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- 1 -  

I .  OBJECTIVES AND ACTIVITIES OF REPORTING PERIOD 

1.  Genera l  

The b a s i c  e lements  f o r  t h e  c u r r e n t  i n v e s t i g a t i o n s  have been 

d e t a i l e d  in. p rev ious  r e p o r t s  ( P a r t s  I - V I I ) .  

A c t i v i t i . e s  performed durPng t h e  r e p o r t i n g  p e r i o d  se rved  t o  

s o l v e  t h e  fo l lowing  problems: 

a )  D e t e c t i o n  o f  i n t r u s i o n s  o f  s t r a t o s p h e r i c  a i r  i n t o  t h e  

t r o p o s p h e r e  th rough  o b s e r v i n g  . the  t i m e  v a r i a t i o n  o f  t h e  

c o n c e n t r a t i o n  o f  cosmogenic r a d i o n u c l i d e s  

(e .g .  Be7, P32, P33) .  

b )  C a l c u l a t i o n  of  i s e n t r o p i c  t r a j e c t o r i e s  f o r  t h e  i n f l u x  o f  

a i r  masses t o  t h e  measuring s i t e  Zugspi tze  f o r  s e l e c t e d  

long-term p e r i o d s  aimed a t  a  c h a r a c t e r i z a t i o n  o f  t h e  

t r o p o s p h e r i c  f low p r o c e s s e s .  

c )  Es tab l i shment  of  a  c l ima to logy  o f  t h e .  s t r a t o s p h e r i c -  

t r o p o s p h e r i c  exchange. . 

d )  I n s t a l l a t i o n  o f  an  ozpne measuring network w i t h  s t a t i o n s  

a t  d i f f e r e n t  l e v e l s  of t h e  lower t roposphere .  

e )  Moni tor ing  o f  s t r a t o s p h e r i c  a e r o s o l  l a y e r s .  

d )  Study of  t h e  i n f l u e n c e  o f . s o l a r  e v e n t s  on t h e  s t r a t o -  

s p h e r i c - t r o p o s p h e r i c  ex.change. 

2. C h a r a c t e r i z a t i o n  o f  P a r t i c u l a r s ,  O b j e c t i v e s ,  and 

A c t i v i t i e s  During t h e  Repor t ing  Per iod  

The r e p o r t i n g  p e r i o d  i n c l u d e s  s p e c i f i c a l l y  a c t i o n s  t o :  

2~1L-Data-Sam~lins-and-Pro_c_e_s_sins 
Aerosol  sampling a t  t h e  peak of  t h e  Zugspi tze ,  chemical  

t r e a t m e n t  o f  f i l t e r s  and rad iochemica l  a n a l y s i s  of  samples 



were con t inued .  To e n s u r e  t h e  planned c l i m a t o l o g i c a l  p r o c e s s i n g  

o f  r a ~ J i u ~ ~ u c l i d e  data, utmost  c s r c  was pa id  t n  t n  t h e . c a 3 . i b r a t i o n  

o f  t h e  c o u r s e  of  a n a l y s i s  and t h e  measuring sys tems.  

Recording o f  t h e  Tropospheg&c Ozone 2121---------- ----------- 
Ozone r e c o r d i n g s  a t  t h e  Zugsp i t ze  were con t inued .  I n  a d d i t i o n ,  

ozone s t a t i o n s  Wank (1780 m ASL) and ~ a r m i s c h  ( 7 0 0  m ASL) 

could be i n s t a l l e d .  

2.3. Monitoring o f  S t r a t o s p h e r i c  Aerosol  --------------- ----------- ------------- 
Rout ine  moni to r ing  o f  t h e  s t r a t o s p h e r i c  a e r o s o l  could  b e  

s t a r t e d .  Extens ion o f  t h e  l i d a r  system needed f o r  t h i s  i s  

p r a c t i c a l l y  concluded.  

2.4. C o r r e l a t i o n  Between S t r a t o s p h e r i c  I n t r u s i o n s  and ................................. .................... 
Solar-Evezts 

The c o r r e l a t i o n  between s t r a t o s p h e r i c  in t rus ions  and s o l a r  

e v e n t s  has  been s t u d i e d  a c c o r d i n g  t o  t h e  key day method u s i n g  

an 8-year measuring serie,s o f  s t r a t o s p h e r i c  r a d i o n u c l i d e s .  

11. GENERAL METHODS OF .STUDY 

The methods o f  s t u d y  d e s c r i b e d  i n  p rev ious  r e p o r t s  were re- 

tained.No problems a r o s e  i n  t h e i r  a p p l i c a t i o n .  
. . 

1 .  Sampling, Chemical A n a l y s i s ,  P h y s i c a l  Methods 

Aerosol  sampling a t  Zugspi tze  peak and radiochemical  p r o c e s s i n g  

of  f i l t e r s  f o r  d e t e r m i n i n g ' t h e  c o n c e n t r a t i o n  of  s t r a t o s p h e r i c  

r a d i o n u c l i d e s  Be7, P32, and P33 were con t inued  w i t h o u t  any 

change. No problems were encountered .  



2. Measurement o f  t h e  Tropospher ic  Ozone 

Ozone measurements a t  t h e  Zugspi tze  were resumed after c( 

l o n g e r  i n t e r r u p t i o n  i n  October 1976. During t h e  i n t e r r u p t i o n  

t h e  measuring d e v i c e  was overhauled  and improved. A t  s t a t i o n  

Zugspi tze  a new s u c t i o n  p i p e  was i n s t a l l e d .  The a s p i r a t i o n  

a r e a  was i n s t a l l e d  a t  some d i s t a n c e  o f  t h e  b u i l d i n g  th rough  

a c a n t i l e v e r  and i s  above t h e  p r e c i p i c e . i n  f r e e  v e n t i l a t i o n .  

Even tua l ly .po ' s s ib1e  i n f l u e n c e s  th rough  t h e  b u i l d i n g  on t h e  

ozone measurements have t h u s  been. excluded.  A hea ted  dome a t  

t h e  p i p e  i n t a k e  g u a r a n t e e s  p roper  f u n c t i o n  even under w i n t e r -  

t i m e  n p ~ r a t . i  n g  cond i t i ons .  Heat ing  i s  r e g u l a t e d  a u t o m a t i c a l l y  

a s  a  f u n c t i o n  of  a i r  t empera tu re  su r round ing  t h e  s u c t i o n  dome. 

The s u c t i o n  p i p e  c o n s i s t s  of a , t e f l o n  t u b e  having a 10 mm 

i n n e r  d iamete r  and i s  r , insed  th rough  a membrane. pump w i t h  

abou t  300 1 a i r  p e r  hour.  

I n  October ,  t h e  measuring s t a t i o n s  Wank (1780 m ASL) and 

Garmisch (740 m.ASL) could  be p u t  i n t o  s e r v i c e .  Thus, a l l  

necessa ry  requi rements  f o r  measuring t h e  b a l a n c e  of  t h e  

t r o p o s p h e r i c  ozone d i s c u s s e d  i n  Annual Report P a r t  V I I  have 

been r e a l i z e d .  

3 .  T r a j e c t o r y  Ana lys i s  of  Tropospher ic  Flow Processes  

A s  d e s c r i b e d  p r e v i o u s l y ,  two s e l e c t e d  long-term p e r i o d s  (20 

February  - 2 5  May 1974 and 20 J u l y  - 20 September 1974) a r e  

used t o  s t u d y  t h e  c l ima to logy  of  s t r a t o s p h e r i c  i n t r u s i o n s  and 

t h e  a s s o c i a t e d  f low p r o c e s s e s  i n  t h e  t roposphere .  The i s e n -  

t r o p i c  t r a j e c t o r y  a n a l y s i s  needed f o r  t h a t  a r e  l a r g e l y  con- 

c luded.  The r e s u l t s  and conclusio.ns w i l l  be  p r e s e n t e d  i n  

Annual Report P a r t  I X .  



I V .  GRAPHICAL REPRESENTATION OF FALLOUT, COSMOGENIC RADIO- 
..-.. 

NUCLIDES, AND. O 3  AT THE ZUGSPITZE FROM 1  AUGUST 1  976 

THROUGH 31 OCTOBER 1977 

F ig .  1  r e p r e s e n t s  t h e  t i m e  v a r i a t i o n  o f  t h e  c o n c e n t r a t i o n  

o f  f a l l o u t  and cosmogenic ' r ad ionuc l ides  Be7 and ~ 3 2 .  The 

d a i l y  means of  t h e  ozone c o n c e n t r a t i o n ,  measured a t  t h e  

Zugsp i t ze ,  a r e  p l o t t e d  i n  t h e  lower s e c t i o n .  

A s  f a r  a s  f a l l o u t  i s  concerned,  s t e e p  i n c r e a s e s  ( i n d i c a t e d  

by .... , use  s c a l e  on che r i g h t  slde) after thc Chinano 

n u c l e a r  tests on 25.09.76 and 17.09.77 a r e  c l e a r l y  e v i d e n t .  

Remarkable i s  a l s o  t h e  r ise i n  t h e  c o n c e n t r a t i o n  d u r i n g  t h e  

summer h a l f - y e a r  May - August 1977. T h i s  c o i n c i d e s  w i t h  an 

i n c r e a s e  i n  t h e  mean ozone c o n c e n t r a t i o n  from some 25 t o  

40 ppb. The Be7 and P32 v a l u e s  show i n  c o n t r a s t  no obvious  

annua l  v a r i a t i o n .  The c o n c e n t r a t i o n  peaks produced by s t r a -  

t o s p h e r i c  i n t r u s i o n s  a r e  superposed on an a lmost  c o n s t a n t  

background l e v e l ;  E s p e c i a l l y  s t r i k i n g  e v e n t s  w e r e  observed 

i n  October and December 1976, i n  March and a t  t h e  end o f  

May 1977. 

S t r a t o s p h e r i c  i n t r u s i o n s  produce i n  ozone t ime-co inc id ing  

peaks o f  r e l a t i v e l y  smal"1 ampl i tude  superposed on t h e  

above mentioned s t e a d y  ozone t r e n d .  These o b s e r v a t i o n s  sug- 

g e s t  t h a t  h e r e  two independent  phenomena o v e r l a p  each o t h e r .  

The g r a d u a l  change i n  t h e  ozone c o n c e n t r a t i o n  c o i n c i d i n g  

w i t h  t h e  f a l l o u t  c o n c e n t r a t i o n  corresponds  t o  t h e  c l a s s i c a l .  

concep t ion  accord ing  t o  which t h e  i n f l u x  o f  s t r a t o s p h e r i c  

ozone i n t o  t h e  t r o p o s p h e r e  l e a d s  t o  an e l e v a t e d  background 

l e v e l  t h e r e  i n  the '  summer months. S t r a t o s p h e r i c  i n t r u s i o n s  

l e a d ,  i n  c o n t r a s t ,  t o  a  s h o r t - t i m e  ozone i n c r e a s e  indepen- 

d e n t  o f  t h e , s e a s o n .  T h e r e f o r e ,  it may b e  assumed t h a t  ozone 

i n f l u x  i n t o  t h e  t r o p o s p h e r e  as. a  r e s u l t  o f  s t r a t o s p h e r i c  

i n t r u s i o n s  makes j u s t  a  r e l a t i v e l y  s m a l l  c o n t r i b u t i o n  t o  

t h e  t r o p o s p h e r i c  ozone ba lance .  



V. OBSERVATION OF STRATOSPHERIC AEROSOLS BY LIDAR 

1 .  S t a t e  of  t h e  ~ i d a r  System 

The p r e s e n t  s t a , t e  o f  t h e  l i d a r  sys tem,  t h e  computer c o n t r o l  

o f  a l l ' f u n c t i o n s  of. t h e  emitter and r e c e i v e r  e l e c t r o n i c s ,  

t h e  range  g a t e  t e c h n i q u e ,  which a l l o w s  a  b a c k s c a t t e r i n g  

p r o f i l e  w i t h  r e a s o n a b l e  h e i g h t  r e s o l u t i o n  t o  be  o b t a i n e d  

w i t h  t h e  I O - c i ~ d l ~ ~ l e l  photon c o u n t c r ,  and t h e  f i n a l  off-line 

d a t a  e v a l u a t i o n  have been d e s c r i b e d  i n  d e t a i l  i n  t h e  l a s t  

Annual Report ( June  1  97 8  1 and remained unchanged d u r i n g  

t h e  p e r i o d  covered by this r e p u r l .  

Routine p rob ing  o f  t h e  s t r a t o s p h e r e  has been t a k e n  up i n  

October 1976 a f t e r  r e p l a c i n g  t h e  E M 1  981 6  by a n  RCA 8852 

p h o t o m u l t i p l i e r .  Th i s  new PMT i s  d i s t i n g u i s h e d  by a  much 

b e t t e r  t ime  r e s o l u t i o n  r e s u l t i n g  i n  b e t t e r  p r e c i s i o n  o f  

t h e  coun t ing  d a t a  and i n c r e a s e d  range  of  l i n e a r  response .  

The i n s t a l l a t i o n  o f  a  f i l t e r  r e v o l v e r  i n  t h e  r e c e i v e r  l i g h t  

p a t h  (which r e p l a c e s  t h e  g rey  wedge , d e s c r i b e d  i n  t h e  l a s t  

r e p o r t )  h o l d i n g  s e v e r a l  n e u t r a l  f i l t e r s  and p r o v i d i n g  una t -  

t e n u a t e d  l i g h t  passage  and l i g h t  a t t e n u a t i o n  a t  s e v e r a l  

l e v e l s  s i m p l i f i e s . t h e  r e c o n s t r u c t i o n  o f  a  b a c k s c a t t e r i n g  

p r o f i l e ,  because  f i x e d  a t t e n u a t i o n  f a c t o r s  can now be  i n -  

c o r p o r a t e d  i n  t h e  program. 

A t  p r e s e n t  a  b a c k s c a t t e r i n g  p r o f i l e  i s  recorded  by obse rv ing  

600 m i n t e r v a l s  p e r  channe l  o f  t h e  10-channel c o u n t e r  and 7 

s u c c e s s i v e  d e l a y  s e t t i n g s  a r e  necessa ry  t o  cover  a  h e i g h t  

i n t e r v a l  from 7 t o  40 km.  Per  d e l a y  s e t t i n g , . l a s e r  r e t u r n s  

a r e  r ecorded  u n t i l  a  4 %  s t a n d a r d  d e v i a t i o n  o f  t h e  coun t ing  

r a t e  i s  o b t a i n e d  b u t  a  maximum o f  50 l a s e r  f i r i n g s  p e r  de-  

l a y  i s  n o t  exceeded.  Up t o  4 series p e r  n i g h t  .averaged pro-  

v i d e  a  mean . p r o f i l e  which c o n s i s t s  t h e n  of  a s  much a s  1000 

t o  1200 i n d i v i d u a l  l a s e r  r e t u r n s .  



2. Ray l c i g h  B a c k s c a t t e r  Pro,£ i les 

The measured t o t a l  b a c k s c a t t e r i n g  ( i . e .  molecu la r  p l u s  pa r -  

t i c u l a t e  b a c k s c a t t e r i n g )  has  t o  be  compared w i t h  t h e  back- 

s c a t t e r i n g  from a  p u r e l y  molecu la r  atmosphere (Rayle igh 

s c a t t e r i n g ) .  To minimize e r r o r s  w e  t r y  t o  combine measured 

b a c k s c a t t e r i n g  p r o f i l e s  w i t h  Rayleigh p r o f i l e s  d e r i v e d  from 

a c t u a l  a tmospher ic  d e n s i t y  d a t a  which a r e  produced by o u r  

own rad iosondes .  These r a d i o s o n d e s ' a r e  launched a t  t h e  s i te  

of  t h e  i n s t i t u t e  a t  l e a s t  w i t h i n  12 hours  from a  l i d a r  

I n  c a s e  radiosonde d a t a  cannot  be made a v a i l a b l e  a  " s t a n d a r d "  

p r o f i l e  has  t o  be t a k e n  a s  r e f e r e n c e .  To check on t h e  v a l i d -  

i t y  o f  such a " s t a n d a r d "  p r o f i l e ,  37 Rayleigh p r o f i l e s  ob- 

t a i n e d  from radiosonde d a t a  between January  1975 and May 

1977 have been examined. Th i s  m a t e r i a l  has  been i n v e s t i g a t e d  

r e g a r d i n g  s e a s o n a l  t r e n d s  and t h e  b a c k s c a t t e r i n g  p r o f i l e s  

have been c l a s s i f i e d  a s  fo l lows :  Below t h e  t ropopause  

( h e i g h t  i n t e r v a l  0 - 8 km)  and above t h e  t ropopause  ( h e i g h t  

i n t e r v a l  20 - 30 krn) t h e  s l o p e s  o f  t h e  p r o f i l e s  have been 

determined and r e l a t e d  t o  t h e  t i m e  s c a l e .  Below t h e  t ropo-  

pause ,  which u s u a l l y  is  found between 10 - 13 km, a  season- 

a l  t r e n d  of  t h e  i n c l i n a t i o n  i s ' f o u n d  w i t h  a  maximum i n  June  - 
J u l y  and a  minimum i n  December - January ,  however t h e  s c a t -  

t e r  o f  t h e  d a t a  i s  i n  t h e  o r d e r  o f  t h e  s e a s o n a l  v a r i a t i o n s .  

Only l i t t l e  s e a s o n a l . v a r i a . t i o n s  can b e  found above t h e  t r o p -  

opause w i t h  a  s c a t t e r  by f a r  exceeding t h e  v a r i a t i o n s .  So 

any s l o p e  o f  t h e  p r o f i l e  can be found a t  any t i m e .  

Applying a  s e a s o n a l  " s t a n d a r d "  Rayleigh p r o f i l e  i f  a c t u a l  

. radiosonde d a t a  a r e  n o t  a v a i l a b l e  t h e r e f o r e  i s  o n l y  a  com- 

promise. Dev ia t ions  o f  t h e  a c t u a l  Rayleigh p r o f i l e  from a  

" s t a n d a r d "  p r o f i l e  can be i n  t h e  o r d e r  o f  t h e  p r e s e n t l y  

measured n e t  a e r o s o l  b a c k s c a t t e r i n g .  



Our Rayle igh p r o f i l e s  have been compared w i t h  t h e  Rayleigh 

p r o f i l e  d e r i v e d  from d e n s i t y  v a l u e s  o f  t h e  1976 US S tandard  

Atmosphere. Below t h e  t ropopause  t h e r e  i s  ve ry  good agree -  

ment, t h e  "US Rayleigh p r o f i l e "  showing a  s l o p e  correspond- 

i n g  t o  o u r  mean v a l u e  o f  a l l  e v a l u a t e d  p r o f i l e s .  Above t h e  

t ropopause  t h e  "US Rayleigh p r o f i l e "  shows a  s t e e p e r  s l o p e .  

However, t h e  s c a t t e r  o f  o u r  p r o f i l e s  i n c l u d e s  t h e  s l o p e  o f  

t h e  " U S  Fay le igh  p r o f i l e "  above t h e  t ropopause .  

3.:-Measured B a c k s c a t t e r i n g  P r o f i l e s  -- 

I n t e n s e  i n s t r u m e n t a l  maintenance now a l l o w s  t o  make use  o f  

a lmost  a l l  c l e a r  sky p e r i o d s . ' U n f o r t u n a t e l y  t h e  number o f  

n i g h t s  s u i t a b l y  c l e a r  i s  r a t h e r  l i m i t e d  and w e  a r e  f o r c e d  

t o  conduct  o u r  measurements d u r i n g  n i g h t s  when c i r r u s  c l o u d s  

t e n d  t o  hamper o u r  r e c o r d i n g s .  Only d u r i n g  n i g h t  t i m e  meas- 

urements can  be  performed t o  avo id  t h e  h igh  background due 

t o  d i f f u s e  sky r a d i a t i o n .  C i r r u s  c l o u d s ,  u s u a l l y  changing 

r a p i d l y  i n  d e n s i t y ,  can  cause  anih tens i fy  s h i f t  o f  t h e  i n d i -  

v i d u a l  s e c t i o n s  .of t h e  b a c k s c a t t e r  p r o f i l e  and matching o f  

t h e s e  s e c t i o n s  w i t h  t h e  g e n e r a l  t r e n d  of  t h e  whole p r o f i l e  

might t h e *  be  necessa ry .  

During t h e  p e r i o d  October 76 th rough  October 77,  2 2  back- 

s c a t t e r i n g  p r o f i l e s ,  i n  most c a s e s  up t o  35 km and more, 
. . 

have been recorded ,  many o f  them th rough  a  more o r  less dense  

c i r r u s  l a y e r .  Two of  t h e s e  p r o f i l e s  a r e  shown i n  F i g s  2 and 

3 .  The polygonal  c u r v e s  a r e  t h e  measured t o t a l  b a c k s c a t t e r -  

i n g ,  t h e  smooth curves  t h e  c a l c u l a t e d  molecu la r  backsca t -  

t e r i n g .  The h o r i z o n t a l  b a r s  d e n o t e  1 s t a n d a r d  d e v i a t i o n  of  

t h e  s t a t i s t i c a l  f l u c t u a t i o n s  o f  t h e  photon coun t s .  

The matching of  t h e  measured t o t a l  b a c k s c a t t e r i n g  s i g n a l  

w i t h  t h e  c a l c u l a t e d  molecular  r e t u r n  i s  accomplished a t  

h e i g h t  l e v e l s ' w i t h  minimum a e r o s o l  b a c k s c a t t e r i n g .  S u i t a b l e  

l e v e l s  a r e  above t h e  t ropopause  around 15 krn and between 



20 and 25 La. Devia t ions  from t h e  p u r e l y  molecu la r  back- 

s c a t t e r i n g  a r e  g e n e r e r a l l y  found around t h e  t ropopause  i f  

c i r r u s  l a y e r s  a r e  p r e s e n t ,  betweeii 16 and 2 2  km, and above 

25 km. 

On F e b r u a r y , l 4  J u l y  24,  September 15 and 30 (F igs .2  and 3 ) ,  

and 0 c t o b e r  12 and 30, 1977, t h e  degrek of  d e p o l a r i z a t i o n  

of t h e  r o t u r n  s j .gnal  ( r a t i o  o f  p e r p e n d i c u l a r  t o  p o l a r i z e d  

r e t u r n s ,  w i t h  r e s p e c t  t o  t h e  p l a n e  of  p o l a r i z a t i o n  o f  t 'he 

ou tgo ing  l a s e r  p u l s e )  has  been determined.  I n  t h e  f i g u r e s  

t h e  d e p o l a r i z e d  r e t u r n  i s  shown, which due  t o  reduced in -  

t e n s i t y  can be  observed o n l y  from a l t i t u d e s  up t o  20 t o  23 

km. Returns from' c i r r u s  c louds  y i e l d  d e p o l a r i z a t i o n  d e g r e e s  

of  3  t o  54%. The d e p o l a r i z i n g  e f f e c t  of  t h e  molecu la r  a t -  

mosphere i s  2 .5%,  and t h e  same v a l u e  has  been determined 

f o r  t h e  a e r o s o l  l a y e r .  Th i s  would p o i n t  a t  a s p h e r i c a l  

shape  of  t h e  a e r o s o l  p a r t i c l e s  i n  t h e  lower s t r a t o s p h e r e .  

4 .  The S t r a t o s p h e r i c  Aerosol  Layer 

A good means of  d e s c r i b i n g  p a r t i c u l a t e  b a c k s c a t t e r i n g  i s  

t h e  s c a t t e r i n g  r a t i o ,  i . e .  t h e  q u o t i e n t  o f  measured t o t a l  

b a c k s c a t t e r i n g  t o  . c a l c u l a t e d  molecular  b a c k s c a t t e r i n g .  

F i g s .  4 and 5  p r e s e n t  22 v e r t i c a l  p r o f i l e s  of  t h e - s c a t t e r -  

i n g  r a t i o  from t h e  t i m e  p e r i o d  October 1976 t o  October 1977. 
. . 

Each curve  i s  t h e  mean o f  s e v e r a l  i n d i v i d u a l  p r o f i l e s  re- 

corded d u r i n g  t h e  n i g h t  o f  o b s e r v a t i o n .  The t ropopause  l e v e l  

-(denoted by T  i n  t h e  g r a p h s )  u s u a l l y  i s  found a t  10 t o  12 ~ K I  

where i n  many , cases  c i r r u s  c louds  produce l a r g e  s c a t t e r i n g  

r a t i o s .  Above t h e  t ropopause  a  d i s t i n c t  l a y e r  of  i n c r e a s e d  

b a c k s c a t t e r i n g  i n t e n s i t y  i n  t h e  o r d e r  o f  10 t o  15 % o f  t h e  

molecu la r  r e t u r n  can be 'observed.  The lower boundary o f  t h i s  

l a y e r  i s  found between 13 and 16 km,  t h e  upper boundary b e t -  

ween 22 and '26 km. Maximum b a c k s c a t t e r i n g  i s  recorded  b e t -  

ween 17 and 22 km. The r a t i o  v a l u e s  correspond w i t h  t h o s e  



r e p o r t e d  f o r  t h e  pre-Fuego s i t u a t i o n .  The e r u p t i o n  o f  t h e  

volcano Fuego i n  Guatemala i n  October 1974 was t h e  ldst 

major v o l c a n i c  i n j e c t i o n  i n t o  t h e  s t r a t o s p h e r e .  

Towards h i g h e r  a l t i t u d e s  above 25 km t h e  s c a t t e r i n g  r a t i o  

i n  many c a s e s  i s  a g a i n  r i s i n g .  But t h e  e r r o r  margins do n o t  

a l l o w  t h e  d i s c u s s i o n  o f  p o s s i b l e  a e r o s d l  1,ayers a t  h i g h e r  

a l t i t u d e s .  

5. E r r o r   isc cuss i o n  

The 1  a square  r o o t  e r r o r  of  t h e  photon coun t s  amounts KO 
+ + 

about  -2% a t  10 t o  15 km and increases t o  about  -7% a t  30 

t o  35 km. The Rayle igh p r o f i l e  d e r i v e d  from rad iosonde  

d e n s i t y  d a t a  i s  a f f e c t e d  by t h e  radiosonde u n c e r t a i n t y ,  bu t  

by matching c a l c u l a t e d  and measured b a c k s c a t t e r i n g  p r o f i l e s  

t h i s  e r r o r  w i l l  be  reduced and t h e  remainder w i l l  n o t  ex- 

ceed 1  o r  2  %. I n  some c a s e s  t h e  ~ a y l e i g h  p r o f i l e  has  t o  

be  e x t r a p o l a t e d  t o  h i g h e r  a l t i t u d e s  caus ing  an e r r o r  o f  t h e  

same o r d e r .  For t h e  c a l c u l a t i o n  of  t h e  Rayleigh backsca t -  

t e r i n g  p r o f i l e  p a r t i c u l a t e  e x t i n c t i o n  has  been d i s r e g a r d e d .  

The e r r o r  t h u s  i n t r o d u c e d  has  been e s t i m a t e d  a p p l y i n g  l i t e r a -  

t u r e  v a l u e s  o f  t h e  p a r t i c u l a t e  b a c k s c a t t e r  t o  e x t i n c t i o n  

r a t i o  t o  an assumed a e r o s o l  l a y e r  between 18 and 25 km. An 

e r r o r  o f  . 2 %  of  t h e  two-way t r a n s m i s s i o n  caused by t h i s  

l a y e r  has  been c a l c u l a t e d  and can be n e g l e c t e d .  Thus a max- 

i m u m  e r r o r  o f  about  10% can be assumed f o r  o u r  measurements 

between 30 and 35 km, and about  4 %  a t  t h e  h e i g h t  o f  t h e  

a e r o s o l  l a y e r .  



VI. NEW RESULTS REGARDING THE INFLUENCE OF SOLAR'ACTIVITY 
. ...- . .. 

ON THE S TRATOS PHERIC-TROPOS PHERIC EXCHANGE 

Summary 

The dependence o f  s t r a t o s p h e r i c  i n t r u s i o n s  on s o l a r  e v e n t s  

i s  analyzed on t h e  b a s i s  of 8 -yea r s '  r e c o r d i n g s  of  t h e  con- 

c e n t r a t i o n  .of s t . r a t o s g h e r i c  r a d i o n u c l i d e s  and t h e  ozone a t  

3 km a l t i t u d e  a s  w e l l  a s  o f  t h e  t o t a l  ozone. 

A s i g n i f i c a n t ,  even though weak i n f l u e n c e  of  s o l a r  magnetic  

s e c t o r  s t r u c t u r e  boundar ies  o f  t y p e  - /+  can be i d e n t i f i e d ,  

a s e a s o n a l  i n f l u e n c e  is a l s o  observed,  however. 

The s t r o n g  5 0  t o  80% i n c r e a s e  i n  t h e  f requency o f  s t r a t o -  

s p h e r i c  i n t r u s i o n s  a f t e r  s o l a r  Ha-flares is s i g n i f i c a n t  and 

comple te ly  independent  o f  t h e  phase o f  t h e  s o l a r  c y c l e  and 

season.  The t o t a l  a tmospher ic  ozone shows a l s o  a c o r r e l a t i o n  

w i t h  s o l a r  f l a r e s :  A w e l l  d e f i n e d  maximum on t h e  day pre-  

ced ing  t h e  f l a r e .  The neu t ron  d e n s i t y  c l e a r l y  shows t h e  

Forbush d e c r e a s e  on t h e  Ha-key day.  Using key days  w i t h  

Forbush minimum f o r  t h e  superposed epoch a n a l y s i s  r e v e a l s  

a s i g n i f i c a n t  maximum of t h e  Be7-concentrat ion on t h e  day 

b e f o r e  t h e  f l a r e  (rise by about  45 t o  6 0 % ) .  

Noteworthy i s  t h e  f o l l o w i n g  sequence:  Approximately 3 days  

b e f o r e  t h e  s o l a r  f l a r e  t h e  neu t ron  d e n s i t y  b e g i n s  t o  de- 

c e a s e ,  1 - 2 d a y s  b e f o r e  . t h e  f l a r e  t h e  t o t a l  a tmospher ic  

ozone maximizes, and 2 t o  3 d a y s  a f t e r  t h e  f l a r e  w e  f i n d  

t h e  maximum of t h e  Be7 i n  t h e  t r o p o s p h e r e  a s  a consequence 

o f  t h e  s t r a t o s p h e r i c  i n t r u s i o n .  

1 .  I n t r o d u c t i o n  

L I n  a p rev ious  p u b l i c a t i o n  w e  provided t h e  r e s u l t s  o f  a 

5-year i n v e s t i g a t i o n  i n t o  t h e  dependence o f  t h e  s t r a t o -  

s p h e r i c - t r o p o s p h e r i c  exchange on s o l a r  a c t i v i t y  [ I ] .  



This  s t u d y  y i e l d e d  p o s i t i v e  r e s u l t s ,  i n  p a r t i c u l a r  it was 

p o s s i b l e  t o  i d e n t i f y  an i n c r e a s e  i n  t h e  f requency of  s t r a t o -  

s p h e r i c  i n t r u s i o n s  a f t e r  s o l a r  t l a r e s  and i n t e r p l a n e t a r y  mag- 

n e t i c  s e c t o r  s t r u c t u r e  boundary passages .  Y e t ,  some q u e s t i o n s  

remained open r e g a r d i n g  n o t  o n l y  t h e  e x t e n t  t o  which t h e s e  

r e s u l t s  might be  g e n e r a l l y  improved by e x t e n d i n g  t h e  d a t a  

r e c o r d s  o v e r  a  s t i l l  longer  p e r i o d  o f  t i m e ,  b u t  a l s o  t h e  

i n f l u e n c e  t h a t  t h e  phase uf Lhe s o l a r  c y c l c  might  have on 

t h e  c o r r e l a t i o n s ,  and f i n a l l y  some r e f l e c t i o n s  on a  con- 

c e i v a b l e  c a u s a l  c h a i n .  

W e  con t inued  t h e r e f o r e  o u r  s t u d i e s  and c l a s s i f i e d  t h e  d a t a  

a c c o r d i n g  t o  t h e . p r e v i o u s  bu t  a l s o  t o  more r e c e n t  a s p e c t s .  

Obse rva t ions  cover ing  8 y e a r s  ' a r e  a v a i l a b l e  now, t h a t  means 

a  p e r i o d  comparable t o  t h e  s o l a r  c y c l e .  

F o r , t h i s  r eason  it w a s . p o s s i b l e  t o  s u b d i v i d e  t h e  t o t a l  

p e r i o d  i n t o  t h e  fo l lowing  3  phases  o f  s o l a r  a c t i v i t y  be- 

g i n n i n g  a t  t h e  en'd o f  1969 ( t h e  t i m e  s e c t i o n s  s t a t e d  below 

i n c l u d e  i n  each c a s e  t h e  y e a r s  ment ioned) :  

a .  Pe r iod  o f  maximum s o l a r  a c t i v i t y  from November 1969 

th rough  1972 (abbr .  i n  t h e  f i g u r e s  SOLAR MAX) 

b. Pe r iod  o f  d e c r e a s i n g  s o l a r  a c t i v i t y  i n  t h e  y e a r s  1973 

th rough  1  975 (abbr  . i n  f i g u r e s  SOLAR DECR) 

c. pe r iod  o f  minimum s o l a r  a c t i v i t y  i n  t h e  y e a r s  1975 

th rough  1  977 (abbr  . i n  f i g u r e s  SOLAR MIN' ) . 
I n  view of  t h e  m u l t i t u d e  of  d a t a  w e  made an a d d i t i o n a l  

s u b s e t  o f  t h e  e n t i r e  r e c o r d s  a c c o r d i n g  t o  seasons  where 

a f t e r  c a r e f u l  c o n s i d e r a t i o n s  t h e  r e s p e c t i v e  p e r i o d s  w i n t e r /  

s p r i n g  and summer/ fa l l  have been compiled. 

- - -- + 
) The y e a r  1975 appears  i n  b o t h  p e r i o d  2  and p e r i o d  3  

s i n c e  drawing a  s h a r p  l i n e  between b  and c  n e i t h e r  
was p o s s i b l e  nor  meaningf u l  



I n  c o n s i d e r i n g  t h e  s t r a t o s p h e r i c - t r o p o s p h e r i c  exchange, 

t h e . s e a s o n a 1  i n f l u e n c e  cannot  be  d i s r e g a r d e d  and t h e r e f o r e  

a  season-dependent  e f f e c t  o f  s o l a r  e v e n t s  might  be  conceiv-  

a b l e .  

S p e c i a l  emphasis  ha's been on t h e  q u e s t i o n  a s  t o  what e x t e n t  

n c o r r e l a t i o n  can be  e s t a b l i s h e d  between t h e  Forbush d e c r e a s e  

(e .g .  t h e  r e d u c t i o n  of  t h e  e n e r g y ' d e n s i t y  o f  t h e  g a l a c t i c  

cosmic r a y s  i n  t h e  lower a tmosphere)  and t h e  s t r a l o p s h e r i c -  

t r o p o s p h e r i c  exchange. Th i s  s tudy  i s  l i n k e d  t o  some r e f l e c -  . 

t i o n s  on a  p o s s i b l e  c a u s a l  r e l a t i o n s h i p .  

F i n a l l y ,  some i s o l a t e d  e v e n t s  o f  s t r a t o s p h e r i c  i n t r u s i o n s  

have c a r e f u l l y  been analyzed i n c l u d i n g  a l l  r e l e v m t  d a t a .  

I n  t h i s  connec t ion  a l s o  ozone-radiosonde p r o f i l e s  have 

been t a k e n  i n t o  account  and j u s t  a s  w e l l  measurements o f  

t h e  a tmospher ic  t o t a l  ozone. 

Now a s  i n  t h e  p a s t  t h e  d i s c u s s i o n  o f  s t a t i s t i c a l l y  o b t a i n e d  

r e s u l t s  i m p l i e s  t h e  q u e s t i o n  o f  how a  s t r a t o s p h e r i c  i n t r u -  

s i o n  may be t r i g g e r e d .  There i s  c e r t a i n l y  no doubt  t h a t  

a c c o r d i n g  t o  Mahlman [ 2 1  t h e  s i n k i h g  motion o f  t h e  s t r a -  

t o s p h e r i c  a i r  i s  t o  be  a s s o c i a t e d  w i t h  a  c y c l o g e n e s i s .  

Ex tens ive  i n v e s t i g a t i o n s  a t  o u r  i n s t i t u t e  i n t o  t h e  meteo- 

r o l o g i c a l  c o n d i t i o n s  w i t h i n  t h e  r e g i o n  o f  and d u r i n g  t h e  

s t r a t o s p h e r i c  i n t r u s i o n  confirmed t h i s  conc lus ion .  

However, t h e  manner. i n  which such a  cyc logeneses  i s  t r i g -  

ge red  remains s t i l l  an open q u e s t i o n .  W e  may assume t h a t  

f o r  t h i s  t o  happen r a p i d  t empera tu re  changes i n  t h e  lower 

s t r a t o s p h e r e  - though o n l y  t o  a  l e a s t  e x t e n t  - might s u f -  

f i c e  t o  u p s e t  a  l a b i l e  c o n d i t i o n  and t h u s  i n i t i a t e  t h e  

even t  of  an i n t r u s i o n .  I n  t h i s  l i g h t , t h e  v a r i a t i o n s  i n  t h e  

c o n c e n t r a t i o n  o f  ozone a r e  o f  g r e a t  i n t e r e s t  a s  t h e y  pos- 

s i b l y  c o n s t i t u t e  an  e s s e n t i a l  l i n k  i n  a  c a u s a l  c h a i n .  

T h a t ' s  t h e  reasvrl why w e  pay p a r t i c l ~ l a r  a t t e n t i o n  t o  t h e  

ozone p r o f i l e s .  I t  should  however be mentioned a t  t h i s  

p o i n t  t h a t  o n l y  p r o f i l e s  which have been o b t a i n e d  i n  r a p i d  



. .time s u c c ~ s s i o n  - minimum i n t e r v a l  one day - can be o f  

i n t e r e s t  h e r e .  Ozone radiosonde f l i g h t s  of  o u r  own have 

shown, f o r  i n s t a n c e ,  t i i d t  t h e  ozone p r o f i l e  undergoes 

f r e q u e n t l y  r a p i d  v a r i a t i o n s  even from day t o  day.  

. A s  a new a s p e c t  w e  cons ide red  a l s o  t h e  r e l i a b i l i t y  o f  t h e  

d a i l y  weather  f o r e c a s t .  i s s u e d  by t h e  German Weather S e r v i c e  

and that  fnr t h e  f o l l o w i n g .  reason:  A s  mentioned b e f o r e ,  w e  

assume t h a t  t h e  t r i g g e r i n g  o f  a c y c l o g e n e s i s  and an i ~ i t r u  

s i o n  o f  s t r a t o s p h e r i c  a i r o c c u r s  v e r y  q u i c k  th rough  a c t i v a -  

t i o n  o f  a l a b i l e  a tmospher ic  condi t , ion .  Obviously t h e n ,  

t h e  f o r e c a s t i n g  accuracy around such an e v e n t  i s  reduced.  

Aside from t h a t ,  such  i n v e s t i g a t i o n  i s  a l s o  o f  p r a c t i c a l  

concern:  The q u e s t i o n  a r i s e s  a s  t o  what e x t e n t  c o n s i d e r a -  

t i o n  o f  s o l a r  a c t i v i t y  arid i t s  p r e d i c t a b l e  v a r i a t i o n s  may 

p rov ide  an a d d i t i o n a l '  parameter  f o r  improving t h e  v e r i f i -  

c a t i o n  r a t e  o f  weather .  f o r e c a s t s .  

Some o f  t h e  r e s u l t s  r e p o r t e d  i n  t h i s  s t u d y  have  been pre-  

s e n t e d  f o r  d i s c u s s i o n  a t  t h e  Symposi-m/Workshop " S o l a r  

T e r r e s t r i a l  I n f l u e n c e s  on Weather and Cl imate"  J u l y  1978, 

Columbus, Ohio [ 31 . 

2 .  Data 

A s  o u t l i n e d  i n  [ I ] ,  w e  u s e ' f o r  t h e  i d e n t i f i c a t i o n  o f  s t r a t o -  

s p h e r i c  i n t r u s i o n s  b o t h , t h e  c o n c e n t r a t i o n  o f  Be7 ( f u r t h e r  

P32 and o t h e r  r a d i o n u c l i d e s  ) measured o v e r  each 24-hour 

p e r i o d  a t  o u r  o b s e r v a t o r y  Zugspi tze  a t  3 krn a l t i t u d e  and 

t h e  c o n c e n t r a t i o n  of  t h e  l o c a l  ozone recorded  a t  t h e  same 

s t a t i o n .  The ozone p r o f i l e s  a r e  o b t a i n e d  w i t h  o u r  r a d i o -  

sonde.  I t  d e l i v e r s  t h e  ozone c o n c e n t r a t i o n  (wi th  an ECC- 

ozone m e t e r )  and a l l ' o t h e r  m e t e o r o l o g i c a l  d a t a  up t o  a n  

a l t i t u d e  o f ' a t  l e a s t  35 km ( a p a r t  from e x c e p t i o n s ) .  

Recent ly ,  we 'have  begun t o  perform measurements o f  o u r  own 

o f  t h e  a tmospher ic  t o t a l  ozone w i t h  a F i l t e r  Ozone Spec t ro -  



photometer  [4] b u t  t h i s  ins t rument  i s  a v a i l a b l e  < f a r  abou t  

one  y e a r  o n l y .  I r r e s p e c t i v e  o f  .Lhat, wc use. t h e  t o t a l  ozone 

ddLa from t h e  s t a t i o n s  Arosa and Hohenpeissenberg ( w e  a r e  

e s p e c i a l l y  g r a t e f u l  t o  H.W. Dutsch and W .  Attmannspacher 

f o r  p r o v i d i n g  t h e s e  d a t a ) .  

S ta tements  r e g a r d i n g  t h e  s i g n i f i c a n c e  of  weather  f o r e c a s t s  

w e r e  drawn from t h e  pe r i0d i . c  in fo rmat ion  o f  t h e  German 

Wcather S e r v i c e .  

A l l  o t h e r  geophys ica l  d a t a  such a s  s o l a r  f l a r e s ,  cjeomagnctic 

a c t i v i t i e s ,  neu t ron  d e n s i t i e s ,  s o l a r  f l u x ,  r a d i o  p ropaga t ion ,  

a~ id  oLhero w e r e  n h t a i n e d  from t h e  Solar-Geophysical  Data 

i s s u e s  o f  NOAA [ 5 ] .  

W e  g i v e  o u r  s p e c i a l  t h a n k s  to J.M..Wilcox f o r  p r o v i d i n g  t h e  . 
d a t a  o f  t h e  s e c t o r  s t r u c t u r e  boundary passages .  S t a t i s t i c a l  

p r o c e s s i n g  o f  d a t a  was done by superposed epoch a n a l y s i s  

( r e f e r  t o  [ I ]  f o r  p a r t i c u l a r s )  u s i n g  i n  each c a s e  a  p e r i o d  

o f  12 days b e f b r e  t o  12 days  a f t e r  t h e  key day.  

The v e r t i c a l  b a r s  i n  t h e  diagrams show now a s  b e f o r e  t h e  

s t a n d a r d  d e v i a t i o n  f o r  an assessment  o f  t h e  s t a t i s t i c a l  

evidence .  

3 .  R e s u l t s  o f  t h e  Superposed Epoch Ana lys i s  

3.1. Passages  o f  S o l a r  Magnetic S e c t o r  S t r u c t u r e  'Boundary __-___-___ ___-__--__-___ .............................. 

a s - ~ e y - ~ a y s  . . 

The augmenta t ion  o f  d a t a  . r e c o r d s  b a s e d . o n  t h e  now extended 

p e r i o d  o f  o b s e r v a t i o n  l e d ,  s u r p r i s i n g l y  enough, n o t  t o  an 

improvement of  t h e  e a r l i e r  n o t e d . c o r r e l a t i o n  between t h e  

c o n c e n t r a t i o n  o f  t h e  Be7 ( a s  i n d i c a t o r  f o r  t h e  f requency 

and i n t e n s i t y  o f  s t r a t o s p h e r i c  i n t r u s i o n s )  and t h e  s e c t o r  

s t r u c t u r e  passages .  F ig .  6 shows t h e  e s s e n t i a l  r e s u l t .  W e  

w i l l  c o n s i d e r  r i g h t  h e r e  t h e  dependence on t h e  season .  The 

two d iagrams 'on  t h e  l e f t  app ly  t o  w i n t e r  and s p r i n g ,  t h e  

r i g h t  ones  to.summer and f a l l .  Viewing o n l y  s e c t o r  passages  



of  t y p e  +/.- ( s e e  [ I 1  f o r  d e t a i l s )  w e  obse rve  p r a c t i c a l l y  

no c o r r e l a t i o n ,  a t  l e a s t  not. f o r  t h e  seasons  w i n t e r  and 

s p r i n g .  (Around t h e  key days  d u ~ i l i g  summer and f a l l  w e  f i n d  

p e r i o d i c  v a r i a t i o n s  which, however , ' do  n o t  r e v e a l  a  meaning- 

f u l  c o r r e l a t i o n  t o  t h e  key day i t s e l f ) .  I f  t h e  a n a l y s i s  i s  

r e s t r i c t e d  e x c l u s i v e l y  t o  t h e  p e r i o d  o f  maximum s o l a r  ac-  

t i v i t y ,  t h e  i n c r e a s e  i n  t h e  Be7 c o n c e n t r a t i o n  p e r s i s t s  on 

t h e  ave rage  a f t e r  Llle key days.  Dus-ing minimum s o l a r  a c t i v -  

i t y  t h i s  c o r r e l a t i o n  v a n i s h e s  a s  shown by o u r  most r e c e n t  

e v a l u a t i o n s .  

Viewing s e c t o r  passages  o f  t y p e  - /+,  a  c o r r e l a t i o n  persi . .s ts  

even w i t h  t h e  u s e  o f  t h e  e n t i r e  d a t a  r e c o r d s  cover ing  e i g h t  

y e a r s  a s  can be  s e e n  from F ig .  6 .  However, on t h e  key d a y s  

w e  f i n d  s u r p r i s i n g l y  a  maximum i n  w i n t e r  and s p r i n g  b u t  a ' 

minimum i n  summer and f a l l .  I n  t h a t ,  o u r  l a t e s t  r e s u l t s  a r e  

n o t  a t  v a r i a n c e  w i t h  o u r  e a r l i e r  f i n d i n g s  [ I ] .  But h e r e ,  

t o o ,  it ho lds  t h a t  d u r i n g  t h e  p e r i o d  of  minimum s o l a r  a c t i v -  

i t y  t h e  s e c t o r  s t r u c t u r e  passages  cannot  be  r ega rded  a s  

a f f e c t i n g  s i g n i f i c a n t l y  t h e  f requency o f  s t r a t o s p h e r i c  

i n t r u s i o n s .  

The r e s u l t  o f  t h i s  a n a l y s i s  shows t h a t  augmenta t ion  o f  t h e  

d a t a  does  n o t  n e c e s s a r i l y  l e a d  t o  a  c o n f i r m a t i o n  of  o u r  

f i n d i n g s  b u t  it r e f i n e s  t h e  p i c t u r e  of  t h e  c o r r e l a t i o n s  

under s tudy .  S e p a r a t e  hand l ing  o f  t h e  seasons  and s e c t o r  

p o l a r s t i e s  i s  t h e r e f o r e  a n . a b s o l u t e  r equ i rement .  A f t e r  a  

f u r t h e r  e x t e n s i o n  of  d a t a  w e  w i l l  t r e a t  s e p a r a t e l y  t h e  

f o u r  s e a s o n s ,  t o o .  

A d d i t i o n a l  r e s u l t s  o f  a  d a t a  a n a l y s i s  based on s e c t o r  

s t r u c t u r e  passages  a r e  mentioned o n l y  i n  b r i e f :  

a )  A breakdown of  a l l  d a t a  accord ing  t o  p o l a r i t i e s  o f  

s e c t o r s  and s e a s o n s  w i n t e r / s p r i n g  and summer/ fa l l  does  

n o t  r e v e a l  a  conv inc ing  c o r r e l a t i o n .  



b )  A I I  a n a l y s i s  of  t h e  t o t a l  ozone y i e l d e d  a  v e r y  pronounced 

and s i g n i f i c a n t  maximum 2 days  a f t e r  t h e  s e c t o r  passage  o f  

t y p e  +/-  i n  w i n t e r  and s p r i n g .  Th i s  i s  a  t e n t a t i v e  r e s a l L  

and must be  confirmed by a d d i t i o n a l  . d a t a .  

- F l a r e s  a s  Key Days 11Z~--Solar-! --- 

The d e f i n i t i o n  o f  f l a r e s  which have been used i n  o u r  s t u d i e s  

was t h e  same a s  b e f o r e  ( ['I I ) , impor tance  21 , occur rence  ' . 

between 20°w and 2 0 O ~  of  h e l i o g r a p h i c  l e n g t h .  F ig .  7a show's 

t h a t  t h e  e a r l i e r  f i n d i n g s  r e g a r d i n g  t h e  Be'] c ' bncen t ra~ t ion ,  

i .e .  t h e  f requency and i n t e n s i t y  o f  s t r a t o s p h e r i c  i n t r u s i o n s  

a r e  confirmed i n  e v e r y  r e s p e c t .  The maximum 2 t o  3 days  

a f t e r  t h e  key day i s  n o t  o n l y  observed w i t h  t h e  e n t i r e  ma- 

t e r i a l  b u t  a l s o  f o r  each phase of s o l a r  a c t i v i t y ,  even 

d u r i n g  i t s  minimum. The ampl i tude  of  t h e  v a r i a t i o n  i s  p rac -  

t i c a l l y  t h e  same o v e r  a l l . 4  phases  .of s o l a r  a c t i v i t y  and ,  

i n d e e d l i t  s l i g h t l y  rises w i t h  i n c r e a s i n g  s o l a r  q u i e t  (rise 

by about  50% d u r i n g  maximum o r  80% d u r i n g  minimum s o l a r  

a c t i v i t y ) .  The v a r i a t i o n s  o f  i n d i c a t o r  Be7 on t h e  key day 

( o r  s h o r t l y  b e f o r e )  u n t i l  t h e  2nd o r  3rd day t h e r e a f t e r  

a r e  c l e a r l y  e v i d e n t  i r r e s p e c t i v e  o f  t h e  d a t a  group.  

Fig .  7b shows t h a t  t h e , c o r r e l a t i o n  between Be7 - i . e .  t h e  

s t r a t o s p h e r i c  i n t r u s i o n s  - and Ha-flares i s  n o t  dependent  

on t h e  seasons  e i t h e r .  Thus l 'we  a r e  f a c i n g  h e r e  a  s t a b l e  

and fundamenta l .p rocess  which i s  independent  o f  t h e  phase  

o f .  s o l a r  a c t i v i t y  and t h e  change-over o f  seasons .  

The bottom l i n e  i n  Fig .  7a d e n o t e s  t h e  q u o t i e n t  P32/Be7 

around t h e  Ha-flare key days .  W e  obse rve  a  c o r r e l a t i o n  

between t h i s  q u o t i e n t  and t h e  f l a r e s :  A t  t h e  t ime  o f  s o l a r  

maximum t h e  q u o t i e n t  i s  found t o  maximize on  t h e  key day,  

and a t  t i m e s .  o f  s o l a r  minimum it i s  a t  a  minimum on  t h e  key 

day.  I f  w e  s imul taneous ly  c o n s i d e r  t h e  s e a s o n s ,  w e  n o t e  

( i n  r e a s o n a b l e  agreement w i t h  [I]) t h e  fo l lowing :  



I n  w i n t e r  and d u r i n g  s o l a r  minimum t h e  quotierlk d e c l i n e s  

on t h e  key day t o  about  20 x  i n  summer and d u r i n g  
- 3  s o l a r  maximum it rises t o  65 x  1 0  . The former v a l u e  means 

a  r e s i d e n c e  time of  t h e  a e r o s o l  i n  t h e  lower s t r a t o s p h e r e  

i n  t h e  o r d e r  o f  50 t o  70 d a y s ,  t h e  I a t t e r  q u o t i e n t  such one  

of  15 t o  20 days .  ~ c c o r d i n ~ l ~ ,  s o l a r  a c . t i v i t y  - e s p e c i a l l y  

s n l a r  f l a r e s  - seem t o  i n f l u e n c e  s , i g n i f i c a n t l y  t h e  r e s i d e n c e  

t i m e  o f  s t r a t o s p h e r i c  a e r o s o l s .  

F ig .  8 shows i n  t h e  upper l i n e  t h e  behav io r  of  t h e  ozone 

c o n c e n t r a t i o n  a t  3  km a l t i t u d e  and i n  t h e  second l i n e  t h e  

v a r i a t i o n s  o f  t h e  a tmospher ic  t o t a l  ozone b e f o r e ,  d u r i n g ,  

and a f t e r  s o l a r  f l a r e s .  The c o n c e n t r a t i o n  o f  t h e  l o c a l  

ozone a t  3 la a l t i t u d e - i n c r e a s e s  s i g n i f i c a n t l y  from t h e  3rd  

day b e f o r e  t h e  f l a r e  u n t i l  t h e  5 t h  day t h e r e a f t e r .  A t  t h e  

t i m e  o f  s o l a r  minimum a  s i g n i f i c a n t  change cannot  be  s e e n  

b u t  i n  t h i s  c a s e  t h e  number o f  d a t a  i s  s t i l l  t o o  s m a l l .  

Notable  i s  t h e  behav io r  o f  t h e  a tmospher ic  t o t a l  ozone: 

W e  f i n d  a  s i g n i f i c a n t  d e c r e a s e  from t h e  day p reced ing  t h e  

f l a r e  which c o n t i n u e s  u n t i l  t h e  4 t h  o r  5 t h  day f o l l o w i n g  

t h e  f l a r e .  The ampl i tude  reaches  a t  t h e  t i m e ' o f  d e c r e a s i n g  

s o l a r  a c t i v i t y  a lmos t  10%.  During minimum s o l a r  a c t i v i t y ,  

however, such  a  c o r r e l a t i o n  i s -  no longer  observed (on ly  

26 key d a y s ) .  

S i n c e  t h e  q u e s t i o n  o f  an  i n f l u e n c e  of  s o l a r  a c t i v i t y  on t h e  

a tmospher ic  ozone has  been d i s c u s s e d  f o r  many y e a r s ,  t h e s e  

r e s u l t s  should  be judged from a n o t h e r  a s p e c t .  They p o s s i b l y  ' 

may be o f  impor tance  w i t h  r ega rd  t o  a  c a u s a l  l i n k  which w e  

w i l l  s p e c i f y  l a t e r .  . 

Fig .  9  shows t h e  c o r r e l a t i o n  between s o l a r  f l u x  (2695 MHz) 

and t h e  neu t ron  d e n s i t y ,  r e s p e c t i v e l y ,  w i t h  Ha-flares.  

The s o l a r  f l u x  responds  i n  a  known manner: A broad maximum 

on t h e  f l a r e  d a y , , i n c r e a s e  and d e c r e a s e  e x t e n d i n g  o v e r  sev-  

e r a l  days .  With d e c r e a s i n g  s o l a r  a c t i v i t y  t h e  mean v a l u e  o f  



t h e  s o l a r  f l u x  s h o w s ' a l s o  a  marked d e c l i n e .  The ampl i tude  

of  t h e  v a r i a t i o n  i s  a lmost  independent  t h e r e o f ,  however. 

The neu t ron  d e n s i t y  c l e a r l y  r e f l e c t s  t h e  w e l l  d e f i n e d  Forbush 

d e c r e a s e :  At te 'nuat ion  o f  t h e  g a l a c t i c  cosmic r a y s - b y  t h e  so- 

l a r  wind, an e v e n t  s e t t i n g  i n  a  few days  b e f o r e  t h e  f l a r e  does 

a c t u a l l y  occur .  The minimum, of neu t ron  d e n s i t y  i s  found ap- 

p rox imate ly  on t h e  4 t h  o r  5 t h  day a f t e r  t h e  f l a r e .  The mean 

v a l u e  o f  t h e  neu t ron  d e n s i t y  i n c r e a s e s ,  a s  i s  known, eon t i -  
n o u s l y ' w i t h  d e c r e a s i n g  s o l a r  a c t i v i t y .  I t  i s  remarkable  t h a t  

t h e  ampl i tude  o f  t h e  v a r i a t i o n  around t h e  f l a r e  key days  i s  

r a t h e r  g r e a t e r  d u r i n g  t h e  p e r i o d  o f  s o l a r  minimum t h a n  

d u r i n g  t h a t  o f  s o l a r  maximum. .This  i s  c e r t a i n l y  due t o  t h e  

f a c t  t h a t  d u r i n g  s o l a r  minimum t h e  f l a r e  e v e n t s  occur  w e l l  

i s o l a t e d  i n  t i m e  which r e s u l t s  i n  optimum synchron iza t ion  

by t h e  superposed epodh a n a l y s i s  method. 

The f l a r e - r e l a t e d  v a r i a t i o n s  of  t h e  n e u t r o w d e n s i t y  a r e  s i g -  

n i f i c a n t .  The f a c t ,  t h a t  r e d u c t i o n  o f  t h e  neu t ron  d e n s i t y  

sets i n  s e v e r a l  days  b e f o r e  t h e  f l a r e ,  i . e .  a s  an a c t i v e  

r e g i o n  (M-region) approaches t h e  c e n t r a l  mer id ian  o f  t h e  sun  

. n e e d s  e x p l i c i t l y  t o  be  po in ted  o u t  a g a i n .  Without p r o v i d i n g  

a  f i g u r e  a s  proof it i s  merely mentioned h e r e  t h a t  t h e  rel-  

a t i v e  sunspo t  number and a l s o  . the  calcium p l a g e  index  show 

s i m i l a r  t o  t h e  s o l a r  f l u x  a  broad maximum d u r i n g  t h e  p e r i o d  

o f  Ha-f lares ,  and t h e y  a r e  a l s o  c h a r a c t e r i z e d  by an  i n c r e a s e  

ex tend ing  o v e r  5  t o  7 d a y s . u n t i 1  t h e  f l a r e  e v e n t .  

3 . 3 .  Days w i t h  Maximum Forbush Decrease a s  Key Dayg -------- ..................................... --- 

Using t h e  d a i l y  means of neu t ron  d e n s i t y  w e  s e l e c t e d  days  

w i t h  a  maximum Forbush d e c r e a s e  ( i . e .  minimum of  neu t ron  

d e n s i t y ) .  F ig .  10 shows i n  t h e  bottom l i n e  t h e  v a r i a t i o n  

o f  neu t ron  d e n s i t y  around t h e s e  key days.The p r i n c i p l e  o f  

s e l e c t i o n  i s  t h u s  c l e a r l y . p r e s e n t e d :  Minimuni o f  neu t ron  

d e n s i t y  on t h e  key day o r  on t h e  1 s t  day t h e r e a f t e r ,  s t e e p  



d e u ~ s a s e  of  t h e  n e u t r o n  d e n s i t y  toward t h e  key day ,  begin-  

n i n g  d e c r e a s e  of  t h e  neu t ron  d e n s i t y  between 2 - 5 days  

p r i o r  t o  t h e  key day.  I t  i s  a l s o  i n t e r e s t i n g  t o  n o t e  i n  

F ig .  10 t h e  behav io r  o f  s o l a r  f l u x  around t h e  Forbush key 

- days:  Abso lu te ly  independent  of  t h e  phase o f  s o l a r  a c t i v i t y  

t h e  maximum of  s o l a r  f l u x  i s  found 3 days  b e f o r e  t h e  key 

day.  

F ig .  11 i l l u s t r a t e s  t h e  behavior  o f  g-eomagnetic index  Ap 

and t h e  i n d e x  o f  r a d i o  p ropaga t ion  around t h e  Forbush key 

day.  A p  shuws C l i e  maltimum on. the key day b u t  t h e  i n c r e a s e  

sets i n  s e v e r a l  days  b e f o r e .  The r a d i o  p ropaga t ion  index  

d e c r e a s e s  on t h e  average  5 t o  .6 days  b e f o r e  neu t ron  d e n s i t y ,  

r e a c h i n g  i t  maximum on t h e  key day.  F igs .  10 and 11 s h a l l  

g i v e  p a r t i c u l a r l y  c l e a r  ev idence  o f  t h e  w e l l  d e f i n e d  and 

meaningful  r e l a t i o n  o f  t h e  s e l e c t e d  Forbush key d a y s  and 

t h e  s o l a r  behav io r .  

F ig .  12 r e l a t e s  t h e  s t r a t o s p h e r i c  i n t r u s i o n s  Be7 a s  i r idica-  

t o r )  and t h e  s t r a t o s p h e r i c  r e s i d e n c e  t i m e  ( q u o t i e n t  ~ 3 2 ' / ~ e 7 )  

t o  t h e  Forbush key days .  The t o t a l  d a t a  and t h e  d a t a  cover-  

' i n g  t h e . p e r i o d  of maximum s o l a r  a c t i v i t y  show w i t h  s t a t i s -  

t i c a l  evidence  t h a t  t h e  Be7 reaches  a maximum on t h e  day 

b e f o r e  t h e  Forbush key day.  Consequently,  s t r a t o s p h e r i c  

i n t r u s i o n s  o c c u r  v e r y  o f t e n  2 t o  3 days  b e f o r e  t h e  key.day.  

The q u o t i e n t  P32/Be7 r e a c h e s  i t s  minimum w i t h  about  35 x 

on t h e  Forbush key day.  P r i o r  t o  t h e  Forbush key day the 

q u o t i e n t s  a r e  - even though f l u c t u a t i n g  - e s s e n t i a l l y  h i g h e r .  

That  means, t h a t  a c o r r e l a t i o n  e x i s t s  a l s o  between t h e  

Forbush e f f e c t  and t h e  res?dence t i m e  of  a e r o s o l s  i n  t h e  

lower s t r a t o s p h e r e .  The number o f  key days  d u r i n g  d e c r e a s i n g  

o r  minimum s o l a r  a c t i v i t y  was t o o  s m a l l  t o  o b t a i n  s i g n i f i -  

c a n t  r e s u l t s  (N = '10 - 1 8 ) .  Ga the r ing  o f  more m a t e r i a l  i s  

t h e r e f o r e  r e q u i r e d .  

The ampl i tude  o f  t h e  v a r i a t i o n  o f  t h e  Be7 c o n c e n t r a t i o n  

from t h e  7 t h  u n t i l  t h e  1 s t  day b e f o r e  t h e  Forbush e f f e c t  



i s  i n  t h e  o r d e r  o f  45  - .60%,, t h a t  means it i s  analogous  t o  

t h e  v a r i a t i o n  around Ha-f.la.ies. 

1 t . r e m a i n s  t o  be mentioned t h a t  a l s o  t i l t !  r e l a t i v e  sunspo t  

number and t h e  .calcium p l a g e  index  show a  c h a r a c t e r i s t i c  

v a r i a t i o n  around Forbush key days ,  w i t h  t h e  maximum o c c u r r i n g  

1 t o  3  days b e f o r e  t h e  Forbush e f f e c t .  

The mentioned c o r r e l a t i o n  between s t r a t o s p h e r i c  i n t r u s i o n s  

and s t r a t o s p h e r i c  r e s i d e n c e  t i m e ,  r e s p e c t i v e l y ,  and t h e  

Forbush e f f e c t  may p o s s i b l y  be  regarded w i t h  a  view t o  a .  

c a u s a l  l i n k  which w e  w i l l  d i s c u s s  i n  some d e t a i l  l a t e r .  

3 . 4 .  Days w i t h  Maximum Be7 a t  3 krn A l t i t u d e  a s  Key Day2 ------- ......................................... --- 

From t h e  h i t h e r t o  e x i s t i n g  r e s u l t s  we should e x p e c t  t h a t  

s o l a r  o r  geophys ica l  parameters  would show a  v a r i a t i o n  i f  

days  w i t h  maximum Be7 c o n c e n t r a t i o n  a r e  t a k e n  a s  b a s i s  f o r  

a  superposed epoch a n a l y s i s .  W e  must c o n s i d e r ,  however ,, 
t h a t  n o t  eve ry  maximuin i n  t h e  Be7 c o n c e n t r a t i o n  i s  caused 

by a  s o l a r  even t .  Such a  maximum may have a l s o  p u r e l y  mete- 

o r o l o g i c a l  causes :  Washout, f o r  i n s t a n c e ,  removes t h e  Be7. 

from t h e  t r o p o s p h e r e  and a  Be7 peak may t h e r e f o r e  occur  

between two w a s h o u t . p e r i o d s .  F ig .  1 3  shows some r e s u l t s  

from t h e  t o t a l  d a t a .  We' f ind  t h a t  t h e  neu t ron  d e n s i t y  and 

a tmospher ic  t o t a l  ozone d e c r e a s e  s i g n i f i c a n t l y  from t h e  

2nd day b e f o r e  t h e  key day u n t i l  t h e  2nd day t h e r e a f t e r .  

Tha t  i s  c o n s i s t e n t  w i t h  0u.r e a r l i e r  f i n d i n g s .  The noted  

neu t ron  d e n s i t y  v a r i a t i o n  corresponds  t o  t h e  t y p i c a l  t r e n d  

o f  . t h e  Forbush e f f e c t  which i s  a s s o c i a t e d  w i t h  a  maximum of  

t h e  Be7. Thus, t h e  t i m e  l a p s e  i n  Fig .  1 3  i s  i n  f u l l  ag ree -  

ment w i t h  o u r  above s t a t e d  f i n d i n g s .  The same a p p l i e s  t o  

t h e  t o t a l  ozone: I t  i s  c l e a r l y  reduced a f t e r  t h e  s o l a r  f l a r e  

(Fig .  8), t h a t  means a t  a  p e r i o d  when t h e  maximum o f  t h e  Be7 

i s  found (F ig .  7 a ) .  

F i n a l l y ,  F ig .  1 3  shows t h a t  t h e  Be7 peak a t  3  krn a l t i t u d e  i s  



. 
a l s o  a s s o c i a t e d  w i t h  a  maximum o f  t h e  l o c a l  ozone concen t ra -  

t i o n .  T h i s ,  a g a i n ,  i s  a  l o g i c d l  consequence because  i n  t h e  

c a s e  of i n t r u s i o n s  t h e  ozone f lows  from t h e  s t r a t o s p h e r e  

i n t o  t h e  t r o p o s p h e r i c  s t a t i o n  j u s t  s o  a s . t h e  Be7. 

3.5. A Conseicuous Sequence ----------- --------- ----- 

Fjg. 14 compiles t h e  dependence o f  neu t ron  d e n s i t y ,  t o t a l  

ozone,  and Be7,on s o l a r  H - f l a r e s  where w e  purpuse ly  e o n f i n e  a 
o u r s e l v e s  t o  t h e  p e r i o d  1973 th rough  1975. Although s o l a r  

a c t i v i t y  i i ~ n r e a s e d  d u r i n g  t h a t  p e r i o d  and t h e  i n d i v i d u a l  

' f l a r e s  o c c u r r e d  w e l l  i s o l a t e d  i n  t i m e ,  t h e  t o t a l  nuiilber u1 

f l a r e s  was n o t  t o o  s m a l l  f o r  a. s t a t i s t i c a l  i n v e s t i g a t i o n  

(number o f  cases : ,  5 0 ) .  W e  obse rve  an i n t e r e s t i n g  sequence:  

A s  soon a s  t h e  neu t ron  d e n s i t y  s t a r t s  t o  d e c r e a s e  (1.  i n  a ) ,  

t h e  t o t a l . o z o n e  reaches  t e m p o r a r i l y  a  maximum (2 .  i n  b ) ,  and 

4 t o  5 days  l a t e r  t h e  maximum of  t h e  Be7 i s  found (3. i n  c ) .  

C e r t a i n l y  it is  n o t  p o s s i b l e  t o  i n f e r  from t h a t  immediately 

a  p h y s i c a l  l i n k .  Never the less  t h i s  t i m e  sequence g i v e s  u s  a  

though t :  I t  appears  a s  i f  t h e  t r i g g e r i n g  p r o c e s s  f o r  a  s t r a -  

. t o s p h e r i c  i n t r u s i o n  would be i n i t i a t e d  by 1.  and 2 . ,  s o  t h a t  

t h e n ,  a f t e r  a t r a v e l  t i m e  o f  4 t o  5  d a y s ,  t h e  maximum o f  t h e  

Be7 can  be  observed a t  3  km a l t i t u d e .  Anyway, t h i s  sequence 

i s  a  s t i m u l u s  t o  a  f u t u r e  d e t a i l e d  s t u d y  o f  t h e  t i m e  v a r i a -  

t i o n s  of  t h e  3 a f o r e  mentioned parameters  w i t h  p a r t i c u l a r  

c o n s i d e r a t i o n  o f  t h e  f i n e  s t r u c t u r e  o f  t h e  ozone concen t ra -  

t i o n  up t o  a t  l e a s t  35 km. 

4 .  Conclus ions  and Discuss ion  o f  t h e  R e c e n t , R e l e v a n t  

L i t e r a t u r e  

I t  seems t o  be i n t e r e s t i n g  t h a t  a l r e a d y  w i t h  t h e  u s e  o f  an  

8-year d a t a  m a t e r i a l  it has  been p o s s i b l e  t o  i d e n t i f y  a  

s i g n i f i c a n t  i n f l u e n c e  o f  s o l a r  a c t i v i t y  on a tmospher ic  con- 

d i t i o n s  and p r o c e s s e s  ( s t r a t o s p h e r i c  i n t r u s i o n s ) .  The most 

obvious  c o r r e l a t i o n  i s  found w i t h  H - f l a r e s  i r r e s p e c t i v e  o f  a 



s o l a r  a c t i v i t y  and seasons .  Compared w i t h  t h i s ,  t h e  c o r r e -  

l a t i o n  between passages  o f  t h e  s e c t o r  s t r u c t u r e  boundary 

and s t r a t o s p h e r i c  i n t r u s i o n s  i s  much less pronounced a t  spe-  

c i f i c  seasons  and d u r i n g  minimum s o l a r  a c t i v i t y .  

I n c i d e n t a l l y ,  t h e r e  a r e  more r e c e n t  i n v e s t i g a t i o n s  (see e .g .  

[61)  which cannot  conf i rm e a r l i e r  f i n d i n g s  r e g a r d i n g  e f f e c t s  

o f  s e c t o r  s t r u c t u r e  boundary passages  i n  t h e  atmosphere 

(c. f  . , however, a l s v  [7 1 . 

When discuss ing. ,  s o l a r  i n f l u e n c e s  on weather  and c l i m a t e  w e  

must s t r i c t l y  d i s t i n g u i s h  between long-term r e l a t i o n s h i p s  

(see, f o r  i n s t a n c e  [81)  and shor t - t e rm phenomena. The l a t t e r  

t y p e  a p p l i e s  t o  t i m e  l a p s e s  ex tend ing  o v e r  p e r i o d s  i n  t h e  

o r d e r  o f  d a y s  o r  weeks ( s e e  e .g .  [ 9 ,  101) and t h e  o t h e r  one  

t o  t r e n d s  i n  t h e  o r d e r  o f  one  o r  more s o l a r  c y c l e s .  Our i n -  

v e s t i g a t i o n s  d i s c u s s e d  i n  t h i s  paper  be long t o  t h e  t y p e  of  

shor t - t e rm phenomena a l though  t h e  d a t a  r e c o r d s  used cover  a  

p e r i o d  o f  8  y e a r s .  N e w  f i n d i n g s  concern ing  b o t h  t y p e s  o f  

t h e  s o l a r  t e r r e s t r i a l  r e l a t i o n s h i p  have been p r e s e n t e d  a t  a  

Symposium/Workshop i n  1978 [ I l l .  I n  s p i t e  o f  some c o n t r a -  

d i c t i o n  t h e s e  r e s u l t s  confirmed on t h e  whole a g a i n  t h e  

e x i s t e n c e  o f  s o l a r  i n f l u e n c e  on t h e  lower atmosphere.  

D i f f e r e n t  c a u s a l  l i n k s  a r e  v a l i d  f o r  e i t h e r  t y p e  o f  t h e  

r e l a t i o n s h i p s .  

Within t h e  scope a f  m e t e o r o l o g i c a l  s t u d i e s  a t  t h i s  Symposium 

geomagnetic parameters  have.  a l s o . b e e n  used f o r  d e s c r i b i n g  

t h e  s o l a r  a c t i v i t y  ( i n  t h i s  r e g a r d  see a l s o  [ 1 2 1 ) .  I n  o u r  

i n v e s t i g a t i o n s  w e  e q u a l l y  used days  w i t h  s t r o n g  geomagnetic 

s torms a s  key days b u t  t h i s  p a r t i a l  s t u d y  d i d  n o t  r e s u l t  i n  

new f i n d i n g s .  Ra the r ,  t h e  c o r r e l a t i o n  becomes somewhat more 

compl ica ted  t o  d e f i n e  because t h e  geomagnetic a c t i v i t y  i t s e l f  

depends i n  a  complex manner .on t h e  s o l a r  primary e v e n t  

( a s i d e  from a c o n t r o l  by geomagnetic l a t i t u d e ,  c o n d i t i o n s  

o f  t h e  inonosphere ,  and o t h e r s ) .  



Rcfe renre  is a l s o  made t o  t h e  p u b l i c a t i o n  o f  A.B. p i t t o c k  

[I31 because  o f  i t s  v e r y  a c c u r a t e  su rvey  o f  l i t e r a t u r e .  
~. 

The g i v e n  c r i t i c a l  look  d e a l s  most ly  w i t h  long-term siln / 
weather  r e l a t i o n s h i p s  and t h e i r  a s p e c t s  r e g a r d i n g  t h e  

- g l o b a l  c l i m a t e ,  n e v e r t h e l e s s  t h e  sho'rt-term phenomena a r e  

d i s c u s s e d  and p o s i t i v e l y  a s s e s s e d .  

WiLhin t h e  scope. nf g e n e r a l  m e t e o r o l o g i c a l  c o n s i d e r a t i o n s  

t h e  l a t e s t  s t u d y  of  Larsen and Kel ly  . [ I 4 1  shou ld  be mentioned 
\ 

because  it d e a l s  a l s o  w i t h  t h e  s i g n i f i c a n c e  o f  weather  f o r e -  

c a s t s .  The a u t h o r s  s t a t e  t h e  fo l lowing :  "Approximately two 

days  fo l lowing  a . s o l a r  s e c t o r  boundary c r o s s i n g  t h e  accuracy  

o f  f o r e c a s t i n g  t h e  p o s i t i v e  v o r t i c i t y  assumes a  minimum". 

T h i s  r e s u l t  i s  i n  some way r e l a t e d  t o  o u r  f i n d i n g s  (see 3 .6 . )  

b u t  w e  found t h a t  t h e  p r e d i c t i v e  q u a l i t y  i n c r e a s e s  a f t e r  

boundary c r o s s i n g s  and d e t e r i o r a t e s  b e f o r e  t h e  s e c t o r  c ros -  

s i n g .  T h i s  does  n o t  n e c e s s a r i l y  mean a  c o n t r a d i c t i o n  because  

d i f f e r e n t  k inds  of  m e t e o r o l o g i c a l  f o r e c a s t s  have been .used 

i n  bo th  i n v e s t i g a t i o n s .  

The noted  good c o r r e l a t i o n  between t h e  i n i t i a l  d e c r e a s e  o f  

- ' t h e  g a l a c t i c  cosmic p ro ton  d e n s i t y  b e f o r e  a  f l a r e  and t h e  

subsequent  F o r b u s h , e f f e c t  on t h e  one  hand, and t h e  imrnediate- 

ly fo l lowing  v a r i a t i o n s  o f .  t h e  t o t a l  ozone and s t r a t o s p h e r i c  

i n t r u s i o n  f requency on t h e  o t h e r ,  must be r ega rded  a s  an 

e s s e n t i a l .  p a r t  o f  o u r  more r e c e n t  r e s u l t s .  W e ,  t h e r e f o r e ,  

r e f e r  a t  f i r s t  t o  a  series 'of p u b l i c a t i o n s  d e a l i n g  w i t h  t h e  

fundamental  c o r r e l a t i o n s  between t h e  sun and cosmic' r a d i a t i o n ,  

i n  p a r t i c u l a r  w i t h  t h e  Forbush d e c r e a s e  [ I 5  - 211. 

Neher and Anderson [I51 have shown r a t h e r  e a r l y  t h e  i n v e r s e  

c o r r e l a t i o n  o f  bo th  s o l a r  a c t i v i t y  (sunspot  number and geo- 

ma,gnetic a c t i v i t y )  and t h e  i o n  p roduc t ion  i n  t h e  s t r a t o s p h e r e  - 
though f o r  ve ry  h i g h  n o r t h e r n  geomagnetic l a t i t u d e .  T h i s  co r -  

responds  t o  t h e  c l a s s i c a l  p a t t e r n  of  t h e  long-term Forbush 

e f f e c t .  



The work o f  , [21]  d e a l s  w i t h  a c r i t i c a l  s t u d y  o f  shor t - t e rm 

phenomena i n  connec t ion  w i t h    or bush-decreases where t h e  

r e l a t i o n  t o  Ll~e i n d i v i d u a l  parent f l a r e s  between 1965 and 

1976 has  been analyzed.  

The r e c u r r i n g  sequence o f  d e c r e a s i n g  neu t ron  d e n s i t y ,  i n -  

c r e a s i n g  t o t a l  ozone,  and subsequent  t r i g g e r i n g  of s t r a t o -  

s p h e r i c  i n t r u s i o n s  (see 3 .5 . )  sugges t s  t o  examine whether  

a  p h y s i c a l  l i n k  may p o s s i b l y  be  inv loved  h e r e .  

I t  i s  a f a c t ,  t h a t  i o n i z a t i o n  and g e n e r a t i o n  o f  e x i t e d  n i -  

t r o g e n  i n  t h e  lower s t r a t o s p h e r e  are e x c l u s i v e l y  oaused by 

t h e  h igh  e n e r g e t f c  g a l a c t i c  c o s m i c . r a y s .  Only i n  v e r y  r a r e  

c a s e s  ( a f t e r  ex t remely  v igorous  f l a r e s )  a l s o  s o l a r  p r o t o n s  

r e a c h  t h e  lower s t r a t o s p h e r e  f o r  a  p e r i o d  o f  minutes  o r  

some hours .  These e x c e p t i o n a l  c a s e s  a r e  s o  i n f r e q u e n t  t h a t  

t h e y  can be d i s r e g a r d e d  i n  t h e  assessment  o f  o u r  s t a t i s t i -  

c a l l y  o b t a i n e d  r e s u l t s .  On t h e  o t h e r  hand,  t h e  d u r a t i o n  o f  

t h e  Forbush d e c r e a s e  i s  i n  t h e  o r d e r  o f  days .  

Because t h e  energy d e n s i t y  l o s s  o f  g a l a c t i c  cosmic r a y s  

i s  i n t e n s i f i e d  i n  t h e  lower s t r a t o s p h e r e ,  t h e  g e n e r a t i o n  

o f  i o n  p a i r s  and e x i t e d  n i t r o g e n  t a k e s  mainly p l a c e  t h e r e  

(see e .g .  [22 - 261 ) . The e x i t e d  n i t r o g e n  atoms r e a c t  w i t h  

t h e  oxygen molecules  t o  form NO and 0. Consequently,  w e  f i n d  

mainly i n  t h e  lower s t r a t o s p h e r e  a dependence of  t h e  NO- 

c o n c e n t r a t i o n  on t h e  i n t e n s i t y  o f  cosmic r a d i a t i o n  (mainly 

g a l a c t i c  cosmic r a y s ,  r a r e l y  s o l a r  p ro ton  e v e n t s )  and t h e r e -  

by on t h e  s o l a r  a c t i v i t y  i n  g e n e r a l .  Hence, an  i n v e r s e  cor-  . 

r e l a t i o n  e x i s t s  a l s o  between sunspo t  number and NO-concentra- 

t i o n  i n  t h e  s t r a t o s p h e r e  f o l l o w i n g  s o l a r  a c t i v i t y  w i t h  a 

p e r i o d  o f  11 y e a r s .  According t o  [271 t h e  e s t i m a t e d  g l o b a l ,  

y e a r l y  p roduc t ion  o f  NO v a r i e s  between about  I .2  x a t  

s o l a r  maximum and 1 . 8  x 1 033 molecules  a t  s o l a r  minimum. 

The ampl i tude  of  t h i s  v a r i a t i o n  i n c r e a s e s  however rer~larkably  

w i t h  growing geomagnetic magnitude s o  t h a t  t h e  v a r i a t i o n .  



i n  t h e  NO-concentration i n  t h e  s t r a t o s p h e r e  a t  l a t i t u d e s  

> 60° should  be e s s e n t i a l l y  more pronounced which i s  sug- 

g e s t e d  t h e r e  a l s o  d i r e c t l y  from t h e  s o l a r - r e l a t e d  i o n  pro-  

d u c t i o n .  ( Ion  p roduc t ion  and NO g e n e r a t i o n  a r e  d i r e c t l y  

p r o p o r t i o n a l  t o  each o t h e r  [261 1 . ~ i c k i n s o n  [24] p o i n t s  o u t  

t h a t  t h e  g r e a t e s t  r a t e  o f  i o n i z a t i o n  (and t h u s  o f  NO pro-  

d u c t i o n )  happens n e a r  t h e  t ropopause .  

Ruderman and Chamberlain [221 u s e  t h e  inentiul~ed 11 -ycnr 

p e r i o d  o f  s t r a f o s p h e r i c  NO-concentra t ion  f o r  de te rmin ing  

t h e  expected  p e r i o d i c i t y  and ampl i tude  o f  t h e  ozone concen- 

t r a t i o n  i n  t h e  s t r a t o s p h e r e .  These c o n s i d e r a t i o n s  are based 

on t h e  f a c t  t h a t   a art o f  t h e  o z o n e ' i s  d e s t r o y e d  by NO. The 

a u t h o r s  f i n d  t h u s  modula t ions  o f  t h e  s t r a t o s p h e r i c  ozone 

c o n c e n t r a t i o n  which a r e  c o n s i s t e n t  w i t h  a v a i l a b l e  measure- 

ments o f  t ime- lag ,  l a t i t u d e  dependence, and magnitude o f  

c y c l i c  v a r i a t i o n s  of  ozone. Whether t h e s e  o b s e r v a t i o n s  a r e  

q u a n t i t a t i v e l y  c o r r e c t  remains t o  be seen .  (See i n  t h i s  

r e g a r d  t h e  c r i t i c a l  d i s c u s s i o n  i n  [281 which r e f e r s  t o  an 

e f f e c t  o f  f l u c t u a t i n g  s o l a r  W f l u x  between 180 and 340 nm). 

Never the less  it appears  obvious  t o  assume a  d i r e c t  c o r r e l a -  

t i o n  between t h e  d e c r e a s e  o f  g a l a c t i c  cosmic r a y s  and t h e  

i n c r e a s e  o f  t h e  t o t a l  ozone. However, o n l y  one-dimensional  

models a p p l y i n g  t o  long-term v a r i a t i o n s  have been used s o  

f a r  i n  t h e  c a l c u l a t i o n  o f  chemical  r e a c t i o n s  and concen t ra -  

t i o n s .  Whether t h e r e  may be  a l s o  shor t - t e rm r e a c t i o n s  i n  t h e  

o r d e r  o f  days  remains undecided f o r  t h e  t i m e  be ing.  
" .  

Mention be made h e r e  o f  t h e  h i g h  ozone c o n c e n t r a t i o n  observed 

by us  l n  t h e  lowest  s t r a t o s p h e r e  a f t e r  s o l a r  f l a r e s .  The ques-  

t i o n  o f  whether  h e r e  t h e  s imul taneous  d e c r e a s e  of  t h e  g a l a c t i c  

cosmic r a y  d e n s i t y  may be assumed a s  c a u s a t i v e  f a c t o r  i n  terms 

of  a  p h y s i c a l  l i n k  o r  whether  a n o t h e r  mechanisnis  invo lved  

must l ikewise .  be l e f t  open f o r  t h e  p r e s e n t  t i m e .  W e  must a l s o  

ta-ke i n t o  accoun t  t h a t  t h e  h igh  ozone i n  t h e  lower s ' t r a t o -  

s p h e r e  has  been t r a n s p o r t e d  t o  o u r  measuring s t a t i o n  from 



l a r q e r  d i s t a n c e s ,  mainly,  from n o r t h e r n  l a t i t u d e s .  I n  f a c t ,  

t h e  Be7 c o l l e c t e d  d u r i n g  h igh  peaks a t  o u r  s L a t i o n s  o r i g i -  

n a t e s  a s  a  r u l e  from l a t i t u d e s  >GOO'. But j u s t  h e r e ,  i n  t h e  

a u r o r a l  b e l t ,  d i r e c t  e f f e c t s  o f  g a l a c t i c  cosmic r a y s  v i a  

chemical  r e a c t i o n s  a r e  most l i k e l y  t o  be  expected .  

D r a s t i c  v a r i a t i o n s  i n  t h e  ozone c o n c e n t r a t i o n  i n  t h e  Lower 

s t r a t o s p h e r e  would nex t  l e a d  t o  t empera tu re  changes ( v i a  

f l u c t u a t i o n s  of  t h e  s t r a t o s p h e r i c  t e m p e r a t u ~ e  p r o f i l e s  as 

a  f u n c t i o n  of  v a r i o u s  t r a c e  g a s e s )  [291 . 
Stani11.onis and Chamberlain [ 30 I s t a t e  : "The r e l a t i o n s h i p  

between s imple  t h e o r y  and o b s e r v a t i o n s  is. beSf a t  Lllc low- 

est p a r t s  o f  t h e . s t r a t o s p h e r e ,  s u g g e s t i n g  t h a t  t h e  most 

d i r e c t  c o n t r o l  o f  ozone on t empera tu re  e x i s t s  i n  t h e  f a i r l y  

i n e r t  r e g i o n  where ozone chemis t ry  i s  unimpor tant  and where 

t h e  h e a t i n g  is  due  mainly t o  t h e  a b s o r p t i o n  by ozone o f  

d i r e c t  s o l a r  u l t r a v i o l e t  and v i s u a l  and t e r r e s t r i a l  i n f r a -  

r e d  r a d i a t i o n ' " .  Hence, a  t empera tu re  change - i n  c a s e  o f  

i n c r e a s i n g  ozone c o n c e n t r a t i o n  above t h e  t ropopause  a  rise 

o f  t empera tu re  - might u l t i m a t e l y  i n i t i a t e  a  c y c l o g e n e s i s  

and may, t h e r e b y ,  trigger t h e  s t r a t o p s h e r i c  i n t r u s i o n s  and 

a l t e r  t h e  s t r u c t u r e  o f  t h e  t ropopause .  These a r e  f i r s t  a s -  

sumptions based o n  o u r  most r e c e n t  f i n d i n g s .  Whether o r  no t  

t h e y  a r e  q u a n t i t a t i v e l y  r e a l i s t i c  cannot  be decided w i t h  

c e r t a i n t y  a t  t h i s  moment and e v e n . q u a l i t a t i v e  c o n s i d e r a t i o n s  

remain unsolved f o r  t h e  p r e s e n t  t i m e .  

Notwi ths tanding r e f e r e n c e  i s  made t o  t h e  f o l l o w i n g  observa-  

t i o n  o f  l a t e  [31]:"As t h e  plasma (from t h e  s u n )  i s  swept 

p a s t  t h e  e a r t h  by i t s  outward f low and t h e  s o l a r  r o t a t i o n ,  

it impinges on t h e  geomagnetosphere and deforms t h e  magnetL 

i c  c a v i t y  e n c l o s i n g  t h e  e a r t h .  The main consequence o f  t h e  

i n t e r a c t i o n  between t h e  s o l a r  wind and t h e  magnetosphere i s  

t h e  c r e a t i o n . o f  magnetic  £ i e l d  condi t . ions  t h a t  pe rmi t  bo th  

e n t r y  and i n j e c t i o n  o f  h igh energy p a r t i c l e s  i n t o  t h e  auro-  

r a l  l a t i t u d e s  on t h e  e a r t h .  Such f l u x e s  of  p a r t i c l e s  a l t e r  



t h e  i o n i z a t i o n  and t empera tu re  s t r u c t u r e  o f  t h e  s t r a t o s p h e r e  

a t  h igh  l a t i t u d e  and may,, t h e r e b y ,  i n f l u e n c e  c i r c u l a t i o n  

th roughou t  o u r  atmosphere."  

. B a s s a r t  and Yarger [ 3 2 1  obse rved ,  by t h e  way, an  i n f l u e n c e  

o f  s o l a r  e v e n t s  on t h e  h e i g h t  of  t h e  t ropopause  b u t  t h e s e  

a u t h o r s  r e l y .  on d a t e s  o f  boundary c r o s s i n g s .  

F i n a l l y ,  s t i l l  one r e m a r l c :  I t  i s  no fandamenta l  proof t o  

t h e  c o n t r a r y  t h a t  i n  a  r e c e n t  i n v e s t i g a t i o n  I331 no c o r r e -  

l a t i o n  has  been 'found between t h e  a tmospher ic  ozone p r o f i l e  

and s o l a r  a c t i o n  induced by geomagnetic a c t i v i t y  because 

t h i s  s t u d y  i s  n o t  based on d a i l y  p r o f i l e s  o f  t h e  s t r a t o -  

s p h e r i c  ozone. B u t . i t  i s  j u s t ' t h a t  what o u r  i n v e s t i g a t i o n s  

have shown: D r a s t i c  f l u c t u a t i o n s  o f  t h e  ozone i n  t h e  s t r a -  

t o s p h e r e  o c c u r  o f t e n  Erom day t o  day and sometimes even i n  

s t i l l  s h o r t e r  i n t e r v a l s  of  t i m e .  For s i g n i f i c a n t  r e s u l t s ,  

d a i l y  ozone sonde f l i g h t s  a r e  t h e r e f o r e  a  minimum demand. 

Summing.up, it must be  s a i d  t h a t  t h e  noted  sequence: 
', 

Forbush e f f e c t  + temporary i n c r e a s e  o f  t h e  t o t a l  ozone + 

s p o r a d i c  peaks  o f  ozone c o n c e n t r a t i o n  i n  t h e  lowermost 

s t r a t o s p h e r e  + and t r i g g e r i n g  o f  s t r a t o s p h e r i c  i n t r u s i o n s  

i s  p o s s i b l y  due  t o .  a  p h y s i c a l  l i n k .  However, more in-depth  

s t u d i e s  a r e  r e q u i r e d  o v e r  an  extended p e r i o d  o f  t i m e  t o  

conf i rm t h i s  conc lus ion .  
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V I I  . CONCLUSION 

The works performed under c o n t r a c t  on improved t e c h n i c a l  

bases  l ed  i n  t h e  r epo r t i ng  per iod t o  t h e  fol lowing r e s u l t s :  

Through l i d a r  observa t ions  an ae roso l  l a y e r  can be de t ec t ed  

i n  t h e  lower s t r a t o s p h e r e  between 1 5  and 25 km a l t i t u d e .  

The backsca t t e r  maximum i s  observed a t  an a l t i t u d e  of 1 7  

t o  2 2  km. The p re sen t ly  observed and rather low backsca t t e r  

i n t e n s i t y  i s  comparable t o  t h a t  noted before  t h e  e rup t ion  

of volcano Fuego. 

Based on 8-year record ings  of t h e  concent ra t ion  of s t r a t o -  

s p h e r i c  r ad ionuc l ides ,  ozone a t  3 km a l t i t u d e ,  and the. 

t o t a l  ozone, t h e  i n f luence  of s o l a r  events  on i n t r u s i o n s  

of s t r a t o p s h e r i c  a i r  i n t o  t h e  t roposphere  has been s tud i ed .  

Observed was a  marked inc rease  i n  t h e  frequency of s t r a -  

t o p s h e r i c  i n t r u s i o n s  a c t e r  H - f l a r e s  and dur ing Forbush a 
e f f e c t s .  A s i g n i f i c a n t ,  even though weak, i n f luence  of pas- 

sages  o f '  t h e  i n t e r p l a n e t a r y  magnetic f i e l d  s e c t o r  boundaries 

could l ikewise  be e s t ab l i shed .  

The causa l  r e l a t i o n s h i p s  cont inue,  however, t o  be unexplained. 

Considerat ion of a l l  mechanisms t h a t  may come i n t o  ques t ion  

i s  needed t o  c l a r i f y  t h i s .  Work hereon i s  i n  progress .  

V I I I  . FUTURE PLANS 

1 .  Continuation of ae roso l  sampling on t h e  Zugspitze;  

determinat ion of t h e  concent ra t ion  of cosmogenic radio-  

nuc l ides  f o r  d e t e c t i o n  of s t r a t o s p h e r i c  i n t r u s i o n s  i n t o .  

t h e  bi,osphere. 

2 .  Ca lcu la t ion  of i s e n t r o p i c  t r a j e c t o r i e s  f o r  long-term 

per iods  descr ibed  i n  t h e  p r e s e n t . r e p o r t ;  c l a s s i f i c a t i o n  

of t ropospher ic  flow condi t ions  r e l a t i v e  t o  a  cl imatology 

of s t r a t o s p h e r i c  in t rus: ions .  



3 .  On t h e  b a s i s  o f  a  more e x t e n s i v e  d a t a  m a t e r i a l  es t ima-  

t i o n  o f  t h e  mean s t r a t o s p h e r i c  r e s i d e n c e  t i m e s  by means 

o f  t h e  a c t i v i t y  r a t i o  P32/Be7; re-checking of  t h e  e a r l i e r  

found s e a s o n a l  d i f f e r e n c e s .  

4 .  Remote s e n s i n g . o f  s t r a t o s p h e r i c  a e r o s o l  l a y e r s  up t o  35 

krn a l t i t u d e  by means of l i d a r  w i t h  s imul taneous  measure- 

ment nf t h e  serological v a r i a b l e s  th rough  rad iosande  

ascen t s  o f  o u r  own. 

5.  A p p l i c a t i o n  o f  t h e  knowledge achieved a s  t o  t h e  q u e s t i o n  

o f  whether  s t r a t o s p h e r i c  i n t r u s i o n s  i n f l u e n c e  t h e  t r o -  

p o s p h e r i c  ozone ba lance :  

a )  Measurement o f  t h e  ozone a t  3 d i f f e r e n t  l e v e l s  i n  t h e  

lower t r o p o s p h e r e ,  

b )  d e t e r m i n a t i o n  o f  t h e  ozone ba lance  w i t h  c o n s i d e r a t i o n  

o f  p o l l u t a n t s  (e. g .  NOp, r e a c t i v e  hydrocarbons ) , 

c )  e f f e c t s  o f  s t r a t o s p h e r i c  i n t r u s i o n s  on t h e  t r o p o s p h e r i c  
I 

ozone. 

6 .  F u r t h e r  s t u d i e s  of  s o l a r  i n £  l u e n c e s  on s t r a t o s p h e r i c  

i n t r u s i o n s  .and on t h e  s t r u c t u r e  o f  t h e  s t r a t o s p h e r i c  

ozone p r o f i l e .  . 



ABSTRACT 

The s t u d i e s  o t  t h e  st~dlospheric-tropospheric exchange have 

been continued. 

Continous d a t a  of t h e  concent ra t ion  of cosmogenic radio-  

nuc l ides  Be7, P32, P33 a s  well. a s  of f a l l o u t  and d a i l y  means 

of ozone concgnt ra t ions ,  measured a t  3000 m ASL a r e  pre- 

sen ted  f o r  t h e  r epo r t i ng  per iod.  

I n s t a l l a t i o n  of  two a d d i t i o n a l  ozone measuring s t a t i o n s  a t  

1800 and 740 m ASL provided t h e  means f o r  g e t t i n g  i n s i g h t  

i n t o  t h e  balance of t h e  t ropospher ic  ozone. 

F i r s t  r e s u l t s  of r o u t i n e  monitoring of t h e  s t r a t o s p h e r i c  

ae roso l  wi th  a  high r e s o l u t i o n  l i d a r  a r e  shown. 

Accuracy of t h e  method i s  d i scussed .  

Control  of t h e  s'tratospheric-tropospheric exchange by 

s o l a r  a c t i v i t y  i s  examined wi th  t h e  a id .  of t h e  key day 

method us ing  an 8-year measuring sequence. Relevant l i t e r -  

a t u r e  a v a i l a b l e  on t h e  sub j ec t  i s  reviewed. 
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A N N E X  

Results o f  D lu rna l  Measurements 

T A B L E S '  I - X V  

' ~ i u r n a l '  c o n c e n t r a t i o n s  of  Be7, P32, P33,  

and some f a l l o u t  e lements  (heavy m e t a l s )  

i n  t h e  a i r  a t  2964  m a .s .1 .  

(Zugspi tze  peak) 



Radioactivity pc/m 3 

Aug fallout. Be7 P32 P33 O3 



Radioactivity pc/m 3 

Sep fallout Be7 P32. P33 O3 

1976 . . 10-3 . 10-3 P P ~  



Radioactivity pc/m3 

Oc t f a l l ou t  Be7 P32 P55 O3 

1976 . .I o - ~  . I o - ~  ,. 1 o - ~  P P ~  



Radioactivity pc/m 3 

. Nov fallout Be7. P32 



Radioactivity pc/m 3 

~ e c  fallout Be7 P32 P33 O3 

1976 .I  o - ~  . 1 o - ~  . 10'~ PPb 



Radioactivity pc/m3 

Jan fallout Be7 P32 F33 03 

1977 . I o - ~  ppb 



Radioact ivi ty  pc/m 3 

Feb f a l l o u l  De7 P32 P33 O 3  



VIII . 

Radioactivity pc/m 3 

Ma~xll fa l lout  Be7 P32 P33 
O 3  



Radioactivity pc/m 3 

A P ~  fallout Be7 . P52. P33 O 3 

1977 . .I o - ~  . lo-3 . 1 o - ~  P P ~  



Radioactivity pc/m 3 

Ma Y fallout Be7 P32 P33 O3 

1977 .I o - ~  . lo-3 . 1 o - ~  P P ~  



XI, 

3 Radioactivity pc/m 

Jl-rn e failout Be7 P32 ' .P33 O 3  

1977 . I  o'~ . . I o - ~  . I o - ~  P P ~  



Radioactivity pc/m 3 

J u l  y f alioilt  Be7 P32 P33 O3 

1977 .I o - ~  . lo-3 . l o - 3  P P ~  



Radioactivity pc/m 3 

Aug fallout Be7 P32 P33 ('3 

1977 - . . I  o - ~  . I o - ~  . lo-3 P P ~  

1 0.57 0.20 * / . .  * / .  . 47.79. 
2 1 . I 2  6.75 ' /  * / -  48.36 
3 2.09 12.41 . / *  , * /  49.60 

4 1 .59 11.36 * /  * /  50.58 
5 1.80 7.88 * /  * /  68.25 

6 2.67 10.60 ./ * /  64.23 
7 2.72 ' 10.89 * / .  .' / 52.02 

8 2.05 11.09 .: ' / .  * /  49.59 
4.09 ' 9 0.85 *./ . * /  51.30 

I0 0.96 5.33 * /  * / * ~  55-45 

11 4.68 10.52 * / *  . * / .  49.26 

12 4.35 12.78 * / *  * /  51.51 

13  2.03 5.43 * / .  . . 54.08 

14 1.76 6.70 * /  ./ 52.60 

15 6.13 6.53 ' /  .. ' /  52.06 

16' 2.74 5.03 * /  ' /  46.58 

17 3.58 5.36 * /  . * / .  41 .46 

-18 1.11 .3 -09 ' /  * /  44.51 

' 1  1.51 ' I ?  - / *  ' /. !10.15 

20 ' /  5.01 . .  * /  * / t  
40.18 



XIV 

Radioactivity pc/m 3 

SeP fallout . Be7 P32 P55 O3 
\ 

1977 . .I o - ~  . lo-3 . I o - ~  P P ~  



Radioac t iv i ty  pc/m 3 




