o s i t i v e l y  i s o l a t e  t h e  c a v i t y  feed gals 
I 

f rom t h e  pressure 'disturbances i n  t h g  c a v i t y .  This  feed p l a t e  re f l ec t s1  
I  

a l l  pressure waves generated i n  t h e  d a v i t y  and preserves the  d e n s i t y  I 
- - - . - - - -  ---A- ------ -L-, - - - -- - -- --- --- -I- - hmogene i ty . 'o f  t he  feed gas. The feed gas i s  t hus ' ready  t o  be i n t r o d u c ~ d  

. ~ 1 .  1 i n t o  t h e  cav i ty 'when t h e p r 6 s s u r e  digturbances the re  have subsided 
I 

I 
- I I 
-36. I s u f f i c i e n t l y .  A pressure wave a b s o r i e r  i s  p laced i n  such l a s e r s  downst;rea; 

o f  t he  . cav i t y .and  ac ts  on both the  p*essure waves p r o p a g a t e d , d i r e c t l y  
' I '  ' 

f rom the  c a v i t y  andLthose r e f l e c t e d ' 3 r o m  the  feed' p l a t e .  The r o l e  o f  
I :. 

downstream absorber i s  thus e s s e n t i a f l y  t o  min imize any pressure wave I 
. . I I 

r e f l e c i i . o n s  i n t o  t h e  ctavi + .,. . ty :  100% r e f l e c t i o n  f o r  t he  upstream feed plal te 
I # ,  

and z e r o  re f lec t ion- . ; fo r ; . the  downstredm absorber a re  t h e  i d e a l  design gola1 s 
I f o r .  these two f l o w  elements. 1 
I I. 

I 
- .  I 1n fus ion- type  l a s e r s  t h e r e q u i d e m e n t  f o r  a . h i g h l y  e f f i c i e n t  f l o w  - ' I 

system w i t h  minimal pressure drops ptec ludes the  use o f  f u l l y - r e f l e c t i n ' g  
I 

choked-or i f i ce  p l a t e s  upstream o f  t h e  c a v i t y  (except,  perhaps', f o r  very1 
I  

h igh-energy-densi ty  l ase rs ,  such as {he HF system). I n  such l a s e r i ,  low- 

pressure-drop absorbers w i l l  have t o  lbe p laced bo th  upstream and downsjret 
I 

o f  t he  c a v i t y . '  Passive absorbers, w j t h  t h e i r  i n h e r e n t l y  low pressure d i r o ~  
I 

c h a r a c t e r i s t i c s  ( f o r  t h e  mean f l o w ) ,  t w i l l  be the  n a t u r a l  cho ice  f o r  the, 
I I 

downstream absorber. The s e l e c t i o n  of an upstream absorber i s  consider,abl 
t I mo.r_e-compl-ex. I I 

r BOTTOM OF PAGE BOTTOM .OF PAGE 7 
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The upstream pressure wave a b s ~ + ~ t i o n  i n  a  f us ion - t ype  1  aser, sub jkc t  

t o  t h e  requirements o f  h igh  mass u t i l i z a t i o n  (smal l  C )  and h igh  f l o w  I 
I 

e f f i c i e n c y  (1 ow Ap*) , representsaa u i i q u e  and fundamental l y  d i f f i c u l t  I 
1 I problem. The d i f f i c u l t y  a r i s e s  f rom i the  f a c t  t h a t  upstream absorp t ion  

must take  p lace  i n  a  region. where t h e  f r e s h  c a v i t y  feed gas res ides .  I 
This  gas must r e t a i n  a  h igh  degree- o{ dens i t y  u n i f o r m i t y  be fore  i t  i s  I 

I 
convected i n t o  t h e  c a v i t y .  A1 1 ,  presdure wave suppression processes are1 

I I 
b a s i c a l l y  h igh- loss  and non- isen t rop ic .  They should n o t  take  p lace  i n  I 

I 
a  reg ion  where gas u n i f o r m i t y  i s  o f  ~ r i m a r y  concern. I 

I 
I I 

Ac t i ve  f low-through absorbers w i l l  n o t  be appropr ia te ,  most probablly 
I I 

because o f  t h e i r  non- isen t rop ic  i n t e q a c t i o n  w i t h  t h e  pressure waves. A] 

l s imp le  c a l c u l a t i o n  can be used t o  demonstrate t h i s  p o i n t .  Consider, fo l r  

example, any f low-through absorber  s i c h  as i s  shown s c h ~ m a t i c a l l y  i n  I fi . .  I 
~ i ~ u r e F 2 - 8 4  I f  the  pressure f l u c t u a t i o n s  i n  f r o n t  o f  t h i s  absorber are; 

s low ( r e l a t i v e  t o  t h e c h a r a c t e r i s t i c  i f l o w  t imes) ,  a  Steady s t a t e  analys i is  

can be applied., assuming tha t  t he  f l d w  i s  quasi-steady. A  r e l a t i o n s h i p i  
I I between t h e  pressure and d e n s i t y  f l u c t u a t i o n s  i n s i d e  t h e  p o i o u ~  medium I 
I 

v t o  ~ ~ I i a - t i i 3 d s  . 
I 
I 

. . I 
I 
(139 

I 
. , 

I 

character ized;  by 
I a . . pe r  un'i t volume. The moyentum conservation . , equat ion i s  thepe- 
I f o r e  w r i t t e n  as ' ' .  . . I 

, y 1 .  I 
. . 

-. 
i I I 

/, , -i ~%u d I . .  . I 

p , u  5 + dx I = -k(p,u) 
(, -- 

(yo 
/ . I  . . --. ' I  I . . ,  .' I I 

We.w i l l  assume, f o r  s i m p l i c i , t y ,  t h a t  lno heat  i s  exchanged between the  filow 
I 1. 

and the  absorbing media ( a d i a b a t i c  fllow), and &ergy cdnserva t ion  t h e r e f o r e  
I prescr ibes  
I 
I 

dT I du + u  - =  0  
Cp I dx 

. I 
1 
! 
I 
I 

BOlTOM OF PAGE -7 BOTTOM OF PAGE I-, 



! iii,'Li i 1;; L l  1 1  IL 
EDGE OF 1 

,3okp / P~~~ (tf), AT XI = o 

F i g u r e  2 4 .  ScR.emati:c of an Upstream Porous  Abso rbe r .  



PAGE ROC -- - 
-- 

I 

I - 

I Final ly ,  the  equation of s t a t e  can be employed 
I 

I I 

I Simple manipulations of these four equations leads t o  
I 

I 1 and 

'where 

4 
Thus 

1 dp = -- : 1 ' i l l? 
2 p d x  dx 

[ I  + (y-1) M ] 

36 - 
which implies that the changes in gas propert ies ins ide  the absorber I ' 

are  nei ther  i sentropic  nor is6thermal .  Note t h a t  Eqs. (45) and (46) do! 1 
. . 

,not  apply t o  k = 0, in which case the t r i v i a l ,  constant property solution I 

i s  obtained. 
, , 

Two'important conclusions can be derived from t h i s  analysis :  , I 

, . 

( a )  Gas which i s  discharged from the  absorber while the pressure I 
i n  the cavi ty  i s  s t i l l  f luctuat ing will  have a density v a r i a -  
t ion "imprinted" on i t ,  corresponding t o  the  cavi ty  pressure 
var ia t ions ,  according t o  E q .  (45).  Even a f t e r  these cavity 48 

I pressure f l .uctuations decay, and assuming t h a t  the  gas which I 

i s  already i n  the  cavi ty  responds t o  t h i s  decay i sen t rop ica l ly ,  , 

there will  be a residual density var ia t ion in the  cavity ' I 
I 

I given by ' I 

! I 

I 

( BOTTOrG OF PAGE 
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I .where x  ' r e f e r s  t o  t h e  w id fh  o f  a t h e  c a v i t y  , f rom x  ' = 0 t o  , 
: x l  - = w, and t '  r e f $ r s  t o  t Q e  t ime  i n t e r v a l  d u r i n g  which t h e  I 
cav i t y 'was  f i l l e d ,  v a r y i n g  f rom t '  = 0 t o  t '  = W/U. Th i s  1 
form o f  d e n s i t y  v a r i a t i o n  i ,mprinted'on t h e  incoming gas i s  
o f t e n  r e f e r r e d  t o  as an "en t ropy  wave. " 

I 

I 
I  
I 

' ( b )  Gas which remains i n  the. adsorber a f t e r  t he ip ressu re  f l u c t u a - ;  
t i o n s  i n  t h e  cav i . t y  have subsided i s  n o t .  i n  ' a ' u n i f o r m  s t a t e .  I 
The s p a t i a l  ( x )  p r o p e r t y  v ? r i a t i o n s  w i l l .  depend; on t h e  spa t ia i l  
and ;temporal form o f  the, p ressure  f l . uc tua t i ons  which e x i s t e d  , 
i n  t h e  absorber  w h i l e  presqure waves were i n t e r a c t i n g  w i t h  1. 
+t. A more d e t a i l e d  ana ly r l i s  w i l l  be r e q u i r e d  t o - d e t e r m i n e  I 
t h e .  exac t .  v a r i a t i o n s  i n  t h e  gas .propert i :es l e f t  behind i n  the1 
absorber.  I I 

I I - I The above d i  scus,sion . . i n d i c a t e s  ' j h g t  an unchoked f 1  ow-through absorbe$ 
I .  4 I - 

lmay n o t  be acceptable as an upst reamiabsorber .  f o r  any ' pu l sed  l a s e r .  ; I - 
8 

I 1 ~ i m i  l a r  problems can be a n t i c i p a t g d  y i t h  pass ive  absorbers,  which i n t e r )  

a c t  w i t h  t h e  gas i n  t h e  f l o w  d u c t  (add c a v i t y )  whenever t h e  p ressure  i - --I---- -L ------- . . . - I f l u c t u a t e s  t he re .  Under t h e  c u r r e n t  lprogram we have demonstrated (e.g.l, 
l !.f I 

Sect ion  3  .c\. 3 )  t h a t  a  vented d u c t  absorber  i n t r oduces  d is tu rbances  i n t o !  
I I I t h e  gas which would be i n a d m i s s i b l e  f o r  a high-beam-qua1 i t y  l a s e r .  Mor;e . . 

1 ana l ys i s  . . and exper imenta t ion  i s  ~ l e a i l ~ i a r r a n t e d  f o r  r 'esol  v i n g  t h i s  I , I - 
pdob~ern for fus ion - t ype  l a s e r s .  ~ h e l r e  1 - 

a - - 
I 

i deas  and new techniques and devices.\,-- .- T , - 
/ L - 

\ 1  1 t - 
-7' \ I I 

I 
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2.1.3 Other S a l i e n t  Problems o f  Fusion Laser Flow Systems 

I n  t h i s  sec t i on  we w i l l  i d e n t i f y  and review some a d d i t i o n a l  f l o w  

problems (o the r  than pressure-wave suppression) which are re1 evant t o  the  

design o f  f us ion  l a s e r  f l o w  systems. We w i l l  a l s o  at tempt t o  grade these i /  

problems according t o  t h e  l e v e l  o f  t echn ica l  e f f o r t  which w i l l  be requ i red  P 
t o  reso lve  them. The r e s u l t s  o f  t h i s  exerc ise  are  presented i n  Table 2-5. 

Temperature Uni fo'rmi t y  

The need t o  main ta in  a  temperature u n i f o r m i t y  o f  t he  order  o f  a  

few ten ths  o r  a  few hundreths o f  a  degree Ke lv in  i n  a  l a r g e  f l o w  system 

represents a  formidable task.  It must be done w i t h i n  the  a l lowab le  pres- 

sure drop cons t ra in t s ,  imposed by the  o v e r a l l  f l o w  (and system) e f f i c i e n c y  

requirements. The ou te r  environment o f  t he  f l o w  system w i l l  r e q u i r e  a  

c lose  thermal c o n t r o l .  Because o f  t he  temperature c y c l i n g  which the  gas 

undergoes, due t o  successive i n i t i a t i o n  and coo l ing ,  and i t s  complex f l o w  

pa t te rn ,  a d d i t i o n a l  thermal c o n d i t i o n i n g  s t a t i o n s  may be requ i red  i n  t he  

f l o w  loop. If the  temperature cond i t i on ing  i s  performed w i t h  a  combina- 

' t i o n  o f  stream-wise heat exchangers and w a l l  heat  t r a n s f e r  (heat ing  o r  

coo l i ng ) ,  a  pressure drop penal ty .must  be paid.  Hence, the  d i f f i c u l t y  

o f  ach iev ing  the  requ i red  temperature u n i f o r m i t y  depends t o  a  l a r g e  

ex ten t  on the  pressure 'drop "a l l ~oca ted "  t o  suppress the  ( i n i t i a t i o n )  

pressure waves. Since thermal cond i t i on ing  a1 so invo lves  pressure drops 

( l i k e  f l o w  and acoust ic  cond i t i on ing ) ,  i t  should be eas ie r  - t o  achieve the  

des i red  temperature u n i f d r m i t y  i n  low r e p e t i t i o n  r a t e  and low Mach number 

1 asers . 

In te r face  and Flow S t a b i l i t y  

S h o r t l y  a f t e r  the  i n i t i a t i o n ,  process i n  the  l a s e r  c a v i t y ,  t he re  

e x i s t s  an i n t e r f a c e  w i t h  a  temperature jump between the  c o l d  gas and t h e .  

i n i t i a t e d  ( h o t )  gas. When t h i s  i n t e r f a c e  i s  accelerated by e i t h e r  t he  

upstream- o r  the  dowristream-travi?ling. shock' wave, a  Ray1 eigh-Tayl o r - type 

o f  i n s t a b i l i t y  can develop a t  t he  i n t e r f a c e .  Such an i n s t a b i l i t y  has been 

observed i n  combustion phenomena as w e l l  as i n  Cop-e lec t r i c  discharge 

l a s e r  c a v i t i e s .  The i n s t a b i l  ity w i l l  probably occur i n  a1 1  r e p e t i t i v e l y  

pulsed l ase rs  w9'th shock waves o f  s u f f i c i e n t  s t rength .  There a re  several  
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problems associated w i t h  t h i s  i n s t a b i l i t y :  (a )  i t  can cause a f low- reversa l  

and thereby r e q u i r e  1 arger  f l u s h  fac to rs ,  C; (b )  i t  'can generate f l o w  

nonun i fo rm i t i es  and thereby degrade the  beam; and ( c )  i t  can c o n t r i b u t e  

t o  t h e  generat ion o f  three-dimensional pressure waves, due t o  r e f l e c t i o n s  

from t h e  curved ' . in te r face .  It i s  n o t  c l e a r  a t  present  how ser ious a 

problem t h i s  i s .  It w i l l  c1earl.y r e q u i r e  f u r t h e r  ana lys is  and experimenta- 

t i o n .  

Large-Scal e Vor t  i c i  t y  

I n  a c losed- loop fus ion  1 aser f low,  system, 1 arge-scale v o r t i c e s  

w i l l  be produced predominant ly by t h e  compressor ( o r  f an )  t h a t  d r i v e s  the  

f low.  Secondary sources o f  la rge-sca le  v o r t i c i t y  a re  the  90' bends i n  

t he  f l o w  loop. Flow cond i t i on ing  devices such as screens, honeycombs, 

b a f f l e s ,  e tc . ,  can be employed t o  reduce the  v o r t i c i t y  and smooth the  

f low.  However; such devices w i l l  impose a d d i t i o n a l  pressure drops on the  

f l o w  system. 

Boun,dary-Layer Separat ion 

Unsteady boundary-layer separat ion i s  a p o t e n t i a l  problem i n  any 

c losed-cyc le l a s e r .  I f  i t  occurs, t he re  i s  a p o s s i b i l i t y  o f  la rge-sca le  

random dis turbances being fed  i n t o  the  . laser  c a v i t y  as the  f l o w  i s  convected 

around the  f l o w  loop. Separat ion can be avoided by d i s t r i b u t i n g  the  momen- 

tum w i t h i n  the  boundary 1 ayer more un i fo rmly .  This  can be achieved by 

vor tex  generators which i n j e c t  low momentum f l u i d  from the  bottom o f  t he  

boundary l a y e r  i n t o  t h e  ou ter  p a r t  o f  t h c  boundary l a y e r  and v i c e  versa. 

It can 1 i kewise be achieved w i t h  a c t i v e  boundary-1 ayer c o n t r o l  techniques. 

, . Any boundary l a y e r  c o n t r o l  technique employed w i l l  , i n c u r  a f l o w  power 

pena l ty  and reduce t h e  f l o w  e f f i c i e n c y .  

Unsteady Flow Phenomena 

The appearance o f  a l t e r n a t e  s'lugs o f  ho t / co ld  gas i n  the  f l ow  loop 

and the  r e p e t i t i v e  na ture  o f  f l o w  suggests t h a t  t he re  i s  a p o s s i b i l i t y  o f  

p e r i o d i c  (1 arge-scale) disturbances (thermal o r  v o r t i c a l  ) propagating 

around the  c i r c u i t .  It may be necessary t o  design spec ia l  elements of 

t he  f l o w  system t o  e l i m i n a t e  these p o t e n t i a l  f l o w  i n s t a b i l i t i e s .  



Turbulence V e l o c i t y  F l u c t u a t i o n s  

Th is  cou ld  become a  v e r y  d i f f i c u l t  problem f o r  f l o w  systems w i t h  

M > 0.1. I f  the  f l o w  Mach number becomes t o o  l a r g e ,  then  t h e  r e q u i r e d  

t u rbu lence  l e v e l s  become v e r y  smal l  (8 l o m 3 )  and hard  t o  achieve. A number 

o f  t u rbu lence  c o n t r o l  elements (e.g., screens) w i l l  have t o  be employed 

and a  s u b s t a n t i a l  pressure drop w i l l  be i ncu r red .  Th i s  problem t o o  becomes 

much e a s i e r  f o r  low Mach number f l o w  systems. 



2.2 FLOW SYSTEMS FOR C02 LASERS 

2.2.1 Summary o f  t h e  Relevant Laser P rope r t i es  

As shown i n  t h e  p rev ious  s e c t i o n  (2 .1) ,  t h e  l a s e r  p r o p e r t i e s  which 

w i l l  a f f e c t  t h e  f l o w  system des ign and performance a re :  

( a )  t h e  l a s e r  gas mix tu re ,  pressure and temperature 

( b )  t h e  c a v i t y  shape and dimensions 

( c )  t h e  i n i t i a t i o n  energy depos i ted  i n  t h e  c a v i t y  pe r  pu l se  

( d )  t h e  l a s e r  energy e x t r a c t e d  p e r  pu l se  

(e )  t h e  pu l se  r e p e t i t i o n  f requency (PRF) 

( f )  t h e  l a s e r  wavelength. 

I n  t he  p resen t  s tudy  we have cons idered two C02 l a s e r  modules. The 

f i r s t  i s  based on t he  demonstrated performance o f  a  c u r r e n t l y  ope ra t i ng  

C02 l a s e r ;  i .e . ,  t h e  HELIOS l a s e r  a t  LASL. The second i s  based on a  

h y p o t h e t i c a l  upgrade o f  t h e  e x i s t i n g  l a s e r  modules which cou ld  inc rease  

t h e  t o t a l  energy e x t r a c t e d  p e r  pu l se  by a  f a c t o r  o f  10. The upgrade i s  

e s s e n t i a l l y  conserva t i ve ,  b u t  would s t i l l  r e q u i r e  s u b s t a n t i a l  t e c h n i c a l  

development. 

The f low-sys tem-re la ted  p r o p e r t i e s  o f  a  demonstrated C02 l a s e r  module 

a r e  presented i n  Table 2-6 (Ref.  2-14). Th i s  module operates w i t h  an E- 
2  beam sus ta i ned  e l e c t r i c  d ischarge.  A  300 kV (peak), 1  A/ch E-beam, 

w i t h  a  pu l se  d u r a t i o n  o f  5 psec i s  used, A  DC f i e l d  o f  200 kV, w i t h  
2  

8  A/cm i s  a p p l i e d  f o r  3  psec d u r i n g  t h e  E-beam pu lse .  The combined 

energy d e p o s i t i o n  d e n s i t y  i s  t hus  250 J / l i t e r  ( o r  about 100 J / l  i t - a t m )  , 
average. The s m a l l - ~ i ~ n ' a l - ~ a i n  o f  t h i s  dev ice  i s  0.3%/cm and spontaneous 

emiss ion i s  c o n t r o l l e d  by a  b leachab le  absorber,  p laced  a t  one end o f  

t h e  c a v i t y ,  w i t h  an abso rp t i on  t h i ckness  o f  at = 9. .The e x t r a c t e d  energy,,< 
i- 1 

f l u e n c e  i s  0.8 ~/cm', w e l l  w i t h i n  t h e  damage t h r e s h o l d  l i m i t  o f  t h e  NaCe 
I 

windows used. 

The mu1 t i - l i n e  s a t u r a t i o n  f l uence  f o r  t h e  gas m i x t u r e  and pressure 
2  

l i s t e d  i n  Table 2-6 i s  about 0.3 J/cm . The maximum e x t r a c t a b l e  energy i s  

thus  
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Table \2-6'.\ Flow-Related Pqoperties of a Demonstrated 

C O e  Laser Modulle (The HELIOS System, a t  
LASL) . I 

Gas Mixture 

1800 Torr 
I 

Gas Pressure 
l a -  - 
- I Room Temperature 

I.  
Gas Temperature 

Cavity Vol .ume 

Optical Length, L 

1 245 L i te r s  

I 

1ni:ti:ati:on Height, H 1 35 cm 
1 

Plow W'i'dth, W' 1 35 cm 
I 

I 

Deposited Energy Density 1 100 Joule11 i t-atm I 

I 
I 

No. of Amp1 i.fi;ed Pulses I 1 Pulse per I n i t i a t i o n  
I 

,-,---------------l---------------- I 

Extracted Energy Density 
1- ] 1.66 Joul e l l  i t-atm I 

1 
Pulse Repetiti:on Frequency, PRF Sing1 e Shot I 

I I 
Laser Navel ength 1 10.6 p I 

I I 
Total Energy. Extracted I 1 K Joule I 

I I 
I 

1ni:ti:ati:on Effi:ciency 1 1.66% I 
I I 
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S = (Eex - Ein) = go Js j o u l e / l i t e r  ( o r  3.8 j o u l e / l i t - a t m )  

where go i s  t he  smal l  s i g n a l g a i n  and Js the  s a t u r a t i o n  f luence.  The 

e x t r a c t i o n  e f f i c i e n c y  o f  t h i s  system i s  t h e r e f o r e  qex = 1.66/3.8 = 44%. 
~1 

// I 
The p ro jec ted  p rope r t i es  o f  a  10 kJ  C02 l a s e r  module a re  presented i n  4 '<( 

Table 2-7. The scale-up i s  based on a  n e a r l y  40% increase i n  t h e  gas 

pressure ( t o  2500 T o r r )  and a  s im i ' l a r  increase i n  the  c a v i t y  h e i g h t  and 

w id th ,  as compared t o  t h e  demonstrated system. The o p t i c a l  leng th ,  L,. i s  

l e f t  unchanged so t h a t  amp1 T f i e d '  spontaneous emission (ASE) can be con- 

t r o l l e d .  It i s  assumed t h a t  . the  E-beam and d ischarge vo l tages  w i l l  be 

made p ropo r t i ona l  t o  t he  product  o f  i n i t i a t i o n  h e i g h t  .and gas p.ressure, 

so t h a t  opt imal  E/N values w i l l  be maintained. The E-beam and d ischarge 

c u r r e n t  d e n s i t i e s  a re  assumed t o  remain t h e  same as.. i n  the  HELIOS system. 

The energy depos i t i on  dens i t y  w i l l  thus remain e s s e n t i a l l y  unchanged'too, 

a t  100 J / l i t - a t m .  The gas m i x t u r e  w i l l  be most l i k e l y  a  pure N2/C02 

mix tu re ,  a t  a r a t i o  o f  0.25/1, 'which should produce a  h ighe r  l a s e r  ,. 

e f f i c i e n c y .  The s p e c i f i c  e f f e c t s  o f  t h i s  gas m ix tu re  on the'  i n i t i a t i o n  

requirements a re  n o t  considered here. The smal l  s i gna l  g a i n  under these 
2  cond i t i ons  should be g  = 0.4%/cm and t h e  s a t u r a t i o n  f l u x  Js = 0.4 J/cm . 

0. 
The e x t r a c t a b l e  -energy pe r  pass should thus be 16 J / l i t e r .  Assuming no 

change i n  t he  e x t r a c t i o n  e f f i c i e n c y  (neX = 44%), about 7  J / l  i t e r  ( o r  

2  J / l i t - a t m ) . s h o u l d  be ex t rac ted  from t h i s  l a s e r  c a v i t y  pe r  pulse.  We 

a'ssume f i n a l l y .  t h a t  a  mu1 t i - p u l s e  power e x t r a c t i o n  scheme w i l l  be used i n  

t h i s  l a s e r  (see e.g., Refs. 2-15 and 2-19), w i t h  t h ree  successive pulses 

going through .'the 1ase.r c a v i t y ,  a t  0.,5 psec i n t e r v a l s ,  and n e a r l y  7  J /1 i t e r  

e x t r a c t e d  by each pulse. The t o t a l  energy ex t rac ted  w i l l  thus be 20 J / l i t e r  

( o r  6 J / l i t - a t m ) , ' w i t h  an i n i t i a t i o n  e f f i c i e n c y  o f  about 6%. I f  more 

than th ree  t o  four  pulses are passed through t h e . a m p l i f y i n g  medium, t he  

energy e x t r a c t e d  per  pu l  se d imin ishes s i g n i f i c a n t l y  compared t o  t h e  f i r s t  

pulse. 

The E-beams, PFN's and power supp l ies  requ i red  f o r  t h i s  sca led  up C02 

l a s e r  are w i t h i n  t h e  c u r r e n t  s t a t e  o f  t he  a r t .  M u l t i p u l s e  a m p l i f i c a t i o n  

i s ,  however, a  new concept which requ i res  experimental  v e r i f i c a t i o n  and 

lectlr lul uy i c i i l  develup~iienl. Ttle i r~c reased  cav i t y  cross sec t iu r l  w ' i  11 
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I I 
I Gas Mix ture  I N2/C02 = 0.25/1 

I 
I 
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Gas Pressure I 2500 T o r r  I 
t I I 

Gas Temperature ' I Room Temperature I 
1 I 

1 -  I Cav i ty  Vol ume I / sob ~ i t e k s  ( b r  ~ B D ) ]  
I I 

Op t i ca l  Length, L I 200 cm I 
I I 

I n i t i a t i o n  Height, H  I 50 cm I 

I I 

I -9) I Flow Width, W 1 50 cm ( o r  TBD)j. I 
I 
I .  

I 

Deposited Energy Densi ty  I 100 Jou le / l  i t - a t m  . 
I 

I 

No. o f  Amp l i f i ed  Pulses I 3 per I n i t i a t i o n  I 

,,-,-------------- L ---------------- I 

~ x t r a c t e d  Energy Densi ty  I 6 Joul  e / l  i t-atm 
I-- 

I I 

;:p I 
Pul se Repe t i t i on  Frequency, PRF I . I 

I I 
Tota l  Energy Extracted,. I 110 K Joule ( o r  TBF)~> I 

I I 
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I I ,  

I 
I 
I 

I I 
I I 
I I 
I I 
I 
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I 
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require correspondingly 1 arger s a l t  windows which -must also withstand 
a 40% increase in pressure. No such windows are currently manufactured 

and th i s  too may requi re a substantial techno1 ogical development . Aero- 

dynamic windows should be considered as a possible replacement for  s a l t  

windows, particularly for  repet i t ively pulsed laser  operation. 



-% 
2.2.2 Beam Qua1 i ty  Requi rements 

C02 fus ion l a s e r  beams a t  h = 10.6 urn a re  requ i red  t o  have a  good BQ 

due t o  t h e i r  r e l a t i v e l y  l ong  wavelength. This  statement i s  made f o r  a  

s i t u a t i o n  where the  f o c a l  l e n g t h  o f  t h e  " l a s t  m i r r o r "  i s  15 m and the  

l a s e r  aper tu re  i s  0.5 m ( l a r g e s t  env is ioned i n i t i a t i o n  dimension).  A 15 m 

s a f e t y  d i s tance  has been.used i n  prev ious system s tud ies ,  and t h e  112 m 

dimension i s  based upon a  modest increase o f  t he  35 cm i n i t i a t i o n  dimension 

used i n  t h e  HELIOS Laser System. Equation ( 1  ) then i m p l i e s  t h a t  t h e  

focussable spot  s i z e  i s  r e l a t e d . t o  t he  beam q u a l i t y  by 

Th is  r e l a t i o n s h i p  i m p l i e s  t h a t  t h e  sma l l es t  spot  s i z e  which can be obta ined 

(BQ = 1 )  i s  0.636 mm; i t  a l s o  i m p l i e s  f o r  a  spot  s i z e  o f  1  mm the  maximum 

- al lowab le  BQ = 1.57. The requ i red  beam q u a l i t y  range i s  thus bounded by ./ 

1  < BQ - < 1.57. For t h i s  range o f  BQ the  pe rm iss ib le  phase abe r ra t i ons  are  

smal l  and the  exponent ia l  express ion can be used f o r  es t ima t i ng  the  requ i red  

media homogeneity . - 
-ci- - -  - .- - .  

t u s e d t o  compute t h e  requ i red  medium] 
L . - 

, homogenei t y  o f  an advanced-CO* l a s e r   able 2-7).   he r e s u l t s  are shown 
- 

F+ 
i n  F igure  2-9. The maximum spot  s i z e  boundary revea ls  t h a t  t he  medium 

\ .' - 
homogeneity must be b e t t e r  than 6.4 x  l om4 .  Note t h a t  f o r  a  near -per fec t  

1 

I beam (BQ 5 1 . O l  ) , t h e  medium homogeneity has t o  be about an o rde r  o f  

/ magnitude b e t t e r  than t h a t  corresponding t o  BQ = 1.57, even though t h e  

focussed spot  s i z e  i s  o n l y  113 smal ler .  
. . 

The requirements on t h e  random d e n s i t y  d is turbances are c a l c u l a t e d  - -. . -- 

from Equations ' (5a) and (5b) .  These requirements can be w r i t t e n  as 

0 *1/2 

D 
rms 

when t h e  turbulence sca le  A - F D, and 

. rms 



when A < D .  Superscr ip ts  "R"  and "0" s tand f o r  random and ordered v a r i a -  
0  t i o n s  . respec t i ve l y .  (Ap/pl ),, represents the  ordered d is turbances as 

discussed i n  t he  preceding paragraph and presented i n  F igure  2-9. 1 
3 

The c a v i t y  geometry se lec ted  i n  Sect ion 2.2.1 above has an o p t i c a l  

l e n g t h  o f  L = 2m and an i n i t i a t i o n  aper tu re  dimension D % H = 0.5m. Thus 
R 

we can determine the  dependence o f  t he  a l lowab le  random ( ~ p / p ~ ) ~ ~ ~  versus 
1 

t h e  inhomogeneity sca le  s i ze ,  A. This i s  shown i n  F igure 2-10. Since we 

expect A t o  be r e l a t i v e l y  smal l  compared t o  t h e  aper tu re  dimension, t he  

random ( ~ p / p ~ ) k ~  can be a t  l e a s t  an o rde r  o f  magnitude ( o r  two) l a r g e r  

than the  ordered (Ap/pl ),S. O Hence, f o r  the  1-mm spot  s i z e  ( A ~ / P ~ ) O ~ ~  5 
R 6.4 x  l o m 4  and t h e  random (Ap/pl)rms 6 6.4 x  loe3.  

The pressure and temperature u n i f o r m i t y  requirements . . and t h e i r  r e1  a t i o n -  / 1 
; / 

s h i p  t o  the  i n i t i a t i o n  o v e r p r e s s u r e a r e  shown i n  F igure  2-11. The C02 l a s e r  

gas m i x t u r e  o f  i n t e r e s t  f o r  t h e  advanced-.system i s  C02:N2 = 4:1, w i t h  a 

y = 1.30. For an energy depos i t i on  o f  100 J / l i t - a t m  - a t  an i n i t i a l  tempera- 

t u r e  of TI = 300°K, we compute from (13) ,  = ( A T T ~ ) ~ ~ ~  = 0.27. 

The i n i t i a l  overpressure .must thus be reduced by  a f a c t o r  o f  325 if a 

f o c a l  spot  s i z e  o f  1  mm i s  t o  be achieved. 
f f 

The requirements on the  v e l o c i t y  u n i f o r m i t y  a re  presented i n  F igure  T 
2-1 2. Au represents - . the ordered v e l d c i  t y  f l u c t u a t i o n s  and u ' . t h e  random, 

smal l  -scale ( t u r b u l e n t )  v e l o c i t y  f l u c t u a t i o n s .  U i s  t he  mean v e l o c i t y .  . A  

range o f  Mach numbers, f rom M = 0.03 t o  M = 0.30, i s  considered. The 

v e l o c i t y  u n i f o r m i t y  r e q u i r e d  t o  ob ta in  a f o c a l  spo t  s i z e  o f  d  = 1 mm i s  

w i t h i n  t h e  realm o f  convent ional  wind tunnel  tcchnol.ogy, for t h e  range o f  

Mach numbers considered.  here. For M = 0.3 o r  l a r g e r ,  t h e  f l o w  u n i f o r m i t y  

must be c a r e f u l l y  c o n t r o l l e d .  S i m i l a r  requirements have been met i n  t he  

pas t  i n  low no i se  and ' low tu rbu lence wind tunne ls  (see, e.g. , Reference 2-5).  



L =  2m 
D = 0.5m 
F = 15m : 
p =  4 . 2 ~  10 -4 

p1 = 2500 Torr 

TI = 300 O K  

1. MIX = C O ~ / N ~ :  ' 

4/1 . 

1 
DENSITY INHOMOGENIEITY, ( A ~ / P ~ ) ~ ~ ~  

Figure 2-9. Beam Quality Requirements for a C02 Fusion 
Laser. 
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2.2.3 Average Flow Requirements; Mach Number 

The average (mean) f l o w  v e l o c i t y  U depends on two o t h e r  f l o w  system 

parameters, W and PRF, as i n d i c a t e d  by Equation (36) .  D i v i s i o n  by the  

speed o f  sound prov ides the  Mach number. The speed o f  sound f o r  t h e  4:1 
J 

gas m i x t u r e  w i t h  a  mo lecu la r  weight  of 40.8 a t  TI = 300°K i s  282 m/sec. 
n 

F igu re  2-13 shows t h e  v a r i a t i o n  o f  t h e  requ i red  mean v e l o c i t y  and Mach 

number, as a  f u n c t i o n  o f  t he  c a v i t y  w id th ,  W, and the  PRF, f o r  a  C02 l ase r .  

The range o f  W shown i s  probably  t he  l a r g e s t  range one would want t o  

consider ,  w i t h  t he  0.5 m f low dimension g i v i n g  a  square c a v i t y  aper tu re  

and 5  m dimension y i e l d i n g  a  s lender  f l o w  channel w i t h  aspect r a t i o  o f  10. 

The PRF range i n d i c a t e d  i s  a l so  r a t h e r  wide, bu t  cons i s ten t  w i t h  r e p e t i -  

t i o n  r a t e s  considered f o r  f u s i o n  l ase rs .  

2.2.4 Flow E f f i c i e n c y  Requirements 

The general  d iscuss ion  o f  f l o w  e f f i c i e n c y  i n  Sect ion 2.1.1.2 i s  here 

made s p e c i f i c  t o  t he  C02 system. I n  p a r t i c u l a r ,  F igu re  2-3 i s  u t i l i z e d  

t o  i n d i c a t e  a  more l i m i t e d  range o f  e f f i c i e n c y  parameters. The r e l a t i o n -  
It 

s h i p  between o v e r a l l  l a s e r  e f f i c i e n c y  and the  i n i t i a t i o n  and f l o w  
li 

e f f i c i e n c i e s  i s  shown again i n  F igure  2-14. Three boundary l i n e s  have been $ 
drawn. The minimum requ i red  o v e r a l l  C02 1  aser system e f f i c i e n c y  i s  assumed 

t o  be 5% (see Ref. 2-19). This  immediately es tab l i shes  a minimum i n i t i a t i o n  

e f f i c i e n c y  (5%).  The maximum o r  " l i m i t i n g "  i n i t i a t i o n  e f f i c i e n c y  has n o t  

been es tab l  i shed a n a l y t i c a l  l y  o r  experimental  ly .  Long pu lse  (20 psec) 

e f f i c i e n c i e s  o f  30% have been quoted f o r  C02 l ase rs .  Twenty percent  i s  

t h e  upper l i m i t  ever  suggested f o r  s h o r t  pu lse  C02 l ase rs .  ('-19) With 
*-----I1 . .- d0'7 2- 

< 20%, the  minimum f l o w  e f f i c i e n c y  isd6.7%. Note how c r i t i c a l l y  the\ - 
"I - \- 

minimum f l o w  e f f i c i e n c y  depends upon t h e  ( e l e c t r i c a l )  i n i t i a t i o n  e f f i c i e n c y .  ~ 3 - i  / 6% 
The f l o w  system w i l l  have much s t r i c t e r  requirements (a1 lowable pressure 

drop)  i f  t h e  i n i t i a t i 0 n " e f f i c i e n c y  does not. s i g n i f i c a n t l y  exceed 5%. 

The f l o w  e f f i c i e n c y  range o f  10-20% ( i n d i c a t e d )  i s  bo th  r e a l i s t i c  and 

achievable as descr ibed f u r t h e r  below. 

We r e c a l l  t h a t  t he  f l o w  e f f i c i e n c y  i s  i n v e r s e l y . p r o p o r t i o n a 1  t o  t he  

o v e r a l l  f low-system pressure drop, as shown i n  F igure  2-4. .The above / 

comments r e l a t i n g  t o  f l o w  e f f i c i e n c y  can he lp  t o .  bound the  a1 lowable I 

pressure drop f o r  t he  CO, l a s e r  system. This  i s  shown i n  F igu re  2-15. 
L 

-&S.S: . 
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The minimum f l o w  e f f i c i e n c y  o f  6.7% i s  shown. The ex t rac ted  energy den- 

s i t y  wi1.l determine t h e  permiss ib le  pressure drop; t he  LASL HELIOS l a s e r  

has demonstrated 1.66 J / l i t - a t m  and we have p ro jec ted  a  6  J / l i t - a t m  f o r  

an advanced h i g h  ga in  system. These S  qext Tines are  shown dashed i n  

F igure  2-15. We have a l s o  added the  r e a l i s t i c  qF range o f  10-20% and 

i n d i c a t e d  the  C02 opera t ing  regime. For t he  p ro jec ted  e x t r a c t i o n  energy 

d e n s i t y  o f  6  J / l  i t - a tm ,  t he  a l lowab le  pressure drop Ap*/p5 v a r i e s  between 

0.237 a t  n F  = O.lO,. to 0.119 a t  qF = 0.20. These values p o i n t  t o  t he  need 

f o r  meet ing a l l  t he  f l o w  and beam q u a l i t y  requirement's a t  t he  smal les t  

Ap*/p5 poss ib le .  Note t h a t  a  convent ional  low-speed wind tunnel  w i t h  a  

t e s t  sec t i on  v e l o c i t y  o. f .100 mph can operate w i t h  a  pressure drop o f  

approximately 4 x  o r a b o u t  a  f a c t o r  of 50 o r  so smal le r  than t h e  

a l lowab le  numbers quoted here. Hence the  f l o w  sys tem. fo r  t he  f u s i o n  l a s e r  

has "excess" pressure dro'p ava i l ab le ,  which can be u t i l i z e d  f o r  pressure 

suppression a t  t h e  requ'i r ed  (PRF)-' and o t h e r  f l o w  c o n d i t i o n i n g  requ i re -  

ments. Q u a n t i t a t i v e  estimates f o r  t h e  var ious  c o n t r i b u t i o n s  t o  t he  o v e r a l l  

pressure drop i n  a  C02system are  presented i n  t he  nex t  subsect ion. 



2.2.5' Es t imat ion  o f  F l  ow-Loop Pressure Drop 

The r a t h e r  general  pressure drop r e l a t i o n s h i p s  descr ibed i n  Sect ion 

2.1.1.2 a re  now made s p e c i f i c  t o  t h e  C02 l a s e r  system. We again consider  

t h e  c o n t r i b u t i o n s  l i s t e d  i n  Table 2-3. 

Cav i ty  Heat Add i t i on  

The r e l a t i v e l y  smal l  a1 lowable pressure drop f o r  f u s i o n  . l a s e r s  w i  11 

necess i t a te  t he  use o f  r e l a t i v e l y  smal l '  f l o w  Mach numbers (6 0.3). This  

imp1 ies .  t h a t  t h e  p rev ious l y  de r i ved  expression f o r  c a v i t y  heat  dddi ti on 
2  pressure drop 'can be s i g n i f i c a n t l y  simp1 i f i e d  s ince  M (< 0.1 ) appears 

n CI 

f r e q u e n t l y  i n  (27) and (29) .  To f i r s t  order ,  K1 = M;/M; - 1, and a l s o  
2  2  

TO1/TO1 = M2/M1 - 1. Hence, we o b t a i n  f o r  Equation (28) 

and the  pressure drop r e s u l t i n g  from heat  a d d i t i o n  (Apf = p i 1  - pO2) 

i s  g iven  by 

.. 

1  l T q l  
 AT^ 1  A~*=(~-:;] and K1 

I - .  

For  t h e  advanced C02 l a s e r  system, t he  n e t  energy depos i t i on  d e n s i t y  i s  

,AQ - saueXt = 94 J / l i t - a t m .  The o t h e r  parameters needed t o  d e f i n e  - 
P T ~ ~ / T ~ \  are p1 = 5.45 g m / l i t ,  ( a t  pl = 3.29 atm), C = 0.87 J/gm-OK, 

P  
and TO1 = 300°K. The r e s u l t  i s  ATOl/TO1 = 0.217. The r e s u l t a n t  c o n t r i -  

bu t ions  t o  the  pressure drop are  tabu la ted  i n  Table 2-8, w i t h  t he  c a v i t y  

Mach number M as the  parameter. We use the  range 0.03 t o  0.3. The c a l -  

cu la ted  pressure drops f o r  c a v i t y  heat  a d d i t i o n  range from 0.317 To r r  t o  

31.7 Torr .  

Subsonic D i f f u s e r  

The l o s s  c o e f f i c i e n t  f o r  t he  subsonic d i f f u s e r  has a  range . 
0.25 k Kg 6 0.40. We use an in te rmed ia te  va lue o f  Kg = 0.30 i n  our  pressure 

drop es t imat ions .  .The r e s u l t i n g  c o n t r i b u t i o n s  t o  the  pressure drop are /,,/ 

shown i n  Table 2-8. This  range o f  pressure drop va r i es  from 0.438 To r r  t o  /i 
43.9 Tor r .  - - -  

I 2-58 ' 
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Table 2-8. Pressure Drop Contributions for,,a-~!~ SysJgm at2500 Torr Nominal 
Cavity Pressure. (Tabulated Values are in Torr). 

r3 
I . "  
Cn 
U 



I 
J ~ r e s s u r e  suppressors I I I 

I 
I I The pressure drops o f  t h e  downst:ream  pi) 'and upstream (dp;) suppres- . 

t I 
sdrs  .are n o t  predetermined. The i r  peymiss ib le values w i l l .  be shown i n  I I 

t I 
F lowTurns  . .  .I , I 

I ' I 
I 

well-designed f l o w  corners w i t h  ' tu rn ing  vanes have l o s s  c o e f f i c i e n t s  
1 

of about KT = 0.15: Since the re  a re  , four corners in :  t he  f l owsys tem,  t h e  

l t o t a l  l o s s ' c o e f f i c i e n t  i s  4KT = 0.60.; The r e s u l t i n g  pressure drop c o n t k i  

jbu t ions  are g iven  i n  Table 2-8 and th ' e i r  range i s  f rom 0.878 To r r  t o  I I 

187.8 Tor r .  I I 
I 

Flow Cond i t ion ing  
I 
I 
I 1 

I A reasonable l eng th  f o r  t he  ,contract ion sec t i on  i s  about 5H. ~ o t e l  I 
I t h a t  a c a r e f u l l y  contoured c o n t r a c t i d n  sec t i on  cou ld  be designed w i t h  a! ' ( 

I 1 l e n g t h  kc % H; however, such i r a p i d  ,con t rac t ion  cou ld  produce excessiv; I 
f l o w  nonun i fo rm i t i es .  I f  we u t i l i z e  1% /H = 5 and a t u r b u l e n t  s k i n  f r i c ;  

- - - - - - - - - - - - - - . _  . L C _  - - - - - -, - . - 7 - - 
t i o n  c o e f f i c i e n t ,  Cf = 0.08 Re 'I4; we o b t a i n  values o f  Kc, = 0:0036; 1- t 1 

10.0026, 0.0012 a t  M = 0.03, 0.1, 0.3: r e s p e c t i v e l y .  ' Hence the  values o f  I 
I 

pEl can be Calcu lated (Table 2 -8 ) .  ~ h e s e  c o n t r i b u t i o n s  are  gene ra l l y  I 
I 

n e g l i g i b l e .  I I 
I I I The screen l o s s  c o e f f i c i e n t  was /chosen t o  be 1. I f  we employ two I 
1 

such screens upstream o f  t he  l a s e r  ca 'v i ty ,  t h e  pressure drop c o n t r i b u t i b n s  
I 

are  as shown i n  Table 2-8. The range o f  ApC2 v a r i e s  f rom 2.92 t o  292.51 
I 

Tor r .  We s h a l l  assume the re  i s  one tioneycomb w i t h  Kc3 = 0.25 and the  I 
I I 

c o n t r i b u t i o n s  are l i s t e d  i n  Table 2-8. I I 
I I 

I I 
Heat Exchangers . . I I 

. I 
I I 

  he' c a v i t y  heat  addi t i  on increases t h e  s tagnat ion  temperature from: 

I 
I 

304.5OK t o  369.6OK a t  M = 0.3, f rom j 0 0 . 5 0 ~  t o  3 6 5 . 7 0 ~  a t . ~ : = ~ . l , a n d  I 
I I 

from 300.0°K t o  365.1 OK a t  M = 0.03. 1 Hence, w i t h  a coo lan t  temperature1 
I I 1 T~ o f  250°K, r5 = 1.13 (nea r l y  independent of M )  . The c q n t r i b u t i o n s  I 

I t o  Ap; are as shown i n  Table 2-8. 1 
I 
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I n  t h e  preceding sec t i on  we have observed t h a t  t he  a l lowab le  ~ p * / p ~  

f o r  t he  C02 f u s i o n  l a s e r  system i s  l i m i t e d  t o  be a t  most % 0.24. For 

t h i s  va lue t h e  compressor w i  11 heat  t he  la 'ser gas by about ( 1  + mh!T) 
d PR JO1 o r  16.6 OK. Hence, us ing  a  coo lan t  temperature o f  T7(!= 250°K w i t  ‘ k ~ -  

TO6 = 316.6 OK r e s u l t s  i n  K7 = 0.498, w i t h  t he  c o n t r i b u t i o n s  t o  Ap? as 

shown i n  Table 2-8. 

Boundary-Layer F r i c t i o n  

The f r i c t i o n a l  l 'osses depend on the  " l eng th "  o f  t he  f l o w  c i r c u i t  

r e l a t i v e  t o  t h e  cross s e i t i o n  o f  the  f l o w  ducts.  Even i f  we u t i l i z e  a 

va lue o f  20 f o r  e/Dh,due t o  t h e  h igh  Reynolds number o f  t he  f l o w  the, 

f r i c t i o n a l  e f f e c t s  w i l l  be q u i t e  small; as i n d i c a t e d  i n  Table 2-8. 
. . 
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The pressure drops a l lowed f o r  t h e  adoust ic  absorbers a t  M = 0.03 and 0:1 
I 

are  reasonable and o f f e r  enough room!for  s a t i s f y i n g  the  beam q u a l i t y  and 
1 

f l o w  u n i f o r m i t y  requirements. I I 
I I 

I 

I 

2.2.6 Permiss ib le Pressure Drops f o r :  t he  Acoust ic  Absorbers I 
t 

I 1 
The t o t a l  pressure drop f o r  t h e  e n t i r e  f l o w  l oop  exc lud ing  the  pres- 

I sure suppressor c o n t r i b u t i o n s  are  g i vkn  a t  t he  bottom o f  Table 2-8. 
1 I 

We can ob ta in  t he  pe rm iss ib le  pressure drop f o r  t h e  acous t ic  absorbers I 
I 

once we know the  o v e r a l l  a1 lowable p(essure drop based upon system e f f i c i e n c y  
I 

cons idera t ions  (Sect ion 2.2.4). I f  de focus on t h e  i n d i c a t e d  C02 system 
I 

opera t ing  range shown on F igure  2-15: we observe t h a t  f o r  t he  
I 

6 J / l  i t-atm e x t r a c t e d  energy d e n s i t y  ,the 1  a rges t  a1 lowable Ap*/p5 i s  0.:37 

( a t  qF = 10%). The pressure p5 i s  th'e pressure e n t e r i n g  t h e  compressor; 

i t s  va lue i s  t he  l a s e r  c a v i t y  pressuJe pl (=  2500 T o r r )  minus the  losse; 
I I 

encountered up t o  t h e  compressor s t a t i o n .  From Table 2-8 we f i n d  (approx i -  

Imate ly)  t h a t  p5 = 2497 To r r  a t  M = 0:03, p5 = 2469 To r r  a t  M = 0.1, and; 
1 

p5 = 2214 a t  M = 0.3. Consequently t h e  a l lowab le  pressure drops f o r  t he  
1 I 

e n t i r e  system are g iven  i n  Table 2-9.. I 

1 
I 

The pe rm iss ib le  pressure drops f o r  the  acous t ic  absorbers are obta ined 
I I 

(exc lud ing  a 'bsorbers)  pressure drop o f  Table 2?8 
I 

Ap* o f  t h e  i n t i r e  system. The r e s u l t s  are q u i t e  
I I 

12.2.7 Pre l  iminary-Conceptual  Flow ~ J s t e m  Design and Eva lua t ion  
I I I 

- 
6- - 
- - 
- 
- 

- 
- - 
18- - 
- 
- 
- 
- 
20- - 
- - 
-- 

r- 

307 
_. 
- - 

. .I 1 
I n .  t he  preceding. sec t ion ,  we con,cluded t h a t  t he  Mach number f o r  t he  

I 
C02 fus ion l a s e r  f l o w  system must be ! less than 0.3. Values o f  M = 0.1 I 

I 
and 0.03 were acceptable s ince  the re  lappeared t o  be. enough o f  a  per-  I 

I I 
m i s s i b l e  pressure drop f o r  t h e  acous t ic  suppression. U t i l i z i n g  t h i s  I 

I 
i n fo rmat ion ,  we-propose here two s p e c i f i c  f l o w  systems t h a t  have s i g n i f /  - 

I. 

cant ly  d i f f e r e n t  geometries. I I 
I I 

I 

F i r s t  o f  a l l ,  t h e  losses 'a t  M = 0.3 a re  so l a r g e  t h a t  one cannot 
I 

1 

independent o f  ) the acous t i c  absorber  pressure drobs . / !- 

I w ?. 0.5 m t o  5  m y  t he  a l lowab le  pu lse  r e p e t i t i o n  f requencies can be any; 

where from 5  Hz t o  50 Hz i f  the  maxidum al lowable'  Mmax % 0.2. . I f  we coh- 
I I 

s i d e r  a  l a r g e  W c a v i t y  (3m) a t  M = 0!21 as one o f  ou r  cases, then PRF =I 1 10-Hz-(wi th-our-typical-f-lush-factor-,C-=-2) I .. For . t h i  s-case ,-.the t o t a l  -.f1 I ow I 
c 1 e 
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Table 2-9. Pressure DropvSunnary f o r - a .  COq System. 
(Tabulated Values a r e  i n  Torr )  

yaLu Cu - 
I 

I M = 0.03 0.1 0.3 
-- I - 

CI 
I 

Total Allowable Ap* I 591.8 585.2 524.7 m 
I 

Total Excl uding Acoustic Absorbers I 7.4 81.8 737.0 
I 

Permissible- f o r  ~ A c o u s t i c ~ ~ b s o r b e r s ~  (Apq-+_Ap$),- - A - 584,4 - - - - - 503. _ !!- - - _(:)g L3 - - - - -- - .- - -- - 
I 
I 

I 

I I 
I 

r- 
I 
I 
I 
I 
I 
I 
I 



\:. 
* ,  
.+: 

l o o p s i z e b e c o m e s r a t h e r l a r g e a s s h o w n i n F i g u r e 2 - 1 6  (drawn t o s c a l e ) .  

The o v e r a l l  s i z e  o f  t h e  e n t i r e  f l o w  loop i s  r o i g h l y  9 m x  21 m. 

This  l a s e r  amp1 i f i e r  module cou ld  produce 60 k J  o f  energy pe r  pulse, 

assuming an advanced C02 l a s e r  design (Table 2-7). Due t o  t he  r e l a t i v e l y  

h igh  Mach number ( f rom t h e  pressure l o s s  p o i n t  o f  v iew), t h e  f l o w  system 

must be very  c a r e f u l l y  designed. Pressure must be conserved along the  

f l o w  loop. The d i f f u s e r  must be long and w i t h  a  shal low opening angle. 

The f l o w  tu rns  must be c a r e f u l l y  designed and the-upstream f l o w  c o n d i t i o n i n g  

w i l l  r e q u i r e  c a r e f u l  con tour ing  and severa l  screens. Note t h a t  most o f  

t h e  f l o w  loop cross sec t i on  i s  f i v e  t imes l a r g e r  i n  f l o w  area than t h e  

l a s e r  c a v i t y  cross sec t ion ,  because t h i s  reduces t h e  average f l o w  v e l o c i t y  

and minimizes the  pressure 1  osses. 

L e t  us consider  n e x t  a  s u b s t a n t i a l l y  s m a l l e r , l a s e r  module and f l o w  

system. We r e t u r n  t o  F igure  2-13 and propose a  system w i t h  a  square 

(H x  W = 0.5 m x  0.5 m) l a s e r  aper ture.  A t  W = 0.5 my t h e  range o f  pu lse  

r e p e t i t i o n  f requencies (5 Hz t o  50 Hz) imp l i es  M Q - 0.018 t o  0.18. I f  we 

again s e l e c t  PRF = 10 Hz, then M = 0.035. A t  t h i s  low Mach number t h e  

f low- loop losses are very  smal l  and we do n o t  have t o  be very  fancy i n  

designing the  f l o w  loop. We must s t i l l  be c a r e f u l  i n  u t i l i z i n g  screens 

and o t h e r  f l o w  cond i t i one rs  upstream o f  t h e  c a v i t y .  The conceptual design 

i s  shown i n  Fg iu re  2-17 (drawn t o  sca le ) .  We now have a  constant  area 

duc t  w i t h  a  mean v e l o c i t y  o f  10 m/sec i n  the  e n t i r e  l a s e r  f l o w  system. 

The o v e r a l l  s i z e  o f  t he  f l o w  l oop  (5 m x  3 m) i s  s u b s t a n t i a l l y  sma l l e r  

than f o r  t he  l a r g e  f l o w  l oop  design (F igure  2-16). There i s  a  f a c t o r  o f  

12.6 reduc t i on  i n  t h e  p ro jec ted  area o f  the  e n t i r e  system and i t  i s  o n l y  

s i x  t imes sma l l e r  i n  energy ou tpu t  pe r  pulse. I .  

  he cos t  o f  t h e  f l o w  system w i l l  be rough ly  p r o p o r t i o n a l  t o  i t s  volume.' 

There w i l l  t h e r e f o r e  be an i n c e n t i v e  t o  decrease t h e  f l o w  loop volume 

requ i red  t o  generate a  u n i t ' o f  e x t r a c t a b l e  energy. In t h i s  sense t h e  

sma l l e r  (10 k J )  system i s  more c o s t - e f f e c t i v e  than t h e  l a r g e r  (60 kJ )  
1 I 

system. I n  t h e  sma l l e r  system (F igure  2-17), t he  f l o w  l oop  volume i s  -v 
rough ly  20 t imes l a r g e r  than t h e  c a v i t y  volume, whereas i n  t he  l a r g e r  

system (F igure  2 - 1 6 ) ' t h e  f l o w  loop volume i s  n e a r l y  70 t imes l a r g e r  than 

t h e  c a v i t y  volume. 
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Furthermore, t h e  smal l  e r  module can be operated a t  1  ower Mach numbers, 

t h e  pressure losses should be lower  and i t  should a l s o  be e a s i e r  t o  ach ieve 

. the r e q u i r e d  media. homogeneity cond i t i ons .  It thus  appears t h a t  f l o w -  

system cons ide ra t i ons  w i  11 d r i v e  t h e  C02 l a s e r  power amp1 i f i e r  des ign toward 

modera te ly -s ized  modules -- o f  t h e  o r d e r  o f  10-to-20 kJ,  r a t h e r  than 

. 50-to-100 k J  pe r  module. 



2.3 FLOW SYSTEMS FOR KrF LASERS 

2.3.1 Summary of the Relevant Laser Properties 

The KrF laser  has no "storage" capabili ty and therefore i t  cannot 

produce the 1 t o  10 nsec pulses which will be required fo r  ICF. Multi- 

pulse ampl i f icat ion ( in  the form of angular optical mu1 t iplexing) and 

Raman pulse compression have.been proposed as.possible techniques for  

extracting short ,  i:ntense pulses from the KrF medium (see Refs. 2-16 and 

' 2-17). Neither one of these techniques was demonstrated to  date on a 

large scale (namely, 1 kJ or la rger ) .  

I t  i s  therefore d i f f i cu l t  a t  present t o  define a s e t  of properties 
and operating conditions (such as l i s t ed  in Section 2.2.1) for  a short  

pulse laser  system based on:KrF. We nevertheless proceed and define three 

hypothetical laser  drivers,  based on KrF, so tha t  a preliminary evaluation 

can be made of the flow system requirements of such drivers.  

The f i ' r s t  system to be considered here i s  based on using optical 
multiplexing alone as a means of obtaining short  pulses from KrF. The 

final KrF amplifier i s  assumed to  be pumped by an E-beam and to generate 

an excited gain medi'a for  100 nsec. Ten consecutive 10-nsec pulses can 

then be sent through th i s  ampli'fi,er, a t  s l ight ly  different  angles, and 
--4 - 

combined (or  stacked) a f t e r  exiting the - amp1 - i f i e r  -. into -- one - high-intensity \ -5 

beam. 

Typical projected properties and operating conditions of such a laser  

are l i s t ed  in TAble 2-10, based on References 2-17 and 2-18. Only those 

properties which will a f fec t  the flow system design and performance are 

considered here. The just i f icat ion for  selecting th is  s e t  of parameters 

can be found in the references cited.  



Table 2-10. Projected Propert ies of a KrF Amp1 i f i e r  

Gas Mixture 

Gas Pressure 

Ar/Kr/F2 = 0.937/0.060/0.003 

1 A t m  

Gas Temperature Room temperature 

Cavity Vol ume '250 1 i t e r s  ' ( o r  TBD)  

Optical Length, L 100 cm 
In i t i a t i on  Height, H 50 cm 
Flow W i d t h ,  W 50 cm ( o r  TBD) 

Deposited Energy Density 100 Joule/ l i t -atm 

Extracted Energy Density 10 Joule11 i t-atm 

Pulse Repetition 
Frequency, PRF TBD 

Laser Wavelength 0.249 pm 

Total Energy Extracted 2.5 kJ ( o r  TBD)  

I n i t i a t i on  Efficiency 10% 

The operation of a KrF amp1 i f i e r  under the  conditions l i s t e d  in  Table 
2 2-10 wil l  require an E-beam nf about 500 kV,  generating 100, A/cm f o r  

100 nsec. The sa tura t ion fluence under these conditions wi l l  be 

Js  = 0.1 joule/cm2, w i t h  a small signal gain of go = 20%/cm and a non- 

sa turable  absorption coef f i c ien t  of about a = l%/cm. The maximum extractable  

energy density wil l  approach 20 joule / l  i t. An ext ract ion eff ic iency of 

50% i s  assumed, y ie lding an extracted energy density of 10 j o u l e l l i t  and a 

fluence of 1 joule/cm2, well within the range of permissible power 1.oadings 

f o r  UV windows, such a s  quartz.  

We consider next a system which uses a combination of angular multi- 

plexing and Rarnan pulse compression. To specify the  propert ies of such a 

system, as  a basis  f o r  our flow s tud ies ,  we assume t h a t  three  33-nsec 

pulses wi l l  be passed through a KrF ampl i f ier ,  such as  described in Table 

2-10, and then stacked before entering the  Raman c e l l .  The Raman c e l l ,  

f i l l e d  with methane, i s  assumed t o  produce an addit ional  compression by 

a f a c to r  of f i ve  t o  s ix .  

We will  f i r s t  consider a low pressure (1 a tm)  CH4-filled Raman ce l l  

( see ,  e .  g., Ref. 2-1 7 ) .  The sa tura t ion fluence of the  CHq ce l l  a t  1 atm 
2 i s  estimated t o  be 2 joule/cm . An input of 10 joules/cmP KrF l a se r  pulse 



wi'll be re'qui:red to.obtai'n reasonab.1~ hi'gh (say, 50%) -conversion to  a 
compressed backward Stokes pulse. Ten KrF laser  amplifiers, with an out- 
p u t  fluence of 1 joule/cm2, wi 11 be required for  one Raman ce l l  , i f  the 

cross section of the Raman cel I is made equal to  tha t  of the KrF amp1 i f i e r s .  

The length of the Raman cel l  i s  s e t  a t  5 meters, so that  the beam propa- 
gation time through the cell  i s  equal to ha l f , t he  multiplexed KrF pulse 

2 I't i's fur ther  assumed that  a Stokes input beam of 1 joule/cm fluence 

wi:ll be used and that  the Stokes output (with 50% conversion efficiency) 
2 will thus Be 6 joule/cm . 

The methane ce l l  i s  irradiated by the KrF lasers  w i t h  a deposited 

energy density of 20 jou le l l i t e r .  10 jou le / l i t e r  will be converted into 

a backward Stokes pulse and can be considered as the c e l l ' s  extracted 

energy density. Because of the difference between the Stokes and KrF 

wavelengths (268 vs. 249 n m ) ,  0.7 jou le / l i t  of the converted 10 jou le / l i t  

will be deposited in the Raman cel l  as sensible heat. 

The flow-related properties of th i s  Raman cel l  are summarized in 

Table 2-11. 

One window of the 1-atm Raman cel l  will be subject to  a fluence of 
2 16 joule/cm . This i's clearly beyond what present state-of-the-art  sol id  

UV wi'ndows would allow. One would have to  consider the application of 
aerodynamic windows to  a I-atm Raman c e l l .  An a l ternat ive i s  t o  operate 

the Raman ce l l  a t  a considerably higher pressure, which would reduce i t s  
saturation fluence and correspondingly reduce the required KrF input 

fluence and the converted Stokes fluence. Properties of a 5-atm CH4 ce l l  
are presented i'n Table 2-12, as an example. In th i s  case, only two KrF 

amp1 i f i e r s ,  of the type descri'bed in Table 2-10, will be required to  feed 

one Raman cel 1. The fluence, t h r s u g h  the cell  window wi 11 be only 3.2 

joule/cm2. The energy density which can now be extracted from the cel l  

i:s however, s;igni:fi'cantly reduced, a s  shown,in.Table 2-12. Designing 

an e f f t c fen t  flow system for a hi:gh-pressure Methane c e l l  could therefore 

be consi;derably more dtffi'cul t. 



Tab1 e 2-1 1 . F l  ow-Re1 ated Proper t ies  o f  a  
1-Atm Raman C e l l  

Gas Medium 

Gas Pressure 

Gas Temperature 

Cav i t y  Volume 

Length, L 
Height,  H 
Width, W 

Deposi t e d  Energy Densi t y  
(as heat )  

Ex t rac ted  Energy Dens i ty  

Pulse R e p e t i t i o n  
Frequency, PRF 

Laser Wavelength, 

To ta l  Energy Ex t rac ted  

Combined I n i t i a t i o n  
E f f i c i e n c y  (KrF+Raman) 

CH4 
1 atm 

Room Temperature 

1250 l i t e r s  ( o r  TBD) 

500 cm 
50 cm 
50 cm ( o r  .TBD) 

0.7 jou le11 i t-atm 

10 jou le11 i t-atm 

0.268 pm 

12.5 k j o u l e  ( o r  TBD) . 
5% 

Table 2-12. Flow-Related Proper t ies  of a  
5-Atm Raman C e l l  

Gas Medium CH4 
Gas Pressure 5 A t m  

Gas Temperature Room Temperature 

Cav i ty  Vol ume 1250 l i t e r s  ( o r  TBD) 

Length, L  500 cm 
Height,  H .  50 cm 
Width, W 50 cm 

Deposited Energy Dens i ty  0 -  15 joul i t-atm 
(as heat )  

Ex t rac ted  Energy Densi ty  2 j o u l e / l  i t-atm 

Pulse R e p e t i t i o n  
Frequency (PRF) 

TBD . 

Laser Wavelength 0.268 pm 

To ta l  Energy Ex t rac ted  2.5 k j o u l e  

Combined 1ni t i a t i o n  
E f f i c i e n c y  (KrF+Raman ) 

5% 



2.3.2 Beam Qua1 i t y  and Media Homogeneity Requirements 

I f  a  KrF l a s e r  i s  t o  be used i n  con junc t ion  w i t h  a  Raman pu lse  com- 

pressor,  t h e  KrF l a s e r  beam does n o t  have ' t o  be o f  h igh  q u a l i t y ,  s ince  

i t  i s  n o t  aimed a t  t h e  t a r g e t .  ( '-I8) Only i t s  1  engthwi se i n t e g r a t e d  

i n t e n s i t y  d i s t r i b u t i o n  across t h e  Raman c e l l  must be f a i r l y  uni form, 

so t h a t  a  s u f f i c i e n t l y  un i fo rm backward Stokes beam can be e x t r a c t e d  

from t h e  Raman c e l l  and focused on t h e  t a r g e t .  

We must, however, consider  a l s o  t h e  p o s s i b i l i t y  o f  us ing  a  KrF -. iaserk' - -- L- 

w i t h  angular  m u l t i p l e x i n g  alone, and w i t h o u t  t h e  Raman compressor. I n  

t h a t  case t h e  beam ex t rac ted  from t h e  KrF l a s e r  must be o f  s u f f i c i e n t l y  

h igh  q u a l i t y ,  so t h a t  i t  can be focused d i r e c t l y  on t h e  t a r g e t .  We w i l l  

t h e r e f o r e  consider  here, separa te ly ,  t he  beam q u a l i t y  requirements f o r  

t h e  KrF a m p l i f i e r  and Raman c e l l ,  assuming t h a t  each o f  them has t o  pro-  

duce a  beam which can be focused on a  1-mm t a r g e t .  

The beam q u a l i t y ,  as de f ined  i n  Eq. 1, can be l a r g e r  by about a  

f a c t o r  o f  40 f o r  KrF f u s i o n  l ase rs  than the  BQ r e q u i r e d  f o r  CO* l ase rs ,  

due t o  t h e  wavelength r a t i o  (XCo /XCH = 10.6/0.268 = 39.6) o f  these two 
2  4  

systems. We w i l l  assume t h a t  t h e  beam aper tu re  and t h e  l a s t  m i r r o r  f oca l  

l e n g t h  i s  t h e  same i n  t he  KrF system as i n  t h e  C02 system; namely, F  = 15 m  

and D = 0.5 m. Equat ion 1  then prov ides a  d i r e c t  r e l a t i o n s h i p  between 

t h e  focusable spot  s i z e  d  and BQ f o r  both t h e  KrF l a s e r  and t h e  Raman c e l l .  

These r e l a t i o n s  are 

and 

d(mm) = 0.0149 BQ f o r  KrF ( 54a 

d(mrn) = 0.0161 BQ f o r  CH4 Raman C e l l  (54b) 

The smal lest '  poss ib le  spo t  s i zes  (BQ = 1  ) a re  0.0149 mm and 0.0161 mm f o r  t h e  

two beams, respec t i ve l y .  If we again r e q u i r e  t h a t  t h e  maximum a l lowab le  

f oca l  spo t  s i z e  be 1 mm, then t h e  maximum pe rm iss ib le  BQ are  67.1 and 62.1, 

respec t i ve l y .  The requ i red  BQ range i s  thus much l a r g e r  than f o r  C02: 

The exponent ia l  r e l a t i o n s h i p s  used e a r l i e r  f o r  r e l a t i n g  t h e  BQ t o  

t he  dens i t y  nonuni fo rmi  t i e s  o f  t h e  amp1 i f y i  ng medium are  probably  n o t  

v a l i d  f o r  BQ > 2. Using these expressions t o  es t imate  the  pe rm iss ib le  

dens i t y  v a r i a t i o n ,  Ap/p, f o r  a given BQ, w i l l  g i v e  a conserva t ive  es t imate  



i 

whet?, BQ > 2  and should then be viewed o n l y  as a  lower bound o f  t he  a l lowed 
Y 

',Ap/p., Another est imate o f  the  pe rm iss ib le  Ap,/p,, versus t h e  BQ desi red,  
t "7  . 
can 'be obta ined from the  geometr ic o p t i c s  arguments presented e a r l i e r .  Con- 

s i de r ,  e.g., an ordered dens i t y  d i s t r i b u t i o n  g iven  by <Ap/p> = 1 7  
( ~ p / p )  cos (S IT  X / W  j,;wi t h  2.5 cyc les  o f  d e n s i t y  v a r i a t i o n  across the  beam --- 

- -  7 
aper tu re  (R = Wl2.5). Such dens i t y  v a r i a t i o n s  can be induced by pressure 

f l u c t u a t i o n s  i n  t h e  c a v i t y  ( through entropy produc t ion) ,  when the  f l o w  Mach ci 
i 

number i s  M = 0.2. The corresponding BQ, based on Equation (9), - - i s  - g iven  - -- - by . - - i +-- - 

This example w i l l  be designated here and i n  subsequent f i g u r e s  by "geometr ic- 

2.5 cyc les . "  It should 'be viewed as a  r a t h e r  l i b e r a l  es t imate  o f  t h e  a l lowed 

( ~ p l p )  f o r  a  s p e c i f i e d  BQ. For M < 0.2, which i s  expected i n  most f us ion -  . , 

t ype l ase rs ,  R w i l l  be shor te r ,  t h e  number o f  Aplp cyc les  w i l l  be l a r g e r  and 

t h e  BQ worse. 
-- -- - -- . . 

I n  F igures 2-18 and 2-19 t h e  upper and lower bounds o f  Aplp, as a  

f u n c t i o n  o f  BQ, are give'n f o r  t h e  KrF l a s e r  gas m ix tu re  and t h e  CH4 Raman 

c e l l .  The two bounds p r a c t i c a l l y  co inc ide  a t  BQ = 2, b u t  then they  d iverge  

and move a p a r t  r a p i d l y .  The d i f f e r e n c e  between t h e  KrF curve and t h e  CH4 

curves i s  ma in ly  due t o  t h e  d i f ference i n  t h e  o p t i c a l  l eng th  L and t h e  B 

o f  these two systems. The d i f f e r e n c e  i n  t h e  CH4 curves i s  due t o  f a c t o r  

o f  5 pressure d i f f e rence .  A t  5 atm, t h e  OPD v a r i a t i o n  i s  f i v e  t imes l a r g e r  

than i t  i s  a t  1  atm f o r  t h e  same ( ~ p l p ) .  

I n  what f o l l o w s  we assume t h a t  a  beam q u a l i t y  o f  t he  o rde r  o f  2  w i l l  

be requ i red  f o r  t he  KrF and CH4 systems, and use o n l y  t h e  exponent ia l  

expression ( 1  ower bound) t o  determine the  media homogeneity requirements . 
Although t h e  requ i red  spot  s i z e  ( 1  mm) and t h e  assumed f o c a l  l e n g t h  o f  

the  l a s t  m i r r o r  (15 m) would a l l o w  us ing  a  KrF l a s e r  w i t h  a  l a r g e  BQ, i t  

i s  reasonable t o  r e q u i r e  t h a t  t h e  l a s e r  operate as c lose  as poss ib le  t o  
\ 

i t s  i d e a l  BQ. This  would a l l o w  focus ing  t h e  l a s e r  beam t o  a  spot  s i z e  

which i s  much smal le r  than t h e  t a r g e t  s i ze ,  which may be d e s i r a b l e  i n  

terms o f  t he  l a s e r l t a r g e t  i n t e r a c t i o n .  It cou ld  a l s o  a l l o w  moving t h e  

l a s t  m i r r o r  a g rea te r  d is tance from t h e  t a r g e t ,  which w i l l  l a r g e l y  

simp1 i f y  t h e  problem o f  m i r r o r  p r o t e c t i o n .  Furthermore, o p t i c a l  mu1 t i - 
p l e x i n g  requ i res  a  l a r g e  number o f  m i r r o r s ,  each i n t r o d u c i n g  i t ' s  own 



I L i '  I I I ;  : 2 2 1  i i I i N I  1 ,  I l m ~  
EL )F?AGE 

" ' 1  I [ $ I  I I I I I I i I i IcI I h l  I ]  EDGEOf i 

EXPONENTIAL ,.. .+. - . 

. . . . . . . . . . . . . . 

L =  l m  
D = 0.5 m 
F =  15m 

p = 3.0 x 10- 4 

p,  = 760 Torr 

T I  = 300 O K  

MIX: AR: Kr: F 2  

0.937: 0.060: 0.003 - 



L = 5 m  
D = 0.5 rn 

F =  15rn 

p = 5.8 x 10- 
p1 = 760 Torr, 3800 Torr 

T ,  = 300 O K  



aber ra t ions .  There w i l l  be gene ra l l y  a s t rong  m o t i v a t i o n  t o  make t h e  

l a s i n g  media as un i fo rm as poss ib le .  However, when t h e  media induced 

BQ approaches 2, l a r g e  decreases i n  Ap/p ( o r  i n  OPD) w i  11 r e s u l t  i n  o n l y  

moderate improvements i n  BQ and i n  t h e  focused spot  s i ze .  We w i l l  t here-  

f o r e  r e q u i r e  t h a t  t h e  laser-media r e l a t e d  BQ be i n  t h e  range o f  2  t o  5 and 

la rge-sca le  ordered dens i t y  nonun i fo rm i t i es  be i n  t h e  range o f  1.6 t o  

4 x  f o r  t h e  KrF medium, 2 t o  5 x - 1 0 - ~  i n  t h e  Ct14"medium a t  1 atm and 

4 t b  10 x i n  t h e  CH4 medium a t  5 atm. 

The requirements on the  random dens i t y  d is turbances a re  presented i n  

F igure  2-20. The i n d i c a t e d  v a r i a t i o n s  correspond t o  equat ions (50)  and 

(51) o f  Sect ion 2.2. Since we expect t h e  t u r b u l e n t  inhomogeneity sca le  

t o  be a t  l e a s t  two orders o f  magnitude smal le r  than t h e  aper tu re  s i ze ,  

t he  permiss ib le  random (Ap/pl)rms values are a t  l e a s t  a  f a c t o r  o f  t en  

l a r g e r  than t h e  ordered (Ap/pl ),,, values g iven i n  Figs. 2-18 and 2-19. 

Hence, f o r  t h e  1-rrm spot  s i z e  ( ~ p / p ~ ) ~ ~ ~ - r a n d o r n  must be 2 4 x 1 0 ' ~  f o r  t h e  

KrF l a s e r  and 2 5 x f o r  t he  1 atm CH4 c e l l .  

The pressure and temperature u n i f o r m i t y  requirements a re  shown i n  

F igure  2-21. The KrF l a s e r  gas m ix tu re  o f  i n t e r e s t  i s  predominant ly 

composed o f  A r  (%94%). Hence y = 1.67, and y l y - 1  = 2.5. The f a c t o r s  o f  C" 

y and y l y - 1  a re  needed t o  f i n d  t h e  r e s i d u a l  pressure f l u c t u a t i o n s  and the  
t 

"entropy producing" pressure f l u c t u a t i o n s .  S p e c i f i c  values o f  these 

pressure and temperature u n i f o r m i t y  requirements a t  a  BQ = 2 and 5 a re  

g iven i n  Table 2-13. There i s  approx imate ly  a f a c t o r  o f  50 d i f f e r e n c e  

between t h e  KrF amp1 i f i c r  requirements and t h e  Raman ce l l  r ~ q ~ r i  rements 

a t  5  atm. Representat ive acous t ic  suppression f a c t o r s  f o r  t h e  two systems 

are  shown i n  F igure  2-22, us ing  t h e  conserva t ive  BQ es t imate .  We must 

f i r s t  compute the  i n i t i a t i o n  overpressures from Equat ion (13).  For t h e  

KrF l ase r ,  w i t h  an energy depos i t i on  o f  100  lit-atm a t  an i n i t i a l  

temperature o f  T1 = 300°~ ,  we o b t a i n  - (AT/Tl Iinit = U.60.3. 1 .  

The - i n i t i a t i o n  overpressure i s  cons iderab ly  sma l l e r  f o r  t h e  Raman C P ~  1 

:+- 
because t h e  energy depos i t i on  i s  so much smal ler ,  i .e . ,  0.7 J / l i t - a t m .  

For t h e  CH4 Raman C e l l  w i t h  y  = 1.33 and an i n i t i a l  temperature T1 = 300°~ ,  

we f i n d  ( A P / P ~ ) ~ ~ ~ ~  = (AT/TlIinit = 2.08 x The minimum acous t i c  

suppression f a c t o r s  ( f o r  d = Imm) a re  860 f o r  t h e  KrF l a s e r  and 33.3 f o r  t h e  

1 atm CH4 c e l l .  
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Table 2-13. Pressure and Temperature U n i f o m i  t y  Requirements 
f o r  CH4 Raman C e l l  and KrF Amp1 i f i e r  a t  BQ = 2 t o  5 

.-. 

k ) e  

1 Atm CH4 C e l l  

2.5 t o  6.3 x 

7.6 t o  19 x 

1.9 to 4 . 8 : ~  

5 Atm CH4 C e l l  

5 . 0 . t o  12.5 x 

1.5 to 3.8 

3.8 t o  9.5 x 

KrF A m p l i f i e r  

2.7 t o  7.2 x 

4.3 to 10.8 

1.7 t o  4.3 x 







,Th& next subject we discuss are  the requirements on the ve loc i ty  ' 
fluctuations -- both large-scale ( A U )  and small -scale,  turbulent (u '  ).  r 

The flow ~ a c h  number must now be factored into the requirements. I t  will 

be assumed henceforth tha t  the aperture s ize ( H  x W )  will be the same 

for the KrF laser  and the Raman Cell. The PRF i s  naturally the same for  

both elements. This does not imply tha t  the Mach number in the two flow 

cavi t ies  i s  the same because the flush factor C can be different  and the 

speed of sound i s  different .  The difference in Mach number wi 11 , however, 

be a t  most a factor of 2 .  We u t i l i z e  the same range as before 

(0.03 - < M - < 0.3).  The flow velocity requirements are i l l u s t r a t ed  in 

Figure 23. Even though the figure i s  somewhat busy, we immediately 

dlscern the fac t  that  the Raman Cell under the highest Mach number (0.3) 

conditions must have a very small (< velocity inhomogenei ty.  We 

are dealing here with turbulence levels representative of low-turbulence 

wind tunnels used for  studying boundary-layer s t a b i l i t y  rather than con- 

ventional wind tunnel turbulence (where u ' / U  % 1%).  A t  the lowest Mach 

number (0.03), i t  would be relat ively easy to meet the flow uniformity 

requirements for  both cavi t.y flows. 

The turbulence velocity , u l / U ,  homogeneity requirements for  the various 

laser  systems under study are  given in Figure 2-24 a t  a specif ic  BQ value. 
*a * 

We have previously discussed the rationale for  selecting a BQ = 2 for  Krk 
L-2 -- - - 

T t r -  1 ,  

and CH4. The maximum allowable BQ of 1.6 i s  used in the C02 laser .  The 1 
- - 

turbulence velocity requirements are  plotted versus Mach number. Two I 
shaded areas are  shown a t  the top and a t  the bottom of the figure.  The 

upper region ( u l / U  % lo-') i s  re lat ively easy to  achieve and does not 

necessitate any s ignif icant  flow management; indeed, we shall make th i s  

assumption when we calculate a1 lowable pressure drops. The lower region 

( u l / U  2 i s  very d i f f i c u l t  t o  achieve. As will be shown l a t e r ,  a " ) .  i 
2 7  _ - --- - 

dynamic head loss of K = 40 (or 20 P U  1s required to  achieve such low v-i]=-c- 
turbulence (see Figure 2-28). Hence, our concern wi 11 be with the range > 
lo-' ;:U'/U Note that  i t  i s  only for  the 5 atm Raman Cell tha t  

the turbDl ence velocity homogeneity fa1 1 s be1 ow 1 o ‘ ~ .  * $  





2,3,3 ' 'Mea;a ' F l  dw.'Requi:pemerit ;, Mach Number 
2 ,.& ?' 

The d iscuss ion  i n  t h i s  subsect ion p a r a l l e l s  t he  one o f  ~ e c t i ~ n  2.2.3. 

However, we must consider  two separate f l o w  systems f o r  t h e  pulse-compressed 

KrF fus ion  l a s e r  system. The f low v e l o c i t y  requirements a re  s i m i l a r  t o  
- I 'those, o f  a  C02 l ase r ,  bu t  the  Mach number sca le  has changed t o  r e f l e c t  

t h e  d i f f e r e n t  sound speeds f o r  t h e  two f lows.  Since we w i l l  c o n t i n u a l l y  

be r e f e r r i n g  t o  the  two systems, l e t  us use t h e  s u b s c r i p t  A  t o  r e f e r  t o  

t h e  KrF l a s e r  and s u b s c r i p t  B  t o  r e f e r  t o  t h e  Raman C e l l .  Hence, i n  

F igure  2-25 we show a  MA and a  MB scale.  Note t h a t  we w i l l  con t inue  

t o  take a  f l u s h  f a c t o r  o f  CA = CB = 2. Because t h e  KrF l a s e r  m ix tu re  i s  

predominant ly A r  w i t h  a  molecular  weight  o f  39.94, t h e  speed o f  sound aB i s  

455 m/sec. I n  t h e  preceding subsect ion we have found t h a t  MB should be 

l e s s  than 0.3 and probably  as smal l  o r  sma l l e r  than 0.1. This  i m p l i e s  

( f r om F igure  2-25) t h a t  i n  t h e  10-20 Hz range, t h e  f l o w  dimension l e n g t h  

W i s  f i x e d  i n  t h e  range o f  1  - 2  m. Note, however, t h a t  w i t h  MB = 0.1, 
I 

MA i s  fo rced t o  be 2. 0.14 and cou ld  l e a d  t o  f l o w  u n i f o r m i t y  and e f f i c i e n c y  

d i f f i c u l t i e s .  There w i  11 general l y  be some i n t e r e s t i n g  t r a d e o f f s  between 

systems A and B. This p o i n t  i s  a m p l i f i e d  i n  t h e  n e x t  subsect ion. 



Figure 2-&25: . .  Flow Ye1 oci ty  ~ e q u i  bernents for  Pul se-compressed KrF 1 
Average Gas Vel oci ti,  U (rnlsec) . 
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The essence o f  the  prev ious f l o w  e f f i c i e n c y  d iscuss ion  i n  Sec t ion  1.1.2 

remains unchanged, however i n  t h e  a p p l i c a t i o n  t o  KrF l a s e r  systems we must 

consider  t h e  KrF l a s e r  a lone as w e l l  as t h e  KrF laser/CH4 c e l l  combinations. 

For t h e  KrF l a s e r  alone, we proceed as w i t h  t h e  Cop l a s e r  ana l ys i s .  There 

i s  a  d i r e c t  t r a d e o f f  between f l o w  e f f i c i e n c y  qF and t h e  t o t a l  a l lowab le  

system pressure drop Ap*/p5. I f  we use t h e  p ro jec ted  p r o p e r t i e s  o f  a  KrF 

a m p l i f i e r  (Table 2-10), w i t h  S "xt = 10 j o u l e / l i t - a t m ,  then we can 

d i r e c t l y  use Figure 2-4 t o  f i n d  t h e  a1 lowable Ap*/p5. A t  vF = 0.1 , Ap*/p5 = 

0.395 and a t  nF = 0.2, Ap*/p5 = 0.197. 

The sub jec t  o f  t h e  pu lse  compressed KrF system i s  somewhat more complex 

s ince  we now have t o  consider  t h e  d i f f e r e n t  e f f i c i e n c i e s  f o r  t h e  KrF l a s e r  

(A) and t h e  CH4 Raman C e l l  (B).  We w i l l  f i n d  t h a t  t he re  i s  a  t r a d e o f f  

between vFA and qFB which must be considered f o r  eva lua t i ng  the  t o t a l  

f low e f f i c i ency  Q ~ ( ~ + ~ ) .  The d iscuss ion  o f  Sect ion 3.1 has de f i ned  one 
* 

pulse-compressed KrF l a s e r  system c o n s i s t i n g  o f  10 KrF l a s e r s  feed ing  a  

s i n g l e  Raman C e l l .  The ou tpu t  o f  t h e  Raman C e l l  w i l l  be t h e  ICF d r i v e r  

source. The o v e r a l l  l a s e r  e f f i c i e n c y  can thus be w r i t t e n  as 

where regenerat ion has been neglected. By d e f i n i t i o n  

where PFA i s  t h e  f l o w  power f o r  a  s i n g l e  KrF l a s e r .  Upon u t i l i z i n g  

r e l a t i o n s h i p s  s i m i l a r  t o  (18) and (19) ,  Equat ion (58) becomes 



where 

and 

Two KrF l a s e r  and Raman C e l l  combinat ions - - . w i l l  . be t r e a t e d  - here.-- . - T h e -  
I 

KrF l a s e r  c a v i t y  i s  assumed t o  be a t  1  atm i n  b o t h  cases. I n  t h e  f i r s t  case \  e--- 
<-- . .  - - - - -  

a  1  atrn CH4 c e l l  i s  used whereas f o r  t h e  second a  5  atrn CH4 c e l l  i s  assumed. 

When t h e  l a s e r  and CH4 c a v i t i e s  a r e  a t  t h e  same pressure  ( 1  atrn), then  
- P i A  - plB, and s i nce  VIA = VlB/5, Eq. (59)  reduces t o  

For  t h e  5  atm CH4 c e l l  we have plA = plB/5 and s h n e  t h e  c a v i t y  volume 

r a t i o s  remains unchanged, Eq. (59)  reduces i n  t h i s  case t o  

Both r e l a t i o n s h i p s ,  Eqns. (62)  and (63)  a r e  p l o t t e d  i n  F igure  2-26. 
4 , 

.s. F i gu re  2-26 can p rov ide  some guidance f o r  s e l e c t i n g  a  des ign p o i n t  and 
P* 

t h e  ope ra t i ng  c o n d i t i o n s  a t  a  KrF/CH4 system. On t h e  one hand we would 1  i ke 

t o  have t h e  l a r g e s t  a l l owab le  (Ap*/p ) f o r  t h e  Raman C e l l  because o f  t h e  
5 8  

very  s t r i n g e n t  ( ~ p / p )  r equ i  rements there .  On t h e  o t h e r  hand, t h e  overpressure 

i n  t h e  Raman C e l l  i s  ve ry  smal l  and one migh t  hope t o  ach ieve t h e  r e q u i r e d  

pressure suppress ion w i t h  very  l i t t l e  p ressure  drop. An op t ima l  t r a d e o f f  

can be made o n l y  a f t e r  t h e  pressure suppress ion dev ices a r e  b e t t e r  de f i ned  

and understood. Some s p e c i f i c  examples can i l l u s t r a t e  t h i s  p o i n t .  



I /Figure 2-26. Flow Efficiency Tradeoff Between a KrF Laser 
I i Amplifier and i t s  Raman Cell. 
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To proceed w i t h  such examples we must r e t u r n  t o  F igure  2-3 o f  Sect ion 

2.1.1.2 and i s o l a t e  an opera t ing  regime f o r  t h e  pulse-compressed KrF 

system. We assume t h a t  t he  minimum acceptable combined i n i t i a t i o n  e f f i c i e n c y  

f o r  a  KrF l a s e r  a m p l i f i e r  and compressor i s  qI(A+B) 2.5%. This  i s  a  

reasonable requirement s ince  KrF systems alone have e x h i b i t e d  i n i t i a t i o n  

e f f i c i e n c i e s  'L 10-12%. The maximum combined i n i t i a t i o n  e f f i c i e n c y  i s  taken 

< 10% (equ i va len t  t o  qIA 5 20%). I t  i s  a l s o  assumed t h a t  a  as (A+B) - 
minimum flow e f f i c i e n c y  should be 10% and t h a t  t h e  range o f  f rom 10% t o  

20% i s  r e a l i s t i c  and p o t e n t i a l l y  achievable. The shaded reg ion  i n  F igure  

2-27 i s  t h e  KrF opera t ing  regime. L e t  us now r e t u r n  t o  F igu re  2-26 and 

examine th ree  d i f f e r e n t  p o i n t s  on a  p a r t i c u l a r  Q ~ ( ~ + ~ )  curve (cons i  d e r i  ng 

t h e  1  atm CH4 o n l y ) ,  i . e . ,  qF(A+B) = 0.10. The t h r e e  cases are  shown i n  

Table 2-14 together  w i t h  t he  a l lowab le  pressure drops. I n  o rder  t o  compute 

t h e  pressure drops, we use ( S * T I ~ ~ ~ ) ~  = (S-Q,,~)~ = 10 J / l i t - a t m ,  qcomp = 0.8, 

C = c = 2, and T ~ ~ / T ~ ~  = T ~ ~ / T ~ ~  = 1  , hence, f rom Equations (60) and (61) A  B 

There i s  t h e r e f o r e  a  range o f  choices f o r  ( ~ p * / p ~ ) ~  as de f i ned  above 

and by t h e  above se lec ted  c o n s t r a i n t  o f  qF(A+B) = 0.10. Table 2-14 pre-  

sents o n l y  a  few poss ib le  choices. The bes t  choice w i l l  depend on the  

pressure drop c h a r a c t e r i s t i c s  o f  these two systems, which w i l l  be d i s -  

cussed i n  t h e  nex t  subsect ion. 
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2.3.5 Es t ima t i on  o f  t h e  Flow-Loop ~ { e s s u r e  Drops 
I 

The general  pressure-drop re1  a t i  onshi  ps o f  Sec t ion  2.1 .l. 2 a re  made 

s p e c i f i c  t o  t h e  KrF l a s e r  a lone and t o  t h e  KPF/Raman C e l l  systems c h a r i c -  
I 

t e r i z e d  by t he  p r o p e r t i e s  l i s t e d  i n  Tables 2-10, 2-11, and 2-12. 
1 

&. ..J-Thi s i . subse~ t ion , * i s~d i v ided  i n t o  l two p a r t s .  The f i  r s t  p a r t  d e s c r i  bbs 
I 

t he  p ressure  drops r e q u i r e d  f o r  f l o w i n g  t h e  l a s e r  gas around t h e  c i r c u i l t  

w i t h o u t  r ega rd  t o  f l o w  o r  . thermal co {d i  t i o n i n g .  The second p a r t  spec i f l i  - 
I 

c a l l y  d iscusses t h e  p ressure  drops r e q u i r e d ' f o r  ach iev ing  t h e  t u rbu lence  
I I 

u n i f o r m i t y  ( u ' /U )  and t h e  thermal u n i f o r m i t y  requi rements.  These ,pressure 
I 

drop es t imates  a1 low one t o  deduce t $ e  p ressure  drops a v a i l a b l e  f o r  the. I 
I I 

acous t i c  suppressors (see Sec t i on  2.3.6). Hence, we cons ider  f o u r  p r e s ~ u r e  
I 

drops as o u t l i n e d  below: I 
I 
I 

1. A l lowab le  o v e r a l l  f low!system pressure drop ap* 
deduced f rom e f f i c i e n c y  requi rements:  (p5  ) T O T A ~ .  I i 

I 
2. Pressure drop due t o  base f l o w  (no f l o w  

management ) : I (F) FLOW. ,, 
I 

---- - -3.- -Pressure-drop -due-to-f-1 ow .and. .thermal. - - - 
management : I 

I 
1 i 

-4. Pressure drop a v a i l a b l e  f o r  a c o u s t i c  I 
management (suppress i  03 ) : 

I 
(F) AM. 1 

I 

The o v e r a l l  ( A P * / P ~  lTOTAL has been d a s c r i  bed i n  s e c t i  on 2.3.4. ( ~ p * / p ; ) ~ ~ ~ ~  

and ( A P * / P ~ ) ~ ~ ~  a r e  descr ibed  below and ( ~ p * / p ~ ) ~ ~  i's summarized i n  s e d t i d n  
I 

2.3.6. I I I 
2 .;. 5.1 Base Flow Pressure Drop, i.(Ai*/p5)FLOW 

I 
C a v i t y  Heat A d d i t i o n  I 

I 
As found i n  Sec t ion  2.2.5, t h e  p ressure  l o s s  c o e f f i c i e n t  f o r  t h e  c a v i t y  

I I I - 
J h e a t - a d d i  t i o n - i s . - ~ ~ - = - ~ ~ ~ ~ / ~ ~ ~  ..- orit it he KrF- laser  .wi th-pA-.=- 1.62-g J.1 i t l - -  

= 1 atm, Cp = 0.528 J/gm K, and TO1 I, ~ O K  t h e  r e s u l t  i s  . (AT /T ) - ,A: - - - -  --- - -- 01 -Ol,--- - ' = 0.351. L fkewise f o r  t h e  CHP ~ama; chi w i t h  pg = 0.651 g m / l i t ,  
- 

0 0 
-< - P =-1-atm,-Cp-=-2.22-J/gm-K,-and-T .-2-300-K-the-resul  
-- 0 B- 3 

0 1 
- rc = 1 . 6 1 ~ 1 0 -  . A t  pB = 5 atm, pB = 3.26 g m / l i t  b u t  ( A T ~ ~ / T ~ ~ ) ~  remains 
- unchanges a t  1 - 61  x1 CI-~. I 
-0 

1 
- LU I 

I -..- --  - .... . . . 
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Subsonic D i f f u s e r  I 
I e 
I 

- 
A reasonable va lue o f  K3 = 0.30, is  used as t h e  pressure drop coe f fgc ien t .  

I I 
Flow Turns I I 

I I 
I f  we again d t i l i z e  wel l -des igned t u r n i n g  vanes i n  t h e  f l o w  cornehs 

I I 
w i t h  a  KT = 0.15, then the  t o t a l  l o s s  c o e f f i c i e n t  i s  4  KT = 0.60. I 

I I I Flow Cont rac t ion  I I 
I I 

We can u t i l i z e  t h e  same l o s s  c o e f f i c i e n t s  f o r  t h e  c o n t r a c t i o n  sec t i on  
I 

as used i n  Sect ion 2.2.5, i .e . ,  KCl z f  0.0036, 0.0026, 0.0012 a t  M = 0.63, 
I I 0.1, 0.3 respec t i ve l y .  
I I 

I I 
Heat Exchangers I I 

I I 
Note t h a t  f o r  t h e  Raman c e l l  t he re  i s  no need f o r  t h e  f i r s t  heat  I 

1 

- 
- - 
- 
1 2 -  - 
- 
- 
- 
- 
18- - 
- - 
- 
- 
20- - 

exchanger (K5 = 0 )  s ince  t h e  temperalure excess i s r r a t h e r  smal l .  One heat  - 
I I -. 

exchanger, downstream o f  t he  compreskor, can b r i n g  t h e  temperature back t o  - 
I 

the  p r e - i n i  t i a t i o n  value. The KrF 1  aser s tagnat ion  temperature increases 
I 

t o  approx imate ly  4 8 1 ' ~  ( n e a r l y  independent o f  M) due t o  heat  a d d i t i o n .  I 
I I 

-Th-uT,-i f-%-us-e 3 -cob1 ant- temperature -o f  '250'~; K c = - 1 ~ 5 7 . -  - I f -we *use - the-  
I maximum A P * / P ~  of Table 2-14 t o  es t imate  t h e  temperature inc rease due , t o  5 - I 

- 
30- - 
- 
- 
- 

the c o m ~ r e s s i o n ~  then ( ~ 0 6 ) ~  3 3 1 ~ ~ 1  and us ing  the  2 5 0 ' ~  cool an t ,  
K7 = 1°.T7. - 

I 
For t he  Raman c e l l ,  i f  we use a  comparable (To6)B % 3 3 1 ' ~ ~  then K7 = 0!77. 3 6  

I I 
Boundary-Layer F r i c t i o n  I 

I a We agein choose a  va lue o f  2 / D  = 20 f o r  t h e  ex ten t  o f  t h e  s t r a i g d t  

sec t ions  i n  t he  wind tunnel .  Due to1 Ltle l ~ i g l ~  ~ e ~ ~ o l  ds numbers of our  I I 
7  f l o w  systems ( l o 6  - 10 ),  t h e  s k i n - f b i c t i o n  c o e f f i c i e n t  i s  q u i t e  smal l  1 

I 

and KF va r i es  from 0.044 a t  M = 0.031 t o  0.025 a t  M = 0.3. 
I 

I 
I 
I 

The f low-on ly  pressure drops ark  immediately ob ta ined by mu1 t i p l y i n g  
I 

t h e  l o s s  c o e f f i c i e n t s ,  K, by t h e  dynamic pressl.rr-e o f  t h e  f l o w  - I 
I 2 

- 
(I \\ 

&/e - _ 
42- - 
- 
- 
- 
- 
4%- - 

2 .  - q = 1 / 2 p ~ 2  = y/2pM . For t h e  KrF a k l i f i e r  w i t h  y = 1.67, qA(To r r )  = 634.6 M . 
2  - 

I n  t h e  1  atm CH4 c e l l  w i t h  y = 1.33; qB(To r r )  = 505.4 M and i n  t h e  5  atm - 
2 I c e l l ,  qB(Tor r )  = 2527. M . - 

I I 54- 
1- - - . . -  -- I 

.. - - 
+;5- 4&.-. .-----I-. 

I - 
I - 



2.3.5.2 Flow and Thermal Management ( ~ p * / p ~ ) ~ ~ ~  

1 

, The f l ow  u n i f o r m i t y  requirements and t h e  thermal homogeneity requ i re -  

ments a r e  d i c t a t e d  by the  dens i t y  homogeneity and beam qua1 i ty  requ i  rements , 
as i n d i c a t e d  i n  Figures 2-24 and 2-23. The f l ow  u n i f o r m i t y  requirements 

a re  a l so  a s t rong f u n c t i o n  o f  t h e  f l ow  Mach No. (see F ig .  2-24). 

Turbulence q u i e t i n g  experiments have been undertaken i n  the  pas t  t o  

determine the  pressure drops ( o r  res is tance c o e f f i c i e n t s )  needed t o  achieve 

a s p e c i f i c  low turbulence l e v e l  i n  wind tunnels and s i m i l a r  devices. I n  

reference 2-20, experimental data taken a t  the  Nat ional  Bureau o f  Standards 

r e l a t e s  the  measured u ' /U t o  the  t o t a l  res is tance c o e f f i c i e n t  KTOTAL 

requ i red  t o  achieve the  low turbulence l e v e l s .  This  data i s  g iven i n  

F igure  2-28. The number o f  screens needed t o  achieve t h e  u n i f o r m i t y  l e v e l s  

i s  a l s o  ind ica ted .  The data o f  F igure 2-28 together  w i t h  F igure  2-24 can 

be u t i l i z e d  t o  determine the  requ i red  pressure drop versus Mach number. 

This  i s  given i n  F igure 2-29 f o r  t h e  fus ion  l a s e r  systems o f  c u r r e n t  i n t e r e s t .  -- - 

Note t h a t  t he  curves a re  drawn f o r  a s p e c i f i c  beam q u a l i t y .  The " t r a n s l a t i o n "  

from Figure 2-24 t o  F igure  2-29 proceeds as fo l lows.  For u ' /U  > l o A 2  , no 

e x t r a  pressure drop i s  needed ( ~ p * / p ~ ) ~ ~  = 0 (K = 0 ) ;  f o r  2x10 -3 8i u1/U 8i l o - z  
K = 1 ; and f o r  u ' / U  6 2x1 o - ~ ,  K i s  g iven by the  mu1 t i  ple-screen curve of 

F igure 2-28. Since r a t h e r  scant experimental  i n fo rma t ion  i s  a v a i l a b l e  on 

how t o  achieve the  severe thermal u n i f o r m i t y  requirements o f  f us ion  lasers ,  

we make here the  approximation t h a t  t h e  pressure drop needed f o r  thermal 

management i s  equal t o  t h a t  needed f o r  turbulence management, ( A ~ * / P ~ ) ~ M  = 

( A ~ * 1 ~ 5 )  FM. Hence, the  t o t a l  pressure drop fo r  f l ow  and thermal management 

is given ( A P * / P ~ ) ~ ~ M  ' 2 ( n ~ * / ~ 5 ) F M .  The r e s u l t s  o f  F igure 2-29 w i l l  be 

used t o  determine the  pressure drop a v a i l a b l e  f o r  acoust ic  management. 



--, 
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EXPERIMENTAL DATA 
NATIONAL BUREAU OF STANDARDS 
4 1/2 FOOT WIND TUNNEL (U = 109 FT/SEC) 
NOS. NEAR SYMBOLS REFER TO NUMBER OF SCREENS USED 

F igu re  2-28. Resistance Required t o  Achieve Low Turbulence V e l o c i t y  Levels  - 
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Figure  2-29. Pressure Drop Through Screens Required I 
for-Flow'Management-(u '-/U) 
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2.3.6, Permiss ib le Pressure Drops f o r  t h e  Acoust ic  Absorbers 
1e 

The permiss ib le  pressure drop f o r  acous t ic  suppression purposes its 
determined i n  t h i s  sec t ion .  The q u a n t i t y  o f  i n t e r e s t  i s  ( A P * / P ~ ) ~ ~  which 

i s  de f i ned  as f o l l o w s  

The f i r s t  two terms on t h e  r i g h t  hand s ide  o f  t h i s  r e l a t i o n  were discussed 

e a r l i e r  and can be evaluated q u i t e  accura te ly .  The t h i r d  term which 

represents f l o w  and thermal management i s  more d i f f i c u l t  t o  determine - 
p a r t i c u l a r l y  t h e  pressure drop requ i red  f o r  ach iev ing  t h e  s t r i n g e n t  

temperature c o n t r o l s  requ i red  f o r  f us ion  l ase rs .  Hence, t h e  d e f i n i t i o n  

o f  ( A ~ * / P ~ ) A M  i s  i 'nf luenced by t h e  u n c e r t a i n t y  i n  t he  c h a r a c t e r i z a t i o n  of 

t he  thermal management problem. It i s  d i f f i c u l t  t o  determine whether o r  

n o t  our  suppos i t ion  t h a t  ( ~ p * / p ~ ) ~ ~  ( thermal  management) = (Ap*/p5) FM 

( f l o w  management) i s  a  conserva t ive  approximation. We s h a l l  assume 

t h a t  i t  i s  a  reasonable suppos i t ion  and proceed t o  d e f i n e  t h e  a l lowab le  

pressure drop f o r  acoust ics.  

I n  F igure  2-30, t h e  q u a n t i t y  ( A ~ * / P ~ ) A M  i s  g iven versus c a v i t y  f l o w  

Mach number M f o r  a  KrF l a s e r  operated w i t h  o p t i c a l  m u l t i p l e x i n g  alone 

(no pu lse  compression). Two reasonable values o f  f l o w  e f f i c i e n c y  (0.10, 

0.20), r equ i red  fo r  a  p ro jec ted  KrF l a s e r  w i t h  an e x t r a c t i o n  energy dens i t y  

o f  10 J / l i t - a t m ,  a re  used. A t  M = 0  when the re  a re  no f l o w - r e l a t e d  losses,  

( A ~ * / ~ 5  IAM = ( A P * / P ~  ITOTALS This va lue i s  i n v e r s e l y  p ropo r t i ona l  t o  t h e  

f l o w  e f f i c i ency .  As t h e  M increases t h e  f l ow- re la ted  losses increase as 

M2 , however t he  separa t ion  between t h e  e f f i c i e n c y  curves remains t h e  same. 

The r e s u l t s  i n d i c a t e  t h a t  a t  qF = 0.10, t h e  maximum M i s  0.272 whereas ,at 

ijF, = 0.20, t h e  miximum M i s  reduced t o  0.194. Note t h a t  these maxjmfik 

values correspond t o  a  s i t u a t i o n  where t h e  acous t ic  suppression 3s accom- 

p l  i shed wi'thout pressure drop. Th i s  i:s..ee+ta.?nlyla,-desi'red-.goal.';-'arid i t  'may 

even. be approached w i t h  a  porous w a l l / m u f f l e r  type absorber. It i s  ou r  

f e e l i n g ,  however, t h a t  t h e  s t r i n g e t  pressure suppression requ i red  f o r  KrF 

1  asers w i  11 n o t  be achieved w i t h  s i  de-wal I (passive)  absorbers a1 one. 

So~iie f l ow- th~ough  (act i 've) absorbers w i l l  be r c q u i r e d  as w e l l .  The 
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pertnis.sisble pressure drop f o r  acous t i c  suppression, as i n d i c a t e d  i n  

F igu re  2-30, can be w e l l  u t i l i z e d  and t h e  maximum pe rm iss ib l e  M w i l l  be 

l e s s  than  t h a t  which corresponds t o  ( A P * / P ~ ) A ~  = 0  on t h a t  f i g u r e .  

The a v a i l a b l e  pressure drop f o r  pulse-compressed KrF/CH4 systems i s  

shown i n  F igu re  2-31. Two pulse-compression c e l l s  a re  considered, one a t  
L 

- '-/ - ' 1  ptm CH4 and t h e  o t h e r  a t  5  atm CH4. I n  these c a l c u l a t i o n s  i t  has I .( ----- -- ~~ assumed t h a t  t h e r e  a r e  no B ~ r e ~ u i r e m e n t s  on t h e  medium w i t h i n  t h e  

KrF l a s e r  c a v i t y .  Namely, i t  i s  assumed t h a t  t h e  KrF l a s e r  i t s e l f  

r e q u i r e s  no f l o w  management, ( A P * ~ ) ~ ~ ~  = 0, and t h a t  t h e  acous t i c  suppres- 

s i o n  which may be r e q u i r e d  f o r  i t s  c a v i t y  can be achieved w i t h o u t  any 

p ressure  l oss .  We aga in  show curves f o r  two reasonable va lues o f  t h e  

combined f l o w  e f f i c i e n c y ,  qF(A+B) = 0.10 and 0.20. The i n d i v i d u a l  curves 
fad1 of f  more r a p i d l y  w i t h  M, as compared t o  t h e  case shown i n  F igu re  2-30, 

KL~&%L!L?" - 

;because o f  t he  i t r i c t e r  media homogeneity r equ i remen t i  i n  t h e  CH c e l l  : 1 ,-------- 
---._ -- - - -  - A _ - -  4- -- 

F igures  2-30 and 2-31 i l l u s t r a t e  what i s  t h e  a v a i l a b l e  p ressure  drop 

f o r  p ressure  wave suppression, as a  f u n c t i o n  o f  c a v i t y  f l o w  Mach inimbers ,/ 
.---- 

f o r  t h e  d i f f e r e n t  KrF/CH4 systems cons idered  here. Note t h a t  f o r  a  system 

which employees a  5  atm CH4 c e l l ,  t h e  p ressure  drop i s  l i m i t e d  t o  ( A P * ) ~ ~  5 
0.08 P5, even a t  ve ry  low f l o w  r a t e s  and M (which i m p l i e s  smal l  f l o w  w id th ,  

W, and low PRF). We cannot es t ima te  a t  t h i s  p o i n t  how d i f f i c u l t  a  t a s k  

t h i s  may be. The r e s u l t s  ob ta ined  so f a r  o n l y  e s t a b l i s h  t h e  requi rements 

on t h e  acous t i c  suppressors which a r e  y e t  t o  be developed. 



Figure 2-31. Pressure Drop Available for  Acoustic Suppression 
in the Raman Cell Versus Mach Number for  a Pulse- I 

Compressed KrF System. 
-LL - i  1 
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2.3.7 Comparison With the CO7 System 

&. I t  would be interesting to  compare a t  t h i s  point the resu1. t~ for,. 
the KrF and C02 systems, using the same format. We have estimated the 

pressure drop required fo r  flow management of the C02 laser ,  ( A P * ) ~ ~ ~ ,  

using the procedure outlined in 2.3.5.2. This value of AP* was then 

subtracted from the overall permissible pressure drop to  give the 

fraction available for  acoustic suppression. The resul ts  are shown in 

Figure 2-32 for  the range of flow eff ic iencies  which i s  of in te res t ;  

namely, between qF  = 0.1 and 0.2. The maximum pressure drop available 
i s  somewhat smaller in C02 than in KrF, b u t  the fa l l -of f  with increasing 

M i s  also smaller. Operation a t  high M values seems to be permissible. 

Other than determining the pressure drop available for  acoustic 
,A i r t r  i l  

suppression, Figures 2-30 - and 2-31 can be used to  determine the ' 
I!jjJ 

upper l imit  on the flow Mach number, which can be used only i f  pressure 

wave suppression requires no pressure drop. This maximum M determines 

also the maximum value of the product WxPRF. Using these limiting values 

of M ,  the inverse relationship of W and PRF i s  shown in Figure 2-23 for  

the different  systems considered here. This figure seems to indicate that  Zed 

i f  the pressure drop associated with acoustic suppression i s  indeed zero,7' - ~~ 
there i s  no serious limitation on e i ther  the flow length, W ,  or the pulse 

- - -- 
C L  I 

repetit ion frequency, PRF, of these 1 aser systems. ~ h e s e  curves ihoul-d" 

be viewed as the upper l imit  of W x PRF when q F  = 0.1. If higher flow 

eff ic iencies  are required, the maximum M and W x PRF product will be smaller 
than shown here hy a factor, proportional to  the square root of qF. 

Additional work on 1 aser f l  ow systems, including other candidates 

such as HF and Gr VI, is..  now in progress and will be reported on in our 
final report. 

-- -- - - ~ .  . . .  .i, , . ,  ~ .. 1; - c : ~ ( G  .,,, X L .: 
: '  J f  s if&QIT r :  , -  , , a <  L:r: (- ly i 

+ >  + 24 p , ;;; - , \  \ f -  YF . 
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Figure 2-32. Pressure Drop Available fo r  Acoustic Suppression 
Versus Mach Number f o r  an Advanced C02 Laser Module. 
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Figure 2-33.  Maximum Flow ~ e n b t h  W Versus PRF Allowed f o r  
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3. PRESSURE WAVE SUPPRESSION STUDIES 

3.1.1 Object ives and 'Approach I 
I 
I 

Gas-phase lasers;  when i n i t i a t e d ,  r e t a i n  w i t h i n  t he  c a v i t y  gas a  I 
l a r g e  f r a c t i o n  of t h e  t o t a l  - ins tan ta ieous  energy re1ease:d. Th is  r e s i d u a l \  

I 
energy leads t o  subs tan t i a l  hea t ing  and overpressure i n  t he  c a v i t y ,  and! 

I I 
generates pressure waves which - then veverberate i n  t he  f l o w  system. I 

I 
I n t e r a c t i o n  o f  t h e  waves w i t h  t h e  v a h o u s  acous t i c  suppression devices p 

I 
and f l o w  c o n t r o l  and c o n d i t i o n i n g  elements i s  compl icated and produces I 
inhomogeneit ies i n  t h e  gas. Since s i k h  d e t e r i o r a t i o n  o f  t he  medium I 

I 
degrades t h e  beam q u a l i t y  o f  t he  sucCeeding pulses, i t  i s  mandatory thalt 

I 
these pressure waves be a t tenuated  i n  a  t ime  which i s  compatible w i t h  t!he 

I I 
pu lse  r e p e t i t i o n  frequency o f  t h e  l a s e r .  We must f i r s t  t r y  t o  understard 

I 
and q u a n t i f y  these e f f e c t s  and then proceed t o  develop pressure wave I 

I 
-a t tenuat ion  -devi-ces -which - h a v e - a - l ~ ~ w ~ ~ r e s s u r e -  drop-and-can-be- -i-ncorporaited 

I 
i n t o  t he  c losed- loop f l o w  system o f  a f u s i o n  l a s e r .  I  

1 I 
I I 

Al though the  phys ica l  bas i s  o f  these e f f e c t s  i s  we.11 understood inl  
I 

p r i n c i p l e ,  t h e  tremendous d e t a i l  o f  aompl i c a t e d  mu1 t id imens iona l  and ndn- 
1 I 

l i n e a r  phenomena which occur t h r o u g h l i n t e r a c t i o n s  between the  pressure I 
I 

waves, t h e  f l o w  and t h e  geometry o f  t h e  var ious  devices i s  n o t  amenable! 
I  I 

t o  ana l ys i s  o r  computation. However: experimental  i n v e s t i g a t i o n  and emp i r i ca l  
I I model ing i s  i nva luab le  i n  i d e n t i f y i n g  the  impor tan t  issues and i n  eval-I 

u a t i n g  t h e  i n f l u e n c e  o f  var ious  p a r d e t e r s .  The models can then be i ndo r -  
I I  

porated i n t o  t he  e x i s t i n g  approximate p r e d i c t i v e  methods, such as one- I 
1 I 

dimensional computer codes. A shockl tube prov ides a  simple, inexpensive 
I 

l a b o r a t o r y  t o o l  t o  produce and measure such pressure wave-flow in te rac t l ions  I 
i n  l a s e r - l i k e  geometries and i s  usedlhere t o  s imu la te  a  s i n g l e  pu lse  o t  

I 
s u c h  l ase rs .  This  approach serves tee  f o l l o w i n g  o b j e c t i v e s :  I 

I 
I I I 

Val i d a t e  e x i s t i n g  approximbte a n a l y t i c a l  /computat ional p red id -  
t i o n  techniques (e.g. , the  11  -D FACTS Code) I 

I 
I  I 
1 I 
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I 

I I 
e~   eve lop d iagnos t i c .  ' capab i l  i i t ies t o  measure a t t e n u a t i o n  o f  I 

pressure  waves and t h e  e f f e c t s  o f  these waves on t h e  medium I 
homogeneity and beam qua l i t y . .  I 

I I 
a I d e n t i f y ,  i n v e s t i g a t e  and dodel t h e  . impor tant  i ssues  t h a t  I 

a r e  n o t  w e l l  understood, i r i  o r d e r  t o  improve t h e  capab i l  i t i e s i  
. . 

o f  t he  above p r e d i c t i o n  tedhniques. I 
I I 
{I I a Develop and t e s t  new pressyre  suppress ion concepts and b u i l d  I 

up a  da ta  base o f  performaqce c h a r a , c t e r i s t i c s  f o r  a l t e r n a t e  
c o n f i g u r a t i o n s  and designs lw i  t h  improved performance. ( I 

I 
I 

3.1.2 Shock Tube Tes t  F a c i l i t y  I 
. . 

I 
13.1.2.1 D e s c r i p t i o n  o f  t h e  Shock Tu6e . , . . .  .. . I 

I I I 
I 

The shock tube  is lmdde o f  alumihum (0.25" ' t h i c k )  and. Aas a  rectan-I  
I 

g u l a r  c ross  s e c t i o n  (3.5" square i n t e r n a l l y ) .  I t . h a s  two 8" and one 241 

d r i ve r -  sec t ions ,  wh. ich t o g e t h e r  w i t h  :some f i ' l  l e r . ' b l o k k s  a l l o w  v a r i a t i o n :  

o f  d r i v e r  l k n g t h  f rom 2 "  t o  40" i n  2'!/ steps..  There ? re  two sec t i ons  f o k  
I 

t h e  d r i v e n  tube,, 30" and 48" long.  ~ o r m a l l y ,  t h e  tube i s  operated a t  I , G k  
I I , 3" 

ambient'  c o n d i t i o n s  w i t h  compressed a i r  f o r  d r i v i n g  waves (F igu re  3-1) .  

D i f f e r e n t  .- thicknesses - -- -.--. o f  Mylar- and s d f t  aluminum a r e  used as diaphragmst, , 

I 
which bu lge  f rom t h e  d r i v e r  p ressu re {and  press a g a i n s t  a  s e t  of crossed! 

k n i f e  blades', a t  a  d i s t ance  which cari be s e t  so thei:diaphragm b u r s t s  a t ;  C ,a 
a Predetermined overpressure (F igu re  13-2). The d r i v e r  p ressure  i s  meas'ured ,'3 

I 
by d i r e c t  r ead ing  j u s t  be fo re  t h e  didphragm b u r s t s .  Transducer p o r t s  I I . 

a r e  p rov ided  a t  v a r i h s  l o c a t i o n s  fo; measuring t h e  t r a n s i e n t  waves. A: I 
9.5"- long o p t i c a l  s e c t i o n  . . w i t h  t w o  :ogposi t e  w a l l s  rep laced  b y  6.5:';''- 1 . 

d iameter  S c h l i e r e n  windows a l l o w s m e ~ s u r e m e n t  i f  tn&.:optical qua1it.y of :  t 

'gas w i t h i n  and immediate ly  o u t s i d e  t h e  tube. The t h i r d  w a l l  o f  t h i s  I 
I I 

s e c t i o n  i s  .0.375" t h i c k  an'd i s  rep lapeab le ,  so t h e  behav io r  o f  a  v a r i e t i  

of a c o u s t i c a l l y  suppress' ing o r  a b s o r t i n g  w a l l s  can be bbserved ( F i g u r e  h- 
I I 

..' Besides t h e  ' regu la r  . d r i v e n .  s e c t i o n  ;' a  vent.ed d r i v e n  s e c t i o n  i s  a1 s.o 
I 

used. Th is  has t h e  same c r o s s  sec t i dn ,  except  t h e t  t h e  t o p  w a l l  has I 
7 :  I 

p e r f o r a t i o n s  (7.2% open, 23 /64" -d iameter  h o l e s  i n  a  symmetric, r e c t a n g i / l a i  
I I 

three-in-a,-row p a t t e r n ) . '  This,  c o n f i g u r a t i o n  I . corresp'onds t o  a c o u s t i c  1 
I '  s u p p r e s s o r s  t h a t  h a v e  been found t o  Be v e r y  e f f e c t i v e  i n  pu lsed  l a s e r s  
I (Here t h e  l invented w a l l s  o f  t he  tube  [ r ep resen t  su r faces  o f  symmetry. ) I 

I I 
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Figure 3-1. The Shock ~ubei Test Facility (24" Driver) 
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Section lengths o f  8", 16", 39" and 48" a l low pos i t i on ing  o f  the op t i ca l  
T 

I sect ion a t  d i f f e r e n t  locat ions i n  the vented tube, t o  examine the q u a l i t y  

o f  the l oca l  medium (Figure 3-3). I 

The nominal running condi t ions f o r  the t es t s  described l a t e r  are * 
tabu1 ated be1 ow: I 

I 

DIAPHRAGM . BURST PRESSURE SHOCK MACH NO. 

My'i a r  .O. 00025" 6 ps ig  1.08 

. . My1 a r  0.001 I' 171 ps ig  1.18 
B " A1 uminum 0.012 '! (1  500-0) 8[( ps ig  1.43 

n 

The shock tube i s  t o  be used t o  va l ida te  the code f o r  simple shock tube 

f lows f o r  la rge  times (several reverberations), and f o r  the response o f  

open ends, o r i f i c e s ,  nozzles, vents, porous mater ia ls,  etc., t o  a v a r i e t y  

o f  shock pulses. The vented conf igurat ion a lso i s  t o  be used t o  measure 
J 

wave at tenuat ion and degradation of the medium under condi t ions simulating, I 
( 

; var ious lasers,  some o f  which invo lve outer resonator chambers around , , 
the vented tube, o r  f low condi t ion ing devices incorporated w i t h i n  an I 

I - - 

absorber representing the upstream at tenuator o f  a laser .  

3.1.2.2 Pressure Diagnostics and Instrumentation 

The pressure measurements o f  the strong wave t rans ients  are made w i t h  

p iezoe lec t r i c  gauges w i t h  b u i l t - i n  in tegrated c i r c u i t  preampl i f iers.  Two ' 

types o f  gauges are used: PCB 113A21 and PCB 106b. The f i r s t  has 1/411 

d i  , 20 mV/psi s e n s i t i v i t y ,  1 mlcrosec r iset ime, 0.05 ps i  reso lu t ion  - - ,I 
1 range. The 1 at%er has 1/21' d i  amiter ,-300 mV/psi sensi ti v i  ty , 

riset ime, 0.0003 p s i  reso lu t ion,  and 15 ps i  range.** However, 

only h r  a few tes ts ,  as mentioned, the l a t t e r  gage was used i n  a recessed 
adapter w i t h  0.03" opening - and approximately - -  0.3 msec response time. 

The res idua l  acoustic f l uc tua t ions  a f t e r  long time can be measure41 

*I@ c e l  and Kjaer condenser microphones type 4136.  the^ have 1 /4" _- 2- 
A' I ' ; 

- 5- 

4 16 

' 

* These condft ions are f o r  a l r  dr lv ikg  a i r ,  w i t h  k n i f e  blades se t  a t  0:211 / 
from the diaphragm. I 

- t* I 
The gages are normally used f l u s h  k i t h  the  Pnner surface o f  the shock tube. - 

I ' I 



- ments are f a r  beyond the range o f  the  microphones and some automatic 

shu t te r ing  i s  required t o  p ro tec t  them. 
- -- - 

Prel iminary measurements have bden made w i t h  p iezoe lec t r i c  gauges 

and are recorded photographical ly  f r d m  a Tektronix 556 osci l loscope with 

I 

i 
1A6 preamp1 i f  i e r s  (1 mV reso l  u t i on )  . ! Future measurements w i  11 be acqui;redl, 

stored, processed and reproduced d i g i t a l l y  w i t h  a Norland 3001 (Figure , 
3 -4 ) .  This device has f o u r  transien; recording channels (1024 po in ts  4t 
'200 kHz each, o r  two channels o f  2044 po in ts  a t  500 kHz each) w i t h  10-b:it 

- - 

diameter, 10 V/psi sens f t i v i t y ,  5 microsec r iset ime, lom5 p s i  reso lu t ion  

and 1.5 p s i  range. The amplitudes s f  the i n i t i a l  t rans ients  i n  the  experi- 

1 reso lu t ion,  coupled w i t h  a programable microprocessor which con t ro ls  a1 
I 

cathode ray tube d isp lay  and a f l e x i d l e  d isk  magnetic mass storage devire. 

It can a lso d r i ve  a p r i n t e r  and analdg p l o t t e r .  The b u i l t - i n  software ; 
i s  extensive and sophist icated , and Hand1 es Fast Four ier  Transforms, I / Correlat ions, Convolutions, etc., w i i h  simple keystroke operations, as 

wel l  as performs algebraic operations, in tegrat ions,  d i f f e ren t i a t i ons ,  

etc.  , on arrays o f  data, w i t h  simple user programs. ' 1 
I 

3.1.2.3 Optical Diagnostics 
I I 

1 I 
1 

- - - The- o p t i  cal-changes-caused -i n themedium by -thewaves - a m - i n i f  i.allyiy 

strong and contain sharp gradients, qh ich decay t o  weaker and smoother 

f l uc tua t ions  i n  time. Therefore i t  1s advantageous t o  f i r s t  use shadow- / 
I graphy t o  v i sua l i ze  the i n i t i a l  natune and extent  o f  the degradation of: , 

homogeneity i n  the medium, and then $chl i e ren  technique f o r  the l a t e r  i 
stogcs. Both methods use a spark l i d h t  f o r  a po in t  source (0.03" p in  1 

1 
hole, submlcrosecond f l a s h )  and a 10dll foca l  length  spher ical  m i r r o r  fqr ' 1 
co l l ima t ing  the beam. I n  the shadowiraph, Polaroid black and whi te f i l b  I 

I I 
1 type 667 and type 57 (ASA 3000) are uked f o r  recording the image d i r e c t l k  1 
I I 
j behind the op t i ca l  section. The Schl i e ren  enhances the s e n s i t i v i t y  by : 1 
r e f l ec t i ng  back the col l imated beam (hrough the op t i ca l  section, and , 

I u t i l i z i n g  the same spher ical  m i r r o r  fo refocus the beam onto a pinhole br 

j a dot  which e l  iminates the undesireable por t ion  o f  1 i g h t  from the beam., I 
T h e  f i l t e r e d  beam i s  then used t o  imJge the op t i ca l  sect ion onto the f i l l m . )  

' I 
I ~ ~ t h  of the techniques above, a i  though excel 1 ent  i n  inves t iga t ing  
I 

lw ture  - of the op t i  ca l deter lora t !  on o f  the m g i u m w  n o t  s u W i 8 i i  
I 
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1 ' - 

1 q u a n t i t a t i v e  t o  measure phase p e r t u r t i a t i  ons t o  a  coherent beam o f  1  i g h t .  I 6- 
I I This,can be done w i t h  holographic  i n te r fe rome t ry .  F igure  3-5 shows a  I 

I -  . r 
s c h e i a t i c  o f  t h e  holocamera which i s  ; t o  be used i n  t h i s  program. Here,, 
- -3 -.- -- -.., +.. - -.--*. .re- 

I b a s ~ c a l  l y ,  t h e  monochromatic, cohere(t c o l  1  imated beam o f  a  Q-swi tched 6--- 
I 

. LrubyLl aser i s  sp l  i t  i n t o  a  referel ice !beam and a  scene beam. The scene i 1- - 
I I 1 beam i s  double-passed through t h e  o p t i c a l  sec t i on  and i s  then combined I I - 

rl - 
l w i t h  the  re fe rence beam t o  form a f i r ( e  I f r i n g e - i n t e r f e r e n c e  pa t te rn ,  a  I I - 

-1 2 I hologram, on t h e  f i l m .  This p a t t e r n  ;conta ins the  i n fo rma t i on  o f  t h e  12- - 1 1 I - 
- l p e r t u r b a t i o n s  caused by the  o p t i c a l  g ra in .  The development o f  inhomogeneipies - 

I i n  t he  medium produces a  changed p a t t e r n - o n  the  same f i l m  du r i ng  a  secdnd 
I 

exposure. The Moire f r i n g e s  'formed by t h e  two pa t te rns  correspond t o  (he 

-1 8 I I f r i n g e s  o f  a  ~ a c h - ~ e h n d e r  in te r fe rometer ;  and can be used t o  measure t h k  I . 1 8- 
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3 . 1 ,  Shock Tube Experimental ~ e s i l  t s ,  ' 1  
I I 

R, 
3.1 1  C l  osed-Tu be Tests 

I I 
I I 
I I 

Simple shock tube t e s t s  were peqformed f i r s t  t o  ob ta in  pressure wave - 
I 

d a t a  f o r  comparison w i t h  the  computat'ions, i .e . ,  t o  ensure good agreemept 
I 

- 1 was done w i t h  the  s t rongest  and the  deakest diaphragms. The r e s u l t s  lo!r I - 

- 
- 
- 

I Two pressure gages (PCB1 13A21) Were loca ted i n  the d r i v e n  section,; I - 
A 

f o r  the  s h o r t  t ime when the  f l  ow i n l a h e  shock tube i s  we1 1  understood ahd 

t o  examine the  development o f  d i  f f e r l n c e i  over ,  much longer  per iods.   hii is 
I I 

a 24"- long d r i v e r ,  w i t h  78"- long d r i ven  sec t i on  a t  ambient pressure are1 
I I 

presented be1 ow I 

I I 

- 
- 
- 

- 
+' 18- - 

- 

I l 

one near the  midpo in t  and one near the  f a r  closed end ( respec t i ve l y ,  331'' 

and 76" from the  diaphragm). F igure  show osc i l loscope 
I 
I 
I records, r e s p e c t i v e l y  f o r  0.00025" My1 a r  (6 p s i g )  and 0.01 2" s o f t  I 

- 
- 

I 
aluminum (80 p s i g )  diaphragms. I n  each f i g u r e ,  the  .top p i c t u r e  shows tihe 

s h o r t  t ime (10-20 ms) t r i m s i e n t s ,  and the  bottom p i c t u r e ,  t h e  long time1 
I 

(100 ms) o s c i l l a t i o n s .  The top  t r a c 6  i n  each p i c t u r e  i s  the s igna l  from 
I I 

-3 6 I  1 across the  diaphragm i s d i v i d e d  b e t w ~ e n  two waves when the '  diaphragm 3 6  
- - 

- 
- 
- 
30- - 

- 
- 
- 

- I burs ts :  a  compression wave, which steepens i n t o  a  shock as i t  t r a v e l s  ! I - 

_the -g a,g e-near_ -t,h.e. .mi;dp-0i.n.t-of 3h.e -t u b*e,- .and- t,he- b-oLtom-t rac-e-is- _th.a-t-ol,-tbe - 
gage a t  the f a r  end o f  t he  d r i v e n  se4t ion.  - 

I I / - 
As i s  we l l  known i n  normal shock tube. o ~ e r a t i o n .  the  ~ r e s s u r e  d i f f 'erence - 

- - 
- l i n t 0  the  d r i ven  ~ e i t i o n ~ a n d  a  r a r e f a d t i o n ,  which; spreads as i t  t r a v e l s  / I - 
- 
-4 2 
- 
- 
- 
- 

I 
r e f l e c t i o n  from the  c losed end o f  t hg  d r i ven  sec t i on  and i t s  t h i r d  

a f t e r  i t s  r e f l e c t i o n  from the  closed lend o f  the d r i v e r .  Thus, near the; 

i n t o  the  d r i v e r .  :; ~ h ~ i a r i f a c t i o n  ce( lects from tne  c ' losed end o f  t he  I 
d r i v e r  and then t r a v e l s  i n t o  the  d r i i e n  sect ion,  f o l l o w i n g  the  shock. The I 

two waves together  form a  compression pulse, approximately tw i ce  the  lepgth  - 
- 

of t h e  d r i v e r ,  which then bounces badk and f o r t h  between the  two closed; I - 
I ends o f  the  whole tube. I 
I I 
I I 

I n  F igure 3-7, the gage near t h y  midpo in t  ( t o p  p i c t u r e ,  t op   trace)^ 0 I 
shows the  f i r s t  pass o f  t h i s  compresiion pulse, i t s  second pass a f t e r  , 

.- -- 6 
lm idpo in t  o f  t he  tube, each pass o f  the  compression pu lse  can be observeb / - 

- 
42- 
- 

- 
4% 

/ 9' - 
Y '  - 

- 

I 
separate ly .  For the  gage near the  c losed end ( t o p  p i c t u r e ,  bottom t r a c k ) ,  

I 
. I I ' I 
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Figure 3-8. Closed Tuqe Tests,  Strong Waves 
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the  i n c i d e n t  pulse and i t s  r e f l e c t i o n  are  superposed. The overpressure 

i n  t h i s  case i s  small, and the  waves e x h i b i t  almost a 1 i nea r  (acoust ic )  

behavior, i .e . ,  the superpos i t ion  r e s u l t s  i n  approximately tw ice  the  ampli- 

tude. Thus the  gage near the  closed end observes tw ice  as l a r g e  a pulse, 

h a l f  as of ten,  i n  con t ras t  t o  t h e  o ther  gage. This behavior p e r s i s t s  

f o r  many r e f l e c t i o n s  (bottom p i c t u r e ) ,  w i t h  very l i t t l e  decay i n  t h e  
amplitude o f  t he  o s c i l l a t i o n ,  as may be expected o f  waves which are  almost 

1 i near. 

I n  comparison, F igure 3-8 shows the  waves produced by a s t rong over- 

pressure which are q u i t e  nonl inear.  Although q u a l i t a t i v e l y  the  behavior 

i s  q u i t e  s i m i l a r ,  i t  i s  easy t o  see t h a t  t h e  r a r e f a c t i o n  spreads f a r  more 

and t h e  shock r e f l e c t i o n  from t h e  c losed end more than doubles the  pres- 

sure ( top  p i c t u r e ) .  Here the  t races end before t h e  second pass o f  t he  

compression pulse i s  completed. I n  t h i s  case, the  amplitude o f  the  waves 

decays r a p i d l y  due t o  t h e  s t r o n g l y  non l inear  behavior (bottom p i c t u r e ) ,  

as the  r a r e f a c t i o n  catches up w i t h  and eats i n t o  the  shock wave and the  

mean pressure s e t t l e s  t o  a value above the  i n i t i a l  pressure i n  the  d r i ven  

sect ion.  Some a d d i t i o n a l  weaker waves can a l s o  be seen i n  t h i s  p i c t u r e ,  

as w e l l  as i n  t h e  previous f i g u r e ,  where they are  much weaker. Such 

waves may be caused by r e f l e c t i o n s  from contact  surfaces (entropy discon- 

t i n u i t i e s  caused by the  n o n l i n e a r i t i e s ) ,  o r  from experimental non- 

i d e a l i z a t i o n s  l i k e  diaphragm p e t a l s  o r  area c o n s t r i c t i o n s  (25%) a t  t h e  

k n i f e  edge s t a t i o n .  

3.13.2 Open-Tube Tests 

The f l o w  ducts f o r  t h e  fus ion  l ase rs  may o f t e n  have t o  be open 

ended, so a smooth mean f l o w  can be maintained w i t h  a minimum pressure 

drop. Also, understanding o f  t h e  impuls ive j e t  f lows generated by wave 

i n t e r a c t i o n s  w i t h  nozzles and o r i f i c e s  i s  a key issue i n  e f f e c t i v e  acoust ic  

wave suppression and c o n t r o l  o f  medium homogeneity. Therefore, pressure- 

wave data was obta ined i n  the  simple s i t u a t i o n  o f  an open-ended shock tube, 

f o r  comparison w i t h  model computations o f  wave r e f l e c t i o n  and subsequent 

long-t ime o s c i l l a t i o n .  This i s  done f o r  t he  weak and s t rong waves, as i n  

the  previous case o f  a c losed shock tube. The shock tube con f igu ra t i on ,  

instruments and t h e i r  l oca t inns ,  e t c . ,  are a l s o  i d e n t i c a l  t o  t h a t  case, 

except t h a t  t he  f a r  end o f  t he  d r i ven  sec t ion  (which has no f lange) i s  

l e f t  open t o  t h e  atmosphere. 



ressiod pulse t ravel  ing towards the open lend 

. However, a t  the dped 

f f ract  and diverge I 

nd tends back t o  atmispheric -+ -- 

c t rave l  times acr 
-- 

n i s  a complicated - 

a@ttldimensional process, and ,sets up /transverse osci 1 la t ions  near the 

1 open end. Neverthele$s, from a 1 arg8r distance inside the tube, i t  s t  

I appears almost one-dimensional and r /sul  t s  i n  a negative re f l ec t i on  

/ coef f ic ient ,  i .e., a compression re f l ec ts  as a rarefact ion and v ice ve+pa. i Thfs i s  a d i rec t  r e s u l t  o f  the condit ion tha t  the pressure a t  the open I 

1 end returns quickly t o  atmospheric piessure. 

This phenomenon o f  pulse inversion during re f l ec t i on  from an open , 
-- 

end can be seen i n  Figure I 3 3 , /  f o r  weak waves ( top picture, top trace);. 

I Here, the gage near the midpoint o f  fhe tube c lea r l y  shows the incident! 

lcompression pulse coming from the dr iver  and then i t s  inversion due t o  1 

I re f lect ion,  i .e., a rarefact ion pulse returning from the open end. Th 
lgage m a r  f h 3  5p3n- end (top ~ i ~ t u r ~  ,fbbttoiii trace) shoEs-oii'lg minor d 
I 1 t i ons  from the ambient pressure as efpected. This can be interpreted ap 

; the simul taneous occurrence (superposition) o f  the compression and t h  
I rarefact ion pulse a t  t ha t  location. However, the real  process i s  quite! 

complex as evidenced by the sharp deyiations from ambient pressure and 

I 
the high frequency f luc tua t ion  which [appears t o  be a transverse osci 11 akion 

I 

i n  the tube. I 1 I I 
I I 

The re f l ec t i on  o f  the rarefact idn pulse from the end o f  the drive;, 1 '  
I 
a n d  again i t s  reflection from the opt/n end as a compression pulse, etc.1, I 
I 1 
I can be seen c lea r l y  a t  the gage near Ithe midpoint (bottom picture, top I 

I / trace). An inversion octurs a t  each l re f lec t ion  from the open end, and I 1 
1 a f t e r  each inversion the pwl se makes ;two passes over the gage, on i t s  

I t o  the dr iver  and back. Ia contrast [ t o  the corresponding closed tube I 
I 

case (Figure 3 -17, \bottom pfcture, tqp trace), the decay o f  osc i l  lation1 

1 i n  the open tube i s  substant ia l ly  ral/id. This i s  a t t r ibu tab le  t o  the I 
I I i rad iat ion o f  acoustic energy t o  the atmosphere from the open end, and to 

I 1 the k ine t i c  energy transmitted t o  f l y i d  when separation and v ~ r t e x  forqa- 
i 
1 t i o n  - occurs -- -. a t  the - mouth - - - o f  - the - - open - -- +------- tube during - each ref lect ion process. 1 

G G  - 
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recoverable, but  i s  d issipated by turbulence and eventual ly by v iscos i ty .  

I n  t h i s  context, i t  i s  i n te res t i ng  t h a t  the r e f l e c t i o n  from the open end, 

1 i n  amplitude than the inc iden t  compression pulse, even though the presshvd 

a t  the open end (bottom t race)  returns very c lose ly  t o  ambient pressure 
-. - '3 

during the re f l ec t i on .  - s t *  % q 
_I 

For the stronger waves, a1 though qua1 i t a t i v e l y  the same phenomenon, \o i 
I o f  inversion occurs upon r e f l e c t i o n  from the open end (Figure 3-l0,ltop I 

- 3  I.* 
- - I - + 

picture) ,  the r e a l  process can be even more complicated and can make gross 

changes i n  the overa l l  p ic ture.  For example, the re f l ec t i ons  seem t o  

decay so s t rongly  t h a t  i t  i s  hard ly  possible t o  t race a c lear  sequence bf 
pulses being inver ted and re f l ec ted  datween the two ends of the tube i '  , . 
(bottom p ic tu re ) .  Only a mean long i a v e  o s c i l l a t i o n  i s  observed 

t 

seems t o  correspond t o  the organpipe :mode o f  the whole tube. It i s  a lsb , #  + 
I 

important t o  note t h a t  the pressure a t  the open end i s  unable t o  return,  

t o  ambient pressure dur ing r e f l e c t i o n  t o p  p ic ture,  bottom trace), i n  il 
TontFaSt-to t h e  "e3kKwave case (Figure 3 -9  ,/ top p i  ctbre, bottom trace)$. , 

).. 

It i s  very l i k e l y  t h a t  the  f low out d f  th&-mouth-o f the  open tube i s  r - 

supersonic dur ing the re f l ec t i on ,  and supports expansion waves i n  the f jow r This i s  s im i l a r  t o  the obl ique expdn$ion waves found i n  over-expanded I 

I 
I 

j e ts ,  i n  which case the pressure i n  the nozzle i s  maintained above ambient1 
pressure. 

3 ' 3 Vented Duet Tests 

I coustic suppressors using the dented duct concept are known t 
I 

qu i t e  e f f e c t i v e  i n  r e p e t i t i v e l y  pul  sed gas-phase 1 asers . Here, sho 

long shock tube d r l ve rs  were f i r e d  i i t o  a vented dr iven sect ion (open 

{ t o  the atmosphere, but  w i t h  a closed end), and at tenuat ion o f  pressure 

/ o s c i l l a t i o n s  was measured f o r  strong and weak waves. Further, spark 

)shadowgraphy was used t o  v isua l~ ize  and understand various phases o f  the! 1 
[ f l o w  through vents, and the nature and extent  o f  medium contamination , , 
lproduced by the f low i n t o  the tube during the negative phase o f  pressurk I 
. o s c i l l a t i o n ,  even a t  a s ta t i on  f a r  away from the d r i ve r .  I I 
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The eornespondence between the geometries of a typical laser flow ; 6- 
duct and the vented configuration of'lthe shock tube is  shown i n  Figure )-1 - 

- 
The bottom wall of the shock tube (o$posite the vented wall on top) and; - 
the closed .end wall of the driver represent surfaces of Symmetry across1 

I which vepy l i t t l e  flow i s  expected t d  occur. There i s  almost no variatfion 
1 i n  the wave and flowfields of the laser in the direction of the beam, I I - / and the nawowness of the shock tube ' i n  th is  direction i s  of no consequkncb. 
The upstream suuppresrar of the laser , m a y  be difFerent and, again, i t  is1 

I 

possible to  test Onde;lpa,dent'lymt dorziP1'guratfon i n  the shock tube. I 
I I 

For the experhents &scrlhad $ Iw, the vented driven section was; e 
1 13" 1 ong , w?tb thp- .,@t%&gEl g&d$ak~ .placed a t  17" from the di aphrap 
( F f g u r e  3-6), BP *di F%%M im@vr weful t o  1 ocate one gage 

- 
I 

a t  9" from the' diaphragm i n t o  the dri'ven sectio " 3~ !@% other gage a t  $he 
center of t$e driver endwall, although a few tes t s  w& made w i t h  the gbges 

a t  33" and 78" from the dfaphragm for compar' t&&@ previous tests .  - 
Generally, the piezoelectric transducers wer %B with the shock' tu,e 

I 
- 

wall. Only spectall %&f%% P C & l ~ ' o - ~ ~ - ~  $a recessed mounts as mentio led 30- - 
a b w  - Zwo d l  d Mde%?dad2&', &Zh-$~.~-tybes - 
of diaphragms g7vTng d a'P '8'6 psYg an'd 6 psig. Pressbre 

. variatfon's Mere observed also for  long times (0.1 sec) an4 a t  h i g h  amplb f i  - 
cations. The far  end of the vented tube was normally closed, except fok a 
few tes ts  a& menttoned below. I 

I FEgure 3-12 shows the behavtor of the strong waves i n  the vented dbct' 

w i t h  an 8" driver. The top plcture {bows the pressure changes a t  the 
famtliar locatfons (33'' and 78" from !the diaphragm) in the driven sectien. 
Clearly, unlTke the prevtous cases, a repeating pattern of pulses does 

I 

not develop. TRe compresston pulse dram the driver is weakened substank 
t i a l l y  as i t  travels down the tube, dy the expanston waves generated frbm 
the outflow through the vents, whtch catch up w i t h  the leading shock. The 

reflection from the closed end becomes even weaker and i s  too small to 

be identified a t  the 33" location (bottom trace).  

The lower ptcture i n  thts ftgure shows the pressure variations insifde 
and close to the drfver. A t  9" from tRe drtver (top trace),  vevy strong , 
rapid fluctuations are observed imeqiately behind the shock, and the 
venting appears to result t n  a substantfal period of underpressure i n  th is  

rF 5 3420) 
L I -- 
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C 
I 
I 

canpressi~n pulse has /passe 

dr iver  (bottom trace), a s ign j f ieant  lunderslhoot i s  a1 so seen as the ga 
I 

b t e $ t . ~ ~ f ~ m  1-B ~ m , ~ , a t ,  -$rjy@r pverpressure. 1 

imp1 ies a pressure substanti a1 1 below the ambienk li 
I 

I 
I 
I 

-131 the signals from four  

I - .  
me sequence, ampl i f ied t o  exh ib i t  thk . . 

f ine-scale o s c i l  lwb.hoas a.fid $@ 4a%al$bs o f  undershoot. The high. frequehcy 

f luctuat ions tn . the tube ( top iplcture) probably r e s u l t  from the mult i tude 

of three-dfmengftmgl dlfY~actton WV/S, each being' rad.iated fromL a I 
d i f f e ren t  v a t  AvI8,. &a @ ~ e  )h@ek, &@$s@gi. over i t  . This must lead t o  a , 

I 

n t  o f  transverse osc i l la t ion ,  and p ther  complicated: . 
The high frequency osc i l l a t i on  a l s  a t  the 9" locattion 

, although i t  appears t o  have decayed strongky 
I 

r r i v a l  o f  the ref lected shock and i t s  re -  I 
I ca F ampl i f ied scale., 

A1 though obser~ed m$ .a ~ I & O  ~@&@&$O*P~ b ~ ~ l e ~ ,  %be pressure a t  the drive? 
on r -Its+'i-s-tan(ee 

from the vent R~ler. ~&bi?~fiimW waves, and gaga , 
locat ion #the tube center l ine (which i s  nsvcrse pressu* 

losc i l la t tons)  are possible reasons. The pressure inrghe dr iver  and i t s ;  1 1 v l c l n i t y  seems t o  recover from the undershoot f a i r l y  dmahotonlcal l y  i n  +is/  

case. I 
4 ,  L - .  - "  

I 
I 

The pressu~%i&&'~;a ROC qtbe isL 43* e j ' r e r  i n  the case o f  weak, 

lwaves are shorn i n  %$@F~,W/ ~ h e . i t & ~ ~ l & c t u r e  shows the pressure a t  I G , 
I-_ I 

19" from the dr fver  (tdp ,$p~poe) md ad';t&e dr iver  end wal l  (bottom trace!). I 
Q u a l i t a t 3 ~ ~ ~ f @ d t a y g s  I @ $ , B @ , ~ % @ ~ $ , ~ & ~ ;  , ~ j @ s i m i l a r ,  such as the I 

I 
I dccurrenei o f  expanston w l ~ e r  behind $a' shock, high frequency f~uctuat ionls,  

ershoot and the occuirence o f  the r e f l k e d  sbotk. The high 
uctuation seems r e l a t i v e l y  smaller and the - re f lec ted  shock I 

larger, inl$cating tha t  the venting i s  less attenuating weak 

waves. TW- t o  be expected since strong ce strong je t -1  i k e  

' flows through the v@nt-%alas khichick cduse mre energy di-ssi pation. The I i bottom p ic tu re  oh* the above pns;jre var ia t ions on ampl i f ied scales I 
1 ( top trace: X& bottan trace: X53 b d t t m  t race i s  sh i f ted  t o  the r ight :  I I 
bv 1 d iv is ion) .  ~ l e a r l y ,  &he r e l a t i v e  undershoot i s  la rger  i n  t h i s  case 
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and the pressure undulates as i t  returns t o  ambient condit ions, which 

substantiates t h o  f a ~ f  t h a t  vents are less ~ f f ~ c t i v e  f o r  weaker waves. 

The magni tudeof the undershoot i n  the duct pressure var ies along t h  

duct. It i s  maximum w i t h i n  the d r i v e r  and gets smalfer a t  l a r g e r  distances 

from the d r i ve r .  This i s  shown i n  Figure 3-15, -- - w i t h  the PCB106B gages ' a t  

d r i v e r  endwall ( top p ic ture ,  bottom t race) ,  and a t  the fo l low ing  distances 

from the diaphragm: 3" (bottom p ic ty re ,  top t race) ,  9" ( top p ic ture ,  top 

t race) ,  15" (bottom p i c tu re ,  bottom trace).  Qua1 i t a t i v e l y ,  t h i s  seems 

s i m i l a r  t o  a quarter-wave o s c i l l a t i o $  o f  a open tube which i n  t h i s  case 

i s  the d r i ve r .  However, there i s  no /  c l ea r  i nd i ca t i on  o f  the existence o f  ' 

a  d e f i n i t e  pressure node corresponding t o  the open end- 
- p- 

Figures 3-16 and 3-17 ishow the pressure va r ia t ions  a t  the d r i v e r  , - 

endwall and a t  the 9"ocation as recorded w i t h  PCB1 13A21 gages, res-  1 N 

pect ive ly ,  f o r  the strong waves and the weak waves. Again, the same 
\ 

* 

q u a l i t a t i v e  features are seen: expansion fo l low ing  the  shock, h igh 

frequency f 1 uctuat ions , undershoot ar(ld the re f l ec ted  shock. However, the ( 1  

ove ra l l  process occurs  correspondiog.iy r l m e r  for the longer d r i ve r .  The 

lower p ic tures i n  each f i g u r e  show the pressure s igna ls  a t  h igh amplif i lca- 

t i o n s ~  f o r  strong waves, X10; f o r  weak waves, X4 top t race,  X2.5 bottom 

trace.  Ayain, i t  i s  c l e a r  t h a t  f o r  weak waves the undershoot i s  l a rge r  

and there i s  pronounced undulation, i nd i ca t i ng  t h a t  the venting i s  less  

e f fec t i ve  f o r  these waves. It i s  i n t e res t i ng  t ha t  fo'r the long driver,, 

even the strong waves show some undulat ion bmparison o f  the r e l a t i v e  

undershoots and tho undulat ion f o r  the two dr ivers ,  both f o r  strong and 

weak waves, i t  appears that ,  f o r  a given venting, longer d r i ve r s  produce 

more undul a t i  on and perhaps bigger uqdershoots . The e f f e c t  seems stroncger 

f o r  the weaker waves. 

The behavior o f  the  res idua l  pressure A - f luc tua t ions  f o r  a per iod 

as long as 0.1 sec i s  shown i n  Figure 3-18, f o r  the case o f  weak waves. \ 

The top p i c t u re  corresponds t o  the 8" d r i ve r ,  the top  t race  i s  the pressure 

a t  9" from the  diaphragm and the bottom t race i s  t h a t  on the d r i v e r  endwal'l. 
, 

The f luc tua t ions  and undulat ions are seen t o  attenuate s t rong ly .  The 

l i n e a r  r i s e  i n  the  s igna l  from the d r i v e r  endwall gage i s  a spurious 

e f f ec t .  The yaye i s  reroed d t  the i ? i t i a l  d r i v e r  overpressure, and when 
L.-$ -.' . - l.- 
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the pressure jumps down to  ambient conditions the gage output swings 
negative, b u t  then slowly decays back to  zero in an exponential fashion 
(time constant - Q 1 sec) .  The beginning of th i s  exponential decay becomes 
very noticable a t  the high amplification used in these pictures. The 
next lower picture shows the corresponding pressure traces for  the 24" 
driver. Here, as expected, the undulations l a s t  longer. The two traces 
a t  the bottom of the figure are  the two top traces of the two pictures,  
observed a t  much higher amplification: top t race,  XI0 (8" dr iver)  ; bottom 
trace,  X25 (24" driver).  The timescale is unchanged. In order to  obtain 

good resolution of the small s ignals ,  the more sensi t ive PCB106B gages 
were used for  the measurements i n  thjs figure. Residual pressure fluctua- 
t ions as large as 0.01 psi a re  seen t o  pers i s t  fo r  times as long as 0.1 sec 
fo r  both drivers. For the longer dr iver ,  even the slow undulation i s  s t i l l  
quite noticeable a t  t h i s  time. 

Further t e s t s  were made w i t h  the PCB 106B gages flush w i t h  the shock 
tube wall, t o  confirm the nature of these residual osci l la t ions.  Only weak 

waves were f i red  from a 8" driver and the f a r  end of the vented section was 
l e f t  open. These pressure traces shown in figure 3-19 and 3-20 are comparable 
t o  those in Figure 3-14. The diaphragm material for  these t e s t s  is the 
.00025" mylar which i s  not very uniform and resul ts  in substantial variation 
from r u n  t o  r u n  as seen from the differences i n  Figures 3-19 and 3-20. The 

wave reflected from the open end sheds rapid osci l la t ion behind i t  similar t o  
the reflection from a closed end. The amplitude and frequency of these 
osci l la t ions suggests tha t  they may correspond t o  an osci l la tory flow in 
the vents. T h i s  i s  perhaps an indicati'on tha t  the effectiveness of the 
attenuation provided by the coarse venting i s  substantially reduced for  the 
small amplitude residual fluctuations. The long time behavior of these 
fluctuations i s  shown i n  the top picture in Figure 3-21, a t  a high amplifi- 
cation. The typical frequency of these residual high frequency fluctuations 
also appears to  correspond w i t h  a transverse quarter wave (organ pipe osci 1 - 
l a t ion)  across the vented tube agai'n implying osci l la tory flow in the vents. 

In order to  ensure tha t  the observed signal i s  not a spurious resu l t  
of s t r e s s  waves or  structural vibrations i n  the shock tube, the above t e s t  

was repeated w i t h  a sealed cap over the pressure sensi t ive face of the 
transducer located a t  9" from the diaphragm. T h i s  isolated i t  from the 
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+- the pressure waves. The resu l t ing  sjgnal i s  shown i n  Figure 3-22. The; 
0 

111 - c3 r e l a t i v e l y  i ns ign i f i can t  noise leve l  Idemonstrates the i n s e n s i t i v i t y  o f  I 
- 0 I 

W the gauge t o  spurious effects and copfirms the observation o f  the residGal 

high frequency acoustic f luctuat ions ' a t  long times (> 20 ms) . I 
I I 
I I 3.1.3.4 Flow Through Vents - I I 

I .  

' \  - .  I 
Visual izat ion o f  the wave t l e l d  ! inside the vented duct and the f l o F  

through the holes a t  various stages d f  the a t t e n u a t i h  are shown i n  a I 
I 

sequence o f  spark shadowgraphs i n  Mgures 3-23, -24, -25. The case shob  
1 i s  a 24? delver wi th  a . O O l a a  nlylar diaphragm f i r i n g  nominally a t  17 psib 

I i n t o  the vented tube. The center o f  / the shadowgraph pictures i s  22" , 
from the diaphragm, and the view s h o ~ s  the flow through the horizontal I 
vented top p la te  o f  the opt ica l  section which i s  3/8" thick.  The window 

I 
radius i s  3.25". The black shadow a4 the bottom o f  the p ic ture i s  not  I 

the bottom wall o f  the tube. Thls region i s  masked o f f  t o  a v i i d  spuriobs 
I I 

ref lect fons. I 
I I 

The f i r s t  p ic ture shows the gh@fk wave - sharp, b l  act, ve r t i ca l  , I 

straightUne on_tbelaft = ;trweU@gd~& W e  d u c t f r o m  right 
- 

.A Behind the shock wave, as wel l  a s  m+sidb the vented p la te  a 

-- weak wave f ronts  can be seen. THese f r e s ~ l t  Prom the d l  

-. . shock wave a t  the vent holes. The daf f ract ion also produces an i m p u l s i ~ e  
I I j e t  f low through the hole which genar tes a vortex r ing, seen i n  the ! I I I sideview as a horizontal dumbel shap(d dark object, j u s t  above the ventbd I 

m c o n t i n u i n g  t o  develop and move uq. It should be noted tha t  there a;, , - 
three holes i n  each row which produde three vortex rings, but t h e i r  I 
shadows coalescei,: t o  show on1 y one (1 ng. However, 1 ---- nu1 tf p;L*diffractlon / I  
f ron ts  can be seen due t o  s l i g h t  midalignment o f  the l i g h t  beam from .the 1 

1 rau direct ion. The next Wo p i e t u r ~ s  show l a t e r  stages of the  r ings ' , 
where they become unstable and breaq up leavlng behind a turbulent 

' ' I ' 

, j e t .  The cores o f  the vortex r ings  lbecome v is ib le ,  s i n e  the gas i n  the , 

1 center of the core d i l a tes  i n  resp+se t o  the decompression caused by; ; - i? 

I . ~ h e  centr i fuga On the othp 
band, the j e t  %he boundary 

i 
I 
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ym&perature difference across them, ;since the gas which was originall: 
' I a t  the temperature of the tube has been irreversibly heated by the shock 

wave, The tmperature gradients acmss the bdundary layer cause ' i 

I sufficient refraction to  produce v i  4ual lzation of the turbulence. I i 
-----------I 1 1 The next four pictures i n  t h i s  [sequence show how th; dtffraction , 

/ wave fronC continue to persist . i n  {he rcglon even after many reflecti tmi 
I 1 They also show the arrival of the tlfrbulent contact surface between I 

I the shock heated gas on the driven xlde of the tqbe and the cold drtveb 
1 gas (-33OC, cooled by isentropic exhnsion) . In the rest df the. i 1 

sequence, the contact surfgce fl  ws :past the view as the driver gas ccbr / 
im. The driver gas, whlch i s  mm/alr, appeamldar(rer i t  the llsw 
ture due to  scattering fm particl* of wndansd water vapor. ~hesei I 

I las t  four pgctures also correspond tlo the pe~tod o f  the  pressure under; I 
shoot in theduct .  T h e j e t s s h o o t t & w t o f  theventscanbeseen 1 
/ & ~ ~ a t ~ u j  @ad ~ l s s i p r t $ ~ ~  8bM~gl &w&danca @tit$$& ,%a W L ~ .  / . 
 hen the outer gga, wt~iahl apmws~ it-,, begt~s to t ~ c w  back t n t ~  t h ~ ,  1 
dark gas w i t h i n  the tubes. That Jg$s k m d ~  by bhts lnflan can be seen FCJ 
penetrate and cont&fnate the (gas Belep lnr Ddc %he tube. A1 so, because 

--L 

one the tube l ~ a r \  - beyond 2gH,/ 

_JI 

- . a%. >&mdkt@d by tsentr~pl'c I- 

- . . C , -  I 

F o o t  extends many driver lengths ad shown i n  Figure ml In this i-F -.- 
1 case, the 8" driver is used, the filh i s  larger and the sensitivity off I 

I the shadowgraph has been highly enha)lced. The sante diaphragm and overr 
I pressure is used as before, h-ever ldue to the short length of the , 

driver, the expanded driver gas doei not extend into the field oP view; 
during the period of inflow. The t*ee pictures here show weak b u t  1 

I I 

I I I sharp wave fronts inside the tube, hi for. turbulence ovtside after the , 
jets have F m d  the- de*d&pjm6.t. of* t b  in f3m J S s  n~t&t-\ -- - -- - .- 

containate the Held o f  vlw durlnd t h l s  period. Maarly, the I ' 

I I 

BQ-TTOM OF PAGE 7 
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Thus, t h e  above f l o w  v i s u a l i z a t i o n  has a l ready  i d e n t i f i e d  some . ' 
1 : c r i t i c a l  issues. For  f u s i o n  l ase rs ,  where i t  i s  n o t  poss ib le  t o  p ro-  1 

t e c t  t h e  upstream f l u i d  from the  waves by choked o r i f i c e  p l a t e s  and , 

a cous t i c  suppression devices are  necessary upstream o f  t he  c a v i t y ,  two, 

1 major  contaminat ion problems e x i s t ;  'contaminat ion w i t h  t he  c a v i t y  gas ' 

and-contamination-from boundaries-biu i n f l o w  Through vents. Expansion A 

I 

o f  t he  c a v i t y  gas i n t o  t he  upstream 'duct i s  unavoidable, however t h e  
I 1 
8 reg ion  contaminated by t h i s  gas i s  g r e a t l y  increased by the  m ix ing  and 

j e t  i n f l ow  from s ide-wa l l  vents which occur du r i ng  the  p e r i o d  o f  t h e  

pressure undershoot. Even when t h i s '  e f f e c t  i s  minimized, no cleanup 
I I 

process seems poss ib le  f o r  t h i s  contaminat ion, o t h e r  than ma in ta in ing  . 

a h igh  mean f l o w  r a t e  t o  f l u s h  t h i s  ; f l u i d  pas t  t h e  c a v i t y .  The second' 

problem o f  contaminat ion r e s u l t s  f rom t h e  w a l l  boundary l aye rs ,  which : 
separate and mix w i t h  t he  upstream medium du r ing  t h e  vent  i n f l o w  phase. 

Th is '  causes t u r b u l e n t  d e n s i t y  f l u c t u a t i o n s  over  a reg ion  much l a r g e r  
7 

-/ I t h a n _ t h a t  . contaminated by t h e  c a v i t y  gas. However, t he  magnitude o f  
I these f l u c t u a t i o n s  i s  o f  t h e  order  o f  t h e  i r r e v e r s i b l e  en t ropy  change 

I produced by t h e  shock waves ( s ince  the  f l u i d  i n  t h e  boundary l aye rs  

I t r t e s  t o  r e t u r n  t o  o r i g i n a l  s t a t e  by d i f f u s i o n  o f  heat  i n t o  t he  w a l l s ) ,  

and they  decay i n  t ime  by t u r b u l e n t  'and d i f f u s i v e  d i s s i p a t i o n .  It I 

I may be poss ib le  t o  enhance t h i s  decay a r t i f i c i a l l y  t o  some ex ten t  

- 1 (e.g. by use o f  screens) as the  gas f lows i n t o  t h e  c a v i t y .  It i s  n o t  . - ' ' 

c l e a r ,  however, whether t h i s  i s  l i k e l y  t o  be adequate ( e s p e c i a l l y  when 
- - 

boundary f lows of d i f f e r e n t  f l u i d s  a re  i nvo l ved )  , cons ider ing  t h e  

ext remely h igh  medium homogeneity requ i red  f o r  some laser'systems-. For 
I 

bo th  problems, use of h igh  mean f l o d  r a t e s  (h igh  f l u s h  f a c t o r s )  can 

always prov ide  a f resh ,  homogeneous ktedium i n  t he  c a v i t y ,  b u t  t h e  I 
I I 

pumping work requ i red  f o r  t h i s  severe ly  impa i rs  t h e  o v e r a l l  l a s e r  I 
I 

e f f i c i e n c y ,  which i s  a l ready  c r i t i c a : l l y  low. I 
I I 

I Although here the  upstream conterninat ion problem i s  demonstrated I 

on ly  f o r  a vented duct,  t h e  problem ;is more general  and fundamental 
I 

i n  charac ter .  It must be reso lved t o  a l l o w  the  developrr~ent o f  low- I 
I I 

pressure-drop absorbers f o r  t h e  reg ion  upstream o f  t h e  l a s e r  c a v i t y .  I 
I 

Product ion o f  t u r b u l e n t  f l ows  i s  a dechanism bas i c  t o  most devices I 

which adequately d i s s i p a t e  the,  wave energy re leased f rom t h e  l ase r  
- 

- 
I---- BOT'iO;:; 0:- PAGE 
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c a v i t y .  Consequently, i r r e v e r s i b l e  $ntropy f l u c t u a t i o n s  are a n  i nhe ren t  

I p a r t  o f  t h e  problem and solut ions.  have t o  be found t o  s u f f i c i e n t l y  
I ' I 

d im in i sh  t h e i r  magni'tude o r  thei ' , r  e f f e c t s  on t h e  l a s e r  medium, w i t h o u t  I 
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I 
P =:.pRT = (y - l)pe; I 

I 
I 
I 

and for a perfect gas I 
I 
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3.2 ANALYSIS I I 
6- 

0 

I 
- 

W 
-a 

I I 
I I 

- 
- o m3.2.1 FACTS Code Description 

I I - 
-JU I I - 
- The analytical modeling of acousFic suppressors for Pulsed Fusion I - 
-1 2 Laser is performed with the aid of a numbical code (the FACTS code) 1 2- 

I I  - 
- previously developed at TRW. The FACTS code solves the following set of - 

I I - equations which describe the unsteady/ quasi one-dimensional flow of gas 1 
- - 

s ; -  S and S3 are source-sink terms hith units of mass, momentum and energy 1 lY 2' I I 
flux per unit length of duct respecti\;ely. These source-sink terms are  used 
I I I I 
to account for a perforated duct walllvented to the atmosphere and to account 
I I 
for sections of duct filled with a permeable sound absorbing material. I 

- 
- . 

-1 8 - 
- 
- 
- 
- 
-2 4 - 
- 
- 
- 
- 
-3 0 
- 
- 
- 
- . - - 
1-3 6 - 
- 
- 
- 
- 
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I I 
in a duct of slowly varying cross-sectional area: I 

I I 
conservation of mass I I 

I  I 
I I 
I I a a I 

- 
- 
18- - 
- 
- 

- (PA) = - , (pAu) - sl; I (64) - 
at I 

I I 
I 

1 I conservation of momentum I I 
I I 
I I 

- 
24- - 
- 
- 
- 

a a 2 b I  
- (pnu) = - - ( ~ A U  ) - A (P) - s2; (,65) - 
at ax I 30- 

I .  - 
,-----------------L---------------- :-I - conservation of energy I - 

I 
I I - 

I - 
a 2 a I 2  - [p~(e+u /2)] = - [p~(e+u /2 + ~/p)u] - S3; (66) 3 6  at I 

I I 
I I 

I ideal gas equation of state 1 I 

I I  

- 
- 
- 
- 
- 



I A Lax-Wendroff d i f f e r e n c i n g  schebe w i t h  F l  ux-Corrected Transpor t  

( ~ e f e r e n c e m \  was used t o  genebate t h e  t ime-dependent s o l u t i o n s  t o  
L____\ . I 

I ~ ~ u a t i o n s  64, 65, and 66. The  ax-~eAdroff d i f f e r e n c i n g  techn ique  i n te r i -  1 
1 . . I  

i t i o n a l l y  d i f f u s e s  t h e  s o l u t i o n  i n  o r d e r  t o  t r e a t  problems w i t h  s t r ong  I 
b r a d i e n t s  o r  shocks. The F l  ux-Correc ed Transpor t  techn ique  ' i s  a  method 
I 
I of removing t h e  d i f f u s i o n  added t o  a s i u r e  numer ica l  s t a b i l i t y .  Shock I I 
haves  t h a t  t ake  f i v e  o r  s i x  mesh spacfs t o  d e ~ c r i b e  w i t h  t h e  Lax-Wendroff I 
I I 
method a lone a r e  descr ibed  i n  two t h e  FCT technique i s 1  
I I 

/Ised- For more i n f o r m a t i o n  on see examples o f  i t s  use i ?  

s o l v i n g  pressure wave Reference 12-1 o@\ I 

I ./ I 
I I 

Th i s  code was m o d i f i e d  and upgraged under t h e  c u r r e n t  program t o  I 

improve i t s  p r e d i c t i v e  c a p a b i l i t i e s  ahd make i t  more s u i t a b l e  t o  deal  w j t h  I I 
pressure wave a t t e n u a t i o n  problems i n i f u s i o n - t y p e ,  pu lsed  l a s e r s .  I n  sqme 

I 
b f  these l a s e r s ,  n o t a b l y  i n  t h e  KrF system, p ressure  a t t e n u a t i o n  l e v e l s  ; t o  
I 
b e t t e r  than  a r e  r e q u i r e d .  To f o ) l o w  t h e  a t t e n u a t i o n  process t o  thdse 
I I 
low overpressure l e v e l s  one must pay b a r e f u l  a t t e n t i o n  t o  t h e  d e t a i l e d  I I 
i n g r e d i e n t s  o f  t h e  code and make sure;  t h a t  they  p r o p e r l y  model t h e  re le ;  I 
vant-phys3cal-pro-ce-ss-esr: -A1 s - o ; i n - f ~ i ~ n i = t ~ ~ ~  -1-a-ws; +hF - -- - - 

I pressure wave 
I 

a t t e n u a t i o n  must be accomplished wi t h l  l ow p ressure  drop absorbers.  Past  
I I 
work on p ressure  suppression model i n g l  d i d  n o t  s u f f i c i e n t l y  emphasize t h j s  
X I 
p o i n t .  Recent code m o d i f i c a t i o n s  andlextens ions a r e  descr ibed  i n  t h e  ! 

I 

6.2.2 Recent Code C lod i f i ca t ions  
I - -- 

- I 
- 6.2.2.1 Model f o r  Side-Wall Vents I I  I 

I I 
I 

I 
6.2.2.1.1 General Requirements I 
I I 

I 
I 

I The quas i  one-dimensional ap'proaeh used i n  t h e  numer ica l  model req(ire.s 4%- 

i - 
;hat t h e  s i de -wa l l  v e n t i n g  be expressed i n  t h e  fo rm o f  source-s ink termd i n  - 

I 1 I 
:he conserva t ion  equat ions.  These sol)rce-sink terms rep resen t  t h e  r a t e  !of 

-1: 

ncrease o r  decrease o f  mass, momeritum and energy due t o  s i de -wa l l  vent i lng. 

:f o i s  t h e  r a t e  of mass f l o w i n g  o u t  th rough  t h e  ven ts  o f  t h e  duc t  pe r  $il 

ength, then  t he  genera l  forms o f  t he ' sou rce -s i nk  terms as 'def ined i n  Eq'ua- - I 
;ions 64 t o  60 a r e  g i ven  by 1 I 

I I 
I 

I 

BOTTOM OF PAGE 7 . . d$ i- BOTTOM OF PAGE 



I 
where t h e  subsc r i p t  s  denotes average; cond i t i ons  o f  t h e  f l u i d  a s .  i t  l e a j e s  
1 
'or en ters  t h e  duct ,  and where u s x i s  t h e  x-component ( t h e  component p a r a l -  
I I 
11el t o  t h e  f l o w  i n  t h e  duc t )  o f  t he  ayerage v e l o c i t y  o f  t he  f l u i d  as i t  1 
I I 
leaves o r  en te rs  t he  duct .  S1 represents t h e  r a t e  o f  mass e n t e r i n g  o r  , 
l e a v i n g  t h e  duc t  per u n i t  leng th ,  S2 Pepresents t h e  r a t e  a t  which momenfum 

I 
i s  t r a n s f e r r e d  i n t o  o r  o u t o f  t he  ducf per  u n i t  leng th ,  and S3 i s  a  comEi- 

I 
I 
n a t i o n  o f  t h e  r a t e s  a t  which energy i) t h e  form o f  i n t e r n a l  energy, eS, ; 
I 2  I 
k i n e t i c  energy, us 12, and work, PS/pk, i s  t r a n s f e r r e d  i n t o  o r  o u t  o f  t h e  

I I 
I duct  per  u n i t  leng th .  The l i n e  f l u x  o f  mass., u, can be expressed i n  ge4- 

I 
L r a l  as: ' I 

. . I . I  I 
- - - - u- E ps -usy .-as- - - - - - - 1 _ - - - - - - - - - - - - - - - -(:22.), 

I ! 1 
I I I 

I 
where as i s  t h e  vent area per u n i t  l e h g t h  o f  t he  duct ,  and u  i s  t h e  y f  
1 i SY 
component (perpend icu la r  t o  t h e  f l o w  i n  t h e  duc t )  o f  t he  average v e l o c i t y  
I 

b f  t h e  f l u i d  as i t  en te rs  o r  leaves t b e  duc t .  I n  o t h e r  words, p, u  I 
1 SY I 
represents t h e  ac tua l  mass F lux  o f  t h k  f l u i d  l e a v i n g  ( a  p o s i t i v e )  o r  I 
I I 

I 
' I 

e n t e r i n g  ( u  negat ive)  t h e  duct .  I 

I. ' 

I I 
I I 

I 3.2.2.1.2 S t a t i c  Pressure, ~ s e n t r o p i h  Flow Model w i t h  Constant . , 
I I D i s c h a r g e c o e f f i c i e n t  , I 

I 

The s p e c i f i c  form o f  t he  source ierms f o r  s ide-wa l l  ven t i ng  w i l l  I 
/depend on the  shape and s i z e  o f  t h e  ven tho les , i an  <he mean f l o w  and Mach No. 

n  t he  duc t  and on t h e  volume i n t o  which t h e  vents.exhaust .  - I 1 

The f i r s t  case considered was t h a t  o f  an i n f i n i t e  volume i n t o  which - - - -  

/ t h e  s ide -wa l l s  vent.  The gas i n  t h i s  i n f i n i t e  volume was assumed t o  be 

1 s tagnant  wSth f i;xed (constant)  p rope r t i es .  Under these cond i t i ons  , t h e  1 I 
p r o p e r t i e s  of t h e  gas as i t  enters  o r  leaves t h e  duc t  were determined by 

us ing  quasi-steady, i s e n t r o p i c  compressible f l o w  , r e l a t i o n s  f o r  f low k =- 

through an o r i f i c e .  The s t a t i c  pressure in , the duc t  was assumed t o  be 

c $m i 
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I 
t h e  d r i v i n g  pressure i n  t h i s  f i r s t  model, r a t h e r  than  t h e  t o t a l  o r  s tag-  

n a t i o n  pressure. Wi th  t h i s  assumption, when t h e  s t a t i c  p ressure  i n  t h e  

duc t  equals t h e  s t a t i c  p ressure  o u t s i d e  o f  t h e  duc t ,  t h e r e  w i l l  be no 

f low through t h e  vents .  Also, when t h e r e  i s  no f l o w  i n  t h e  main duc t ,  

t he  s t a t i c  p ressure  i s  equal t o  t h e  t o t a l  p ressure  t h e r e  and t h e  f l o w  

model reduces t o  i d e a l  f l o w  through an o r i f i c e .  It shou ld  be 'emphasized 

t h a t  t h i s  model g ives  t h e  maximum i d e a l  f l o w  through t he  ven ts .  

I f  t h e  s t a t i c  p ressure  i n s i d e  t h k  d u c t  i s  l e s s  than  t h e  pressure i n  
I A=r I 

t h e  qhamber sur round ing  t h e  vented duc t ,  (;P < ~ $ r t h e n  t h e  f l o w  w i l l  be <- 
I I 

i n t o  t h e  duc t  and t h e  i n f l o w  c o n d i t i o r s  a r e  g i ven  by I 

I I 
I I 

I 
I 

Ms = min 073) 
I 

I I 
I 
I 
I 

I 
----------------- 1- 

- 
Ps - I 

I I 

I I 
I I 

s = P S I  [P, (Y-~) ]  I 
I 
I 
I 
I 
I 
I 

= 0.0 I  us^ I 
I 

I 
I 

Equat ion 73 g i ves  t h e  Mach number o f  !he f l u i d  as i t  en te rs  t h e  duc t  and 

(accounts f o r  t h e  f a c t  t h a t  t h e  f l o w  mey be choked as i t  e n t e r s  t h e  duc t  1 
I I I i f t h e  p ressure  r a t i o  i s  h i gh  enough.1 Equat ions 74 and 75 a r e  used t o  I 
I 

(evaluate t h e  d e n s i t y  and p ressure  once t h e  Mach number i s  known. The I 
I 

i n t e r n a l  energy and t h e  y-component o f  t h e  v e l o c i t y  a r e  g i ven  by ~ ~ u a t i d n  
I 

76 and 77. I n  t h i s  case, when t h e  f l p w  * i s  i n t o  t h e  duc t ,  t h e  x-componeqt 

of  t h e  v e l o c i t y  i s  ze ro  as i t  en te rs  t h e  duc t .  I 

I I 
I I 

- 
I 

1 3  . 
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1 
I 

When t h e  s t a t i c  pressure i n  t h e  huc t  i s  g rea te r  than t h e  o u t e r  chaibe! 
I 

pressure (P Y PC). t h e  o u t f l o w  cond i t i ons  a re  g iven  by I 
I I 
I I 

I 
I 

M = min 
S 

(79) 
. I 

I I 
I 

. I 
I 

'I (80) 
I I 
I I 

I 

y - 1  2)(&! I 
pS = P/(I +T M~ (81) 

I 
I 
I .  I 

es = p s / [ p s ( y - l ) ]  I (82) 
- I 

I 

U = M s J q i i q  
I 

SY I t83)  
I 

- - - - - - - - - - - - - - - - - - _ L - - - - - - - - - - - - - - - -  
I 1- 

usx = U I (84 
I I 

I I 
I I 

These equat ions a re  s i m i l a r  t o  t he  ones f o r  i n f l o w .  Note t h a t  Equation184 1 I 
i m p l i e s  t h a t  a l l  o f  t h e  x-momentum o f l a  gas p a r t i c l e  i n  t h e  duc t  i s  carl I 1 
r i e d  o u t  o f  t h e  duc t  w i t h  t he  vented gas. Experiments which measure th4  
I I 
d i r e c t i o n  o f  t h e  gas f l o w  a f t e r  l e a v i n g  the  vents can be used t o  modi fy  
I I .  

t h i s  assumption. I I 
I I 

I 
Recognizing t h a t  t h e  vent ing  f l o h  p r o p e r t i e s  g iven  by ~ ~ u a t i o n s  74 I 

I I 
through 84 represent  ideal.maximums, a d ischarge c o e f f i c i e n t  was added I 
I I 
t o  Equat ion 72 so t h a t  t h e  express ion;  f o r  1 i n e  f l u x '  o f  mass becomes I 

I I 
I I 

0 = c,, Ps usy as:  I 
I 

i 85  
I 

I I 
I I 

The eva lua t i on  of t h i s  d ischarge c o e f f i c i e n t  t o  account f o r  t he  e f f e c t s  I 
I 
o f  g raz ing  f l o w  and o the r  e f f e c t s  i s  bonsidered i n  subsequent sec t ions .  

I 

1 1 
I I 
I 

1 

. 
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-4 I I  
o 9.2.2.1.3 Non-Ideal E f f e c t s  I I I I 

I I 
The constant  discharge. c o e f f  i c i e r i t  model presented i n  t h e  prev ious  

3 I 
sec t i on  does n o t  account f o r  t he  e f f e i t s  o f  g raz ing  f l o w  on t h e  f l o w  I I - - I 

-1 2 Phrough a  s ide-wa l l  o r i f i c e  o r  an a r d y  o f  o r i f i c e s .  A l i t e r a t u r e  seardh , I  
- bas made t o  f i n d  experimental  values b f  discharge c o e f f i c i e n t s  f o r  f low 1 
- 
- I I 

phrough an o r i f i c e  p l a t e  w i t h  .graz ingl  f l o w  para1 l e l  t o  t he  p l a t e .  I 1 
I I Szumowski ( ~ e f e r e n c e m )  has measured values o f  t he  d ischarge coet -  I I - 

-1 8 l f i c i e n t  f o r  a i r  i n  termis o f  t h e  duc t  tlach number and t h e  r a t i o  o f  ambiedt I - I ' 

- FO stagnat ion  pressure. Subsonic and! supersonic f l ows  were . t es ted .  ~ h i s e  I 1 
- I 

!results were obta ined s p e c i f i c a l l y f o r  t he  problem o f  shock wave decay i !n  - . - I 
- .  I 

a  pe r fo ra ted  duc t  (Reference 'a).  be discharge c o e f f i c i e n t  data obta!neq 

-2 4 by Szumowski were f o r  f l o w  o u t  o f  the lma in  duc t  on l y .  No i n f l o w  data wqre 
- ' I  I 
7 li ncl ,lded. 

I I 

I 
t - 

- I Another source o f  discharge c o e f f i c i e n t  data was f rom i n v e s t i g a t o i f  I 
- b f  sound-absorbent 1  i nings c o n s i s t i n g ;  o f  cav i  ty-backed p e r f o r a t e d  1  i n i n d  
-3 0 I I 
- I mate r i a l  used f o r  i n l e t  and exhaust d v c t i n g  o f  j e t  engines. Rogers and 1 
- kersh- -(-Reference 3-1 0)-have- obtai-ned-kteady-f-1-ow -Fesi-stance-(-AP-/V-) -and 7- - II2 I 
- 'discharge c o e f f i c i e n t  da ta  f o r  incornpi-essi b l  e  f l o w  through p e r f o r a t e d  

- I 

-42 '=ol lapse the  ou t f low data onto  a singf le curve. The r e s u l t s  o f  t h i s  e f f d r t  
- m I L r e  summarized i n  F igu re  3-35 where the  d ischarge c o e f f i c i e n t  based on , - 
- . I to ta l '  ( s tagna t i on )  pressure i s  p l o t t i !  as a  f u n c t i o n  o f  t h e  r a t i o  o f  t he  

- .  

-3 6 
- 
- 
- 
- 

I - f l o w  v e l o c i t y i n  t h e  duc t  t o  t h e  maximum t h e o r e t i c a l  j e t  v e l o c i t y  based; - I I 
-48 t h e  t o t a l  pressure i n  the  duct .  I n i t i a l  a t tempts t o  c o r r e l a t e  t h e  

I il,r -- Idat8 us ing  a  d ischarge c o e f f i c i e n t  ba!ed o n  t h e  s t a t i c  pressure i n  t h e  I .. I 

I 
s ide-wa l ls  f o r  bo th  i n f l o w  and ou t f l ow .  Stokes, Davis, and S e l l e r s  

( ~ e f e r e n c e \ m \ )  have performed s i m i l e r  experiments f o r  o u t f l o w  o n l y  I u 
( f l o w  ou t  o f  the  main duc t  through th; pe r fo ra ted  s ide -wa l l s ) .  I. 

I I 
I 

An at tempt  was made t o  f i n d  a  s e t  o f  f l o w  parameters which would I 

BOTTOM OF PAGE \ 
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- 

duct,  as de f i ned  by Equat ion 75. f a i l e d  t o  co l l apse  t h e  data. Th is  may! 

i n d i c a t e  t h a t  t h e  t o t a l  pressure i n  t h e  duc t  i s  recovered and prov ides  I 
I 

t h e  main d r i v i n g  f o r c e  i n  t he  venting1 process. The d ischarge c o e f f i c i e q t  

as used here i s  de f i ned  by 
I 
I I 

I 
I I 



I - 
- * * I t - 

I 
I 

- 
I - 
I - 
I . - - 
I I 

m 1 I 
6- 

actual - 
CD = . 1 

I 
- 

mi deal I I - 
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- 

I I - 
i I I ideal i s  given by - I 

12- 
I - 

I 
I 

- 
I - - 
I - 
I - 

t I 
I 18- 
1 - 
I - 
I - 
I - 

I - 
y+l  I 20- 

I 
I 1 - - 

Y '  -I 
I f - 

'C Y- 'I  c r i t i c a l  flow . i f . -  5. y I 
I 

';I 
- 

Pt Y I I 30- 
I I - 

where- c ,  -P ,-yay .are -sound -speed ,-pressure,-and-ratio-of .speci.f-ic-heats, -,- - - 
I 
respectively;  and where the  subscript: t and c denote t o t a l  conditions I 

i-- BOTTOM OF PAGE 

I I 
ins ide  the  duct and ambient condition: outside the  duct ,  respectively.  I 
I I 
The r a t i o  of duct flow velocity t o  t he  maximum theoret ical  j e t  v e l o c i t y I  
I I 
i s  given by the expression .I I 

I I 
I 

I I 1 :  1 
2 2 . + M . 2  I I 

J I I 

I ( 8 8 )  ( )  = 1 I 
2 + ?  I I I 

I 
I 

I 
I 
I 

I 
where M i s  t he  duct flow Mach number and M. i s  the  theoret ical  maximum j'et 
I J 
flow Mach number. M. depends on the  j a t i o  of the  t o t a l  pressure in the  I 
I J I duct t o  the  s t a t i c  ambient pressure abd i s  given by the  expression 

I .  
I , I 

I I y-l I I I 
(89) 

I 
I I 
I I 
I 

I 
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3.2.2.1.4 Va r i ab le  Discharge C o e f f i c i e n t  Model Based on C o r r e l a t i o n  I 
o f  Experimental  Resu l ts  I I 

I I 

A s t r i c t l y  e m p i r i c a l  model o f  t h k  d ischarge  c o e f f i c i e n t  f o r  o u t f l o d  
I 

Mas developed f rom t h e  da ta  on ~ i ~ ! r e & % - \ a n d  f rom P e r r y ' s  data on t h e  I 
1 

v a r i a t i o n  o f  d ischarge  c o e f f i c i e n t  w i t h  p ressure  r a t i o  f o r  a  sharp edged a I 
I r i f i c e  (Reference \m). Figure  3-36 shows t h e  c o r r e l a t i o n  curves which 

I Mere used. The upper cu rve  i s  a  f i t  t o  t h e  upper envelope o f  t h e  da ta  , 
~f ~ i ~ u r e F \ a n d  t h e  lower  curve  i s  l a  f i t  t o  t he  lower  envelope o f  t h d  

I 
j a t a  o f  F i gu re  [=\. A f i t  t o  P e r r y ' s  da ta  (Reference p!) which i s  I 

I 
I 
p t r i c t l y  a p p l i c a b l e  o n l y  f o r  ze ro  f l o w  was used t o  i n t e r p o l a t e  i I - 
I I - 
between t h e  envel.opes. The complete f i t  ' i s g i ven  b y  - 

I 

It - - 
1 - d  

- 
where f2 and fl a r e  f u n c t i o n s  o f  t h e  b a t i o  o f  t h e  duc t  v e l o c i t y  t o  t h e  I - 
I I - 
t h e o r e t i c a l  j e t  v e l o c i t y ,  and where C D ~  i s  t h e  d ischarge  c o e f f i c i e n t  f o t  1 30- a sharp edged o r i f i c e  as gi"en by P e r t y  (Reference m\). The t h e o r e t i i a l  - 
G---- - - - - - - - - - - - - - -L--- - - - - - - - - - - - - -  - 
g e t  v e l o c i t y ,  \Vi, i s  determined by ant i s e n t r o p i c  expansion f rom t h e  t o q i  - 

J I  I 

~ r e s s u r e  i n  t h e  duc t  t o  ambient p ressyre  o u t s i d e  o f  t h e  duc t .  1 
I  I 

The f u n c t i o n s  fl and f2 depend om U / V .  as f o l l o w s :  I 
I I J  I 

f1 = 0 . 8 4 3 + ( ~ / ~  .) '  1 -1.32211(U/Vj) 11 .4349 -0 .94847 (~ /~  . ) I }  ; (91) 
J  I  J I 

I s t a t i c  pressure i n  t he  duc t  t o  t h e  ambient p ressure  o u t s i d e  o f  t h e   duct.^ 
I I ' I 
jlhe f o l l o w i n g  curve  f i t  t n  P e r r y ' s  da ia  (Reference /3-12\) was used t o  evallu-, 4%- 

I - 

- 
- 
3 6  
- 
- 
- 
- 

I I 
f2  = o . ~ + ( u / v . ) '  J (-0.16088+(u/vj) [ - 1 .20578+0 .76154 (~ /~  . ) I}  . 092) 

I J I 
I I I 

The sharp edged d ischarge  c o e f f i c i e n t :  cD0 depends on t h e  r a t i o  o f  t h e  : I 
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L 
I 

1 ' 

For i n f l o w ,  p ressure  r a t i o  P/Pa ii rep laced  by t h e  r a t i o  o f  t h e  p re$-  

sure  o u t s i d e  o f  t h e  duc t  t o  t h e  s t a t i k  p ressure  i n s i d e  t h e  duc t .  I n f l o i  
I I I 
i s  a l lowed o n l y  i f  t h e  s t a t i c  p ressure  i n s i d e  o f  t h e  duc t  i s  l e s s  than  I I . . I t h e  p ressure  o u t s i d e  t h e  duc t .  T h e  i l e a l  f l o w  t o  which t h e  d ischarge  I I c o e f f i c i e n t  i s  a p p l i e d  i s  based, on t h e  i s e n t r o p i c  expansion f rom condi - 
I I' 
t i o n s  o u t s i d e  t h e  duc t  t o  s t a t i c  c o n d j t i o n s  i n s i d e  t h e  d u c t  o r  t o  choked I I f l o w  c o n d i t i o n s  i f  t h e  p ressure  r a t i o ;  i s  h i g h  enough. I t  i s  assumed I 
I I above t h a t  t h e r e  i s  no mean f l o w  i n  t h e  reg i -on o u t s i d e  t h e  d.uct, so . I 
I I s t a t i c  and t o t a l  pressures a r e  alwayslequal t he re .  I 

- I 
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I I 
I I 

13.2.2.1.5 P o t e n t i a l  Flow Model f o r  Va r i ab le  Vent Discharge Coe f f i c i en t s '  
i n  the,  Presence o f  Grazing1 Flow I 

. I I 
I 

I n  t h i s  subsect' ion we desc r i be  a lconcep tua l  model which was designed 
I I t o  p rov ide  an a n a l y t i c a l  s t r u c t u r e  f o r  c o r r e l a t i n g  t h e  behav io r  o f  t h e  I , .  I 1 9  d ischarge  c o e f f i c i e n t s  f o r  e f f l u x '  f rom.  an o r i f i c e  i ,n  t h e  presence o f  I I I g raz ing  f l o w .  The purpose i s  t o  d e r i y e  an e m p i r i c a l  fo rmu la  f o r  t h e  d i i -  

I I charge c o e f f i c i e n t  which i s  v a l  i d  ove f  t h e  e n t i r e  range o f -  o p e r a t i n g  con- 
I I I d j  t i ons -  and- whi:ch-d0e.s -no i  -su f fe r_  f rom 3h.e. .ex.c_l.u.sj.o.n -of-c.e.r-t.aj.n-1-i.mj.tj,n,g- - 
I - -  - cases ( i n  p a r t i c u l a r ,  t h e  no-g raz ing-how case) as do p rev ious  t r ea tmen i s  

I 
(e.g., Rogers and Hersh, Reference ($1). To t h i s  end, an e f f o r t  i s  made 

t o  a c c u r a t e l y  r ep resen t  t h e  f l o w  f i e l d  i n  t h e  duc t  f a r  away f rom t h e  o r t -  1 f i c e  by t r e a t i n g  i t  as t h e  s u p e r p o s i t j o n  o f  a  ' un i f o rm  f l o w  o f  v e l o c i t y  U 

i I and t h e  f l o w  due t o  a  source o r  s i n k  6 f  s t r e n g t h  m. T h i s  composite f l o w  
I I 

Lhanges smoothly i n  t h e  l i m i t  as, fo r lexample ,  t h e  source s t r e n g t h  

1 
-I 

1 I 
( o r i f i c e  f l u x )  o r  t h e  un i f o rn l  f l u w  v e l o c i t y  go t o  i c r o .  Resu l ts  d e s c r i q -  

i n g  t h e  behavior  o f  t h e  " f a r  f i e l d "  f l o w  a r e  then  used t o  determine t h e  I I d ischarge  c o e f f i c i e n t  f rom t h e  conserva t ion  1  aws o f  f l u i d  mechanics, under 
D . . 

t h e  assumption t h a t  t h e  presence, o f  t h e  f i n i  t e - s i z e  o r i f i c e  i n t r oduces  I I n e g l i g i b l e  e f f e c t s  on t h e  f o r c e s  exe r i ed  on t h e  f l u i d  approachi r ig  t h e  
I " I o r i f i c e .  I n  t h i s  r e p o r t ,  f o r  s i m p l i c i t y ,  we e x p l i c i t l y  t r e a t  o n l y  t h e  I 
I I case o f  o u t f l o w  f rom t h e  duc t  t h r o u g h i t h e  o r i f i c e  i n t o  an e x t e r n a l  plenqm 
I , .  o f  pressure P  b u t  t h e  r e s u l t i n g  c o r t e l a t i o n  fo rmu la  i s  a l s o  a p p l i e d  t d  
I j ' I 
t h e  i n f l o w  c.ase. Also, t h e  a n a l y t i c a l  f o r m u l a t i o n .  i s  r e s t r i c t e d  t o  i n -  1 I 1 compress ib le  f l ow ,  b u t  t h e  r e s u l t  i s  Q p p l  i e d  t o  t h e .  case f%of% choked flow!./ 

I W 
I I 

. . I I 
I _ 

. 



I 
Asymptotic Geometry o f  the  Duct Flow F i e l d  

I 

> 1 1 .--- I 
' p e r - a n i i n f i n i  t e ,  so-ca l led  Rankine body. The v e l o c i t y  p o t n e t i a l  an: t h e  1 

I 
, tream f u n c t i o n  are g iven  by .  , ' I 

I 

I I 
and t h e  v e l o c i t y  components a re  I I I 

I 
= - !EL,  I 

Y  " ,'2r I 

I I 
(197 

I 
I 

I 
I 

The shape o f  t h e  d i v i d i n g  s t reaml ine  i s  g iven  by I 
I I 
1 I 

I I 
x = Y .  y  : '  I (98 I 

t a n  - I I 
Xs I 1 

I I 

I 
I 

I t  h i t s  t h e  p lane o f  t h e  o r i f i c e ,  y  =,O, a t  a  s tagna t i on  p o i n t  1 
I 
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1 -  we t h i s  composite model t o  deduce an express ion f o r  t he  n e t  ve< -  

t i c a l  force on t h e  f l u i d  conta ined between t h e , z e r o  s t reaml ine  and t h e  d a l l .  
I I I 
Th is  f o r c e  a f f e c t s  t h e  momentum o f  t h e  o r i f i c e  f l o w  and so a c t s  t o  deter,- 
I I 
p i n e  t h e  angle a and mass f l o w  o f  t he  ! j e t  emerging f rom t h e  o r i f i c e .  Th,erei- 
I 
f o r e ,  i t  i s  p a r t i c u l a r l y  impqr tan t  t o  l accu ra te l y  represent  t h e  behavior bf 
I 
t h e  ne t  f o r c e  i n  t he  l i m i t  o f  zero gr&zing f l o w  o r  v a n i s h i n g  o r i f i c e  f l dw .  
I I 
k t  t u r n s  o u t  t h a t  t he  essen t i a l  behavior o f  t h e  n e t  v e r t i c a l  f o r c e  can. be 1 - - 
I I 

I I - 
deduced by cons ider ing  only .  t he  normal f o r c e  on the  w a l l .  The pressure I - 

I I - 
The t o t a l  f o r c e  i n  t he  y d i r e c t i o n  a c t i n g  on t h e  w a l l  i s  g iven  by 
I 

- 
I 
I I - 

I 
a c t i n g  on t h e  w a l l  i s  g iven by ~ e r n o u i l  i I s  equat ion I 

I 
I I 

I I 2  2  p  - p, = $ ( U  - u  ) .  I ( $00 
I 
I I 

I I 
Since on t h e  wa l l  ( y  = 0 )  I I 

I I I 
I 

m I I 
u = u - -  

T X  I (101) 
I 
I 

x  .t 
' - , f ( p - ~ , ) d T :  Fy w a l l  - Xs 

XS 

18- - 
- 
- 
- 
- 
24- - 
- 
- 
- 
- 
30- 

I I 
We es t imate  t h i s  f o r c e  f o r  t h e  ac tua l  ;case i n  which an o r i f i c e  o f  f i n i t e !  
I I 
f iametc r  do l i e s  i n  t h e  wa l l  hy i n t e g i a t i n g  Equat ion 103 between t h e  fo l l -  

I I 

,-----------------L-----.----------- 
I I- - 

lowing l i m i t s ;  a )  f rom x  = -L a  l ong  d i s tance  t o  t h e  l e f t  o f  t h e  o r i g i n  1 I - 
I 
fo  x  = -do/2 a t  t h e  l e f t  s i de  o f  t h e  g r i f i c e  and b)  from x  = do/2 a t  the; 

- 
- 

1 I I 

I I I 
The ,terms i n  t he .  parentheses must be balanced by equ i va len t  terms i n  the: 

I I ..! 
expression f o r  t he  n e t  f o r c e  i n  t h e  y  l d i r e c t i o n  on the  d i v i d i n g  s-treaml iine, 
I 1 
because t h e  t o t a l  n e t  f o r c e  m u s t  be igdependent o f  L ,  as L  + a. It can !be 

1 
1 .  

b i g h t  s i de  o f  t he  o r i f i c e  t o  t h e  s tagr ia t ion p o i n t  xs, where e v e n t u a l l y  dhe 
I I I 
l i m i t  L -t w i l l  be taken. Thus, I I 

I . I  
I 2  

PU x, I 

Fy w a l l  2  . ( 1104 ) 
I 

I I 
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I 
I 

: {  -... ' - , .  

1 
I PAGE NO. 
I 

I hown t h a t  t he  pressure on t h e  d i v i d i d g  stream1 i n e  depends o n l y  on t h e  . I  

~ o l a r  angle from t h e  o r i g i n ,  8, and t h e r e f o r e  when i n t e g r a t i n g  the  presJ  
I I 

.ure from e = 0  t o  e = t a n - l  ( -axS/L)  l t h e  r e s u l t a n t  c o n t r i b u t i o n  t o  t he  I 
I 

l e r t i c a l  force a f t e r  s u b t r a c t i n g  o f f  \he terms matching (104) lill simp1:y 

be .a constant .  Thus, 
I 

I 1 
Since we i n t e n d  t o  develop an emp i r i ca l  c o r r e l a t i o n  formula us ing  experi l- 
I I mental data, we "genera l i ze"  t h e  above r e s u l t  by i n t r o d u c i n g  two empi r iqa l  
I 
fonstants. I  I 

I  I 

1 The Momentum Balance I 
-----------------L---------------- 

I 1- 
I n  o rder  t o  c a l c u l a t e  t h e  f l u x  mithrough t h e  o r i f i c e  and t h e  angle la I - 

I I - 
p f  the  emerging j e t  we consider  t h e  mbmentum balance on. t he  c o n t r o l  volume 1 - 

i n  the  sketch. As desc r i bed  above we represent  t he  n e t  f o r c e  [ i n  36- 
I - 
I I - 

+ - - - 7  -7 
1 --- 

I i - 
I - 
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I -+ I I 

o t h e  v e r t i c a l  d i r e c t i o n  a c t i n g  on t h e  c o n t r o l  volume above the  p lane y = 10 
w - (3 

1 I 
D 

by Equat ion 106. An a d d i t i o n a l  v e r t i b a l  f o r c e  i s  exer ted  on t h e  volume ,by 
- I 
dW , 

t h e  (un i fo rm)  pressure p  i n  t h e  plenhn. I n  a d d i t i o n  t o  t h e  f o r c e  i n  t ge  I j I I - K d i r e c t i o n  exer ted  by t h e  pressure PA aga ins t  t h e  l e f t  hand face  o f  t t ie  
-1 2 I I - I c o n t r o l  volume, which i s  balanced by fhe x - fo rce  on the  d i " i d i n g  stream; 
- 1  i n e  (by d 'A lemberts l  paradox) t he re  hay a1 so be x - fo rces  developed nea$ - i I 
- ,the corners o f  t h e  o r i f i c e .  These fokces (Fx)  are a l lowed f o r  i n  t h i s  I 

I 
ana lys i s  bu t  cannot be est imated by s jmp le-cons idera t ions .  The equat iods 
I I 
konserv ing mass and momentum i n  t h e  c o n t r o l  volume a re :  
I I 

I 
C o n t i n u i t y  . ' m = u  .h I 

~j . 

x-momentum 
I 2m - 

p (u  .cosa)ujhj. - pU U - Fx 
J  

I 
I 

y-momentum p (u .s ina )u .h l  = - F  - (pj-p,)do 
J  J  ,I Y  

i 
I .  

To determine the  mass f l u x  we need use o n l y  Equations (107) and (109).  1 
I I ~ r ~ m - ( 1 0 9 ) - -  -- - -- ------ _L-- - -- - - - -- --- 

I 

I 
( I 1 0  

I 
I 
I 
I 

( I l l  
1 
I 
I 
I 
I 
I 
I 
I 

(412 
I 
I 
I 
I 

khere I 
P  - Pj 

03 
I 

C = 2  I 
P  Pu2 I 

I 
I 

C - 2 -  
2  I 

PU do I 
I 
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I I I 
Equations (111) and (114) a re  n o t  independent. They a re  r e l a t e d  by I 
I I 
Equations (99)  and (107).  The func t i bna l  behavior o f  F (and a l s o  Fx) I 

I I Y I 
a re  deduced from t h e  arguments preceding Equat ion (105),  I 

I 

C = - K X  I 
P 3 s '  1 

I 
I 

~ u b s i t u t i n ~  (115) and (114) and s o l v i v g  f o r  Xs,  

I 
Furthermore, t he  j e t  mass f l o w  i s  g iven by 

I 
I 

I 
rhus, we have a r r i v e d  a t  a  f u n c t i o n a l l f o r m  f o r  t he  o r i f i c e  d ischarge coef -  

I I 
f i c i e n t  CD i n  terms o f  t h e  duc t  g raz ing  v e l o c i t y  U and the  d r i v i n g  pres: 

I 

sure f o r c c  C which behaves p r o p e r l y  i n  t he  l i m i t  U -+ 0 and C + 0. C 
I 

P I P 
i s  de f ined  as f o l l o w s :  I 

I 
I 

I I 
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. I -2 4 hhere t h e  s u b s c r i p t  (), r e f e r s  t o  U =: 0. Expressed i n  terms o f  V .  i n s t e a d  - I J 
o f  C t h e  f i n a l  express ion  f o r  t h e  d ischarge  c o e f f i c i e n t  becomes I - 
I P I 

I t 

I - 
1 DOCUMENT NO 
I - 

PAGE NO. 1"""""-- I . L  '- PAGE NO. 

- 
I - 
I 

(vhere I I I I 

112 I 

v j =  ( 2P t ;P j )  = U ( C b + 1 ) 1 1 2  ,I I ' 

I (120) 
Pu2 I I - 

Pt .I P, + - 2 1 I 
I I 

I I 
We eva lua te  K 2 '  i n  (118) by r e q u i r i n g 1  t h a t  i n  t he  l i m i t  o f  zero g r a z i n g  

- 
6- - 
- - 
- 
- 
1 2 -  - 
- 

I 

I n  app l y i ng  (122) we t ake  I I 

I I 
I I 

C ~ o  = f n c  (:) 1 (123) 
I I 

I 
I I 

and s p e c i f i c a l l y  use Equat ion 93 t o  f i t  P e r r y ' s  exper imenta l  da ta . /  I 
I I 

The cons tan t  K  was se lec ted  so a i  t o  b e s t  f i t  t h e  exper imenta l  da tq  
I 

presented i n  ~ i ~ u r e 7 3 .  The bes t  f i t  was ob ta ined  w i t h  K = 0.21. Th< 

I 
- 

I - 
v e l o c i t y  t h e  d ischarge  c o e f f i c i e n t  re fuce  t o  t h e  we1 1  -known c l a s s i c a l  1 - 
I I - 

- 
3 6  
- 
- 
- 
- 
- 
42- 
- 
- 

I a f unc t i on  o f  t h e  p ressure  r a t i o  i n s i g e  and o u t s i d e  o f  t h e  vented duct ,  l . 

1 1 
Pt1P.j and t h e  d u c t  mean f l ow ,  U: EqGation (122) i s  ' equa l l y  v a l i d  f o r  ou t -  

I I 

BOTTOM OF PAGE .-i 

I Lgreement between t h e  model and t h e  e rper imenta l  da ta  i s  q u i t e  remarkablye 

I 
gs shown i n  F igu re  p\. Equat ion 12? can now be d i r e c t l y  i nco rpo ra ted  1 

s n t o  t h e  FACTS code t o  p rov ide  t h e  needed ven t  d ischarge  c o e f f i c i e n t  as / 
I - 

- 
- 

k1.b~-and i n f l o w .  For i n f l o w  pt i s  t h e  t o t a l  p ressure  o u t s i d e  t h e  ven ted  ddc t  - 
I 1 I 5 4- 
and p .  t h e  s t a t i c  pressure i n s i d e  t h e l d u c t .  C,, 6s d e r i v e d  f rom Eq. (1221) 16 - 
I J  
then  used i n  Eqns. (86)  and (87) t o  determine t h e  a c t u a l  mass f l o w  th rodgh 
I 1 I 
t h e  vents.  I I 

- 
- 
- 

I 
1 _ - 
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3.2.2.2 Model f o r  Open Ended Ducts 

S ide w a l l  absorbers,  i f  they  a r e  t o  be used i n  f us i on - t ype  l a s e r s ,  

w i l l  most l i k e l y  have open-ended ducts ,  t o  reduce t h e i r  f l o w  r e s i s t a n c e .  

The i n t e r a c t i o n  o f  t h e  shock waves generated i n  t h e  l a s e r  c a v i t y  w i t h  t h e  

open downstream end o f  t h e  acous t i c  duc t  must t h e r e f o r e  be modeled and 

i nco rpo ra ted  i n t o  t h e  FACTS code. 

When a  shock wave o r  o t h e r  p ressure  d is tu rbance  propagates th rough 

a  duc t  and o u t  o f  an open end, a  ve ry  compl i ca ted  three-d imensional  un- 

steady f l o w  s i t u a t i o n  r e s u l t s .  A  s imp le  one-dimensional model cannot 

a c c u r a t e l y  p r e d i c t  t h e  f l o w  behav io r  near  such an e x i t .  However, i t  i s  

p o s s i b l e  t o  develop a  quasi-one-dimensiona.1 f l o w  model which w i l l  acc.ur- 4 i.%.< ,P- A LA/, 
ate1.v p r e d i c t  t h e  e f f e c t s  o f  an o ~ e n  end a t  l e a s t  t o  some ' t i m e  a f t e r  t h e  , A / <  - .  - - 2- L 

I i n i t i a l  shock e x i t s  t he  ooen end if t h e  duc t .  /5bcd~k e ~ , * r y  rKf i  ~~1 T 
- .  .. . 

- S F -  T-hT- - -d a' m * 
Prev ious researchers  who have looked  a t  t h i s  problem have been con- 

cerned w i t h  deve lop ing  a  model o f  t h e  open ended duc t  f o r  use w i t h  method 

o f  c h a r a c t e r i s t i c s  s o l u t i o n s  (see References '3-1$and',3-141). The approaches 
- - 

we use makes use o f  t he  same f i n i t e  d i f f e r e n c e  technique which was a p p l i e d  

t o  s o l v i n g  t h e  equat ions of mot ion.  

Va r i ab le  Area Model o f  an Open End 

I n  our  f i r s t  a t t emp t  t o  model t h e  open duc t ,  we used t h e  code capa- 

b i l i t y  o f  s o l v i n g  f o r  f l o w  i n  duc ts  w i t h  v a r y i n g  c ross -sec t i ona l  areas. 

When a  shock propagates o u t  o f  an open ended duc t  i t  forms a  "shock bubble"  

w h i c t ~  c u l ~ ~ p l t t l e l y  sur.r~~ounds t h e  e x i t  o f  t h e  duc t .  A t  distances f rom t h e  

e x i t  which a r e  l a r g e  compared t o  t h e  d iameter  o f  t h e  duct ,  t h e  f l o w  i s  
n e a r l y  one-dimensional and $s i n  t h e  d i r e c t i o n  i n  which t h e  shock i s  @>J 
propagat ing  (see ~ i ~ u r e  \ 3-:$)./ By 1  e t t i n g  t h e  c ross -sec t i ona l  area o f  t h e  # ,  

k< J 

duc t  va ry  w i t h  d i s t ance  f rom t h e  e x i t  i n  t h e  same manner as t h e  su r f ace  

area o f  t h e  shock bubble va r i es ,  t h e  gross behav io r  o f  t h e  e x i t  f l o w  w i l l  

be approximated. The added v a r i a b l e  area s e c t i o n  o f  t h e  duc t  i s  made l o n g  

enough so t h a t  r e f l e c t i o n s  f rom i t s  t e r m i n a t i o n  do n o t  p ropagate 'back  i n t o  

t h e  main duc t  d u r i n g  t imes o f  i n t e r e s t .  
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I I 
\Vented ~ u c t  . ' ~ o d e l  o f  an Open. E%dl 

. . . . . . .  . . .  . , .  . .  . .  I 
' 1 I 

I n  t h i s  second approach we use t h e  vented duc t  c a p a b i l i t y  o f  t h e  f i n i d  
I 

/d i f fe rence  code t o  s imu la te  t h e  open end o f  a  duc t .  Dur ing p rev ious  s tdd-  1 
I b es ( ~ e f e r e n c e  m\), i n v b l  v i  ng t h e  v fn ted  duc t  concept o f  p ressure  wavq I suppress ion,  i t  was no ted  t h a t  when a! vented s e c t i o n  o f  duc t  w i t h  1  arge 

I 
. 1 

Lpen area j o i n e d  a  non-vented sect ion,  t h e  non-vented s e c t i o n .  behaved v$ry  
I I 
huch 1  i ke an open-ended duc t .  Here we d e l i b e r a t e l y  use t h i s  behav io r  t o  
I I I 
s i m u l a t e  t h e  open-end o f  a  duc t ;  The l s i de -wa l l  ven t  area pe r  u n i t  l e n g t h  

I I 
Las chosen so t h a t  i n  each h y d r a u l i c  t i a m e t e r  o f  vented duc t  t h e  ven t  avea 

l a -  

bas equal t o  t h e  cross-s ,ect ional  a r e a l o f  duc t .  Th i s  amount o f  v e n t i n g  das 1 
. I 

k o u i d  t o  s imul a t e  t h e  open end q u i t e  Re1 1  . The l e n g t h  o f  t h e  h i g h l y  veqte I I ' 
r e g i o n  i s  chosen so t h a t  d i s t ~ r b a n c e s ~ w h i c h  r e f l e c t  f rom the  c losed  end l 

L f  t h i s  "added-on" vented duc t  do n o t ;  r e t u r n  t o  t h e  non-vented o r  
P 
I 
~ t e l y - v e n t e d  s e c t i o n  o f  duc t .  Because o f  t h e  l a r g e  amount o f  v e n t i n g  i 
I 
r e q u i r e d  t o  match t h e  open end pressuCe decay, t h e  l e n g t h  r e q u i r e d  can fe  I I \ 

,kept t o  a  minimum. T h i s  represen ts  a? advan tage  over  t h e  v a r i a b l e  area 

hodel i n  t h a t  t h e  r e q u i r e d  number o f  bdd i  t i o n a l  nodes and t h e  add i  t i ona l i  
--,------------ 1 ---------------- 

k o ~ ~ ~ t i n ~  I c o s t s  can be kep t  t o  a  minimum. 1- I 
I 

J lodel inq o f  Viscous and t l ea t lT rans fe r  E f f e c t s  
I 

To f u r t h e r  improve and r e f i n e  t h k  p r e d i c t i v e  c a p a b i l i t i e s  o f  t h e  I 
I 

Lode, w a l l  f r i c t i o n  and hea t  t r a n s f e r l e f f e c t s  were i nco rpo ra ted  i n  t h e  1 -  
I I 

I 
I 

pode. I 

v iscous E f f e c t s  

I I The ac tua l  e f f e c t s  o f  t h e  f i n i t e ;  v i s c o s i t y  w i l l  be t o  d e v e l o p  two- I . . I and three-d imensional  boundary 1  ayers a1 ong t h e  w a l l  s  o f  t h e  duc t .  , ~ h e ( e  
I e f f e c t s  may be approximated i n  a  gros: sense by assuming t h a t  t h e  e f f e c f  
1 I .  

o f  t h e  boundary l a y e r s  may be t rea ted1  i n  an i n t e g r a l  manner which a c t s  i n  
I. ; I l 
a  un i f o rm  way across t h e  whole c r o s s - ~ e c t i o n a l  area o f  t h e  duc t .  L i k e -  I 
I I 
wise, heat  t r a n s f e r  f rom t h e  w a l l s  is lassumed t o  a f f e c t  t h e  o v e r a l l  f l o f  
I pn a  one-dimensional gross sense. ~ i k h  these assumptions, t h e  genera l  

korm of t h e  source terms which account f o r  v i scous  and heat  t r a n s f e r  i n  i I . I 1 
[the equat ions o f  mot ion  can be w r i t t e n  as: I 

C ,.b&,.- 
.. ' I . ,  L 
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- - 



BOlTOM OF PAGE 7 

J l l l l l l f 1 1 1  I I ' I I I I ~ I M I I I ~ I I I I I ~ ~  
I?, 6 1 1 1 ~ ~ ~ ~ 1 ~ 1 1 4 ~ 1 1 ~ ~ ~ ~ 1 ~ ~ 1 1 6 ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  7,2, I I I I ~ I I I I I ~ ~ I I I I ~ I I I I I I ~ I I I I  9 

- I  - 
- I  - 

I - c I  
- 

- I - 
111 I - 

I - 0 - 
,' 

f I f 

0 W I .  <+r 
, i I 

-0 I 
- 

' I  I  
I (125) - = FA -1 
I - 

- I - 
-1 2 S3 = QA I (126) 

I 
12- - I - 

- I FL . 
- where F i s  the wall shear force per uhit volume acting on the f lu id  ( F +  0 - I I 

- i f  u > 0, F < 0 i f  u < 0) and where Q 1  i s  the heat t ransfer  form the fi;/d I - 
-1 8 

I 1 -  - 
t o  the walls of the duct. A i s  the cross-sectional area of the duct. I 1 8- 
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- 
- 
- 

I I 
The wall shear force i s  determined from the wall Jsheaelstress for  I 

I I  

- 
- 

- steady fu l ly  developed flow. Under these conditions, the wall shear I 
- 1 I  

 stress,^ i s  related to  the flow f r ik t ion  factor by the defini t ion:  I 
-2 4 w'  I  

I - I I  - I I 
- 1 

< K -  - 
- 
24- 
- 
- 

- 
- 
- 

r = p u l u l  f(Re, &IDH) 1 
W I (127) - 

I - 
I - 

-3 0 where f i s  the f r ic t ion  fac tor ,  Re the Reynolds number, E the effect ive 
I 30- 

- wall roughness height, and DH i s  the hydraulic diameter of the duct. The - 
- ------------- ---- -L ---------------- I- - 
- hydraul i c  diameter i s  defined by: I - 
- 
- 
-3 6 
- 
- 

I 
I 

- 
I - 

DH E 4A/C I (128) 
I I 

I I 

36- - 
- 
- 
- 
- 
42- 
- 
- 
- 
- 
- 
48- 
- 
- 
- 
- 
- 
54- 
- 
- 
- 
- 
- 

\ - where A i s  the cross-sectional area of the duct and C i s  the perimeter. 1 
I - I I  

The Reynolds number i s  based on the hydraulic diameter: I 
- I 

-4 2 I I 
puDH I I - Re = - - 1-I I (129) 

I I - I 
I 

- I 
where 1-1 i s  the viscosity of the fluid! The f r ic t ion  factor i s  determined - I  *- I  

-48 by the fol 1 owing equations taken from; Reference (\3-15) : I 
- 
-- 
-- 

- 7 
W 

- 5 4 2  
---a 
-- U. 

- 
- G - 

I I 
I I 

I I 
I 

I I  

I I I  I 
I I 

I 
I 
I 

I I 
I I 

I I I 
I 



I 
4 + l o g  10 ( R ~ / s ! o z )  - logl0 W ]  -', 

I 
I 

3  1 f o r  Re 2 4x10 I 

I I 
I 

16/ Re, I 
I 

f o r  Re < 4x10 1 

I I 
where 4 i s  found by i n t e r p o l a t i o n  from t h e  f o l l o w i n g  t a b l e  
I I 

10 .044 ------ 1 -------- ---L ---------- 
20 .029 

I 
40 .018 

102 .0687 

l o 3  .0013 

l o 5  ' 8 ~ 1 b - 5  
I 
1 , -  

The F i n  equat ion (125) i s  detcrmincdl f rom: I I 

Heat Trans fer  E f f e c t s  I 
I 

I For t h e  heat  t r a n s f e r  model we aksume a  constant  w a l l  
I 

f u l l y  developed f l ow .  The heat f l u x  f rom t h e  f l u i d  t o  t he  

temperature 

wa l l  can be 
1 
expressed as 
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I 
DOCUMENT NO. I 

C I 
PAGE NO. I 

I 
b 

I I 
I 

uhere Tw i s  t h e  w a l l  temperature,  T 'is t h e  mixed mean f l u i d  temperature,  
m I 

l u  i s  t h e  Nusse l t  number, k i s  t h e  thFrmal c o n d u c t i v i t y  o f  t h e  f l u i d ,  a i d  pH i s  t h e  h y d r a u l i c  d iameter .  The ~ u i s e l t  number i s  g i ven  by t h e  f o l l o f i n $  
I 

equat ions wh ich ,  were taken f rom ~ e f e r b n c e  (13-1 6.) : 

I s . - .. 

I I 

= 0.21 Re 0.8 1 I 
I I 

' Nu 1 . . 

I I 
f o r  Re 1 827 I I 

I 
I (434) 

= 3.658 I I 
I I 

. f o r  Re < 827 I I 

- .  I 
I I 
I I 

Where P r  i s  t h e  P rand t l  number.  The i n  equa t ion  (126) i s  g i ven  by:  
I I 

I 

3.2.2.4 Cons t ruc t i on  o f  Wave Diagrams / 
I 

I Wave diagrams o r  x - t  diagrams a r i  p l o t s  o f  t h e  p ropagat ion  o f  waves 
l 

and p a r t i c l e  paths i n  space and time.1 They o r i g i n a t e d  w i t h  t h e  method I 
. I  I ,of c h a r a c t e r i s t i c s  s o l u t i o n  t o  t h e  eqba t l on  o f  unsleady r l ow  i n  gas dy- I 

I 
hamics. When us ing  t h e  method o f  ~ h ~ ~ a c t e r i s t i c s ,  wave diagrams a r e  1 

I 
btoduced p r h c t i c a l l y  as a by-product  b f  t h a t  method o f  s o l u t i o n .  Wave I 

I I 
b iagrams a r e  a use fu l  a i d  i n  understanding and v i s u a l  i z i n g  complex un- 

!steady f l o w  phenomena. when f i n i t e  d i f f e r e n c e  methQds a r e  used t o  so l v4  I 
!the equat ions o f  unsteady f l o w ,  wave hiagrams a r e ' n o t  a u t o m a t i c a l l y  p ro {  
1 
f uced. 

It i s  necessary t o  c o n s t r u c t  lhem f rom t h e  numer ica l  s o l u t i o n ,  f f  

t h e y  a r e  des i red .  We have m o d i f i e d  t h e  FACTS code t o  f a c i l  i t a t e  t h e  cod- I I s t r u c t i o n  o f  wave diagrams by computer. T h i s  added c a p a b i l i t y  o f  t h e  F ~ C T S  
I !ode can be ve ry  he1 p f u l  p a r t i c u l a r l y ,  when one must l o o k  f o r  t h e  d e t a i l  r( 

I I 
b f  t h e  In te rac*L iuns  O F  p ressure  waves1 w i t h  h o t l c o l d  i n t e r f a c e s  i n  t h e  p$es-' 
I I I 
sure-a-Otenua-tor-du~bs. I I 

t ? l  
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I 
I 
1% - PO.CU-MENT NO 
I 
I - PAGE NO 
1 
I - .. . 

I 
1 

1 
As t h e  code i s  running,  we c r e a t e  a  f i l e  which con ta ins  t h e  f l u i d  , 

v e l o c i t y ,  u, and- t h e  sound speed, c, A t  each node and a t  each t ime  step; 
I 

k t  a  l a t e r  t ime, i f  a  wave diagram i s 1  des i red ,  a  p o s t  p rocess ing  prd- I 
I I I gram can use t h e  (u, . c )  f i l e  t o  c r e a t p  a  wave diagram. The p o s t  p ro -  I 
I I cessor  c rea tes  a  wave diagram by i n t e i - g r a t i n g  f o r  ' p a r t i c l e  paths,  and I I I c h a r a c t e r i s t i c s :  I I 

I 
I 
I 

p a r t i c l e  paths 
I  

. . . . I  
I I 

t .  - 
Xu 

- X~ + u d t  

+ c h a r a c t e r i s t i c s  

I 
I 

- c h a r a c t e r i s t i c s  I 
I 
I 

I I 

I I 
The paths a r e  s t o r e d  ,and l a t e r  machine p l o t t e d .  The use r  can s p e c i f y ' a t  I I 
which l o c a t i o n s  i n  t h e  f l o w  he wants i o .  t r a c e  p a r t i c l e s  and character is i ,  
I I 
t i c s :  The c h a r a c t e r i s t i c  t r a c e r s  f o l l o w  t h e  p a r t i c l e  paths i n  t h e  x - t  . 1 .  I 'I domain u n t i l  t h e  p a r t i c l e s  beg in  mo t i yn  i n  t h e  x - d i r e c t i o n  i n d i c a t i n g  I I 
1 
t h a t  a  p ressure  s i gna l  has a r r i v e d .  $hen a  c h a r a c t e r i s t i c  crosses a  I I I 
boundary such as an end w a l l  o r  an open e n d ,  t h e  s i g n  on t h e  sound speeq 

1 
i s  changed so t h a t .  t h e  r e f l e c t e d  c h a r p c t e r i  s r i c  i s  f o l  1  owed. I I , 

I  
I I An example o f  t h e  wave diagrams broduced by t h i s  method i s  shown i n  

I I 
Figurefl~%f\which i s  f o r  a  shock tube  w i t h  a  24 i n c h  d r i v e r  and a  78 i n c h  
I - '-'" 

I I  
g r i v e n  s e c t i o n  which was c losed  a t  t h e  downstream end. The a i r  i n  t h e  I 

l d r i v e r w a s  i n i t i a l l y  a t  80 p s i g  and t b e  a i r  i n  t h e  d r i v e n  s e c t i o n  was I I - 
I - 

1 i n i t i a l l y  a t  1 atmosphere. i 
I 

.I I 
I 

I n  F igu re  m/, p a r t i c l e  paths ake shown as d o t t e d  l i n e s  and charaG- 
I 
t e r i s t i c  paths as s o l  i d  Tines. The 1  eading r i g h t  r unn ing  c h a r a c t e r i s t i d  I I 
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I --*L J 1 2 3  . Wave-Di agram-for Closed Shock ~ u b e :  - Diaphragm j ocatgd- &X- : 0.g- _me_te.- - - 
I-*' Dashed lines are par t ic le  paths and solid l ines are character is t ics .  Driver 
1 pressure-rati o-i s-5% L 



[ labe led " i n c i d e n t  shock", t r a c e s  t h e  b a t h  o f  t h e  r i g h t :  r unn ing  shock waie. I 
hs  t h e  shock moves along, c h a r a c t e r i s f i c s  f r om behind be,{i,d t o  ca t ch  up I I 
land coalesce w i t h  t h e  shock. .The p a r t i c l e  p a t h  which was o r i g i n a l l y  a t  l t h 4  

I I 'diaphragm marks t h e i n t e r f a c e  betweenl the,  d r i v e r  gas which coo led  upon I 

bxpansion from t h e  d r i v e r  and t h e  shotk  heated gas which was i n i t i a l l y  
I I 
I a t  ambient c o n d i t i o n s .  The  p a r t i c l e  ba th  mark ing t h i s  i n t e r f a c e  i :' i s  empqa- 

!s ized and shown as a  so l  i d  1 i n e  i n  ~ i b u r e  )3-38). The l a t e r a l  i g a c i n g  o f !  
u 

khe d o t t e d  ( p a r t i c l e )  1  i n e s  i n d i c a t e  i h e  l o c a l  gas dens i t y .  There was d I 
I  I I 
25% r e d u c t i o n  i n  c ross -sec t i ona l  area l  1  ocated j u s t  downstream o f  t h e  d r i v e r  

l in  o rde r  t o  s imu la te  t h e  broken diaphkam which c o n s t r i c t s  t h e  f l o w  i n  t t i s  

i l oca t ion .  The f l o w  th rough t h i s  r e g i  n  becomes n e a r l y  son ic .  Under th$se 1 
' cond i t ions  s i g n a l s  c a r r i e d  by c h a r a c t e r i s t i c s  p ropagat ing  a g a i n s t  t h e  fllow 
I I 
w i l l  be delayed. When these  choked cknd i  t i o n s  occur .  The character is ti.^ 
I 
paths become n e a r l y  v e r t i c a l  1  i n e s  on! t h e  x - t  diagram. F igu re  \=8\ i n d i -  

I I .  
ka tes  t h a t  choked c o n d i t i o n s  a t  t h e  d iaphragm occur red  t w i c e  d u r i n g  t h e  , 
I 
;2O m i l l i s e c o n d  p e r i o d  shown on t h i s  f I g u r e .  The approximate 1oca t i on .o f  - , 

$he head and t a i l  o f  t h e  ra re fac t i on . ,  bave which propagates i n t o  t h e  d r i i e r  I . ... 
I I 

"ar.e- a l  so -p ic  ked-u.p -by- the-cha.ra.cter-i s-t i.c -paths. .on- the-~a.~e.  .di.a.g.ram .- - 
I I 

I Other o p t i o n s  can be programmed i n t o  t h e  pos t  p r o c e s s e r .  ~ h a r a c t e 4 s -  I 
I I 

F i c s  o r  p a r t i c l e  o f  spec ia l  i n t e r e s t  can be s p e c i f i e d ,  a d d i t i o n a l  I 
bnes added a t  s p e c i f i e d  t imes and l o c ~ t i o n s ,  o r  non-essen t ia l  ones dropfied 
I from t h e  p l o t .  T h i s  wave diagram p l o t t i n g  c a p a b i l i t i e s  w i l l  be u t i l i z e d ,  / 
I I 

as needed, t o  c l a r i f y  d e t a i l s  o f  wavel i n t e r a c t i o n s  w i t h  s l ugs  o f  gas o f  1 
I I I 
va ry i ng  p r o p e r t i e s ,  such. as w i  11 be produced i n  r e p e t i t i v e l y  pu lsed  1  as4r .  

I  
I  1 i 

I 
comparisons o f  Code p r e d i c t i o n 4  and Exper imenta l  Resu l ts  . I 

I 
I  
I 

1 
6.2.3.1 Closed Tube.Tests I 

I - / P r e s s u r e h i s t o r i e s ~ a k e n a ~ t w o i ~ c a t i o n s i n t h e s h o ~ k t u b e ~ ~ ~  I y i t h  model p r o d i c t i o n s .  A 24 i n c h  1qhg d r i v e r  s e c t i o n  was f i r e d  i n t o  a  1 r 
I 
78- inch l o n g  d r i v e n  s e c t i o n  which waslc losed a t  t h e  downstream end and I 
I 
i n i t i a l l y  a t  1 atm. pressure.  ~ r e s s u e e  h i s t o r i e s  were recorded a t  ~ t a t i l o n  I I 

l o c a t e d  33 inches f rom t h e  d r i v e r  and S t a t i o n  2  l o c a t e d  76 inches f r o 4  I 
I 

l h e  d r i v e r  ( 2  inches  f rom t h e  c l osed  ynd) .  Data was recorded a t  l ow  ov4r,- I 
I 
pres'sures (Y  5 Ps i  i n  t h e  d r i v e r )  and.! h i g h  overpressures (2 .  80 p s i  i n  t y e  I 

I 
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Idriver).  he data was recorded fo r  ibort  durations (% 10 to  20 ms) 
I' . long durations (% 100 ms) . 
I 
I 
I Low Overpressure Comparison 
I 

-1 2 - The short duration resul ts  for  tbe low overpressure case are shown ; in  
- 1 Figure\i%[ba'nd the long aurat.'on resb l t s  for  the low overpressure case 1 
- s t  I 
- are  shown in F i j u r e ( n T d 7 h e  pressure pulse generated by the breakin$ o 
- I I ' I the diaphragm propagates down the t u b ?  and arrives a t  Station 1, 33 incqes 
-1 8 
- 

I 
Y from the driver.  The pulse i s  roughly trapzzoidal in shape, the vertical  

I I 

I I p"l s e  re f lec ts  from the closed end as; a!ft.,gr similarly shaped pulsed, as 
I 

- Ileading edge of the pulse indicating the presence of a shock wave. This 

pndicated by the lower trace of ~ igure / \3 -40 \ \ (~ ta t ion  2 ) .  The pulse the$ 
I 

travels upstream and passes Station 11 with a nearly identical shape as I I when i t  passed the f i r s t  time. The p l l s e  continues upstream to  the cloied 
I l 
end of the driver where i t  re f lec ts  abd returns to  Station 1 and begins I 

X I 
I 

another cycl e.  
I 

I 
1 

The two step pressure r i s e  in the leading edge of the experimental I 
-,-,,------------ _L -------,--------- 

fo r  the pulse arriving a t  Station 2 i s  due to  the incident wave TI-- 
I 

a t  Station 2 ( the f i r s t  step!, traveling two inches to  the clo:ed 

I - 

- I 

- 

- 
end, reflecting as a j u m p  i n  pressure! and returning to  Station 2 ( the I 

-36 . I 3 6  
lsecond s tep) .  The model did not distinctly show t h i s  second step becauje - 
I I I 

the two inch zone spacing used in theirnodel was too coarse t o  resolve the 
Lifference in arrival times between the two waves. 

I 

I 
I 
I 

Referring to  Figure as tim! progresses the trapezoidal wave 
shape becomes triangular as rarefaction waves catch u p  w i t h  the shock I 

I I 

front . The same cycle of two pulses p t  Station 1 fo r  each pulse a t  StaJ 
I 

t ion 2 continues with very l i t t l e  decey in shock strength. The agreemerit I I 
/between model and experimental resul ti i s  quite good. I 

I I 
I 

High Overpressure Comparison ' I 
I 

I 
and model resul t s  are  shown in 1 

I 

- - 
- 'are similar Lo the 'low overpressure wiveforms and the agreement between 

0 I - 
- LU ~ode-and-exper-i~nent-a-l-resu-l-ts-i-s-good~. -. - 
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STA 1 

I 

STA 2 i 

EXPERIMENT 
/ ........... CALCULATION 1 

- 
--- - - .  - 

\ Figure 3-40. Pressure Histories for  the Closed Tube with a 24" Driver a t \  
an Overpressure of 6 psi ( t e s t  shown in Fig. 3-7). - -- -- - - -- - 

7-- 
- -- - 

I 

EXPERIMENT 

............ CALCULATION' 

STA 1 1 .  

STA 2 I 
I 

I 

I . - . - 
- - - -  

Figure 3-41. Pressure Histories for  Closed Tube with 24" Driver a t  an 
Overpressure of 4.3 psi ( t e s t  shown in Fig. 3-7). 



1 ms/DIv 

.70 ATM/DIV STA 1 

STA 2 
.55 ATM/DIV 

EXPERIMENT 
............ CALCULATION 

-- . -- ,-, . - - - - .  
- - --  

F i gu re  3-42. Pressure H i s t o r i e s  f o r  Closed Tube w i t h  24" ~ r i v e r  a t  an 
I 

Overpressure o f  80 p s i  ( t e s t  shown i n  F igu re  3-8).  
- . A  -+ . . a- . - . - .... -* - 

10 ms/DIV 

I EXPERIMENT 

STA 1 

STA 2 

............ 1 -  - -  . - - CALCULATION --- 4 - -  - - I 
~ i g u r e  '3-43. Pressure ~ i s t o ~ i e s  f o r  t h e  Closed Tube k i t h  a 24" D r i v e r  

\ 
d t  drl 0ver.pr.essur.e u f  77 p s i  ( t e s t  shown i n  F ig .  3-8; 

I , no f r i c t i o n  i n  t h e  code run) . !  
I 

- 1 



j I 1 1  I I I I L I J . I ~ ~  1.1~ I I I I I 19161 1 I I I - I - 
I - - 

- I DOCUMENT NO. 
I 

- 
- I 
III 1 .  - 

I - cZ - 
3 I 

u 
At  l o n g e r  t imes  t h e  model -A- and exper imenta l  r e s j l  t.s begin t o  show 3% 6- - 

w some d i f f e r e n c e s ;  See F i g u r e [ m l  ~ b t e  on F i g u r e m p h a t  a t  S t a t i o n  t l ,  e .  - da. - (3 
0 

between t h e  second and t h i r d  ( c ~ d e - ' ~ r L d i c t e d )  p u l  ses, t h e  exper imenta l  da ta  - 
I I - 

- shows secondary p ressure  pu lses .  T h e ~ e  secondary shock waves/pressure I I . - 

I 4 

I 
w a l l  s, t h e  diaphragm i n t e r a c t i o n s ,  and t u rbu lence  a t  t h e  c o n t a c t  su r f ace  
I I 
and i n  t h e  boundary l a y e r s  can a l l  c o n t r i b u t e  t o  t h e  observed decay o f  I 
I 
t h e  pressure pu l  se. O f  these, o n l y  f r i c t i o n a l  and heat  t r a n s f e r  e f f e c t s  I I 
were p u t  i n t o  t h e  code. As d iscussed~e lsewhere ,  t h e  f r i c t i o n a l  and hea$ 
I I 
t r a n s f e r  e f f e c t s  were modeled us ing  a lquas i -s teady  approach which uses I i I 
i ncompress ib le  steady s t a t e  e m p i r i c a l  lmodels f o r  s k i n  f r i c t i o n . a n d  heat  1 I 
t ra-n s-f e  r r -T h-i s-rrio de 1- i.n C1 W eS 3 D ~ a + e - t e ~  -(-t re-siir-f a ~ e - r ~ u ~ h ~ e ~ s - ) -  mh-i cH- I can be v a r i e d  t o  i nc rease  t h e  e f f e c k l o f  f r i c t i o n .  I nc reas ing  t h e  

I 

s I 
I 
I parameter inc reases  t h e  momentum remooed v i a  t h e  source-s ink te rm i n  t h y  

I 
momentum equat ion.  F i gu re  r 3 T h o w s  a  compari son f o r  t h e  1  ong d u r a t i o t i  
I I 
h i g h  overpressure exper imenta l  r e s u l t k  w i t h  t h e  code r e s u l t s  when an I I 
unusual l y  h i  j h  amount o f  f r i c t i o n  ( e f j e c t i v e  roughness t o  hydrau l  i c  dia: 
I 

I I 
pu lses  f i r s t  appear a t  S t a t i o n  1 a f t e i -  t h e  main pu l se  has passed t h i s  

I 

i I 
l o c a t i o n  on i t s  way back t o  t h e  d r i v e r :  These secondary waves appear I 
t o  be r e f l e c t i o n s  f r om t h e  t h i c k  a lum~num.diaphragm p e t a l s .  T h i s  be ing  1 I I a non- ideal  process p e c u l i a r  o n i y  t o  a shock tube, no a t tempt  i s  mdde t o  
I I 
model i t  i n  t h e  code. 

I 
I 1 

I I 

The pu l se  decay.ra;t'e-sshown:by t h e ;  h i g h  pressure exper imenta l  nesG l t s l i s  
1 I 

I fas te r  than  p r e d i c t e d  by t h e  code. F r i c t i o n a l  and heat  t r a n s f e r  a t  t h e 1  

meter r a t i o  o f  % .15) i s  i n t r oduced  t o  o b t a i n  decay r a t e s  comparable t q  
I 
khose measured expe r imen ta l l y .  T h i s  f r i c t i o n  represen ts  an e q u i v a l e n t  i I 
measure o f  t h e  t o t a l  damping produced 1 by t h e  v a r i o u s  processes 1 i s t e d  
I e a r l  i e r .  I 

I 
I 

I 
I 

. . I 
I I 

8.2.-3.2 Open Tube Tests  I I 
I I  

I  he same exper imenta l  setup and t ransducer  l o c a t i o n s  were used i n  I 
I 
!he open erided duc t  t e s t s  as '  i n  t h e  d o s e d  d u c t  t e s t s  shown e a r l  i e r .  I 

I 

b t a t i o n  1 was l o c a t e d  33 inches f r om t h e  d r i v e r  and S t a t i o n  2  was l o c a t d d  
I  I , . 

I 76 inches from t h e  d r i v e r  (2  inches f r om t h e  open end).  Again t e s t s  wer,e 
I I t,nade w i t h  h i g h  (2 .  80 p s i )  and low ( 7  p s i )  d r i v e r  overpressures,  and d a t 4  
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Low Pressure Resul ts  

The o v e r a l l  p i c t u r e  o f  what happens when t h e  c losed end i s  replaced 

w i t h  an open end i s  t h a t  now waves a r r i v i n g  a t  t h e  open end a re  i n v e r t e d  

upon r e f l e c t i n g .  That i s  t o  say, compression o r  shock waves a re  r e f l e c t e d  

as r a r e f a c t i o n  waves, and r a r e f a c t i o n  waves a t  t he  open end a r e  r e f l e c t e d  

> as compression waves. Th i s  i s  i l l u s t r a t e d  by the  r e s u l t s  shown i n  F igure  

a64 !3T35_ j fo r  S t a t i o n  1. F i r s t  wave t o  a r r i v e  a t  S t a t i o n  1 i s  a  square wave 

headed by a  shock wave. Th is  r e f l e c t s  f rom t h e  open end and i s  seen again 

a t  S t a t i o n  1 as a  square pu lse  l e d  by a  r a r e f a c t i o n .  The negat ive  r e f l e c -  

t i o n  c o e f f i c i e n t  o f  an open end r e s u l t s  f rom the  qu ick  r e t u r n  o f  t h e  

pressure the re  t o  ambient conditions;as i l l u s t r a t e d  by t h e  measurements 

a t  S t a t i o n  2. The r e f l e c t e d  expansion pu l se  again r e f l e c t s  f rom t h e  

c losed end o f  t h e  d r i v e r  and passes S t a t i o n  1 again as an expansion pu lse  
: --- 

seen i n  t h e  S t a t i o n  1 data  shown i n  Fg iu re  ,3-46,,\ which shows t h e  r e s u l t s  
-4 - 

o u t  t o  100 ms. d 8 b 4- 

The code c o r r e c t l y  p r e d i c t s  t h e  wave a r r i v a l  t imes a t  S t a t i o n  1, bu t  

ove rp red i c t s  t h e  amp1 i tude o f  % t h e  r e f l e c t i o n  and shows negl i g i  b l  e  decay. 

Th i s  r e s u l t  i s  i n  con t ras t  t o  t h e  low overpressure c losed end comparison 

where the  model r e s u l t s  matched t h e  da ta  f a i r l y  w e l l .  An examinat ion o f  

t h e  open end experimental  data a t  S t a t i o n  2 (near t h e  open end) can shed 

some l i g h t  on t h e  d i f f e r e n c e s  between t h e  experiment and t h e  model p re-  

d i c t i o n s .  The experimental  data taken near t h e  open end (F igures  

1 4 ' 2 $ 3 - 4 6 (  - lower t r aces )  show t h e  presence o f  h igh  frequency t ransverse  

pressure o s c i l l a t i o n s  due t o  mu l t i -d imens iona l  wave d i f f r a c t i o n  e f f e c t s  

which t h e  code does n o t  model. Even more s i g n i f i c a n t  i s  t h e  code pre-  
A 

d i c t i o n  o f  t h e  open end pressure being below ambient du r i ng  pu l se  r e f l e c -  
/ 

t i o n  (F igu re  3-46). C l e a r l y ,  t h i s  i m p l i e s  a  s t ronger  negat ive  r e f l e c t i o n  
v 

,3- 4(, 
and consequent ly a  slower decay. It i s  be l i eved  t h a t  separa t ion  and vo r tex  

fo rmat ion  l ead ing  t o  a  j e t  l i k e  d i s s i p a t i v e  f l ow ,  which occur i n  the  r e a l  

process o f  r e f l e c t i o n  f rom t h e  open end, b u t  a re  n o t  modeled i n  t he  code, 

a re  respons ib le  f o r  these d i f f e r e n c e s .  



-- 
I 

High Overpressure Results I 
I 

The short term and long term reshl ts  for  the 
I 

(% 80 psi driver overpressure) cases are  shown in 
lhese resul ts  are  quite different  fro! the low pressure open end resul t< . I 
\ n  that  a d i s t i n c t  repeating sequence1 of sharp pulses f a i l s  to  develop. , I .I 
~n&reason for t h i s  different  behavior l i e s  in the f ac t  that  the flow : 
I I 
belocity a t  the open end of the duct heaches the speed of sound (choked 1 
I I I 
f low) jus t  a f t e r  the f i r s t  shock a r r i l e s .  As long as the flow remains I 

. I I 

'choked a t  the e x i t ,  pressure dis'turbat)ce, which propagate with the speed 1 
I of sound re la t ive  to  the f lu id ,  cannof propagate upstream.  hat i s  why , 
I .  I 
1 phere was an apparent delay in the arkival of the rarefaction wave expe<- 

I I 
I Fed to be formed when the main shock keached the open end. Sonic flow 1 I 
Lpeed near the e x i t  does not prevent jisturbances from propagating 
I 
I $he exi t  from upstream. When the rarefaction wave following the shock wav4 

I 
arrives a t  the e x i t ,  the flow velocity drops below sonicand disturbance$ I 
I can once again propagate upstream. 14 the high pressure case, differendes 
I I I 

observed in the low 
.- ---- 

pressure case. I 
I I I :-i 
I The pressure his tor ies  p r e d i ~ t e d l b ~  the code for  the high pressure i 

I . I 
bpen ended duct agree f a i r l y  well in an overall sense, b u t  some of the 1, I I 

betai ls  of the wave structure were not predicted by the code. These ! I 
bifferences between code and experime$tal data are due to  two-dimensiondl I 

I 

Lffects which were not modeled in the1 code. I n  p a r t g u l a r ,  wave inter-  I 
I I 3 actions with the petals of the diaphrqgm as. we1 1 asr the area cb i s t r i t t i on  
I A which occurs a t  the diaphragm s ta t ion!  are  not included in the model. 
I 

l e  one-dimensional 
I -1 i  ke mu1 t i  -dimensional 

end. I n  applying t h e  code to  typical pressure wave suq- 

bression problems in pulsed lasers ,  i t  won't be necessary to  model the I 
I I I k'irst two ef fec ts .  The model f o r  ope? end of the duct howevei-, may require 

I I I 
I some improvements so that  the effects lof  an open end on the pressure-wa$e 
I I I 
kan be better predicted. 

I 

I I I I I 
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I 
I 

C I 

-- I 
I 

L 
3.2.3.3 Vented Duct Tests  I I 

I I 

8" D r i v e r  I I I  I 
I 

The shock tube  c o n f i g u r a t i o n  and; t e s t  c o n d i t i o n s  f o r  which code c a l -  

h u l a t i o n s  have been ob ta ined  a r e  as f o l l o w s :  The shock, tube  d r i v e r  was 18 
I 

l inches l o n g  and t h e  d r i v e n  s e c t i o n  was I .  111 inches l ong .  The v e n t i n g  began 
I I 
2 i n c h e s f r o m  t h e  diaphragm and con t ibued  f o r  t h e  rema in ing  l e n g t h  o f  t h e  I * - 
I - 
h r i v e n  sec t i on ,  which was c losed  on t h e  downstream end. The v e n t i n g  pr6- I s - 

I -- -I , ,  . 
buced a 7.2% open area i n  one / w a l l  ,' w h i c i  accdrd ing t o  ou r  code =a1 c u l  a t i d n s  
I should g i v e  a n e a r l y  o p t i o n a l  rat; o f i  pressure wave a t t e n u a t i o n .  A l l  test . /  
C 1 

T- 
1 8- 

I 
comparisons were made f o r  a  nominal d i i v e r  overpressure o f  7 p s i .  

I 

I 
. . I I 

C a l c u l a t i o n s  were made us ing  two1 v e n t i n g  models, t h e  cons tan t  CD mqde 
I 

I and t h e  v a r i a b l e  CD model ,%hich were; discussed i n  Sec t i on  3.2.2.1. Two 
i I 
runs  were made w i t h  t h e  cons tan t  C D y  k i t h  CD va lues o f  .6 and .9, and one i 

I 
h i t h  t h e  variable CD. As i t  tu rned  o h t  t h e  r e s u l t s  f o r  t h e  v a r i a b l e  C D l  
I I 
model were n e a r l y  i d e n t i c a l -  t o  t h e  r e s u l t s  ob ta ined  w i t h  t h e  cons tan t  C; 
I I 
model us i ng  a va lue  o f  .6 f o r  C D .  Th(s r e s u l t  i s  n o t  t o o  s u r p r i s i n g  i n  
I I 
I 
,view o f  t h e  r e l a t i v e l y  l ow  o v e r p r e s s u ~ e  cases cons idered here, s i nce  t h e  r I 
I I 
v a r j  able-C model-gi v.es- a-d-i sckacge- cbe f  f-i.c-i.e,n.t-nea.rly -..6-for-1-ow-0~e.r~- - I D- I 

bressures.  Because t h e  CD = .6 and t h e  v a r i a b l e  CD r e s u l t s  a r e  n e a r l y  I 
I 

~ d e n t i c a l ,  o n l y  t h e  cons tan t  CD r e s u l t s  w i l l  be compared w i t h  t h e  exper i l -  i. ' I .  I 
mental  data.  The v a r i a b l e  CD i n  codel r e s u l t s  a r e  expected t o  depar t  f rqm 
I I  
t h e  CD = .6 r e s u l t s  when h ighe r  d r i v e r  overpressures a r e  considered. I 
1 I I - I Experimental  p ressure  h i s t o r i e s  he re  ob ta ined  f rom t h e  upstream end I - 

b e s u l t s  f o r  a  d ischarge  c o e f f i c i e n t  of 0.6. I 
I I 

I 
' (c losed end) o f  t h e  d r i v e r  and 9 inches downstream o f  t h e  diaphragm, a t  i 
t h e  beg inn ing  o f  t,he,vented sec t i on .  l ~ h e s e  two p ressure  h i s t o r i e s  a r e  I I I 
shown i n  F i g u r e G $ c o m p a r e d  w i t h  t h e  c o m p u t e d ~ r e s u l t s  f o r  a  cons tan t  I 
I d i scharge  c o e f f i c i e n t  o f  0.9 and i n  Flgure[$q\compared w i t h  t h e  compuded 
C I 

I I 
The upper t r a c e  g i ves  t h e  p ressure  h i s t o r y  9 inches downstream o f  I 

I  
fhe diaphragm. What i s  observed a t  t h e  downstream s t a t i o n  i s  a  sudden I 

I 
r i s e  i n  p ressure  f o l l o w e d  by a s l i g h t l d r o p  i n  pressure., f o l l o w e d  aga in  I 

- 
42T 
- +- - 
- 

I .  I 
a sudden drop i n  p ressure  t o  . a  . v a l  he be1 ow ambient, i .e. , a p ressure  1 

I 
se f o l l o w e d  by a r a r e f a c t i o n .  The1 p o s i t i v e  p u l s e  i s  due t o  t h e  shock 

I 
benerated by t h e  d iaphragmand t h e  nega t i ve  pu l se  o r  r a r e f a c t i o n  i s  caujed 

I I 
I 

1 
-. - 
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a t  an Overpressure of 5 psi ( t e s t  shown in Fig. !3-14). \ 
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t 

c I DOCUMENT NO 
I 
I :  --h-. --.- PAGE - NO 
I 

I I - --- 
I I 

by t h e  shock i n t e r a c t i n g  w i t h  t he  vented r e g i o n  t o  produce a  r a r e f a c t i o n  
I I I 
pave which i s  r e f l e c t e d  back t o  t h e  d r i v e r  where i t  r e f l e c t s  f rom t h e  I 

w a l l  and r e t u r n s  t o  t h e  vented kegion.  I 
I 
I 

The l owe r  t r a c e  i n  F igure  t h e  p ressure  h i s t o r y  a t  t h e  I 

k l o s e d  (upst ream) end o f  t h e  d r i v e r .  i ~ t  t h i s  s t a t i o n  t h e  h i g h  p r e s s u r e )  
1 I d r i v e r  gas encounters - f i r s t  a  r a r e f a c t i o n  wave, generated by t h e  b u r s t i n d  

b?aphragm f o l l o w e d  by a  r a r e f a c t i o n  w ~ v e  r e f l e c t e d  f rom t h e  vented r e g i 6 n  
I I I 
o f  t h e  duc t  a s . t h e . s h o c k  passes th rough t h e  vented reg ion .  The p ressure  
I I I 
a t  t h i s  s t a t i o n  r e t u r n s  t o  near ambient about 4 m i l l i s e c o n d s  a f t e r  t h e  I 

b i  aphragm b u r s t .  I 
I 
I 
I 

A  t h i r d  f e a t u r e  t o  no te  i n  a r e  t h e  presence ot; 
I 

r e l a t i v e l y  1  a t e  t ime  d i s tu rbance  a t  akound 16 m i l l  iseconds. T h i s  d i s t u y  
I I I 
bance - i s -  due t o  t h e  r e t u r n  o f  t h e  main shock a f t e r  r e f l e c t i n g  f rom t h e  
I c losed  end o f  t h e  vented duc t .  The f i n i t e  d i f f e r e n c e  (FACTS) code d i d  I 
I 
I 
not,, p r e d i c t  t h e  r e t u r n  o f  t h i s  shock f o r  e i t h e r  v a l u e  o f  CD. The o s c i l J  

I 
b L i n g  na tu re  o f  t h i s  s i g n a l  which apbears a t  a  t i m e  when t h e  f i r s t  shock 

I 
I 

~OUI  d b-e r e f l e c t e d  from- the- c l  osed -end, -0.f-the-vented -du.ct,. is-a1.s.o. unexi- 
I '  .,. 
I 
pected: I f  a t  a l l ,  t h e  code would a  r e f l e c t e d  shock f o l l o w e d  b$ 

I 
I k r a r e f a c t i o n ,  s o  t h a t  pressure would1 jump up, and then  decay back t b  : I 

I I . .. pmbient c o n d i t i o n s .  I t  may be t h a t  i n  t h i s  case, t r ansve rse  o s c i l l a t i o { s  

pr 2-0 wave p a t t e r n s  develop behind t b e  r e f l e c t e d  shock t o  g i v e  t h e  wavg 
I 1 
p a t t e r n  which was measured. T h i s  e f f b c t  remains, so f a r ,  unexpla ined.  1 
I I  I 

. I  . Another i ns tance  i n  which t h e ,  cod: p r e d i c t i o n s  do n o t  m a t c h  t h e  exp$ r i  

mental r e s u l t s  occurs j u s t  a f t e r  t h e  main shock a r r i v e s  a t  S t a t i o n  2. A t  
I I 
t h i s  p o i n t  i n  t ime  ( j u s t  a f t e r  t h e  a r r i v a l  o f  t h e  main shock) t h e  measu4ed i 
p ressure  jumps t o  t h e  l e v e l  behind t h e  shock and then  o s c i l l a t e s  about I 

I 
k h i s  va lue  f o r  .near ly  2  m i l l i s e c o n d s !  T h i s  i s  aga in  b e l i e v e d  t b  be due I I  I 
. t o  two-dimensional  waves generated by1 i n t e r a c t i o n s  between t h e  shock wave I I I and t h e  ven t  ho les,  which t h e  code i s ,  unable t o  handle a t  p resen t .  ThesZe 
I '  I d i s tu rbances  were appa ren t l y  propagated i n t o  t h e  d r i v e r  as w e l l ,  as ind i t -  
I I ca ted  by ' t h e  presence o f  s i m i l a r  o s c i j  l a t i o n s  o c c u r r i n g  a t  S t a t i o n  1 a t  I 

I  
I 
I 

I 
I 
I 

. . . -.I, 
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These secondary disturbances do not seem to a f fec t  the overall shape 
I' I b i  the pressure his tor ies  . The overall shape i s  predicted well by the 

buasi one-dimensional model. I I 
I I I 

I look a t  theie dafa compdrisons i s  presented in 
pressure history a t  Station 1 (closed end of driv$r) 

I 
i s  shown with an. expanded pressure scale.  On t h i s  scale- .one can see t h 6  

I 

pressure oscilla.tions which are  s e t  ub in the unvented region of t h e .  d u b t .  
I 

[when a pressure wave h i t s  the closed Lnd of the dr iver ,  i t  re f lec ts  with 
I I 1 the same sign. When a pressure wave passes from the unvented region into 

, __ _.. _ _  - -  -- - - . - . ---- 
lthe vented region a \ s h a v e  of bpposi t e  sign i s  reflected back inJ 
I I 

the unvented region of the duct:inmuch the same manner-as pressure wave: 
I 

I bre reflected from an open end of a dyct. The resu l t  of these waves I 
I I 

I traveling back and forth in the dr ivel  i s  a "quarter-wave" osc i l la t ion .  I 
I 

rhe name quarter-wave i s  derived fromlthe fac t  that  the length of the I 

lunvented region i s  nearly equal to  one-quarter of the wave-length of t h e  
I 'oscillation which i s  s e t  u p .  I I 

I I I 
-. The-%" g.acles-w_i tb-the-re-ce-ss-ed- mount~ss,-usSed $0-obt-ai-n_ -the 

in Figures 3-51 and 3-52! tend to  roubd-off any pressure 
* 1 -  see. This i s  the ,reason for  the discbepancy between the 

I * . - lsults near the minima of the pressure! t race.  These gages 
I mainly to  de tec t ' the  small pressure "kuarter-wave" fluctuations a f t e r  tKe I 
Ipressure in the tube has returned t o  bearly ambient tonditions. I I I 
! 

I 

I I I 
This quarter-wave oscil lation i s l  c lear ly ,seen i n  both the experimerital 

I 
d a t a  and t h e  ~a lcu l i i ted  resul ts  in F i b u r e p { ~ r T h e  s t a r t  bf the f i r s t  1 I 

I 
iposi t ive  pul se of the calculated quarfer-wave osci 11 ation begins s l  igh t ly .  I ' 
lbefore t h a t  of the experiment for bot? values of CD. The calculated 

I i I I lperiod i s  somewhat shorter than tha t  shown by the experimental data,  b u i  I 
I 

/it i s  the same for  both values of CD :red in obtaining the calculated I 
I 

iresults.  The amplitude predicted by \he calculations with CD = 0.9 was1 
I 

!closest t o  tha t  measured i n  the experiments. The r a t e  of decay predictid I 
I by the code i s  f a s t e r  than that  measured. 
I 

I The data near the beginning of the vented section (Station 2 )  i s .  ~ $ 0 ~ 4  

k i th  an expanded pressure scale in ~ iBure (3 -521  The arrival of the mail 
I , ~ q a  - I 

-- - 1 - 
1 
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Fi'gure 3-51. Vented Tube Tes t  (7.2% Open) Closed-End Duct' - - 

_ I  Wi th  8" D r i v e r  and 7 p s i  Overpressure (Tes t  - 
Shown i n  F igure  -- - 3-14). 
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:i 
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[ F i gu re  3-52. ' v e n t e d  Tube Tes t  (7.2% Open) Cl6sed-End D U C ~ ~  
With 8" D r i v e r  and 7 p s i  O v ~ r p r e s s u r e  (Tes t  

1; Shown i n  F igu re  3-1 4 ) .  
4 - -- - -- - 



I 
shock was de le ted  from F igure  3-52; qn l y  t h e  process o f  recovery t o  amblen 

pressure i s  shown. The p red i c ted  pr{ssure re tu rned  t o  ambient f a i t e r  than 

the  measured pressure d id .  The reasdn f o r  t h i ~ ~ d i f f e r e n c e  i s  n o t  c lear !  
I 

Again, t h e  experiments show..the re tudn o f  t h e  main shock a f t e r  be ing  I 
I r e f l e c t e d  from t h e  c losed end o f  t h e  /vented duct,  b u t  the;computation I 

does no t .  I 1 
I I 

I 
24" D r i v e r  I I 

I I 

Comparisoni between code calcu l . ( t lons and experimental  measurement! 
- - 
- I f o r  t h e  24 Tnch d r i v e r  were made f o r  j a  dr i :ver  overpressure o f  6 p i i  . 

T?e I " 

- 
- l d r f v e n  sec t i on  was 113 inches long  . a d  was vented on t h e  t o p  s ide  beginpine - 

- 
CD was determined by us ing  the  q o t e n t i a l  f l o w  model , Eq. (122),  fa; bb th  

I I 
- 

i n f l o w  and ou t f low.  The ca lcu la t ions '  were c a r r i e d  o u t  f o r  20 m i l l i seconds  - 

2 inches f rom the-diaphragm and cont i ;nuing f o r  t h e  remaining l e n g t h  o f  ;he 

I )  
,from t h e  diaphragm Burs t  t ime. 30- 

I I i I - 

- 
- 

- - . - - - - - - - - - -  - ----- _L ---------------- 

I -I- 1 - 
Expe.r.imenta1 pressure h.i'stori'es lfor th.e 6 psi: overpressure cases were 

I - 

d r i v e n  sec t ion .  The vent ing  produced a  7.2% open area " i n  one w a l l  . ~ h b  end 24- 
I - 

o f  t h e  d r i v e n  sec t i on  f a r t h e s t  f rom t h e  diaphragm was closed. - 
I 

obta ined from the  upstream end o f  t h 4  d r i v e r  ( t h e  c losed end) and 9 inches1 - 
I 

downstream o f  the  diaphragm i n  t h e  v j n t e d  sec t i on .  These two pressure I 
I 

h i s t o r i e s  are shown i n  F igure  3-53 cdmpared w i t h - t h e  computed r e s u l t s  , I 
obta ined w i  t R  t h e  vent ing  model. The o v e r a l l  behavior  o f  t h e  pressure i s  

- 1 i n c h  d r i v e r .  We again :ha"e:the :pre&nce % o f  a  -1 a t e  t i ;me d i s tu rbance  a t  brobnd . - 

- 
- 
-42 

- I - 
- 116 mi l l i seconds .  This  d is turb8nce is: d u e ' t o  t he  r e t u r n ' o f  t h e  main shock I - 

I 
s i m i l a r  t o  t h a t  obta ined f o r  t h e  8 T(ch d r i v e r  a t  t h e  lower pressures; the1 - 

I - 
main d i f f e r e n c e  being t h a t  t h e  durat i ion o f  t h e  pulses i s  longer  w i t h  t h e  2f 42- 

- 
- 
-48 

pred i c ted  i n  t h e  present  calculat ion; where a' v a r i a b l e  CD model was useb. 
I 

Nor d i d  t h e  code p red i  c t  many o f  the'lsmal 1  e r e  osc i  11 a t i o n s  t h a t  appear I 
I  

superimposed on t h e  o v e r a l l  wave for?.  . These smal l  ,pressure o s c i l  l a t i o h s  
I 

BOTTOM OF PAGE 7 

a f t e r  r e f l e c t i n g  from t h e  c losed end i o f  t h e  vented 'duct. This  r e f l e c t e b  
I I 

shock was n o t  p red i c ted  e a r l f e r ,  when a c o n s t a n t  CD was used, no r  was i t  
- 
- 
- 
- 
- 

V - 0 

r- BOTTOM OF PAGE 

- 
- 
4 8- 

are be l i eved  t o  Be due t o  two-dimensional e f f e c t s  o r i g i n a t i n g  from the  yents 
1 I 54- 

which are  n o t  c u r r e n t l y  modeled i n  t he  code. Aside from t h e  h igh  ~ f r e ~ u b n c y  
- 

1 I osc i  11 a t i o n s  t h e  code resu l  t s  a re  i n  ,excel l e n t  agreement w i t h  t h e  exper)me?tal 
- 
- 

I 

I 
I 2 - - w measurement. .-- 

. . - 
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I I 
We concluded from these comparisons t h a t  t h e  quas i  one-dimensional I 

I node1 gave f rS isonab lygood  o v e r a l l  agbeement w i t h  exper iment  and t h a t  

 sing f i r s t  a one-dimensional  approach t o  t h e  a n a l y s i s  was j u s t i f i e d .  I 
I I 

4-J -- 11n c e r t a i n  ins tances ,  two-d imensional ;  phenomena were shown t o  have e f f e d t s  I 
-1 2 - 
- 

I 
t h a t  c o u l d  n o t  be accounted f o r  by t h k  I one-dimensional mddel. These e f i e c d  

I 
a r e  now b e t t e r  unders tood and w i l l  be1 accounted f o r  i n  f u t u r e  model ing {o r?  

- 
- 
- 

:ode does n o t  p r o p e r l y  p r e d i c t  t h e  n a t u r e  o f  t h e  low p ressure  o s c i l l a t i 4 n  
I 

( a t  t h e  l e v e l  o f  l o e 2  t o  i t m )  in1 and near  t h e  d r i v e r  (which s imu la tes  
I 

the l a s e r  c a v i t y ) ,  and ( b )  t h e  p ressure  d is tu rbances  which sho; up a t  adou 
I 

16 msec a f t e r  t h e  diaphragm b u r s t  a re ;  n o t  p r e d i c t e d  by t h e  ?ode. These I 
I 

i i s t u r b a n c e s  can have a de t r imen ta l  e f f e c t  on t h e  beam q u a l i t y  o f  t h e  I 

I 
The v e n t i n g  model i s  adequate f o r  p r e p i c t i n g  genera l  t rends ,  b u t  i t  neeqs 

some improvement i f  t h e  d e t a i l s  o f  t h b  r e t u r n  t o  ambient c o n d i t i o n s  a r e  l t o  
-1 8 - 
- 

i e x t  pu lse .  

---- ------ - ,  . 

I be a c c u r a t e l y  p r e d i c t e d .  There a r e  sbme d e f i n i t e  d isc repanc ies  between l t he  
I 

code p r e d i c t i o n s  and t h e  t e s t  r e s u l  tsi. The two ma jo r  ones a re :  ( a )  t h q  I 
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I The method adopted f o r  performance e v a l u a t i o n  was p redominan t l y  + 
C 

exper imenta l ,  w i t h  some t e s t  case comparisons w i t h  t h e  FACTS Code. I: 
2 

B a s i c a l l y ,  p ressure  t r a n s i e n t s  were measured i n  t h e  vented duc t  shock I 

I t ube  f a c i l i t y ,  s i m u l a t i n g  t h e  ~ i n g l e ~ p u l s e  s i t u a t i o n  i n  a '  l a s e r ,  w i t h o u t  

I mean f l o w  and d r i v e r  gas hea t i ng .  The da ta  was q u a n t i f i e d ,  s t o r e d  and 
I 

processed u s i n g  improved i n s t r ~ m e n t a t i o n ~ a n d  a  d i g i t a l  r eco rde r  w i t h  " 
J 

m ic roprocessor  and magnet ic d i s k  s to rage  cababi  1  i ty. The impo r tan t  

common f e a t u r e s  o f  t h e  pressure t r a n s i e n t s  were eva lua ted  f rom t h e  data: 

I f o r  a  t e s t  m a t r i x  o f  o p e r a t i n g  and des ign  parameter va lues (Tables 3-1 
I and 3-2) .  A lso,  da ta  was ob ta i ned  on t h e  e f f e c t  o f  an o u t e r  duc t  f i l l e d  

w i t h  porous m a t e r i a l  s. I - C 
I 
I U ~l I n  a d d i t i o n ,  t h e  o p t i c a l  degrada t ion  o f  t h e  medium caused by r e v e ~ s e d  
I I1 

1 1  

I vent-^' f low d u r i n g  t h e  undershoot phase o f  t he rp ressu re  t r a n s i e n t s  was 

, measured u s i n g  double  exposure ho log raph i c  i n t e r f e r o m e t r y  f o r  t h e  t e s t 1  
1 

I case o f  F i gu re  -3-26. A t  6.7 msec, t h e  aterage peak t o  peak f r i n g e ~ h i f t ~ .  

I was .73 a t  .6948 pm wavelength,  which corresponds t o  a  r e f r a c t i v e  index' 

I v a r i a t i o n  o f  2.8 x  and a  r e 1 a t i " e  d e n s i t y  v a r i a t i o n  o f  about  
I 1 The s c a l e  l e n g t h  f o r  t h e  v a r i a t i o n s  &as approx imate ly  2.5 cm, which 

I corresponds t o  t h e  spac ing  o f  t h e  veb ts  i n  t h e  f l o w  d i r e c t i o n :  I 
n 

I 
I 1 i 
I The decay ing p ressure  o s c i l l a t i o n s  were measured w i t h  m o d i f i e d  O 

C 
I PCB 1060 p i e z o e l e c t r i c  t ransducers  a t  , l o cq t i ons  shown i n  F i gu re  3-54. I 

I 
1 The o u t e r  d u c t  w i t h  f i b e r g l a s s  pack ing  was used o n l y  f o r  a  few f i n a l  L 

<\ 

r uns .  Genera l l y ,  t h e  duc t  vented i n t o  t h e  room f o r  a l l  o t h e r  runs .  1 
I A l so  shown a r e  t h e  t y p i c a l  wave i n t e r a c t i o n s  dep i c t ed  on a  X - t  wave ; 
, diagram. The diaphragm b u r s t  i n i t i a t e s  a  shock wave S t r a v e l i n g  i n t o  1 
i I : t h e  vented d u c t  and an expansion wave E i n t o  t h e  d r i v e r .  The c o n t a c t  

/ s u r f ace  i s  t h e  m a t e r i a l  boundary between t h e  d r i v e r  gas and t h e  d r i v e n  
1) 1 gas. I t s  t r a j e c t o r y  i s  shown dotted!. A t y p i c a l  i n t e r a c t i o n  w i t h  a  

I ; v e n t  weakens t h e  shockwave and r e f l e k t s  a  weak expansion wave e. The 
1 1 t r a j e c t o r y  o f  a  f l u i d  p a r t i c l e  a t  t h b  ven t  i s  shown d o t t e d .  A l l  t h e  I 

1 weak expansion waves f u r t h e r  i n t e r a c t  w i t h  t h e  ven ts  gene ra t i ng  a  compliex C - - - - - - - -- - - e - - 1- - 
n 
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I 
s i t u a t i o n  w i t h  many more s m a l l e r  waveis which a r e  n o t  shown. The expansion 

E r e f l e c t s  f rom t h e  end w a l l  o f  t h e  d ' r i ve r  and f6.llows t h e  shock wave dfwn 
I 

t h e  vented duc t .  I t s  i n t e r a c t i o n  wieh t h e  vented r e g i o n  r e f l e c t s  t h e  smal 
I I 

compression waves C .  The expansion w,aves and t h e  compression waves r e f l e c  

back and f o r t h  between t h e  d r i v e r  end] w a l l  and t h e  beg inn ing  o f  t h e  vented 
I 

r e g i o n  i n  a  manner s i m i l a r  t o  an orgabpipe o s c i l l a t i o n .  T h i s  s i t u a t i o n ;  
I  

i s  f u r t h e r  comp l i ca ted  by  t h e  var ious l  wave reyl 'ect ions f rom t h e  con tac t1  
I 

su r face ,  which i s  a  d i s c o n t i n u i t y  o f  h e n s i t y  and temperature,  b u t  i n  I 
I I 

r e a l i t y  i s  a  d i f f u s e ,  t u r b u l e n t  regio,n o f  inhomogeneous gas. I 
I I 

The d i f f e r e n t  waves S, E, e  and IC and t h e i r  occurrence a t  t h e  thre; 
1 I 

p ressure  sensor l o c a t i o n s  c o r r e l a t e s  ,well w i t h  t h e  observed p ressure  I 
I 

v a r i a t i o n s  a t  these l o c a t i o n s ,  as seeb i n  F i gu re  3-55. B a s i c a l l y ,  t h e  I 
I shockwave and t h e  r e f l e c t e d  expansion1 form a ' t o p  h a t '  p ressure  pu lse,  I I I which t r a v e l s  down t h e  vented d u c t  an6 decays. The smal l  r e f l e c t i o n s  I 

I f rom t h e  pu l se  i n t e r a c t i n g  w i t h  t h e  v,ents produce p ressure  undu la t i ons  I 
I 

o f  o n l y  t h e  d r i v e r  ( o r  t h e  l a s e r  cav i i ty )  which then  decay due t o  t h e  I 
I 

r e c i p r o c a t i n g  d i s s i p a t i v e  f l o w  throug1h t h e  ven ts  near  t h e  d r i v e r .  I t  I I 
i s " iE te rFsT ing- to  Kot>th>t- is-tKe ma jo r  wave component respons i  b l K  '-I-- 

I 
f o r  t h e  p ressure  undershoot caus ing  the reversed  v e n t f l o w .  I 

I I 
I I 
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TEST CONDITIONS: l o ' ,  VENTED DUCT, ,, F 1. - 

7 .2% OPEN '(a = 1 ) , 1 6 " '  DRIVER! l- i? p{  I +  i 
17.25 P S I G  OVERPRESSURE< - i ) I  1 

1 ' -  / ' f . .  . a > * 5 F l l / E f .  
- )  

,@ !T, CkOSED END OF DRIVER , ,, 
@ I N  V E N ~ E D  DUCT, 7 "  FROM DIAPHRAGM 
@ IN 'VENTED DUCT, 6 1  I' FROM D I A ~ % R A G ~ ~  /-, f i  f -  

~ l g u r e  3 -55 .  D I G I T A L L Y  RECORDED .PRESSURE. WAVE. TRANSIENTS 



I 
1 DOCUMENT NO 
I 
I PAGE NO 
I 

I 

The, t h r e e  dressure t r a c e s  of ~ i ~ : u r e  3 -55 ,a re  shown aga in  i n ~ i g u r e i 3 -  
I on more s b i t a b l e  sca les  f o r  comparisop w i t h  t h e  r e s u l t s  o f  t h e  FACTS cofe, 

which a r e  shown d o t t e d  where d i s t i ngu l i shab le .  I n  genera l ,  t h e  agreement 
I I 

on t h i s  s c a l e  i s  e x c e l l e n t .  It shoul$ be emphasized t h a t  t h e r e  i s  no 
I 

parameter match ing i nvo l ved .  ~ o w e v e r i  t h e  r e a l  t e s t  o f  t h e  p r e d i c t i o n  I 
scheme i s  i t s  accuracy a t  p r e d i c t i n g  &he r e s i d u a l  weak d is tu rbances  a f t e r  

I 
a  l o n g  t ime.  For  t h i s  purpose F igurep 3-57, 3-58 and 3-59 .show such com- 

par i sons  on a  magn i t i bd  s c a l e  f o r  the; r e s i d u a l  dFl.ver o s c i l l a t i o n  obser4ed 
I a t  l o c a t i o n  1  , r e s p e c t i v e l y  f o r  two! d r i v e r  ~ v e r ~ r e s s u r e s ,  two d r i v e r  I 

I 
l e n g t h s  and two ven t  f r a c t i o n s .  I 

I 

I ' 
A l though  t h e  comparisons on f i n e !  s c a l e  appear t o  suppor t  t h e  genera l  

1 .  I 
agreement between t h e  exper iment  and &he computat ions,  severa l  d i s c r e p - ,  
- - . - - - - - - - . - ---- 1. -.-- 
anti es become no t i ca61  F.-The agreement i s  o i l ~ y - a ~ ~ o 3 i l m Z t e - f 6 F f h F  - I-- 

I 
ampl i tude,  t h e  p e r i o d  and t h e  phase oif t h e  r e s i d u a l  o rganp ipe  o s c i l l a t i g n  

I 
o f  t h e  d r i v e r .  The r a t e s  o f  decay' o f l t h e  o s c i l l a t i o n s  a l s o  d i f f e r  betwyen 

I 

l t he  exper iments  and t h e  computations,; and t h e  agreement becomes poore r  ds 
I 

l t he  o s c i l l a t i o n  ampl i tudes become smaj l e r  f o r  l a r g e r  t imes  and must t heq  
I 

be compared on even f i n e r  sca les .  I 
I 

a c o u s t i c  p e r t u r b a t i o n s  as ment ioned b i f o r e  i n  Sec t i on  3 ; l .  The exper iment  
I 

show wideband h i g h  f requency f l u c t u a t i i o n s  t h a t  seem r a t h e r  random. The1 
I 

computations;show no such f l u c t u a t i o n ' s .  These ' f luc tuat ion:  a r e  p robab ly  
I I 

caused by mu l t i d imens iona l  e f f e c t s  sukh as c ross  modes o f  t h e  duc t  which 
I 

t h e  one d imens iona l  code does n o t  modbl . The amp1 i t u d e s  o f  such  h s c i l  la- 
I 

t i o n ,  however, can w e l l  exceed t h e  ackep tab le  p ressure  l e v e l s ,  as seen I 
I I 

f rom t h e  example i n  F i gu re  3-60. Herp, f o r  comparison; t h e  no i se  l e v e l  I 
I 

o f  t h e  sensor i s  a i s o  shown. T h i s  wak ob ta i ned  by p r e v e n t i n g  t h e  p ressure  
I I 

f l  u c t u a t i o n s  f rom reach ing  t h e  sensor1 w i t h  a  'sea l  ed.  cap. A1 so shown a r e  
I I ' 

t h e  F o u r i e r  ' spec t ra  o f  t h e  two s i g n a t p r e  t o  e m p h a s i z e t h e i r  wideband I 
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F i  aure 3 - 5 7 .  COMPARISON ON F! NE SCALE : TWO OVERPRESSURES I 



TEST CONDITIONS: 10 '  VENTED DUCT, PRESSURE 
AT CLOSED END OF DRIVER, 17.5 PSIG OVERPRESSURE 
7.2% OPEN (a = 1 ) 

30' DRIVER - EXPERIMENTS 

0.0 0.5 10.0 15.0 20.0 25.0 30.0 35.0 40.0 

TIME MSEC. 

F igu re  3-58. COMPARISON OF FINE SCALE: TWO DRIVERLENGTHS 



- . TEST CONDITIONS: 10 '  VENTED DUCT, ' PRESSURE 
AT CLOSED END OF DRIVER, 1 7 . 5  P S I G  OVERPRESSURE, . 

....... 

I 

TIME,  MSEC. 

, F igure  3-59. COMPARISON ON F I N E  SCALE: TWO VENT FRACTIONS 
-. 
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I 
Performance C h a r a c t e r i s t i c s  and Opera t ing  Parameters 

I 
It i s  e v i d e n t  t h a t  t h e  performance of a  suppressor i s  p r i m a r i l y  1 

I I 
c h a r a c t e r i z e d  by t h e  organpipe ( o r  q u ~ r t e r  wave) o s c i l l a t i o n  o f  t h e  I 
d r i v e r  o r  t h e  l a s e r  c a v i t y ,  w i t h  i t s  bmp l i t ude  and i t s  subsequent decay: 

I 
i o n g  t imes,  t h e  h i g h  f requency f l p c t u a t i o n s  become impo r tan t .  _! 

,+ 

I I t h e  behav io r  o f  t h e  q u a r t e r  wave o s c i l l a t i o n  i n  t h i s  s e c t i o n 1  
I 

f o r  d i f f e r e n t  o p e r a t i n g  c o n d i t i o n s  of1 a  g i v e n  vented duc t  suppressor,  and 
I I 

i n  t h e  n e x t  section,> f o r  d i f f e r e n t  suppressors.  The t e s t  m a t r i x  i s  shown 
I i n  Tables 3-1 and 3-2. I 
I I 
I 

I I 
I n  genera l  most o f  t h e  p ressure  waves a r e  e f f e c t i v e l y  a t t enua ted  by 

' -3 . 1.. 
t h e  vented duct,  down' t o  about acoustl'c l e v e l s  ( 10  Atm = 134 dB) i n  I I I approx imate ly  50 ms. The decay o f  t h e  i n i t i a l  p e r t u r b a t i o n  i s  charac-  I 

I 
t e r i z e d  b y  p ressure  o s c i l l a t i o n s  o f  t h e  d r i v e r ,  s i m i l a r  t o  organ p i p e  

o s c i l l a t i o n s  (quar ter -wave mode) a t  a/  l o w  f requency ( 1000 Hz o r  more), 1 
I 

which w e .  i n i t i a l l y  sma l l e r  b u t  p e r s i ' s t  much longer ,  and become t h e  
I 

I 
1 domi.nant component o f  . t h e  r e s i d u a l  f l u c t u a t i o n s  i n  t h e  50 ms t i m e  scale.; 

f requency and decay r a t e ,  based on th; p ressure  measurements a t  t h e  c l o j e d  

end o f  t h e  d r i v e r .  The i n i t i a l  amp l i i ude  i s  s p e c i f i e d  here  by t h e  peak 1 
I  

va lues o f  t h e  f i r s t  undershoot,  and t h e  f o l l o w i n g  over-swing o f  pressure,  
I 

as i t  s e t t l e s  t o  atmospher ic  pressure^ These a r e  sca led  r e l a t i v e  t o  the! 
I d r i v e r  overp ressure  f o r  severa l  cases, For t h e  h i g h  over4 

I 

pressures,  t h e  t o t a l  p ressure  p e r t u r b a t i o n  i s  seen t o  be suppressed by  i 
I I 

two o rde rs  o f  magnitude w i t h i n  t h e . f i r s t  c y c l e ?  A t  l ow  overpressures,  I 
I 

t h i s  i s  about one o r d e r  o f  magnitude. '  T h i s  emphasizes t h e  n o n l i n e a r  na$ur, I . .  . I 
o f  t h e  ven ts  and t h e i r  e f f e c t  on p reskure ,  waves, which produce enormous I 

I I 
L t t e n u a t i o n  a t  l a r g e  ampli. tudes, b u t  i s  f a r  l e s s  e f f e c t i v e  f o r  t h e  weak I 

I 
I t  i s  impo r tan t  t o  no te  t h a t  $he a b s o l u t e  l e v e l  o f  p ressure  

I 
I 
I  

f l u c t u a t ' i o n  reduces t o  about 1 /20 a t m l d u r i n g  t h e  f i r s t  c y c l e  f o r  most I I 
cases, i r r e s p e c t i v e  o f  t h e  d r i v e r  oveypre isu re . .  C l e a r l y t h e  e f fec t i vene lss  

I 
bf t h e  vented t ube  i s  e x c e l l e n t  f o r  pbessure p e r t u r b a t i o n s  l a r g e r  t han  11/21 

1 
b t m  l e v e l .  Also,  i t  shou ld  be n o t i c e d  t h a t  t h e  s h o r t e r  d r i v e r s ,  cJeneralty 

I 
show more a t t e n u a t i o n  d u r i n g  t h e  f i r s f  pe r i od .  I f  t h e r e  i s  a  d r i v e r  l e d g t l  

whlct i  causes minimum undersho0.t. and ober-swing f o r  t h i s  l e v e l '  of. venting', 
I 1 . .  . I 
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X I n d i c a t e s  FACTS Code comparison1 cases I 
1 ,  I 

e I n d i c a t e s  a d d i t i o n  t e s t s  w i t h  f i b e r  f i l l e d  o u t e r  d u c t  I 

I I 
I 

Tab1 e 3-1. OPERATING CONDITIO~S FOR 7.2% VENTED SUPPRESSOR I 
I I 

I I 

V e n t i n g  I 14.4% f I 4.8% 

X I n d i c a t e s  FACTS Code compar ison ;cases 
I 

Tab l  e 3-2. OPERATING C O N D I ~  IONS FOR OTHER SUPPRESSORS 
I 
I 

I I 

I 
I 
I 
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I I 

, . s s  

i t  i s  probably shorter than those used , .  here. The computer resu l t s  marked ~; 
'i ! I  

0 . q  ,- 3 

csJ b y  solid symbols show the same trends! for t h i s  i n i t i a l  pe,riod. : iI 
. ;; 

- -'W i~ I I 
.~- . :I After the f i r s t  cycle, in most cases the ringing continues for several <=.-I . II 
~~- -, cycles  a t  amp1 itudes lower than 1/20 ratm. The frequency and the decay ra te  
. a 2  
.- o f  t h i s  osci l la t ion are  d i f f i&l  t t o  determine accurately, partly due to 

. . 'I I 

the high frequency fluctuations. The, other,  inaccuracy occurs because with I 
I ' 1  

- increasing time the frequency increases s l ight ly  where as the decay ra te  1 1  

decreases. The frequency and decay (ate averaged over 2-3 cycles are  ~ i 8 
given below for  the several cases. i f 

I 

I The period s - of osci l la t ion i s  scaled with the period of the 114 wave '1 
1 -\- mode of the driver (Figure 3-62).  The osci l la t ion clear ly has a lower I - 

74 frequency in a l l  cases except one. (In the exceptional case, i t  i s  found , 

t h a t  the 114 wave mode i s  so strongly suppressed that  i t  i s  unidentifiable; 
1 I a 314 wave mode i s  observed.) This may be because the vents do not repre- 

sent a completely open end, and the e:ffective mode of the pressure osci l -  1 
I I 

33 la t ion occurs far ther  out into the vented duct. This i s  consistent with ~ 
t h e  fac t  tha t  the ringing i s  observable in several cases as f a r  out as 11 

> -  7 . > - 
two duct widths away from the diaphragm s ta t ion .  The frequency of the 

I 

c .  

osci l la t ion decreases s l  ightly for t h e  higher overpressures. This may be 
6, f a  

2 at t r ibuted to  the lowered sound speed in the isentropically expanded drive? 

gas. The temperature gradients in the duct near the driver must also I 

// signif icant ly influence the osc i l la t ion .  I t  seems l ike ly  that  the r ingingl  

i s  in part similar also to  Helmholtz bsci l la t ion of the driver-vent system 

4 2, where the iner t ia  of the fluid in the vents cannot be neglected. This ' 
I 

e f fec t  i s  not modeled in the computat~ions which show almost no variation 
I I 

in the scaled period with the driver length.  
I 

1 I 

1 1 
Decay ra te  of the osci l la t ion i s  the r a t io  of heights of two successide 

I 45 peaks measured from the included minimum, or vice versa (FigureP43-63). j1n 
n I 
I 1 1  

general decay rates for  the high overpressures and shorter drivers are  I 
" I 

higher. The different  temperature gradients produced in the vented duct 1 
Ij I 

r ~ 3  
near the driver are probably responsible for the higher decay ra te  for / 

5l-q 1 1  
G 
5> 

larger  overpressures, in view of the fac t  that  the amplitudes of osci l ldt ion 

~1 lare quite comparable for a l l  cases during th i s  phase. Also the decay rates 

a r e  generally higher for shorter drivers which seems consistent with t h $  ~ - U I 
[trend- in- the i-ni t i a l  ampl i tude . - ' ~ h u s ,  small r e 1  at ive undershoots--and----"J 

64 
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Figure 3-62 . QUARTER WAVE O S C I L L A T I O N  O F  D R I V E R  
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I 
-.-- I I '  

I over-swings c o r r e l a t e  w i t h  h i g h  decay, r a t e s .  The compu te r  i e s u l  t s   show^^ 
w i t h  s o l i d  symbols e x h i b i t  a  con t ra r y !  t r e n d  i n  t h e  decay r a t e .  T h i s  i s  l a  

I 
ma jo r  s i g n  t h a t  t h e  v e n t f l o w  model is1 perhaps i n a c c u r a t e  f o r  t h e l o n g  term 

I I  o s c i l l a t i o n s ,  and t h e i r  d e c a y  r a t e  i s ,  r a t h e r '  s e n s i t i v e  t o  t h e  inaccuracy .  
/ . . 

3.3.5: Performance c h a r a c t e r i s t i c s  add Suppressor Parameters 
I I 

The d i r e c t  e f f e c t  o f  change i n  t h e  ven t  area i s  observed i n  t h e  104 
I f requency q u a r t e r  wave o s c i l l a t i o n ,  i,n terms o f  t h e  changes i n  th'e i n i t i a l  

ampl i t u d e  (undershoot  and overswing)  ,I t h e  f requency and t h e  decay r a t e .  i 
I T / - - - - I  I 

These a r e  shown i n  Figures33-E4- throu,gh 23-68:respeci t v e l y .  
1-' e--*-A 

I 
I I 

The bas i c  t r ends  i n  t h e  r e l a t i v e i  i n i t i a l  amp l i tudes  ( i . e . ,  i n c r e a s i  
I  I 

w i t h  decreas ing  overp ressure  and 1  o n g ~ r  d r i v e r  1  ength)  p e r s i s t  f o r  o t h e t  
I  

ven t  f r a c t i o n s .  I n  a d d i t i o n ,  i t  i s  observed t h a t  l e s s  v e n t i n g  produces1 
I I 

sma l l e r  i n i t i a l  ampl i tudes.  T h i s  i s  unders tandable ,  s i nce  t h e  r i n g i n g  1s 
I 

min imal  i n  an unvenfed s t r a i g h t   duct,^ and s i n c e  t h e  expansion waves r e t i r n  

f rom t h e  shock-vent i n t e r a c t i o n s  a r e  $ r i m a r i l y  r espons ib l e  f o r  t h e  p r e s i u r  
I 

undershoot.  The more t h e  ven t i ng ,  t h k  s t r o n g e r  t h e  r e t u r n i n g  expansion1 
1 I  

wau.e-and-the-1 a.rger- the-  under-s boo-t-and -subsequent-osc-i 1-1.a.ti.on.. -Th is  -al.?o 
1 

e x p l a i n s  t h a t  l o n g e r  d r i v e r s  a l l o w  l opge r  t i m e  between t h e  shock and t h d  
I 

expansion, thus,  more ven t  i n t e r a c t i o l s  c a n  occur  t o  g i v e  a  b i gge r  undeq- 

shoot.  There i s  a  ma jo r  d i f f e r e n c e ,  however. Wi th  reduced vent ing,  t h l  
I 

shock wave a t t enua tes  s lower  a n d  i t s   ref^ e c t i d n  f rom t h e  f a r  end 'may s t i l l  
I 

be o f  s i g n i f i c a n t  amp l i tude .  There i,k one excep t i ona l  case where t h e  I 
.I 

r e t u r n e d  shock caused abnorma l l y  h igh l  overswing (~ i~u re r i - 6 -64 ; j j .  I 
I I  

The. t ime  pe r i ods  o f  . the q u a r t e r  have o s c i l l a t i o n  show an i nc rease  d i t  
I I 

decreased ven t i ng .  T h i s  i s  cons is ten i t  w i t h  t h e  i dea  t h a t  t h e  ven t s  repfe-  
I sen t  o n l y  a  p a r t i a l l y  open end and t h g r e f o r e  t h e  e f f e c t i v e  p ressure  node 

I 
must occur  some d i s t a n c e  i n t o  t h e  venfed d u c t .  The l e s s  t h e  v e n t i n g ,  t h e  

I 
l a r g e r  t h i s  d i s t a n c e .  (Note:  f o r  a  completely open ended tube,  t h i s  I 

I I 
d i s t a n c e  i s  approx imate ly  314 t h e  tub? r a d i u s  . )  I 

I 

- I 
1 

The t r ends  i n  t h e  decay r a t e  o f  Fhe q u a r t e r  wave o s c i l l a t i o n  a r e  mdre 
I 

i r r e g u l a r ,  a1 though . there i s  no doubt1 t h a t  t h e  decay r a t e  i s  l a r g e r  f o r  1 
I I l e s s  ven t i ng .  A t  comparable ampl i t u d p  o f  o s c i l l a t i o n ,  l e s s  ven t  .area I 
I  

would r e q u i r e  h i g h e r  f l o w  v i i l o c i t i e s  and t h e r e f o r e  would cause more d i s j i -  
I 

p a t l o n  - -- g i v i n g  . a  h i ghe r  decay r a t e .  I I 
I I 
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Thus l owe r  ven t  area f r a c t i o n  i s ;  advantageous i n  two ways: The i n i t i d 1  
1 1  

a m p l i t u d e  o f  t h e  q u a r t e r  wave o s c i l l a F i o n  i s  l owe r  and i t s  decay r a t e  i: I1 

h i g h e r .  The disadvantages i s  t h a t  t h e  shock a t t enua tes  s l o w e r  and t h u s :  1; 
I 

11 l o nge r  a t t e n u a t o r s  a r e  r e q u i r e d  t o  pr:event t h e  r e t u r n  o f  a  s u b s t a n t i a l  , 1, 
r e f l e c t i o n  f rom t h e  f a r  end. It should  be n o t i c e d  t h a t  t h e  ven ts  c l o s e s t  

t o  t h e  d r i v e r  c o n t r i b u t e  m a i n l y  t o  t h b  advantages, where as ven ts  f a r  ; 1 
away can a t t e n u a t e  t h e  wave e q u a l l y  e l f f e c t i v e l y .  Perhaps t h e  t o t a l  p e r i  

11 
formance can be improved w i t h  v a r i a b l k  v e n t i n g  a l ong  t h e  a t t e n u a t o r .  

A 1 I 

3.3.6: F i b e r - F i l l e d  Outer  Ducts and ~ b n ~  Term O s c i l l a t i o n s  
I '  I a . 1 n I 
I 

I t i s  . c l  ea r  t h a t  ven ts  l o s e  t h e f  r e f fec t i veness  f o r  a t t e n u a t i n g  I - .  
waves as t h e  waves weaken, b a s i c a l l y  because t h e y  rep resen t  a  n o n l i n e a r  ! ~ 
dev ice,  f low r e s i s t e n c e  which d im in i shes  w i t h  decreas ing  amp1 i tudes and 

r 

v e l o c i t i e s .  Thus t h e  q u a r t e r  wave o s c i l l a t i o n  decays s l ow l y ,  and even / ~ 
I I a f t e r  t h e  q u a r t e r  wave r i n g i n g  has subsided, h i g h  f requency o s c i l l a t i o n s  i~ b 
b I 

p e r s i s t .  These r e s i d u a l  o s c i l l a t i o n s ~ w e r e  measured i n  t h e  30-50 ms 1 

i n t e r v a l .  T h e i r  F o u r i e r  spec t ra  show: wide band no i se  w i t h  a  few broad : l~ 
. 8 

o r  i n d i s t i n c t  peaks. No E l e a r  o f  r e c u r r i n g  f requenc ies  cou ld  bd 
L . , - -7  . 2 L , =-> ,=~- ,  L - >  , . = ,  . -, ,- , , - .  , . - .  . .> & ,  , , , , > - - ~ 

lr- 
= . ~  . L > , - , , - , , - - , c = > L , - T .  

= 1- $ 1  

f ound  among t h e  d i f f e r e n t  -cases. 0 n l i  a  R.M.S. ampl i tude  was recorded  i 1 I __ 
j (~ igure(.3-6?), .  Th i s  was ob ta ined  f rom t h e  d i f f e r e n c e  between t h e  reco rded ,  

jpressure s i g n a l  a n d  i t s  smoothed versbon. Two success ive a p p l i c a t i o n s  o f  I 
1~14 p o i n t  averag ing  were used f o r  t h i s %  purpose (sample i n t e r v a l  = 50 ms) .I 1 
I 

The maximum n o i s e  f rom s t r e s s  waves a f f e c t i n g  t h e  p ressure  gages was a l s o  
I " I 

measured s i m i l a r l y ,  f o r  each overpressure,  a f t e r  mount ing a  sea led cap I 

I 

1 lover t h e  p ressure  s e n s i t i v e  s u r f a c e  of t h e  gage neares t  t o  t h e  diaphragm 1 
/ s t a t i o n .  F i g u r e  3-67 p resen ts  t h e  r . m . S .  measurements i n  comparison t o  ! t he  7 

P 

n o i s e  va lues.  There i s  adequate ev idence t h a t  a c o u s t i c  f l u c t u a t i o n s  a t  
I 

I ~ 
f r e q u e n c i e s  h i g h e r  t h a n  1  KHz e x i s t  a t  atm l e v e l  betewen 30 t o  50 ms. 

n I1 
I 1 I 

I 
A porous m a t e r i a l  can be more e f f e c t i v e  than  ven t s  a t  f u r t h e r  a t tenua?  

t i o n  o f  t h e  weakened waves. F i g u r e  3-68,shows an example o f  t h i s  behav io r  1 
l i  

iby comparing a  duc t  vented t o  t h e  atmosphere and a  duc t  vented i ' n t p  an ; ~i 
o u t e r  duc t  packed w i t h  f i  berg1 ass (see ~ i g u r e ~ 3 - 5 4 ) .  The o rganp i  pe 

 oscillation i s  s i g n i f i c a n t l y  lower ,  partly due t o  t h e  i n f l uence  o f  t h e  . 
I 
e n c l o s u r e  and p a r t l y  due t o  t h e  i nc rease  i n  v e n t f l o w  r e s i s t e n c e  because / o f  ) 
[ t he  porous m a t e r i a l  , e x p e c i a l l  y  a t  ttk l ow  amp1 i tudes . 
II i 1 
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The computat ions have n o t  modeled these  e f f e c t s  so f a r .  It should1 
I I 

be noted t h a t  t h e  d i f f e r e n c e  between ;the p r e d i c t i o n  and t h e  measurementi 
- 

I 
- 

even i n  t h e  case o f  t h e  bare vented d p c t  seems s u b s t a n t i a l  i n  F i gu re  3-48. - 
\ - 

This  may be because o f  non idea l  behaviior o f  t h e  diaphragm d u r i n g  b u r s t i  
I - 

and subsequent p e t a l  mot.ion.. These e f f e c t s  are '  found t o  have n o t i c a b l  e  12 
I 

l i n f l u e n c e  when t h e  d r i v e r  l e n g t h  becohes comparable t o  t h e  d u c t  c ross  I 
I . . 

I - 
I 

s e c t i o n .  
I 

I 
- B '  I 
The porous m a t e r i a l  a l s o  shows s l i g n f i c a n t  a t t e n u a t i o n  o f  t h e  h i g h  I 

I I 
f requency r e s i d u a l  o s c i  11 a t i o n s  ( F i g u r e  3-69) .  It seems 1  i k e l y  t h a t  t h e  18 

I - 
h i g h  f requency f l u c t u a t i o n s  i n v o l v e  t h e  .ven ts  which beg in  t o  behave more - 
as i n e r t a n c e  than  r e s i s t a n c e  t o  t h e  f l o w .  T h i s  i m p l i e s  t r ansve rse  mode{ 

I 
s i m i l a r  t o  Helmhol tz  o s c i l l a t i o n ,  whiph t hen  would be s u b s t a n t i a l l y  I 

I 
a t t enua ted  by t h e  i nc rease  i n  ven t  r e b i s t a n c e  due t o  t h e  porous ma te r i a l , .  

1 

F igu re  3-69 a l s o  shows t h e  w i l d  behav io r  o f  p ressure  f l u c t u a t i o n s  (n  
I 

t h e  presence o f  t h e  o u t e r  duc t  w i thouF t h e  porous m a t e r i a l .  E s p e c i a l l y  1 
I 

l a r g e  a re  t h e  . f l u c t u a t i o n s  on a  10  msl t imesca le .  These a r e  o s c i l l a t i o n  I 
I 

modes o f  t h e  o u t e r  d u c t .  These modeslare observab le  a l s o  i n  t h e  presenqe 
- . - -------  - - - -  - --I---------- -.-(- of t h e  porous m a t e r i a l ,  bu t  t h e y  a r e  damped down t o  accep tab le  amp l i tudes  

I I 
by t h e  v i scous  d i s s i p a t i o n .  I I 

I I 
3.3.7 Conc lus ions 

I 

I I 
. I I 

The performance o f  vented duc t  a c o u s t i c  - s i pp resso rs  was e v a l u a t e d  I 
I 

i n  t h i s  i n v 6 s t i g a t i o n ,  b o t h  by shock l u b e  s i m u l a t i o n  and.FACTS Code . I 
I 

model i n g .  The bas i c  performance o f -  sbch suppressors may be qua1 i t a t i v e l ~ y  
1 I 

summarized as f o l l o w s :  I I 

I I 
e Most p ressure  waves a r e  e f f e c t i v e l y  a t t enua ted  by t h e  bare  vent4d 

duc t ; .  below .1 atm i n  about 10  ms, and .down t o  a c o u s t i c  ! l e ve l s  (!I0 
atm - 134 dB) i n  approx imate l )  30 ms. I 

I I 

r The i n i t i a l  r a p i d  4 8 - 
o s c i l l a t i o n  o f  t h e  - 
100 Hz below .1 - 

- 
r High f requency f l u c t u a t i o n s  (/-KHz) a r e  

p e r s i s t  much l o n g e r  and become t h e  
30 ms a t  a c o u s t i c  1.evel s  ( 1  0-9 atm) . , 5 4 

1 
- 
- 
- 
- 

r T h i s  performance 
i n e r t i a l  con f incmcnt  f u s i o n  
can be s u b s t a n t i a l l y  - 
packed w i t h  a  
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