

CONF-78/105 -- 14

For Consideration for the American Nuclear Society  
1978 Winter Meeting at Washington, D. C.

November 12-17, 1978

LOFTED  
MASCE

ECC DELIVERY AND DISTRIBUTION  
IN SCALED PWR EXPERIMENTS

by

D. L. Batt  
and  
V. T. Berta

NOTICE  
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights

SUMMARY

Reactor Safety research currently being conducted in the LOFT<sup>(1)</sup> and Semiscale<sup>(2)</sup> experimental facilities has produced experimental results relevant to emergency core coolant (ECC) licensing calculations. LOFT, Semiscale, and commercial PWRs are related through a volume scaling rationale<sup>(3)</sup> which permits identification of the trends in the thermal-hydraulic phenomena in scaled research facilities. Additionally, the thermal-hydraulic phenomena in PWRs can be bounded through application of the scaling rationale. The experimental ECCS results relevant to licensing were obtained principally from the two LOFT experiments described in Table I. Experimental results from the Semiscale program and other LOFT experiments are used where required in extending the trends of the thermal-hydraulic phenomena in the scaled systems to commercial PWRs. ECCS capability is discussed herein in terms of the ECC delivery delay to the lower plenum and the undelivered ECC to the reactor vessel during ECCS operation.

The basic (volume) scaling rationale leads to distortion of the surface area-to-volume ratio which, as scaled systems are made smaller, increases the relative heat transfer from the walls to the fluid. This can cause delay in delivery of ECC to the lower plenum (assuming cold leg ECC injection) through the mechanisms of steam generation and counter current flow. The scaling rationale for the LOFT and Semiscale

TABLE I  
LOFT LOCE System Configuration and Initial Conditions

| Parameter                                 | L1-4                                                  | L1-5                                                  |
|-------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| <b>Configuration</b>                      |                                                       |                                                       |
| Pipe break:                               |                                                       |                                                       |
| Location                                  | Cold leg                                              | Cold leg                                              |
| Size (%)                                  | 200                                                   | 200                                                   |
| Opening time (ms)                         | 18                                                    | 19.5                                                  |
| Core                                      | Simulator for $\Delta P$                              | Nuclear core                                          |
| Primary system pump operation             | Power terminated at $T_0 + < 1$ s                     | Powered to $T_0 + 70$ s                               |
| Broken loop pump simulator <sup>[a]</sup> | Locked rotor ( $K = 20.70$ )                          | Operating pump ( $K = 9.95$ )                         |
| Intact loop resistance                    | Low resistance ( $K = 131.7$ )                        | Low resistance ( $K = 131.7$ )                        |
| ECC systems                               | HPIS, LPIS, and accumulator                           | HPIS, LPIS, and accumulator                           |
| ECC injection location                    | Intact loop cold leg                                  | Intact loop cold leg                                  |
| ECC systems actuation mode:               |                                                       |                                                       |
| Accumulator                               | Pressure                                              | Pressure                                              |
| LPIS                                      | Time                                                  | Pressure-level                                        |
| HPIS                                      | Time                                                  | Pressure-level                                        |
| Secondary coolant system                  | Primary coolant system saturation conditions, no flow | Primary coolant system saturation conditions, no flow |
| <b>Initial conditions</b>                 |                                                       |                                                       |
| Primary system:                           |                                                       |                                                       |
| Pressure (MPa)                            | 15.65                                                 | 15.45                                                 |
| Temperature (K)                           | 552.15                                                | 555                                                   |
| Mass flow (kg/s)                          | 268.4                                                 | 176.1                                                 |
| Boration (ppm)                            | 1494                                                  | 3087                                                  |
| ECCS accumulator:                         |                                                       |                                                       |
| Pressure (MPa)                            | 4.14                                                  | 4.17                                                  |
| Temperature (K)                           | 306.15                                                | 304                                                   |
| Boration (ppm)                            | 3307                                                  | 3155                                                  |
| Injected volume ( $m^3$ )                 | 2.05                                                  | 7.73                                                  |
| Gas volume ( $m^3$ )                      | 1.16                                                  | 0.97                                                  |

[a] Darcy K factor based on  $0.016\ m^2$  flow area.

systems kept the active core length (1/2 PWR core length) the same while scaling the coolant volumes. Thus, the downcomer in Semiscale is more one-dimensional than the LOFT downcomer as indicated by the ratio of length-to-diameter (24.11 for Semiscale and 4.53 for LOFT). Counter current flow, therefore, is expected to have a larger effect on ECC delay in Semiscale than in LOFT.

The hot wall induced delay in ECC delivery follows the expected dependency on the surface area-to-volume ratio in LOFT and Semiscale experiments. Semiscale hot wall delay is approximately 10 s, whereas in LOFT the hot wall delay is in the range of 0.5 to 1.0 s. The hot wall delay range in LOFT applies for conditions at ECC injection time ranging from 0.34 MPa, 555 K wall temperature to 4.14 MPa, 520 K wall temperature. The former set of conditions were for a quiescent system long after saturated blowdown with the reactor vessel empty of fluid. The latter set of conditions were for a normally actuated ECCS during saturated blowdown wherein the pressure is rapidly decreasing with significant mass flow in the downcomer. The wide range of conditions show that, in the LOFT downcomer, ECC delay to the lower plenum is not affected significantly by either hot walls or existing counter current flow. The ECC hot wall delay effect in a PWR (with a downcomer L/D = 1.3) is considered to be equal to or less than that in LOFT. Thus, the ECC hot wall delay does not represent a significant deterrent to the intended operation of ECCS designs.

The undelivered ECC is defined to include the fluid expelled or bypassed out the break and the fluid stored in the system piping. The undelivered ECC in LOCE L1-4 was essentially the same as that in LOCE L1-5. Approximately 30% of the ECC was bypassed out the break in LOFT<sup>(4)</sup> by the time the accumulator emptied. An additional 15% of the ECC was stored in the piping at that time. After the accumulator emptied the refill rate was essentially equal to the pumped ECC injection rate. After steady state conditions were reached the flow out the break equaled the pumped ECC injection rate.

The ECC bypassed in Semiscale is larger than in LOFT and is attributed to the difference in downcomer fluid behavior. The implication is that, since the LPWR downcomer fluid behavior is considered to be similar to that in LOFT and since the Semiscale ECC bypass fraction is larger than that in LOFT, the ECC bypass fraction in LPWRs at the time the accumulator empties will be less than (or no greater than) that in LOFT ( $\leq 30\%$ ). These results were not found to depend on the operation of the primary coolant pumps (PCPs). With reference to Table I, the PCPs were powered in LOCE L1-5, whereas in LOCE L1-4 the pumps were tripped at the initiation of blowdown.

---

1. D. L. Reeder, "LOFT System and Test Description (5.5 Foot Nuclear Core 1 Loss-of-Coolant Experiments)," TREE-NUREG-1208 (July 1978).
2. L. J. Ball, et al., "Semiscale Program Description," TREE-NUREG-1210 (May 1978).
3. L. J. Ybarrodo, S. Fabic, P. Griffith, and G. D. McPherson, "Examination of LOFT Scaling," presented at the ASME Winter Annual Meeting, New York, New York (November 17-22, 1974).
4. L. P. Leach and L. J. Ybarrodo, "LOFT Emergency Core Cooling System Experiments: Results from the L1-4 Experiment," Nuclear Safety, Volume 19, No. 1, January-February 1978.