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ABSTRACT ter involved i n  geothermal applications are 

1y too large t o  consider chemical means of cor- 
n control. Further, one must ant ic ipate  t h a t  any 

procedures and schedules f o r  corrosion tests of copper- cal added t o  the geothermal f lu id  f o r  corrosion 
i t i o n  must be removed p r io r  t o  f lu id  base al loys are described. 

materials w a s  mostly uniform. Some select ive leaching f y  environmental qual i ty  requirements . Thus, 
of alloying elements w a s  observed, as was  crevice ials selct ion appears t o  be the most p rac t i ca l  
corrosion, but the extent of these forms of corrosion ach to  corrosion control i n  most applications of '  
w a s  minor. The r e su l t s  of these tests show a trend ennal fluids.  
toward higher corrosion rates with increasing copper 
content, f o r  the brass alloys. Materials select ion fo r  geothermal service based 
copper? however, showed corrosion rates 20 t o  30% of ence i n  other applications has not been 
t h a t  suggested by the trend i n  the data. 
nickel  a l loy  was tested t o  ver i fy  earlier test data; 
t h i s  a l loy showed a corrosion rate about six times tha t  
of a brass of similar copper content. 
agent of the corrosive at tack w a s  hydrogen sulf ide,  
present i n  the water i n  t race amounts. 

The geothermal environment and the experimental 

isposal to P Corrosive at tack on these 

Commercially pure 

One coppe r  

The primary 

The primary conclusion from these tests is t h a t  
copper-zinc al loys are the most economical materials 
f o r  boi ler  and preheater construction. 
mendation is made tha t  materials be selected from these 
brasses: naval brass, yellow brass, admiralty brass, 
and copper, i n  t h i s  order of decreasing desirabi l i ty .  
Aluminum brass  and red brass are marginally acceptable. 
Copper-nickel alloys are unacceptable f o r  bo i l e r  and 
preheater heat exchangers. 

INTRODUCTION 

The recom- a r e  engineering tests whose purpose is  t o  provide a 

Corrosion is one of the major problems facing orrosion point of view are a l so  the  most costly,  and 

xpensive materials are unacceptable from a corrosion 
those using geothermal resources f o r  power production 
o r  f o r  d i r ec t  applications such as process heat, 
agr icul tural  stimulation, and space heating. Results 
of corrosion testing, i n  the context of materials 
select ion f o r  a demonstration power plant u t i l i z i n g  
geothermal f lu ids  as the heat source, are reported 
here. Corrosion of selected copper-zinc al loys is 
given par t icular  emphasis. 

cal f o r  most applications. The least 

The resolution of i ndus t r i a l  corrosion problems sulted i n  the recommendation t h a t  admiralty 
generally involves a combination of materials select ion selected fo r  the tubing of the boi lers  and 
and corrosion inhibitors.  Unfortunately, the volumes rs of the power plant. Results of corrosion 

nducted t o  ve r i fy  the correctness of t h i s  
choice support the earlier recommendation. 

Reference and i l l u s t r a t ions  a t  end of paper. 
I I I I 
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Copper-nickel alloys,  which find wide use i n  
seawater service, do not have suff ic ient  res is tance t o  
the geothermal f luid.  They are attacked by the hydroge 
sulfide i n  the water. One copper-nickel alloy, 70Cu/30 
alloy (designation CA 71516, w a s  tested t o  provide a 
comparison between the present and past  tests. 

rEST ENVIRONMENT 

DOE has d r i l l e d  seven w e l l s  i n to  the R a f t  River 
squifer, but the water used f o r  the corrosion tes t ing 
reported here has come only from W e l l  No. 1. The 
temperature of the w a t e r  from t h i s  w e l l  w a s  411 t o  
014 K (280 t o  285OF). Origin of the water i n  the 
geothermal aquifer is  unknown a t  t h i s  time. Comparison 
>f the composition of water from th i s  resource with 
seawater and with w a t e r  from the Great Sa l t  Lake do not 
lead t o  unambiguous conclusions. 
aaid a t  t h i s  point is tha t  the w a t e r  resembles seawater 
that  has been diluted by a factor  of 10 t o  20 t i m e s  and 
nadified by local ,  i n  s i t u ,  mineralization. 

The best  t ha t  can be 

When evaluating materials response t o  a corrosion 
environment, the parameters considered most important 
sre  temperature, s a l in i ty ,  pH, content of ac t ive  gases 
such as oxygen o r  hydrogen sulfide,  and velocity of t h e  
t e s t  medium. 
rosion a t  some velocity. 
ninimum occurs a t  about 1.5 m / s  (5 f t / s )  i n  seawater . 
fie tests reported here were conducted i n  geothermal 
Eluid a t  t h i s  flow velocity since heat exchanger design 
Eor the boi lers  and preheaters i n  the 5 MWe power plant 
1s based on the same value. 

Metals typically exhibit  minimum cor- 

7 For admiralty brass the 

Carbon dioxide is a mild oxidizing agent. Its 
primary influence i n  geothermal f lu ids  concerns its 
effect  on the so lub i l i t y  of calcium carbonate. The 
precipitation of calcium carbonate sca l egyp  metal 
surfaces w i l l  generally re tard corrosion . There- 
€ore the e f f ec t  of carbon dioxide on the so lub i l i t y  of 
calci te  is more important than its action as an oxidiz- 
ing agent. 

The predominant dissolved sol id  i n  many geothermal 
Eluids i s  the  chloride ion. 
species t o  depolarize metals and t o  form s t ab le  metal/- 
chloride coordination compounds leads t o  rapid cor- 
rosion of many metals. Other dissolved species may 
resul t  i n  accelerated corrosion. 
Ls part icular ly  aggressive, especially i n  the presence 
D f  chloride. 
thermal f l u i d  was  measured a t  0.25 mg 0 /kg of solu- 
tion. 
t h a t  predicted f o r  equilibrium with the minimum 0.1 mg 
f3 S/kg of solution. 
cgncentration is unknown but may be related t o  sampling 
and analysis errors.  

The tendency of t h i s  

For example, oxygen 

The oxygen concentration i n  the geo- 

This amount of oxygen is  somewha? greater  than 

The reason f o r  the high oxygen 

The w a t e r  is nearly saturated with dissolved 
silica. 
t i o n  on heat exchanger surfaces. 
noted tha t  dissolved silica may retard corrosion, but 
t h i s  behavior has not been ver i f ied i n  geothermal 
systems . 
very deleterious towards copper-nickel alf”I3 and 
bronzes containing nickel a l loy additions ’ . I n  this 
respect, data from seawater and desalination service 
must be used with care since the f lu ids  used i n  these 
applications are essent ia l ly  f r ee  of sulfides.  Some 
materials t h a t  have performed -. I w e l l  i n  these services 

This substance may cause problems by depos f5 
Butler and Mercer 

Sulfides, even when present i n  t race amounts, are 

have not responded w e l l  t o  geothermal f luids ,  f o r  
example, copper-nickel alloys such as 70Cuf3ONi (CA 
715) and 9OCu/lONi (CA 716). 

The Raft River geothermal f lu ids  found t o  date 
have sulf ide concentrations on the order of 0.1 t o  
0.2 mg/kg. 
su l fu r i c  acid there would be l i t t l e  change i n  the pH 
due t o  the buffering action of the carbonates i n  the 
water. 

I f  a l l  of these sulf ides  were  oxidized t o  

TEST ASSEMBLY 

The tests reported here were conducted i n  the 
materials t e s t ing  portion of the Mobile Components- 
T e s t  Trailer a t  Raft River S i t e  1. The materials test 
loops are constructed from 10.2-cm (4-in.) Sch. 40 
steel pipe. Two 1.22-m (4-ft) t e s t  sections are 
contained i n  each of the two loops; these are preceded 
by an instrumented test section and a re  f i t t e d  with 
flow control and check valves. These two loops may be 
operated separately, i n  ser ies ,  o r  i n  paral le l .  The 
1.22-m test sections are joined by Victaulic couplings 
which permit rapid disassembly and a re  not as cri t ical ,  
i n  terms of alignment and length, as screwed f i t t i n g s .  

The two types of samples used i n  the tests re- 
ported here were f l a t  coupons cut from sheet material, 
and short  lengths of tubing. The f l a t  coupons were 
about 56.6 mm (2.23 in . )  i n  diameter and e i the r  1.6 o r  
3.2 mm (1116 o r  1/18 in.) thick. A 9.1-mm (23164 in.)  
hole w a s  d r i l l e d  through the center of each coupon f o r  
mounting. The tubing samples were 38 o r  44 mm (1.5 or 
1.75 In.) long and e i the r  19.1 o r  22.2 mm (0.75 o r  
0.875 in.) OD (outside diameter), with various w a l l  
thicknessses, according t o  avai labi l i ty .  A 9.5-nn 
(318-in.) diametral hole was d r i l l ed  through each tube, 
1.3 cm (112 in.)  from one end, fo r  mounting the samples 

The f l a t  corrosion coupons were e l e c t r i c a l l y  
insulated from each other and from the mounting f i x t u r e  
by polytetrafluoroethylene (PTFE) tubes and washers. 
The PTFE washers were about 25.4 mm (1.0 in.) OD by 
9.8 mm (0.39 in.) I D  (inside diameter) and about 5.6 mm 
(0.22 in.) thick. One side of the washer w a s  beveled 
about 10’ t o  provide a variable-thickness crevice. The 
crevice w a s  used t o  accelerate o r  encourage crevice 
corrosion. The tubular samples w e r e  mounted using the 
same type washers and sleeves as f o r  the f l a t  coupons. 

The mounting f ix tu re  was  fabricated from 25.4 x 
6.3 x 1200-mm (1.0 x 0.25 x 47-in.) s t a in l e s s  steel 
bars. The bars  w e r e  f i t t e d  with a cruciform of 6.3-mm 
(0.25411.) rods a t  each end and i n  the middle t o  center 
the bar i n  the flow chamber. The coupons w e r e  mounted 
so that  f l u i d  flow paralleled the face of the coupon. 

TEST SCHEDULE 

The “Planned Interval  Tes t  1114-16 w a s  used; samples 
were removed a t  35, 70 and 105 days. Additional 
samples w e r e  inserted in to  the test section f o r  the 
f i n a l  35 days. 

The planned interval  test schedule offers  in- 
terest ing poss ib i l i t i e s  fo r  interpretat ion of corrosion 
test data. 
replication, additional coupons would be used) f o r  each 
material t o  be tested. 
inser t ing and removing coupons is  shown i n  Figure 1- 

This technique requires four coupons (with 

The general schedule fo r  

In the planned interval  test those variables t h a t  
can be controlled are held constant f o r  the duration of 
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the test, Le., from the start  of coupon exposure t o  
time = t 4- 1. Corrosion rates and associated damage 
are denoted by 
rate A2 is the  d fference gebeen  A and At. In 
these experiments l i t t l e  o r  no contsot of the wellhead 
temperature o r  the composition of the geothermal f lu id  
is possible. Changes i n  e i the r  of these variables 
sould contribute t o  changes i n  the aggressiveness of 
the environment. 
uess and the corrodibi l i ty  of the metal as a function 
Jf A1, A2, and B is shown i n  Figure 1. 

RESULTS 

and B. The corrosion 4, At, At 

A matrix comparing f lu id  aggressive 

Weight l o s s  measurements, complemented by visual  
d n a t i o n s ,  were used t o  evaluate corrosion attack. 
l i sua l  examinations of the coupons, both before and 
pfter cleaning, permitted an evaluation of corrosion 
product scales  as w e l l  as the corroded m e t a l  surfaces. 

The materials of greatest  i n t e re s t  i n  t h i s  study 
aere  copper and copperzinc alloys,  some with other 
alloy additions. Aluminum brass (CA 687) and copper- 
30% nickel (CA 715) w e r e  a l so  studied. Weight loss  
lata f o r  a l l  of the copper materials are given i n  
Pable I. 

Visual examination of the samples showed that  a 
>lack, corrosion product scale formed over a l l  of the 
w o s e d  surfaces. The thickness of the scales varied 
Erom the tarnish on the most r e s i s t an t  materials t o  
thick, two-layer scales  on the most severely attacked 
specimens. Microscopic examination of these scales 
shows that  they have the same mol;phology as  seen on 
iopper coupons tested previously . 
studies were not conducted on the materials reported 
iere. However, visual  examination suggests that  the 
scales are the same as those noted earlier, that  is, 
copper sulf ides ,  copper-iron sulfides,  and, i n  the case 
3f the copper-30% nickel  alloy, nickel sulfides. 

X-ray diffract ion 

Small calcite crystals  w e r e  occasionally found 
Jetween the  PTFE washers and the p l a t e  coupons, but no! 
m the tubular samples. 

The pr incipal  form of a t tack w a s  uniform corrosioi 
(also termed general corrosion). 
nccompanied by select ive leaching of the zinc. 
Extent of select ive leaching w a s  very s m a l l  and limitec 
to less than a micron of depth from the surface. 
Crevice corrosion w a s  evident i n  some cases although i l  
aas  minor in a l l  but the copper-30% nickel material. 

This w a s  usually 
The 

Weight l o s s  data f o r  the materials show tha t  the 

This s imilar i ty  indicates that  
First and last  fiveweek test periods resulted in aboui 
the same weight loss.  
geothermal f l u i d  aggressiveness toward these materials 
has not undergone a detectable change during the tests, 
The weight l o s s  data f o r  these two test periods are 
plotted as a function of copper content i n  Figure 2. 
When presented i n  t h i s  manner the data c lear ly  indicati 
a decrease i n  corrosion resistance with increasing 
copper content. Commercially pure copper does not 
follow t h i s  trend. 
copper is only 20 t o  30% of tha t  suggested by the trenc 
i n  the data  for brasses. 
t h a t  t he  corrosion r a t e s  must decrease somewhere 
between 85 and 100% copper. 
exhibit  be t t e r  corrosion resistance than t h e i r  alloys, 
but poorer mechanical properties. 

The observed corrosion rate f o r  

The discrepancy indicates 

Pure metals frequently 

The test data w e r e  evaluated by regression analy- 
Since the tests s t a r t ed  using clean coupons, one sis. 

ioint on the plot  of weight loss as a function of t i m e  
.S zero weight loss  a t  zero exposure t i m e .  The least 
:quares method f o r  data constrained 19 pass through the 
brigin w e r e  used t o  analyze the data . The data for 
rdmiralty brass and 70Cu130Ni w e r e  analyzed using 
.inear and parabolic models with the r e su l t s  sham i n  
Xgures 3 and 4, respectively. 

The f i t  of the weight loss  data fo r  admiralty 
mass is about as good f o r  the l i nea r  model as f o r  the 
iarabolic model. However, when the data f o r  70Cuf30Ni 
?ere f i t t e d  t o  these same models the parabolic model 
ras clear ly  bet ter .  

Analysis of the s teps  i n  a corrosion process 
weals three potentially rate-controlling processes, 
riz., diffusion of the corrodant through a solution 
ioundary layer,  diffusion of the corrodant through the 
:orrosion product film, and chemical reaction control 
&t the metal surface. Analysis of these processes f o r  
‘lat plates  indicates t ha t  solution diffusion control 
ihould r e su l t  i n  l i nea r  weight loss  as  a function of 
:imb. Diffusion of the corrodant through a corrosion 
troduct layer should show parabolic weight loss aq a 
iunction of t i n e  because the fi lm increases i n  thick- 
less with t i m e .  
linear weight loss  as a function of t i m e  i f  i t  is a 
lirst-order process. 

The chemical reaction should show 

The data suggest t ha t  a t  long times, indicated by 
:orrosion prodact films of reasonable thickness, 
:orrosion is controlled by a parabolic process, t ha t  
Ls, diffusion through the corrosion product film. 
issumption is supported by the data for  the 70Cu130Ni 
illoy. 
C i l m s  are very thin,  corrosion appears t o  be controllec 
>y a l i nea r  process, e i the r  solution diffusion o r  
:hemica1 reaction a t  the m e t a l  surface. 
:orrodant appears t o  be hydrogen sulf ide o r  some other 
sulfur species and the concentration of sulfide i n  the 
solution is very low, about 0.1 mglli ter,  solution 
l i f fusion is postulated t o  be the controlling process. 

One.of the purposes of these tests w a s  t o  predict  

Thir 

A t  short  t i m e s ,  when the corrosion product 

Since the 

long-term s t a b i l i t y  from short-term data. 
,rere analyzed using both the parabolic and the l i nea r  
models and extrapolated t o  long t i m e s ,  about 5 years. 
Phe re su l t s  of t h i s  analysis f o r  t he  parabolic case arl 
given i n  Table I. 
polation by a f ac to r  of more than 17 t i m e s ,  long-term 
tests are being conducted t o  ver i fy  these predictions 
and to supply data  €or extrapolation t o  the 3Fyear  
l i fe t ime of the f ac i l i t y .  

CONCLUSIONS .AND RECOMMENDATIONS 

The data 

Because t h i s  represents an extra- 

Copper and brasses are superior t o  coppernickel  
a l loys and low-carbon steels f o r  service i n  hot g e e  - 
thermal f luid.  The data f o r  the brasses show a trend 
toward increasing corrosion rates with increasing 
copper concentrations. Commercially pure copper shows 
a corrosion rate of 20 t o  30% of that  suggested by the 
trend i n  the data. 

The preferred materials f o r  plant components such 
as bo i l e r s  and preheaters are naval brass, yellow 
brass,  admiralty brass, and copper, i n  t h i s  order of 
decreasing desirabi l i ty .  Aluminum brass and red brass 
are marginally acceptable. Copper-nickel a l loys are 
unacceptabl’e because of the high corrosion rates 
resul t ing from sulf ide attack. 

. 
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The tests t o  date have been screening and short- 
ierm tests t o  provide a rat ional  basis €or materials 
;election f o r  the 5 MWe parer plant and f o r  d i r ec t  
ipplications of geothermal fluids.  The primary featuri 
?f the test system w a s  the use of beveled PTFE washers 
30 promote and accelerate crwice corrosion. 
samples w e r e  examined f o r  t h i s  form of a t tack as w e l l  
:or as select ive leaching, pi t t ing,  and uniform cor- 
:osion. Future tests w i l l  be modified t o  include test 
:onfigurations t o  evaluate the contribution of galvanic 
iction t o  the  corrosion process. 

The 

Aeration typically increased corrosion rates. 
iqwever, i n  the presence of sulf ides  the corrosion 
rates may decrease since the primary aggressive specie1 
in the Raft River geothermalwater f o r  copper materiali 
is hydrogen sulfide.  
relatively nonaggres@ve sulfur  species by the action 
>f oxygen i n  the a i r  The e f f ec t  of brine aeration 
is being studied a t  t h i s  time. 

Sulfides may be oxidized t o  

. 
Tubular samples were included i n  the present 

;eries of tests because of previously observed dif- 
ferences i n  corrosion between p l a t e  and tubing samples 
sxposed t o  the geothermal f luid.  
creater corrosion than did tubing specimens sectioned 
from heat exchanger test materials. The data from the 
iresent test do not show any significant difference i n  
:hese two configurations. The conclusion reached is 
khat the previously observed differences were due t o  
the lower temperatures experienced by the heat ex- 
:hanger tubes. 
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TABLE I 

CORROSION BEHAVIOR AS A FUNCTION OF ' TIME FOR COPPER-BASE MATERIALS 

I 

1 Weight Loss,  mg/cn 2 .  
P r e d i c t e d  P r e d i c t e d  

1st 5 weeks L a s t  5 weeks 1 0  weeks 15 weeks 1 5  weeks - Weight Reduct ion Ma t er ia 1 
10 weeks Loss i n  of Thickness  - 

I 5 y y s ,  i n  5 y e a r s ,  
mg / cm Brm 

At At+l A2 B Al 

Copper P l a t e  7.08 16.56 

Copper Tube 8.81 7.57 

Red Brass P l a t e  18.57 20.40 

21.03 28.59 

29.14 38.51 

36.95 48.51 

7.56 

9.37 

11.56 , 

117 

182 

1.31 

2.08 

I Aluminum Brass P l a t e  12.15 12.26 26.25 35.29 9.04 126  1.51 

Admira l ty  
Brass P l a t e  

Admiral ty  
Brass Tube . 

7.01 

6.71 

7.64 12.86 11.66 

7.84 13. a4 17.68 

-1.05 
60.7 

3.84 

0.711 

I Yellow Brass P l a t e  3.90 4.46 8.27 7.64 -0.63 29 0.342 

Naval Brass P l a t e  2.64 

Copper , 
30% Nickel P l a t e  61.26 

Copper 9 

30% Nickel Tube 62.21 

2.67 

63.78 

64.38 

3.76 

83.22 

94.43 

5.45 1.69 

100.75 17.53 

103.11 8.68 

2 1  0.250 

440 4.92 
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