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ABSTRACT 

Transport is studied in toroidal geometry by integrating the guiding-center equations in 
magnetic coordinates and simulating collisions with a Monte Carlo collision operator. The 
effects of the ambipolar electric Held on diffusion losses are determined for model 
magnetic fields and the correct magnetic field of the Advanced Toroidal Facility (ATF-1) 
stellarator. Comparisons are made of the computed diffusion coefficients and the 
theoretically predicted values. 

vii 



1. INTRODUCTION 

In a number of recent papers,1'3 Monte Carlo methods have been used to investigate 
transport properties in nonaxisymmetric tori. Because of the complex geometry, previous 
authors have generally used simple magnetic field models. The purpose of the present 
work is to investigate the effects of radial electric fields on diffusion losses in stellarntors 
using realistic magnetic fields. For the vacuum cases, these fields are determined from the 
Biot-Savart law using multifilament models for the coil sets. Alternatively, the output 
from a three-dimensional (3-D) equilibrium code is employed. 

The Monte Carlo procedures in this paper closely parallel those developed by Boozer 
and Kuo-Petravic' and by Wobig.3 In general, particles are started at random locations 
and pitch angles on a given flux surface. The guiding-center motions are computed in 
magnetic coordinates, and at each integration step, the particles are scattered in pitch 
angle and energy using the appropriate Monte Carlo operators. Relevant information is 
recorded for later calculations of properties of interest, such as loss rates and diffusion 
coefficients. In the work reported here only thermal ion collisions are considered; however, 
the methods are applicable to electrons. 

In Sect. 2, the guiding-center equations in magnetic coordinates, valid at finite beta, 
are given. The procedures for computing the magnetic fields are described in Sect. 3. The 
methods for computing diffusion coefficients and the technique for determining paiticle 
flux to the wall are given in Sects. 4 and S, respectively. In Sect. 6 the results of a 
benchmark tokamak case arc given. Finally, in Sect. 7 the Monte Carlo resu^a for an 
idealized stellarator case are compared with analytic theory. Also given are the results for 
the vacuum field and finite-beta cases valid for the Advanced Toroidal Facility (ATF-1) 
stellarator. 

2. DRIFT EQUATIONS IN MAGNETIC COORDINATES AT FINITE BETA 

Following orbits in magnetic coordinates reveals the true nature of the orbit since the 
slow motion across the field lines is separated from the fast motion along the field lines. 
This system >i natural for representing quantities such as density, temperature, and electric 
potential that are normally functions of the toroidal flux. It also has the computational 
advantage of requiring only information about the magnitude of B, not the vector 
components, while tracing orbits. 

The drift orbit equations in magnetic coordinates most often used are only valid for 
curl-free magnetic fields. The orbit equations given below are derived in magnetic 
coordinates using Boozer's4 Hamiltonian formulation and are valid for both vacuum and 
finite-beta fields. These equations in Or, 0, and 0 coordinates are 

; A g - V (1) 

Pc y 

(2) 

1 



(4) 

where 2ir\j/ is the toroidal flux, pe — mvy/eB, and 6 and <f> are the periodic poloidal and 
toroidal angles, respectively. The toroidal current within a flux surface is 
/ (^) / (2 X 10'7) A, and the poloidal current outside a flux surface is 2 X 10"7) 
A. The functions I(^), g(\f>), and the rotational transform are computed on a ^ mesh 
by evaluating the appropriate line integrals of the magnetic field B. The electrostatic 
potential in this work is taken to be of the form 

* - * 0o - m e ) , (5) 

where ^specifies the plasma edge. 
The functions y and b are defined by 

(6) 

(7) 

The canonical momenta are given by 

(8) 

(9) 

The derivatives of rf> and pc with respect to the momenta are 

3?L - £-
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The pitch angle and energy scattering operators, which may be applied after each time 
step, are similar to those given in r 1, but with modifications to allow for collisions 
between unlike particles. 

A number of integration techniques have been tested for these equations with energy 
conservation serving as an accuracy check. The most suitable integrator for collisionless 
orbits is STEP,3 based on the Adams method. However, in the cases with collisions, an 
integrator based on the Burlirsch and Stoer6 extrapolation method was chosen because of 
less overhead in restarting the integrations. 

To determine Anm on a given flux surface, the values of B and x, where 

X - gW<t> + HW - J B • di , 

are obtained along a field line, and fast Fourier transforms are applied as described in 
ref. 7. During this process the functions g(yp), I(\j/), and -t(i£) are also obtained. 

The magnetic field B(x) is determined in two ways for studies of transport in the 
ATF-1 stellarator. For the vacuum case, the helical coil set is modeled with straight 
filamentary segments as a basis of the Biot-Savart law. Four to eight filamentary 
windings represent each of the two helical coils. As many as 216 segments around the 
torus are used for each filamentary winding. The circular vertical field coils are modeled 
by circular filaments. For the finite-beta case, the equilibrium from a 3-D 
Chodura-Schliiter code8 is used. The equilibrium code employs similar vacuum fields. In 
order to vectorize the calculation of B for the CRAY computer, least-squares fits of the 
functions of ^ are done with third- or fourth-degree polynomials. 

3. CALCULATION OF B IN MAGNETIC COORDINATES 

In this magnetic coordinate system, B is represented Uy 

B - 2AnmW)cos(n<t> ~ mO) • 
n,m 
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4. METHODS FOR COMPUTING D 

The determination of local plasma diffusion coefficients for realistic situations is 
inherently difficult. At the microscopic level, diffusion is due to random motion caused by 
collisions. The time for following this motion should be long compared to the orbit time, 
preferably a number of 90° collision times. However, for a finite-size system this time 
should not be so long that the diffusion distance is comparable to the dimensions of the 
system. The difficulty arises when many orbits have large deviations from their birth flux 
surfaces, that is, when the orbits are nonlocal. To ensure that the calculation of the 
diffusion coefficient D is correct, a number of approaches and precautions have been taken. 

First, to have a "quiet" start, the collisionless motion of groups of particles is followed 
for several orbit times. Initially, the particles are on the same flux surface V'o but have a 
uniform random distribution in 0, and pitch angle. Normally, ^o ™ 0.25^,, and the 
energy distribution is generally chosen from a Maxwellian distribution. Particles that are 
lost during this initial phase are rejected and replaced. Once a satisfactory group of N 
particles (usually N ™ 64) is obtained, collisions are introduced. The starting positions of 
these particles are the coordinates at the termination of the collisionless motion. The 
group of particles is followed for several 90° scattering times but ideally for a period much 
less than the confinement time. If a particle is lost becomes greater than fo), it is 
replaced by a new particle at fo with the other coordinates as described above. This 
maintains a constant number of particles in the system and is useful for computing loss 
rates that are discussed later. After a statistically sufficient number of groups of particles 
are followed, D is computed from the recorded information as described below. 

4.1. METHOD 1: DISPERSION 

Starting with the diffusion equation for the particle distribution, it is easily shown that 

M2) ~ (M 2 dispersion (14) 
° " It - 21 

where the brackets imply ensemble averages at time t. The form of the dispersion when D 
has a valid definition is 2Dt + C, a straight line with D as the slope. This method is 
similar to the one used in molecular dynamics studies of classical fluids where D is found 
from the slope of the mean square displacement. 

In the actual calculation, is replaced by and D is converted to spatial units by 

D{cm2/s) - 4r fl2Wo) , 0 5 ) 

where a is the minor radius of the system in centimeters. 
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4.2 METHOD 2: ENSEMBLE AVERAGE WITH A/ - oo 

For a given A* ™ tj — •• constat and for each particle let Dbe 
defined as 

Djk -
1 

2Af 
(16) 

Therefore, for N particles and J constant time intervals, let 

1 
Z>(AO -

N I J 

N 2 7 s • /v k—i 
(17) 

This is the method described in ref. 1 with At corresponding to one 90° scattering time. 
Thus, the above sums are over all particles k and over all tj, but with fixed A/. Strictly 
speaking, 

D - lim 
Af-»oo 

M r + At) -
24/ 

(18) 

Therefore, D at ^o, is obtained by plotting D(Ai) versus A / - 1 and extrapolating to 
At •— oo. As a check of the accuracy of this procedure,1 for each Z)(A/) a plot is 
made of the actual DJ/D distribution versus the expected chi-square distribution: 

P(DJ) 
FRRDJ "1/2 

D 
exp 

(19) 
ID 

The DJ/D distribution is divided into intervals that should each have 5% of the distribution 
according to P(DJ). The deviation from the expected value is an indication of the error in 
the Monte Carlo simulation. 

Figure 1 gives a comparison of the above methods for a stellarator with a model field 

B - 5 0 [ l - «fl(MM1/2cos 6 - af l (MU^sin(£0 - "»<*>)] . (20) 

For this case 256 ions with initial kinetic energy of 1 keV were followed for 3 ms (about 5 
collision times). The plasma temperature and density were constants of 3 X 1013 cm'3 

and 1 keV, respectively. The field parameters were Bo — 5 T, «fl — 0.10, SA — 0.30, 
•o - 4 kV, 8 — 1, and m — 12. The chi-square plot is the distribution of DJ 
computed with the largest AI for this case. The maximum and minimum numbers of DJ in 
any interval are, respectively, approximately 20 and 6, compared with the expected value 
of 12.8. From the standard deviation <r, the relative error (<t/D} -Jn ) of 14% for the 
mean DJ was obtained for this distribution. 
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The diffusion coefficient computed by two methods: (a) dispersion curve and 
The chi-squarc distribution for the largest At is given in (c). 

4.3. METHOD 3: PITCH ANGLE SCATTERING ONLY 

A third approach is to have only pitch angle scattering. In this method the particles 
are all started with the same energy. The statistics for these cases are better than those 
with energy scattering; however, a number of runs at different energies must be done in 
order to average over a Maxwellian distribution. 

The agreement of these methods is good for cases when the diffusion process is a 
dominant feature of the system, that is, when there is not a large prompt loss of particles 
resulting from nonrandom motion. When there is a large, rapid, and direct particle loss, 
local diffusion (as defined above) no longer has meaning. 
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5. LOSS RATE CALCULATIONS 

For those situations when local diffusion is not a dominant feature of the system, the 
Monte Carlo procedures are still useful for computing particle and energy fluxes to the 
outer flux surface. The cumulative rate of energy loss at time t is defined as 

where pL}Li is the energy lost during the time interval, A/ — ry — tj_i, and N{E0) is the 
mean initial energy of the N particles of the system. The cumulative particle loss rate is 
defined similarly. Lost particles are replaced as described above. The flux of particles to 
\pe and the distribution function flt.yp.if), with t; — vy/v, are monitored until steady state 
is reached. The energy confinement time is found from 

_ = 1 <T) (22) 
2 (EJtL) ' 

where (T) is the volume-averaged temperature and ( E J t i ) is the average power loss. A 
loss rate calculation is illustrated in Fig. 2 for the ATF-1 vacuum field with no electric 
potential. Figure 2(c) is the 

In 
M £ 1 / 2 A £ 

where 2) A/ /M is the fraction of time the N particles spent in the energy bin 
E ± AE/2 with - 0.25 keV. The dashed line, 

In - E/kT , 

is obtained from the expected Maxwellian distribution. In this case, the temperature and 
density were constant with values of 1 keV and 3 X 10,J c m - 3 , respectively. The 
magnetic field at the center was 2 T. 
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Fig. 2. Ions are started randomly on the flux surface ifrWt " 0.25. Shown at 
various times are (a) the distribution function f(t$), (b) the particle flux to the wall, and 
(c) the final energy distribution of the particles where the dashed line is obtained from the 
expected Maxwellian distribution. 

6. TOKAMAK BENCHMARK CASE 

The numerical calculation of diffusion coefficients has been benchmarked with the 
neoclassical theory of Hinton, Rosenbluth, and Hazeltine9,10 for a tokamak case. The 
analytic expressions used for comparison are given by 

41/2„ pB, 
B„ 

(23) 
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k I, - 1.04 
I 

1 + 2.0! nV2 + 1.53» 
0.518<\ 

1 + 0.89t3/2i> 
(24) 

• aab 
(25) 

. (26) 

i - A . 
* q a, ' / (27) 

•44 
B, <g ) zt 

TcVT (28) 

The collision frequency v is taken to be 

(29) 

. Zfn, In A// 
»« - 6.77 X 10"8 (30) 

and 

In A// — 23 — In 7-3/2 
y/2n,Zf 

(31) 

For this case, the magnetic field was modeled by 

B - 5 , [ l -ia(Me)l/1co& d] , (32) 

where «fl is the inverse edge aspect ratio. 
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The particle* were started about W, - r2/a2 - 0.2S with a Maxwellian energy 
distribution. The collisions included both pitch angle and energy scattering. Table 1 gives 
the parameters used. The density was varied to produce values of 0.1 < v0 < 100. The 
numerical diffusion coefficients were obtained from the slopes of the dispersion curves. 
The numerical results and analytic formula agree as shown in Fig. 3. 

In addition to this benchmark case, the code has been successfully benchmarked 
against the Oarching Monte Carlo codes.2 

Tabic 1. PsrssMttn wad for toksnsk 
kuckauk cut 

Parameter Value 

A, 1 

Zi I 

i 0.05 

Ho (cm) 200 

a (cm) 20 

B , (T ) 2 

4 o.so 

T,,T,(keV) 1 

O f t N l - O W G 6 4 C - 2 0 8 6 , F I D 

Fig. 3. The diffusion coefficient for a tokamak. The circles are the Monte Carlo 
results, and the curve is obtained from the analytic formula. 
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7. RADIAL ELECTRIC HELD EFFECTS 

The particle fluxes in stellarators are not intrinsically ambipolar, and a radial electric 
field develops to ensure quasi-neutrality, The effects of such electric fields have been 
studied for a model magnetic field and the correct magnetic fields of ATF-1, for both the 
vacuum and finite-beta cases. 

First, collisionless orbit confinement is studied by following groups of 100 
monoenergetic particles that are started it random locations and pitch angles throughout 
the plasma. The orbits are followed for typically 5-10 toroidal transits or until they pass 
through the outermost flux surface. The collisionless orbit confinement is drastically 
improved with radial potentials on the order of the particle's energy, basically independent 
of the sign of the potential. This is illustrated in Fig. 4. Plotted is the weighted 

ORNL-DWG 8 2 - 3 4 3 7 FED 

Fig. 4. Loss of 1-keV protons vs radial potential for vacuum and finite-beta fields. 
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percentage lost versus the potential given by Eq. (S). Curves are shown for three ATF-1 
cases: vacuum, (0) - 1.5%, and (0) - 2.5%. Initially, the shift of the flux surfaces 
increases the particle losses by about a factor of 2 because of the increase in the variation 
of j di/B and the resultant increase in the radial drift of the helically trapped particles. 
However, further increases in 0 improve particle confinement probably because of the 
increasing diamagnetic well. The effect of j§ on orbit topology is illustrated in Fig. S for a 
helically trapped particle. 

The reason that the electric field i» so effective at closing the loss regions is that the 
radial drift velocities of the helically trapped ions are slow compared to the E X B 
velocity, even for relatively small potentials. This is illustrated in Fig. 6, which shows a 

ORNL-DWG 8 2 - 3 4 4 9 FED 

< £ > - 2 . 5 % 

Fig. 5. Effect of beta on orbit topology for a 1-keV, helically trapped proton. 
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Fig. 6. Effect of radial potential on a 1-keV, helically trailed proton. 
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helically trapped 1-keV ion in a </9> - 2.5% equilibrium for various potentials. A 
positive radial potential yields an E X B velocity in the negative 9 direction. 

Shaing" has derived the particle and heat fluxes in the presence of an electric field in 
• the v and 1 fv regimes and has joined these regimes together at the resonant transition 

where E X B and B X VB cancel. An analytic diffusion coefficient is obtained from 
the resulting expression for the particle flux due to helical trapping, valid for tf, » tT. 
Figure '7 shows the data points for the Monte Carlo calculations of D in a model S — 1 
stellarator. The parameters are the same as those given for Fig. 1. For small values of 
the potential, the Monte Carlo results agree closely with the predictions of theory. 
However, when the potential is increased in magnitude, the value of D rapidly decreases to 
a residual level, which is roughly the axisymmetric neoclassical values with vtl replaced by 
Vff and m, replaced by m/. This asymptotic level is caused by nonconservation of 
momentum by the Monte Carlo test particles and the resulting flux generated by like-
particle collisions. Similar results are obtained when test particles are followed in the 
correct ATF-1 vacuum field which has a richer harmonic content. These results are given 
in Fig. S. The parameters are the same as those given for Fig. 2. 

The diffusion coefficients for a finite beta case (</?) — 2%) are also given in Fig. 8. 
The magnetic surfaces as calculated from the field obtained by the Chodura-Schliiter 
code8 are given in Fig. 9 along with the vacuum magnetic surfaces. Even though there is 
a shift in the magnetic axis at finite beta, the transport has not been significantly affected. 

Figure 10 is the result of a sensitivity study of the number of particles necessary to 
obtain adequate statistics for the vacuum ATF-1 case. These curves indicate that 
reasonably accurate diffusion coefficients can be obtained with 256 particles, with the 
largest errors occurring for the smaller values of the potential. 

ORNL-DWG 84C-2685 FED 
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Fig. 7. The diffusion coefficient vs radial potential for a model A — 1 stellarator 
with the Monte Carlo results (squares) and the theoretical prediction (solid curve). 
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Fig. 8. The Monte Carlo diffi s i c coefficients vs radial potential for the ATF-1 
vacuum field (squares) , (0) — 2% (solid squares), and the theoretical prediction (solid 
curve). 
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Fig. 10. Numerical sensitivity of the calculation of D on the number of particles. 

8. SUMMARY 

A Monte Carlo code for computing transport in realistic magnetic fields has been 
described. The computed diffusion coefficients for a tokamak case compare well with the 
appropriate analytic theory. The Monte Carlo results for stellarator fields also compare 
favorably with the theoretical predictions in regimes for which the theory is valid, that is, 
when diffusion is dominated by helically trapped particles. However, for large electric 
fields, the asymptotic numerical results are due to nonconservation of momentum of the 
Monte Carlo test particles. The code is also useful for computing particle and energy loss 
rates. 
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