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ABSTRACT 

This  paper p r e s e n t s  a s tudy  of possible , turbomachinery op t ions  f o r  compressed a i r  
,.energy s t o r a g e  p l a n t s .  The p l a n t  is  d iv ided  i n t o  f o u r  subsystems: a  t u r b i n e  system, 
ccnmpressor system, motor /genera tor ,  and an  underground a i r  s t o r a g e  r e s e r v o i r .  The tu r -  
:Vine system comprises a  h igh-pressure  t u r b i n e  and combustor, a  low-pressure t u r b i n e  and 
:combustor, and a  r ecupe ra to r .  The compressor system comprises a  low-pressure compressor,  
ibooster compressor, i n t e r c o o l e r s ,  and an  a f t e r c o o l e r .  A water-compensated mined cavern 
: cons t i t u t e s  t h e  underground a i r - s t o r a g e  r e s e r v o i r .  P l a n t  performance i s  presen ted  i n  
Qerms of f i v e  parameters :  s p e c i f i c  a i r  f low r a t e ,  s p e c i f i c  h e a t  r a t e ,  s p e c i f i c  s t o r a g e  
~w.olume, s p e c i f i c  compression r a t e ,  and o v e r a l l  p l a n t  e f f i c i e n c y .  The c a p i t a l  and oper- 
a t i n g  c o s t s  of t h e  p l a n t  a s  a  f u n c t i o n  of t h e  turbomachinery op t ions  a r e  presen ted .  De- 
s i g n  v a r i a b l e s  of t h e  turbomachinery a r e  t h e  r e s e r v o i r  p r e s s u r e  and i n l e t  gas tempera- 
t u r e s  t o  t h e  t u r b i n e s .  

INTRODUCTION 

Compressed a i r  energy s t o r a g e  i s  a  
:near-term technology f o r '  t h e  load  l e v e l i n g  
;and peak shaving s t r a t e g i e s  being consi- 
.dered by e l e c t r i c  u t i l i t i e s .  Assessments 
.of t h e  t e c h n i c a l  and economic f e a s i b i l i t y  
>of t h i s  s t o r a g e  system i n d i c a t e  t h a t  i t  is  
;economically compet i t ive  w i th  convent iona l  
ga s - tu rb ine  peaker u n i t s  . The CAES concept  
Zs based on a  s p l i t  Brayton c y c l e  w i th  an  
accompanying underground a i r  s t o r a g e  res- 
e r v o i r .  During pe r iods  of off-peak power 
demand, a i r  i s  compressed wi th .base -p l an t  
:,power and s t o r e d  i n  t h e  underground reser- 
v o i r .  For power gene ra t i on ,  t h e  a i r  i s  
!diischarged through a  combustion t u r b i n e  
during t h e  peak demand pe r iod .  

Because t h e  s t o r a g e  r e s e r v o i r  i s  usu- 
. a l l y  t h e  most c o s t l y  s i n g l e  component i n  a  
:CAES p l a n t ,  i t s  volume is  a  s e n s i t i v e  de- 
:sign parameter.  The volume r equ i r ed  i s  
. a f f ec t ed  by s t o r a g e  p r e s s u r e  and tempera- 
; ture ,  power l e v e l ,  gene ra t i on  t ime ,  reser- 
-weir type,  a i r  q u a n t i t y  r equ i r ed  by t h e  
S n r b i n e  system, and p r e s s u r e  ranges  per- 
milt ted by t h e  turbomachinery ( t u r b i n e s  and 
.compressors). Compressed a i r  can be s t o r e d  
underground i n  caverns o r  i n  t h e  pore  space  
of porous rock  format ions .  , 

The components of t h e  subsystems of a  
CAES p l a n t  a r e  d e l i n e a t e d  he re  f o r  p r ec i -  
s i o n  of  r e f e r e n c e  i n  t h i s  paper .  The t u r -  
b i n e  system c o n s i s t s  of a  low-pressure gas 
t u r b i n e  (LGT) and combustor, a  high-pres- 
s u r e  gas  t u r b i n e  (HGT) and combustor, and ' 

a  r ecupe ra to r  ( s e e  F ig .  1 ) .  The LGT i s  a  
t u r b i n e  modified from a  convent iona l  gas- 
t u r b i n e  peaker  u n i t .  For proposed CAES 
p l a n t s ,  t h e  HGT i s  a  modified steam t u r b i n e  
ope ra t i ng  a t  gas  temperatures  of about  
1000°F. Optimized des igns  f o r  cbmpressed- 
a i r  t u r b i n e s  t h a t  o p e r a t e  a t  high tempera- 
t u r e s  have been i n v e s t i g a t e d , l  The com- 
b u s t o r s  can be  des igns  modified from con- 
v e n t i o n a l  ga s - tu rb ine  peaker u n i t s .  Pre- 
l iminary  s t u d i e s  i n d i c a t e  t h a t  r ecupe ra to r s  
can be  designed t h a t  a r e  economically fea-  
s i b l e  f o r  CAES a p p l i c a t i o n .  These d i f f e r  
from convent iona l  gas - turb ine  peaker u n i t s  
because of t h e  h igh-pressure  a i r  l e av ing  
t h e  r e s e r v o i r .  

The compressor system con ta in s  a  low- 
p r e s s u r e  (LC), high-pressure (HC) , and 
boos t e r  compressor (BC), i n t e r c o o l e r s ,  and 
an  a f t e r c o o l e r  ( s e e  F ig .  1 ) .  I n t e r c o o l i n g  
i s  r equ i r ed  t o  o p e r a t e  t h e  compressors 
w i t h i n  l i m i t s  t o l e r a b l e  f o r  s t anda rd  
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F ig .  1. Schematic Diagram of CAES P lan t  

:mater ia l s .  An a f t e r c o o l e r  i s  used t o  coo l  
t h e  a i r  t o  avoid  p o s s i b l e  thermal -s t ress  
damage t o  t h e  s t o r a g e  r e s e r v o i r .  

The performance of a  CAES p l a n t  can 
:be c h a r a c t e r i z e d  i n  terms of f o u r  s p e c i f i c  
;parameters and an  o v e r a l l  p l a n t  e f f i c i e n c y :  

S p e c i f i c  a ir  flow is  t h e  mass fl.ow 
r a t e  of a i r  supp l i ed  t o  t h e  t u r b i n e  
system pe r  k i l o w a t t  power genera ted .  

1 It i s  t h e  major f a c t o r  i n  determining 
t h e  s i z e  of t h e  t u r b i n e s ,  compressors,  
and a i r - s t o r a g e  r e s e r v o i r .  

S p e c i f i c  h e a t  r a t e  i s  d i r e c t l y  propor- 
t i o n a l  t o  f u e l  consumption and i s  
equa l  t o  t h e  product  of s p e c i f i c  f u e l  
consumption and t h e  lower h e a t i n g  
v a l u e  of f u e l .  It t h e r e f o r e  a f f e c t s  
t h e  ope ra t i ng  c o s t  of t h e  t u r b i n e s .  

- S p e c i f i c  s t o r a g e  volume, t h e  volume 
of r e s e r v o i r  r equ i r ed  per  k i l o w a t t  of 
power genera ted ,  i s  dependent on t h e  
s p e c i f i c  a i r  f l o w ' r a t e  and t h e  t e m -  
p e r a t u r e  of s t o r e d  a i r .  

S p e c i f i c  compression r a t e  i s  t h e  ener- 
gy equ iva l en t  of t h e  power supp l i ed  t o  
t h e  compressors pe r  k i l o w a t t  of power 
genera ted .  This  parameter  i s  t h e  
amount of off-peak energy r equ i r ed  t o  
o p e r a t e  t h e  compressors.  

.- o v e r a l l '  p l a n t  e f f i c i e n c y  is  equa l  t o  
' t h e  t o t a l  energy ou tpu t  from t h e  t u r -  

b i n e s  d iv ided  by t h e  sum of t h e  ener- 
gy i n p u t  from t h e  f u e l  and off-peak 
energy t o  t h e  compressor system. 

The c o s t  of a  CAES p l a n t  can be  char- 
a c t e r i z e d  i n  terms of c a p i t a l  c o s t  and 
ope ra t i ng  c o s t .  C a p i t a l  c o s t  i nc ludes  t h e  
d i r e c t  c o s t  of t h e  a i r  s t o r a g e  f a c i l i t y ,  
t h e  turbomachinery, t h e  ba lance  of p l a n t ,  
and t h e  i n d i r e c t  c o s t  due t o  a  contingency 
al lowance,  engineer ing  and a d m i n i s t r a t i o n ,  
and e s c a l a t i o n  and i n t e r e s t  dur ing  con- 
s t r u c t i o n .  The ope ra t i ng  coot  of t h c  p lane  
i nc ludes  t h e  c a p i t a l  charge,  c o s t  of f u e l  
t o  t h e  combustors,, of f-peak e l e c t r i c i t y  t o  
t h e  compressors,  and o p e r a t i o n  and mainte- 
nance c o s t s .  

This  paper p r e s e n t s  a  s tudy  of pos- 
s i b l e  turbomachinery op t ions  f o r  CAES 
p l a n t s  w i t h . p a r t i c u l a r  emphasis on t h e  t u r -  
b i n e  system. The performance and c o s t  of 
t h e  complete p l a n t  r e s u l t i n g  from d i f f e r -  
e n t  turbomachinery op t ions  a r e  p re sen t ed .  
The t u r b i n e  system des ign  paramebers con- 

- ~ 

s i d e r e d  a r e  t h e  r e s e r v o i r  s t o r a g e  p r e s s u r e  
and t h e  i n l e t  gas  temperatures  t o  t h e  LGT 
and HGT. The LGT was based on a  nominal 
p r e s s u r e  r a t i o  of 16 : l .n  A water-compen- 
s a t e d  mined cavern was chosen a s  t h e  com- 
pressed  a i r  s t o r a g e  r e s e r v o i r .  

* 
S t u d i e s  have i n d i c a t e d  t h a t  p r e s su re  ra-  
t i o  has  a  minor e f f e c t  on performance and 
convent iona l  low-pressure t u r b i n e s  (from 
peaker u n i t s )  having a  nominal p r e s s u r e  
r a t i o  of 10-1611 can b e  ~ s e d . ~ ' ~  



- PERFORMANCE EVALUATION 
C. . 

. THERMODYNAElIC ANALYSIS 

A thermodyanmic a n a l y s i s  was c a r r i e d  
o u t  on each subsystem of a  CAES p l a n t ,  and 
t h e  r e s u l t s  were combined t o  e v a l u a t e  over- 
a l l  p l a n t  performance. Design parameters  
considered i n  t h e  a n a l y s i s  inc lude :  a i r  
s t o r a g e  p r e s s u r e  and i n l e t  gas  temperatures  
t o  t h e  high-pressure gas  t u r b i n e  and low- 

'. p r e s s u r e  gas  t u r b i n e .  The d e t a i l s  of t h e  
a n a l y s i s  are presen ted  i n  Ref. 4.  

Underground A i r  S torage  System. The under- 
ground a i r  s t o r a g e  r e s e r v o i r  considered i s  
a water-compensated cavern.  Therefore ,  t h e  
p r e s s u r e  v a r i a t i o n  i n  t h e  cavern dur ing  t h e  
ope ra t i ng  cyc l e  i s  n e g l i g i b l e .  The a i r  
t empera ture  of t h e  s t o r a g e  cavern (To) was 
assumed a s  120°F (322°K) and fou r  d i f l e r e u ~  
a i r  s t o r a g e  p re s su re s  (po) were cons idered  
i n  t h e  a n a l y s i s :  30, 50, 70, and 100 atm 
(3  x l o 6 ,  5  x l o 6 ,  7  x l o 6 ,  and 1 x l o 7  Pa) .  

Turbine System. The s e l e c t i o n  of t h e  t u r -  
b ine  system ( s e e  Fig.  1 )  evolved from t h e  . 
r e s u l t s  of a  p rev ious  s tudy .*  The follow-'  
i ng  va lues  of system parameters  were con- 

, s ide red :  

1 T.ur.bine e f f i c i e n c i e s :  - - 
"1.m "HGT = 0.90, 

S e r u p e r a t o r  e f f e c t i v e n e s s :  E = 0.8  

1 Pressures :  
5  

= 16 atm (1.6 x l o 6  Pa) .  

S u b s c r i p t s  g iven  i n  ' t h e  above parameters  . 

icorrespond t o  t h e  components o r  s t a t i o n s  
Tn Fig.  1. The e f f i c i e n c i e s  of t u r b i n e s  
(and combustors a r e  based on s ta te -of - the-  
;art va lues  of a v a i l a b l e  equipment. ' Recup- 
e r a t o r  e f f e c t i v e n e s s  i B  a  f u n c t i o n  of t h e  
h e a t  exchanger s p e c i f i c a t i o n s .  Because t h e  
tempera ture  of  t h e  i n l e t  gas  t o  t h e  t u r -  
b i n e s  must be  kept  low enough t o  avoid 
thermal  damage of t h e  t u r b i n e  b l ades  and 
vanes,  cool ing  a i r  i s  r equ i r ed  f o r  h ighe r  
i n l e t  gas  tempera tures .  The amount of 
cool ing  a i r  r equ i r ed  was determined from 
:data presen ted  i n  Ref.  1. 

%.ompressor System. The s tudy  was extended 
Eo t h e  compressor system i n  o rde r  t o  com- 
p'1;ete t h e  a n a l y s i s  of t h e  CAES p l a n t .  The 

fo l lowing  parameters  were assumed t o  be  
known o r  s p e c i f i e d .  

Adiaba t ic  e f f i c i e n c y  of compressors: 
- %C = xC - qBC = 0.90; 

= 100°F, Tlg = 120°F; and 

Pressures :  pll = 1 atm, p  = 16 atm. 14 

PERFORMANCE RESULTS 

Resu l t s  of t h e  paramet r ic  s tudy a r e  
presen ted  i n  terms of t h e  f i v e  performance 
parameters :  s p e c i f i c  a i r  f low r a t e ,  spe- 
c i f i c  s t o r a g e  volume, s p e c i f i c  h e a t  r a t e ,  
s p e c i f i c  .compression r a t e ,  and o v e r a l l  
p l a n t  e f f i c i e n c y .  These va lues  a r e  g iven  
a s  a  func t ion  of a i r  s t o r a g e  p r e s s u r e  and 
i n l e t  gas  temperatures  t o  t h e  HGT and LGT. 

S p e c i f i c  a i r  f low r a t e  is t h e  flow 
r a t e  of a i r  coming o u t  of t h e  cavern per 
u n i t  ou tput  of t h e  t u r b i n e  system. I t  i s  
d i r e c t l y  p ropor t i ona l  t o  t h e  t u r b i n e  and 
compressor s i z e s ,  and, t hus ,  i s  an impor- 
t a n t  f a c t o r  i n  determining t h e  c o s t  of t h e  
above-ground f a c i l i t y .  A p l o t  of s p e c i f i c  
a i r  f low r a t e  a g a i n s t  a i r  s t o r a g e  p re s su re  
a t  d i f f e r e n t  t u r b i n e  i n l e t  gas temperatures  
(F ig .  2) shows t h a t  t h e  a i r  flow r a t e  
v a r i e s  from 6.6-12.0 lb/kWh (3.0-5.4 kg/ 
kwh) f o r  t h e  cond i t i ons  s p e c i f i e d  i n  t h i s  
s t udy ,  and i t  dec reases  a s  a i r  s t o r a g e  
p r e s s u r e  i n c r e a s e s .  I n  a d d i t i o n ,  h igher  
t u r b i n e  i n l e t  gas  temperatures  r e s u l t  i n  
sma l l e r  a i r  f low r a t e ,  even though cool ing  
a i r  i s  r equ i r ed .  

S p e c i f i c  s t o r a g e  volume, t h e  r equ i r ed  
s t o r a g e  cavern volume per  u n i t  work ou tpu t ,  
i s  d i r e c t l y  r e l a t e d  t o  t h e  c o s t  bf t h e  un- 
derground f a c i l i t y  f o r  a  CAES p l a n t .  This  
s t o r a g e  volume depends on t h e  r equ i r ed  
s p e c i f i c  a i r  f low r a t e  a s  w e l l  a s  on cav- 
e r n  cond i t i ons ,  such a s  p r e s s u r e  and t e m -  
p e r a t u r e  of s t o r e d  a i r .  Consequently, re- 
s u l t s  f o r  t h e  s p e c i f i c  s t o r a g e  volume show 
a  t r end  s i m i l a r  t o  t h a t  f o r  t h e  s p e c i f i c  
a i r  f low. F igu re  3 shows t h e  e f f e c t s  of 
a i r  s t o r a g e  p r e s s u r e  and t u r b i n e  i n l e t  gas  
temperatures  on t h e  s t o r a g e  volume. I t  i s  
seen '  t h a t  sma l l e r  s t o r a g e  volume r e s u l t s  
from h ighe r  a i r  s t o r a g e  p r e s s u r e  o r  h ighe r  
t u r b i n e  i n l e t  gas  tempera tures .  S p e c i f i c  
s t o r a g e  volume i n  t h i s  s tudy  v a r i e s  from 
0.96 ft3/kWh (0.027 m3/kwh) t o  5.84 f t 3 /  
kwh (0.162 m 3 / k ~ h ) .  



STORAGE PRESSURE, Po (otm or 105  Po) 

Fig .  2. E f f e c t  of S torage  P re s su re  
on S p e c i f i c  A i r  Flow Rate  

I 

Fig .  3 .  E f f e c t  of S torage  P re s su re  
on S p e c i f i c  S torage  Volume 

S p e c i f i c  hea t  r a t e  i s  a  measure of 
premium-fuel usage f o r  t h e  combustors per  
u n i t  power ou tpu t  of t h e  system. It v a r i e s  
i n  t h i s  s tudy  from 3700 ~ t u l k w h  (3.98 x l o 6  
J/kWh) t o  4280 Btu/kWh (4.52 x l o 6  J/kWh). 
The e f f e c t  of  s t o r a g e  p r e s s u r e  on t h e  h e a t  
r a t e  i s  given a t  d i f f e r e n t  t u r b i n e  i n l e t  

I gas  temperatures  i n  F ig .  4: h igher  s t o r -  
age  p r e s s u r e  r e s u l t s  i n  lower h e a t  r a t e .  
F igu re  5  shows t h a t  h e a t  r a t e  i n c r e a s e s  a s  
t h e  LGT i n l e t  gas temperature  i n c r e a s e s  

I 

and t h a t  t h e  HGT i n l e t  gas  tempera ture  has  
a minor e f f e c t  on t h e  h e a t  r a t e .  
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STORAGE PRESSURE, Po (ofm or 105 Po) 

Fig .  4. E f f e c t  of S torage  P re s su re  
on S p e c i f i c  Heat. Rate  
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Fig .  5 .  E f f e c t  of Turbine I n l e t  Tempera- 
t u r e s  on S p e c i f i c  Heat R a t e  

S p e c i f i c  compression r a t e  i s  . the f u e l  
equ iva l en t  of  t h e  off-peak e l e c t r i c a l  ener- 
gy i npu t  t o  t h e  compressor system per  u n i t  
power ou tpu t  of t u r b i n e  system. I n  t h i s  
s tudy ,  s p e c i f i c  compression r a t e  i s  based 
on an  off-peak h e a t  r a t e ,  inc lud ing  e l ec -  
t r i c a l  and mechanical l o s s e s ,  of 10,400 
Btu/k\Jh (1.097 x l o 7  J/kWh). For t h e  con- 
d i t i o n s  of t h i s  s t udy ,  t h e  r a t e  v a r i e s  from 
5280 Btu/kWh (5.57 x l o 6  J/kWh) t o  7790 
~ t u / k ~ h  (8.22 x l o 6 ,  ~ / k l J h ) .  F igure  6 shows 
t h a t ,  i n  gene ra l ,  compression r a t e  i n c r e a s e s  
slowly w i t h  i n c r e a s i n g  s t o r a g e  p re s su re  and 
sma l l e r  compression r a t e  i s  r equ i r ed  by 
h ighe r  t u r b i n e  i n l e t  gas  temperatures .  



STORAGE PRESSURE, P o  (otm or 105 Po 

Fig .  6. . E f f e c t  of S torage  P re s su re  
on S p e c i f i c  Compression Rate 

The o v e r a l l  p l a n t  e f f i c i e n c y ,  t h e  ra-  
t i o  of  t u r b i n e  power ou tpu t  t o  t h e  sum of 
t h e  power i npu t  t o  t h e  compressors and t h e  
power equ iva l en t  of f u e l  energy, v a r i e s  
from 0.538-0.581 f o r  t h e  cond i t i ons  spec i -  
f i e d  i n  t h i s  s tudy .  The e f f e c t s  on t h e  
o v e r a l l  p l a n t  e f f i c i e n c y  a r e  g iven  i n  F igs .  
7 and 8. 

Figure 7 shnws t h e  e f f e c t s  o f  s tnrage  
pres su re s  on p l a n t  e f f i c i e n c y :  ( a )  f o r  T3 
= T5 = 2400°F (1589°K) o r  T3 = T5 = 2000°F 
(1366"K), p l a n t  e f f i c i e n c y  i n c r e a s e s  w i th  
t h e  s t o r a g e  p re s su re ;  (b) f o r  T3 = Tg = , 
1600°F (1144OK), p l a n t  e f f i c i e n c y  inc reases  
up t o  70 a t m  (7 x l o 6  Pa) and then  decreases  
a s  t h e  s t o r a g e  p r e s s u r e  f u r t h e r  i n c r e a s e s ;  
and ( c )  f o r  T3 = 1000°F (811°K), T5 = 1600°F 
(1144"K), p l a n t  e f f i c i e n c y  decreases  mono- 
t o n i c a l l y  w i th  s t o r a g e  p re s su re .  

The e f f e c t s  of t u r b i n e  i n l e t  gas t e m -  
p e r a t u r e s  on p l a n t  e f f i c i e n c y  a r e  given i n  
F ig .  8.  It shows t h a t  h ighe r  p l a n t  e f f i -  
c iency  is  o b t a i n a b l e  w i t h  h igher  HGT i n l e t  
gas temperature .  It a l s o  shows t h a t  e f f i -  
c iency i n c r e a s e s  w i t h  t h e  LGT i n l e t  gas t e m -  
p e r a t u r e  f o r  T3 = 2000°F (1366°K) o r  2400°F 
(158g°K), and i t  has  a  minimum a t  about T5 
= 2000°F (1366°K) f o r  T3 = 1000°F (811°K) 
o r  1600°F (1144°K). 

ECONOMIC ANALYSIS 

An economic a n a l y s i s  of t h e  CAES p l a n t  
was made t o  show t h e  e f f e c t s  of t h e  para- 
meters on c a p i t a l  and o p e r a t i n g  c o s t s .  The 
a n a l y s i s  was based on t h e  performance re- 
s u l t s  descr ibed  above. I n  o r d e r  t o  provide  

-- -- 

a  reasonable  b a s i s  f o r  t h e  economic analy- 
s is ,  t h e  fo l lowing  ope ra t i ng  c y c l e  was 
chosen: 20-hr nominal cavern s t o r a g e  capa- 
c i t y  and 2190-hr/yr gene ra t i on  t ime.  

S T O R A G E  P R E S S U R E ,  P o  (atm or 105 Pa 1 

Fig .  7. E f f e c t  of S to rage  P re s su re  on 
Ove ra l l  P l a n t  E f f i c i ency  

I HGT INLET TEMPERATURE, T3=  I 

L G T  I N L E T  T E M P E R A T U R E ,  T g  ( O F  1 

Fig .  8 .  E f f e c t  of Turbine I n l e t  Tempera- 
t u r e s  on Ove ra l l  P l a n t  E f f i c i ency  



OPERATING COSTS 

D i r e c t  c a p i t a l  c o s t  of  t h e  CAES p l a n t  
was d iv ided  i n t o  t h e  fol lowing:  c o s t  of 
underground a i r  s t o r a g e  cavern and water- 
compensating r e s e r v o i r ,  c o s t  of turbomach- 
i n e r y  equipment, and balance of the plant. 

The s t o r a g e  cavern c o s t  included t h e  
c o s t  of  t h e  a i r  and water  s h a f t s ,  c a v i t y ,  
development and mob i l i za t i on ,  and comple- 
t i o n .  The c o s t  of t h e  a i r  and water  s h a f t s  
was es t imated  based on t h e  cavern depth 
which was determined by t h e  a i r  s t o r a g e  
p re s su re .  The c o s t  of t h e  c a v i t y  was esti- 
mated based on s p e c i f i c  s t o r a g e  volume wi th  
a 10% capac i ty  margin. S ince  t h e  s t o r a g e  
cavern considered i n  t h e  a n a l y s i s  is  water- 
compensated, t h e  c o s t  of t h e  water  reser- 
v o i r  was a l s o  inc luded .  The s to rage - r e l a -  
t e d  c o s t s  were based on Ref.  5 .  

Es t imat ion  of t h e  turbomachinery c o s t  
was based on Ref. 1. I n  t h i s  r e f e r e n c e ,  
t h e  s e l l i n g  p r i c e  i s  es t imated  f o r  10,  20, 
and 50 u n i t s .  Based on t h e  e v a l u a t i o n  of  
r e g i o n a l  markets  and development p o t e n t i a l  
f o r  CAES conducted by Harza Engineering 
C ~ r n p a n y , ~  a 50-unit  s e l l i n g  p r i c e  was used 
i n  t h i s  s tudy .  The c o s t  of t h e  low-pres- 
s u r e  gas t u r b i n e  w i t h  a  cyc le -pressure  ra -  
t i o  of 1 6 : l  was determined by t h e  i n l e t  gas  
tempera ture  and t h e  c o s t  of t h e  high-pres- 
s u r e  gas  t u r b i n e  was determined by both  t h e  
in le t  gas  tempera ture  and a i r  s t o r a g e  pres-  
s u r e .  Costs  of t h e  LC and HC w i th  t h e  
o v e r a l l  compression r a t i o  of 1:16 were es- 
t ima ted  from t h e  a i r  f low r a t e ,  and t h e  
c o s t  of  BC w a s  determined by t h e  a i r  f low 
r a t e  and a i r  s t o r a g e  p r e s s u r e .  A 25% a l -  
lowance was g iven  f o r  t h e  duc t ing  and in-  
s t a l l a t i o n  of t h e  turbomachinery equipment. 

The' remainder of t h e  p l a n t  equipment, 
which inc ludes  t h e  c l u t c h e s ,  motor/genera- 
t o r ,  r e c u p e r a t o r ,  combustors, f u e l  s t o r a g e ,  
c o o l e r s ,  e l e c t r i c a l  power system, l and ,  and 
p l a n t  s t r u c t u r e  was denoted a s  t h e  balance 
of plant. This  equipment is  r e l a t i v e l y  in -  
s e n s i t i v e  t o  CAES des ign  parameters  and a  
f i x e d  c o s t  of $ 8 0 / k ~  was used f o r  t h e  ba l -  
ance  of p l a n t  f o r  a l l  c a se s  of  t h i s  s t udy .  

T o t a l  c a p i t a l  c o s t  of t h e  p l a n t  was 
e s t ima ted  from t h e  d i r e c t  c a p i t a l  c o s t  con- 
s i d e r i n g  t h e  fo l lowing  allowances: 15% f o r  
cont ingency,  10% f o r  engineer ing  and admin- 
i s t r a t i o n ,  and 30% f o r  e s c a l a t i o n  and in-  
terest dur ing  t h e  c o n s t r u c t i o n  pe r iod .  

Operat ing c o s t  of  t h e  CAES p l a n t  con- 
sists mainly of c a p i t a l  charge,  c o s t  of 
f u e l  t o  t h e  combustors,  off-peak e l e c t r i -  
c i t y  t o  t h e  compressors,  and ope ra t i on  and 
maintenance. Annual c a p i t a l  charge was 
es t imated  from t h e  t o t a l  c a p i t a l  c o s t  based 
on t h e  f i x e d ' c a p i t a l  charge  r a t e  of 18% pe r  
yea r .  Es t imat ion  of t h e  c o s t  of premium 
f u e l  was made by mu l t i p ly ing  t h e  s p e c i f i c  
h e a t  r a t e  by t h e  c o s t  of No. 6  o i l .  Cost 
of t h e  off-peak e l e c t r i c i t y  t o  t h e  compres- 
s o r s  was es t imated  from t h e  s p e c i f i c  com- 
p re s s ion  rate and t h e  e l e c t r i c i t y  c o s t  
from t h e  base p l a n t .  A va lue  of 2  m i l l s /  
kwh was used a s  t h e  c o s t  of ope ra t i ng  and 
maintenance f o r  a l l  c a s e s .  

ECONOMIC RESULTS 

Resu l t s  of t h e  economic s tudy  a r e  
g iven  i n  terms of t h e  two s p e c i f i c  c o s t s :  
c a p i t a l  c o s t  ($/kW) and ope ra t i ng  c o s t  
(mills/kWh). The va lues  a r e  presen ted  a s  
a  f u n c t i o n  of t h e  s t o r a g e  p r e s s u r e  (po) 
and t h e  t u r b i n e  i n l e t  temperatures  (T3 
and T5). 

C a p i t a l  Costs .  C a p i t a l  c o s t  of a  CAES 
p l a n t  v a r i e d  from $285/kW t o  $406/kW f o r  
t h e  range of  des ign  parameters  s p e c i f i e d  
i n  t h e  s tudy .  The c o s t  of t h e  underground 
s t o r a g e  cavern was found t o  be  t h e  h i g h e s t  
component c o s t  f o r  most ca se s  vary ing  from 
26-46% of t h e  t o t a l  c a p i t a l  c o s t  and t h e  
c o s t  of t h e  turbomachinery equipment v a r i e d  
from 16-31% of t h e  t o t a l  d i r e c t  c a p i t a l  
c o s t .  I n  gene ra l ,  i t  was found t h a t  h ighe r  
t u r b i n e  i n l e t  temperatures  r e s u l t  i n  h ighe r  
turbomachinery c o s t  . 

T o t a l  c a p i t a l  c o s t  is  g i v e n , i n  F ig .  9 
a s  a  f u n c t i o n  of s t o r a g e  p r e s s u r e  f o r  fou r  
d i f f e r e n t  combinations of i n l e t  gas  t e m -  
p e r a t u r e s  t o  t h e  HGT and LGT. C a p i t a l  
c o s t  sha rp ly  dec reases  w i t h  i n c r e a s i n g  
s t o r a g e  p r e s s u r e  f o r  a l l  t h e  c a s e s  up t o  
70 atm (7 x l o 6  Pa) and e i t h e r  slowly de- 
c r e a s e s  o r  i n c r e a s e s  t h e r e a f t e r .  Higher 
t u r b i n e  i n l e t  t empera tures  r e s u l t  i n  lower 
c a p i t a l  c o s t  a t  low s t o r a g e  p re s su re s ,  f o r  
example 30 atm ( 3  x l o 6  Pa ) .  However, a t  
s t o r a g e  p r e s s u r e s  g r e a t e r  than  70 atm 
(7 x  l o 6  P a ) ,  h ighe r  t u r b i n e  i n l e t  tem- 
p e r a t u r e s  r e s u l t  i n  h ighe r  c a p i t a l  c o s t .  
Among t h e  c a s e s  cons idered  i n  t h e  s tudy ,  I 

t h e  des ign  parameters  t h a t  r e s u l t  i n  t h e  
lowest  c a p i t a l  c o s t  a r e  t hose  when T3 = T5 
= 1600°F (1144OK) and po = 100 atm ( 1  x 
l o 7  Pa) . 



STORAGE PRESSURE, Po (otm or 105 Pa) 

Fig .  9.  E f f e c t  of Turbine Options 
on C a p i t a l  Cost 

The d o t t e d  curve i n  F ig .  9 r e p r e s e n t s  
t h e  c o s t  of a  p l a n t  us ing  a  modif ied steam 
t u r b i n e  (%GT = 78%) f o r  t h e  HGT, which 
o p e r a t e s  a t  1000°F (811°K) i n l e t  ga s  t em-  
pe ra tu re .  The s o l i d  curve f o r  T3 = 1000°F 
(811°F) and T5 = 1600°F (1144°K) is  based 
on t h e  assumption t h a t  t h e  c o s t  of t h i s  
new, h igh-ef f ic iency  HGT (nHGT = 90%) 

) would be t h e  same a s  t h a t  of t h e  modif ied 
steam tu rb ine .  The a c t u a l  c o s t  of t h i s  
new t u r b i n e  would depend upon t h e  develop- 

I ment c o s t  and t h e  number of u n i t s  s o l d .  
) Thus, t h e  a c t u a l  h igh-ef f ic iency  c o s t  
I cu rve  should be  somewhere between t h e  
I s o l i d  and do t t ed  curves .  The n e t  r e s u l t  

i s  t h a t  t h e  c o s t  d i f f e r e n c e s  would b e  neg- 
l i g i b l e ,  t h e r e f o r e  f avo r ing  t h e  u se  of t h e  

I 

modified steam t u r b i n e  because of proven 
r e l i a b i l i t y  and equipment a v a i l a b i l i t y .  

(Operating Cos ts .  The ope ra t i ng  c o s t  of t h e  
CAES p l a n t  is g iven  i n  ~ i g . '  10  a s  a  fun- 
t i o n  of t h e  des ign  parameters .  The c o s t  
of premium f u e l  was s e l e c t e d  a s  $2.50/106 
Btu and t h e  e l e c t r i c i t y  c o s t  was 1 5  m i l l s /  
kWh. I n  t h i s  f i g u r e  t h e  ope ra t i ng  c o s t  
v a r i e s  from 44.5-55.5 mills/kWh. 

The c a p i t a l  charge was found t o  b e  
much h igher  than t h e  c o s t  of f u e l  o r  e lec-  
t r i c i t y ;  i t  amounts t o  52-60% of  t h e  t o t a l  

ope ra t i ng  c o s t .  Consequently, t h e  opera- 
t i n g  c o s t  i n  F ig .  1 0  shows a  s i m i l a r  t r end  
t o  t h a t  of  t h e  c a p i t a l  c o s t .  The f i g u r e  
shows t h a t  t h e  ope ra t i ng  c o s t  decreases  . 
w i t h  i nc reas ing  a i r  s t o r a g e  p r e s s u r e  f o r  a l l  
c a se s  b u t  T3 = T5 = 2400°F (158g°K), which 
has  a  minimum a t  about  70 atm (7 x l o 6 ) .  
It a l s o  shows t h a t ,  among t h e  ca se s  s t u d i e d ,  
t h e  lowest  ope ra t i ng  c o s t  r e s u l t s  when T3 = 
T5 = 1600°F (1144°K) f o r  po 1 58 atm (5.8 x 
l o 6  Pa) and Tg = T5 = 2400°F (1580°K) f o r  
po < 58 a t m  (5.8 x l o 6  Pa) .  However, i n  t h e  

. p r e s su re  r ange  of 50-90 atm, which i s  t h e  
most l i k e l y  range  f o r  CAES w i t h  a  water-com- 
pensated r e s e r v o i r ,  t h e  d i f f e r e n c e  i n  opera- 
t i n g  c o s t  between d i f f e r e n t  t u r b i n e  systems 
i s  less than about  3  mills/kWh. 

F ig .  10.  E f f e c t  of Turbine Op,tions 
on Operat ing Cost 

F igu re  10  a l s o  i l l u s t r a t e s  t h a t ' f o r  
T3 = 1000°F (811°K) and T5 = 1600°F (1144°K) 
t h e  d i f f e r e n c e  i n  ope ra t i ng  c o s t  between a  
modif ied steam t u r b i n e  f o r  t h e  HGT and a  
new, h igh-ef f ic iency  des ign  is  n e g l i g i b l e ;  
i .e . ,  less than  1 mill/kWh. Thus, t h e  u se  
of a  modified steam t u r b i n e  would b e  f a -  
vored because of proven r e l i a b i l i t y  and 
equipment a v a i l a b i l i t y .  

E f f e c t  of E l e c t r i c i t y  and Fuel  Costs  on 
Operat ing Cos ts .  Table  1 i l l u s t r a t e s  t h e  
e f f e c t  of d i f f e r e n t  e l e c t r i c i t y  and pre-  
mium f u e l  c o s t s  on t h e  o v e r a l l  ope ra t i ng  
c o s t  of  a'CAES p l a n t .  Two p l a n t  de s igns  
a r e  compared: P l a n t  A where T3 = 1000°F 



. > ,.d Table 1. E f f e c t  of E l e c t r i c i t y  and Fue l  Cos ts  on Operat ing Costs  
- ,, 

Operat ing Cost (mills/kWh) 
E l e c t r i c i t y  Fue l  Cost 

Cost (mills/kWh) ( $ / l o 6  Btu) P l a n t  P l a n t  B~ % Decrease 
C 

a  Turbine i n l e t  temperatures:  T3 = 1 0 0 0 ~ ~  ( 8 1 1 " ~ )  (TIHGT = 78%) 
Tg = 1600°F (1144OK). 

b ~ u r b i n c  i n l e t  temperatures:  TJ - T5 - 1600'F (1144QK). 
C 100(Plan t  A - P l a n t  B) /P lan t  A .  

((i811°K) (qHGT) = 78%) and T5 = 1600°F o t h e r  two r e s e r v o i r  types  ( i  . e . ,  a q u i f e r  
!(1144"K), and P l a n t  B where T3 = T5 = r e s e r v o i r s  and s a l t  c ave rns ) ,  b u t  f u r t h e r  
1600°F. These two p l a n t s  b r acke t  t h e  s tudy  i s  recommended t o  f u l l y  e v a l u a t e  t h e  
:h ighes t  and lowest  es t imated  ope ra t i ng  a f f e c t  of r e se rvo i r  t ype  on CAES p l a n t  per- 
ccos t~ . formance and c o s t .  

From t h i s  t a b l e  it is  seen  t h a t  f o r  
Z5xed e l e c t r i c i t y  c o s t ,  t h e  d i f f e r e n c e  be- 
=,ween p l a n t  de s igns  dec reases  a s  t h e  f u e l  
c o s t  i nc reases .  This  means t h a t  i f  f u e l  
{costs  i n c r e a s e  f a s t e r  t han  e l e c t r i c i t y  
ccosts, then t h e  type  of p l a n t  des ign  ( i . e . ,  
. t he  s e l e c t i o n  of t u r b i n e  system) becomes 
3ess s i g n i f i c a n t .  This  s c e n a r i o  would 
!'aver us ing  P l a n t  A because of proven 
m e l i a b i l i t y  and equipment a v a i l a b i l i t y .  

For f i x e d  f u e l  c o s t ,  t h e  d i f f e r e n c e  
% e w e e n  t h e  ope ra t i ng  c o s t s  of t h e  two de- 
s i g n s  i n c r e a s e s  a s  t h e  e l e c t r i c i t y  c o s t  in -  
(creases. This  means t h a t  i f  ba se  p l a n t  
jpower i n c r e a s e s  i n  c o s t  a t  a  f a s t e r  r a t e  
shan  f u e l  c o s t s ,  then  P l a n t  B would be  
Zavored. I n  t h i s  ca se ,  t h e  u se  of a  new, 
.high-eff i c i ency  HGT would be  j u s t i f i e d .  

CONCLUSIONS 

This  paper  has  considered t h e  per for -  
imance and c o s t  of p o s s i b l e  turbomachinery 
toptions f o r  CAES power p l a n t s .  P a r t i c u l a r  
 emphasis was d i r e c t e d  toward t h e  t u r b i n e  
!system of t h e  p l a n t .  The main des ign  v a r i -  
(ables  were t h e  r e s e r v o i r  s t o r a g e  p r e s s u r e  
rand t h e  t u r b i n e  i n l e t  gas  temperatures .  A 
\water-compensated mined cavern was s e l e c t e d  
as t h e  s t o r a g e  r e s e r v o i r .  The r e s u l t s  of 
t h i s  s tudy  should b e  a p p l i c a b l e  t o  t h e  

From t h e  performance a n a l y s i s ,  t h e  
fo l lowing  t r ends  were observed: 

1. S p e c i f i c  a i r  f low r a t e  and s t o r a g e  
volume dec rease  a s  po, T3, o r  T5 
i n c r e a s e s .  

2 .  S p e c i f i c  h e a t  r a t e  decreases  a s  po 
i n c r e a s e s  and i n c r e a s e s  a s  T5 in-  
c r ea se s ;  b u t  is r e l a t i v e l y  i n sens i -  
t i v e  t o  T3. 

3. S p e c i f i c  compression r a t e ,  i n  gene ra l ,  
s l i g h t l y  i n c r e a s e s  a s  po ing reases  ; 
i t  decreases  w i th  i nc reas ing  T3 o r  T5. 

4. I n  g e n e r a l ,  o v e r a l l  p l a n t  e f f i c i e n c y  
i n c r e a s e s  a s  T3 i n c r e a s e s ;  i s  only 
weakly a f f e c t e d  by po o r  T  5 

From t h e  above, i t  can be  concluded t h a t  
optimum performance r e s u l t s  from t h e  u s e  
of a  h igh  s t o r a g e  p r e s s u r e  and h igh  i n l e t  
gas  temperature  t o  bo th  t u r b i n e s .  

The economic a n a l y s i s ,  however, i l l u s -  
t r a t e s  t h a t  minimum c o s t  ( c a p i t a l  and 
ope ra t i ng )  does n o t  n e c e s s a r i l y  correspond 
t o  optimum p l a n t  performance. Considering 
t h e  s p e c i f i c  ope ra t i ng  c o s t  ( i .  e . ,  m i l l s /  
kWh), which can b e  cons idered  t h e  true 
i n d i c a t o r  of p l a n t  c o s t ,  a t  s t o r a g e  pres-  



s u r  s. belaw about  60 a t m ,  . the h i g h e s t  tem- 
3 P  :$racure t u r b i n e  sys tem c o n s i d e r e d  i n  t h i s  

".study ( i . e . ,  T3 = T5 = 2400°F (1589°K)) re- 
,suits i n  t h e  l o w e s t  c o s t ;  whereas ,  above 
60 a t m ,  t h e  t u r b i n e  sys tem w i t h  T3 = T5 = 
1600°F (1144OK) r e s u l t s  i n  t h e  l o w e s t  c o s t .  

A s i g n i f i c a n t  r e s u l t  i s  t h a t  f o r  t h e  
p r e s s u r e  r a n g e  of 50-90 atm, which is  t h e  
r a n g e  o f  p r e s e n t  i n t e r e s t  f o r  water-com- 
.pensated c a v e r n s ,  t h e  o p e r a t i n g  c o s t  f o r  
a l l  of t h e  t u r b i n e  sys tems c o n s i d e r e d  i n  
t h i s  s t u d y  are w i t h i n  a b o u t  3  mills/kWh of 
.each o t h e r ;  t h e  a v e r a g e  c o s t  is  a b o u t  47 
mills/kWh. Fur thermore,  i t  was observed  
: tha t  i f  t h e  c o s t  of premium f u e l  i n c r e a s e s  
:as a  f a s t e r  r a t e  t h a n  t h e  c o s t  of b a s e  
gower e l e c t r i c i t y ,  which seems t o  b e  a 
l o g i c a l  s c e n a r i o  f o r  t h e  f u t u r e ,  t h e  c o s t  
d i f f e r e n c e  between t u r b i n e  s y s  tems de- 
. c r e a s e s .  

The economic s t u d y  i n d i c a t e d  t h a t  f o r  
a t u r b i n e  sys tem w i t h  T = 1000°F (811°K) 
and T5 = 1600°F (1144"K?, t h e  u s e  o f  a  new, 
h z g h - e f f i c i e n c y ,  h i g h - p r e s s u r e  t u r b i n e  
:could n o t  be  j u s t i f i e d  and a  modi f i ed  
steam t u r b i n e  could  b e  used w i t h  l i t t l e  
c o s t  p e n a l t y  . 

Based on t h e  above f a c t o r s ,  t h e  
, o v e r a l l  c o n c l u s i o n  of t h i s  s t u d y  i s  t h a t  
. the t u r b i n e  sys tem can b e  c o n s t r u c t e d  
u s i n g  a v a i l a b l e  t u r b i n e s  w i t h  proven reli- 
( a b i l i t y  w i t h o u t  s i g n i f i c a n t l y  s a c r i f i c i n g  
& c o s t .  The HGT can  b e  a modi f i ed  steam t u r -  
. b i n e  and t h e  LGT can b e  o b t a i n e d  from a  
peaker  u n i t  which o p e r a t e s  a t  a n  i n l e t  g a s  
- . temperature of a b o u t  1600°F ( o r  l o w e r ) ,  
r e q u i r i n g  l i t t l e ,  i f  any,  c o o l i n g  a i r .  
I n t e r e s t i n g l y ,  t h i s  i s  t h e  approach b e i n g  
.used a t  t h e  Huntorf  P l a n t ,  which i s  t h e  
w o r l d ' s  f i r s t  CAES p l a n t .  
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NOMENCLATURE 

'. 
:E", S p e c i f i c  compress ion r a t e  
~. :, 
:m 

a S p e c i f i c  a i r  f low r a t e  

1P P r e s s u r e  

.G * S p e c i f i c  h e a t  r a t e  

t l S p e c i f i c  s t o r a g e  volume 
S 

E Recupera to r  e f f e c t i v e n e s s  

rl E f f i c i e n c y  

'overa l l  O v e r a l l  p l a n t  e f f i c i e n c y  

S u b s c r i p t s  

B C Boos te r  compressor 

C1 Combustor 1 

2 Combustor 2  

HGT High-pressure  g a s  t u r b i n e  

LGT Low-pressure g a s  t u r b i n e  

HC High-pressure  compressor 

LC Low-pressure compressor 
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