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ABSTRACT

Transport is studied in toroidal geometry by integrating the guiding-center equations in
magnetic coordinates and simulating collisions with a Monte Carlo collision operator. The
effects of the ambipolar electric field on diffusion losses are determined for model
magnetic fields and the correct magnetic field of the Advanced Toroidal Facility (ATF-1)
stellarator. Comparisons are made of the computed diffusion coefficients and the
theoretically predicted values.



1. INTRODUCTION

In a number of recent papers,'” Monte Carlo methods have becn used to investigate
transport propertics in nonaxisymmetric tori. Because of the complex geometry, previous
authors have generally uscd simple magnetic field models. The purpose of the present
work is to investigate the effects of radial electric fields on diffusion losses in stellarators
using realistic magnetic ficlds., For the vacuum cases, these fields are determined from the
Biot-Savart law using multifilament models for the coil sets. Alternatively, the output
from a three-dimensional (3-D) cquilibrium code is employed.

The Montic Carlo procedurcs in this paper closely parallel those developed by Boozer
and Kuo-Petravic' and by Wobig.} In gencral, particles are started at random locations
and pitch angles on a given flux surface. The guiding-center motions are computed in
magnetic coordinates, and uat each integration step, the particles are scattered in pitch
angle and energy using the appropriate Monte Carlo operators. Relevant information is
recorded for later calculations of properties of interest, such as loss rates and diffusion
coefficients. In the work reported here only thermal ion collisions are considered; however,
the methods are applicable to electrons.

In Sect. 2, the guiding-center equations in magnetic coordinates, valid at finite beta,
are given. The procedures for computing the magnetic fields are described in Sect. 3. The
methods for computing diffusion coefficients and the technique for determining paiticle
flux to the wall are given in Sects. 4 and 5, respectively. In Sect. 6 the results of a
benchmark tokamak case arc given. Finally, in Sect. 7 the Monte Carlo resu'. for an
idea'ized stellarator case are compared with analytic theory. Also given are the results for
thc vacuum field and finite-beta cases valid for the Advanced Toroidal Facility (ATF-1)
stellarator,

2. DRIFT EQUATIONS IN MAGNETIC COORDINATES AT FINITE BETA

Following orbits in magnetic coordinates reveals the true nature of the orbit since the
slow motion across the field lines is separated from the fast motion along the field lines.
This system 15 natural for representing quantities such as density, temperature, and electric
potential that are normally functions of the toroidal flux. It also has the computational
advantage of requiring only information about the magnitude of B, not the vector
components, while tracing orbits.

The drift orbit equations in magnetic coordinates most often used are only valid for
curl-free magnetic fields. The orbit equations given below are derived in magnetic
coordinates using Boozer’s* Hamiltonian formulation and are valid for both vacuum and
finite-beta fields. These equations in ¥, ., 0, and ¢ coordinates are
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where 2ry is the toroidal flux, p. = mv|/eB, and 6 and ¢ are the periodic poloidal and
toroidal angles, respectively. The toroidal current within a flux surface is
I¥)/(2 X 10-7) A, and the poloidal current outside a flux surface is g(¥)/(2 X 10-7)
A. The functions /(y), g(¥), and the rotational transform +(y) are computed on a ¥ mesh
by evaluating the appropriate line integrals of the magnetic field B. The electrostatic
potential in this work is taken to be of the form

o = (1l — YN,) , (5)

where ¢, specifies the plasma edge.
The functions v and & are defined by

Yy = elg(ﬁcl' + 1) = I(p.g' — c)] , (6)
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The canonical momenta are given by
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The derivatives of ¥ and p, with respect to the momenta are
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The pitch angle and energy scattering operators, which may be applied after each time
step, are similar to those given in r '

. 1, but with modifications to allow for collisions
between unlike particles.

A number of integration techniques have been tested for these equations with energy
conservation serving as an accuracy check. The most suitable integrator for collisionless
orbits is STEP,’ based on the Adams method. However, in the cases with collisions, an
integrator based on the Burlirsch and Stoer® extrapolation method was chosen because of
less overhead in restarting the integrations.

3. CALCULATION OF B IN MAGNETIC COORDINATES

In this magnetic coordinate system, B is represented Uy

B = F A, (Y)cos(ng — mb)

nm

To determine A, on a given flux surface, the values of B and x, where
x = gy + Iy = [B - d2 ,

are obtained along a field line, and fast Fourjer transforms are applied as described in
ref. 7. During this process the functions g(y¥), I(y¥), and () ure also obtained.

The magnetic field B(x) is determined in two ways for studies of transport in the
ATF-1 stellarator. For the vacuum case, the helical coil set is modeled with straight
" filamentary segments as a basis of the Biot-Savart law. Four to eight filamentary

windings represent cach of the two helical coils. As many as 216 segments around the
torus are used for each filamentary winding. The circular vertical field coils are modeled
by circular filaments. For the finite-beta case, the equilibrium from a 3-D
Chodura-Schluter code® is used. The equilibrium code employs similar vacuum fields. In
order to vectorize the calculation of B for the CRAY computer, least-squares fits of the
functions of ¢ are done with third- or fourth-degree polynomials.



4. METHODS FOR COMPUTING D

The determination of local plasma diffusion coefficients for realistic situations is
inherently difficult. At the microscopic level, diffusion is due to random motion caused by
collisions. The time for following this motion should be long compared to the orbit time,
preferably a number of 90° collision times. However, for a finite-size system this time
should not be so long that the diffusion distance is comparable to the dimensions of the
system. The difficulty arises when many orbits have large deviations from their birth flux
surfaces, that is, when the orbits are nonlocal. To ensure that the calculation of the
diffusion coefficient D is correct, a number of approaches and precautions have been taken.

First, to have a “quiet” start, the collisionless motion of groups of particles is followed
for several orbit times. Initially, the particles are on the same flux surface Yy but have a
uniform random distribution in 8, ¢, and pitch angle. Normally, ¥ = 0.25¢,, and the
energy distribution is generally chosen from a Maxwellian distribution. Particles that are
lost during this initial phase are rejected and replaced. Once a satisfactory group of N
particles (usually N = 64) is obtained, collisions are introduced. The starting positions of
these particles are the coordinates at the termination of the collisionless motion. The
group of particles is followed for several 90° scattering times but ideally for a period much
less than the confinement time. If a particle is lost (¢ becomes greater than ), it is
replaced by a new particle at Yo with the other coordinates as described above. This
maintains a constant number of particles in the system and is useful for computing loss
rates that are discussed later. After a statistically sufficient number of groups of particles
are followed, D is computed from the recorded information as described below.

4.1. METHOD 1: DISPERSION

Starting with the diffusion equation for the particle distribution, it is easily shown that

D = (¥ — (y)* _ dispersion (14)
2 2 ’

where the brackets imply ensemble averages at time ¢r. The form of the dispersion when D
has a valid definition is 2Dt + C, a straight line with D as the slope. This method is
similar to the one used in molecular dynamics studies of classical fluids where D is found
from the slope of the mean square displacement. '

In the actual calculatior, ¢ is replaced by ¥/¥, and D is converted to spatial units by

D(cm?/s) = 7‘% a’D(y,) , - (15)

where a is the minor radius of the system in centimeters.
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42 METHOD 2: ENSEMBLE AVERAGE WITH A — o©

For a given At = , — {;., = constaut and for each particle k, let Dy be
defined as

Dy = -2-15 [w(z,) - ;[/(:,.,)]2 . (16)

Therefore, for N particles and J constant time intervals, let

1 X1 g (17)
D(Ar) N k@,J j§| Djk .

This is the method described in ref. 1 with Ar corresponding to one 90° scattering time.
Thus, the above sums are over all particles k and over all ¢, but with fixed At. Strictly
speaking,

o e Q0 + AN — WP (18)
b Alll-'"noo 24t '

Therciore, D at v, is obtained by plotting D(At) versus Ar~' and extrapolating to
At — co. As a check of the accuracy of this procedure,! for each D(Ar) a plot is
made of the actual D,/D distribution versus the expected chi-square distribution:

2xp,|”'?

D

—D!] ’ (19)

exp

The D;/D distribution is divided into intervals that should each have 5% of the distribution
according to P(D;). The deviation from the expected value is an indication of the error in
the Monte Carlo simulation.

Figure 1 gives a comparison of the above method: for a stellarator with a model field

B = Bl — ) Voos 0 — (94, Vsin(s — mo)] . (20)

For this case 256 ions with initial kinetic energy of 1 keV were followed for 3 ms (about 5
collision times). The plasma temperature and density were constants of 3 X 10" c¢m
and 1 keV, respectively. The field parameters were Bg = 5 T, ¢, = 0.10, 3§, = 0.30,
$ = 4kV, 8 = |, and m = 12. The chi-square plot is the distribution of D,
computed with the largest At for this case. The maximum and minimum numbers of D, in
any interval are, respectively, approximately 20 and 6, compared with the expected value
of 12.8. From the standard deviation -, the relative error (a/Dj vyN ) of 14% for the
mean D; was obtained for this distribution.
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Fig. 1. The diffusion coefficient computed by two methods: (a) dispersion curve and

(b) D(Af). The chi-square distribution for the largest At is given in (c).

4.3. METHOD 3: PITCH ANGLE SCATTERING ONLY

A third approach is to have only pitch angle scattering. In this method the particles
are all started with the same energy. The statistics for these cases are better than those
with energy scattering; however, a number of runs at different energies must be done in
order to average over a Maxwellian distribution.

The agreement of these methods is good for cases when the diffusion process is a
dominant feature of the system, that is, when there is not a large prompt loss of particles
resulting from nonrandom motion. When there is a large, rapid, and direct particle loss,
local diffusion (as defined above) no longer has meaning.



S. LOSS RATE CALCULATIONS

For those situations when local diffusion is not a dominant feature of the system, the
Monte Carlo procedures are still useful for computing particle and energy fluxes to the
outer flux surface. The cumulative rate of energy loss at time ¢ is defined as

PL(1) = S puAr . (1)
J

N(Eq)t

where p; At is the energy lost during the time interval, At = ¢, — t,_;, and N(Ep) is the
mean initial energy of the /V particles of the system. The cumulative particle loss rate is
defined similarly. Lost particles are replaced as described above. The flux of particles to
¥, and the distribution function flt,y,n), with n = v;/v, are monitored until steady state
is reached. The energy confinement time is found from

, =3 40 | (22)
£ 2 (E i)

where (T) is the volume-averaged temperature and (E./1;) is the average power loss. A
loss rate calculation is illustrated in Fig. 2 for the ATF-1 vacuum field with no electric
potential. Figure 2(c) is the

l 2 NEVAE NzE'ﬂAE

where 3 At/Nt is the fraction of time the N particles spent in the energy bin
E = AE/2 with AE = 0.25 keV. The dashed line,

o2
vx (kT2

is obtained from the expected Maxwellian distribution. In this case, the temperature and
density were constant with values of 1 keV and 3 X 10" cm™3, respectively. The
magnetic field at the center was 2 T.
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Fig. 2. Tons are started randomly on the flux surface ¢/y, = 0.25. Shown at
various times are (a) the distribution function f{¢,¢), (b) the particle flux to the wall, and
(c) the final energy distribution of the particles where the dashed line is obtained from the
expected Maxwellian distribution.

6. TOKAMAK BENCHMARK CASE

The numerical calculation of diffusion coefficients has been benchmarked with the
neoclassical theory of Hinton, Rosenbluth, and Hazeltine®!® for a tokamak case. The
analytic expressions used for comparison are given by

o 1 @

= G2
D ey Bp




; o4 { + 0.518¢%
e L+ 201517 + 153, |+ 0.89¢%,

v = -,

* €wp

12
- s % [T (V)
w) 9,78 X 10 R, (cm) T, (eV) ,

B
f-"‘_-Lv
q B,
Y44 11y (e
B, e NN z
= L
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The collision frequency v is taken to be

Z“ﬂ‘ In A“

T2 \24,

v, = 6.77 X 1078

and

In A" = 23 — |In

z?
-Fl'ﬁ \/ZH‘Z‘!

For this case, the magnetic field was modeled by

B = B[l —eWp)cos o] ,

where ¢, is the inverse edge aspect ratio,

. (24)

(25)

. (26)

/'(27)

(28)

(29)

(30)

31

(32)
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The particles were started about Y/, = r¥/a® = 0,25 with a Maxwellian energy
distribution. The collisions included both pitch angle and energy scattering. Table 1 gives
the parameters used. The density n; was varied to produce values of 0.1 € », € 100. The
numerical diffusion coefficients were obtained from the slopes of the dispersion curves.
The numerical resuits and analytic formula agree as shown in Fig. 3.

In addition to this benchmark case, the code has been successfully benchmarked
against the Garching Monte Carlo codes.?

Tabic 1. Parameters used for tokamsak

benchmark case
Paramator Value
A 1
Z, t
¢ 0.05
R, (cm) 200
a(cm) 20
By(T) 2
< 0.50
T, T, (keV) |

ORNL-OWG 04C-2686.FED
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Fig. 3. The diffusion coefficient for a tokamak. The circles are the Monte Carlo
results, and the curve is obtained from the analytic formula.




The particle fluxes in stellarators are not intrinsically ambipolar, and a radial electric

The effects of such electric fields have been
studied for a model magnetic field and the correct magnetic fields of ATF-1, for both the

field develops to ensure quasi-neutrality.

7. RADIAL ELECTRIC FIELD EFFECTS

vacuum and finite-beta cases.

First, collisionless orbit confinement is studied by following groups of 100
monoenergetic particles that are started 1t random locations and pitch angles throughout
the plasma. The orbits are followed for typically 5-10 toroidal transits or until they pass
through the outermost flux surface. The collisionless orbit confinement is drastically
improved with radial potentials on the order of the particle’s energy, basically independent
of the sign of the potential.

20
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This is illustrated in Fig. 4.
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Loss of 1-keV protons vs radial potential for vacuum and finite-beta fields.
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percentage lost versus the potential given by Eq. (5). Curves are shown for three ATF-1
cases; vacuum, (8) = 1.5%, and (8) = 2.5%. Initially, the shift of the flux surfaces
increases the particle losses by about a factor of 2 because of the increase in the variation
of f df%/B and the resultant increase in the radial drift of the helically trapped particles.

However, further increases in 8 improve particle confinement probably because of the
increasing diamagnetic well. The effect of 8 on orbit topology is illustrated in Fig, S for a
helically trapped particle,

The reason that the electric field is so effective at closing the loss regions is that the
radial drift velocities of the helically trapped ions are slow compared to the E X B
velocity, even for relatively small potentials. This is illustrated in Fig. 6, which shows a

ORNL-DWG 82-3449 FED
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Fig. 5. Effect of beta on orbit topology for a 1-keV, helically trapped proton.
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Effect of radial potential on a 1-keV, helically trapped proton.

Fig. 6.
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helically trapped 1-keV ion in a (8) = 2.5% equilibrium for various potentials. A
positive radial potential yields an E X B velocity in the negative 8 direction.

Shaing'! has derived the particle and heat fluxes in the presence of an electric field in
the » and 1/v regimes and has joined these regimes together at the resonant transition
where E X B and B X VB cancel. An analytic diffusion coefficient is obtained from
the resulting expression for the particle flux due to helical trapping, valid for ¢ >> e¢r.
Figure ‘7 shows the data points for the Monte Carlo calculations of D in a model = 1
stellarator. The parameters are the same as those given for Fig. 1. For small values of
the potential, the Monte Carlo results agree closely with the predictions of theory.
However, when the potential is increased in magnitude, the value of D rapidly decreases to
a residual level, which is roughly the axisymmetric neoclassical values with v, replaced by
vy and m, replaced by m; This asymptotic level is caused by nonconservation of
momentum by the Monte Carlo test particles and the resulting flux generated by like-
particle collisions. Similar results are obtained when test particles are followed in the
correct ATF-1 vacuum field which has a richer harmonic content. These results are given
in Fig. 8. The parameters are the same as those given for Fig. 2.

The diffusion coefficients for a finite beta case ((8) = 2%) are also given in Fig, 8.
The magnetnc surfaces as calculated from the field obtained by the Chodura-Schluter
code® are given in Fig. 9 along with the vacuum magnetic surfaces. Even though there is
a shift in the magnetlc axis at finite beta, the transport has not been significantly affected.

Figure 10 is the result of a sensitivity study of the number of particles necessary to
obtain adequate statistics for the vacuum ATF-1 case. These curves indicate that
reasonably accurate diffusion coefficients can be obtained with 256 particles, with the
largest errors occurring for the smaller values of the potential.
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Fig. 7. The diffusion coefficient vs radial potential for a model 2 = 1 stellarator
with the Monte Carlo results (squares) and the theoretical prediction (solid curve).
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Fig. 10. Numerical sensitivity of the calculation of D on the number of particles.

8. SUMMARY

A Monte Carlo code for computing transport in realistic magnetic fields has been
described. The computed diffusion coefficients for a tokamak case compare well with the
appropriate analytic theory. The Monte Carlo results for stellarator fields also compare
favorably with the theoretical predictions in regimes for which the theory is valid, that is,
when diffusion is dominated by helically trapped particles. However, for large electric
fields, the asymptotic numerical results are due to nonconservation of momentum of the
Monte Carlo test particles. The code is also useful for computing particle and energy loss
rates.
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