

LA-8745-PR

Progress Report

University of California

LOS ALAMOS SCIENTIFIC LABORATORY

Post Office Box 1663 Los Alamos, New Mexico 87545

REPRODUCTION OF THIS DOCUMENT IS UNLIMITED
STRUCTURE OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

An Affirmative Action/Equal Opportunity Employer

The four previous reports in this series, unclassified, are **LA-8579-PR**, **LA-8580-PR**, **LA-8614-PR**, and **LA-8687-PR**.

This report was not edited by the Technical Information staff.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

**UNITED STATES
DEPARTMENT OF ENERGY
CONTRACT W-7405-ENG. 36**

LA-8745-PR
Progress Report

UC-11
Issued: February 1981

**Earthquake Catalog for
Northern New Mexico
October—December 1980**

D. J. Wechsler
D. J. Cash
K. H. Olsen
N. J. McFarland
J. J. Wolff

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

EP

EARTHQUAKE CATALOG FOR NORTHERN NEW MEXICO

OCTOBER 1980 - DECEMBER 1980

by

D. J. Wechsler, D. J. Cash, K. H. Olsen
N. J. McFarland, and J. J. Wolff

ABSTRACT

This report is a summary of the earthquakes in northern New Mexico located by the Los Alamos National Laboratory seismic array. Data are presented in the form of tables and epicenter maps, with a brief explanatory text.

A seismic network capable of locating earthquakes has been maintained by the Los Alamos National Laboratory since September 1973. Summaries of recorded and earlier historical seismicity have been previously published (e.g., Slemmons, 1975; Newton et al., 1976; Northrop, 1976; Sanford et al., 1976; this catalog, 1st issue).

The present array configuration for the Los Alamos northern New Mexico seismograph stations is depicted in Fig. 1, and stations are listed along with pertinent information in Table I. Figure 1 includes some stations from the U.S. Geological Survey and Albuquerque Seismological Center seismic arrays, which are sometimes used in the computation of earthquake locations. Figure 2 is a map showing the more dense station distribution in the Jemez Mountains west of Los Alamos, around the Fenton Hill geothermal test site.

Earthquake locations have been determined using a version of HYPOINVERSE (Klein, 1978). Stations are assigned to one of three velocity models, given in Table II. Within the array (defined as an event with the largest azimuthal gap between recording stations $<180^\circ$) precision of epicentral locations is probably on the order of 1-5 km. Other locations can be determined to within

5-15 km at best. The detection threshold is variable over the area of array coverage as well, generally increasing as one moves away from the center of the array.

Estimates of depth precision are greater than for epicentral coordinates due to the nature of the hypocenter determination problem. Within the array, depths may be estimated to \pm 2-10 km, depending on the distance to the closest station; outside the array, depth uncertainty may be \pm 40 km. The distribution of reliable depth estimates suggests, however, that most seismic activity in northern New Mexico is shallow focus (<20 km).

Magnitudes of events are listed as local magnitudes (M_L), computed using the relationship

$$M_L = 2.79 \log T - 3.63 , \quad (1)$$

where T is the maximum event duration in seconds observed at all network stations. The duration is measured from the first P-phase arrival to the time when the coda disappears into the background noise. The above equation was derived by comparison of $\log T$ to magnitude values determined by the ALQ Wood-Anderson seismograph. Magnitudes for near-regional events computed using this relationship have corresponded well to those given by the USGS.

For some areas where array coverage is best, as in the Jemez area after late 1979, events as small as $M_L = -1.5$ can be detected and located. Detection threshold is generally higher over most of the area of coverage, approximately $M_L = 0.5$.

Table III is the listing of located hypocenters for October through December 1980. A negative depth indicates that the depth was constrained to the absolute value of the number listed to obtain a reliable solution for the epicenter. The quality factor (A, B, C, or D) is determined by considering the values of the RMS travel time residual and the condition number of the partial derivative matrix. It is included to give an indication of the comparative quality of the solution. Quality factors may be loosely associated with estimates of epicenter precision as follows: A ~ 1-3 km, B ~ 3-5 km, C ~ 5-15 km, and D ~ greater than 15 km.

Figure 3 is the epicenter map for the three-month period. Figure 4 is a map depicting major geologic and tectonic features. A cumulative epicenter map for all earthquakes located since September 1973 is included as Fig. 5. A duplicate tectonic map, Fig. 6, is provided for reference.

Northern New Mexico is an area of numerous and frequent mine blasting operations. An attempt has been made to eliminate all such man-caused seismic sources from this catalog. This exclusion is relatively easy for the larger, continuously operating mines and quarries, but there is a possibility that occasional small or isolated blasts could have been included in the data set. We would appreciate hearing from anyone who might have definite information about such suspicious events in particular areas.

REFERENCES

1. F. W. Klein, 1978, Hypocenter location program, HYPOINVERSE, U.S. Geological Survey Open-File Report 78-694.
2. C. A. Newton, D. J. Cash, K. H. Olsen, and E. F. Homuth, 1976, LASL seismic programs in the vicinity of Los Alamos, New Mexico: Los Alamos Scientific Laboratory, Informal Rept. LA-6406-MS.
3. S. A. Northrop, 1976, New Mexico's earthquake history, 1849-1975, New Mexico Geol. Soc. Spec. Pub. 6, pp. 77-87.
4. K. H. Olsen, G. R. Keller, and J. N. Stewart, 1979, Crustal structure along the Rio Grande Rift from seismic refraction profiles: in Rio Grande Rift: Tectonics and Magmatism, R. E. Riecker, Ed. (American Geophysical Union, Washington, D.C.), pp. 127-143.
5. R. C. Roller, 1965, Crustal structure in the eastern Colorado plateau province from seismic-refraction measurements; Bulletin of the Seismological Society of America, v. 55, p. 105.
6. A. R. Sanford, T. R. Toppozada, R. M. Ward, and T. C. Wallace, 1976, The seismicity of New Mexico: 1962 through 1972; New Mexico Institute of Mining and Technology, Geoscience Dept., Geophysics Open-file Rpt. 76.
7. D. B. Slemmons, 1975, Fault activity and seismicity near the Los Alamos Scientific Laboratory Geothermal Test Site, Jemez Mountains, New Mexico; Los Alamos Scientific Laboratory report LA-5911-MS.
8. T. R. Toppozada, and A. R. Sanford, 1976, Crustal structure in central New Mexico interpreted from the Gasbuggy explosion; Bulletin of the Seismological Society of America, v. 66, p. 877.

TABLE I
SEISMOGRAPH STATIONS

<u>CODE NAME</u>	<u>GEOGRAPHIC LOCATION</u>	<u>COORDINATES</u>	<u>LATITUDE</u>	<u>LONGITUDE</u>	<u>ELEVATION (METERS)</u>	<u>VELOCITY MODEL</u> *	<u>SEISMO METER</u>	<u>MAGNIFICATION*</u>	<u>TELEMETRY (FREQ.=MHz)</u>	<u>DATE INSTALLED</u>
BRC	Barley Canyon	35.8903	106.7114		2261	2	L4-C	512 K	164.5/LL	20 Nov 75
CLP	Clara Peak	36.0358	106.2403		2591	2	SS-1	240 K	169.0	7 Oct 73
CZL	Cerro Azul	36.2833	105.9103		2128	3	S-13	672 K	410.35	24 Sep 76
DMPK	Dead Man's Peak	36.4264	106.7757		2664	1	S-13	144 K	416.35	22 Nov 76
EUM	Eureka Mesa	36.0131	106.8439		2914	1	L4-3D	216 K	M/226.7	13 Jan 76
FARG**	Farmington	36.7780	108.1870		1801	1	S-500	—		Oct 77
FCN**	Frijoles Canyon	35.7719	106.2503		1945	—	L4-3D	—	LL	7 May 73
JOAQ	Joaquin L.O.	35.7708	106.8411		2768	2	SS-1	720 K	410.35	9 Nov 79
LCV***	La Cueva	35.8828	106.6742		2652	2	L4-3D	456 K	LL	5 Sep 73
LFC	Lake Fork Canyon	35.8769	106.6647		2451	2	Lf-C	288 K	169.0/LL	4 Nov 75
LFMS	Lake Fork Mesa	35.8736	106.7200		2558	2	S-500	576 K	409.075	Nov 79
REDP	Redondo Peak	35.8711	106.5629		3417	2	SS-1	360 K	409.35	Oct 77
LOA**	Los Alamos (TA-49, LANL)	35.8247	106.2944		2144	—	L4-3D	—	LL	12 Jan 72
MSA	San Antonio Mountain	36.8692	106.0216		3322	3	L4-3D	128 K	M/226.7	9 Oct 75
MTL	Mt. Taylor	35.2519	107.5964		3335	1	L4-3D	272 K	M/226.7	15 Oct 75
OTZ	Ortiz Mountain	35.7603	106.1728		2091	3	L4-C	120 K	166.25	17 Sep 76
RIO**	Caja del Rio	35.7547	106.1756		2073	—	L4-C	—	166.25	21 Feb 75
SHMS	Schoolhouse Mesa	35.8544	106.6906		2561	2	S-500	288 K	409.025	Nov 79
SPD	St. Peter's Dome	35.7578	106.3694		2566	2	SS-1	688 K	164.75	18 Sep 73
TMRS	Thompson Ridge	35.8828	106.6375		2476	2	S-500	530 K	409.125	Nov 79
TSL	Navajo Community College	36.3722	109.2436		2012	1	SS-1	344 K	LL	22 May 75
TSP	Tesuque Peak	35.7853	105.7814		3664	2	SS-1	456 K	M/226.7	14 Oct 73
TPP	Tetilla Peak	35.6094	106.2064		2103	3	L4-C	114 K	164.50	18 Mar 75
WELC	Well C Fenton Hill	35.9704	106.6243		2000	2	S-500	512 K	409.	Nov 79
Q-1	Fenton Hill Area	35.8879	106.6716		2658	2	S-13	153 K	M/164.5	Jan 80
Q-2	Fenton Hill Area	35.8783	106.6655		2599	2	S-13	152 K	M/164.5	Jan 80
Q-3	Fenton Hill Area	35.8747	106.6686		2630	2	S-13	152 K	M/164.5	Jan 80
Q-4	Fenton Hill Area	35.8749	106.6793		2634	2	S-13	152 K	M/164.5	Jan 80
Q-5	Fenton Hill Area	35.8787	106.6815		2632	2	S-13	152 K	M/164.5	Jan 80

LL Land Line

M Microwave

* Peak Magnification at 10 Hz

** Closed

*** Fenton Hill site is 300 m south of LCV

S-500 Teledyne-Geotech

L4-C, L4-3D Mark Products

SS-1 Kinemetrics (Ranger)

S-13 Teledyne-Geotech

+ See Table II

TABLE II
VELOCITY MODELS

<u>APPROXIMATE GEOGRAPHICAL AREA AND REFERENCE</u>	<u>VELOCITY (km/s)</u>	<u>DEPTH (km) TO TOP OF LAYER</u>
1. Colorado Plateau (Roller, 1965)	3.0 6.2 6.8 7.8	0.0 2.5 27.0 45.0
2a. Transition Zone (Toppozada and Sanford, 1976)	3.0 6.15 6.50 7.9	0.0 1.0 20.0 41.0
2b. Jemez Local Seismicity ^a	2.2 3.0 4.0 6.1 6.5 7.9	0.0 0.15 0.42 0.72 5.0 41.0
3. Rio Grande Rift (Olsen et al., 1979)	3.33 6.0 6.4 7.6	0.0 3.2 21.4 33.7

a Model supplied by Carl A. Newton, Los Alamos National Laboratory.

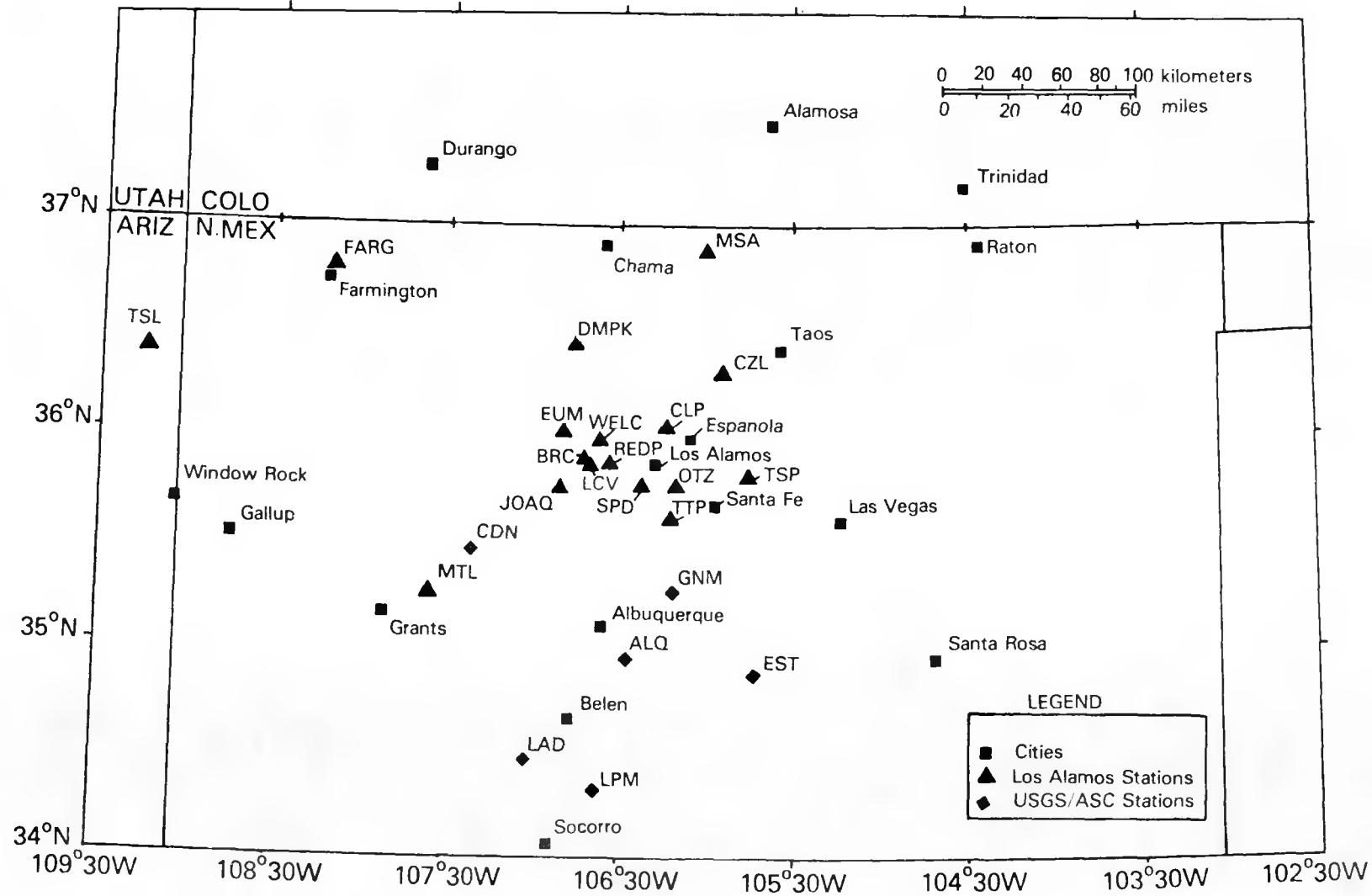


Fig. 1. Northern New Mexico seismograph stations.

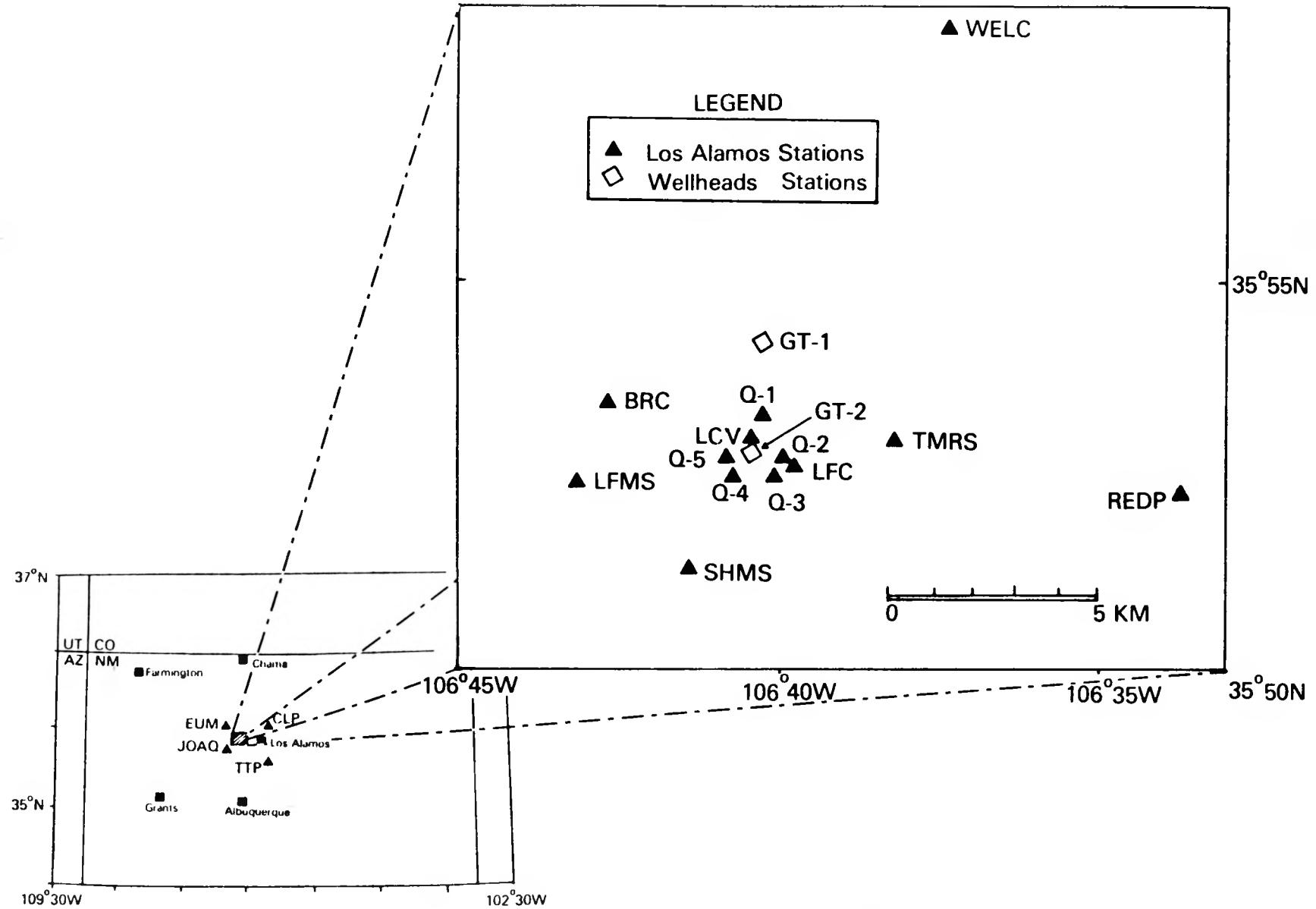
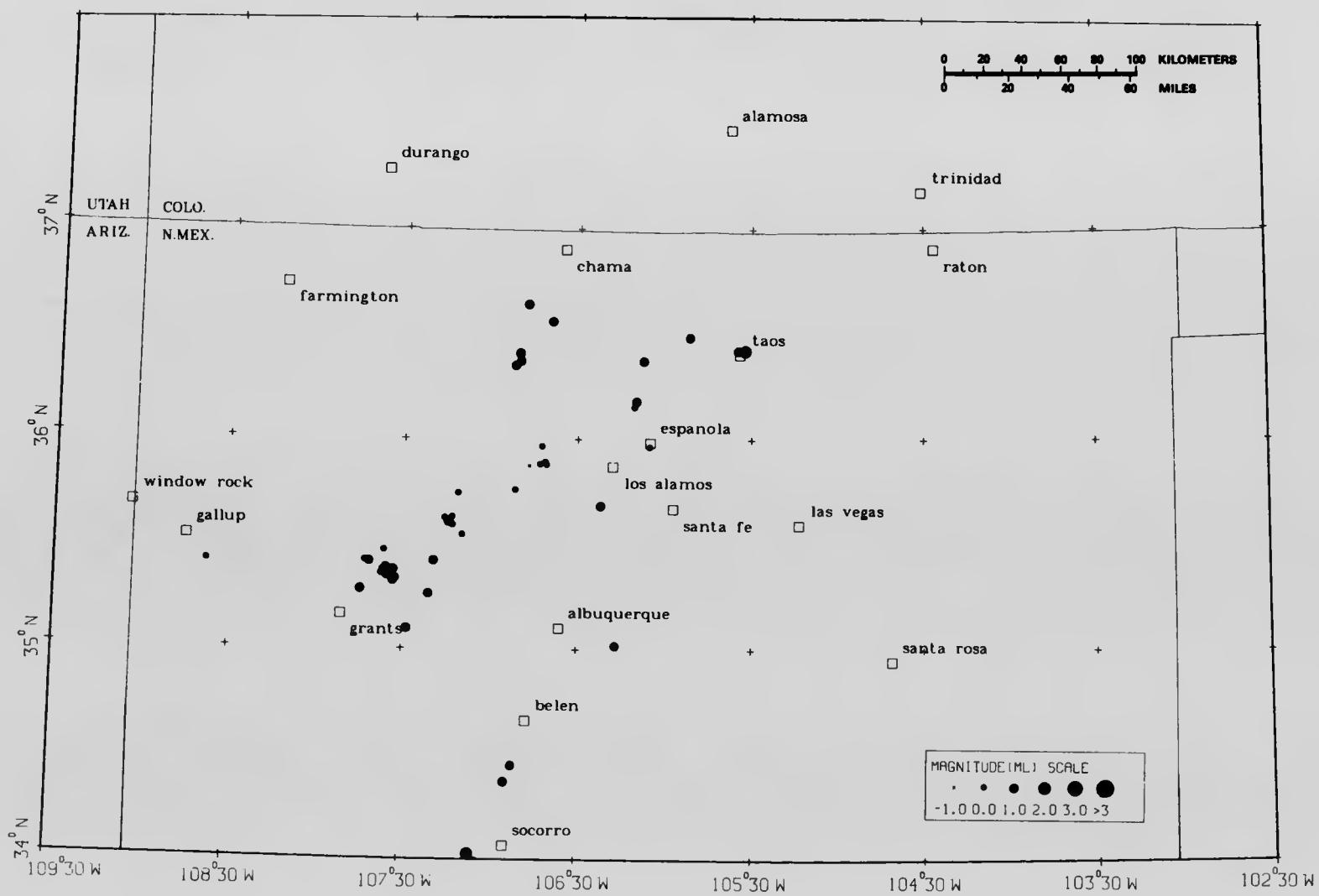



Fig. 2. Seismograph stations in the Fenton Hill, Jemez Mountains, area.

6 Fig. 3. Northern New Mexico earthquakes, Oct. 1980 - Dec. 1980.

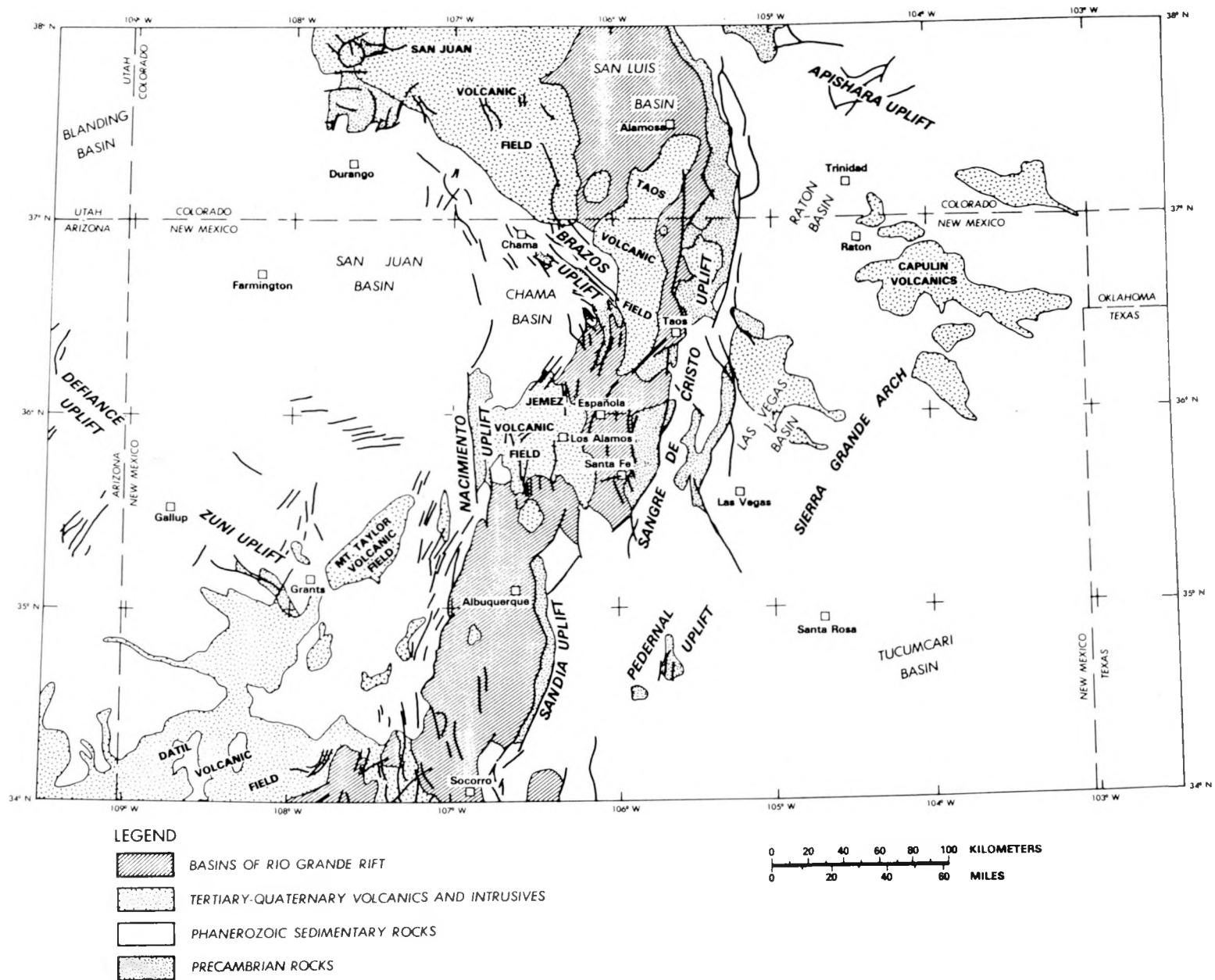


Fig. 4. Generalized geologic and tectonic map of northern New Mexico.

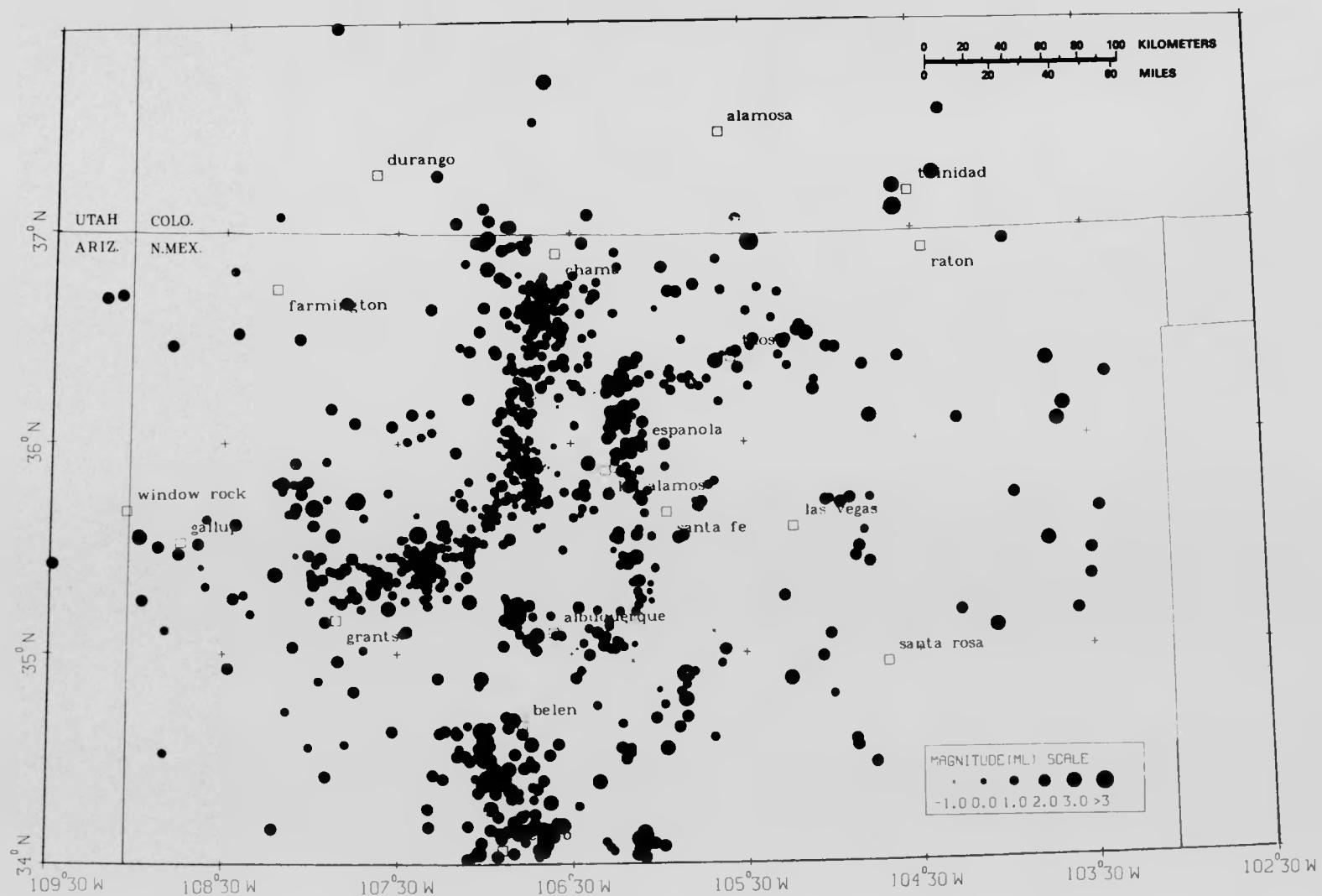


Fig. 5. Northern New Mexico earthquakes, Sept. 1973 - Dec. 1980.

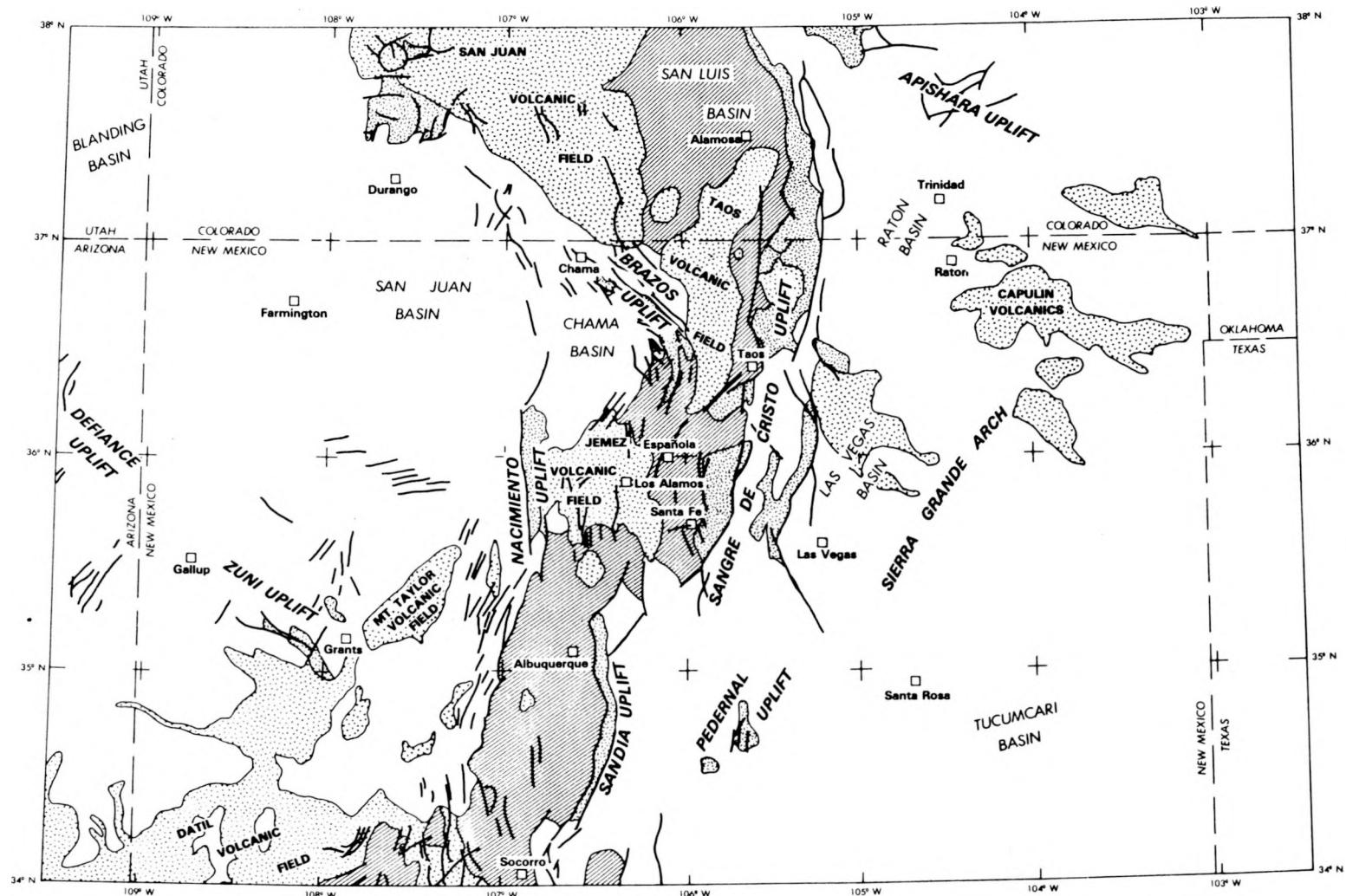


Fig. 6. Generalized geologic and tectonic map of northern New Mexico.

TABLE III
NORTHERN NEW MEXICO EARTHQUAKES, OCT.-DEC. 1980

IDN	DATE	TIME	LAT	LONG	DEPTH	MAG	QUAL
1	801007	1117 8.37	34.3681	106.9034	-5.00	.8	B
2	801008	73637.50	35.2803	107.7384	-5.00	.1	B
3	801008	195647.49	35.4873	105.8582	-5.00	.6	B
4	801014	17 041.56	35.3703	107.6098	-5.00	.2	D
5	801014	172645.86	35.3738	107.5513	-5.00	.8	C
6	801014	18 945.97	35.0968	107.4720	-5.00	.3	D
7	801016	82441.26	35.4675	107.6063	-5.00	-.6	C
8	801017	205342.20	35.3811	107.5933	-5.00	.3	C
9	801017	205434.99	35.3242	107.5520	2.90	.2	A
10	801019	617 .42	36.1519	106.1822	-5.00	0.0	A
11	801019	72428.77	36.1813	106.1652	-5.00	.2	A
12	801023	1417 8.76	34.0250	107.0991	-5.00	1.3	C
13	801025	821 1.79	35.2623	107.3514	-5.00	.4	B
14	801025	194252.07	35.5439	107.1639	-5.00	0.0	B
15	801026	102913.83	35.8929	106.6868	3.00	-.8	D
16	801027	1133 7.38	35.9688	106.7089	2.00	-.7	B
17	801028	1232 2.13	35.9670	106.0887	-5.00	-.4	D
18	801102	225433.11	35.3326	107.5450	-5.00	.4	C
19	801102	231910.98	35.3270	107.5544	3.10	.1	A
20	801102	233950.96	35.3524	107.5735	-5.00	0.0	D
21	801113	1949 5.20	35.6829	106.3646	.30	.6	D
22	801116	2132 9.21	35.8728	106.7808	1.10	-1.0	A
23	801117	21 649.61	35.6813	106.3646	7.30	.5	B
24	801118	132113.94	35.0859	106.7126	3.70	-.6	A
25	801118	142052.55	35.8933	106.6912	1.10	-.2	A
26	801118	142944.35	35.3451	107.5914	-5.00	.1	C
27	801118	143238.11	35.4147	107.6901	-5.00	.2	C
28	801118	153043.63	35.3580	107.6254	-5.00	0.0	C
29	801118	163520.73	35.4207	107.7183	-5.00	-.6	C
30	801118	18 210.70	35.3328	107.5718	4.00	-.3	D
31	801120	21124.63	36.6410	106.7957	-5.00	.5	C
32	801120	75959.41	35.3467	107.5931	3.30	.2	B
33	801122	01628.21	36.3474	106.8662	-5.00	1.0	B
34	801127	92818.39	36.4256	105.5680	-5.00	.5	B
35	801129	81948.91	36.4260	105.5389	-5.00	1.2	B
36	801130	72030.26	36.5604	106.6557	-5.00	.4	B
37	801204	11 054.71	34.4458	106.8609	-5.00	.8	B
38	801211	12 4 2.73	35.6216	107.2642	-5.00	-.8	C
39	801213	657 8.40	35.4078	108.6240	-5.00	-.1	D
40	801213	92348.29	35.5904	107.2131	-5.00	-.3	C
41	801213	165144.70	35.6284	107.2245	-5.00	0.0	C
42	801215	111219.82	35.6017	107.2358	-5.00	.5	B
43	801215	205759.56	35.0209	106.2780	-5.00	.1	C
44	801217	92729.72	35.8782	106.6787	3.00	-.6	A
45	801218	171111.80	36.3736	106.1239	-5.00	.1	A
46	801223	2 256.05	35.7422	107.1897	-5.00	-.5	C
47	801223	318 8.42	35.7572	106.8609	-5.00	-.8	B
48	801224	115727.21	36.4079	106.8414	10.50	.1	B
49	801227	221648.69	36.3805	106.8400	3.90	.1	B
50	801228	1417 3.39	35.4183	107.3253	-5.00	.9	B

TOTAL NO. OF EPICENTERS = 50