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ABRSTRACT
Jomputational models have oo romatructed tor the Princeton large Torus

“LT3, the Poloidal Divertor Lxuerameit (PDX), And the Tokamak Fusion Test
“actor (TFTR}. These models have 0o o alidrates hv comparison with current

speriments and used td predi:: . asna carametera and delineate favourable
sodas of operation for future ox&e AL, T™e  models for PLT  emphasize
plasma transport and neutral b cer Cpoaectoo sy neating., The models for PDX
=mphasize the capability of divert~ie Uor imparity and  recycling control  in

intense neutral-beam-heated toka as well aa optimization of the MHD
properties of divertor-equipped toiamaks. The TFTR calculations stress the
fusion asgpects of a large, circular cross-secticn D-T tokamak with intense
neutral beam injection.

The calculations indicate that tae highest nectron yields on PDX and PLT
will be obtained by co- and counter-injection of deuterium beams into a
discharge whose density is kept 1low by reducing the plasma recycling by
gettering or a divertor. The highest ion temperatures can also be obtained by
injection into low density plasmas. High density plasmas have higher an' s,
but are colder, and have lower neutron yields. For TFTR, the fusion yield can
be maximized by a warm-electron, hot-ion wode characterized by an intermediate
plasma density (5 x 1013 sop3 ) and high power injection (32-U5 MW).

*present address: Oak Ridge National Laboratory, Oak Ridge, Tenn.
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II1.  PDX DN 8 oy

In the PPX and TFTR experiments, as well as  in higher power PLT
experiments, the injected neutral beam pawer will far -« wd the ohmic heating
vower. By controlling the warm-ion densmity by gettering or by g magnetic
divertor, it should be possible to aperate in three different reactor-plasma
regimes parameterized by the relative enargetic  ilon  density ([ 9]: 1) The
energetic-ion regime, whore the plasma recycling coefficient R - 1,
Mot /n(‘ - 0.3, and the dominant fusion production 13 by reactions betwe®n the




cnEgrgavy s Lona; ere | : o
g l:; ; . i*A here Cagn 4o T 9.1, and the domiriitn
fusios  prodgctien L re etinns; 3) The  beam driven
thermanu> ~w e L E i e

1 S . rn., G and the dominan® :union
productinom 18 Ny Lermonuelors ven e Thace regilzsd  are  illustranc® in
Tigurs o B “he Jdependen > Ty e avarags 1on anergy, . v

veutrong prodo ction

: .o oon rhe axial coonensity for S0% 2o-inject !
RIS ) ad calculaved by FPL.
“ion ia {ilusbtrated in mope ey

(Y Tovarring tne plasma peoca) i

A SRR LR C 3 params T Qp fusion power/injectsnd poswe .
ity i i : o 1 a tns amal ) densities, ).

. " ' eran > hotween VAT Ccovmbaresn
K oo oan

Lol
Ky

tor o

. o Ly the
, . : L5 Dot
SRR S PDX -5 B3Aam s with
4 . : ieutron

je concentrated on tinding ways to maximi L
smizing  the cdeleverious offects of lmparit o
For e tnitial power level of 32 megawatts of neuir . beam
tine,  twa aperating  achemas were exanined uning BALDUR (Tabie .. The
£l e ot ieh e pout =3l beams ars  injelted int> a small Tod oom
ragius)  disctarge  oat o Lhe outer edge of the vacuum vessel for a Shert Gime,
Ao wnlem the Jischaers 15 compressed  adiabatiecally, as . the AT

perimen: Tampreasion energices the fagst tons and heats the plasm:s.  As nnn
be reen in Taiiw 7, this discharge achleves qulue high 's { 2.3%) nd  nigh
Toedon peweray 0 2% MWY, in apite of a large impurity content, oot vnall
A} "3, Almoat all of the fualen power comes from the two-component ' . . ions

{energetic deuterons from the beam reacting with thermal tril--u,
compression case has the advantage of a large power density and gocd neutird
team penztration. and is anly a medest (factor of one to three) extrapolation
from I'LT and ATC results. (t ia insensitive to impurities in that ane an
compress after anly a fow hundred milliseconds of injection if impurities
begin to accumulate. The disadvantages are that 1t does not take full
advantage of the plaama current capabilivies or vacuum vessel size. Onlv S0h
of the alphas are confined and the discharge has relatively low n'g‘ s.

md made L8t formoa 2.5 MA discharge with a 85 em  radius
R = W8 ¢m, wnd fndect for one-half second. The alphas are well

anmewtat por o m ', eapecially for the ione, are obtained.
iop tesccrature, thare i3 an sppreclable fusion yield due to
“_T reactions, aithough tme domins t contributions are still frem

™ fone o i L
ans reacking witn tne backge und plasme (TCT reactions). The ion nip '8

i itnh
are much greater than the clectron nig ' s, Relying on TCT reactions ]i@lhs
Che nurleir poWer te a range r=4r the injected power level, Thermal reactions
can raise the auclear vie' o, Hut requlre inaoreases in beta, (requiring more
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injected power), and are more sensglijve No reduci..ia .6 the gross confinement
T ime.

Tne relativ: 7. 1 ion confinement 2an be expic:ite?t 1f the injection
power i3 raises o 45 MW and the beam pulse is extended to one second, as is
proposed for a TeTH upgrade. For this case the lon vemperatures a=re very
nigh! 23 keV) and the electrons are conler( 14 keV). The ron ni,; is i..r or
five {imes greater than the electron nig , and most of tne fusion  ysel . is
from the beam driven thermal D-T reactions, with only a1 modest Lomponent. from
ipe 7T reac~tions.  This hot-ion, warm-clectron mode in which ‘tne  electrons
n? ians Aare only loocsely coupled can tolerate pocr cicotron  energy
onvinemen* compared to the ion energy confinement. Cuite Torge Jusion yields
e abtainea woeth modest nil ' 8. Sheuld the fon coniyinen.mi cunlinee bo scale

v .aozteally, nd electron loss=s continue to be 1w idee U impurities
ot wnemalouws procesas«sl, Lhe het-ion, warm-elesleon piaaes o aitractive
Wiy Lo make large fusion powers.

V. PDX DIV

R TaLCOLAT LN,

f owey element in estimating the efficiency o v o oan vty zontrol
Leehnigues the develepment of a resiisiie PR BT P PI o ST
We mave developed a simple model that aeii-consgistedn! P fo pLasma

interaction with a limiter or wall. 1In this limit diveriar model, gink
terms, representing particle and energy loss parallel

Tield lines into tre
limiter or divertor, are added to the one dimensional travaport coaie in
tne sarape-off regian. For nearly all tokamax p} ~{  anterest, the
gorape-of f plasma  is  collisional and an ion aound 1E for
arallel mass flow. AL high electron densities gaverql e

ceutral hydrogen density is suificiently high In tne acrape
wort 4 charge-exchange drag thabl reduces the mass  [low. s
-3 that a classical sheath exists at a non-emlut ug asatraiicer or
~late. With these assumptions, tro appropriite  sivk ierms  Coe
wiaany In the density, electron dnergy and LO0 @UeUZY ogia’ VE arc:

N C

= Son/LA w1 fae
Y v N

Sa T TN RSy
S =20 KT8,
i LN
where vg = [R(Tj + Ted/mbe , vo = 0, v,
n, is the neautral density, 5., 15 Lhe charge-exahange orossz section, v; is  the

1

ion velocity and 2L is the lengii, of a iald line between the limiters or

divertors.

The validity of this edge model was tested by comparing caleculations with

measurements of the edge regioféof ALCATOR for for a 2=% Jdischarge where B =
55 kG, I = 270 kA, @, = 3.5x10°% /amd, T,{0) = T.(0) = BOO eV, the edge
parameters were found %o be n = S5xi0’ /em}. T.{a)= 0 eV and the density
fali-of F distance was 1 cm. ¢ -

\ The transport calculations with X - 7x1017/n am:/sec. D= 2x101;n
em-/sec and L = 180 om gave T,(a) = 30 eV, T(a) = %o eV, ny(a) = sx10l? sem
which is reasonable agreetent for an [nitial comparison. The higher edge
temperature in the calculation relative to the neasurement may be due to: not
extending the probe all the way to tha limiter edge. residual impurity
radistion at the edge or 1limitations of the mnodel. The computed edge
teaperatures can be brought into agreement with the weasurements by incressing
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iintain a quisi-steady atafe) is finite though relatively sma

Wwlth  axperimenrta. cesagrensnts, ine inclusion of anomalous trasport oosuit s
in a consider ragveling time, whieh is alsc a 5 o
function of un arn  temperature profile  ror the - RTINS
parameters. vy oy sedifying the  RIge  parameters it anpeass Yo
vosaibla  to substantially alter the recycling time, which may Lo o S1may

important for the aw 2eq "0 ygeration of a divertor,
VI, PDX MHD TALe ULATIONE

Divertor ontigarcri von pagaess JifFerent MHD aquilibrium  and  otabost
prapartiszg compdared with oanventional alrecular tokamaie.  To detoostoee 37 noe

Lpansport credictions e oasistent with ouwr anderatanding o8 aoeal MER
3:ahility, we have carried oot a stady using ine atability code PR 0

plasma parameters appropriate te PDX and possible upgrades.

The 1deal MHD model used employs quite flat current protiles consis' i
with our expectation that shielding impuraty inflow will feduine the exte .
the low temperature resiustive region around the plasma zilge. Th
plasma-vacuum interface i3 taken to lie just within the ideal ®HD eparabely
surface, and q at the limiter is taken to be small | -2.8 to 7Y fhan
avoiding the computatlonal difficulties asacciated with separa‘eizea, The
results of these studisa azre consistant with the more genoral paramel.er
surveys of Frieman, et al. [1'i]. and indicate that ~:" of 5¢ may be stable

g
3

in the PDX device. Large elongation {(bfa  2), =mall aspect ratla and
trilanguiarity all inaopoaae the possible "' =-valuss approximately 2=

fa/Rq-Ix{l/a1 <. tree poundary(n=1) modes generally set the lower
Limit within the iseal @b wodel. Stnee t e nodes clearly depend stronply

on the current profils near thh edge ol Thw plasma, one might hope that
iivertor control may ilow @xpe-~im al 3 udy of tnle aspect of MHD theory.
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Thus the magnetis field configuration to achieve maximum e can be
optimized with a 2ar._ination of elongation and introduction of a divertor. An
example of thess -ry.zurations is shown in Figure 37 where the usuage of
available area - itn a given toroidal colil cross-section was maximized with a
gsingle-null divertu:. In this configuration, the reguired divertor current is
about 60% of the plasma current.

YII. VWIGH-Z [MPURITY RADIATION
'

Qur previous ~alculativns { 4] have shown that radiation [rom gich wmetals
as  tungsten can be an important enargy loss fer tckamaks. 't has been found
snat in FLT erperiments {13] that the presence of  tungaten 1u the form of
imiters  inhibits plasama heating by neutral beams. Our previous calculations
uaad an “Yaverage lon“ model. We have improved npon the model Dby using the
same  prescriptions for the atomic pracesses as before (8] to construct a code
Zo  oalcuiate the rates {rucambinaticn, nization, and excitation) for
individual ionie apecies(e, g. Fe*fl, etz.). 1In addition, we have included
dielectronic recombination ue to  innec shell excitstions which had been
reglectad, Tne  coronal equiliibrium cesults for the raiiative rates are very
sim‘liar t» the previcus rosalts, with the main differ e being that there is
N0 Less soructdre in bthe radiative rates neor clased wmells dug to additional
dielectronic recombiration near closed shells(Figure 133, Figure 1! shows the
equilibrium ionic fractions as a function of Te'
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Fig. 9. Magnetic configuration with asymmetric divertor (z, R in

meters).
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